NXP Semiconductors Document Number: LSDK

Rev. 18.03, 04/2018

Layerscape Software Development Kit 18.03
Documentation

Reference Manual

h
P

Contents

Contents

Chapter 1 About this document...........ccoommmmmcnscnnnnesssssseerrneeeee 10

Chapter 2 Acronyms and abbreviations...............ccccmmmmmmmmeeeesssssnnnnsnnnnnnnneeeeee. 18

Chapter 3 Release NOtES........cccciiiiiiiniinnnisssnsssnssnnnnnnnnnnnnnnnnnnnnnnnn s 23
LT I L = L =T A= PO PU R PPRROPRRTIN 23
2 0o oo ToTg 1T o1 (=TSO T PSPPSR 29
3.3 FEATUIE SUPPOIT IMBEIIX. ...ttt ettt h et e s h btk e e as e e b e e et e e ebe e et e e san e e be e anneenne e e 33
I S 10 o] oToTg (=To I =T [= £ T O ST P PP U RSP URPPRO 35
3.5 Fixed, Open, and ClOSEA ISSUES.......cciiueiieiiiieeiiee et eee e sttt e st e ettt e e sttt e eneeeesseeeeanseeesaneeeesnseeeaseeeeanseeeanneeeanseeeanns 36

Chapter 4 Layerscape SDK user guide.........ccceeeeeiinnmmmmmmmmmmmeemmeeeeeeeeeeeeenenennnn 41

4.1 LSDK QUICK STAI....c ettt ettt h e et h ettt e bt e b e e e e e bt e s et e b e s bt e a e e nae e ne e e 41
4.1.1 Download and assemble LSDK IMAGES.coiuutiiiiiiiiiiie ittt e et e s saee e e e e e e snneeeanes 41

4.1.2 Deploy LSDK Images on the target DOArd...........cc.eoiiiiiiiiiiiiii e 43

4.1.2.1 Deploy LSDK images from LINUX HOST..........ooiiiiiiiiiiiie e 43

4.1.2.2 Deploy LSDK images ON DOAIM.........ccoiuiiiiiiiieiiie ettt 46

4.1.3 Deploy LSDK Images for secure boot on the target board............coccviiiiiiiiiiiii e 48

4.1.3.1 Deploy LSDK images from LINUX HOST..........ooiiiiiiiiiiiie e 49

4.1.3.2 Deploy LSDK Secure images 0N DOAI..........coouiiiiiiiiiieeiiiee ettt 51

4.2 How 10 build LSDK With FIBXDUII.c.coiiiiiieieciie ettt r e 54
4.3 Advanced Use Case INSIIUCHIONSuiiiiiiiiiiie ettt e bt ettt e sab e e et e e e sabe e e snneeeebeeenans 59
4.4 Procedure t0 RUN SECUIE BOO........ouiiiiiiiie ittt ettt e bt e aa bt e e ettt e e eas e e e anb e e e enbeeennneas 62
4.4.1 Prepare board fOr SECUIE BOOt..........uiiiiiiiiiii et e e e e e et e e e e e e ear e e e e e e ennnneaeaean 62

4.4.2 Running secure boot on target platformsS.........oooiio i s 63

4.4.3 Steps to run Chain of Trust with Confidentiality...........cocueiiiiiiiie e 65

4.5 LSDK MEMOIY LAYOUL......eiiiitiieiitit ettt ettt bt e ettt s bt e e bt e e sttt e sab e e e e st e e e eab e e e aabe e e e st e e e eanneesnnaee s 66
4.6 Board-SPeCifiC INFOIrMATION.ciiiiiiiiiiie et e et e e e e et e e e e e e e b e e e e e e e e ssseeaeeasasbeeeaeesanssaneeeseansseeeeeann 67
4.8.1 TWR-LSTO2TA . ettt ettt b et bt a e bbbt e b e e h s e bt e e et b e e et ebe e et e ae e nae e e e see e e neean 67

4.6.1.1 ON-board SWItCh SEHINGS.coiuiiiiiiie i 67

4.6.1.2 CIOCK FTEQUENCY ... ettt ettt ettt et e ettt e et e sab e e e e ba e e e nbe e e saneeeenbbeeeans 68

4.6.1.3 U-Boot ENvironment VariabIes............eoiiiiiiiii ettt 68

4.6.1.4 SUPPOIrted BOOt OPtiONS.cci i ettt e e et e e e e st e e e e e e snteeeeeesenbereeeeaanns 68

4.6.1.5 SYStEM MEMOTY IMAP......ei ittt ettt e be e e ettt e et e e e saae e e e beeeeneeeenanes 68

4.6.1.6 NOR Flash (Virtual) BanKS...........coeiiiiiiiiiiieiiiiiiee sttt e e e st e e e s et e e e s s enntaeaeeesnsneeeeeean 69

4.6.1.7 Supported Reset Configuration Word (RCW) BiNari€s..........covuiiiiiiiiiiiiieniie e 70

4.6.1.8 FIEXCAN USEI MANUAL ...ttt sttt ettt e e e s e e e e e e e eneeas 71

4.6.2 LSTOT2ARDB........c.tieitietiett ettt ettt h et b et h e bbbt e st eb e etk e e et Re et h e bt b e r e 76

4.6.2.1 ON-board SWItCh SENGS.eeiiiiiiiiiie ettt e e e e nbeee e 76

4.6.2.2 U-Boot ENVIronmMent Variables..........ccoouuiiiiiiiiiieeeie et 76

S IZRC IS U o] oY) g (=To I =ToTo) @ o) o] o - T PSPPSR 76

4.6.2.4 SyStEmM MEMOIY IMAP.eeii ettt ettt b e et e e sbe e e s be e e e et e e e sne e e e nneee s 77

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
2 NXP Semiconductors

Contents

4.6.2.5 Supported Reset Configuration Word (RCW) Binaries.ccoouveriiiiieniiiiic e 77
4.6.2.6 FIash BanK USAJE.uueiiiiiiiiiii ettt e e e e e 77
4.6.2.7 Basic Networking PiNg TEST.........oii it 79
4.6.2.8 Check 'Link Up' for Serial Ethernet Interfaces..........cccovuiiriiiiiiiiieici e 82
4.8.3 LSTOABARDB..... ettt ettt ettt b bt h e a et E e et b et he e na e nee e en e he e ne e s 83
4.6.3.1 On-board SWItCh SEINGS........uiiiiiiiieiii e 83
4.6.3.2 SUPPOIted DOOL OPLIONS. ...ttt neenene s 83
4.6.3.3 U-Boot ENvironment Variables.............cooi oo 83
4.6.3.4 SyStemM MEMOTY IMAP.......iiiueiiiieitie ettt ettt e ettt sae e be e eae e et e eaneennee s 84
4.6.3.5 NOR Flash (Virtual) BanKS..........c.eeiuiiiiieniiiiieie ettt 84
4.6.3.6 Supported Reset Configuration Word (RCW) Binaries...........ccoooieriiriieiiiiee e 85
4.6.3.7 Frame Manager Microcode (FMan UCOTE)..........cueerueiriiiiieiiie ittt 87
4.8.4 LSTOABARDB........cotititieeie ettt e et h ettt h e b e h e b e ea et E e Rt bt Rt e b et na e he e ean e nhe e e neenaee s 87
4.6.4.1 On-board SWItCh SETNGS.....c..uiiieiiiieiie et 87
4.6.4.2 SUPPOIted BOOT OPLIONS.eiiiiiiieiee ettt b e 88
4.6.4.3 U-Boot ENVIironment VariabIes.............cuoi it 88
4.6.4.4 SyStemM MEMOTY IMAP........coiuiiiiieitii ettt ettt b ettt she et e ean e et e enneennee s 88
4.6.4.5 QSPI Flash (Virtual) BanKS...........coeieiiiiiiiiieit et 89
4.6.4.6 Supported Reset Configuration Word (RCW) Binaries...........ccoocieriiriiiiiiiiiicireeeeee e 90
4.6.4.7 Frame Manager Microcode (FMan UCOOE)..........cueereiriiiiiiiiieite ettt 92
4.8.5 LSTOBBARDB........cotiiitiete ittt ettt ettt h ettt e ekttt h et b e e eae e R e et R Rt eae et nhn e en e hn e neenaee s 93
4.6.5.1 ONn-board SWItCh SEINGS........uiiieiiiieiii et nnee s 93
4.6.5.2 SUPPOItEd BOOT TYPES. ...ttt ettt e nne e 93
LGSR I = o T 1o PR PR 93
4.6.5.4 U-Boot ENvIironment Variables.............ccooiiiiiiiiiiiii e 95
4.6.5.5 Supported Reset Configuration Word (RCW) Binaries...........ccoouveriiriieiiiiiie e 97
4.6.5.6 Ethernet MAC CONNECHVITY.......ciuiiiiiiiieiie ettt ettt nne e 97
4.6.6 LS208BARDB.......ceiiteeiiti ettt h e E e h b a et b et e et e n et bt e e b e e anneeree e 98
4.6.6.1 On-board SWItCh SEINGS........uiiiiiiiieiie e 98
4.6.6.2 SUPPOrted BOOT OPLIONS.oiiiiiiiieite ettt 100
L G ST I = ToTo] 1o PSPPSR 100
4.6.6.4 U-Boot Environment Variables...............oioiiiiiiieie e 101
4.6.6.5 NOR Flash (Virtual) BanKS..........c.eeoeiiiiinieiiieie ettt 101
4.6.6.6 Supported RCW (Reset Configuration Word) Binaries............ccocuveieiiiiinicniienecceese e 103
4.6.6.7 Ethernet MAC CONNECHVITY......cciuuiiiiiiii ettt 105

Chapter 5 Bootloaders........cccccuueriiiininrmmmmmnmnmmmssssssssssssssssnssssssssssssssssssssssssssnns 107

LT B CT=Y o T=T = T oo Yo i o PSRRI 107
L2 U T o | S PP PRRPPRINY 108
5.2.1 LSDK U-Boot uses distro DOOt FEATUIE..........ccuiiiiee ittt e e e et a e e e eennes 108

Lo U 1 1 SO RRRSPSRRUPPPRPTRRRIOt 110
LoTEC T I 1 (o o 11 T3 (o] o PO SRRSO 112

B.B.2 UEFT OVEIVIEW........ciieiie ettt ettt e e e ettt e e e e e et e e e e e e ata et e e e e easasseeeeeeannbaseeeeaenssseeeeseannsseeaeneanssnneeaean 113

5.3.3 LSDK distro boot With UEFL..........ccciiuiiiiiiii ettt ettt et e e st e e et e e e enneaesabeeeeesaeeenns 115

LT T (o T [Ty Yo U1 T PSSO PRRN 119

5.3.4.1 FIASH LAYOUL. ...ttt ettt et e e et ran e e e e e e e e e e naneas 119

5.3.4.2 LSTOABARDD.ottt et e et e e e a—e e e e e e abeeeeanraeeaanes 120

5.3.4.3 LSTO4BARDD.......ccotei ettt e e e e et e e et e e e ae e e abeeeeaaraeeaanes 122

5.3.4.4 LS208BARDB..........oeiiieiieiiteie ettt — e e e e e e et —e e e aaeeeabeeeaaareeaanreeeareeeann 124

5.3.5 LSDK DiStrO BOOT LOGS. ..uvtieiuitit ettt sttt ettt ettt be e ettt e bt e e e aa e e e sant e e e bbe e e enbeeenanees 127

LT TG I = = 1o T SRR 140

5.3.6.1 Creating the PXE BOOt SETUP.uuiiiiiiii ittt 141

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 3

Contents

5.3.6.2 InStalling the KEINEL.........eoiieeeee e 142

Chapter 6 Security........ccccuiiriiinniinniiirirrssnnsnnnnnnnnnnnenneenneeeeneeensennnnnnnnnnes. 146

(ST IS Y=ot U1 (= oo o) SO TSP SPPRRP 146
6.1.1 Hardware Pre-Boot Loader (PBL) based platforms.........cccuuiiiiiiiiiiiiie ettt a e 146
(70 P O T g (oo [0 o (o o T PRSP 146
6.1.1.2 SECUIE DOOT PrOCESS. .. eeii it ettt e et e et e e e e et e e e e s et e e e e e snbaeeeeesessaseeaeeassaneaeeesnrns 147
(ST I e B (=T o ToTo] o] =TT PRSPPI 147
(ST I R R 1T = @ o] = T TSR UOUPRRRIINY 148
6.1.1.4.1 FIOW iN the ISBC COE......uuuiiiiiiiiiiiie ettt e e e e e e e e e sanreeeeeesnnes 148
6.1.1.4.2 Super Root Keys (SRKs) and Signing KeYS.........cccueiiiiiiiiiieiiieeeiee e 149
6.1.1.4.3 KEY FBVOCATION. ..ottt sttt st et e e et e e nneas 149
6.1.1.4.4 ARRernate image SUPPOIT.....c.uuii ettt et e et e et e e nnaee s 150
6.1.1.4.5 ESBC With CSF NEATET......cctiiiiiiiie ittt 150

(ST B BT ST =T O o] F= 7= T RSSO 150
(70 i W T T = T Yo =T o PRSP 151

6.1.1.6 Next executable (LINUX PRaSE)........oiiiiiiiiiiiiie ittt e e e e e e e e e nrneeeas 155
(20 T B (oo [0 o3 = Yo U T o T PRSPPI 155
(700 e A T [01 (oo 18 o3 1 T o P PR PRP 155
6.1.1.7.2 Chain of Trust with confidentiality............cocoeiiiiiiini e 156
6.1.1.7.3 ISBC Key EXtENSION (IE).....ueiiiiiiieiiieeeeee et 160

(ST I RS 1 (010 o] [T g ToTo] 110 To T USROS 166
6.1.1.9 CSF Header Data STrUCIUIE..........coiiiiiiiiiiie ettt e e e e et e e e e e s nnnreeeas 166
6.1.1.10 ISBC Validation Error COUES.uuiiiiiiiiiiie e e it e e eeette e e et e e e e et e e e e e ssae e e e e s esbsaeeaeeensnraeeens 175
6.1.1.11 ESBC Validation Error COUES........uuuiiiiiiiiiiiee e ittt e ettt e e et a e e e st e e e e s esbeaaeaesesnaeeaeeennnnnes 179
6.1.1.12 Trust Architecture and SFP INformation..............coooiiiiiiiiiiiiie e 180
6.1.2 Service Processor (SP) Based PlatformsS.cooiiiiiiio ittt a e e 181
6.1.2.1 Secure Boot INTrOdUCTION...........uuiiiiiiiiiie e e e e e s e e e e enraeeeaean 181
6.1.2.1.1 SECUIE BOOt PrOCESS. ...ciiiiiiieiiie ettt e e e e e e e e e e et ae e e e e e sntaeaaeeaan 182

(ST o2 1] = T O o g T T SRR 184
6.1.2.2.1 ISBC for PBI validation...........ccciiiiiiiiieieciiiiee ettt e e e e 184
6.1.2.2.2 ISBC for Boot1 (Boot Loader 1) validation............cccooiiiiiiiiiiiiiiiiee e 185

B.1.2.3 ESBC PhaSe.....ciiiiiiiiiiie ittt ettt e s e aaaaeeaeaannreeaaeeaane 185
6.1.2.3.1 esbc_validate COMMANG.........cooiiiiiiiiiiiie e e e e e e e e e e eanes 185
6.1.2.3.2 €SbC_halt COMMEANG........oiiiiiiiiit e e e e e e e e e e sanrreee s 186
6.1.2.3.3 bIOD €NC COMMANT......coiiiiiiiie e e e e e s e e e e e s e eaeeeennes 186
6.1.2.3.4 bIOb dEC COMMANT......ciiiiiiiiiee e e e e e s e e e e e e s nnreeaeeeannes 186

(ST 2R N3 = To o A Tl o AU PPTPRP 186

6.1.2.4 NexXt EXECULADIE PRASE.cciiiiiiiiii et e e e e e e e e et e e e e e e ensre e e e e e enrnaeaaean 189
6.1.2.5 ProdUCE EXECULION........uiiiiiee ettt ie ettt e e e e st e e e e st e e e e e baaeeaeeesanseeeeeesnsaeeaeenan 189
6.1.2.5.1 INTrOTAUCTION.eeiiiiiiitiii et e e e e e e e st e e e e e st e e e e e s e santeeeeeeannssnneeeean 189
6.1.2.5.2 Chain of Trust with confidentiality............cccoiuiiiiiii e 190
6.1.2.5.3 ISBC Key EXIENSION (IE)....ceiiiiiiiiiiiieiiiie ettt 193

B.1.2.6 PBI SITUCIUIE..... ettt e e e et e e e e e e et e e e e e s tbaeeeeeessaseeeeeeesnnraeaaeesan 208
6.1.2.7 CSF header structure definition.............cooiiiiiiii e e e e 209
6.1.2.8 CSF header structure definition.............ooiiiiiiiii e e e e e e 216
6.1.2.9 Secure boot SPecCific RCW fieldS........couuiiiiiiecieie et 221
(oI 2 (O 1o = O =Y 4 (o] oo e LY PSPPSR 222
6.1.2.11 ESBC EITOI COUBS.....itiiiie e e ettt e ettt e e e ettt e e e ettt e e e e e e e e e e e assteeeeeessbaeeeeeeeasnseeaaeeannsreneas 229
6.1.2.12 TrOUDIESNOOTING. ...ce ittt et be e et e e e e e nan e e e abeeennee 230
(SIS @7 Te [T 1o | 11 o B Koo PRSP PPP PSRN 230
(ST RS I A GG VAo [T =T = U1 o) o PO PP OURRTRIN 231

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
4 NXP Semiconductors

Contents

B.1.3.1.1 BN _KEYS. ..o s 231

6.1.3.1.2 geN_OtPMK_AIDG. .. e 232

6.1.3.1.3 GEN_ArV_ArDg. .. e e e e e 234

(ST RS2 o 1= T=To (=T o7 (== o] o O PP RS PPR 235
B.1.3.2.7 UNI_PDi.ceiiiiee e 235

6.1.3.2.2 uni_pbi (create_Ndr_pbi)........c.coiiiiiieiie s 238

(ST G T2 U o][| P TP 243

6.1.3.2.4 uni_sign (Create_Ndr_iISDC).......ueeiiiiieeeie ettt 246

6.1.3.2.5 uni_sign (create_hdr_€SDC).......ccueii i 250

6.1.3.3 SIgNature GENEIATION. ..ottt 253

(ST IR RC T o =T o =] T | o TP 255

6.1.3.3.2 SIgN_EMDEA. ... et e e e e e e r e e e e annee 255

6.2 Trusted EXECULION (OP-TEE)........ut ittt ettt b ettt ae et e st e e bt e sabeebeenabeesanennnee e 256
(S22 I [g1 1 oo [T 1T o ST PP PR 256
(S RS 10T o] oTo T o F= i (o] 1 T TP OP RS URT PR UPPRPRPI 257
6.2.1.2 TEST SEQUEINCE. ...ttt ettt h etk et e eae e et e e ae e e b e e an e e nne e snb e e nneenans 257

6.2.2 Appendix A: Loading OP-TEE OS DINAIY.......ccutiiiiiiiiiiiiie ettt nnn e 257
6.2.3 Appendix B: Initialization flow of OP-TEE OS..........cociiiiiii e 258
6.2.4 Appendix C: Runtime flow Of OP-TEE.........cccooitiiiiiieit e 259
6.3 FUSE Provisioning USEI GUITE.ciiuiiiiiiiiii ettt ettt ettt st e e sa et e e st e et et et e e nbe e et e e naneennees 260
(S0 2 [a1 1 oo [T 1T] o 1SR PP OPR 260
6.3.2 Fuse Programming SCENAIIOS.cciuuiiiieiiiitieite ettt ettt b et e bt et e e e e e eaneene e 261
6.3.2.1 Fuse Provisioning during OEM ManufacCturing..........c.coreeriiiiiieieeiee e 261

6.3.3 FUSE ProvisionNiNg ULooiiiiieiie ettt e e 262
6.3.3.1 FUSE fil@ STTUCTUIE.....coutiiiiiie et 263
6.3.3.2 Sample input file for fuse pProvisioning t00...........cccuiiiiiiiiii e 263

6.3.4 Steps to build fuse provisioning firMWare IMaGE.oiiiiiiiiii s 265
6.3.5 Deploy and run fUuSE PrOVISIONING.c..uiitiiireiiie ittt ettt ettt ettt sie e bt ieeeneessb e e neesaneesneeaneens 265
6.3.5.1 ENable POVDD fOr SFP.......oiitiiiiiiieit ettt 265
6.3.5.2 Deploy firmware image 0N DOAIT............cuiiiiiiiiiiie e 265
6.3.5.3 Run firmware image 0N DOAI...........coiiiiiiiiiiiee e 265

(SR G =11 Te - Lo o T OSSP VST OPRUSTPP 266
(SR A = (o T g OoTo (=T T TP PP TP OUPRPRROTRN 266
6.4 PKCS#11 and Secure ODJECE LIDIArYoiiiiiiiiiieieee ettt e 268
(S g1 oo [T 1T o OSSR PR OPRR 268
6.4.2 SUPPOITEA APIS.....ei ittt bttt h ek a bt e bt bt e nae et e nhe et nhe e neennnean 270
6.4.2.1 PKCS#11 Library — IhpKCSTT ...ttt 270
6.4.2.2 Secure Object Library — libSECUIE_0D)j.........cocviiiiiiiiiiiiceer e 271

6.4.2.3 Integrating Secure Object Library with OpenSSL...........cociiiiiiiiiiiiee e 274
6.4.2.3.1 OpenSSL Engine — liIbeng_SeCUre_0bj..........cccueriiiiiiiniiiiiesee e 274

6.4.2.3.2 Example Usage With OPENSSL.........coiiiiiiiiiiiiei s 274

6.4.3 Board Bootup & RUNNING @PPliCALIONS.oiiiiiiiiiieeeiiie et 276
(S T I = o =T (o I = o T 11 o PSPPSR PPRROt 276
6.4.3.2 RUNNING @PPIICATIONS.coiiiiieeiiie e e e s e e e e nane 276
(S T2 =T o = o o PSPPSR 277

(SR T2 o] (=T i =T o] F PP PPRR PRI 279

(SR e T2 C B 04 o T o o PP RSP RRPRRTTPPRI 283

6.4.3.2.4 MP_VEIITY ...ttt e 284

(SR e T2 o =Tl o =TT =Y o F PP PP R 284

(S Y= o =1 T o PRSP R OPRR PRIt 285
LS o] o= oo PP PPR PP 285

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 5

Contents

Chapter 7 Linux Kernel.........cccommmmmmmnniinnninnnnnnnssssssssssssnnnssssssssssssssss 289

AR Oea1ile UTqlaTo k= Ty Lo Mo TUTI oo T FO O ST PP 290
7.2 DIBVICE DIIVEIS. ...ttt ettt e et e et e e e h et e e et e e e ne e e e e Rs e e e et et e e ane e e e aRn e e e e b et e s e e e e ann e e e e ne e e nnnes 293
7.2.1 Enhanced Direct Memory ACCESS (EDIMA)......couiii it 293

7.2.2 CAAM Direct Memory ACCESS (DIMA)......ooi ittt 295

7.2.3 Enhanced Secured Digital Host Controller (ESDHC).........cccuiiiiiiiieie et 297

T2.4 TEEE 1588...... oottt ettt bttt h ettt e h ek a et b e R b e b e SR bt e Re e et e b et e bt e nhe e beeenneebeas 301

7.2.5 Integrated Flash Controller (IFC).......cui ittt b e sbe e e saeeenes 304

7.2.5.1 Integrated Flash Controller NOR Flash User Manual...........ccccoouieiiiiiienieniee e 304

7.2.5.2 Integrated Flash Controller NAND Flash User Manual.............ccccoiiiiiiiiniiniieeee e 309

7.2.6 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)......c.ooiiiiiiiiiiiiieiee e 315

7.2.7 Quad Serial Peripheral Interface (QSPI)........cciiiiuieiieeie ettt et e et esaeebe e s aeenseeennas 317

7.2.8 Real TIME ClOCK (RTC)..uuititiiaieeitie ettt ettt sttt ettt a et e e ae e bt e et e e b e e et e e be e st e e saeesn b e e saeeenneenene 319

7.2.9 Synchronous AUIO INTEITACE (SAI).......iiiiiiieie ittt b e e saeesne e e 321

7.2.10 Serial Advanced Technology AAChMENT (SATA)......eiiiieiiieie ettt ene e e 323

7.2.11 SECUIItY ENGINE (SEC).... i iutiiiiiiiieitie ettt ettt h ettt ea e e bt e st e e bt e et e e e be e et e e saeeenbeesabeeneenanas 325

7.2.12 Time Division MUltipleXing (TDM)........ueiiiiiieiee ettt e e e e s e e nnnes 337

7.2.13 Universal Serial BUS INTEIACES.c.uiiiiiie ittt bbbt st ees 341
7.2.13.1 USB 2.0 Host Driver USEr ManUAL..........cccoiuiiiiiiiieiie ettt 341

7.2.13.2 USB 2.0 Gadget Network Driver User Manual............ccooiiiiiiriiiiie e 352

7.2.13.3 USB 3.0 Host/Peripheral Linux Driver User Manual.............ccoiuieieeiiiiiienie e 356

A2 UL = (o] g T (o o TSRO PRSP PP PPPPPRURRPN 365

7.2.15 QUICC Engine Time Division Multiplexing User Manual............c.cooieeiiiiienieieeeeiee e 366
Chapter 8 QorlQ networking technologies.........ccccceeeimmmmmmmmmeeeeeeeeeeees 371
8.1 Summary of NEtWOrKiNg tECHNOIOGIES.ei ittt nneenane e 371
8.2 DPAAT-SPECITIC SOMWAIE.......eoutiiieiitee ettt a bt b et et e bt e se bt e sbe e ea e e sheeeane e sbeeeneenneean 371
8.2.1 DPAA Software ArchiteCture OVEIVIEW.cc.uiiiiiiiiiiie ettt 371

8.2.1.1 INTOTUCTION. ... ee e e e s e e s e e e e nees 371

8.2.1.1.1 General architectural conSIdErations..............cooeeeiiiiiiiiieie e 372

8.2.1.1.2 MUIICOIE ESIGN.....eiiiieiee et e e 372

8.2.1.1.3 Parse/classification software offload............ccccooiriiiiiiiiii 372

8.2.1.1.4 Flow order CONSIAEIAtiONS.........ccocueiiiiiiieeirii et 373

8.2.1.1.5 Managing flow-t0-core affinity.........ccocuiiiiiiiiiii e 374

8.2.1.2 DPAAT GOIS. ...ttt ettt ettt h e et h bt n e e 376

8.2.1.3 FIMAN OVEIVIBW. ...ttt ettt h et b ettt a ettt et e bt s et et e neneeneenanes 376

8.2.1.4 QIMAN OVEIVIEW... ..ttt ettt ettt ettt b ettt e a e e bt e e ae e e s bt e sh e e eaaeesee e e beenan e e beeeaneeneas 378

8.2.1.5 QIMAN SCHEAUIING. ...ttt ettt b et nae e e neenane s 382

B.2.1.8 BIMIAN. ...ttt et a et R e bt n e h et n e e nes 386

8.2.1.7 Order HANAING. ...t ettt ettt ettt ettt r e ne e e es 386

8.2.1.8 POOI CRANNEIS. ...ttt bttt a e bttt eebe e et e e sae e et e saneenee e 389

8.2.1.9 ApPlICAtiON MAPPING. ...cee ittt e e e e e nnees 393

8.2.1.10 FQ/WQY/CNANNEL. ...ttt ettt et ettt n e e 396

8.2.2 LINUX ETNEINEL. ...t e e e e s r e e e e e e s r e e s nnn e e e enene e 399

8.2.2.1 INTOAUCTION. ...ttt et e e et s e e e s e e e e e e e nnn e e e neneeas 399

8.2.2.2 The DPAAT1-Ethernet view of the WOrld...........cocuiiiiiiiiii e 400

8.2.2.2.1 The LINUX KEINEI APIS ...t 400

8.2.2.2.2 The Driver's building BIOCKScoiuieiiiiiiiieiere e 401

8.2.2.3 DPAAT resources iNitialiZation...........coouviiieei e 402

8.2.2.3.1 What, Why and How resources are initialized.............ccccooiiiiiiiiiiieec e 402

8.2.2.3.2 Hashing/PCD frame QUEUES..........cccuiiiuiiaiieiiee ettt 403

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
6 NXP Semiconductors

Contents

8.2.2.4 The (Simplified) Life Of @ PACKET......cceiiiieiiiiiie e 403
8.2.2.4.1 Private Net deVICE: TX...uuiiiiriie et e et e e e e e e 403
8.2.2.4.2 Private Net deViCe: RX.....uuiiiiiiiieie et 404

8.2.2.5 Private DPAAT ethernet driVer ..o e 404
8.2.2.5.1 NEtWOIK AFIVET.....oeiiiiiii et 405
8.2.2.5.2 CONfIQUIATION.tiiiiiitieiet ettt s 406
8.2.2.5.3 FRALUIES....c.eeie ettt 410

8.2.2.6 QUAIILY Of SEIVICE. ... eiiutiiieieeiee ettt ettt sb e ean e nbe e neenneeen 417
8.2.2.6.1 POIICING. ...ttt ettt 417
8.2.2.6.2 Scheduling and Shaping..........cccieiiiiriiie e 417

L T2 =Y o 0T o [T PO T R SPP R OPRRTPRRN 426
8.2.2.7.1 EThtOO] SUPPOIT. ...ttt 426
8.2.2.7.2 Read/Write of FMan RegiSters.coouiiiiiiiiiiieeee et 427
8.2.2.7.3 SYSFS SUPPOIT. ...ttt ettt sttt sa e b an e nb e n e 427

8.2.2.8 Frequently ASKed QUESTIONS.coiuiiiiiiiiieiiii ettt sttt neas 428

8.2.2.9 KNOWN [SSUES.....iiiieiiiie ittt ettt et st e e st e e et e s e e e e an e e e s nn e e sneeeeanreeennns 429

8.2.3 Queue Manager (QMan) and Buffer Manager (BMan)..........couiiiieriiiiiiiieeiee e 429

8.2.3.1 QMan/BMan Drivers INtrodUCHION.coiiiiiiiiei et 430

8.2.3.2 QMan BMan API Reference ManUaL............ccoiuiiiiiiiiiiieee et 436
8.2.3.2.1 Introduction to the Queue Manager and the Buffer Manager............c.cccccoenviiieennnns 436
8.2.3.2.2 BUfEr MBNAGET. ... ettt ettt 436
8.2.3.2.3 BMan CoreNet POrtal APIS........ccuiiiiiiiiiiieiiee et 440
8.2.3.2.4 QUEUE IMBNAGET ... tieiieeitee ittt etttk ettt a et e et b e b st abe e e neee 445
8.2.3.2.5 QMAN POIAl APIS.....iieiiiiitt e e 453
8.2.3.2.6 Sysfs and debugfs QMan/BMan interfaces.cccooueriiiriiiniiiiisceeeeee e 467
8.2.3.2.7 Error handling and reporting..........cueeieeeeiieeieieie e 480
8.2.3.2.8 Operating SYStemM SPECIfiCS........cuuiiiiiiiiiiiiiee e 480

8.2.4 Configuring DPAA Frame QUEUES.........c..uiiiiiiiii ittt ettt ean e b eneenneeans 481

8.2.4.1 INTOAUCTION. ...t e e e et e s e e e s e e e e ne e s e e e neneeas 481

8.2.4.2 FMan Network interface Frame Queue Configuration...........c.cccoooeeeiiiiiiinenni e 482

8.2.4.3 FMan network interface ingress FQS CONfIQUIration............ccouvieriiriiieiiieeese e 482

8.2.4.4 Ingress FQs common configuration QUIdeliNeS.............cueeiiiiiiiniiiiic e 483

8.2.4.5 Dynamic load balancing with order preservation - ingress FQs configuration guidelines.......... 484

8.2.4.6 Dynamic load balancing with order restoration - ingress FQs configuration guidelines............. 484

8.2.4.7 Static distribution - Ingress FQs Configuration GUIdelines.cocoeviiiiiiniii i 485

8.2.4.8 FMan network interface egress FQs configuration.............cocvviieeiiiiiieieenee e 486

8.2.4.9 Accelerator Frame Queue ConfiQUration.............ccoeoueiiiiiiieiii e 486

8.2.4.10 DPAA1 Frame Queue Configuration Guideline SUMMArY.........ccccorviiriiriieiiieee e 487

L T2 o =T 4 T= Y o g = o =T RSP PP PRSI 490

8.2.5.1 Frame Manager Linux Driver USEr GUIE...........ccviiiiiiiiieieiiee et 490
8.2.5. 1.1 INrOAUCTION. ...t e e e e as 490
8.2.5.1.2 The LiNUX FIMD DEVICES.......ccueiiiiiie ittt 492
8.2.5.1.3 Linux FMD Programming MOGEl..........ccccuiiiimieiiieeee e 494
8.2.5.1.4 Frame Manager Linux Driver APl Reference...........coceoviiiiiiieiiiiiienee e 496

