

NXP Semiconductors
www.nxp.com

eIQ® Neutron NPU for MCUs Lab
Part 1: Mobilenet

Revision 3
June 2024

 eIQ Neutron NPU Lab Page 2 of 18

Contents

1 Lab Overview ... 3

2 Software and Hardware Installation .. 3
2.1 Hardware ...3
2.2 NXP Software Installation ..3

3 Label Image Example .. 3
3.1 Convert Models ...3
3.2 View Models .. 7
3.3 Run Models ... 8

4 Conclusion ... 18

 eIQ Neutron NPU Lab Page 3 of 18

1 Lab Overview
This document will cover how to convert models using NXP’s eIQ Toolkit and will also highlight the
performance improvements that can be achieved with the eIQ Neutron NPU on MCX devices.

2 Software and Hardware Installation
This section will cover the hardware and software needed for this lab.

2.1 Hardware
The FRDM-MCXN947 development board is used in this lab

2.2 NXP Software Installation
1. Install MCUXpresso IDE v11.9.1 or later
2. Install eIQ Toolkit 1.11.4 - During installation it is not required to install the optional components

offered by the install wizard. Everything needed for this lab is already installed by default.
3. A quantized Mobilenet model can be found attached to this post or in the i.MX RT1170

MCUXpresso SDK v2.15.0 at \boards\evkmimxrt1170\eiq_examples\tflm_label_image\doc
4. Download MCUXpresso SDK 2.14.0 for FRDM-MCXN947

It includes the eIQ software platform and demos. It must be 2.14.0 to ensure compatibility with
eIQ Toolkit v1.11.4

a) On the SDK builder page, make sure to select the “eIQ” middleware and that you’re
downloading version 2.14.0

b) Then click on the Download SDK button and accept the license agreement to

download the zip file.

3 Label Image Example
This section will use the eIQ Label Image example found in the MCX N MCUXpresso SDK to showcase
how the eIQ Neutron NPU can significantly decrease inference times for quantized models.

3.1 Convert Models
Use eIQ Toolkit to convert a pre-existing Mobilenet model into a Neutron optimized model.

http://nxp.com/FRDM-MCXN947
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT#downloads
https://mcuxpresso.nxp.com/en/builder?hw=FRDM-MCXN947

 eIQ Neutron NPU Lab Page 4 of 18

1. Download and unzip the Mobilenet v1 image classification TFLite model attached to this
Community post or use this direct link.

2. Open eIQ Portal which is the GUI interface to eIQ Toolkit

3. After it opens, go to the menu bar and click on Settings. In the dialog box that comes up,

make sure the Neutron Converter SDK matches the SDK version that you are using. In this
case it should be set to MCUXPresso SDK 2.14.0 by default and require no change. It is very
important that the Neutron Converter tool version is targeted to the eIQ Neutron libraries used
in the targeted SDK. Click on OK to save the setting and go back to the main screen.

4. Click on Model Tool

https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/MCX%40tkb/9/3/mobilenet_quant.zip

 eIQ Neutron NPU Lab Page 5 of 18

5. Click on Open Model and select the mobilenet_quant.tflite model that was unzipped from
the file downloaded earlier.

6. After the model is opened you’ll see the various layers. Then click on the upper left corner to

find the menu and select Convert

7. It may need to search for plugins. Let it.
8. After the plugins have been found, go back to the menu options and select Convert and then

select TensorFlow Lite for Neutron (.tflite)

 eIQ Neutron NPU Lab Page 6 of 18

9. In the dialog box that comes up, select mcxn94x as the target and then in the custom
options field put: dump-header-file; dump-header-file-input

These two options will generate a C array of both the converted model and the input model,
which we’ll use to compare the performance of them. In typical situations you would only
need the dump-header-file option though. Also make sure the Neutron Converter tool for
MCU_SDK_2.14.0 is being used. Click on Convert and save the converted TFLite file on your
hard drive as mobilenet_npu.tflite

 eIQ Neutron NPU Lab Page 7 of 18

3.2 View Models
After conversion, you’ll see the newly converted model optimized for the eIQ Neutron NPU pop up with
the Model Tool. Take a moment to look at the original model compared to the new converted model.

1. The original TFLite file: mobilenet_quant.tflite

2. The Neutron converted file: mobilenet_npu.tflite

3. You can see how almost all the operators in the original model were replaced with a

NeutronGraph operator. Those NeutronGraph operaters are what will be executed on the eIQ
Neutron NPU when this model is ran on the MCX N94x. Any layers not converted to a
NeutronGraph operator will instead be ran on the Cortex-M33 core.

4. Take a look at the file size of each of those header files and you can see that, in general, the
NPU converted file will take up less flash space. Note that this might be counter-acted by the
slightly increased size required for using the eIQ Neutron libraries.

5. During the conversion process the dump-header-file argument generated a header file for
the NPU optimized model that can be used in the eIQ MCXUpresso SDK projects.

 eIQ Neutron NPU Lab Page 8 of 18

6. The dump-header-file-input argument generated a header file for the original non-
converted model. This will be used so the inference time of the original model that only runs
on the Cortex-M33 core can be compared to the NPU converted model that makes use of the
eIQ Neutron NPU.

7. So let’s run these models to see the performance improvements.

3.3 Run Models
Now let’s use the MCUXpresso SDK eIQ Label Images example to run the models and see how long
the inference time is.