8.2.5.2 Frame Manager Driver USEr GUIE............coiuieiiiiiieiii ettt 506
8.2.5.2.1 INTrOAUCTION. ...ttt e e e s e e e 506
8.2.5.2.2 Frame Manager FEALUIES..........ccoiiiiiiieee e 506
8.2.5.2.3 Frame Manager Driver COMPONENTS.cocuiiiiiiiieiiiesiee ettt 507
8.2.5.2.4 Driver Modules in the SYStemM..........cciiiiiiiiiiie e 508
8.2.5.2.5 FMan Driver Calling SEQUENCE........ccuiiiiiiiiiiieiee ittt 509
8.2.5.2.6 GIODAl FIMAN DIIVET.....eiiiiiiiiiieeeee ettt ene e 510
8.2.5.2.7 FMan Parse-Classify-Distribute DIiVer...........cccoiiiiiiiiieiic e 512
8.2.5.2.8 FMAN POt DIVeiiiiiiie et 538
8.2.5.2.9 FMAN MAGC DIIVET.....eeiiueiitieeeeetee sttt ettt ettt ettt 545
8.2.5.2.10 FMAN VSP DIIVET ...ttt ettt ettt nne e 546

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

Contents

8.2.5.2.11 FMan RTC (IEEE 1588) DIIVEcciiiiiieiiiiiee sttt 548
8.2.5.2.12 FMaN MURAM DIIVET......cuviiiieeeitie ettt 550
8.2.5.2.13 Supported NetWork ProtOCOIS.c.coiiiiiieiiiiiic e 550

8.2.6 Frame Manager Configuration TOOI USEr GUIE.ccc.eiiiiiiiiiiieieeiie et 554
8.2.6.1 INTOAUCTION. ...t et e et s e e e s e e e e e e e s e e e neneeas 554
8.2.6.2 FIMC TOOI FEAIUIES.......eeiiiiiiie ittt ettt ettt e et nbe e neenneean 554
8.2.6.3 FMC Tool Components and PackagiNng.........c.cciuieueeriiiieenie ettt 555
8.2.6.4 FMC Tool - Runtime Environment MOGE............oiiiiiiiiiieiie ittt 555
8.2.6.5 FIMC TOOI - HOSE IMOTE.......coueiiiitieiee ettt ettt ettt e e 556
8.2.6.5.1 Host Mode Output - C Source Code Files.........ccooviiiiiiiiiiieniieiee e 557
8.2.6.6 FMC Tool Command-Line ArQUMENTS.cccueiiiiirieiiiesiee ettt 558
8.2.6.7 The NetPDL and NetPCD XML Markup Languages..........cccceeruiereeniienieenieesiee e 559
8.2.6.8 PrOtOCOI fil@S.......i ittt ettt 559
8.2.6.8.1 Standard ProtoCOl File...........ciiiiiiiiiiiiieit e 559
8.2.6.8.2 CUSIOM ProtOCOI File......ccueiiiiiiiiiiiieiie et e 560
8.2.6.9 PONICY fllE... ettt n et 560
8.2.6.9.1 Distribution SECHON.eiiuiiiiiieeeet e 561
8.2.6.9.2 POlICY SECHON. ...ccuueiiitieieiiiee ittt et 565
8.2.6.9.3 Classification SECHON........cccuiiiiiiii e 570
8.2.6.9.4 POlICEI SECHON.uuiiiiiieiiiiiee sttt n e nane e 571
8.2.6.10 ConfigUration File..........oiuiiiiiiiie e 573
8.2.6.11 NXP NetPDL REfErENCE.cciuei ittt 573
8.2.6.11.1 BASIC XML RUIES.......ooiiiiieieeiiie et 573
8.2.6.11.2 The netpdl EIBMENT........ooi e 574
8.2.6.11.3 The ProtoCol €IEMENT........ccooiiiii e e 574
8.2.6.11.4 The format €leMENT.........c.coiuiiiiiiii e 576
8.2.6.11.5 The execute-code elemMeNt..........c.oii i e 577
8.2.6.11.6 EXPIrESSIONS.eiiiiiiie ettt ettt et s nnnes 584
8.2.6.11.7 Tips and ReCOMMENALIONS...........ciiiiiiiiiieeeie e 593
8.2.6.11.8 LiMITAtIONS. ... e 594
8.2.6.12 NEtPCD REfEIBNCE......ce ittt ne e 594
8.2.6.12.1 The NetpCd IEBMENT.........coo e 594
8.2.6.12.2 The POIICY EIEMENT ... 595
8.2.6.12.3 The dist_order lE@MENT.........cccooiiiieiicee e e 596
8.2.6.12.4 The distributionref element...........cooiieiiiii e 596
8.2.6.12.5 The distribution element..........c..oo i 597
8.2.6.12.6 The KeY €lemMENt.......ooi e 599
8.2.6.12.7 The fieldref @lement..........ouiiii e 599
8.2.6.12.8 The QUEUE ElEMENT.......oi i e 600
8.2.6.12.9 The protocols and protocolref elemMeNts...........cccviiiiiiiiiiiiee e 600
8.2.6.12.10 The combine €IEeMENT.........coiiiiiiiiee e 602
8.2.6.12.11 The action element (for use in @ Policy file)..........cviverriiiiiiiin e 603
8.2.6.12.12 The classification €lement............cui it 605
8.2.6.12.13 The entry €lement.........coii e 608
8.2.6.12.14 The policer lemMent..........coi i 609
8.2.6.12.15 The nonheader ElemMent............oooiii i e e 610
8.2.6.12.16 Hash TabIes........coiuiiiiiiii e 612
8.2.6.12.17 Virtual Storage Profiles Element.........cocoo i 612
8.2.6.12.18 Manipulation Parameters..........cccooiiiiiiiiiieeeiccee e 613
8.2.6.13 Standard ProtoCOl File = EXCEIPL.......coiuiiiiiiiieiiii ettt 622
8.2.6.14 Custom Protocol File - GTP Protocol EXample...........coocuiiiiiiiiiiiiiiiiereceee e 628
8.2.7 SecUrity ENGING (SEC)... ..ottt ettt ettt e 629
8.2.8 Decompression/Compression Acceleration (DCE)........c.c.iiiiiiiiiiiiiiieiie et 631
8.3 DPAA2-SPECITIC SOMWAIE. ...ttt bbbt s bt et see e e be e nan e nneenane e 633
8.3.1 DPAA2 SOMWAIE OVEIVIEW.uiiiiiiiie ittt ettt ettt ettt et st ste e et e e sb et e e e e nbe e e teeenneeneas 633

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
8 NXP Semiconductors

Contents

8.3.1.1 INTOTUCTION. ... e e e s e e nere e e e s 633
8.3.1.2 DPAA2Z HAIAWAIE.......eeieeiieie ettt e e e et s e s e e e e e s e e e e nere e e e nneennneas 634
8.3.1. 2.1 INrOAUCTION. ... e e s 634
8.3.1.2.2 DPAA2 NAITIWAIE.......oeiiiieeeiieie ettt e e e e e e 634
8.3.1.2.3 LS2088A DIOCK I@Qram.......cciuvieiueeririerieeeie sttt sttt ettt 635

8.3.1.3 DPAA2 LINUX SOMIWAIE.....cuteitii ettt bttt nne e 636
8.3.1.3.1 INrOAUCTION. ... e 637
8.3.1.3.2 LiNUX @NA DPAAZ......ceeeeeeee et 637
8.3.1.3.3 DPAA2, Management Complex, and AriVEIS..........ceereeeiiieeeniie e 638
8.3.1.3.4 DPAA2 and plug-and-Play........ccccouiiiureeiiiie e 638
8.3.1.3.5 Datapath layout files and reSto0l..........cccuiriuiiiiiiiiiii e 639

8.3.1.4 DPAA2 Networking Subsystem Deeper DIVe..........ccciuiiriiiiiiiiieieesiee e 639
8.3.1.4.1 DPAA2 hardware abstraction eXample...........ccccooieeiiiiinineeiiee e 640
8.3.1.4.2 Management Complex: How DPAA2 objects are created and managed..................... 647
8.3.1.4.3 ODbjects and tOPOIOGY........ueeuieriiieiieitit ettt 653
8.3.1.4.4 AIOP iN DPAAR...... ettt bttt a et 655

8.3.2 DPAA2 Standard LinuX DOCUMENTALION.eiiiiiiiiiii ettt e 656
8.3.2.1 Kernel Documentation DIrECIOIY..........uiiiiiiiiiiieeeiee e 656
8.3.2.2 DPAA2 Resource Management Tool (restool) User Manual................cccoooviiiiniiencnieens 661
8.3.2.2.1 DPRC COMMEANTS.uiiiuiiiiiietieete et site ettt ettt st sttt e b et esan e et e sneenneenn 662
8.3.2.2.2 DPNI COMMANGS......eeiiiiiieiiie ettt ettt ettt be et nbe e e e nneas 669
8.3.2.2.3 DPIO COMMENGS. ...ccuuiiiitiiiiiritierite ettt ettt et sie et sae e e e ssbeebeesib e e nseesaneenneesanee e 673
8.3.2.2.4 DPSW COMMANGS......eiiitiiiiiiitieriee ettt ettt ettt se et sse e s st e see e e sseesaneesneenaneeee 676
8.3.2.2.5 DPBP COMMEANGS......uiiiitiiiiiiiiie ittt ettt st nse e nneenane e 679
8.3.2.2.6 DPCON COMMEANTS......ueiiueiiuiieiiieeiee ittt ettt ettt sbe et st e e e en e saneenneenanas 680
8.3.2.2.7 DPCI COMMANGS......eiiiiiuiieiiit ettt ettt ettt ettt ne et naeeeaneennnas 682
8.3.2.2.8 DPSECIT COMMEANTS.......eiiiiiiiiiiiieitie ittt ettt b e 684
8.3.2.2.9 DPDMUX COMMEANGS.uutiieiaiieititeieeeiie et ettt sttt sse e s sie e s et sneeeaneenneas 686
8.3.2.2.10 DPMOCP COMMEANGS......eeitiiiutieriieeie ettt ettt ettt sie et e s st sseesan e seeesnneeee 689
8.3.2.2.11 DPMAC COMMEANTS......ueiiuiieiiiieiieitieetee sttt ee et et sse et sseesabe e saeesneesaeeeseenaneens 690
8.3.2.2.12 DPDCEI COMMANGS......eiiutiitiiiieetei ittt ettt ettt sse et sae e b e sneenee e 692
8.3.2.2.13 DPAIOP COMMEANGS.....ceiuitiiiiaiieitit ettt sttt en e nae e b e nes 694

8.3.3 DPAA2 USEI IMBNUAL. ...ttt sttt s e e e et e s sn e e e sane e e e nnr e e e enneeennneas 696
8.3.4 DPAA2 API Reference MaNUAL............cooiuiiiiiiieaiie ettt nmn e nene e e e e e e 696
8.3.5 Backplane SUPPOrt ON LAYEISCAPE.ciueiiieitii ittt ettt sttt nbe et et e e enee s 696
B.3.5.1 OVBIVIBW. ...ttt ettt ettt b et e bttt e be e e bt e e ae e e bt e sa bt e ne e st e beenne e 696
8.3.5.1.1 10GBase-KR Support on Layerscape Platforms...........ccoovrieeriiniienieeiec e 697
8.3.5.1.2 Physical Layer Signaling SyStem.........cocuiiiiiiiiiiie e 697
8.3.5.1.3 AUTO-NEGOLIATION.eeiiiiiie et 697

L TR oW I N | =1 11 T PSPPSR 697

8.3.5.2 Enable Backplane Support 0N LayersCape.c.c.ouiueiiieeiiiiiiesee st 697
B.3.5.2.1 SBIUP. .ttt et 697
8.3.5.2.2 Enable Backplane Connection from MC............cooiiiiiiiiieiiiieeee e 698
8.3.5.2.3 Enable Backplane Support in Linux Kernel...........cccocviiiiiiiiiiiicee e 698
8.3.5.2.4 SEIDES SEIUP....ceiuiiitiiiiieti et 700
8.3.5.2.5 Board CONfIQUIALION.eeiuiiiiieiteete ettt ettt 700
B.3.5.3 USE CASES. ...t iuteiiueiitie ittt ettt h bbb b b h b et bt he e b e aneene e e 700
B.3.8 AP .. h bRt E e e eh et £ e e a et b e e e e e he e bt e ae e st e e naeeene e 701
8.3.6.1 AIOP Sample APPIICAIONS.cciutiiiiiiiee ittt 701
8.3.6.1.1 Creating AIOP CONTAINEIS......c..uiiiieiiiieieeeiie ettt 701
8.3.6.1.2 AIOP Packet Reflector AppliCation..........cccoiiiiiiiiiieiiieieeee e 702
8.3.6.1.3 AIOP Packet Classifier APPlICAtION..........coiiiiiiiiiiiiieree e 704
8.3.6.1.4 AIOP Control FIOW APPlICALION......cc.eiiiiiiieiiee et 708
8.3.6.1.5 AIOP Header Manipulation AppliCation.............ccoeiiiiiriiriie e 712
8.3.6.1.6 AIOP Statistics APPlICAtION.coiuiiiiiiriieee e 715

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

Contents

8.3.6.1.7 AIOP Q0S_demo APPlICALION......cc.eiiitiiiiieitii ittt 717

8.3.6.2 AIOP TOOI USEI'S GUIE.......eeitiiiiieiii ittt ettt 720
8.3.6.2.1 INTrOAUCTION. ...t e e e e e e e 720

8.3.6.2.2 DPAA2 SOFtWAIE......ciutieiiiiitie ittt ettt sa et nne e 720

8.3.6.2.3 ProduCt DESCHIPHION.eeiiiiiiieiieee ettt 720

8.3.6.2.4 System ReqUIrEMENTS.........ciiiiiiiiiii et 721

8.3.6.2.5 AIOP TOOI USAQE......eeiueiitieiitieiee ittt 721

8.3.6.2.6 KNOWN LIMITAtIONS.eviiiiiieiiie e 726

8.3.6.2.7 Sample VFIO BindiNg SCrPL......cccueiitiiiiieiie it 726

8.3.6.2.8 Steps For Dynamic DPRC Suitable For AIOP Tool Using restool............cccccecveenueenne. 727

8.3.6.3 AIOP USEI MANUAL........oiuiiiiiiiiieeee ettt ettt e bt sae e e sneenee e 728
8.3.6.4 AIOP Program ProfiliNg.........ceiiiieeee sttt 728
B.3.6.4.1 OVEIVIEBW.. ..ttt ettt b et b et et e e bt et e e e e e e sareenneenenas 729

8.3.6.4.2 AIOP Program Design: Budgets Per Processing Elements...........cccocoeeviiiiiiicniienn 729

8.3.6.4.3 AIOP Program Profiling and Performance TUNING.........cccerueermirieeniieneesiee e 730

8.3.6.4.4 FDMA/CDIMAL...... ettt ettt h ettt nbe et e ene et e e sreene e 735

8.3.6.4.5 C0re ProfiliNg.......c.eeiuiiiiieiie et 738

8.3.6.4.6 MeMOTY ProfiliNg......eeieietie ittt 741

8.3.6.4.7 CTLU = PASEI......eeiiiiiiiieeiit ettt ettt ettt ne et e nes 742

B.3.6.4.8 OSIM ...ttt e ettt n e nane e 743

8.3.6.4.9 SHAtiStICS ENGINE......tiiiiiiiii i 747

8.3.6.4.10 IP Fragmentation (IPF)........coiiiiiiiie et 748

8.3.6.4.11 IP ReassembIy (IPR).....ccutiiiiiiiiie et 748

B.3.8.4. 12 IPSEC.....eeeeiet ettt 748

8.3.6.4. 13 APPENAIX Aottt 749

8.3.6.5 AIOP Service Layer APl Reference Manual.............ccocuieiiiiiiiiiiiienccees e 754
8.3.6.6 AIOP SDK Applications DEDUG.ccuviiiieiiiiiiieeee e 754

8.4 Packet Forward Engine (PFE) NEWOIK DIIVET.......ccuiiiiiiiiiiiiieiie ittt 754
LS T g1 oo [T 1T o PP PP 754
8411 OVEBIVIBW. ...ttt ettt b e et h e e et bt et e e bt et e e e ae e et e e e se e e b e e sareennnenare e 755
B.4.1.2 PUIPOSE....ceiiiie ettt ettt et e ket et e et e e e e e e e e e e Rt e e e et e n e e e e as 755

B4 1.3 FRALUIES......eeei ettt nnees 755

8.4.2 High level decomposition and data fOW............coiueeriiiiiiiieeec e 755
LSRG B N DY o =TT o T o S PR UPRR PPNt 756
8.4.4 INTEITUPL COIESCING. ... eiiiieieiieiee ittt ettt e e et e e e e e e e sr e e e s e e e e ne e e e nre e e nnneesnnneenn 756
8.4.5 ChecKSUM OffIOQAING.eeiuteeiie ittt st b e st rbe e e b e e b e eneennee s 756
8.4.6 Scatter Gather SUDPOIT..... ..o ittt ettt n e nee e 757
LS T = (g1 (oo =N o] oo o F TP UP R PP 757
8.5 Linux Ethernet DIVEr fOr @TSEC.ci ittt ettt ettt et e ettt e b st e e sanenaneas 757
8.5.1 Linux Ethernet Driver for @TSEC..........ooiii ettt 757
8.5.1.1 INTFOTUCTION. ... e e e e s e e s e e e e e e nees 758

B.5.1. 1.1 OVEIVIEBW. ...ttt ettt e et s et e bt nen et e et e e st e e neenne s 758

B.5.1.1.2 PUIPOSE. ...ttt sttt e e e 758

B.5. 1. 1.3 FRALUIES.....eee et 758

8.5.1.1.4 Notes on high level decomposition and data flow............ccceceiiiiiiiiiinc e 760

8.5.1.2 FUNCHONAIITY ...t e e e e e e e e naneas 762
8.5.1.2.1 MUlti-QUEUE SUPPOI.....ecieiiiieiiie ettt ettt neenaee e 762

8.5.1.2.2 RSS SUPPOI ...ttt ettt 763

8.5.1.2.3 NAPI SUPPOIT. ...ttt e e s e e sene e e ennee e 766

8.5.1.2.4 INterrupt COAIESCING.veeiteiitieitie ettt ettt 767

8.5.1.2.5 Header Recognition and Csum Offload...........ccccoeiiiiiiiiiiiiieniceee e 767

8.5.1.2.6 Scatter Gather SUPPOI......ccuii ittt 768

8.5.1.3 Configuration and CONTIOL.........coiuiiiiiiiit ettt 768
8.5.1.3.1 Device Tree initialiZation............ceoiiiiiiriiie e e 768

8.5.1.3.2 Eth100] SUPPOI......eeeiiiieeee ettt 769

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
10 NXP Semiconductors

Contents

Chapter 9 LinuX USer SPACe..........courrrrmmmmmmnmmmnssssssssssssssssssssnnsssssssssssssssssssssnnnns £ 7 1

S B I o] =T 1= PSSRSO PRPPPI 771
T O o =T 1 1] U USPR 771
o i T O Y 1= PP PRRR 771

9.1.1.2 Manual Build of OpenSSL with Cryptodev Engine SUPPOIt.........coceeiiiiiieenieiiieneeeiee e 773

9.1.1.3 Hardware Offloading With OPENSSL.........coiiiiiiiiiie e 774

9.1.1.4 TLS Ciphersuites and TLS ProtoCOl VEISIONS.........cccuiriiiiiiieiie et 776

9.1.2 Runtime Assembler Library REfErenCe.oocuiiiiiiiiii e 781
9.1.2.1 Runtime Assembler Library ReferenCe..........c.ooouiiiiiiie e 781

9.2 Data Plane Development Kit (DPDK).........cooiiiiiiieitiee ettt et e e ssn e e an e snn e e e snne e e enneennees 782
2 [1 (o T 8 Te7 (o] o LSO U PR PPRR PRI 782
9.2.1.1 Supported Platforms and Platform-specific Details............ccoriiiiiiiiniiieiei e 782
9.2.1.1.1 LS1043A Reference Design Board (RDB).........cccceiitiiiiiriiiiiieniie e 782

9.2.1.1.2 LS1046A Reference Design Board (RDB).........ccccoriieiiiiriiiiiiiesiie e 783

9.2.1.1.3 LS1088A Reference Design Board (RDB).........ccccouiieiiiimiiiriiieiie et 785

9.2.1.1.4 LS2088A Reference Design Board (RDB).........cccoiiiiiieiiiiiiiiieeiee e 786

9.2.1.2 REFBIBNCES. ...ttt et e e 787

O.2.2 DP DK OVEIVIBW.uttiuttetee ettt ettt ettt sa bt e bt e sa bt e sbe e eas e e b et eas e e b et et e e eaeeea b e e emeeenbeesmbeeneesaneenaeeennee e 788
9.2.2.1 DPDK DPAA PIlatform SUPPOI.c.eeiuiieiiieiiee ittt ettt ettt sne e neennne s 788
9.2.2.2 DPAA: Supported DPDK FEATUIES.ciuiiiiiiiieiie ettt ettt 789
9.2.2.3 DPAA2: Supported DPDK FEALUIES.coiuiiiiiiiie ittt 790

9.2.3 BUIIA DPDK..... ittt ettt ettt e ettt s bt et eehe e £t e e e ae e e b e e e ae e e bt e ea bt e ebe e en bt e eaeeenbeesnneeneenaneen 791
9.2.3.1 Build DPDK USING FIEXDUII.coiiiiiieiiie et 791
9.2.3.2 Standalone build of DPDK Libraries and AppliCations.............cucoriiiiienienieenie e 793
9.2.3.3 DPDK based Packet GENEIALOr..........ciuuiiuieiiiieieeiie ettt ees 796
9.2.3.4 Build OVS-DPDK uSiNg FIEXDUIIA.coiiiiiieiii e 797
9.2.3.5 Virtual machine (VM Or gUEST) IMAJES.uuiiiiieiiiiie it 798

9.2.4 Executing DPDK Applications 0N HOST.........coiiiiiiiiiiii et 798
9.2.4.1 Booting up the Target DOAI...........oooiiiiiiie e 798
9.2.4.2 Prerequisities for running DPDK AppPlICAtiONS.uviiiiiiiiiiieeiee e 800
9.2.4.2.1 Test ENVIronmMENt SELUP......oouui ittt 800

9.2.4.2.2 GeNeriC SEtUP - DPAA ... e 801

9.2.4.2.3 GeNEriC SEtUP - DPAAZ...... .ot 802

9.2.4.2.4 DPAA2: Multiple parallel DPDK AppliCations..........ccccvieriieiiiiieeeiie e 803

9.2.4.3 DPDK example appliCatiONS..........cueiiiiiieeiiieiiee ettt snne e 804
9.2.4.4 Command interface (CMDIF) demo appliCation...........cocueereeiiiaiieiiie e 809

9.2.5 OVS-DPDK and DPDK in VM with VIRTIO INterfaces.........cccciuiiiiiiiieiiieee e 812
9.2.5.1 Generic steps - DPAA & DPAA2 PIatfOrMS.cueiiieiiiieiieeie e e 812
9.2.5.2 CoNFIGUIING OVS..... .ottt ettt e e e bt st e e aae e st e e saeeeaneenees 813
9.2.5.3 Launch Virtual MaCKhINE.........coouiiiiiiieeete et 816
9.2.5.4 Accessing virtual maching CONSOIE............ccciiiiiiiiiii e 817
9.2.5.5 Launching two virtual Machines.............coooiiiiiiiiii e 817
9.2.5.6 Running DPDK applications iN VIML........cuuiiiiiii et 818
9.2.5.7 Multi QUEUE VIRTIO SUPPOI.....uiiiiiieeiiiie et e eteeesiteeessteeesseeeessaeeessteeessseeeassseesssseeesseeesnsseesnnes 820

O.2.6 DPDK ON DOCKET ...ttt ettt e e e e he e e e bt e e sttt e eas e e e e b e e e et et e ean e e e e be e e e anre e e nanns 821
9.2.6.1 DOCKET OVEIVIEW......eeiiiiiee ettt ettt et ekt e e s e e st e e e e st e e ean e e e e be e e s enbe e e nnneesannee s 821
9.2.6.2 Traffic MultipleXer/De-MURIDIEXET ...ttt 821
9.2.6.3 DOCKEI'S RESOUICE SEIUD....eiiitiiiiiiieiiiie ettt e e 823
9.2.6.3.1 Application Container Configuration..............ceeiiiiiiiiie e 823

9.2.6.3.2 Kernel Container Configuration.............ccocirieiiiiiiiiiiie e 824

9.2.6.4 Running the Docker CONTAINET...........c.oiiiiiiiiiiie e e 825
9.2.6.5 Running the DPDK APPIICATION.......ccitiiiiiiieiiie et 826
9.2.6.6 Example Configuration: Using DPDMUX...........ccoiiiiiii s 826

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 1

Contents

9.2.6.7 Example Configuration: USING DPSW........c.c.iiiiiiiiiiieiei et 828

9.2.7 Known Limitations and FUTUIE WOTK...........c.eoiiiiiiie et 829
S B I (o181 [=T= g oo} (1o T SO ROPRRO 829
9.2.9 DPDK Performance ReproducCibility GUIE............ccoeiriiiiiiiiie e 831
9.3 QOrlQ OpenDAataPIaNe (ODP).......ccuui ettt ettt a e e ettt e et e bt e e et e be e e bt e nae e s b e e aarenne e 836
LSRG T I 1 oo T3 1o o PP PPN 837
9.3.1.7 INteNdEd AUAIENCE........eei it e e et s e e e e e ne e nees 837

9.3.1.2 DefinitionNs @nd @CIONYIMS. ...ttt ettt ettt et seneenee e 837

9.3.1.3 SUPPOItEd PIAFOrMS. ... ittt ettt 837

9.3.1.4 UNSUPPOIEA ODP API'S.... .ottt n et nbe e neeas 838

9.3.1.5 ODP Limitations and KNOWN ISSUES..........c.cueriiiiiiiiiieiii ettt 838

SR I o (oTo [N e A D T=T =Yo7 o] 1 o] o PSPPSR 839
9.3.3 Using Flexbuild to Compile ODP/OFP ..o e e s 839
9.3.4 USiNg ODP APPHICAtIONSoouiiiiiiiiiiti ettt sar e sneenane e 840
9.3.4.1 LS2088ARDB/LS2085ARDB Board Preparation and Bring-Up..........cccceereeriiineeniecnieeeieene 840
9.3.4.2 LS1088ARDB Board Preparation and BriNg-UP.........c.ueerueiiiiirieeiie e 842
9.3.4.3 0dp_pKHO @PPlICATION......eeiiiiieiiie et 843
9.3.4.3.1 OVEIVIBW. ...ttt ettt ettt b et h et e st e bt et eeeae e e be e eaneenee s 844

9.3.4.3.2 TEST SEIUP....eeeeeiiie ittt 844

9.3.4.3.3 Running odp_pKtio ON DUTccuiiiiiiiieeee e 844

9.3.4.3.4 TeSt AESCIIPLON. ...t 844

9.3.4.4 odp_generator apPliCAtION.c.uii i 845
9.3.4.4.1 OVEIVIBW. ...ttt ettt ettt ettt ettt e bt he e e bt e bt e bt e eae e et e e anneenee s 845

9.3.4.4.2 TEST SEIUP....eeeeiirie ittt 845

9.3.4.4.3 Running odp_generator 0N DUToooiiiiiiiciee e 846

9.3.4.5 ODP ipsec application (odp_ipsec, odp_ipsec_offload)............cccoeriiiiiiiieiniiiiese e 846
9.3.4.5.1 OVEIVIBW. ...ttt ettt ettt he e et e esae e et e e eae e e beeeaneenee s 846

9.3.4.5.2 TEST SEIUP....eeeeiirie ittt 847

9.3.4.5.3 Running ODP ipsec applications on DUT..........cccciiiiiiiiiiieieeeeee e 848

9.3.4.6 odp_classifier appliCatION.........ccuiiiiiie e 850
9.3.4.8.1 OVEIVIBW. ...ttt ettt ettt et be e bt e bt e bt e sae e et e e eaneenee s 850

9.3.4.6.2 TEST SEIUP....ueeeeiiie ittt ettt 851

9.3.4.6.3 Running odp_classifier 0N DUToooiiiiiiiiicie e s 851

9.3.4.7 odp_timer @pPliCATION.cciiriieeie ittt 851
9.3.4.7.:1 OVEIVIBW......utiiiiit ettt ettt b ettt et h ettt e e bt et e e ebe e e bt e e e e et e e snneenee e 852

9.3.4.7.2 TEST SEIUP....eeeeiiiie ettt st 852

9.3.4.7.3 Running odp_timer 0N DUTcociiiiieeeie e 852

9.3.4.8 odp_IpMIWd @pPlICALION.eeeiiiie e 852
9.3.4.8.1 OVEIVIBW. ...ttt ettt b e et b et e et eh et et eeae e et e e saneenee s 852

9.3.4.8.2 Running odp_Ipmfwd 0N DUTooiiiiiiiiiicie e 856

9.3.4.8.3 TeST AESCIIPLON. ...t 856

9.3.4.9 0dp_tM @PPIICATION. ..ot 856
9.3.4.9.1 OVEIVIBW. ...ttt b ettt b et e bt e bt et e e eae e et e enneenee s 856

9.3.4.9.2 Running 0dp_tm 0N DUTiiiiiiiieeee e 857

SR I e e T [T B = (U] o J TP PR PPN 858

9.3.4.9.4 TSt DESCHIPTION. ... veeeiiee ettt e e e e e 858

9.3.4.10 OpenFastPath @ppliCatiONS.oiuiiiiiiiee bbb 858
9.3.4.10.1 OVEIVIBW. ...ttt ettt ettt bttt a ettt ae et e e it e e b e e st et e s e neenanas 858

9.3.4.10.2 Test Setup OpenFastPath (fpm & fpm_burstmode)..........ccocveveeiiieniieiieiceeeie 859

9.3.4.10.3 Running fpm and fpm_burstmode applications.............ccceevieinciic e 859

9.3.4.10.4 Test description-ODP OpenFastPath (fom & fpm_burstmode)...........cccoceviieriennnenne 860

9.3.4.10.5 OFP Webserver ApplCatioN..........c.coiiiiiieiiieieeiet e 860

SRR [(o181 o1 [=T g ToTo} (1o T TP PRR 862
9.3.6 Using Debug Tool to Get Hardware Statistics for DPAA2 Platforms..........ccceoeiiieeiieiniciieeec e 862
0.4 US DIPAA et h e h e R E e R R e oA e e oAb e oA £ e e b et oA R e e Re e ea e e R et e bt e b et e bt e nae e be e nan e ne s 864

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
12 NXP Semiconductors

Contents

Chapter 10 Virtualization..............ccccmmmmmmmmmmeennnnnnnnnnnssssssssssssnnsssssssssss 869

10.1 KVM/QEMU User Guide and REfEIrENCE.uiiuiiiiiiiieieet ettt ebe e e 865
10. 1.1 KVIM/QEMU OVEIVIEW. ... ittt ettt ettt ekttt b ettt esae e et e e e ae e e bt e sab e e st e sab e e eaeesabeesbaeenneennneans 865
10.1.1.1 USING QEMU @Nd KVIM. ..ottt bttt ettt ae e 866
10.1.1.1.1 Overview of UsSiNg QEMU..........oiiiiiiiiiiiii et s 866

10.1.1.1.2 Virtual Maching MEeMOTY.........cooiiiiiiiiieeie et 868

10.1.1.1.3 Virtual NetWOrk iNterfaces..........cooiiiiiiiic e 868

10.1.1.1.4 Virtual DIOCK DBVICES.......ceiiiiiiiiii e 869

10.1.1.1.5 Direct assignNed dEVICESueiiiiiiiiiiee ittt e e 869

10.1.1.1.6 VMs and the Linux SChedUIEr...........c.oiiiiiiiiie e 871

10.1.1.2 Virtual Maching OVEIVIEW...........iiiuiiiiiiitiieee ettt sttt sttt beeeas e e sbeeeneenneean 872
10.1.1.3 Introduction 10 KVM and QEMU..........coiiiiiiiiiiiiieie ettt 872
10.1.1.4 DEVICE TIEE OVEIVIEW......cuteeieeietie ettt ettt ettt sttt sb et e e e ae e bt esae e et e e saeeenneesebeeneesane s 874
10,115 REIEIENCES. ...ttt e e e e e s ne e e e aare e e e 874
10.1.1.6 FOr More INfOrMEtioN.cooieieiiiiie et e e as 875
10.1.1.7 Virtual maching refErENCE...........ui i 875
101171 VIV OVEIVIEW. ...ttt bttt sttt st bt e et e e sbe e e bt e ese e e sbeeenneenneean 875