8. Open MCUXpresso IDE and select a workspace location in an empty directory
9. Close the Welcome Screen tab by clicking on the X in that tab

10. Drag-and-drop the 2.14 FRDM-MCXN947 SDK zip file into the Installed SDKs window, located on

a tab at the bottom of the screen named “Installed SDKs”. You will get the following pop-up,
so hit OK.

11. Once imported, the Installed SDK panel will look something like this:

12. Next import the desired project. In the Quickstart Panel, select Import SDK examples(s)…

 eIQ Neutron NPU Lab Page 9 of 18

13. Select the frdmmcxn947 board and click on Next

14. Under the eiq_examples category, select the tflm_label_image example. Then click on

Finish to select that project.

 eIQ Neutron NPU Lab Page 10 of 18

15. It should look like the following when done:

16. Now we need to import the models that were generated in the last section into this project.
17. Navigate down to the source->model folder and right click on model_data.h and then select

Utilities->Open directory browser here to open the location of that file on your hard drive.

 eIQ Neutron NPU Lab Page 11 of 18

18. Now copy and paste the two .h header files that were generated in the previous section into
this file location. It should look like the following when complete:

19. Now we need to slightly modify those two header files to add some information for the eIQ

MCUXpresso SDK project that describe how much memory this model will require and to
describe some of the normalization values that this model uses:

a) Open model_data.h, which contains the default model for this example, and find the
following section of code and copy it.

 eIQ Neutron NPU Lab Page 12 of 18

b) Then in both mobilenet_quant.h and mobilenet_ npu.h copy that code above the
array, overwriting the default #defines above the array. Make sure not to erase the
commented lines at the top of the file as those comments will be used later. Note that
the MODEL_NAME can be changed to “mobilenet”.

20. After changing both files, now double click on model.cpp to open it.

21. Go to line 27 and change it to point to the non-NPU accelerated model in

mobilenet_quant.h. It should look like the following after changed:

 eIQ Neutron NPU Lab Page 13 of 18

22. Next look at line 42 in that same model.cpp file to find where the model is loaded by the TFLM
inference engine using the C array name model_data. Because the model array name in the
new header file is the same as the original header file we replaced, no change is needed
here. This is just for informational purposes only.

23. Compile the project by clicking on the Build button in the Quickstart Panel in the lower left

hand corner. Make sure the correct project is listed as well.
Note: Because TFLM is now deployed as a library in MCUXpresso SDK 2.14, the default Debug no-optimization target
can be used and still have the same inference time as the Release high-optimization target.

24. Connect a USB C cable from your computer to the USB port on the FRDM-MCXN947 at J17
25. Open TeraTerm or other terminal program, and connect to the virtual COM port that

debugger or UART-to-USB converter enumerated as. Use 115200 baud, 1 stop bit, no parity.
There is a built-in serial terminal in MCUXpresso IDE that can be used as well:

 eIQ Neutron NPU Lab Page 14 of 18

26. Then in MCUXpresso IDE click on Debug

27. You’ll see the following dialog box come up. It should list your debugger hardware. If there is a

notice about a Firmware update available, that can be ignored for now. Click on OK to
connect to the target.

28. You should see MCUXpresso IDE connect and download the program to your board in the

Console tab.
29. You may see this dialog box come up the first time you run the program. Keep the default

selection to run on the primary core and hit OK

 eIQ Neutron NPU Lab Page 15 of 18

30. Once complete, it will pause at the start of main(). Hit the Resume icon to run the program
and look at the terminal tab.

31. Looks like there’s an error: Didn't find op for builtin opcode 'CONV_2D'

32. Stop the debugger by clicking on the red square

33. When changing models, the list of operators needs to be updated as well. To fix the error, go

back to MCUXpresso IDE and open the model_mobilenet_ops_npu.cpp file.

 eIQ Neutron NPU Lab Page 16 of 18

34. Inside the MODEL_GetOpsResolver function is a list of operators. If you open the
mobilenet_quant.h header file you’ll also find a list of operators used by the model in the
comment block at the top of the file.

35. Copy that list into the MODEL_GetOpsResolver function replacing the original list.

36. Also update the number of operators, the name of the operator variable

(s_microOpResolver to microOpResolver), and the return variable name so they all use the
microOpResolver name.

37. Recompile and reprogram the board using the previous steps.
38. You should now see the following on the serial terminal:

 eIQ Neutron NPU Lab Page 17 of 18

39. Stop the debugger by clicking on the red square

40. Now run the program again, but this time with the Neutron NPU accelerated version of the

model.
41. Re-open model.cpp and this time change line 27 to point to the Neutron NPU converted

version of the model in the mobilenet_ npu.h file:

42. Re-open model_mobilenet_ops_npu.cpp and update the MODEL_GetOpsResolver

function with the operators listed in the comment block of the mobilenet_npu.h file. Also
make sure to update the array size.

43. Build and program the program as before.

 eIQ Neutron NPU Lab Page 18 of 18

44. This time you should see the following on the terminal. That’s over a 28x improvement in
inference time, with the same confidence percentage on this static image.

45. The decrease in inference time is very model dependent depending on how well that specific

model could be optimized for the NPU.

4 Conclusion
This lab demonstrated how the eIQ Neutron NPU on MCX N devices can significantly decrease
inference time on quantized models. These same steps can be used to benchmark other quantized
models to see the performance improvements that the eIQ Neutron NPU can have.