10.1.1.7.2 Memory Map of Virtual [/O DEVICES........ccuerrueiiiieiieiieeriee et 875

10.1.1.7.3 Virtual machine state at initialization..............cccoi e 875

10.1.1.7.4 VIFUBI CPUS...eiee ettt ettt na et e et n e nane s 876

TO T 175 VGIC.. ettt h ettt h ettt e ebe e et e eae e et e e enneenneeaa 876

10.1.2 Configuring @nd BUIIING.ccueeiiiiiiiiie ettt sttt e et b e e e b abeenaeenanas 877
T0.1.2.7 OVEBIVIBW . ..ttt ettt he et e st e bt s s bt e b e ea bt e b e e e ab e e eh e e ean e e ebe e et e e eae e e beeenneebeesnee 877
10.1.2.2 Quick Start - Recommended Configuration OptionsS...........c.cuvirieiiiiiieiieeiee e 877
10.1.2.3 Host Kernel: ENabling KVIM........oiii ittt 878
10.1.2.4 Host Kernel: Enabling Virtual NetWorking...........cceiiiiiiiiiiiiiee e 878
10.1.2.5 Host kernel: Enabling DPAA2 direct assignmentc.cooiiieiiiieinieec e 878
10.1.2.6 Host kernel: Enabling PCIE direct assignmentocooiiiiiiiiieiiie e 879
10.1.2.7 Guest kernel: Enabling CONSOIE...........cciuiiiiiiiieiieee et 879
10.1.2.8 Guest Kernel: Enabling Network and Block Virtual I/O...........ccociiiiiiiiiiiiiieee e 879
10.1.2.9 Building kernel with KVM support using flexbuild.............cccooeiiiiiiiiiiiieecee e 880
10.1.2.10 BUIIAING QEMU ...ttt ettt st sb e e e b e e e ennee s 880
10.1.2.11 Creating a host Linux root fileSYSIemM.........coiiiiiiiiiii e 881
10.1.2.12 Creating a guest Linux root fileSYStEM...........ooiiiiiiiii e 881

10.1.3 KVIM/QEMU HOW=E0'S.......utteeee ittt ettt ettt b ettt et s et e e s bttt e sae e et e e eae e e beeenneennee s 881
10.1.3.1 Quick-start Steps to Build and Deploy KVM..........coiiiiiiiieiii et 881
10.1.3.2 Quick-start Steps to Run KVM Using HUGELIDfS........c.oiiiiiiiiiiiii e 882
10.1.3.3 How to Use Virtual Network Interfaces Using Virtio.........cocoveiiiiiiiiiiiiiee e 883
10.1.3.4 How to use Vhost-net With VIrtiO.........cooiiieiiiiie e 884
10.1.3.5 How to Use Virtual Disks USING Virtio........coouiiiiiiieiiice e 885
10.1.3.6 How to use virtual disks using virtio-blk-dataplane.............cccccviiiiei i 887
10.1.3.7 How to use DPAA2 direct assignment Without SCHPEScoeviiiiiiiiieiic e 887
10.1.3.8 How to use DPAA2 direct assignment With SCHPEScooiiiiiiiiiiiie e 889
10.1.3.9 How to use PCIE direct asSignment.........cceoiiuiiiiiiiii ettt 894
10.1.3.10 Debugging: How to Examine Initial Virtual Machine State with QEMU............cccccooiiiinienn 894
10.1.3.11 Debugging: How to Profile Virtualization Overhead with KVM...........ccccoiiiiiiiiieniic e 895
10.1.3.12 Debugging Virtual MaAChINES.coiiiiiiiii e 897
10.1.3.12.1 QEMU MONITO ...ttt bbbt neeas 897

10.1.3.12.2 QEMU GDB STUD......oiiiiiiie et 897

10.2 LiNUX CONAINETS USEI GUILE.iiiiiiiiieitie ettt ettt et a et e bt e s it e e be e e abe e s be e eabeesbe e e beesaneenbeas 898
10.2.1 Introduction t0 LINUX CONTAINEIS.ciiteiiiiiiie ittt ettt sbe ettt sae e e e b e e sneenane s 899
10.2.1.1 NXP LXC ReIEASE NOLES......eeiuiieiiieiiit ettt ettt ettt sttt s eaeeneenane e 899
10.2.1.2 OVEIVIBW. ..ttt ettt ettt ettt h et ekt e e st e bt e £ s bt e bt e ea bt e b e e eab e e e b et e bt e ebe e et e e eae e e beeenneeneeanee 899

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 13

Contents

10.2.1.3 Comparing LXC and LIDVirt.........couiiiiiiiii et 900
10.2.1.4 For FUrther INfOrmMation...........oo it 900
10.2.2 MOFE DELAIIS. ..ot e e et e e e e e e e e e nrreenan 901
10.2.2.1 LXC: Command REfErENCE...........iiiuiiiiiiiieeei ettt 901
10.2.2.2 LXC: ConfIQUration FlES.........ciiiiiiiiii ittt e 902
10.2.2.3 LXC: TEMIPIALES. ... ettt ettt nae e s e nb e aneenne e 903
10.2.2.4 Containers With LIDVIrt........cocoiiiiii e 904
10.2.2.5 LinuX CONtrol GroUPS (COrOUPS).....ceiuriitieruriiteeaieeeteesire et st stee st sie e s e sae e bt e ssn e b e aneenee s 905
10.2.2.6 LiNUX NAMESPACES.eeiiiiiieiiii ettt s e e e e et s e e e e e nne e s e e e nneee s 906
10.2.2.7 POSIX Capabilities.ccueeetiiiiieiie ittt 906
10.2.3 LXC HOW TO'S....eettteuteeitee ettt ettt ekt e e h e s e e bt et e ae e e bt e s et e bt e s et e e an e e nab e e b e e nan e et e e enneeneas 907
10.2.3.1 LXC: Getting Started (with a Busybox System Container)...........cccvveieeriiiiiieneeeee e 907
10.2.3.2 LXC: How to configure non-virtualized networking (Ixc-no-netns.conf)............cccocvviviiiieriens 910
10.2.3.3 LXC: How to assign a physical network interface to a container (Ixc-phys.conf)...........c.ccce... 911
10.2.3.4 LXC: How to configure networking with virtual Ethernet pairs (Ixc-veth.conf)............ccceeeeee 912
10.2.3.5 LXC: How to configure networking with macvlan (Ixc-macvlan.conf)..........cccceeeeriiieeniennn. 913
10.2.3.6 LXC: How to configure networking using a VLAN (Ixc-vlan.conf)
10.2.3.7 LXC: HOW t0 MONItOr CONTAINETS.citiiiiiiiie ittt
10.2.3.8 LXC: How to modify the capabilities of a container to provide additional isolation................... 917
10.2.3.9 LXC: How to use cgroups to manage and control a containers reSOUrCes............ccocuververiueene 917
10.2.3.10 LXC: How to run an application in a container with IXC-eXeCute............cccovvirierieiiiiienecnnens 919
10.2.3.11 LXC: How to run an unprivileged CONtAINET..........coiuiiiiiiiiiiieesiee et 920
10.2.3.12 LXC: How to run containers with Seccomp protection............cccceeeeeiiiiieiniiiniese e 921
(O I2 oV PSP PP TP PSP UPRRPRURI 923
10.3 DOCKET CONTAINEIS. ...ttt ettt ettt b ettt e st et eea et e bt e s e et e st e e e b e e eae e eas e e nhe e e st e nhe e et e e eae e et e e eaneenneeeaes 932
10.3.1 Introduction to DOCKEr CONTAINETS.oitiiiiiiiiie ittt ettt n e nnee s 932
10,3017 OVBIVIBW ...ttt b e ea e h e et e e bt e et e nbe e et e e eae e et e e eaneene e 932
10.3.2 DOCKET HOW TO'S.....ceiiiie ettt et e st e e s e e e me e e e e e e sann e e e nr e e e ennneenannes 933
10.3.2.1 RUNNINg @ WeDSErver CONTAINET...........ooi it 933

Chapter 11 Power Management...............eeeeessssssssssssssnssnsssnssssssnsneenneeenes 936

11.1 Power Management USEr IMBNUAL...........ooiiii ittt ettt sae e et e st e st e e e et e e e snneeenaneeeas 936
11.2 CPU Frequency SWitChing USEr MaNUAL.............eeiiiiiiiiiie ettt s e e s enneas 938
11.3 Thermal Management USEr MANUAL...........c.eii ittt ettt s e e st e e e b e e snees 940
LI V) (=Y o 0 Y [T Ty o PSPPSR 942
11.4.1 Power Monitor USEr ManUAL..........ccc.oiiiiiiiiiiie ettt e 942
11.4.2 Thermal Monitor USEr MaNUAL...........cccuuiiiiiiiiiiiiee ettt 945

Chapter 12 Benchmarking guidelines.......ccccceeeeviiiinnnrmmmmmmnsseessssssnsnnnssnnnnens 947

T2.1 COMBIMAIK. ... ittt e et e e e ettt e e e e ettt et e e e e e eaabeeeeeesaateeeeeeaaasbsseeaeaasssaeeeeeaassseseeesasbssseaeaasnseeeeeesanssnneannn 947
B 20 T B 1= G 0 Vo T 1= o RPN 947
T2.1.2 TEST PrOCEAUIE. ...ttt et e aaaesaeseaeeeeeeeeeeeeeaaaaeaeeaesesaaaaaasnsnssnsnsnsnnnnnes 948
12,2 DINIYSIONE. ...ttt e ekt e et oo Rt e e R R e e e R e et e R et e e R e e e e R Ee e e e n e e e e ne e e e e r et e nnn e e e nree s 949
12.2.1 TSt ENVIFONMENT.o e e e e e e e et b e e e e e e e eeeeeeeaaaeaaeaeaeaeaaaaaasnsnnssnsnnnnnnnns 949
12.2.2 TESE PrOCEAUIE. ...ttt ettt e et et e e e eeeaaaeeaeeeeeeaeaasaa e sasnsnsssssnnsnneneneeeaaaaaans 950
T2.B EEIMBC.....c ettt e e e e ettt e e e e e eta——eeeeeeat——eaeeeaaabateeaeaaaateeaeeeaatteeeeeeaataeeaaeaaaaraeaaeeanrreeens 952
12.3.1 TSt ENVIFONMENT.t e et e e e e e e e e et e e e e e e e e e eeeeeaeaaaaaeeaeaeaeaasaaansssnsnsnnnnnnnns 952
B2 T2 =T O oo Yo [(- PR 954
L2 /1Y o T PP RUR 961
12.4.1 TSt ENVIFONMENT. ettt e et e et e e e e e e et e e e e e e e e e e eeeeeaeaeaaaaeaeaesaaasaaasnssnnsnsnnnnnnnns 961

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
14 NXP Semiconductors

Contents

T2.4.2 TEST PrOCEUUIE.........ieieieeeeeeeeeee ettt e e e e ettt e e e e e e e e e e e eae st e e e eeeeeaeeesessasaeaeeeeeeeeeessssanaaeeeaeeens 962

Chapter 13 Connect to cloud: EdgeScale...........ccevririinninninnsisnnssssscsssscennnns.. 964

13.1 WAt IS BEAQESCAIE. ...ttt ettt hb e e et et e s sttt e sab e e e e bt eeeanne e e sabeeeeanbeeeans 964
LRSI =101 o [T g Tl =l (o T3S Loz L= o] =Y o | PP 964
13.3 Procedure 10 Start EAQESCAIE.cooiiiiiiiei ettt ettt e e st e e saae e e s be e e e ab e e e nne e e e nnnee s 965

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 15

About this document

Chapter 1
About this document

About QorlQ Layerscape Software Development Kit (LSDK)

LSDK is a complete Linux kit for NXP QorlQ ARM-based SoC's and the reference and evaluation boards that are available for
them.

It is a hybrid form of a Linux distribution because it combines the following major components to form a complete Linux system.
¢ NXP firmware components including:
— PPA, a resident EL3 privilege secure firmware for ARMv8A.
— NXP peripheral firmware components for DPAA1, DPAA2, and PPFE.
* NXP boot loaders. Two are offered:
— U-Boot, based on denx.de plus patches.
— UEFI, based on TianoCore.
* NXP Linux kernel, based on kernel.org upstream plus patches.
* NXP added user space components.
¢ Ubuntu standard user space file set (user land), including compilers and cross compiler.

The use of Ubuntu user land is what makes LSDK a hybrid. It is not entirely an Ubuntu distribution because it uses an NXP kernel,
but it still uses Ubuntu user space files. This hybrid is possible because NXP ARM SoC's are standards-based so programs like
bash and thousands of others run without being recompiled.

The benefit of using Ubuntu user land is the easy availability of thousands of standard Linux user space packages. The experience
of using the LSDK is similar to using Ubuntu, but the kernel, firmware, and some special NXP packages are managed separately.

NOTE
For the most up-to-date version of this documentation set, see the Knowledge Center for Layerscape Software
Development Kit

Accessing LSDK

LSDK is distributed via git. See https://Isdk.github.io/.

There are two ways to use the LSDK, as an integration and as a source of individual components.
LSDK as an integration

Using the link above, notice the f1exbuild component. You can clone it and run a script to create and install LSDK onto a mass
storage device as an integration, ready for use on an NXP reference or evaluation board. You can build NXP components from
source using a script called flex-builder or install from binaries of NXP components using flex-installer. See Layerscape SDK user
guide on page 41.

LSDK as components

The same link shows git repositories for individual components, for example the LSDK Linux kernel. If you clone and examine
this git, you will see a conventional kernel source tree. You can compile the kernel using make in the normal way, like a kernel.org
kernel. However, notice the configuration fragment in arch/arme4/configs. See Linux kernel on page 289.

Having git access to components is helpful if you assemble your own Linux distribution or wish to form a hybrid with a user land
other than Ubuntu’s.

LSDK git tags

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
16 NXP Semiconductors

https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US
https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US
https://lsdk.github.io/

LSDK git repositories use git tags to indicate component revisions that have been release tested together. Use the git tag
command to examine them and chose a tag to check out.

LSDK Relies on Mass Storage Devices

Ubuntu user land is very convenient for evaluation because it is possible to use the command apt-get install on the standard
Ubuntu components you need. It also provides native development tools.

But this richness means that the user space file is large, too large for RAM disks.
Therefore, LSDK requires installation to and use of a mass storage device such as
* SD card
* USB flash drive
e USB hard drive
* SATA drive, spinning, or SSD (for boards with a SATA port)

eMMC flash (when available on board)

LSDK provides scripts that populate a mass storage device with the needed files. These scripts can run on a Linux PC. It is
especially simple to use an SD card or USB flash drive because they are the easiest to move between a Linux PC and the NXP
board.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 17

Acronyms and abbreviations

Chapter 2
Acronyms and abbreviations

Term Definition

AH Authentication Header (RFC 4302) — a network protocol designed to provide authentication services in IPv4
and IPv6.

AIOP Advanced I/O Processor

ACL Access Control List

AMP Asynchronous Multi-Processing, running multiple operating system images on different processors of the
same machine without virtualization.

API Application Programming Interface

ARP Address Resolution Protocol

ASF Application Specific Fast Path — a software abstraction layer providing different network services (e.g. firewall,
IPSec, IP reassembly, forwarding, etc.) to top level applications implemented in various environments (such
as Linux kernel, Linux user space, etc.). These services may be hardware accelerated or not depending on
the hardware the ASF is running on. The hardware offloading is provided transparently to the top level
applications.

BMan Buffer Manager — a DPAA hardware block performing buffer and buffer pool management.

BPID (BMan) Buffer Pool ID

CAAM Cryptographic Acceleration and Assurance Module

CCSR Configuration and Control Status Register

CEETM Customer Edge Egress Traffic Management

CPU Central Processing Unit, also known more generally as "Processor"

DCD Device Configuration Data

DCE Data Compression/Decompression Engine

DMA Direct Memory Access

DPAA Data Path Acceleration Architecture (First Generation)

DPAA2 Data Path Acceleration Architecture (Second Generation)

DPC Data Path Configuration File

DPDK Data Plane Development Kit

DPDMUX Data Path De-multiplexer

DPL Data Path Layout

Table continues on the next page...
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
18 NXP Semiconductors

Table continued from the previous page...

Term Definition

DPNI DPAAZ2 object modeling a network interface

DPRC Data Path Resource Container

DSK Device Secret Key

DTB Device Tree Blob—the binary representation of device trees

DTS Device Tree Syntax—the textual representation of device trees

DUT Device Under Test

ESBC External Secure Boot Code

ESP Encapsulating Security Payload (RFC 4303) — a network protocol designed to provide a mix of security
services in IPv4 and IPv6.

EVB Edge Virtual Bridge

FDB Forwarding Data Base

FMan Frame Manager — a DPAA hardware block performing frame processing management.

FMC Frame Manager Configuration application

FRA Freescale RMan Application

FUID Freescale Unique ID

GPP General Purpose Processor

Guest/VM The term ‘Guest’ is used for Linux running inside the virtual machine(s) that are in turn running over Host
Linux operating system.VM and Guest have been used interchangeably in this guide.

GUEST_CONS | Telnet port for accessing guest console of VM.

OLE_TELNET_

PORT

HAL Hardware Abstraction Library

HIF Host Interface

HSM Hardware security modules

IBR Internal Boot ROM

IP_ADDR_BRD | This term is used for LS1088ARDB and LS2088ARDB IP address.

IP_ADDR_IMAG | This term is used for IP address of the machine on which all the software images are kept.

E_SERVER

IPC Inter-Process Communication, can be interpreted as being communication between distinct application
execution flows or between distinct hardware processing units.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

19

Acronyms and abbreviations

Table continued from the previous page...

Term

Definition

inbound (traffic)

Encrypted traffic which is coming from an unprotected interface. This traffic will be terminated on the CPU.

IPFwd IPv4 Forward

IPSec IP Security —a communication standard defined and refined by several public RFCs (such as RFC-2401 and
RFC-4301) where hosts exchange encrypted IP data packets.

IPSec Tunnel A communication convention between two network gateways to IPSec process certain network traffic in a
particular way. An IPSec tunnel has two endpoints (which are the gateways), a clearly delimited set of
encryption and authentication methods, keys, encapsulation headers and security policies, which define the
traffic that is sent through the tunnel.

ISBC Internal Secure Boot Code

ISR Interrupt Status Register

ITF Intent to Fail

ITS Intent to Secure

KASLR Kernel Address Space Layout Randomization

KVM Kernel-based Virtual Machine - A Linux kernel module that allows a user space program access to the
hardware virtualization features of NXP processors.

LIODN Logical I/0 Device Number

MC Management Complex

NAT Network Address Translation

ODP OpenDataPlane

OEM Original Equipment Manufacturer

(OK] Operating System

OouID OEM Unique ID

outbound (traffic)

Clear traffic which is coming from a software application which generates traffic that must be encrypted and
forwarded via an unprotected interface.

PAMU Peripheral Access Management Unit
PBL Pre-Boot Loader
PCD Parse, Classify, Distribute — a software architecture concept in NXP DPAA drivers which allows the user to

configure the DPAA hardware (FMan) to do frame parsing, classification or distribution on a series of frame
queues.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

20

NXP Semiconductors

Table continued from the previous page...

Term Definition

PDCP Packet Data Convergence Protocol — It is one of the layers of the Radio Traffic Stack in UMTS/LTE and
performs IP header compression and decompression, transfer of user data and maintenance of sequence
numbers for Radio Bearers which are configured for lossless serving radio network subsystem (SRNS)
relocation.

PME Pattern Matcher Engine

PKCS Public-Key Cryptography Standards

QEMU Quick EMUIator - A hosted hypervisor that performs hardware virtualization.

QBMan Queue and Buffer Manager

QMan Queue Manager — a DPAA hardware block performing frame queue management.

RC Route Cache

RCW Reset Configuration Word

RFC Request for Comments — a public document which describes a software standard.

RDB Reference Design Board

SA Security Association — a data record, defined by RFC 4301, which stores the information related to the IPSec
processing needed for a specific network traffic type (such as encryption/decryption keys and algorithms,
traffic endpoints description, authentication algorithms, and so on).

SAD Security Association Database — the database holding all the valid SAs in a system.

SDK Software Development Kit

SEC Security Engine Coprocessor —a DPAA hardware block performing cryptographic acceleration and offloading
hardware.

SFP Secure Fuse Processor

SIP DIP Source Internet Protocol and Destination Internal Protocol

SKMM Secure Key Management Module

SMP Symmetric Multi-Processing, running an operating system image on multiple CPUs simultaneously.

SNVS Secure Non-Volatile Storage

SoC System on a Chip, a chip integrating one or more processors and on-chip peripherals.

SP Security Policy —a set of rules that network traffic must comply with in order to be eligible for IPSec processing.

SPD Security Policy Database — the database storing all the SPs in a system.

SRE Stateful Rule Engine

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

21

Acronyms and abbreviations

Table continued from the previous page...

Term Definition

SRK Super Root Key

SRKH Super Root Key Hash

STP Spanning Tree Protocol

Sul String Under Inspection

TFTP_BASE_DI | Base directory of TFTP server where all the images are kept.

R

TLB Translation Lookaside Buffer

TTL Time To Live

UDP User Datagram Protocol

uib Unique Device ID

U][0] User space I/O

USDPAA User Space Data Path Acceleration Architecture

VEB Virtual Ethernet Bridge

VEPA Virtual Ethernet Port Aggregator

VID Voltage IDentifier

WRIOP Wire Rate 1/0O Processor

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

29 NXP Semiconductors

What's New

Chapter 3
Release notes

3.1 What's New

What's New in LSDK 18.03
Highlights

Switching the dual kernel version to LTS 4.9.79 and LTS 4.14.16. LTS 4.4 is not tested in this release and under maintenance
mode

U-Boot v2017.11 update
LS2084A and LS2088A top bin and non-E part
Direct device assignment in guest kernel on LTS 4.14 [DPAA2 processors]

Support for edge compute on EdgeScale, including secure manufacturing, secure keys, EdgeScale dashboard for users and
application management

MC upgrade to 10.6.0

Python scripts to generate RCW binaries for LS1012A, LS1088A and LS2088A

Support for DPDK 17.11 as base and OVS 2.9

Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

Includes additional workarounds for Chip Errata: A-008851, A-009611, A-009668, A-010131, A-010477, A-010843, A-011026

Ubuntu Userland

No change since the last LSDK

Linux Kernel Core, Virtualization

LTS kernel 4.9.79 update
LTS kernel 4.14.16
Direct device assignment in guest kernel on LTS 4.14 [DPAA2 processors]

QEMU: MC portal emulation

Linux Kernel Drivers

DPAA2 CAAM: generic gcm(aes), IPsec GCM - rfc4106
DPAAZ2 Ethernet: XDP, L2Switch driver update to switchdev version
USB: U1/U2 mode in host

Data Plane Development Kit (DPDK)

Support of DPDK 17.11 as base
Support of LTS 4.14
AIOP cmdif support

Ethernet poll mode driver with push mode queues, Crypto - Scatter Gather support, Eventde driver, tail drop using WRED -
CGR [DPAA1 processors]

IPSEC protocol offload support

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 23

Release notes

e KNI support
¢ PKTGEN 3.4.8
Virtualization - OVS-DPDK
e Support of OVS 2.9
Open Data Plane (ODP)
* No change since the last LSDK
U-Boot Boot Loader
* U-Boot v2017.11
¢ Support for IFC and EMMC switch support in gixis [LS1088A]
Unified Extensible Firmware Interface (UEFI)
* No change since the last LSDK
EdgeScale — Edge Compute
* Secure Manufacturing
— Tools available for Secure Fuse provisioning [LS1012A, LS1043A, LS1046A]
¢ Secure Keys [LS1046A]
— Support of API's to import/generate RSA keys securely
— Support of PKCS#11 interface for Ssigning operations
— Support of OPENSSL engine to access these keys
* EdgeScale Dashboard for Users
— Device management
> Secure device enrolment
> Secure key/certificate provisioning
> QTA: firmware update [LS1043, LS1046]
° Device status monitoring
— Application management

> Dynamic deployment of container based applications

Other Tools and Utilities

e AIOPSL
— AIOP boot error handling, error frame handling, TX buffer layout
— API for configuring timestamp passing behavior inside a recycle path flow
— ASA opaque
— User-defined exception handler

* MC upgrade to 10.6.0

¢ RCW
— LS2084A and LS2088A top bin and non-E part
— Python scripts to generate RCW binaries for LS1012A, LS1088A and LS2088A

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

24

NXP Semiconductors

What's New

What's New in LSDK 17.12
Highlights
¢ Support for 2.5G PFE MAC [LS1012A]
e MC upgrade to 10.4.0
* Support for DPDK 17.05.02 as base and OVS 2.8
e Support for sleep (LPM20) [LS1088A, LS2088A]
* Integration of Open Portable Trusted Execution Environment (OP-TEE) [LS1046A]
* Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

* Includes additional workarounds for Chip Errata: A-008708, A-008428, A-008822, A-009007, A-009668, A-009611, A-009810,
A-010151, A-010554, A-010650

Linux Kernel Core, Virtualization
* LTS kernel 4.4.98 update
e LTS kernel 4.9.62 update
Linux Kernel Drivers
¢ DPAA2 CAAM: Hashing
* DPAA2 Ethernet: Priority Flow Control
¢ OP-TEE driver [LS1046A]
e PFE: 2.5G MAC [LS1012A]
U-Boot Boot Loader
* HW load/store prefetch being disabled
e PFE: 2.5G MAC [LS1012A]
Unified Extensible Firmware Interface (UEFI)
* MC High Mem Support
Data Plane Development Kit (DPDK)
* DPDK 17.05.02 as base
e DPDK on docker [DPAA2 processors]
e UEFI support on LS2088A
Virtualization - OVS-DPDK
* OVS 28
Other Tools and Utilities
e MC upgrade to 10.4.0
¢ OP-TEE client [LS1046A]
¢ PPA: sleep (LPM20) [LS1088A, LS2088A], OP-TEE OS binary [LS1046A]

¢ Restool Bourne shell (sh) compatible

What's New in LSDK 17.09-Update-103017
Highlights
* LS1012A r1.0 and r2.0, LS1012A RDB at core frequency 1GHz by default

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 25

Release notes

* MC upgrade to 10.3.4 to support 1000base-X and SGMII phyless
¢ Integration of PPFE driver
* Integration of CAAM DMA driver
¢ Including software fixes for LS2088A secure boot, MC failure to clear memory after use on LS1088A, fixup of MAC address
in DPC on LS1088A
Processor and Board Support
e LS1012A r1.0 and r2.0
e LS1012A RDB at core frequency 1.0GHz by default
Linux Kernel Drivers

¢ LS1012A: Crypto driver supporting SEC 5 (CAAM), CAAM DMA, DDR, DUART, DSPI, eSDHC, 12C, PCle RC, PFE Ethernet
(Packet Rx/Tx), PHY support: RGMII & SGMII, Power management, QSPI, SAI/I2S, SATA, UART, USB 2/3 mass storage,
Watchdog

U-Boot Boot Loader

¢ L.S1012A: Non-secure boot, Secure Boot (silicon r1.0), Clock, CPLD, DDR4, DSPI, eSDHC, 12C, Generic Timers, PCle,
Primary Protected Application (PPA) firmware integration, QSPI, SATA, UART

Other Tools and Utilities
* MC upgrade to 10.3.4 to support 1000base-X

* Supporting multiple versions of docker image in Flexbuild

What's New in LSDK 17.09
Highlights
* LTS kernel 4.9.35, including KASLR
* U-boot 2017.07
* MC 10.3.2 update
e Support for DPDK 17.05 as base and OVS 2.7
¢ Flexbuild to support dual kernel build for 4.4 and 4.14
* Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

* Includes additional workarounds for Chip Errata: A-007815, A-007997, A-010053, A-010151, A-010477, A-010571

Processor and Board Support
¢ LS1043ARDB-PD
Linux Kernel Core, Virtualization
e LTS kernel 4.9.35, including KASLR
* LTS kernel 4.4.80 update
e LXD and LXD-Bridge
Linux Kernel Drivers
* DPAA2 Ethernet: 10G-base-KR
* RTC: adding PCF85263
¢ TMU on LS1088A
Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
26 NXP Semiconductors

* DPDK 17.05 as base
e Support for MC 10.3.x
Virtualization - OVS-DPDK
e OVS-DPDK 2.7
U-Boot Boot Loader
* U-boot 2017.07
* Chain of trust with confidentiality as part of distro boot
¢ |.S1088A: QSPI boot, SD secure boot
Unified Extensible Firmware Interface (UEFI)
¢ Adding kernel 4.14 support
* KASLR support
¢ L2 cache Prefetch enable/disable support on LS2088A
¢ Ubuntu Distro boot support.
* USB 3.0 on LS2088A
Other Tools and Utilities
* AIOPSL: IPv6 Reassembly Atomic Fragment, QoS
* FLIB: AES-CTR algorithm, AES-GCM algorithm
e MC 10.3.2 update
¢ Flexbuild
— Dual kernel build for 4.4 and 4.14

— Enhanced component's repository management to support single repository in one single command

— Encapsulation and decapsulation feature for secure boot

— Removing dpdk-extras repository

— Adding Itthg-modules repository

— Renaming flex installer <archs.itb10 flex linux <archs.itb

What's New in LSDK 17.06

Highlights
¢ LTS kernel 4.4.65, including KASLR
* U-boot 2017.03

* Unified memory map

¢ Unified Extensible Firmware Interface (UEFI) Spec 2.6 on LS1043A RDB, LS1046A RDB and LS2088A RDB

* Ubuntu host 16.04, root filesystem and toolchain 5.4 verified, not shipped in this release

What's New

* Flexbuild to build component and generate the boot firmware, flex_installer.itb and the Ubuntu userland containing the

specified packages and applications
* Integrating LS1088A BSP v0.4
e LS2088A r1.1 silicon
e MC 10.2.2 update

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

27

Release notes

¢ FLIB update
* Release on https://Isdk.github.io/
* Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

¢ Includes additional workarounds for Chip Errata: A-010160, A-010679, A-010840

Processor and Board Support
* LS1088A r1.0 and Rev. B RDB
e LS2088A r1.0, LS2088A r1.1 and Rev. F RDB
Ubuntu Userland
¢ Ubuntu host 16.04
¢ Toolchain: gcc: Ubuntu/Linaro 5.4.0-6ubuntul~16.04.4, glibc-2.26.1, binutils-2.23-0, gdb-7.11.1
¢ Linux Containers (LXC)
e QEMU 2.5
Linux Kernel Core, Virtualization
¢ LTS kernel 4.4.65, including KASLR
Linux Kernel Drivers
* LS1088A: DUART, DDR4, 12C, PCle, SATA, USB, SD, MMC, NAND, Networking support, SEC
e CAAM: RSA form 1/2/3, TLS 1.0
Data Plane Development Kit (DPDK)
* Integrating LS1088A
Virtualization - OVS-DPDK
* Integrating LS1088A
Open Data Plan (ODP)
* Integrating LS1088A
* OFP (Open Fast Path) FPM and Webserver Application Support
U-Boot Boot Loader
¢ U-boot 2017.03
¢ Unified memory map
* LS1088A: DUART, DDR4, 12C, PCle, SATA, USB, SD, MMC, NAND flash, Networking support, Boot from SD
» LS2088A: QSPI boot
Unified Extensible Firmware Interface (UEFI)
e LS1043A, LS1046A, LS2088A
* Spec 2.6
* DDR4, DUART, DSPI, GPIO, 12C, IFC, PCle, RTC, SATA, SD, Networking support, Watchdog
¢ PPA integration
SMP Linux boot via EFI_STUB on SD card
* PXE boot via PCle and DPAA interfaces
* QSPI boot
Other Tools and Utilities

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
28 NXP Semiconductors

Components

LS1088A: Primary Protected Application (PPA) firmware
MC 10.2.2 updates
FLIB: CAPWAP DTLS, L2 header copy

Flexbuild to build component and generate the boot firmware, flex_installer.itb and the Ubuntu userland containing the
specified packages and applications

3.2 Components

Overall

Ubuntu userland

Linux Kernel and Virtualization

Linux Kernel Drivers

Data Plane Development Kit (DPDK)
Virtulization - OVS-DPDK

Open Data Plan (ODP)

U-Boot Boot Loader

Unified Extensible Firmware Interface (UEFI)
EdgeScale — Edge Compute

Other Tools and Utilities

Ubuntu Userland

Ubuntu host 16.04

Toolchain: gcc: Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.4, glibc-2.23-0, binutils-2.26.1, gdb-7.11.1
Linux Containers (LXC)

QEMU 2.5

Linux Kernel Core and Virtualization

Linux kernel 4.9.79, including KASLR

Linux kernel 4.14.16, including KASLR

ARM Cortex-A7 (AARCH32), Cortex-A53 and Cortex-A72 (AARCH64), Little Endian (default)
32-bit effective kernel addressing [Cortex-A53, Cortex-A72]

64-bit effective addressing [Cortex-A53, Cortex-A72]

Direct device assignment in guest kernel [DPAA2 processors]

Huge Pages (hugetlbfs)

KVM and Containers

LXD and LXD-Bridge

Linux Kernel Drivers

Customer Edge Egress Traffic Management (CEETM)
Crypto driver via SEC 5 & 6 (CAAM)
CAAM DMA

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

29

Release notes

Display Control Unit (DCU) and HDMI [LS1021A]
DUART, DSPI, 12C

Edge Virtual Bridge (EVB) [DPAA2 processors]
Ethernet DPAA [DPAAT1 processors]

Ethernet DPAA2 [DPAA2 processors]

Ethernet eTSEC (gianfar) [LS1012A]

Frame Manager (FMan) [DPAA1 processors]

GIC-400, GIC-500, GIC-ITS

IEEE1588

Integrated Flash Controller (IFC) NOR and NAND flash
LPUART [LS1021A, LS1043A]

Management Complex Bus [DPAA2 processors]

MDIO

Multiprocessor Interrupt Controller (MPIC)

Open Portable Trusted Execution Environment (OP-TEE) [LS1046A]
PCle Root Complex and Endpoint, MSI

PFE ethernet [LS1012A]

Platform DMA

PHY support: RGMII, SGMII, XFI and XAUI

Power Management (PM) — CPU hotplug (PH20), CPU idle (PW15/20), Sleep (LPM20), Deep sleep (LPM35), Auto-

Response, Dynamic Frequency Scaling (DFS), Thermal Monitor, Power Monitor (board specific)
Queue Manager (QMan) and Buffer Manager (BMan) [DPAA1 processors]

QUICC Engine UART, TDM, HDLC, PPPoHT

SATA

Secured Digital Host Controller (¢SDHC) and SD/MMC support

System Memory Management Unit (SMMU) [ARM processors]

Universal Serial Bus (USB) 2.0 and 3.0

User space 10

Virtual Function 1/O (VFIO) - mmap PCI sources [Except for LS1021A]

Watchdog Timers

Data Plane Development Kit (DPDK) [LS1043A, LS1046A, LS1088A, LS2088A]

Support of DPDK v17.11 as base
Following DPDK Applications have been verified
— 12fwd
— 13fwd
— 12fwd_crypto
— ipsecgateway

DPDK with UEFI [LS2088A]

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

30

NXP Semiconductors

Components

¢ DPDK on docker [DPAA2 processors]
¢ AIOP cmdif
* IPSEC protocol offload
¢ KNI support
* PKTGEN 3.4.8
Virtualization - OVS-DPDK
* OVS-DPDK 2.9
* OVS-DPDK working with vhost-virtio interfaces
e DPDK working in Virtual Machine
Open Data Plane (ODP) [LS2088A, LS1088A]
e ODP API v1.11
* ODP generator sample application
* ODP pktio sample application
¢ ODP ipsec transport and tunnel sample applications
* ODP packet classify sample application
* ODP timer sample application
* ODP LPM IP Forwarding sample application
* ODP Traffic Manager sample application
* ODP OpenFastPath Applications (FPM & FPM_BURSTMODE, Webserver)
U-Boot Boot Loader
¢ U-Boot: 2017.11
¢ Unified memory map
* On ARM platforms, the U-Boot image includes the device tree
* Non-secure and Secure Boot (ESBC)
* Primary Protected Application (PPA) firmware integration. See PPA features in “Other Tools ...” below
¢ Boot from NOR, NAND flash, QSPI, SDHC
* CodeWarrior debug patch for U-Boot
¢ Clock, CPLD, DUART, DDR4, DSPI, eSDHC, GIC-400, GIC-500, I12C, OCRAM, PCle, USB 2 & 3, SATA, UART
* DCU, eMMC 4.5, 12C3, LPUART, QSPI [LS1021A, LS1043A, LS1046A]
* HW load/store prefetch being disabled
* IFC access to NOR and NAND flash
* Networking support using eTSEC, FMAN Independent Mode, DPAA2 networking or PFE
¢ Voltage ID (board specific)
Unified Extensible Firmware Interface (UEFI) [LS1043A, LS1046A, LS2088A]
* Spec 2.6
* DDR4, DUART, DSPI, GPIO, 12C, IFC, PCle, RTC, SATA, SD, Networking support, Watchdog, USB 3.0
e KASLR
* MC High Mem support

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 31

Release notes

PPA integration

SMP Linux boot via EFI_STUB on SD card
PXE boot via PCle and DPAA interfaces
QSPI boot

Ubuntu Distro boot

EdgeScale — Edge Compute

Secure Manufacturing
— Tools available for Secure Fuse provisioning [LS1012A, LS1043A, LS1046A]
Secure Keys [LS1046A]
— Support of API's to import/generate RSA keys securely
— Support of PKCS#11 interface for Ssigning operations
— Support of OPENSSL engine to access these keys
EdgeScale Dashboard for Users
— Device management
> Secure device enrolment
° Secure key/certificate provisioning
> QTA: firmware update [LS1043, LS1046]
° Device status monitoring
— Application management

> Dynamic deployment of container based applications

Other Tools and Utilities

AIOPSL [DPAA2 processors]
Primary Protected Application (PPA) firmware [Except for LS1021A]: Power Management, OP-TEE OS binary [LS1046A]

Management Complex (MC) Firmware version 10.6.0 — binary only, supporting DPAA2 resource containers and network
objects, Resource Manager and Link Manager, DPDMUX basic configurations

DPAA2 resource container and object management tool (RESTOOL)

Convenience scripts to create and manage common objects like network interfaces. There scripts are packaged in Is2-scripts
tarball

FLIB/RTA - SEC descriptor creation library [all processors with SEC 5]
OpenSSL 1.0.2k

OpenSSL offload - includes TLS Record Layer and Public Key offload
OP-TEE client [LS1046A]

Frame Manager Configuration Tool (FMC) [DPAA1 processors]

Frame Manager Ucode [DPAA1 processors]

PME Tools [DPAA1 processors]

Flexbuild to build component and generate the boot firmware, flex_linux.itb and the Ubuntu userland containing the specified
packages and applications

Python scripts to generate RCW binaries

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

32

NXP Semiconductors

Feature Support Matrix

3.3 Feature Support Matrix

The following tables show the features that are supported in this release. Refer to the legend below to decipher the entries.
Legend:

¢ Y - Feature is supported by software

* /- Feature is not supported by software

¢ na - Hardware feature is not available

Table 1. Key Features

Feature LS1012 | LS1021 | LS1043 | LS1046 | LS1088 | LS2088
A A A A A A
32-bit Userspace, BE / / / / / /
64-bit Userspace, BE Y na Y Y / /
32-bit Userspace, LE Y Y Y Y / /
64-bit Userspace, LE Y na Y Y Y Y
36b phys mem na Y na na na na
40b phys mem Y na Y Y Y
AIOPSL na na na na
ASF / / / / / /
Data Plane Development Kit (DPDK) / / Y Y Y Y
EdgeScale - Edge Comupte Y Y Y Y Y Y
Hugetlbfs Y Y Y Y Y Y
Open Data Plane (ODP) / / / / Y Y
Open Portable Trust Execution Environment (OP-TEE) / / / Y / /
Secure Boot Y Y Y Y Y
Unified Extensible Firmware Interface (UEFI) / / Y Y /
USDPAA Applications na na / / na na
Table 2. Virtualization
Feature LS1012 | LS1021 | LS1043 | LS1046 | LS1088 | LS2088
A A A A A A
KVM/QEMU Y Y Y Y Y Y
LXC Y Y Y Y Y Y
Libvirt Y / / / / /
VFIO na na na na
Docker Y / Y Y

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 33

Release notes

Table 3. Linux Applications

Feature LS1012 |LS1021 | LS1043 | LS1046 | LS1088 | LS2088
A A A A A A
Linux IPFwd / / / / / /
Linux IPSec / / / / / /
Linux Termination Y Y Y Y Y Y
Linux NAS / / / / / /
Linux RAID / / / / / /
Linux SATA / / / / / /
Table 4. Linux Kernel Drivers
Feature LS1012 | LS1021 | LS1043 | LS1046 | LS1088 | LS2088
A A A A A A
Audio - SAI Y Y na na na na
CAAM DMA / / / / / /
DCE na na na na / /
Direct Device Assignment na na na na Y Y
DMA Y Y Y Y Y
DPAA1 na na / /
DPAA2 na na na na
eSDHC Y Y Y Y
FlexCAN na / na na na na
12C Y Y Y Y Y
IEEE1588, PTPD Y Y Y Y Y
IFC na Y Y Y Y Y
LPUART na Y Y Y / /
QSPI Y Y Y Y Y Y
PCle RC Y Y Y Y Y
PCle EP / / / / / /
PFE Y na na na na na
Power Management Y Y Y Y Y
SATA Y Y
SEC Y Y
dSPI / Y
TDM (QE) na na Y na na na
USB Y Y Y Y Y Y

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
34 NXP Semiconductors

Supported Targets

Table 4. Linux Kernel Drivers (continued)

VeTSEC na Y na na na na
Video - DCU na Y na na na na
Watchdog Y Y Y Y Y Y

3.4 Supported Targets

Processors, development boards, and cards supported all releases.

NOTE
In the following tables, in the rows corresponding to the processors, the silicon revision is indicated. In the rows
corresponding to the development boards, the board is marked with "Y" if it is supported. "N" means that a processor
or development board is not supported.

Table 5. QorlQ Layerscape Processors Supported

Processor Board LSDK 17.6 | LSDK 17.09 | LSDK LSDK 1712 | LSDK
17.09- 18.03
update-1
03017

LS1012A N rev 1.0 rev 1.0 rev 1.0 rev 1.0

rev 2.0 rev 2.0 rev 2.0
LS1012ARDB N Y Y Y Y

LS1021A/LS1020A rev 2.0 rev 2.0 rev 2.0 rev 2.0 rev 2.0
TWR-LS1021A Y Y Y Y Y

LS1043A/LS1023A rev 1.1 rev 1.1 rev 1.1 rev 1.1 rev 1.1
LS1043ARDB-PC Y Y Y Y Y
LS1043ARDB-PD N Y Y Y Y

LS1046A/LS1026A rev 1.0 rev 1.0 rev 1.0 rev 1.0 rev 1.0
LS1046ARDB-PB Y Y Y Y Y

LS1088A rev 1.0 rev 1.0 revi.0 rev 1.0 rev 1.0
LS1088A-RDB Y Y Y Y Y

LS2088A/LS2084A/ rev 1.0 rev 1.0 rev 1.0 rev 1.0 rev 1.0

LS2081A rev 1.1 rev 1.1 rev 1.1 rev 1.1 rev 1.1
LS2088A-RDB Y Y Y Y Y

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 35

Release notes

3.5 Fixed, Open, and Closed Issues

This section contains 3 tables: Fixed, Open and Closed issues. Fixed issues have a software fix that has been integrated into the
'Fixed In' Release. Open issues do not currently have a resolution. Workaround suggestions are provided where possible. Closed
issues are issues where the root cause and fix are outside the scope of the Layerscape SDK.

Table 6. LSDK 18.03 Fixed Issues

network ports of DPAA2
running DPDK, the board
hangs and needs to be
restarted.

Table continues on the next page...

ID Description Disposition Opened In Fixed in
DPDK-303 On LS1043A, performance degrades or I/O Fixed SDK v2.0-1701 |LSDK 18.03
stall is observed with high packet rates (6g/149)
in forwarding.
DPDK-1083 The A-010022 hardware errata causes the Fixed LSDK 17.12 LSDK 18.03
FMan to hang under high loads on LS1043A.
The current release implements a software fix
for this hardware issue. The fix impacts the
performance of LS1043A platforms.
QLINUX-6961 In 32-bit kernel, jumboframe floodping causes | Fixed SDK v2.0-1701 |LSDK 18.03
call trace on LS1012A RDB
QLINUX-8754 LS1012A RDB cannot resume after entering Fixed LSDK 17.12 LSDK 18.03
deep sleep.
QUBOOT-3363 On LS1046A, LPUART serial console does not | Fixed LSDK 17.09 LSDK 18.03
give proper output.
QUBOQT-3576 SD secure boot fails on LS1088A RDB. Fixed LSDK 17.12 LSDK 18.03
QUBOOT-3723 Neither U-Boot nor Linux kernel Ethernet works | Fixed LSDK 17.12 LSDK 18.03
"out of the box" on LS2088A in LSDK 17.12. The
root cause is two issues:
1. The Management Complex is not started by
U-Boot variable mcinitcmd.
2. The U-Boot command "fsl_mc lazyapply
dpl..." does not work.
Table 7. LSDK 18.03 Open Issues
ID Description Dispositi | Opened In | Workarounds
on
DPDK-879 | If traffic is sent on disconnected | Open LSDK 17.06 | Network ports shall be connected while sending traffic.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

36

NXP Semiconductors

Fixed, Open, and Closed Issues

Table 7. LSDK 18.03 Open Issues (continued)

DPDK-938 | There are performance issues |Open LSDK 17.09 | For the best performance, use the data cores as
on kernel 4.9 in IPFwd test. The isolated cpus and operate them in tickless mode. For
issues are under investigation. this:
Kernel 4.4 in LSDK 17.12 should Compile the Kernel with CONFIG_NO_HZ_FULL=y
be used for benchmarking
purpose. Add bootargs with ‘isolcpus=1-7 rcu_nocbs=1-7
nohz_full=1-7' for 8 core platform and ‘isolcpus=1-3
rcu_nocbs=1-3 nohz_full=1-3' for 4 core platform.
DPDK-116 | DPDK performance is not Open LSDK For the best performance, use the data cores as
5 measured on LTS 4.14. 18.03 isolated cpus and operate them in tickless mode. For
this:
Compile the Kernel with CONFIG_NO_HZ_FULL=y
Add bootargs with ‘isolcpus=1-7 rcu_nocbs=1-7
nohz_full=1-7' for 8 core platform and ‘isolcpus=1-3
rcu_nocbs=1-3 nohz_full=1-3' for 4 core platform.
ODP-1124 | On kernel 4.4, ODP and DPDK | Open LSDK 17.06
performance is low on 8 cores
when some Ubuntu services
are running on kernel/rootfs.
The performance data was
taken on 7 cores.
PLATSEC- | LS1026A does not boot up with | Open LSDK 17.12 | In order to get away from this issue, it is recommended
469 ppa.itb image. There are two to use binary PPA without TEE.
PPA bllnary generated Wlt,h In case users want to use PPA with TEE as mandate,
"data_in_ddr=on", PPA with . e s
.) then there are required code changes in file "drivers/tzc/
TEE and PPA without TEE. This " .
issue of PPA hang is coming src/tzc400.¢" to mark OCRAM as secure even in case
f DATA_LOC == DATA_IN_DDR.
with binary PPA with TEE, but © -LoC -
not coming with binary PPA
without TEE.
QLINUX-65 | On LS1046A RDB, transfer Open SDK
95 complete interrupt should be v2.0-1701
generated by eSDHC controller
after it sends CMD18 (multiple
blocks read) to card. However,
after sleep, this interrupt didn't
occur for CMD18 and this
caused software to report
hardware timeout issue.
QLINUX-77 | KVM 32-bit is not supported on | Open LSDK 17.06
33 LS1043A and LS1046A. This is
a limitation in KVM opensource.
QLINUX-81 | PCle Advance Error Reporting | Open LSDK 17.09
64 is not available on LS1088A.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

37

Release notes

Table 7. LSDK 18.03 Open Issues (continued)

Kingston, Transcend, Samtec does not work
reliably on LS2088ARDB.

QLINUX-83 | The command of "poweroff" is | Open LSDK
62 not supported on LS1012A 17.09-
RDB. update-103
017
QLINUX-87 | The DPAA2 hardware does not | Open LSDK 17.12 | PFC congestion notifications and overall PFC support
00 configure PFC congestion works as expected when creating DPNI objects via
notifications for some DPNI DPL. The problem only occurs when DPNI objects are
objects created with restool. created using restool.
General congestion is reported
correctly, as expected, but PFC
flow control frames are not sent.
QLINUX-87 | On Layerscape platforms, Open LSDK 17.12
35 €1000 NIC card will lose PCle
link throughout the sleep
process, which makes the
kernel hang when resume.
Though PCle-SATA card will
keep PCle linkin LO in the sleep
process, it still cannot resume
from sleep all the time.
QLINUX-90 | LS1012A RDB cannot resume | Open LSDK PCle MSl interrupt balancing does not work on both LTS
78 after entering deep sleep. 18.03 4.9 and LTS 4.14.
QLINUX-90 | PCle endpoint mode is only Open LSDK
80 supported on LTS 4.9. The 18.03
support on LTS 4.14 will be
provided in the next release.
QLINUX-91 | Deep sleep on LS1021A TWR | Open LSDK
21 is only supported on LTS 4.9. 18.03
The support on LTS 4.14 will be
provided in the next release.
QPPA-28 | There is performance Open LSDK 17.12
degradation in memory
bandwidth test on LS2088A
RDB.
Table 8. LSDK 17.12 Closed Issues
ID Description Disposition Found In Workarounds
QSDK-3955 USB flash drive from some vendors like Hardware Issue |LSDK 17.06 Use USB flash

drives from other
vendors like ADATA,
Sandisk, Lexar,
Deloitte

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

38

NXP Semiconductors

Table 8. LSDK 17.12 Closed Issues (continued)

Fixed, Open, and Closed Issues

QSDK-3954 Transcend 8G class 10 SDHC card does not Hardware Issue | LSDK 17.06 Reducing SD clock
work with 50MHz high speed mode on frequency or using
LS2088ARDB. SD cards from other

vendors like
Sandisk, Kingston,
Sony.

QLINUX-5616 On LS1043A, KVM support on host machines | Hardware Issue | SDK v2.0 Use only host
with 64KB pages is not functional. The limitation machines with 4KB
exists, because the memory range associated pages in order to
with the GIC CPU interface, in the GIC400 support KVM
memory map, is not aligned to 64KB. virtualization.

QLINUX-7096 | jumbo and Scatter/Gather frames are not Hardware Issue | LSDK 17.09
supported on LS1043A. All outgoing Scatter/

Gather frames are linearized on egress. The
limitation is caused by the software workaround
for errata A-010022.

QUBOQT-2055 | The parameter fdt_high setto oxffffffff Won't Fix SDK v2.0-1611 | Set fdt_high in
causes the failure of booting images from NOR uboot environment
flash directly. variable to

0xa0000000 by
using the command
in uboot:

=>setenv fdt_high
0xa0000000

QUBOOT-3480 SGMII PHY less support is not accepted in Won't Fix LSDK 18.03
upstream, so the support is dropped in LSDK.

ODP-417 Per CoS pool configuration is not supported. Won't Fix ODPv16.08

QLINUX-5661/ | HP 2.0 pen drive not enumerated in Standard A | Hardware Issue | NA

QUBOOT-1320 | port on LS2088ARDB and LS1043ARDB board.

However, it is properly enumerated in micro port.

QLINUX-5671 On TWR-LS1021A, when doing deep sleep with | Hardware Issue | NA Upgrade the on-
allthree Ethernet ports on, there may be the error board CPLD to
message "PM: Device mdio @2d24000:02 failed version 3.2.
to suspend: error -16".

QLINUX-5637 On TWR-LS1021A, after resuming from deep Hardware Issue | NA Upgrade the on-
sleep, the kernel can't initialize SD card and call board CPLD to
trace occurs because the card never leaves busy version 3.2.
state.

QLINUX-5417 Cortina PHY LEDs are permanently off on Hardware Issue | NA
LS2088ARDB.

QLINUX-5325 AQR PHY LED remains off if link is at 1Gbps on | Hardware Issue | NA

LS2088ARDB.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

39

Release notes

Table 8. LSDK 17.12 Closed Issues (continued)

QSDK-2478

On TWR-LS1021A, boot dtb, kernel and
filesystem directly from QSPI flash could not be
supported.

Won't Fix

SDK v1.9

1.Program the
general dtb, Linux
kernel and ramdisk
to the QSPI flash by
'sf write'
command(under
sdboot or gspiboot).

2.Boot the dtb,
kernel and ramdisk
from QSPI flash.
Avoid booting from
QSPI flash directly.
Read the dtb, kernel
and ramdisk from
the QSPI flash to
RAM by 'sf read' u-
boot command and
then boot from
RAM.

By default, the QSPI
flash on the TWR-
LS1021A includes:
rcw, uboot, kernel,
dtb, and ramdisk.

Note: This
workaround only
applies to QSPI
flash.

QLINUX-3357

On TWR-LS1021A, some resolutions (e.g.
1920x1080) may not work well with some
monitors. The software will not downgrade to
another resolution automatically.

Hardware Issue

NA

Manually set
another resolution
such as:

1024x768@60 :
fbset -fb /dev/fb0 -g
1024 768 1024 768
24 -115384 168 8 29
31446

QSDK-1841

On TWR-LS1021A, copy from NOR flash to NOR
flash fails. It is a known limitation with Micron
flash.

Hardware Issue

NA

QSDK-1677

When telneting to board console from Linux
server connected to on TWR-LS1021A, the
board will power reset due to wrong signal sent.

Hardware Issue

NA

Remove R214 from
the board.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

40

NXP Semiconductors

LSDK Quick Start

Chapter 4
Layerscape SDK user guide

4.1 LSDK Quick Start

Introduction
Flexbuild is a component-oriented, integrated build framework with capabilities of flexible system build and distro installation.
The following are Flexbuild's main features:

¢ Automatically build Linux, U-Boot, PPA, RCW and miscellaneous user space applications.

* Generate machine-specific composite firmware for various boot types: SD/QSPI/NOR/NAND boot, secure boot, U-Boot,
UEFI.

* Support integrated management with repo-fetch, repo-branch, repo-commit, repo-tag, repo-update for git repositories of all
components (linux, u-boot, rcw, ppa, odp, dpdk, ovs-dpdk, aiopsl, gbman_userspace, ceetm, ptpd).

* Support cross build on x86 Ubuntu 16.04 host machine for aarché64/armhf arch target.
¢ Support native build on aarche4/armhf machine for ARM arch target.

* Support creating an Ubuntu 16.04 docker container and running scripts inside it when the host machine is using CentOS,
RHEL, Fedora, SUSE, Debian, Non-16.04 Ubuntu, etc.

» Scalability of integrating various components of both system firmware and user space applications.

* Capability of generating custom aarche4/armhf Ubuntu userland integrated configurable packages and proprietary
components.

With Flexbuild, LSDK components and custom packages can be built using Ubuntu/Linaro toolchain on a Linux host machine.
Flexbuild can build each component and generate the boot firmware (contains RCW, U-Boot/UEFI, PHY firmware, kernel image,
and ramdiskrfs), 1sdk_linux <archs_ tiny.itb, and the Ubuntu userland containing the specified packages and application
components.

4.1.1 Download and assemble LSDK images

Complete the following prerequisites before proceeding with downloading and assembling LSDK images.
e |If Ubuntu 16.04 is installed on the host machine, run the flex-builder script directly.
Prerequisites:

— For root users, there is no limitation for the build. For noaan-root users, obtain sudo permission by running the command
sudoedit /etc/sudoers and adding a line <user-account-name> ALL=(ALL) NOPASSWD: ALL in /etc/sudoers.

— To build the Ubuntu userland, the user's network environment must have access to the remote Ubuntu official server.

« [f a Linux distro other than Ubuntu 16.04 is installed on the host machine, use the flex-builder script to create an Ubuntu
16.04 Docker container to emulate the environment prior to running the other flex-build commands.a

Prerequisites:

— Make sure to install Docker on the host machine. You need sudo permission to execute the docker command or you
need to be added to a group of docker. Refer to https://docs.docker.com/engine/installation/ as a reference on how to
install Docker on the host machine.

— To build the Ubuntu userland, the user's network environment must have sudo permission for docker command or the
user must be added to a group of docker as specified below:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 4

https://docs.docker.com/engine/installation

Layerscape SDK user guide

Ur Uy Ur Ux

sudo newgrp - docker

sudo usermod -aG docker <accountnames
sudo gpasswd -a <accountname> docker
sudo service docker restart

Logout from current terminal session, then login again to ensure user can run docker ps -a

— The user's network environment must have access to the remote Ubuntu official server.

After completing the prerequisites, follow the steps below to download and assemble LSDK images:

1. Login to Linux host machine and download the flexbuild source tarball.

Login to www.nxp.com to download flexbuild source tarball in the name format flexbuild <versions.tgz

$ tar xvzf flexbuild <versions>.tgz

$ cd flexbuild
$ source setup.env
$ flex-builder docker

(optional, to run flex-builder in docker environment

Ubuntu 16.04 host is not available)
(execute only when using Docker; run this command after entering

$ source setup.env
the docker container)

2. Download prebuilt images for boot partition and NXP-specific components tarball.

when local

Platform

Commands to download prebuilt images

LS1012ARDB
LS1043ARDB
LS1046ARDB
LS1088ARDB
LS2088ARDB

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/
app_components armé4.tgz

For Linux 4.14:

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/
bootpartition armé4 lts 4.14.tgz

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/armé4-
modules-4.14.16.tgz

For Linux 4.9:

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/
bootpartition armé4 lts 4.9.tgz

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/armé4-
modules-4.9.79.tgz

LS1021ATWR

LS1012ARDB 32bit
LS1043ARDB 32bit
LS1046ARDB 32bit

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/
app_components arm32.tgz

For Linux 4.14:

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/
bootpartition arm32 lts 4.14.tgz

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/arm32-
modules-4.14.16.tgz

For Linux 4.9:

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/
bootpartition arm32 lts 4.9.tgz

wget http://www.nxp.com/lgfiles/sdk/1sdk1803/arm32-
modules-4.9.79.tgz

3. Generate LSDK Ubuntu userland, untar the prebuilt components tarball, and merge it into the userland.

$ flex-builder -i mkrfs -a armé4

configurable packages)

$ tar xvzf app components armé4.tgz -C build/apps
$ tar xvzf armé4-modules-<kernel version>.tgz -C build/rfs/
rootfs ubuntu xenial armé64/lib/modules
$ flex-builder -i merge-component -a armé4
$ flex-builder -i compressrfs -a armé64 (optional)
$ exit (optional,this command exits from docker when building in docker)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

(locally generate default Ubuntu rootfs with

42

NXP Semiconductors

http://www.nxp.com/products/developer-resources/run-time-software/linux-sdk/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Design_Tools_Tab
http://www.nxp.com/lgfiles/sdk/lsdk1706/components_arm64.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1706/components_arm64.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.4.80.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.4.80.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/components_arm32.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/components_arm32.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.4.80.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.4.80.tgz

LSDK Quick Start

NOTE
For 32-bit platforms, change the architecture type (-a parameter) to arm32.

NOTE
Only Ubuntu userland is the default file system in LSDK, various firmwares and images are verified just based on
Ubuntu userland in formal LSDK releases. Although other non-official userland (Debian, tiny buildroot-based distro,
etc) can be composed with the common LSDK Linux kernel and components by flexbuild , but that is NOT part of
the standard LSDK release and there is no guarantee for other userland except formal Ubuntu userland.

4.1.2 Deploy LSDK Images on the target board

This section describes how to deploy LSDK images on the target board. There are two major scenarios on how to deploy LSDK
images on the target board:

* Scenario 1: "Removable Media"- If the user can connect a removable storage device to a local Linux host machine, the
user can deploy LSDK images onto the removable storage device. The user can then connect it to the board and update the
firmware from the storage device. For more information, refer to Deploy LSDK images from Linux Host on page 43.

¢ Scenario 2: "Non-removable Media"- If the user wants to deploy LSDK images to a non-removable media on the board or
if the user does not have a local Linux host machine that can connect to a removable media, the user can directly deploy
LSDK images on board. For more information, refer to Deploy LSDK images on board on page 46.

The deployment covers how to program LSDK composite firmware (QSPI boot, NOR boot, or SD boot) on the target board. It also
covers how to deploy boot partition images and Ubuntu userland on different storage media (SD/USB/SATA).

Prerequisites: SD/USB/SATA capacity must be at least 8 GB.

4.1.2.1 Deploy LSDK images from Linux Host

To deploy LSDK images to the target board, users can connect a removable storage (SD/ USB/ SATA) device to a local Linux host
machine, given that LSDK images have been generated as per the instructions in Download and assemble LSDK images on
page 41section.

U-Boot based booting
1. Download appropriate LSDK images to local Linux host machine.

2. Setup the environment for flex-installer to run.

$ cd flexbuild
$ source setup.env

3. Execute flex-installer with appropriate arguments to deploy LSDK images to a second storage device.

$ flex-installer -b <bootpart> -r <rootfs> -m <machine> -d <device>

$ flex-installer -f firmware <machine> uboot sdboot.img -s 8 -d <device> (optional, only
for SD boot, no need for QSPI/NOR/NAND boot)

For example:

$ flex-installer -b bootpartition armé4 lts 4.14.tgz -r rootfs ubuntu xenial armé4.tgz -
m 1s1088ardb -d /dev/sdb

$ flex-installer -f firmware 1s1088ardb_uboot sdboot.img -s 8 -d /dev/sdb

4. After a successful installation, “Installation Finished Successfully” message appears, then execute the following command
to unmount the target device.

$ sudo umount /run/media/sdX

The following table summarizes the parameters for flex-installer command for various boards:

Board
Name

<machine | <device>

>

<bootpart> <rootfs> <firmware>

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 43

Layerscape SDK user guide

Table continued from the previous page...

LS1021AT | bootpartition_arm3 | rootfs_ubuntu_xenial_ar | firmware_Is1021atwr_uboot_sdboot.im |Is1021atw | /dey/sdX
WR 2_lts_<version> m32 g r
Refer to

LS1012AR |or or firmware_ls1012ardb_uboot_gspiboot.i |Is1012ard | Note
DB o m b

bootpartition_arm3 | rootfs_ubuntu_xenial_ar 9 below
LS1043AR |2_lts_<version>.tgz | m32 tgz firmware_Is1043ardb_uboot_sdboot.im |Is1043ard
DB g b
LS1046AR firmware_ls1046ardb_uboot_sdboot.im |Is1046ard
DB g b
LS1012AR | bootpartition_armé6 | rootfs_ubuntu_xenial_ar | firmware_ls1012ardb_uboot_gspiboot.i |Is1012ard | /qev/sdX
DB 4_lts_<version> mé4 mg b

Refer to

LS1043AR |or or firmware_ls1043ardb_uboot_sdboot.im |Is1043ard | Note
DB - b

bootpartltlor.1_arm6 rootfs_ubuntu_xenial_ar 9 below
LS1046AR |4_lts_<version>.tgz | me4 tgz firmware_Is1046ardb_uboot_sdboot.im |Is1046ard
DB g b
LS1088AR firmware_ls1088ardb_uboot_sdboot.im |Is1088ard
DB g b
LS2088AR firmware_ls2088ardb_uboot_norboot.i | Ls2088ar
DB mg db

NOTE

* The SD/USB/SATA storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c.
Make sure to choose the correct device name, because data on this device will be replaced.

¢ Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct
device names have been chosen.

 |f your Linux host machine supports read/write SD card directly without an extra SD card reader device, the
device name of SD card generally is mmcblkO.

5. After unmounting, unplug the SD card from the Linux host and plugin it into the board

6. Make sure the DIP Switch settings on the board enable SD boot. (Refer to “Board-specific Information” section for switch
settings)

7. Power-on the board. The system will automatically boot up LSDK Ubuntu distro available on the SD card (exception for
LS2088ARDB).

Deploying on LS2088ARDB

As LS2088ARDB board doesn't support SD boot, users can deploy LSDK images to SD/USB/SATA device on LS2088ARDB
based on NOR boot as below.

1. Execute the following commands to program boot partition and Ubuntu userland to SD/USB/SATA storage device.

Assumption: Removable storage device is mounted as /dev/sdb on host machine.

$ flex-installer -b bootpartition armé4 lts <versions.tgz -r build/rfs/

rootfs ubuntu xenial armé4 -m 1s2088ardb -d /dev/sdb

2. Unplug SD/USB/SATA device from host machine and plug it to the target board, firmware_Is2088ardb_uboot_norboot.img
is already stored in the bootpartition of SD/USB/SATA device.

3. Program the composite firmware to IFC-NOR/QSPI flash as described below:
* Booting U-Boot on LS2088ARDB

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

44

NXP Semiconductors

¢ Execute the commands below to program the alternate bank:

LSDK Quick Start

Storage media

Command in U-Boot

USB

=> usb start

=> load usb 0:2 a0000000 firmware 1s2088ardb uboot norboot.img

SATA

=> load scsi 0:2 a0000000 firmware 1s2088ardb uboot norboot.img

SD

=> load mmc 0:2 a0000000 firmware 1s2088ardb uboot norboot.img

=> protect off 584000000 +S$filesize && erase 584000000 +S$Sfilesize && cp.b a0000000
584000000 sfilesize
=> gixis reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the target

boards.

Use the following default credentials to log onto to the LSDK distro:

— root/root

— user/user

UEFI based booting

* UEFI booting is supported on the following platforms:

— LS1043ARDB
— LS1046ARDB
— LS2088ARDB

* Download the composite firmware to target board via U-Boot in bankO of NOR/QSPI flash as below:

Platform Command

LS1043ARDB => tftp a0000000 firmware 1s1043ardb uefi norboot.img
LS1046ARDB => tftp a0000000 firmware 1sl046ardb uefi gspiboot.img
LS2088ARDB => tftp a0000000 firmware 1s2088ardb uefi norboot.img

¢ Program the composite firmware into the alternate bank:

LS1043ARDB => protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
a0000000 64000000 sfilesize
=> cpld reset altbank
LS1046ARDB => sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 S$filesize
=> cpld reset altbank
LS2088ARDB => protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b

a0000000 584000000 sfilesize

=> gixis_reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the required target

boards.

Use the following default credentials to log onto to the LSDK distro:

¢ root/root or

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

45

Layerscape SDK user guide

e user/user

4.1.2.2 Deploy LSDK images on board

LSDK images have been generated in Download and assemble LSDK images on page 41, so the user can start to deploy LSDK
images on the board if user is deploying to a non-removable media on the board or user does not have a local Linux server to
connect removable media. In order to deploy LSDK images on the board, follow the instructions below:

1. Download LSDK composite firmware from the NXP website.

There are four types of composite firmware depending on the boot type: NOR/NAND/QSPI/SD boot. Download the LSDK
composite firmware to the Linux host machine and put it in the TFTP server root directory.

* firmware <platform> uboot gspiboot.img means the firmware boots from QSPI flash. Only LS1012ARDB,
LS1046ARDB, LS1088ARD and LS2088ARDB support QSPI boot in this release. Use the following images and
command below depending on your platform:

— firmware 1sl01l2ardb_uboot_ gspiboot.img
— firmware 1sl046ardb_uboot gspiboot.img
— firmware 1s1088ardb_uboot gspiboot.img
— firmware 1s2088ardb_uboot_ gspiboot.img
$ wget http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1sl046ardb uboot gspiboot.img

* firmware <platform> uboot_ sdboot.img means the firmware boots from SD card. LS1043ARDB, LS1046ARDB,
and LS1088ARDB support SD boot. Use the following images and command below depending on your platform:

— firmware_ lslO02latwr_uboot_sdboot.img
— firmware 1s1043ardb_uboot_ sdboot.img
— firmware lsl046ardb_uboot_sdboot.img
— firmware 1s1088ardb_uboot_ sdboot.img
$ wget http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1sl1088ardb uboot sdboot.img

* firmware <platforms_uboot norboot.img means firmware boots from IFC NOR. LS1021ATWR, LS1043ARDB,
and LS2088ARDB support IFC NOR boot. Use the following images and command below depending on your platform:

— firmware 1sl02latwr uboot_ norboot.img
— firmware 1sl043ardb_uboot norboot.img
— firmware 1s2088ardb uboot norboot.img
$ wget http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1s2088ardb uboot norboot.img

* firmware <platform> uboot nandboot.img means firmware boots from NAND. LS1043ARDB supports NAND
boot. Use the following images and command below depending on your platform:

$ wget http://www.nxp.com/lgfiles/sdk/1lsdkl712/firmware 1s1043ardb uboot nandboot.img

* Place the LSDK composite firmware into a TFTP server, then download the firmware via TFTP to the target board
under the U-Boot prompt using the commands below:

Platform Command in U-Boot

LS1012ARDB => tftp a0000000 firmware lsl0l2ardb uboot gspiboot.img

=> i2c mw 0x24 0x7 Oxfc;i2c mw 0x24 0x3 O0xf5

=> sf probe 0:0

=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> reset

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
46 NXP Semiconductors

Table continued from the previous page...

LSDK Quick Start

Platform Command in U-Boot
LS1021ATWR => tftp a0000000 firmware lsl02latwr_ uboot norboot.img
=> protect off 64000000 +S$filesize && erase 64000000 +s$filesize
&& cp.b a0000000 64000000 S$filesize
=> boot bank 1
LS1043ARDB => tftp a0000000 firmware 1sl1043ardb uboot norboot.img
=> protect off 64000000 +S$filesize && erase 64000000 +sfilesize
&& cp.b a0000000 64000000 S$filesize
=> cpld reset altbank
LS1046ARDB => tftp a0000000 firmware lsl046ardb uboot gspiboot.img
=> sf probe 0:1
=> sf erase 0 +S$filesize && sf write 0xa0000000 0 $filesize
=> cpld reset altbank
LS1088ARDB For SD boot:
=> tftp a0000000 firmware 1s1088ardb uboot sdboot.img
=> mmc write a0000000 8 1fffs8
For QSPI boot (programming from altbank):
=> sf probe 0:1
=> tftp 0xa0000000 firmware 1s1088ardb uboot gspiboot.img
=> sf erase 0 +$filesize
=> sf write 0xa0000000 0 S$Sfilesize
=> 12c mw 0x66 0x50 20;i2c mw 66 10 20;i2c mw 66 10 21
LS2088ARDB => tftp a0000000 firmware 1s2088ardb uboot norboot.img
=> protect off 584000000 +$filesize && erase 584000000 +
Sfilesize && cp.b a0000000 584000000 $filesize
=> gixis_reset altbank

LSDK firmware (for example: firmware ls1088ardb uboot gspiboot.img) iS a composite image for target board which
includes RCW+PBI, U-Boot/UEFI, PPA, boot loader environment variables, DPAA1 FMan ucode/PFE firmware, QE/uQE
firmware, Ethernet PHY firmware, DPAA2 MC firmware, DPAA2 DPL, DPAA2 DPC, ditb, andlsdk linux <archs>.itb

images.

After the steps above are completed and the DIP switches are set properly (refer to Board-specific Information on page
67), power on the board. The board will automatically boot up and enter the Linux system.

2. Deploy boot partition and Ubuntu 16.04 userland to SD/USB/SATA

Follow the instructions below to deploy boot partition and Ubuntu userland to SD/USB/SATA storage device.

* Enable network connection to download LSDK images

Command Target Board Assumption

$ udhcpc -1i etho LS1012ARDB LS1012ARDB uses ETHO port.
$ udhcpc -i nio LS2088ARDB LS2088ARDB uses ETHO port.
$ udhcpc -i etho LS1088ARDB LS1088ARDB uses ETHS8 port.
$ udhcpc -i eth2 LS1043ARDB LS1043ARDB uses RGMII1 port
$ udhcpc -i etho LS1046ARDB LS1046ARDB uses RGMII1 port
$ udhcpc -i eth2 LS1021ATWR LS1021ATWR uses RGMII port.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

47

Layerscape SDK user guide

NOTE
Ethernet port name can be found in frontend control panel of target board.

* Use flex-installer to create and format partitions (USB/SATA/SD)

Storage Media Command in Linux

usSB $ flex-installer -i pf -d /dev/sdX
SATA $ flex-installer -i pf -d /dev/sdX

SD $ flex-installer -i pf -d /dev/mmcblk0

* Download and deploy two tarballs boot partition and Ubuntu userland to USB/SATA/SD storage device. Take
LS2088ARDB as example.

Storage Media Command in Linux

USB $ cd /run/media/sdX3

Download bootpartition <arch> <versions.tgz and
rootfs ubuntu xenial <arch> xx.tgz using the wget or scp command.

$ flex-installer -i install -b
bootpartition <arch> lts <versions>.tgz -r
rootfs ubuntu xenial <archs> <timestamp>.tgz -m 1s2088ardb -d /dev/sdX

SATA $ c¢d /run/media/sdX3

Download bootpartition <arch> <versions.tgz and
ubuntu xenial <arch> rootfs xx.tgz USing the wget or scp command.

$ flex-installer -i install -b
bootpartition <arch> lts <versions>.tgz -r
rootfs ubuntu xenial <archs> <timestamp>.tgz -m 1s2088ardb -d /dev/sdX

SD $ cd /run/media/mmcblk0p3

Download bootpartition <archs <versions.tgz and
ubuntu xenial archs rootfs xx.tgz Using the wget Or scp command.

$ flex-installer -i install -b
bootpartition <arch> lts <versions>.tgz -r

rootfs ubuntu xenial <archs> <timestamp>.tgz -m 1s2088ardb -d /dev/
mmcblk0

» After completing the steps above, reboot the board with the LSDK images. The system will automatically boot Ubuntu
userland.

4.1.3 Deploy LSDK Images for secure boot on the target board

This section describes how to deploy LSDK images on the target board, for secure boot. There are two major scenarios on how
to deploy LSDK images on the target board:

¢ Scenario 1: "Removable Media"- If the user can connect a removable storage device to a local Linux host machine, the
user can deploy the images onto the removable storage device. The user can then connect it to the board and update the
firmware from the storage device. For more information, refer to Deploy LSDK images from Linux Host on page 43.

* Scenario 2: "Non-removable Media"- If the user wants to deploy LSDK images to a non-removable media on the board or
if the user does not have a local Linux host machine that can connect to a removable media, the user can directly deploy
LSDK images on board. For more information, refer to Deploy LSDK Secure images on board on page 51.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
48 NXP Semiconductors

LSDK Quick Start

The deployment covers how to program LSDK composite firmware (QSPI boot, NOR boot, or SD boot) on the target board. It also
covers how to deploy boot partition images and Ubuntu userland on different storage media (SD/USB/SATA).

Prerequisites: SD/USB/SATA capacity must be at least 8 GB.

4.1.3.1 Deploy LSDK images from Linux Host

To deploy LSDK images to the target board, users can connect a removable storage (SD/ USB/ SATA) device to a local Linux host
machine, given that LSDK images have been generated as per the instructions in Download and assemble LSDK images on
page 41section.

U-Boot based booting

1. Download appropriate LSDK images to local Linux host machine.

2. Setup the environment for flex-installer to run.

S cd flexbuild
$ source setup.env

3. Execute flex-installer with appropriate arguments to deploy LSDK images to a second storage device.

$ flex-installer -b <bootpart> -r <rootfs> -m <machine> -d <device>

$ flex-installer -f firmware <machine> uboot sdboot.img -s 8 -d <device>

for SD boot, no need for QSPI/NOR/NAND boot)

For example:
$ flex-installer -b bootpartition armé4 lts 4.14.tgz -r rootfs ubuntu xenial armé64.tgz -
m 1lsl1088ardb -d /dev/sdb
$ flex-installer -f firmware 1sl088ardb uboot sdboot.img -s 8 -d /dev/sdb

(optional, only

4. After a successful installation, “Installation Finished Successfully” message appears, then execute the following command

to unmount the target device.

$ sudo umount /run/media/sdX

The following table summarizes the parameters for flex-installer command for various boards:

Board <bootpart> <rootfs> <firmware> <machine | <device>
Name >
LS1021AT | bootpartition_arm3 | rootfs_ubuntu_xenial_ar | firmware_Is1021atwr_uboot_sdboot.im |Is1021atw | /dey/sdX
WR 2_lts_<version> m32 g r
Refer to

LS1012AR |or or firmware_ls1012ardb_uboot_qgspiboot.i |Is1012ard | Note
DB o m b

bootpart|t|or.1_arm3 rootfs_ubuntu_xenial_ar 9 below
LS1043AR |2_lts_<version>.t9z | m32.tgz firmware_Is1043ardb_uboot_sdboot.im |ls1043ard
DB g b
LS1046AR firmware_ls1046ardb_uboot_sdboot.im |Is1046ard
DB g b
LS1012AR | bootpartition_armé | rootfs_ubuntu_xenial_ar | firmware_Is1012ardb_uboot_gspiboot.i |Is1012ard | /dey/sdX
DB 4_lts_<version> me64 mg b

Refer to

LS1043AR |or or firmware_ls1043ardb_uboot_sdboot.im |Is1043ard | Note
DB o b

bootpartition_arm6 | rootfs_ubuntu_xenial_ar 9 below
LS1046AR |4_lts_<version>.tgz mé4.tgz firmware_ls1046ardb_uboot_sdboot.im |Is1046ard
DB g b
LS1088AR firmware_ls1088ardb_uboot_sdboot.im |Is1088ard
DB g b
LS2088AR firmware_ls2088ardb_uboot_norboot.i | Ls2088ar
DB mg db

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

49

Layerscape SDK user guide

NOTE
¢ The SD/USB/SATA storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c.
Make sure to choose the correct device name, because data on this device will be replaced.

¢ Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct
device names have been chosen.

¢ |f your Linux host machine supports read/write SD card directly without an extra SD card reader device, the
device name of SD card generally is mmcblkO.
5. After unmounting, unplug the SD card from the Linux host and plugin it into the board

6. Make sure the DIP Switch settings on the board enable SD boot. (Refer to “Board-specific Information” section for switch
settings)

7. Power-on the board. The system will automatically boot up LSDK Ubuntu distro available on the SD card (exception for
LS2088ARDB).

Deploying on LS2088ARDB

As LS2088ARDB board doesn't support SD boot, users can deploy LSDK images to SD/USB/SATA device on LS2088ARDB
based on NOR boot as below.

1. Execute the following commands to program boot partition and Ubuntu userland to SD/USB/SATA storage device.
Assumption: Removable storage device is mounted as /dev/sdb on host machine.

$ flex-installer -b bootpartition armé64 lts <version>.tgz -r build/rfs/
rootfs ubuntu xenial armé4 -m 1s2088ardb -d /dev/sdb

2. Unplug SD/USB/SATA device from host machine and plug it to the target board, firmware_Is2088ardb_uboot_norboot.img
is already stored in the bootpartition of SD/USB/SATA device.

3. Program the composite firmware to IFC-NOR/QSPI flash as described below:

* Booting U-Boot on LS2088ARDB

Storage media | Command in U-Boot

USB => usb start

=> load usb 0:2 a0000000 firmware ls2088ardb_uboot norboot.img
SATA => load scsi 0:2 a0000000 firmware 1s2088ardb uboot norboot.img
SD => load mmc 0:2 a0000000 firmware 1s2088ardb uboot norboot.img

* Execute the commands below to program the alternate bank:
=> protect off 584000000 +$filesize && erase 584000000 +S$filesize && cp.b a0000000
584000000 S$filesize
=> gixis reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the target
boards.

Use the following default credentials to log onto to the LSDK distro:
— root/root
— user/user
UEFI based booting
* UEFI booting is supported on the following platforms:
— LS1043ARDB
— LS1046ARDB

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
50 NXP Semiconductors

LSDK Quick Start

— LS2088ARDB

* Download the composite firmware to target board via U-Boot in bankO of NOR/QSPI flash as below:

Platform Command

LS1043ARDB => tftp a0000000 firmware 1s1043ardb uefi norboot.img
LS1046ARDB => tftp a0000000 firmware 1sl046ardb uefi gspiboot.img
LS2088ARDB => tftp a0000000 firmware 1s2088ardb uefi norboot.img

¢ Program the composite firmware into the alternate bank:

LS1043ARDB => protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
a0000000 64000000 S$filesize
=> cpld reset altbank

LS1046ARDB => sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> cpld reset altbank
LS2088ARDB => protect off 584000000 +$filesize && erase 584000000 +$Sfilesize && cp.b

a0000000 584000000 sfilesize
=> gixis_reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the required target
boards.

Use the following default credentials to log onto to the LSDK distro:
* root/root or

e user/user

4.1.3.2 Deploy LSDK Secure images on board

LSDK secure boot images have been generated in Download and assemble LSDK images on page 41, so the user can start to
deploy LSDK images on the board if user is deploying to a non-removable media on the board or user does not have a local Linux
server to connect removable media. In order to deploy LSDK images on the board, follow the instructions below:

1. Download LSDK composite firmware from the NXP website.

There are four types of composite firmware depending on the boot type: NOR/NAND/QSPI/SD boot. Download the LSDK
composite firmware to the Linux host machine and put it in the TFTP server service directory.

* firmware <platform> uboot gspiboot secure.img means the firmware boots from QSPI flash. Only
LS1046ARDB, LS1088ARDB, and LS2088ARDB support QSPI boot in this release. Use the following images and
command below depending on your platform:

— firmware lsl046ardb_uboot_ gspiboot_ secure.img
— firmware 1s1088ardb_uboot_ gspiboot_secure.img
— firmware 1s2088ardb_uboot_ gspiboot_ secure.img

— firmware 1lsl012ardb_uboot_gspiboot_secure.img

$ wget http://www.nxp.com/lgfiles/sdk/1sdk1803/
firmware 1sl046ardb_uboot gspiboot_ secure.img

* firmware <platforms_uboot sdboot_ secure.img means the firmware boots from SD card. LS1021ATWR,
LS1043ARDB, LS1046ARDB, and LS1088ARDB support SD boot. Use the following images and command below
depending on your platform:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 51

Layerscape SDK user guide

— firmware 1sl02latwr_uboot_ sdboot secure.img
— firmware 1s1043ardb_uboot_ sdboot secure.img
— firmware 1sl046ardb_uboot_ sdboot secure.img

— firmware 1s1088ardb_uboot_ sdboot secure.img

$ wget http://www.nxp.com/lgfiles/sdk/1sdk1709/
firmware 1s1088ardb uboot sdboot secure.img

* firmware <platform> uboot norboot secure.img means firmware boots from IFC NOR. LS1021ATWR,
LS1043ARDB, and LS2088ARDB support IFC NOR boot. Use the following images and command below depending
on your platform:

— firmware lsl02latwr uboot norboot_ secure.img
— firmware 1sl1043ardb_uboot norboot secure.img
— firmware 1s2088ardb uboot norboot_ secure.img
$ wget http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1s2088ardb uboot norboot.img
2. Program LSDK composite firmware for target board

LSDK composite firmware includes RCW+PBI, U-Boot/UEFI, PPA, boot loader environment variables, DPAA1 FMan ucode,
QE/UQE firmware, Ethernet PHY firmware, DPAA2 MC firmware, DPAA2 DPL, DPAA2 DPC, device tree,
flex linux_<archs.itb images.

Before Deploying the images, prepare the board for secure boot. For this refer section: Prepare board for Secure Boot on
page 62

Place the LSDK composite firmware into a TFTP server, then download the firmware via TFTP to the target board under
the U-Boot prompt using the commands below:

Platform Command in U-Boot

LS1021ATWR => tftp a0000000 firmware lsl02latwr uboot norboot secure.img

=> protect off 64000000 +Sfilesize && erase 64000000 +sfilesize &&
cp.b a0000000 64000000 $filesize

=> boot bank 1

LS1043ARDB => tftp a0000000 firmware 1lsl043ardb uboot norboot secure.img

=> protect off 64000000 +Sfilesize && erase 64000000 +Sfilesize &&
cp.b a0000000 64000000 $filesize

=> cpld reset altbank

LS1046ARDB => tftp a0000000 firmware 1sl046ardb uboot gspiboot secure.img
=> sf probe 0:1

=> sf erase 0 +S$filesize && sf write 0xa0000000 0 $filesize

=> cpld reset altbank

LS1088ARDB => tftp a0000000 firmware 1s1088ardb uboot gspiboot secure.img

=> sf probe 0:1

=> sf erase 0 +S$Sfilesize && sf write 0xa0000000 0 $filesize

=> 12c mw 66 50 20 ;i2c mw 66 66 7f;i2c mw 66 10 20;i2c mw 66 10 21
=> reset

LS2088ARDB => tftp a0000000 firmware 1s2088ardb uboot norboot secure.img

=> protect off 584000000 +Sfilesize && erase 584000000 +S$Sfilesize
&& cp.b a0000000 584000000 sfilesize

=> gixis reset altbank

After the steps above are completed and the DIP switches are set properly (refer to Board-specific Information on page
67), Refer section Running secure boot on target platforms on page 63 for running secure boot. Before running secure
boot download srk_hash.ixt file from github. Once secure boot is run, the board comes up.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
52 NXP Semiconductors

LSDK Quick Start

3. Deploy boot partition and Ubuntu 16.04 userland to SD/USB/SATA
Follow the instructions below to deploy boot partition and Ubuntu userland to SD/USB/SATA storage device.

* Enable network connection to download LSDK images

Command Target Board Assumption

$ udhcpc -i nio LS2088ARDB LS2088ARDB uses ETHO port.

$ udhcpe -1 nio LS1088ARDB LS1088ARDB uses ETHS port.

$ udhcpc -i eth2 LS1043ARDB LS1043ARDB uses RGMII1 port

$ udhcpc -1i etho LS1046ARDB LS1046ARDB uses RGMII1 port

$ udhcpc -i eth2 LS1021ATWR LS1021ATWR uses RGMII port.
NOTE

Ethernet port name can be found in frontend control panel of target board.

* Use flex-installer to create and format partitions (USB/SATA/SD)

Storage Media Command in Linux

usSB $ flex-installer -i pf -d /dev/sdX
SATA $ flex-installer -i pf -d /dev/sdX

SD $ flex-installer -i pf '-d /dev/mmcblkX

* Download and deploy two tarballs boot partition and Ubuntu userland to USB/SATA/SD storage device. Take
LS2088ARDB as example.

Storage Media Command in Linux

USB $ cd /run/media/sdX3

Download bootpartition armé4.tgz and ubuntu xenial armé4 rootfs.tgz using the
wget OF scp command.

$ flex-installer -i install -b bootpartition armé4.tgz -r
rootfs ubuntu xenial armé64.tgz -m 1s2088ardb -d /dev/sdX

SATA $ cd /run/media/sdX3

Download bootpartition armé4.tgz and ubuntu_xenial armé4_rootfs.tgz using the
wget Or scp command.

$ flex-installer -i install -b bootpartition armé4.tgz -r
rootfs ubuntu xenial armé4.tgz -m 1s2088ardb -d /dev/sdX

SD $ cd /run/media/sdX3

Download bootpartition_armé4.tgz and ubuntu xenial armé4 rootfs.tgz Using the
wget Or scp command.

$ flex-installer -i install -b bootpartition armé4.tgz -r
rootfs ubuntu xenial armé4.tgz -m 1s2088ardb -d /dev/mmcblkO

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 53

Layerscape SDK user guide

» After completing the steps above, reboot the board with the LSDK images. The system will automatically boot Ubuntu
userland.

4.2 How to build LSDK with Flexbuild

Flexbuild provides cmdline for various build scenarios. The LSDK Quick Start on page 41 section introduces how to build the
LSDK distro userland with prebuilt boot partition and component tarballs for quick deployment on the target board. This section
introduces detailed steps to build LSDK with Flexbuild.

Login www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=LAYERSCAPE-SDK to download flexbuild source
tarball in the name format flexbuild_<version>.tgz

tar xvzf flexbuild <versions.tgz

cd flexbuild

source setup.env

$
$
$
$ flex-builder -h

Build custom kernel and update boot partition images with Flexbuild

NOTE
You can use the standard kernel build system to build LSDK kernel. It is possible to build and install a kernel
manually. See Configuring and building on page 290. The section below describes how to use flex-builder to
automate the kernel build process. Run the commands in the following table to build the kernel for your platform.
The commands must be run on your Ubuntu 16.04 build system or in a Docker container based on Ubuntu 16.04
docker image hosted on CentOS, Fedora, RHEL, SUSE, Debian, Ubuntu system.

The section below describes how to use flex-builder to automate the kernel build process.

1. To build the kernel for your platform, run the commands in the table below. The commands must be run on your Ubuntu
16.04 build system or in a Docker container on it.

Platform Command for building Linux

LS1012ARDB 64bit (ARMv8) $ flex-builder -c linux:custom (optional, customize kernel
config in interactive menu)

LS1043ARDB 64bit or
. $ flex-builder -c linux:<kernel-repos:<branch> -B
LS1046ARDB 64bit fragment :<mycustoms>.config (optional, add additional fragment
LS1088ARDB 64bit contig)
LS2088ARDB 64bit S flex-builder -c linux

$ flex-builder -i mkbootpartition
(if -a <arch> is not specified, armé64 arch is built by default)

LS1012ARDB 32bit (ARMv8) $ flex-builder -c linux:custom -a arm32 (optional, customize
kernel config in interactive menu)
LS1043ARDB 32bit $ flex-builder -c¢ linux -a arm32
$ flex-builder -i mkbootpartition -a arm32
LS1046ARDB 32bit

LS1021ATWR 32bit (ARMv7) $ flex-builder -c linux:custom -a arm32 -m lslO02latwr
(optional, customize kernel config in interactive menu)
S flex-builder -c linux -c arm32 -m lslO02latwr

$ flex-builder -i mkbootpartition -a arm32

The commands above will generate bootpartition_<arch>_lIts_<version>.tgz and <arch>-modules-<version>.tgz tarball in
the directory $WORKPATH/flexbuild/build/images.

2. In case of secure boot, additional signing is required for bootpartition using the following command:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
54 NXP Semiconductors

How to build LSDK with Flexbuild

$ flex-builder -i signimg -m <machine> -b <boottypes
$ flex-builder -i mkbootpartition -a <arch> -s

Deploy updated boot partition tarball on target board

After the kernel image is rebuilt, deploy the updated boot partition images onto the storage device (USB/SATA/SD) of the
board. Prerequisites:

* Target board is running with LSDK distro.
e System date is set correctly.
To update the boot partition, run the following steps within the Linux environment of the board:
a. Download the boot partition tarball onto the target board by using either the wget or scp command.

b. Extract the boot partition tarball to the directory /boot using the command tar zxvf
bootpartition armé4 <date>.tgz -C /boot

c. Extract <arch>-modules-<version>.tgz t0 the /1ib/modules directory of the Ubuntu rootfs on the board using
the command cd /lib/modules && tar zxvf <arch>-modules-<version>.tgz.

Rebuild images after modifying the source code of NXP user space components locally

Flexbuild supports building specific components after the source code is changed. Flexbuild then deploys the changes to the
target board.

1.
2.

Modify source code of user space components in the directory packages/apps/<apps-component >.

Clean old build footprint under user space component.

Take ODP for example:

$ make clean -C packages/apps/odp

If necessary, build the kernel which is a dependency for the current application component (e.g. for FMC component)
$ flex builder -c linux -a armé4

Build the user space component.

$ flex builder -c <apps-component> -a armé4 # <apps-component> can be restool, odp,
openssl, dpdk, fmc, ptpd, etc

Generate the boot partition tarball.

$ flex-builder -i mkbootpartition -a armé4
Generate the compressed components tarball.

$ flex-builder -i compressapps -a armé4

Download the files components armé4.tgz and bootpartition arme4.tgz to the target board using either the wget or
scp command.

Extract the boot partition tarball to the directory /boot.
$ tar zxvfi bootpartition armé4 -C /boot
Extract components_armé4.tgz t0o $HOME directory.

$ tar zxvf components armé4.tgz -C SHOME

10. Copy all files in $HOME/components_arme4 to the root filesystem.

$ cp -a SHOME/components_armé4/* /

Native build and deploying LSDK images on the target board

If LSDK Ubuntu 16.04 userland is already deployed on the target board, native build can be done using the following instructions.
Correspondingly, the redeployment with different media (USB/SATA/SD) can also be done directly on the target board.

Prerequisites:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 55

Layerscape SDK user guide

Set the system date and time by using the date -s command.
To build Ubuntu userland, the user's network environment must have access to the remote Ubuntu official server.

Deploy Ubuntu 16.04 userland with full package list on target board. For example, flex-builder -i mkrfs -a armé4 -B
additional packages_ list full.

SD/USB/SATA capacity must at least be 16 GB.

Follow the instructions below to perform native build and deploy LSDK images on the target board.

1.

Rebuild kernel and deploy kernel images on target board. For more information on how to modify the kernel source code
and how to rebuild the kernel, refer to section above: “Build custom kernel and update boot partition images with Flexbuild’.

After completing the kernel image build, use the command below to deploy kernel images and kernel modules on target

board:

$ cp -a SHOME/flexbuild/build/images/bootpartition armé4/* /boot

2. Modify and build source of user space application and deploy changes on target board.

To modify user space application source code, refer to step 1 through step 6 of the section above: "Rebuild images after

modifying the source code of NXP user space components locally".

After completing the user space application build, run the following steps to deploy changes on the target board.

$ cp -a SHOME/flexbuild/build/apps/components_armé4/* /
$ cp -a SHOME/flexbuild/build/images/bootpartition armé4 lts <versions/* /boot

3. Generate LSDK composite firmware and update firmware on target board.

Take the LS1043RDB booting from IFC NOR as an example:

$ flex-builder -i mkfw -m 1sl043ardb -b nor -B uboot

NOTE

firmware is generated in the directory SHOME/flexbuild/build/images/

firmware 1s1043ardb_uboot_ norboot.img

Additional steps to be run, to generate secure firmware image

$ flex-builder -i signimg -m 1sl1043ardb -b nor
$ flex-builder -i mkfw -m 1sl043ardb -b nor -B uboot -s

For more information on how to update the firmware, refer to section “How to program firmware to SD/NOR/QSPI flash

media’”

NOTE

secure firmware is generated in the directory $SHOME/flexbuild/build/images/
firmware_ls1043ardb_uboot_norboot_secure.img

How to build Linux and U-Boot with various repository and branch?

To select various git repository and branch rather than the default repo and branch, run the following commands:

$ flex-builder -c linux:<repo-names>:<tag-name> -a <archs>

$ flex-builder -c linux:<repo-names:<branch-name> -a <archs>

$ flex-builder -c uboot:<repo-names:<tag-name> -m <machine> -b <boottype>

$ flex-builder -c uboot:<repo-names:<branch-name> -m <machine> -b <boottype>
Example:

$ flex-builder -c linux:1inux:LSDK-18.03-V4.14 -a armé4

$ flex-builder -c linux:dash-lts:linux-4.9 -a arm32

$ flex-builder -c uboot:u-boot:LSDK-18.03 -m 1lsl043ardb -b sd

$ flex-builder -c uboot:dash-uboot:devel -m 1s2088ardb -b nor

To use a private Linux git repository instead of the official git repository, put a private Linux git repository <custom-1linuxs in

packages/linux directory, then run flex-builder -c linux:<custom-linux>:<branch> -a <arch>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

56

NXP Semiconductors

How to build LSDK with Flexbuild

How to generate boot partition images for distro in Flexbuild

Use the following commands to generate boot partition images for distro in Flexbuild:

$ flex-builder -i mkbootpartition -a armé4

$ flex-builder -i mkbootpartition -a arm32

or

$ flex-builder -i mkbootpartition -a armé4 -s (for secure boot)
$ flex-builder -i mkbootpartition -a arm32 -s (for secure boot)

Generate all needed images including kernel image, dtb files, boot scripts for U-Boot, grub.conf for UEFI,
flex linux_ <arch>.itb, small ramdiskrfs, etc. The flex-builder script will automatically build dependent images if not present.

How to build Linux kernel in Flexbuild
To build the kernel using the default configurations specified in configs/build_Isdk.cfg, run the following commands:

$ flex-builder -c¢ linux -a armé4 #for 64-bit mode of all armv8 platforms by
default
$ flex-builder -c linux -a arm32 #for 32-bit mode of all armv8 platforms by
default

$ flex-builder -c linux -a arm32 -m 1sl02latwr #for 32-bit armv7 lsl02latwr

To build kernel with specified linux repo, specific branch and addtional fragment config,
run as below:

$ flex-builder -c¢ linux:<kernel-repos:<branch> -a armé4 -B fragment:<custom-fragments.config
Example:

flex-builder -c¢ linux:dash-lts:linux-4.14 -a armé64 -B fragment:lttng.config

Optionally, users can build kernel for big-endian system (e.g. on LS1043ARDB, LS1046ARDB
platforms) as below:

$ flex-builder -c linux -a armé64:be

To select a different Linux git tree and a different branch instead of default configuration, refer to "How to select various git trees
and branches for Linux and U-Boot".

To change the default kernel config to customize kernel, there are two ways to customize configs to build the kernel.

1. Run flex-builder -c linux:custom -a armé4 to customize kernel config in interactive menu, then run flex-builder
-c linux -a arme4 to compile kernel with customized kernel config

2. Put user-specific configs (e.g. customi.config, custom2.config) in packages/linux/<kernel-repo>/arch/armée4/
configs and run flex-builder -c linux -B fragment:"custom1.config custom2.config"

How to build U-Boot in Flexbuild

Use the commands below to build U-Boot in Flexbuild

$ flex-builder -c uboot -m <machine> -b <boottype> #build uboot for <machine> to generate
specified nor/sd/gspi/nand boot image

or

$ flex-builder -c uboot -m <machine> #build uboot for <machine> to generate all nor/sd/gspi/
nand boot images

or

$ flex-builder -c uboot -m all #build uboot for all machines to generate all nor/sd/
gspi/nand boot images

How to build application components in Flexbuild

The following commands are some examples of building application components

$ flex-builder -c <component> -a <arch> #build single application component for specified
<arch>

$ flex-builder -c apps #build all apps components for armé4 arch

$ flex-builder -c odp #build ODP component

$ flex-builder -c dpdk #build DPDK component for SoCs integrated DPAAL
or DPAA2

$ flex-builder -c ovs-dpdk #build OVS-DPDK component

$ flex-builder -c fmc -a arm32 #build FMC component for arm32 arch

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 57

Layerscape SDK user guide

$ flex-builder -c fmc -a armé4 #build FMC component for armé4 arch

$ flex-builder -c restool #build RESTOOL component for armé64 arch, default
arch is armé4

$ flex-builder -c ptpd #build ptpd component for IEEE 1588 on armé64
platform

$ flex-builder -c edgescale #build edgescale-related components for armé64 arch
$ flex-builder -c cst #build cst component, needed for secure boot

(arm64 is the default arch if -a <arch> is not specified)

How to add new application component in Flexbuild
Follow the instructions below to add an application component in Flexbuild:

1. Add new <component-name> 10 apps_repo_list and set CONFIG BUILD <component-name>=y in configs/
build_xx.cfg.

2. Configure url/branch/tag/commit info for new <component_name>in configs/build xx.cfg, default remote. Component
git repository is specified by cIT REPOSITORY URL if <component>_url is not specified, user also can directly create the
new component git repository in packages/apps directory

3. Add build support of new component in packages/apps/Makefile.
4. Run flex-builder -c <component-name> -a <archs'to build the new component

5. Run flex-builder -i merge-component -a <arch> 10 merger the new component package into target distro userland

How to generate a custom Ubuntu root filesystem with custom additional package list during the build stage

In Flexbulid, there are two default additional package lists for Ubuntu or Debian: additional packages list moderate, and
additional_packages_list_tiny.

$ flex-builder -i mkrfs -a armé64 (use additional packages list moderate with more
packages for Ubuntu rootfs by default)

$ flex-builder -i mkrfs -r ubuntu:tiny -a <archs> (use additional packages list tiny with
less packages for Ubuntu rootfs)

$ flex-builder -i mkrfs -r debian:tiny -a <archs> (use additional packages list tiny with

less packages for Debian rootfs)

$ flex-builder -i mkrfs -r ubuntu -a <arch> -B <custom packages list>

Optionally, if you do not want to use default Ubuntu userland in some use cases, you can generate buildroot-based small userland
by following instruction by Flexbuild, for examples:

$ flex-builder -i mkrfs -r buildroot:tiny -a armé4 (generate armé64 LE buildroot userland
with gorig armé4 tiny defconfig)

$ flex-builder -i mkrfs -r buildroot:moderate -a armé4 (generate armé4 LE buildroot userland
with gorig armé64 moderate defconfig)

$ flex-builder -i mkrfs -r buildroot:custom -a armé4 (generate armé4 LE buildroot userland
with custom gorig armé4 moderate defconfig)

$ flex-builder -i mkrfs -r buildroot:custom -a armé4:be (generate armé4 big-endian buildroot

userland with custom gorig_armé64_moderate_defconfig)

To install a new package to build/rfs/rootfs ubuntu xenial armé4 filesystem, run the following commands:

$ sudo chroot build/rfs/rootfs_ubunutu xenial armé4
$ apt-get install <new package name>
How to enable or disable various components in Flexbuild

Set CONIFG_BUILD <components> 10y OF nin configs/build xx.cfg to include/exclude the specified <component>.

How to generate composite firmware and boot partition

* To generate the following firmware in build/images directory for all machines (<boottype> can be nor, gspi, sd), run the
following commands for examples:

$ flex-builder -i mkfw -m 1sl1043ardb -b sd -B uboot
firmware 1s1043ardb uboot sdboot.img will be generated.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
58 NXP Semiconductors

Advanced Use Case Instructions

$ flex-builder -i mkfw -m 1sl046ardb -b gspi -B uefi
firmware 1sl046ardb uefi gspi.img will be generated.

$ flex-builder -i mkfw -m 1s2088ardb -b nor -B uboot
firmware 1s2088ardb uboot norboot.img will be generated.

$ flex-builder -i signimg -m 1s2088ardb -b nor
$ flex-builder -i mkfw -m 1s2088ardb -b nor -B uboot -s
firmware 1s2088ardb uboot norboot secure.img will be generated for secure boot.

Alike, the following all composite firmware can be generated with the '-i mkfw' command.
firmware 1lslO0l2ardb uboot gspiboot.img
firmware 1sl0l2ardb uboot gspiboot secure.img
firmware 1sl02latwr uboot norboot.img
firmware 1sl02latwr uboot norboot secure.img
firmware lslO2latwr uboot_ sdboot.img

firmware 1s1043ardb uboot norboot.img
firmware 1sl1043ardb uboot norboot secure.img
firmware 1s1043ardb uboot_ sdboot.img

firmware 1lsl043ardb uboot sdboot secure.img
firmware 1s1043ardb uefi norboot.img

firmware 1sl046ardb uboot gspiboot.img
firmware 1sl046ardb uboot gspiboot secure.img
firmware lsl046ardb uboot_ sdboot.img

firmware 1sl046ardb uboot sdboot secure.img
firmware 1sl046ardb uefi gspiboot.img
firmware 1s1088ardb uboot gspiboot.img
firmware 1s1088ardb_uboot gspiboot_ secure.img
firmware 1s1088ardb uboot sdboot.img

firmware 1s2088ardb uboot norboot.img
firmware 1s2088ardb uboot norboot secure.img
firmware 1s2088ardb uboot gspiboot.img
firmware 1s2088ardb uboot gspiboot secure.img
firmware 1s2088ardb uefi norboot.img

¢ To generate bootpartition_armé4 <versions.tgz Of bootpartition arm32 <versions>.tgz run following commands:

$ flex-builder -i mkbootpartition -a <archs>
or
$ flex-builder -i mkbootpartition -a <arch> -s (option '-s' is for secureboot)

4.3 Advanced Use Case Instructions

Section “LSDK Quick Start” states the quick way of deploying LSDK distro onto the target board, this section elaborates the
instructions.

How to install distro to SD/USB/SATA storage drive

Use the LSDK flex-installer to install all the release binaries and distro userland onto a storage media (e.g. SD/eMMC card, USB/
SATA disk) on the Linux host machine or on the target board.

Follow the instructions below:
Step 1: Plug SD/USB/SATA storage device to Linux Host machine or target board
Step 2: Install LSDK distro

* |f the prebuilt distro tarball generated by Flexbuild is available on Linux host machine, run the following command:

$ flex-installer -b bootpartition xx.tgz -r ubuntu xenial armé4 rootfs xx.tgz -m <machines
-d /dev/sdx

NOTE
sdx should be the actual device name on the host machine, for example: sdb, sdc, mmcblk0, etc.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 59

Layerscape SDK user guide

¢ If the user wants to modify source code and build a custom LSDK distro with flexbuild, use the commands below on the Linux
host machine:

flex-builder -c linux:custom -a <arch> # customize kernel config in interactive menu
flex-builder -c¢ linux -a <archs>

flex-builder -c firmware -m <machine>

flex-builder -i mkfw -m <machine> -b <boottype> -B uboot

flex-builder -i mkrfs -a <archs>

flex-builder -c apps -a <arch>

flex-builder -i merge-component -a <archs

flex-builder -i mkbootpartition -a <archs>

flex-installer -b build/images/bootpartition armé4 -r build/rfs/

rootfs ubuntu xenial armé4 -m <machine> -d /dev/sdx

Uy Uy Uy Ur Ur Uy Ur Ur r

* |f the user wants to install disrto rootfs directly onto SD/USB/SATA disk on QorlQ board on which Linux is unavailable,
download the prebuilt f1ex linux <archs.itb image using the command:

$ wget http://www.nxp.com/lgfiles/sdk/1sdk1803/1sdk_linux_armé4_ tiny.itb
Optionally, locally build it using the command below:
$ flex-builder -i mklinux -a <arch> to generate lsdk linux <arch> tiny.itb

Putthe 1sdk_linux <arch>_tiny.itbtoa TFTP service directory, then download it to the target board under U-Boot prompt
as below:

— For arm64 platforms:

=> tftp a0000000 lsdk linux armé64 tiny.itb
=> bootm a0000000#<board-name>

The <board-name> can be: Is1012ardb, Is1012afrdm, Is1043ardb, Is1046ardb, Is1088ardb, Is2088ardb.
— For arm32 platforms:

=> tftp a0000000 lsdk linux arm32 tiny.itb
=> bootm a0000000#<board-name>

The <board-name> can be: Is1012ardb, Is1012afrdm, Is1021atwr, Is1043ardb, Is1046ardb

» After booting and logging in to Linux on the target board, download the prebuilt distro tarballs generated by Flexbuild and
install using the commands below:

$ flex-installer -i pf -d /dev/sdx

$ cd /run/media/{mmcblkOp3 or sdx3}, then download distro images to sd/usb/sata storage
disk via wget or scp command

$ flex-installer -i install -b bootpartition armé4_ lts <version>.tgz -r

rootfs ubuntu xenial armé4.tgz -m <machine> -d /dev/sdX

Step 3: Power on or reboot the target board after finishing the distro installation, the system will enter boot loader (U-Boot or UEFI)
and automatically scan boot configuration script from the attached SD/USB/SATA disk and boot the target LSDK distro if found,
otherwise it falls back to boot from NOR/QSPI flash with £1ex linux <archs.itb.

How to program firmware to SD/NOR/QSPI flash media
* For SD/eMMC card (on all platforms):
1. Download the prebuilt image (take LS1043ARDB for example):
— Option 1: Load the prebuilt image from SD card in U-Boot:
=> load mmc 0:2 a0000000 firmware lsl043ardb uboot sdboot.img
— Option 2: Download the prebuilt image using the wget command:
http://www.nxp.com/lgfiles/sdk/1sdk1803/1sdk linux_armé4 tiny.itb

— Option 3: To generate firmware 1s1043ardb uboot sdboot.img locally, run flex-builder -i mkfw -m
1sl043ardb -b sd -B uboot.

2. Program firmware_<machine>_ uboot_sdboot .img to SD card:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
60 NXP Semiconductors

http://www.nxp.com/lgfiles/sdk/lsdk1706/flex_installer_arm64.itb

Advanced Use Case Instructions

— Under U-Boot:

=> load mmc 0:2 a0000000 firmware lsl043ardb_uboot sdboot.img
=> mmc write a0000000 8 1fff8 (same on all platforms)
=> cpld reset sd

— Under Linux:
$ flex-installer -f firmware 1s1043ardb uboot sdboot.img -s 8 -d /dev/mmcblkO
* For IFC-NOR flash
— On LS1043ARDB & LS1021ATWR:
1. Download the prebuilt image (take LS1043ARDB for example) using the following options:
> Option 1: Load prebuilt image from SD/USB/SATA disk:
=> load mmc 0:2 a0000000 firmware 1sl043ardb uboot norboot.img
> Option 2: Download the prebuilt image using the wget command:
http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1sl043ardb uboot norboot.img

- Option 3: To generate firmware 1s1043ardb uboot norboot.img locally, run flex-builder -i mkfw -
m 1sl043ardb -b nor -B uboot.

2. Program firmware <machine> uboot_ norboot .img into IFC-NOR flash:
> To program current bank:

=> protect off 60000000 +S$Sfilesize && erase 60000000 +$filesize && cp.b
a0000000 60000000 S$filesize

> To program alternate bank:

=> protect off 64000000 +S$filesize && erase 64000000 +S$Sfilesize && cp.Db
a0000000 64000000 $filesize

— On LS2088ARDB:
1. Download the image using the following options:
- Option 1: Load prebuilt image from SD card
=> load mmc 0:2 a0000000 firmware 1s2088ardb uboot norboot.img
> Option 2: Download the prebuilt image using the wget command.
http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1s2088ardb_uboot norboot.img

> Option 3: To firmware 1s2088ardb uboot norboot.img generate locally, run flex-builder -i mkfw -
m 1s2088ardb -b nor -B uboot.

2. Program firmware 1s2088ardb uboot norboot.img into IFC-NOR flash:

> To program current bank:

=> protect off 580000000 +$filesize && erase 580000000 +$filesize && cp.b
a0000000 580000000 $filesize

> To program alternate bank:

=> protect off 584000000 +Sfilesize && erase 584000000 +Sfilesize && cp.b
a0000000 584000000 S$filesize

* For QSPI flash:
— On LS1046ARDB:
1. Download the image using the following options:
> Option 1: Load prebuilt image from SD card.
=> load mmc 0:2 a0000000 firmware 1sl046ardb uboot gspiboot.img

> Option 2: Download the prebuilt image using the wget command.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 61

Layerscape SDK user guide

http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1lsl046ardb uboot gspiboot.img

> Option 3: To generate firmware 1s1046ardb uboot gspiboot.img locally, run flex-builder -i mkfw
-m lsl046ardb -b gspi -B uboot.

2. Program firmware 1s1046ardb_uboot_gspiboot.img to QSPI flash:

=> sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 S$filesize

— On LS1088ARDB:
1. Download the image using the following options:
- Option 1: Load prebuilt image from SD card.
=> load mmc 0:2 a0000000 firmware 1s1088ardb uboot gspiboot.img
> Option 2: Download the prebuilt image using the wget command.
http://www.nxp.com/lgfiles/sdk/1sdk1803/firmware 1s1088ardb_uboot gspiboot.img

> Option 3: To generate firmware 1s1088ardb uboot gspiboot.imglocally, run flex-builder -i mkfw -
m 1sl1088ardb -b gspi -B uboot.

2. Program firmware 1s1088ardb_uboot_gspiboot.img to QSPI flash:

=> sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 S$filesize

4.4 Procedure to Run Secure Boot

This section describes the steps to be followed to run secure boot on a platform, after building the images.

4.4.1 Prepare board for Secure Boot
Steps to blow fuses
1. Enable POVDD
a. LS1021A TWR Board
¢ To enable SNVS in check state — J 11
« POVDD (J8 and J9)
b. LS1043A RDB Board
e Put J13 to enable PWR_PROG_SFP
c. LS1012A RDB
* Through i2c transactions you need to write to LDO1CT register to change LDO1EN bit in vr5100
¢ i2c mw 0x08 0x6¢c OxFF
d. LS1046A RDB Board
e Put J21 to enable PWR_PROG_SFP
e. LS2088A RDB Board
¢ Put J12 to enable PWR_PROG_SFP
f. LS1088A RDB Board
e Put J10 to enable PWR_PROG_SFP.

2. Write the required values to be fused in the corresponding SFP Registers. Check SFP Block Guide in the SoC RM for
details..

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
62 NXP Semiconductors

3. Blow the fuses by writing PROGFB (0x2) in the INST field in INGR register of SFP.

Blowing One Time Programmable Master Key (OTPMK) fuse using the above procedure

¢ Check initial SNVS state

md 190014
88000900

The second nibble indicates that the OTPMK is not blown

¢ Enable POVDD

e Command to generate OTPMK

cd cst
./gen_otpmk_drbg 2

¢ Write OTPMK fuse values on shadow registers:

mw.
mw.
mw.
mw.
mw.
mw.
mw.
mw.

* Check SNVS state again. There should be no parity errors.

e e]

Procedure to Run Secure Boot

For more information on gen_otpmk_drbg, refer Code Signing Tool section in Secure Boot User Guide

1e80234
180238
1e8023c
180240
1e80244
180248
le8024c
180250

md 1e90014

Now you will see ‘0’ in second nibble.

md 1e80024

0

0000000

No parity errors .

Use the below command write to INGR register :

For LS1, LS1043 and LS1046 use :

<OTPMK1 >
<OTPMK2 >
<OTPMK3 >
<OTPMK4 >
<OTPMK5 >
<OTPMKG6 >
<OTPMK7 >
<OTPMKS8 >

80 000 900

mw 1e80020 0x02000000

For LS1088 and LS2088 use the below command:

mw 1e80020 0x2

¢ Reset and check that SNVS is in Check state

md 1e90014
80 000 900

4.4.2 Running secure boot on target platforms

1. Platforms LS1021, LS1043, LS1046

a. After copying images to flash, select the boot source by changing the switch settings, then boot the board.

b.

In platforms LS1021, LS1043, LS1046 flexbuild generated rcw for secure boot has the boot core put in holdoff by
setting BOOT_HO = 1 and enabled secure boot by SB_EN=1.

After booting the board, core would get stuck at its first instruction. This is done to allow the user to write SRKH in
the register. When using pre-built images, use the SRK hash present in srk_hash.txt from github. If SRKH fuse is

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

63

Layerscape SDK user guide

already blown, then set BOOT_HO = 0 in rcw file in flexbuild, else write the SRK hash value (displayed while signing
images) in SFP mirror registers and then release the core out of Boot Hold off by writing to Boot Release Register
in DCFG using the below commands:

ccs::config server 0 10000
ccs::config chain {<platform> dap sap2}

display ccs::get config chain
#Check Initial SNVS State and Value in SCRATCH Registers

ccs::display mem <dap position> 0x1e90014 4 0 4
ccs::display mem <dap position> 0xlee0200 4 0 4

#Wrie the SRK Hash Value in Mirror Registers

ccs:
ccs:
ccs:
ccs:
ccs:
ccs:
ccs:
ccs:
#Get
ccs:

:write mem
:write_mem
:write mem
:write mem
:write mem
:write_mem
:write mem
:write mem

<dap
<dap
<dap
<dap
<dap
<dap
<dap
<dap

positions>
positions>
positions
positions>
positions>
position>
positions
positions>

0x1e80254
0x1e80258
0x1e8025c
0x1e80260
0x1e80264
0x1e80268
0xle8026c¢C
0x1e80270

the Core Out of Boot Hold-Off
:write _mem <dap position> Oxlee0Oe4

2. Platforms LS1088, LS2088

4

NN NN NN NI NN

IS

0

[eNeoNoNeoNoNeNe)

o

<SRKH1 >
<SRKH2>
<SRKH3>
<SRKH4 >
<SRKH5 >
<SRKH6 >
<SRKH7>
<SRKH8>

0x00000001

In these platforms key hash is written into registers by putting the core into RSP, after this, connect to the board and blow
SRKH using CCS. When using pre-built images, use the SRK hash present in srk_hash.txt from github.

If running in production environment (See the note below for more information), i.e if the SRKH fuses are already blown,
then no need to put the SoC into RSP, just change the bank/boot-source and boot, else follow the steps below:

a. Steps to put SOC in RSP (Reset Sequence Pause)

LS2088:

* Rev1 RDB Board Switch (Rev B): SW3.8 — 0. Switch (Rev C to Rev F): SW4.8 — 0. To boot from
vbank4, change SW9[3:5] to 100.

LS1088:

* U-Boot Command to put SOC in RSP

i2c mw 66 66 0x7f #to put the SoC into RSP
i2c mw 66 10 20
i2c mw 66 10 21 # to switch to alternate bank

b. After putting the SoC into RSP, reset the board. Then use the below commands to write SRKHR in the register.

ccs::config chain {<platform> sap2}

display ccs::get config chain

puts
ccs:
set

ccs:
ccs:
ccs:
ccs:
ccs:
ccs:
ccs:
ccs:

set
puts

"Entry RSP: "
:write_mem 2 0x7 0x001000D0 0x4 0x0
::1littleendian(2) 1

:write mem
:write_mem
:write mem
:write mem
:write mem
:write_mem
:write mem
:write mem

<sap
<sap
<sap
<sap
<sap
<sap
<sap
<sap

positions>
positions>
positions>
positions>
positions>
positions>
positions>
positions>

::littleendian(2) 0
"Exiting RSP:
ccs::write mem 2 0x7 0x001000D0 0x4 0x0 0x400;

0x1e80254
0x1e80258
0x1e8025c
0x1e80260
0x1e80264
0x1e80268
0xle8026c¢C
0x1e80270

0x800

[N NN NN NI NN S

[eNeoNeoNeoNoNeoNoNo]

<SRKH1 >
<SRKH2>
<SRKH3>
<SRKH4 >
<SRKH5 >
<SRKH6 >
<SRKH7>
<SRKH8>

After implementing all the steps, the board will boot and user will get the Linux prompt after successful validation of all the

images.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

64

NXP Semiconductors

Procedure to Run Secure Boot

NOTE
To blow SRKH in production environment follow procedure similar to blowing OTPMK fuses. For more detail on
production and development environment refer Flow A and Flow B under Product Execution section in Secure Boot
User Guide

4.4.3 Steps to run Chain of Trust with Confidentiality

1. Generate all images

$ flex-builder -c¢ firmware
$ flex-builder -c¢ linux -a <archs>

2. Generate autoboot script with e flag
a. with encapsulation flag enabled
S flex-builder -i mkdistroscr -e
(OR)
b. With encapsulation and key identifier (16 bytes)

$ flex-builder -i mkdistroscr -e -k <key id>
Eg. Key_id = 0x20000000

NOTE
For more information on key identifier, refer Section 1.7.2 of Secure Boot Guide.

3. Signing all images

$ flex-builder -i signimg -m <platform> -b <boottype> -s -e
4. Generating firmware image

$ flex-builder -i mkfw -m <platform> -b <boottype > -B uboot -s
5. Generating bootpartition

$ flex-builder -i mkbootpartition -a <archs> -s
6. Writing image to sd card

$ flex-installer -b build/images/bootpartition armé4 lts <version>.tgz -r build/rfs/
rootfs ubuntu xenial armé4 -m <platform> -d /dev/sdx

BOOT FLOW
First Boot: Encapsulaton Step (Shoudl happen in OEM's premises)
1. By defult the enacap and decap bootscripts will be installed in the bootpartition.

2. When the board boots up for the first time after all images have been generated, Encap bootscript will execute. This
bootscript:

a. Authenticates and encapsulates linux and dtb images and replaces the unencrypted linux and dtb images with newly
encapsulated linux and dtb.

b. Replaces the encap bootscript and header with the decap bootscript and it's header, already present in the
bootpartition.

C. Issues reset
Subsequent Boot
1. Uboot would execute script with decap commands
a. Un-blobify linux and dtb image in DDR

b. Pass control to these images

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 65

Layerscape SDK user guide

Chain of trust with confidentiality is currently not supported for LS1012 in flexbuild

NOTE

4.5 LSDK Memory Layout

Flash layout

The following table shows the memory layout of various firmware stored in NOR/NAND/QSPI flash device or SD card on all QorlQ

Reference Design Boards.

Table 9. Flash layout

Definition Max Size NOR/QSPI/NAND SD Card
Flash Offset Start Block No.
RCW+PBI 1MB 0x00000000 0x00008
Boot firmware (U-Boot or UEFI) 2MB 0x00100000 0x00800
Boot firmware Environment 1MB 0x00300000 0x01800
PPA firmware 2MB 0x00400000 0x02000
Secure boot headers 3MB 0x00600000 0x03000
DPAA1 FMAN ucode 256KB 0x00900000 0x04800
QE/uQE firmware 256KB 0x00940000 0x04A00
Ethernet PHY firmware 256KB 0x00980000 0x04C00
Reserved 256KB 0x009C0000 0x04E00
DPAA2 MC or PFE firmware 3MB 0x00A00000 0x05000
DPAA2 DPL 1MB 0x00D00000 0x06800
DPAA2 DPC 1MB 0x00E00000 0x07000
Device tree (needed by UEFI) 1MB 0x00F00000 0x07800
Kernel Isdk_linux_<arch>.itb 16MB 0x01000000 0x08000
Ramdisk RFS 32MB 0x02000000 0x10000

Storage layout on SD/USB/SATA for LSDK images deployment

With LSDK flex-installer, the LSDK distro can be installed into an SD/USB/SATA storage disk which should have at least 8GB of

memory space.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

66

NXP Semiconductors

Board-specific Information

Table 10. Storage Layout on SD/USB/SATA for LSDK Image Deployment

Region 1 Region 2 Region 3 Region 4 Region 5
(4KB) (RAW) (Partition-1 FAT32) (Partition-2 EXT4) (Partition-3 EXT4)
64MB 20MB 1GB Remaining space
Firmware EFI Boot partition RootFS partition
MBR/GPT RCW BOOTAAG4.EFI kernel image Ubuntu
U-Boot or UEFI grub.cfg DTB or

PPA firmware
Secure boot headers
FMan firmware
QE/uQE firmware
Eth PHY firmware
MC firmware
DPC firmware
DPL firmware
DTB

Isdk_linux_<arch>.itb

Isdk_linux_<arch>.itb
distro boot scripts
secure headers

other

Ubuntu-Core
or
CentOS
or

Debian

4.6 Board-specific Information

4.6.1 TWR-LS1021A

This section provides TWR-LS1021A-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash memory layouts. For more information
about the TWR-LS1021A refer to QorlQ TWR-LS1021A Reference Manual and the QorlQ TWR-LS1021A Getting Started Guide

4.6.1.1 On-board Switch Settings

Default Settings

Table 11. Default TWR-LS1021A PB Switch Settings

Switch 1 2 3 4 5 6 7 8

sw2 ON [1] OFF [0] OFF [0] OFF [0] ON [1] ON[1] ON [1] ON [1]

SW3 OFF ON ON OFF OFF ON OFF ON
Table 12. Default Clock Frequency

ARM CPU Core Platform DDR rate

1200 MHZ 300 MHZ 1600 MT/S

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

67

https://www.nxp.com/webapp/Download?colCode=TWR-LS1021ARM&Parent_nodeId=1400248220704704973621&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=TWR-LS1021AGS&Parent_nodeId=1400248220704704973621&Parent_pageType=product&Parent_nodeId=1400248220704704973621&Parent_pageType=product

Layerscape SDK user guide

4.6.1.2 Clock Frequency

The Configuration of the Clock Frequency on TWR-LS1021A consist of two parts:

1. From the Hardware side, set the switches on the TWR-LS1021A board for the desired frequency - SW3[3:4]. Details about
the frequency options available in the TWR-LS1021AGS.pdf doc.

2. From the SW side since the U-Boot software cannot read out SW3[3:4] settings, change the clock configuration manually
in U-Boot software code, so that it matches with hardware switches (include/configs/1s1021latwr.h).

Change the following settings to the desired frequency to match the HW switch configuration:

#define CONFIG _SYS CLK FREQ 100000000
#define CONFIG DDR_CLK_FREQ 100000000

4.6.1.3 U-Boot Environment Variables

hwconfig

Environment variable "hwconfig" is used within the U-Boot bootloader to convey information about desired hardware
configurations. It is an ordinary environment variable in that:

* |t can be set in the U-Boot prompt using the "setenv" command.

¢ |t can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig

* |t can be modified in the U-Boot command prompt using the "editenv" command.

¢ |t can be saved in the U-Boot environment via the "saveenv" command.

Variable "hwconfig" is set to a sequence of option:value entries separated by semicolons.

The default setting for DDR, which will disable interleaving, is as follows:

hwconfig = fsl ddr:ctlr intlv=null,bank intlv=null

4.6.1.4 Supported Boot Options

TWR-LS1021A supports the following boot options:

« SD
* QSPI
* NOR

4.6.1.5 System Memory Map

Start Physical Address End Physical Address Memory Type Size
0x0100_0000 0x0FFF_FFFF CCSR 240MB
0x1000_0000 0x1000_FFFF OCRAMO 64KB
0x1001_0000 0x1001_FFFF OCRAM1 64 KB
0x2000_0000 0x20FF FFFF DCSR 16MB
0x4000_0000 0xS5FFF_FFFF QSPI 512MB

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

68

NXP Semiconductors

Board-specific Information

Table continued from the previous page...

Start Physical Address End Physical Address Memory Type Size
0x6000_0000 0x67FF_FFFF NOR Flash 128MB
0x7FB0_0000 0x7FBO_OFFF Board CPLD 4KB
0x8000_0000 OXFFFF_FFFF DDR 2GB

4.6.1.6 NOR Flash (Virtual) Banks

NOR flash is a simple and convenient destination for deploying images so it is frequently used. Many NXP development and
reference boards provide a special feature that allows a single NOR flash to be divided into multiple parts called “banks” This is
done by board-level logic that modifies address signals. Because there is only one NOR flash physically, the banks are sometimes
called "virtual" banks.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the one NOR flash. This
is very helpful during development, because you can use the U-Boot image in one bank to program an image set into a different
bank. If the new images are flawed, the old images are still functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be divided into up to 8 banks, but almost always the feature is used to
divide the flash into two halves only. For the TWR-LS1021A, the 2 halves are called bank0 and bank1.

Switch Settings and NOR Banks

The NOR flash on the board can be seen as two flash banks. The board DIP switch configuration (for LS1021ATWR, SW3[5])
preselects bank 0 as the hardware default bank. The NOR flash on the TWR-LS1021A board is divided in two banks. There are
different images in each banks that supports the different functionality.

BankO is programmed with the RCW support for the QE, and the bank1 is programmed with the RCW support for the 2D-ACE.

To determine the current bank, refer to the U-Boot log:

CPU: Freescale LayerScape LS1021E, Version: 2.0, (0x87081120)
Clock Configuration:
CPUO (ARMV7) :1200 MHz,
Bus:300 MHz, DDR:800 MHz (1600 MT/s data rate),
Reset Configuration Word (RCW) :
00000000: 0608000c 00000000 00000000 00000000
00000010: 70000000 00007900 e0025a00 21046000
00000020: 00000000 00000000 00000000 20000000
00000030: 00080000 881b7340 00000000 00000000
Board: LS1021ATWR
CPLD: V2.0
PCBA: V1.0
VBank: 0

Bank Switching
Bank switching can be done in U-Boot using the following statements:

¢ Switch to bank 0:

=>reset

¢ Switch to alternate bank:

=>boot_bank 1

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 69

Layerscape SDK user guide

NOR Flash Memory Map
NOR flash memory map for LS1021A TWR can be found on the link below.

Related information
LSDK Memory Layout on page 66

4.6.1.7 Supported Reset Configuration Word (RCW) Binaries

The release contains the following RCW binary for use on the TWR-LS1021A:
¢ RSR_PPS_70/rcw_1200.bin (default for bank0)
e SSR_PNS_30/rcw_1200.bin
e SSR_PNS_30/rcw_1200_usb2.bin
¢ SSR_PNS_30/rcw_1200_lpuart.bin (default for bank1)

The RCW directories' names for the TWR-LS1021A conform to the following naming convention:

abc _def g
Table 13. TWR-LS1021A Directories Naming Convention Legend
Slot Convention
a[What is available for eTSEC1] 'R' indicates RGMII@eTSEC1 is supported
'S' indicates SGMII@eTSECH1 is supported
'N' if not available/not used
b[What is available for eTSEC2] 'R' indicates RGMII@eTSEC2 is supported
'S' indicates SGMII@eTSEC3 is supported
'N' if not available/not used
c[What is available for eTSEC3] 'R indicates RGMII@ e TSEC3 is supported
'S' indicates SGMII@eTSECS is supported
'N' if not available/not used
d 'P' indicates PCle @slot1 is supported
‘N' if not available/not used
e 'P' indicates PCle @slot2 is supported
'N' if not available/not used
f 'S' indicates sata is supported
'N' if not available/not used
g Hex value of serdes protocol value
For example,
SSR_PNS_30
means:

* SGMII@eTSEC1

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
70 NXP Semiconductors

Board-specific Information

SGMII@eTSEC2
RGMII@eTSECS3

PCIE [Slot 1]

SATA [Support]

* SERDES Protocol is 0x30

The RCW file names for the LS1021ATWR conform to the following naming convention:

rcw_<frequencys> <specialsettings>.rcw

Table 14. LS1021TWR Files Naming Convention Legend

Code Convention
frequency Core frequency(MHZ)
specialsetting bootmode sdboot

(default is nor boot)

special support Ipuart:used for Ipuart
sben:Secure boot support

usb2:USB 2.0 support

For example,

rcw_1200_ sd.rcw means rcw for core frequency of 1200MHz with sd boot.
rcw_ 1200 lpuart.rcw means rcw for core frequency of 1200MHz with nor boot special for enable
lpuart.

Default rew:

SSR_PNS_30/rcw 1200 lpuart.bin[l SGMII, 1 RGMII, 2D-ACE, lpuartl, 2PCIE, SATA, CAN, SAI]
RSR_PPS 70/rcw_1200.bin[2 SGMII, 1 RGMII, 1SATA, 1PCIE, CAN]

4.6.1.8 FlexCAN User Manual

Description

The FlexCAN module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol
specification. NXP’s LS1021A can support 4 Flexcan IP module instances if there are 2 CAN ports brought out on DB9 male
connectors on the board.

Dependencies

Hardware:

TWR-IND-IO board is needed to use flexcan with LS1021A-TWR board.
Software:

LSDK Images (refer Deploy LSDK Images on the target board) and can-utils and iproute2 (both packages included in LSDK ubuntu
userland)

U-Boot Configuration
Execute the following command at the u-boot prompt:
=> setenv hwconfig “can3”

=> saveenv

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors n

https://www.nxp.com/support/developer-resources/hardware-development-tools/tower-development-boards/peripheral-modules/industrial-i-o-tower-system-module:TWR-IND-IO
https://freescalereach01.sdlproducts.com/LiveContent/content/en-US/QorIQ_LSDK/GUID-A5F0B9A1-F8D8-4121-A25F-234CA1467172

Layerscape SDK user guide

Compile time options

N/A

Runtime options

Env Variable | Env Description Option Description

hwconfig setenv hwconfig "can3" | CAN3 and USB2 are muxed on LS1021A-TWR. This option is used to select CAN3
feature on the LS1021A-TWR board.

Kernel Configure Options
Tree View

Following is an example of how to enable FlexCAN driver support.

Kernel Configure Tree View Options Description
[*] Networking support --> Enable FlexCAN driver and CAN
<*> CAN bus subsystem support --> protocol stack

-- CAN bus subsystem support
<*> Raw CAN Protocol (raw access with CAN-ID filtering)
< > Broadcast Manager CAN Protocol (with content filtering)
CAN Device Drivers -->
<*> Platform CAN drivers with Netlink support
[*] CAN bit-timing calculation
<*> Support for NXP FlexCAN based chips

NOTE
The FlexCAN driver can be statically/dynamically linked with the kernel Image.

Identifier

Option Values Default Value Description

CONFIG_NET y/n y Enable networking support
CONFIG_CAN y/m/n n Enable CAN bus support
CONFIG_CAN_RAW y/m/n n Enable CAN RAW Protocol support
CONFIG_CAN_DEV y/m/n n Enable platform CAN driver support
CONFIG_CAN_CALC_BITTIMING y/n n Enable baud rate setting using sysfs
CONFIG_CAN_FLEXCAN y/m/n n Enable NXP FlexCAN protocol

Device Tree Binding

Below is the definition of the device tree node required by this feature

Property Description

compatible =" fsl,Is1021ar2-flexcan" Should be "fsl,Is1021ar2-flexcan”

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
72 NXP Semiconductors

Board-specific Information

Table continued from the previous page...

Property Description
reg = <0x0 0x2a70000 0x0 0x1000> Offset and length of the register set for the device
interrupts = < GIC_SPI 126 IRQ line for FlexCAN controller CANO

IRQ_TYPE_LEVEL_HIGH>

clocks = <&clockgen 4 1> CAN module Clock Source.

clock-names = <per>

Valid values are ipg and per

ipg: CAN engine clock source is oscillator clock.

Current release doesn't support this option.

per: The CAN engine clock source is the peripheral clock (platform
clock).

CAN Engine Clock Source. This property selects the peripheral clock.

big-endian This means the registers of FlexCAN controller are big endian.

Below is an example device tree node required by FlexCAN.

can0: can@2a70000 f{
compatible = "fsl,1sl02lar2-flexcan";
reg = <0x0 0x2a70000 0x0 0x1000>;
interrupts = <GIC_SPI 126 IRQ TYPE LEVEL_ HIGH>;
clocks = <&clockgen 4 1>, <&clockgen 4 1>;
clock-names = "ipg", '"per";
big-endian;

bi

Source Files

The following source file is related to Flexcan feature in u-boot.

Source File Description

arch/arm/cpu/armv7/Is102xa/fdt.c Providing the fix-up for clock_freq in the dits file.

board/freescale/ls1021atwr/Is1021atwr.c | Provides the support for board level FlexCAN muxing when u-boot environment
variable hwconfig is set to can3.

The following source files are related to Flexcan feature in Linux kernel.

Source File Description

drivers/net/can/flexcan.c Flexcan driver module

Board Connections

For hardware connections refer to LS1021A-TWR_FLEXCAN_A manual.

User Space Application

can-utils and iproute2 (included in LSDK ubuntu userland) are needed for using flexcan.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

73

Layerscape SDK user guide

designed to use the advanced networking capabilities of the Linux kernel.

Command Name | Description Package Name

cansend Userspace SocketCAN test program for sending CAN frames on a CAN interface can-utils

candump Userspace SocketCAN test program for sniffing CAN frames received on a CAN can-utils
interface

ip The iproute package contains networking utilities (ip and rtmon, for example) which are | iproute(2)

Verification in U-Boot

N/A

Verification in Linux

To cross check whether FlexCAN has been configured in the kernel or not, run the following command at Linux prompt:

root@lsl02lagds:~# cat /proc/interrupts

CPUO CPU1
118: 3889 0 GIC 118 serial
120: 126 0 GIC 120 2180000.i2c
125: 0 0 GIC 125 xhci-hcd:usbl
126: 1521 0 GIC 126 mmcO
129: 0 0 GIC 129 2110000.dspi
135: 2 0 GIC 135 1710000.3jr
136: 0 0 GIC 136 1720000.3jr
137: 0 0 GIC 137 1730000.3jr
138: 0 0 GIC 138 1740000.jr
150: 5371 0 GIC 150 Freescale ftm timer
158: 1 0 GIC 158 can0
167: 0 0 GIC 167 eDMA
189: 21 0 GIC 189 eth2 g0 tx
190: 4 0 GIC 190 eth2 g0 rx
191: 0 0 GIC 191 eth2 g0 _er
201: 0 0 GIC 201 ds3232
IPIO: 0 CPU wakeup interrupts
IPI1: 0 5359 Timer broadcast interrupts
IPI2: 3158 3718 Rescheduling interrupts
IPI3: 0 Function call interrupts
IPI4: 3 Single function call interrupts
IPIS: 0 CPU stop interrupts
Err: 0

Test Procedure

Guide lines for testing FlexCAN on the LS1021A board.

Internal LoopBack test (SoC Level loopback)

¢ Enable CAN interface can0 with root permissions on the Linux prompt

ip link set canO up type can bitrate 125000 loopback on

¢ Set candump to snif packets on can0 interface:

candump can0 -n 2 &

* Set cansend to send a packet with standard identifier on can0 interface:

cansend canO 5A1#123412341234

Expected behavior after internal loopback testing:

* CANO interface which is receiving the can frame should show, that it has read the frame ID and data correctly:

5A1

[6] 12 34 12 34 12 34

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

74

NXP Semiconductors

Board-specific Information

— After the successful Tx or RX from the CAN controller, the Tx and Rx Interrupt should increment for CANO interface.

root@lsl02laqgds:~# cat /proc/interrupts

GIC 125 xhci-hcd:usbl

GIC 150 Freescale ftm timer

Single function call interrupts

CPUO CPU1
118: 3889 0 GIC 118 serial
120: 126 0 GIC 120 2180000.i2c
125: 0 0
126: 1521 0 GIC 126 mmcO
129: 0 0 GIC 129 2110000.dspi
135: 2 0 GIC 135 1710000.3jr
136: 0 0 GIC 136 1720000.3jr
137: 0 0 GIC 137 1730000.3jr
138: 0 0 GIC 138 1740000.3jr
150: 5371 0
158: 2 0 GIC 158 can0
167: 0 0 GIC 167 eDMA
189: 21 0 GIC 189 eth2 g0 tx
190: 4 0 GIC 190 eth2 g0 rx
191: 0 0 GIC 191 eth2 g0 er
201: 0 0 GIC 201 ds3232
IPIO: 0 0 CPU wakeup interrupts
IPI1: 0 5359 Timer broadcast interrupts
IPI2: 3158 3718 Rescheduling interrupts
IPI3: 0 0 Function call interrupts
IPTI4: 3 3
IPIS: 0 0 CPU stop interrupts
Err: 0

NOTE

The underlined number represents the interrupts on successful Tx or RX. So this number should increase on
successful Tx and Rx.

External LoopBack test (Single Board).

¢ Attach the CANO and CAN1 interface on the LS1021A board with serial cable (prepared as mentioned in Dependencies

section).

¢ Enable the CANO and CAN1 interface on the board:

ip link set canO up type can bitrate 125000
ip link set canl up type can bitrate 125000

e Set candump to snif packets on can0 interface:

candump can0 -n 1 &

¢ Set cansend to send a packet with standard identifier on can1 interface:

cansend canl S5A1#123412341234

Expected behavior after external loopback testing:

* CANO interface which is receiving the can frame should show, that it has read the frame ID and data correctly:

5A1 [6]

12 34 12 34 12 34

¢ After the successful Tx or RX from the CAN controllers, the Tx Interrupt should increase for CAN1 interface and Rx
Interrupt should increment for CANO interface.

Benchmarking

TBD

Known Bugs, Limitations, or Technical Issues

N/A

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

75

Layerscape SDK user guide

Supporting Documentation
* SoC Reference Manual (for eg. LS1021A RM)
* QorlQ TWR-LS1021A Reference Manual
¢ LS1021A-TWR_FLEXCAN_A Manual

4.6.2 LS1012ARDB

This section provides LS1012ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash memory layouts. For more information
about the LS1012A refer to QorlQ LS1012A Reference Manual and the QorlQ LS1012A Reference Design Board Getting Started
Guide

4.6.2.1 On-board Switch Settings

Table 15. LS1012ARDB Switch Settings for Booting from QSPI Bank 1

2 3 4 5 6 7

SWi1 0 1 0 0 1 1

Ssw2 0 0 0 0 0 0

Table 16. LS1012ARDB Switch Settings for Booting from QSPI Bank 2

2 3 4 5 6 7

SWi1 0 1 0 0 1 1
SW2 0 0 0 0 0 1 0

4.6.2.2 U-Boot Environment Variables

hwconfig

Environment variable hwconf ig is used within the U-Boot bootloader to convey information about desired hardware configurations.
It is an ordinary environment variable in that:

* |t can be set in the U-Boot prompt using the setenv command.

* |t can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig
* It can be modified in the U-Boot command prompt using the editenv command.
¢ |t can be saved in the U-Boot environment via the saveenv command.

Variable hwconfig is set to a sequence of option:value entries separated by semicolons.The default setting for for hwconfig
on LS1012ARDB is as follows:

hwconfig = fsl ddr:bank intlv=auto

4.6.2.3 Supported Boot Options

LS1012ARDB supports the following boot options:
* QSPI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
76 NXP Semiconductors

http://www.nxp.com/docs/en/reference-manual/LS1012ARM.pdf
https://www.nxp.com/webapp/Download?colCode=LS1012ARDBGSG&Parent_nodeId=1462294874819702554554&Parent_pageType=product&Parent_nodeId=1462294874819702554554&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1012ARDBGSG&Parent_nodeId=1462294874819702554554&Parent_pageType=product&Parent_nodeId=1462294874819702554554&Parent_pageType=product

4.6.2.4 System Memory Map

Board-specific Information

Start Physical Address End Physical Address Memory Type Size
0x00_0000_0000 0x00_000F FFFF Secure Boot ROM 1MB
0x00_0100_0000 0x00_OFFF FFFF CCSR 240MB
0x00_1000_0000 0x00_1000_ FFFF OCRAM1 64KB
0x00 1001 0000 0x00 1001 FFFF OCRAM2 64 KB
0x00_4000_0000 0x00_ SFFF FFFF QSPI 512MB
0x00_8000_0000 0x00_FFFF_FFFF DRAM 2GB
0x08_8000_0000 0x0F FFFF FFFF DRAM2 30G
0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G

4.6.2.5 Supported Reset Configuration Word (RCW) Binaries

There are four RCW binaries, however, the default configuration is - RR_spNH 3508/
PBL_0x35_0x08_1000_250_1000_default.bin:.

RR_SPNH 3508/PBL_0x35_0x08 1000 250 1000 default.bin
RR_SPNH 3508/PBL_0x35 0x08 1000 250 1000 sben.bin
RR_SPNH_3508/PBL_0x35_0x08_800_250_1000_default.bin
RR_SPNH 3508/PBL_0x35 0x08 800 250 1000 sben.bin

RR_SPNH 3508/PBL_0x35 0x08 1000 250 1000 default.bin: RCW enables:
¢ Boot from QSPI
¢ 1000MHz Core, 250MHz Platfrom, 1000MT/s DDR
e SDHC1, SDHC2, 12C1,
» SerDes Protocol 0x3508
e PCle, SATA,
* RGMII, SGMII
* USB 3.0

4.6.2.6 Flash Bank Usage
LS1012ARDB has 2 QSPI flash connected over QSPI contoller.

Only one QSPI flash is available at a time depending upon the board switch settings. These switch settings can also be overriden
by 12C commands.

To protect the default U-Boot in flash1, it is a convention employed by NXP to deploy work images into flash2, and then switch to
flash2 for testing. Switching to flash2 can be done in software using I2C commands and effectively swaps flash1 with flash2. This
protects flash1 and keeps the board bootable under all circumstances.

U-Boot 2017.07-02268-g109fd35 (Dec 15 2017 - 10:31:00 +0530)

SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:

CPUO (A53) : 1000 MHz

Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW) :

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 7

Layerscape SDK user guide

00000000: 0800000a 00000000 00000000 00000COQOOO
00000010: 35080000 c000000c 40000000 00001800
00000020: 00000000 00000000 00000000 00014571
00000030: 00000000 18c2al20 00000096 00000000

I2C: ready

DRAM: 958 MiB

Using SERDES1 Protocol: 13576 (0x3508)

PPA Firmware: Version LSDK-17.09-update-103017

WARNING: Calling _ hwconfig without a buffer and before environment is ready

MMC : FSL_SDHC: 0, FSL_SDHC: 1

SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB,

*** Warning - bad CRC, using default environment

In: serial
Out: serial
Err: serial

Model: LS1012A RDB Board
Board: LS1012ARDB Version: unknown, boot from QSPI: bankl
SATA link 0 timeout.
AHCI 0001.0301 32 slots 1 ports 6 Gbps 0xl impl SATA mode
flags: 64bit ncqg pm clo only pmp fbss pio slum part ccc apst
Found 0 device(s).
SCSI: Net: PFE class pe firmware
PFE tmu pe firmware
1s1012a_configure serdes 0
PCIe0: pcie@3400000 Root Complex: x1 genl
el000: 68:05:ca:36:8d:8e
pfe etho

Warning: pfe ethO (ethO0) using random MAC address - 02:05:3c:25:2e:c3

, pfe_ethl

Warning: pfe_ethl (ethl) using random MAC address - 2a:0c:d0:10:73:1f

, el000#0
Hit any key to stop autoboot: 0

How to boot from flash 2

total 64 MiB

1. To check which bank booted, refer to “Board: LS1012ARDB Version: unknown, boot from QSPI: bank1" in the U-

Boot logs.

Program QSPI flash as per flash layout

To boot from flash2 give “reset” command.

o &~ 0 Db

command.

QSPI flash Layout

i2C command to switch from flash1 to flash2 “ i2c mw 0x24 0x7 Oxfc; i2c mw 0x24 0x3 0xf5 “

To move back to flash1 from flash2, power on/off the board or use “i2c mw 0x24 0x3 0xf4 “ and then give “reset’

Image Size Start Address
RCW + PBI 1MB 0x4000_0000
U-boot boot loader 1MB 0x4010_0000
U-boot Env 1MB 0x4030_0000
PPA FIT image 2MB 0x4040_0000
PFE Firmware 20K 0x40A0_0000
Kernel ITB 59MB 0x4100_0000

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

78

NXP Semiconductors

Board-specific Information

4.6.2.7 Basic Networking Ping Test

U-BOOT

The LS1012ARDB has one SGMII and one RGMII. The log below shows how to ping from those 2 interfaces.
U-Boot 2017.07-02268-g109£d35 (Dec 15 2017 - 10:31:00 +0530)

SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:
CPUO (A53) : 1000 MHz
Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW) :
00000000: 0800000a 00000000 00000000 00000000
00000010: 35080000 c0O00000c 40000000 00001800
00000020: 00000000 00000000 00000000 00014571
00000030: 00000000 18c2al20 00000096 00000000
I2C: ready
DRAM: 958 MiB
Using SERDES1 Protocol: 13576 (0x3508)
PPA Firmware: Version LSDK-17.09-update-103017
WARNING: Calling hwconfig without a buffer and before environment is ready
MMC: FSL_SDHC: 0, FSL_SDHC: 1
SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB, total 64 MiB
*** Warning - bad CRC, using default environment

In: serial
out: serial
Err: serial

Model: LS1012A RDB Board

Board: LS1012ARDB Version: unknown, boot from QSPI: bankl
SATA link 0 timeout.

AHCI 0001.0301 32 slots 1 ports 6 Gbps 0xl impl SATA mode
flags: 64bit ncg pm clo only pmp fbss pio slum part ccc apst
Found 0 device(s).

SCSI: Net: PFE class pe firmware

PFE tmu pe firmware

1s1012a_configure_serdes 0

PCIeO: pcie@3400000 Root Complex: x1 genl

el000: 68:05:ca:36:8d:8e

pfe etho
Warning: pfe ethO0 (eth0) using random MAC address - 22:04:f9:6a:ff:13
, pfe _ethl
Warning: pfe ethl (ethl) using random MAC address - 4a:0f£:97:59:b8:ec
, el000#0

Hit any key to stop autoboot: 0
=> edit ipaddr

edit: 192.168.1.136

=> ping 192.168.1.1

Speed detected 3e8

Using pfe ethO device

host 192.168.1.1 is alive

=>

LINUX

To enable PFE in Linux, first stop PFE in U-Boot. In order to do this, first bring the kernel-Is1012a-rdb.itb via PFE interface then
type pfe stop command on the U-Boot prompt:

=> tftp 0xa0000000 kernel-1sl0l2a-rdb.itb

Speed detected 3e8

Using pfe ethl device

TFTP from server 192.168.1.1; our IP address is 192.168.1.136

Filename 'kernel-1sl0l2a-rdb.itb'.

Load address: 0xa0000000

Loading: ###H###H#E#FHEEHFHSHHEHSHHEHEHSHHEHSHHEHSHHEH ST H GRS RS S
HEHFH S HEHEHHEH ST H S

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 79

Layerscape SDK user guide

done
Bytes transferred = 38342491 (2490f5b hex)
=> pfe stop

Stopping PFE...

=> bootm 0xa0000000

Loading kernel from FIT Image at a0000000

R
FHEHHHHHH
R
FHEH
R
FHEHHHHHH
R
FHEH
R
FHEHHHHHH
R
FHEH
R
FHEHHHHH
R
FHEH
R
FHEHHHHHH
R
FHEH
R
FHEHHHHHH
R
FHEH
R
FHEHHHHHH
R
FHEH
R
FHEHHHHHH
R
FHEH
R
FHEHHHHHH
R
FHEH
R
FHEHHHHHH
FHEHHHEE

5.6 MiB/s

Using 'config@l' configuration
Trying 'kernel@l' kernel subimage
Description: ARM64 Linux kernel
Type: Kernel Image
Compression: uncompressed
Data Start: 0xa00000dc
Data Size: 12482048 Bytes = 11.9 MiB

Architecture: AArché4

0S:

Linux

Load Address: 0x80080000
Entry Point: 0x80080000
Loading ramdisk from FIT Image at a0000000

Using 'config@l' configuration

Trying 'ramdiske@l' ramdisk subimage
Description: LS2 Ramdisk
Type: RAMDisk Image
Compression: uncompressed
Data Start: 0xaObe9ba4
Data Size: 25849963 Bytes = 24.7 MiB

Architecture: AArché4

0S:

Linux

Load Address: unavailable
Entry Point: wunavailable

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

80

NXP Semiconductors

Board-specific Information

Loading fdt from FIT Image at a0000000
Using 'config@l' configuration
Trying 'fdtel' fdt subimage
Description: Flattened Device Tree blob

Type: Flat Device Tree
Compression: uncompressed

Data Start: 0xalbe7790

Data Size: 9101 Bytes = 8.9 KiB

Architecture: AArché64
Loading fdt from 0xalObe7790 to 0x90000000
Booting using the fdt blob at 0x90000000
Loading Kernel Image ... OK
Using Device Tree in place at 0000000090000000, end 000000009000538c
Starting kernel

0.000000] Booting Linux on physical CPU 0x0
0.000000] Initializing cgroup subsys cpu
0.000000] Linux version 4.1.8-rt8+g251lecO0 (jenkins@neptune) (gcc version 4.9.4 20150629
prerelease) (Linaro GCC 4.9-2015.06)) #1 SMP Sat Aug 27 04:44:19 CST 2016
0.000000] CPU: AArché64 Processor [410fd034] revision 4
.000000] Detected VIPT I-cache on CPUO
.000000] alternatives: enabling workaround for ARM erratum 845719
.000000] earlycon: Early serial console at MMIO 0x21c0500 (options '!')
.000000] bootconsole [uart0] enabled
.046613] No BMan portals available!
.052448] No QMan portals available!
.186759] Freescale FM module, FMD API version 21.1.0
.192162] Freescale FM Ports module
.200605] vfio fsl mc_driver init: Driver registration fails as no fsl mc bus found
.658570] fsl-mc bus not found, restool driver registration failed
.927488] usb usbl-portl: over-current condition
[.932320] usb usb2-portl: over-current condition
INIT: version 2.88 booting
Starting udev
[3.038179] pe_load ddr_ section: load address(3fb0000) and elf file
address (fE£££0000003£fb000) rcvd
Populating dev cache
hwclock: can't open '/dev/misc/rtc': No such file or directory
Fri Aug 26 20:58:57 UTC 2016
hwclock: can't open '/dev/misc/rtc': No such file or directory
Running postinst /etc/rpm-postinsts/100-sysvinit-inittab...
Running postinst /etc/rpm-postinsts/10l-inetutils-inetd...
Running postinst /etc/rpm-postinsts/102-inetutils-ftpd...
update-rc.d: /etc/init.d/run-postinsts exists during rc.d purge (continuing)
Removing any system startup links for run-postinsts
INIT: Entering runlevel: 5

[
[
[
(
[
[
[
[
[
[
[
[
[
[
[
[

[eNeNeoNeoNeoNoNoNoNoNoNoNol

Configuring network interfaces... done.
Starting system log daemon...0
Starting kernel log daemon...0

Starting internet superserver: xinetd.
QorIQ SDK (FSL Reference Distro) 2.0 1sl0l2ardb /dev/ttySO

1sl101l2ardb login: root

root@lsl0l12ardb:~# find / -name pfe.ko | xargs insmod

[30.958325] pe_load ddr section: load

address (3fb0000) and elf file address(f£££00000c795000) rcvd

root@lsl0l2ardb:~# ifconfig -a

etho Link encap:Ethernet HWaddr 68:05:ca:36:8d:8e
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:29 Memory:40400c0000-40400e0000

ethl Link encap:Ethernet HWaddr 00:00:00:00:00:00
BROADCAST MULTICAST MTU:1500 Metric:1

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 81

Layerscape SDK user guide

eth2

lo

sito

RX packets
TX packets
collisions
RX bytes:0

Link encap

BROADCAST MULTICAST

RX packets
TX packets
collisions
RX bytes:0

Link encap

inet addr:127.0.0.1

ineté6 addr

UP LOOPBACK RUNNING MTU:65536

RX packets
TX packets
collisions
RX bytes:0

Link encap
NOARP MTU
RX packets
TX packets
collisions
RX bytes:0

frame: 0
carrier:0

:0 errors:0 dropped:0 overruns:O0
:0 errors:0 dropped:0 overruns:O0

:0 txqueuelen:1000

(0.0 B) TX bytes:0 (0.0 B)
:Ethernet HWaddr 00:00:00:00:00:00

MTU:1500 Metric:1

:0 errors:0 dropped:0 overruns:0 frame:0
:0 errors:0 dropped:0 overruns:0 carrier:0
:0 txqueuelen:1000

(0.0 B) TX bytes:0 (0.0 B)

:Local Loopback

Mask:255.0.0.0

: ::1/128 Scope:Host

Metric:1

:0 errors:0 dropped:0 overruns:O0

:0 errors:0 dropped:0 overruns:O0

:0 txqueuelen:1000
(0.0 B) TX bytes:0

frame: 0
carrier:0

(0.0 B)

:UNSPEC HWaddr 00-00-00-00-3A-30-30-30-00-00-00-00-00-00-00-00

:1480 Metric:1

:0 errors:0 dropped:0 overruns:0 frame:0
:0 errors:0 dropped:0 overruns:0 carrier:
:0 txqueuelen:1000

(0.0 B) TX bytes:0 (0.0 B)

ethl hw ether 00:80:48:BA:d1:30
ethl 192.168.1.23 up

root@lsl0l2ardb:~# ifconfig
root@lsl0l2ardb:~# ifconfig

root@lsl0l2ardb:~# ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp seg=3 ttl=128 time=1.92 ms
64 bytes from 192.168.1.1: icmp seg=4 ttl=128 time=4.29 ms
64 bytes from 192.168.1.1: icmp_seg=5 ttl=128 time=0.974 ms
64 bytes from 192.168.1.1: icmp seg=6 ttl=128 time=1.19 ms
e

--- 192.168.1.1 ping statistics ---

6 packets transmitted, time 5036ms
rtt min/avg/max/mdev

root@lsl0l2ardb: ~#

4 received, 33% packet loss,
0.974/2.096/4.295/1.318 ms

4.6.2.8 Check 'Link Up' for Serial Ethernet Interfaces

This section provides some basic checks that can be performed in U-Boot to help diagnose the cause of the networking errors
when experiencing problems with Ethernet interfaces.

Check Communication to External PHY

In order to check if U-Boot can communicate with the PHYs on the board, use the U-Boot command mdio 1ist. The U-Boot
command mdio list will display all manageable Ethernet PHYs.

Example:

=> mdio list

PFE_MDIO:

1 - RealTek RTL8211F <--> pfe ethl
2 - RealTek RTL8211F <--> pfe etho

The results from the mdio 1ist command above show that U-Boot was able to see PHY's on each of the RGMII/SGMII interfaces.

Check Link Status for External PHY

In order to check the status of a RGMII/SGMII link, use the mdio read command. Since this is a Clause 22 device, we pass two
arguments to the mdio read command.

mdio read <PHY address> <REGISTER Address>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

82 NXP Semiconductors

Board-specific Information

Example:

=> mdio read pfe eth0 1
Reading from bus PFE_MDIO
PHY at address 2:

1 - 0x79ad

=> mdio read pfe_ethl 1
Reading from bus PFE_MDIO
PHY at address 1:

1 - 0x79ad

The link partner (“copper side”) link status bit is in Register #1 on the PHY. The 'Link Status' bit is bit #2 (from the left) of the last
nibble. In the example above, the nibble of interest is "d" (d = b'1101'), and therefore the 'Link Status' = 1, which means 'link up'.
If the link were down this bit would be a "0," and we would see 0x7989.

4.6.3 LS1043ARDB

This section provides LS1043ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash and memory map layouts.

For more information on the LS1043ARDB refer to the QorlQ LS1043A Reference Design Board Reference Manual and the QorlQ
LS1043A Reference Design Board Getting Started Guide.

4.6.3.1 On-board Switch Settings

Default Settings

The RDB has user selectable switches for evaluating different boot options and different configurations for the LS1043A device.
The table below lists the default switch settings.

Table 17. Default Switch Settings

1 2 3 4 5 6 7 8
Sw3 ON[1] OFF [0] ON[1] ON[1] OFF [0] OFF [0] ON[1] ON [1]
sw4 OFF OFF OFF ON OFF OFF ON OFF
SW5 ON OFF ON OFF OFF OFF ON OFF

4.6.3.2 Supported boot options
LS1043ARDB supports the following boot options:

* NAND

* NOR

* 8D

4.6.3.3 U-Boot Environment Variables

Environment variable "hwconfig" is used within the U-Boot bootloader to convey information about desired hardware
configurations. It is an ordinary environment variable in that:

¢ |t can be set in the U-Boot prompt using the "setenv" command.

* |t can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig

¢ |t can be modified in the U-Boot command prompt using the "editenv" command.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 83

https://www.nxp.com/webapp/Download?colCode=LS1043ARDBRM&Parent_nodeId=1441121579998719223109&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&Parent_nodeId=1441121579998719223109&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&Parent_nodeId=1441121579998719223109&Parent_pageType=product

Layerscape SDK user guide

* |t can be saved in the U-Boot environment via the "saveenv" command.
Variable "hwconfig" is set to a sequence of option:value entries separated by semicolons.
The default setting for for "hwconfig" on LS1043ARDB is as follows:

hwconfig = fsl_ddr:bank_intlv=auto

4.6.3.4 System Memory Map

Start Physical Address End Physical Address Memory Type Size
0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1MB
0x00_0100_0000 0x00_OFFF_FFFF CCSRBAR 240MB
0x00_1000_0000 0x00_1000_FFFF OCRAMO 64KB
0x00_1001_0000 0x00_1001_FFFF OCRAM1 64KB
0x00_2000_0000 0x00_20FF_FFFF DCSR 16MB
0x00_6000_0000 0x00_67FF_FFFF IFC - NOR Flash 128MB
0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64KB
0x00_7FB0_0000 0x00_7FBO_OFFF IFC - FPGA 4KB
0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2GB

4.6.3.5 NOR Flash (Virtual) Banks

NOR flash is a simple and convenient destination for deploying images so it is frequently used. Many NXP development and
reference boards provide a special feature that allows a single NOR flash to be divided into multiple parts called “banks” This is
done by board-level logic that modifies address signals. Because there is only one NOR flash physically, the banks are sometimes
called "virtual" banks.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the one NOR flash. This
is very helpful during development, because you can use the U-Boot image in one bank to program an image set into a different
bank. If the new images are flawed, the old images are still functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be divided into up to 8 banks, but almost always the feature is used to
divide the flash into two halves only. For the LS1043ARDB, the 2 halves are called bankO and bank4.

Switch Settings and NOR Banks

The NOR flash on the board can be seen as two flash banks. The board DIP switch configuration preselects bank 0 as the
hardware default bank.

Switching to the alternate bank can be done in software and effectively swaps the first bank with the second bank, thereby putting
the alternate bank in the bank 0 address range until further configuration or until a reset occurs. This protects banks 0 and keeps
the board bootable under all circumstances.

To determine the current bank, refer to the U-Boot log:

U-Boot 2016.012.0+g2ea8lad

Clock Configuration:
CPUO (A53) : 1600 MHz CPU1(A53):1600 MHz CPU2 (A53):1600 MHz
CPU3 (A53) : 1600 MHz
Bus: 400 MHz DDR: 1600 MT/s FMAN: 500 MHz
Reset Configuration Word (RCW) :
00000000: 08100010 0a000000 00000000 00000000
00000010: 14550002 80004012 0025000 c1002000

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
84 NXP Semiconductors

Board-specific Information

00000020: 00000000 00000000 00000000 00038800
00000030: 00000000 00001101 00000096 00000001

I2C: ready

Model: LS1043A RDB Board

Board: LS1043ARDB, boot from vBank 4

CPLD: V1.4

PCBA: V3.0

SERDES Reference Clocks:

SD1 CLK1 = 156.25MHZ, SD1 CLK2 = 100.00MHZ

DRAM: Initializing DDR....

Detected UDIMM Fixed DDR on board

2 GiB (DDR4, 32-bit, CL=11, ECC off)

SEC: RNG instantiated

Firmware 'Microcode version 0.0.1 for LS102l1la rl.0' for 1021 V1.0

QE: uploading microcode 'Microcode for LS102la rl.0' version 0.0.1

Waking secondary cores to start from ££d0e000

All (4) cores are up.

Using SERDES1 Protocol: 5205 (0x1455)

Flash: 128 MiB

NAND : 512 MiB

MMC: FSL_SDHC: 0

EEPROM: NXID vl

PCIel: disabled

PCIe2: Root Complex no link, regs @ 0x3500000

PCIe3: Root Complex x1 genl, regs @ 0x3600000

PCI:
01:00.0 - 8086:10d3 - Network controller
PCIe3: Bus 00 - 01
In: serial
out: serial
Err: serial
Net: Fmanl: Uploading microcode version 106.4.18

el000: 00:1b:21:46:61:df
FM1@DTSEC1l, FM1@DTSEC2, FM1@DTSEC3, FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1,
el000#0 [PRIME]
Warning: el000#0 MAC addresses don't match:
Address in SROM is 00:1b:21:46:61:df
Address in environment is 00:e0:0c:00:85:07

Bank Switching
Bank switching can be done in U-Boot using the following statements:
* Switch to bank 0:
=>cpld reset
* Switch to bank4:

=>cpld reset altbank

NOR Flash Memory Map
NOR flash memory map for LS1043A RDB can be found on the link below.

Related information
LSDK Memory Layout on page 66

4.6.3.6 Supported Reset Configuration Word (RCW) Binaries

The following RCW binaries are used on the Is1043ardb
RR_FQPP 1455/rcw 1500.bin

RR_FQPP 1455/rcw_1500_getdm.bin

RR_FQPP 1455/rcw_1500_ sben.bin

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 85

Layerscape SDK user guide

RR_FQPP 1455/rcw_1600.bin
RR_FQPP 1455/rcw_1600_getdm.bin
RR_FQPP_1455/rcw_1600_sben.bin

The RCW directories' names conform to the following naming convention:

ab_cdef g
Table 18. RCW directories Naming Convention Legend
Slot Convention
a 'R' indicates RGMII1 @DTSECS3 is supported
'N' if not available/not used
b 'R indicates RGMII2@DTSEC4 is supported
'N' if not available/not used

c What is available in lane A

d What is available in lane B

e What is available in lane C

f What is available in lane D

g Hex value of serdes1 protocol value

Table 19. For Lanes (C through F)

Flag Convention

'N' NULL, not available/not used

P PCle

% XAUI

'S' SGMII

Q' QSGMII

F XFI

H SATA

‘Al AURORA

For example,

RR_FQPP 1455

means:
* RGMII1@DTSEC3 on board
* RGMII2@DTSEC4 on board
e XFI
* QSGMII

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

86

NXP Semiconductors

Board-specific Information

* PCle2 on Mini-PCle slot
* PCle3 on PCle Slot
* SERDESH1 Protocol is 0x1455
The RCW file names for the Is1043ardb conform to the following naming convention:

rcw_<frequency> <specialsettings>.rcw

Table 20. RCW Files Naming Convention Legend

Code Convention

frequency Core frequency(MHZ)

specialsetting bootmode SD/NAND/NOR and so on
special support nand: Nand boot

sben: Secure boot
Ipuart: Ipuarti
gspiboot: gspi boot

For example,
rcw_ 1500 sd.rcw means rcw for core frequency of 1500MHz with sd boot.

1s1043ardb/RR_FQPP_1455/rcw_1500.rcw means rcw for core frequency 0f 1500MHz with NOR boot.

4.6.3.7 Frame Manager Microcode (FMan ucode)

There are microcode binaries for the Frame Manager hardware block that is in QorlQ products. Specific platforms require specific
binaries, and those also have to match specific software versions (i.e., match Frame Manager Driver version). See the U-Boot
log for LS1043A version information and also for the version of FMan microcode currently flashed on the LS1043A (e.g., microcode
version 106.4.18). For Layerscape SDK, the following FMan microcode binaries should be used:

fsl fman ucode 151043 rl.1 106_4 18.bin (*)

fsl fman ucode 1s1043_rl1.1 108_4 9.bin

NOTE
(i) (*) Denotes the default FMan Microcode.

(ii) Refer to the "readme" and release notes in the microcode git repository for a description of the various microcode
releases.

(iii) Using a microcode binary from an older SDK with a Linux kernel from the current SDK is not supported.

4.6.4 LS1046ARDB

This section provides LS1046ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash and memory map layouts.

For more information on the LS1046ARDB refer to the QorlQ LS1046A Reference Design Board Reference Manual and the QorlQ
LS1046A Reference Design Board Getting Started Guide.

4.6.4.1 On-board Switch Settings

The RDB has user selectable switches for evaluating different boot options for the LS1046A device. Table below lists the default
switch settings and the description of these settings. (‘0" is OFF, '1'is ON.)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 87

https://www.nxp.com/webapp/Download?colCode=LS1046ARDBRM&Parent_nodeId=1471021402187717731012&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&Parent_nodeId=1471021402187717731012&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&Parent_nodeId=1471021402187717731012&Parent_pageType=product

Layerscape SDK user guide

Table 21. Default Switch Settings

1 2 3 4 5 6 7 8
SW3 0 1 0 0 0 1 1 0
Sw4 0 0 1 1 1 0 1 1
SW5 0 0 1 0 0 0 1 0

Below are additional switch settings for alternate boot devices. Please note that changing the boot device configuration may
require additional changes in the RCW or in other code images.

Table 22. LS1046ARDB Switch Settings

Boot Source Switch

QSPI flash 0 (bank0) SWH5[1-8] +SW4[1] = 0b'00100010_0 SW3[3-5]= 0b'000
QSPI flash 1 (bank4) SWH5[1-8] +SW4[1] = 0b'00100010_0 SW3[3-5]= 0b'001
SD SWH5[1-8] +SW4[1] = 0b'00100000_0

4.6.4.2 Supported Boot Options
LS1046ARDB supports the following boot options:

* SD

* QSPI

4.6.4.3 U-Boot Environment Variables

Environment variable "hwconfig" is used within the U-Boot bootloader to convey information about desired hardware
configurations. It is an ordinary environment variable in that:

* |t can be set in the U-Boot prompt using the "setenv" command.

¢ |t can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig

* |t can be modified in the U-Boot command prompt using the "editenv" command.
* |t can be saved in the U-Boot environment via the "saveenv" command.
Variable "hwconfig" is set to a sequence of option:value entries separated by semicolons.

The default setting for for "hwconfig" on LS1046ARDB is as follows:

hwconfig = fsl ddr:bank intlv=auto

4.6.4.4 System Memory Map

In 64-bit u-boot, there is a 1:1 mapping of physical address and effective address. After system startup, the boot loader maps
physical address and effective address as shown in the following table:

Start Physical Address End Physical Address Memory Type Size

0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1MB

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
88 NXP Semiconductors

Table continued from the previous page...

Board-specific Information

Start Physical Address End Physical Address Memory Type Size
0x00_0100_0000 0x00_OFFF_FFFF CCSRBAR 240MB
0x00_1000_0000 0x00_1000_FFFF OCRAMO 64KB
0x00_1001_0000 0x00_1001_FFFF OCRAM1 64KB
0x00_2000_0000 0x00_20FF_FFFF DCSR 16MB
0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64KB
0x00_7FB0_0000 0x00_7FBO_OFFF IFC - CPLD 4KB
0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2GB
0x05_0000_0000 0x05_07FF_FFFF QMAN S/W Portal 128M
0x05_0800_0000 0x05_OFFF_FFFF BMAN S/W Portal 128M
0x08_8000_0000 0x09_FFFF_FFFF DRAM2 6GB
0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G
0x48_0000_0000 Ox4F_FFFF_FFFF PCI Express2 32G
0x50_0000_0000 0x57_FFFF_FFFF PCI Express3 32G

4.6.4.5 QSPI Flash (Virtual) Banks

LS1046ARDB has 2 QSPI flash connected over QSPI contoller. Only one QSPI flash is available at a time depending upon the
board switch settings. These switch settings can also be overriden by CPLD commands.

Switch Setting and QSPI Flash

To protect the default U-Boot in flash0 (bankO0), it is a convention employed by NXP to deploy work images into the flash1 (bank4),
and then switch to the flash1 (bank4) for testing. Switching to the flash1 (bank4) can be done in software using CPLD commands
and effectively swaps the flashO (bank0) with the flash1 (bank4). This protects flash1 and keeps the board bootable under all
circumstances.

To determine the current bank, refer to the U-Boot log:

U-Boot 2017.11-g00cde47 (Mar 22 2018 - 00:32:36 +0800)

SoC: LS1046AE Revl1.0 (0x87070010)

Clock Configuration:
CPUO (A72) :1800 MHz CPU1l(A72):1800 MHz CPU2(A72):1800 MHz
CPU3 (A72) :1800 MHz
Bus: 700 MHz DDR:

Reset Configuration Word (RCW) :
00000000: 0el50012 10000000 00000000 0OOOOCOOO
00000010: 11335559 40005012 40025000 c1000000
00000020: 00000000 00000000 00000000 00238800
00000030: 20124000 00003101 00000096 00000001

Model: LS1046A RDB Board

Board: LS1046ARDB, boot from QSPI vBank 4

CPLD: V2.2

PCBA: V2.0

SERDES Reference Clocks:

SD1 _CLK1 = 156.25MHZ, SD1 CLK2 = 100.00MHZ

I2C: ready

DRAM: Initializing DDR....using SPD

Detected UDIMM 18ASF1G72AZ-2G3Bl

7.9 GiB (DDR4, 64-bit, CL=15, ECC on)

2100 MT/s FMAN: 800 MHz

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 89

Layerscape SDK user guide

SECO:

DDR Chip-Select Interleaving Mode: CS0+CS1
RNG instantiated

PPA Firmware: Version LSDK-18.03
SEC Firmware: 'loadables' present in config
loadables: 'trustedOSel'

Using
Using
NAND :
MMC:

SERDES1 Protocol: 4403 (0x1133)
SERDES2 Protocol: 21849 (0x5559)
512 MiB

FSL_SDHC: 0

SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB, total 64 MiB
*** Warning - bad CRC, using default environment

EEPROM: NXID vl

In:
Out:
Err:

serial
serial
serial

Target spinup took 0 ms.
AHCI 0001.0301 32 slots 1 ports 6 Gbps 0xl impl SATA mode

flags:

Found
SCSI:

Fmanl:
PCIeO:
PCIel:
PCIe2:
el000:

64bit ncqg pm clo only pmp fbss pio slum part ccc apst

1 device(s).

Net: SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB, total 64 MiB
Uploading microcode version 106.4.18

pcie@3400000 Root Complex: no link

pcie@3500000 Root Complex: no link

pcie@3600000 Root Complex: x1 genl

00:15:17:8e:7f:1c

FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSECS5, FM1@DTSEC6, FM1@TGEC1l, FM1@TGEC2, el000#0

Bank Switching

Bank switching can be done in U-Boot using the following statements:

¢ Switch to QSPI bank 0 (default):

=>cpld reset

¢ Switch to QSPI bank 4:

=>cpld reset altbank

QSPI Flash Memory Map
QSPI flash memory map for LS1046ARDB can be found on the link below.

Related information
LSDK Memory Layout on page 66

4.6.4.6 Supported Reset Configuration Word (RCW) Binaries

The following RCW binary is used on the LS1046ARDB:

RR_FFSSPPPH_1133_5559/rcw_1800_gspiboot.bin.swap

The RCW directories' names conform to the following naming convention:
ab cdefghij k 1

Table 23. RCW directories Naming Convention Legend

Slot Convention
a 'R' indicates RGMII1 @ DTSECS is supported
Table continues on the next page...
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
90 NXP Semiconductors

Board-specific Information

Table 23. RCW directories Naming Convention Legend (continued)
b 'R' indicates RGMII2@DTSEC4 is supported
‘N' indicates not available/not used
c What is available in SerDes1 Lane 0
d What is available in SerDes1 Lane 1
e What is available in SerDes1 Lane 2
f What is available in SerDes1 Lane 3
9 What is available in SerDes2 Lane 0
h What is available in SerDes2 Lane 1
i What is available in SerDes2 Lane 2
j What is available in SerDes2 Lane 3
Table 24. Serdes Protocol
Slot Convention
k hex value of serdes1 protocol value
I hex value of serdes2 protocol value
Table 25. For Lanes (c through j)
Flag Convention
'N' NULL, not available/not used
P’ PCle
X' XAUI
'S’ SGMII
Q' QSGMII
F XFI
H SATA
‘Al AURORA
For example,

RR_FFSSPPPH 1133 5559
means:
¢ RGMII1 @DTSEC3 on board
* RGMII2@DTSEC4 on board
* XFI9@TGECH1 on board

Layerscape

Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

91

Layerscape SDK user guide

* XFIT0@TGEC2 on SFP cage
e SGMII5@DTSECS on board
* SGMII6@DTSECS6 on board
¢ PCle1 on Slot 1, mPCle
* PCle2 on Slot 2
* PCle3 on Slot 3
e SATA
* SERDES1 Protocol is 0x1133
* SERDES2 Protocol is 0x5559
The RCW file names for the LS1046ARDB conform to the following naming convention:

rcw_<frequencys> <specialsettings>.rcw

Table 26. RCW Files Naming Convention Legend

Code Convention

frequency Core frequency(MHZ)

specialsetting bootmode QSPI/SD/EMMC
special support emmc: eMMC boot

sdboot: SD boot
sben: Secure boot

gspiboot: QSPI boot

For example,

RR_FFSSPPPH 1133 5559/rcw_1800_gspiboot.bin.swap means rcw for core frequency is 1800MHz with
QSPI boot.

Note: The default frequency for LS1046ARDB is 1800MHz.

4.6.4.7 Frame Manager Microcode (FMan ucode)

There are microcode binaries for the Frame Manager hardware block that is in QorlQ products. Specific platforms require specific
binaries, and those also have to match specific software versions (i.e., match Frame Manager Driver version). See the U-Boot
log for LS1046A version information and also for the version of FMan microcode currently flashed on the LS1046A (e.g., microcode
version 106.4.18). For Layerscape SDK, one of the following FMan microcode binaries should be used:

fsl fman ucode 1s1046_rl1.0 106_4 18.bin(*)
fsl fman ucode 1s1046_r1.0_108_4 9.bin

NOTE
(i) (*) Denotes the default FMan Microcode.

(i) Refer to the "readme" and release notes in the microcode git repository for a description of the various microcode
releases.

(iii) Using a microcode binary from an older SDK with a Linux kernel from the current SDK is not supported.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
92 NXP Semiconductors

Board-specific Information

4.6.5 LS1088ARDB

This section provides LS1088ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash and memory map layouts.

For more information on the LS1088ARDB refer to the QorlQ LS1088A Reference Design Board Reference Manual and the QorlQ
LS1088A Reference Design Board Getting Started Guide.

4.6.5.1 On-board Switch Settings

Default Settings
The table below lists the default switch settings for the LS1088ARDB.

Table 27. Default Switch Settings

Switch Settings (1: ON; 0: OFF)

S 0011 0001 (for QSPI Boot)
0010 0000 (for SD Boot)

Sw2 0100 0000
SW3 1111 0010
Sw4 1001 0011
SW5 1111 0000

To switch from QSPI to SD you may also use the following command:

=> i2c mw 66 0x60 0x20; i2c mw 66 10 10;i2c mw 66 10 21

4.6.5.2 Supported Boot Types
LS1088ARDB supports the following boot types for this release:
e SD
e QSPI

4.6.5.3 Booting

Booting U-Boot

By default (as per board switch settings), the boot loader (U-Boot) image located in QSPI flash0 or SD card (Link to top where
switch settings are listed) runs when the power is turned on. Press any key while U-Boot is counting down to stop U-Boot from
automatically running the bootcmd variable and booting Linux.

As the U-Boot boots to its prompt, users can use the commands listed below to deploy new images onto the RDB.

For more details refer to On-board Switch Settings on page 93.

Booting Linux
Booting Linux is controlled by the contents of U-Boot enviroment variable bootcmd.

U-Boot passes the contents of U-Boot environment variable bootargs to Linux as boot-time kernel parameters. The commands
in this variable are automatically run and Linux boots after U-Boot counts down a number of seconds given by U-Boot environment
variable bootdelay. Variable bootdelay can be set to -1 to avoid automatically booting Linux.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 93

https://www.nxp.com/webapp/Download?colCode=LS1088ARDBRM&Parent_nodeId=1472766065614726996732&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1088ARDBGSG&Parent_nodeId=1472766065614726996732&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1088ARDBGSG&Parent_nodeId=1472766065614726996732&Parent_pageType=product

Layerscape SDK user guide

One can view the values of U-Boot enviroment variables using the U-Boot "printenv" command. The critical variables for booting
Linux and their default values are shown below.

1.

bootargs: contains parameters that are passed to the Linux kernel before it starts.

=> printenv bootargs
bootargs=console=ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio, 0x21c0500,
ramdisk size=0x2000000 default hugepagesz=2m hugepagesz=2m hugepages=256

Notes on these kernel parameters:
* Select ttyS0 as the console serial port.
* Select file system to be a RAM disk populated from an image in the kernel itb file.

* Allocate huge pages for user space (ODP) use. This is not needed unless you plan to use ODP. Please see ODP
documentation for more information.

Environment variable mcinitcmd contains commands used during U-Boot for Management Complex load. It is not
mandatory but very useful. Refer to U-Boot Environment Variables on page 95 for more information.

For SD/eMMC boot:

pri mcinitcmd

mcinitcmd=mmcinfo;mmc read 0x80000000 0x5000 0x800;mmc read 0x80100000 0x7000 0x800;env
exists secureboot && mmc read 0x80700000 0x3800 0x800 && mmc read 0x80740000 0x3A00
0x800 && esbc validate 0x80700000 && esbc validate 0x80740000 ;fsl mc start mc
0x80000000 0x80100000

For QSPI boot:

pri mcinitcmd

mcinitcmd=sf probe 0:0;sf read 0x80000000 0xA00000 0x100000;sf read 0x80100000 OxE00000
0x100000;env exists secureboot && sf read 0x80700000 0x700000 0x40000 && sf read
0x80740000 0x740000 0x40000 && esbc validate 0x80700000 && esbc validate

0x80740000 ;fsl mc start mc 0x80000000 0x80100000

Environment variable bootcmd contains commands used to boot Linux. The image needs to be copied to DDR first.
For SD/eMMC boot:

=> pri bootcmd

bootcmd=env exists mcinitcmd && run mcinitcmd ; && env exists mcinitcemd && mmcinfo; mmc
read 0x88000000 0x6800 0x800; && fsl mc apply dpl 0x88000000;run distro bootcmd;run
sd_bootcmd

=> pri distro bootcmd

distro bootcmd=setenv scsi need init; for target in ${boot targets}; do run bootcmd $
{target}; done

=> pri sd bootcmd

sd_bootcmd=echo Trying load from sd card..;mmcinfo; mmc read $load addr $kernel addr sd
Skernel size sd ; bootm $load addr#$BOARD

For QSPI boot:

=> pri bootcmd

bootcmd=sf read 0x80200000 0xd00000 0x100000;env exists mcinitcmd && env exists
secureboot && sf read 0x80780000 0x780000 0x100000 && esbc validate 0x80780000;env
exists mcinitcmd && fsl mc apply dpl 0x80200000;run distro bootcmd;run gspi_ bootcmd;env
exists secureboot && esbc_halt;

=> pri distro bootcmd

distro bootcmd=setenv scsi need init; for target in ${boot targets}; do run bootcmd $
{target}; done

=> pri gspi bootcmd

gspi bootcmd=echo Trying load from gspi..;sf probe && sf read $load addr $kernel addr
Skernel size ; env exists secureboot && sf read $kernelheader addr r $kernelheader addr
$kernelheader size && esbc validate ${kernelheader addr_r}; bootm S$load_ addr#$BOARD

U-Boot enviroment variables such as kernel 1load contain addresses used in the boot process. You can inspect them using the
U-Boot printenv command. The bootcmd command may change depending upon the mcinitcmd env variable.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

94

NXP Semiconductors

Board-specific Information

4.6.5.4 U-Boot Environment Variables

DPAA2-specific Environment Vairables

* mchboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined, the complile-
time value coNFIG _Sys Ls Mc BOOT TIMEOUT Ms Will be the default. Normally, users do not need to set this variable
because the default is acceptable.

* mcmemsize: Defines amount of system DDR to be used by the Management Complex. If this variable is not defined, the
compile-time value 0x70000000 or 1.75GB will be the default. Normally, users do not need to set this variable because the
default is acceptable.

* mcinitcmd: Contains commands to load and start the Management Complex automatically before the U-Boot count down
to boot starts. If this variable is defined, its contents are run. The default value assumes that the Management Complex
(MC) firmware and Data Path Control file are stored in QSPI/SD flash at fixed addresses.

Environment variables that are not specific to DPAA2

* bootcmd: Contains commands that are automatically executed when the U-Boot boot command is run. This happens
automatically when the user does not interrupt U-Boot's initial count down.

=> pri

BOARD=1s1088ardb

arch=arm

baudrate=115200

board=1s1088a

board name=1s1088a

boot a script=load ${devtype} ${devnum}:${distro bootpart} ${scriptaddr} ${prefix}${script};
env exists secureboot && load ${devtype} ${devnum}:${distro bootpart} ${scripthdraddr} $
{prefix}${boot script hdr} && esbc_validate ${scripthdraddr};source ${scriptaddr}

boot _efi binary=load ${devtype} ${devnum}:${distro bootpart} ${kernel addr r} efi/boot/
bootaa64.efi; if fdt addr ${fdt_addr r}; then bootefi ${kernel addr r} ${fdt addr r};else
bootefi ${kernel addr r} ${fdtcontroladdr};fi

boot_extlinux=sysboot ${devtype} ${devnum}:${distro bootpart} any ${scriptaddr} $
{prefix}extlinux/extlinux.conf

boot net pci enum=pci enum

boot net usb start=usb start

boot_prefixes=/ /boot/

boot_script dhcp=boot.scr.uimg

boot script hdr=hdr 1s1088ardb bs.out

boot scripts=1s1088ardb boot.scr

boot targets=usb0 mmcO0 scsiO dhcp

bootargs=console=ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio, 0x21c0500

ramdisk size=0x3000000 default hugepagesz=2m hugepagesz=2m hugepages=256

bootcmd=env exists mcinitcmd && run mcinitcemd ;&& env exists mcinitemd && mmcinfo; mmc read
0x88000000 0x6800 0x800; && fsl mc apply dpl 0x88000000;run distro bootcmd;run sd bootcmd
bootcmd _dhep=run boot net usb start; run boot net pci enum; if dhcp ${scriptaddr} $
{boot_script dhcp}; then source ${scriptaddr}; fi;setenv efi fdtfile ${fdtfile}; setenv
efi old vci ${bootp vci};setenv efi o0ld arch ${bootp arch};setenv bootp vci PXEClient:Arch:
00011:UNDI:003000;setenv bootp arch 0xb;if dhcp ${kerne1_addr_r}; then tftpboot $
{fdt_addr_r} dtb/${efi fdtfile};if fdt addr ${fdt_addr r}; then bootefi ${kernel addr r} $
{fdt_addr r}; else bootefi ${kernel addr r} ${fdtcontroladdr};fi;fi;setenv bootp vci $
{efi o0ld vci};setenv bootp arch ${efi old arch};setenv efi fdtfile;setenv

efi old arch;setenv efi old vci;

bootcmd mmcO=setenv devnum 0; run mmc_boot

bootcmd scsilO=setenv devnum 0; run scsi_ boot

bootcmd usbO=setenv devnum 0; run usb boot

bootdelay=2

cpu=armv8

distro bootcmd=setenv scsi need init; for target in ${boot targets}; do run bootcmd $
{target}; done

efi dtb prefixes=/ /dtb/ /dtb/current/

ethl0addr=68:05:ca:26:57:43

ethact=DPMACl@xgmii

ethprime=DPMACl@xgmii

fdt addr=0x64£00000

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 95

Layerscape SDK user guide

fdt addr r=0x90000000

fdt _high=0xa0000000

fdtcontroladdr=££d18160

fdtheader_addr_r=0x80100000

hwconfig=fsl ddr:bank intlv=auto

initrd_high=0xffffffffffffffff

installer=load mmc 0:2 $load_addr /flex_linux_armé4.itb; env exists mcinitcmd && run
mcinitemd && mmc read 0x80200000 0x6800 0x800; fsl mc apply dpl 0x80200000;bootm

$load addr#lsl088ardb

kernel addr=0x1000000

kernel_addr_r=0x81000000

kernel addr_ sd=0x8000

kernel size=0x2800000

kernel size sd=0x14000

kernel start=0x580100000

kernelheader addr=0x800000

kernelheader addr r=0x80200000

kernelheader size=0x40000

kernelheader start=0x580800000

load addr=0xa0000000

load efi dtb=load ${devtype} ${devnum}:${distro bootpart} ${fdt_addr r} ${prefix}s

{efi fdtfile}

mcinitemd=mmcinfo;mmc read 0x80000000 0x5000 0x800;mmc read 0x80100000 0x7000 0x800;env
exists secureboot && mmc read 0x80700000 0x3800 0x800 && mmc read 0x80740000 O0x3A00 0x800 &&
esbc_validate 0x80700000 && esbc _validate 0x80740000 ;fsl mc start mc 0x80000000 0x80100000
mcmemsize=0x70000000

mmc_boot=1f mmc dev ${devnum}; then setenv devtype mmc; run scan dev_for boot part; fi
nor bootcmd=echo Trying load from nor..;cp.b S$kernel start $load addr $kernel size ; env
exists secureboot && cp.b $kernelheader start $kernelheader addr r S$kernelheader size &&
esbc_validate ${kernelheader addr r}; bootm $load addr#S$BOARD

gspi_bootcmd=echo Trying load from gspi..;sf probe && sf read $load addr $kernel addr
Skernel size ; env exists secureboot && sf read S$kernelheader_addr r $kernelheader_ addr
S$kernelheader size && esbc validate ${kernelheader addr r}; bootm $load addr#$BOARD
ramdisk addr=0x800000

ramdisk_size=0x2000000

scan_dev_for boot=echo Scanning ${devtype} ${devnum}:${distro bootpart}...; for prefix in $
{boot_prefixes}; do run scan dev_for scripts; done;

scan_dev_for boot part=part list ${devtype} ${devnum} devplist; env exists devplist ||
setenv devplist 1; for distro bootpart in ${devplist}; do if fstype ${devtype} ${devnum}:$
{distro bootpart} bootfstype; then run scan dev for boot; fi; done

scan dev_for efi=setenv efi fdtfile ${fdtfile}; for prefix in ${efi dtb prefixes}; do if
test -e ${devtype} ${devnum}:${distro bootpart} ${prefix}${efi fdtfile}; then run
load efi dtb; fi;done;if test -e ${devtype} ${devnum}:${distro_bootpart} efi/boot/
bootaa64.efi; then echo Found EFI removable media binary efi/boot/bootaaé4.efi; run
boot efi binary; echo EFI LOAD FAILED: continuing...; fi; setenv efi fdtfile
scan_dev_for extlinux=if test -e ${devtype} ${devnum}:${distro bootpart} ${prefix}extlinux/
extlinux.conf; then echo Found ${prefix}extlinux/extlinux.conf; run boot_ extlinux; echo
SCRIPT FAILED: continuing...; fi

scan dev_for scripts=for script in ${boot_ scripts}; do if test -e ${devtype} ${devnum}:$
{distro bootpart} ${prefix}s${script}; then echo Found U-Boot script ${prefix}${script}; run
boot_a script; echo SCRIPT FAILED: continuing...; fi; done

scriptaddr=0x80000000

scripthdraddr=0x80080000

scsi boot=run scsi init; if scsi dev ${devnum}; then setenv devtype scsi; run
scan_dev_for boot part; fi

scsi init=if ${scsi need init}; then setenv scsi need init false; scsi scan; fi
scsidevs=1

sd _bootcmd=echo Trying load from sd card..;mmcinfo; mmc read $load addr $kernel addr sd
Skernel size sd ; bootm $load addr#$BOARD

soc=fsl-layerscape

stderr=serial

stdin=serial

stdout=serial

usb _boot=usb start; if usb dev ${devnum}; then setenv devtype usb; run
scan_dev_for boot part; fi

vendor=freescale

Environment size: 5821/8188 bytes

=>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
96 NXP Semiconductors

Board-specific Information

4.6.5.5 Supported Reset Configuration Word (RCW) Binaries

LS1088A supports following RCW binaries:

Table 28. RCW binary

SoC

Binary Name

Descripton

Required Switch setting

LS1088A

rcw_x.bin

rcw_x_bootmode.bin

rcw_x specialsetting.bin

Core: 1600 MHz, Platform: 700 MHz,
DDR: 2100 MHz

x = Core frequency

bootmode = SD/NAND/NOR and so
on.

specialsetting = special setting:
sben:Secure boot

For example, rcw_1600.rcw means
rcw for core frequency of 1600MHz
with nor boot. rcw_1600_sd.rcw
means rcw for core frequency of
1600MHz with sd boot.

SerDes protocol used here is 0x1d,
Oxd

SYSCLK 100 MHz, SW3[6:8] =
010 SYSCLK Differential, SW
5[1]=1

NOTE

The RCW's provided with the release enable the following features:

1. The figure below shows the SERDES configuration supported for LS1088A.

Table 29. SerDes1

Protocol

C

0x1D

XFI2

XFI1

QSGb

QSGa

Table 30. SerDes2

Protocol

A

Cc

0x0D

PClet x1

PCle2 x1

PCle3 x1

SATA

2. Enables 4 UART without flow control
3. Enables I12C, SDHC, PCle, SATA, USB

4.6.5.6 Ethernet MAC Connectivity

For DPAA2 SoCs, it is helpful to know which SoC Ethernet MACs are connected to which physical Ethernet ports on the board.
The figure below shows this.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

97

Layerscape SDK user guide

4x10G
MAC10MACS MACSMACE Linux nid

ETH4 ETHS

ETHE ETHS

LS1088ARDB

MAC1 MAC2 MACTMACS MAC3MAC4 Serial Console
106 106G 4% 10G Port

Figure 1. Ethernet MAC Connectivity

In U-Boot, Ethernet interfaces are named according to MACs. For example, the interface connected to MAC1 is called
DPMACle@xgmii.

In Linux, only one MAC is enabled by default as a standard kernel Ethernet Interface. This interface is named eth1 by default.
The Ethernet port it corresponds to is shown in the figure. The reason that only one interface is enabled by default is because, in
DPAA2, Ethernet ports need not be associated with Linux kernel Ethernet driver instances. For example, they can be assigned
as ports on switches or allocated to user space. Furthermore, these associations can be made dynamically. As an example,
suppose that you want the Ethernet port connected to MAC1 to act as standard Linux Ethernet interface. To accomplish this, enter
the following (as root):

ls-addni dpmac.l

A new Linux Ethernet interface will be created on the fly and hot-plugged into the kernel.

Interface ethi is created automatically because the default data path layout (DPL) creates it. DPL's are a mechanism to create
DPAAZ2 entities prior to Linux boot. One can customize the DPL to get a different set of DPAA2 entities to be present automatically.

See the DPAA2-specific Software on page 633 for more information.

4.6.6 LS2088ARDB

This section provides LS2088ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash memory layouts.

For more information on the LS2088ARDB refer to the QorlQ LS2085/LS2088A Reference Design Board Reference Manual and
the QorlQ LS2085/LS2088A Reference Design Board Getting Started Guide.

4.6.6.1 On-board Switch Settings

Default Settings
The figure below shows default configuration switch settings for rev D - F boards. Earlier boards are not supported.

The bits on the switches are numbered from 1 to 8. In the figure, bit 1 is on the left.

Table 31. Default Switch Settings for NOR Boot

Switch Settings (1: ON; 0: OFF)
SW5 1111 1111

SW3 0001 0010

SW4 1111 1111

SWe6 1111 1111

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
98 NXP Semiconductors

https://www.nxp.com/webapp/Download?colCode=LS2085_88ARDBRM&Parent_nodeId=1472078210629724261133&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS2085_88ARDBGSG&Parent_nodeId=1472078210629724261133&Parent_pageType=product

Board-specific Information

Table 31. Default Switch Settings for NOR Boot (continued)

Switch Settings (1: ON; 0: OFF)
Sw7 0100 0010 (100 MHz SYSCLOCK)
SW9 0100 0000
SW8 0111 1111
Table 32. Default Switch Settings for QSPI Boot
Switch Settings (1: ON; 0: OFF)
SW5 1111 1111
SW3 0011 0001
SwW4 o111 1111
SWe6 1111 1111
SwW7 0100 1010 (100 MHz SYSCLOCK)
SW9 01000100
sws 0111 1111

Jumper Settings

Make sure the following jumper settings are correct based on the preferred type of boot.

Jumper Settings

J8 For QSPI-boot, via on-board gspi flash: 1-2
For QSPI-boot, via qspi emulator: 2-3

J14 For NOR-boot: 1-2
For QSPI-boot: 2-3

SYSCLK Frequency

The SYSCLK frequency is controlled by switch settings on the RDB. For revisions D — E of the LS2088A RDB, SYSCLK is controlled

by bits 1:3 of SW7. The available SYSCLK frequencies are:

Table 33. Available SYSCLK frequencies

Switch Setting Frequency
off off off 66.666 MHz
off off on 83.333 MHz
off on off 100.000 MHz
off on on 125.000 MHz
on off off 133.333 MHz

You must set the switches to match what your PBL file expects. There is some complexity regarding when changes to switches

take effect. The easy approach is to change the switches when the board is powered off. That will always work.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

99

Layerscape SDK user guide

4.6.6.2 Supported Boot Options
LS2088ARDB supports the following boot options:

* QSPI

* NOR

4.6.6.3 Booting

Booting U-Boot

By default (per board switch settings), the boot loader (U-Boot) image located in NOR flash bank 0 runs on power on. Press any
key while U-Boot is counting down to stop U-Boot from automatically running the "bootcmd" variable and booting Linux.

As the U-Boot boots to its prompt, users can use the commands listed below to deploy new images onto the RDB.

Booting Linux

Booting Linux is controlled by the contents of U-Boot enviroment variable "bootcmd".

U-Boot passes the contents of U-Boot environment variable "bootargs" to Linux as boot-time kernel parameters. The commands
in this variable are automatically run and Linux boots after U-Boot counts down a number of seconds given by U-Boot environment
variable "bootdelay". Variable bootdelay can be set to -1 to avoid automatically booting Linux.

One can view the values of U-Boot enviroment variables using the U-Boot "printenv" command. The critical variables for booting
Linux and their default values are shown below.

1.

bootargs: contains parameters that are passed to the Linux kernel before it starts.

printenv bootargs
bootrgs=console=ttyS1,115200 root=/dev/ram0 earlycon=uart8250,mmio, 0x21c0600
ramdisk size=0x2000000 default hugepagesz=2m hugepagesz=2m hugepages=256

Notes on these kernel parameters:

» Select ttyS1 (UART2) as the console serial port (ttySO will not work on early LS2085A RDB/ LS2088A RDB boards,
prior to Rev D).

* Select file system to be a RAM disk populated from an image in the kernel itb file.

* Allocate huge pages for user space (ODP) use. This is not needed unless you plan to use ODP. Please see ODP
documentation for more information.

Environment variable "mcinitcmd" contains commands used during U-Boot for Management Complex load. It is not
mandatory but very useful. Refer to U-Boot Environment Variables on page 101 for more information.

For NOR boot

printenv mcinitcmd
mcinitemd=fsl mc start mc 0x580a00000 0x580e00000

For QPSI boot

printenv mcinitcmd
mcinitcemd==sf probe 0:0;sf read 0x20a00000 O0xA00000 0x100000;sf read 0x20e00000
0xE00000 0x100000;fsl mc start mc 0x20a00000 0x20e00000

Environment variable "bootcmd" contains commands used to boot Linux. The image needs to be copied to DDR first.
e.g. For NOR boot

printenv bootcmd
bootcmd=run mcinitcemd && f£sl mc lazy apply dpl 0x580d00000 && cp.b Skernel start
S$kernel load $kernel size && bootm $kernel load || run distro_bootcmd

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

100

NXP Semiconductors

Board-specific Information

U-Boot enviroment variables such as "kernel_load" contain addresses used in the boot process. You can inspect them
using the U-Boot "printenv" command. "bootcmd" command may change depending upon mcinitcmd env variable.

4.6.6.4 U-Boot Environment Variables

DPAA2-specific Environment Variables

* mchoottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined the complile-time
value, CONFIG_sys Ls_Mc_BooT TIMEOUT Ms will be the default. Normally, users do not need to set this variable because the
default is acceptable.

* mcmemsize: Defines amount of system DDR to be use by the Management Complex. If this variable is not defined, the
compile-time value CONFIG_sYS_LS_MC_DRAM BLOCK MIN_SIZzE Will be the default. Normally, users do not need to set this
variable because the default is acceptable.

* mcinitcmd: Contains commands to load and start the Management Complex automatically before the U-Boot count down
to boot starts. If this variable is defined, its contents are run. The default value assumes that the Management Complex (MC)
firmware and Data Path Control file are stored in NOR flash at fixed addresses. The default value for NOR boot is £s1 mc
start mc 0x580a00000 0x580e00000 and for QSPIbootis fs1 mc start mc 0x20a00000 0x20e00000. Users may change
this variable as needed to load the MC files from sources other than NOR into DDR and then start the MC using the fsl_mc
command. For example, the files may be on a disk drive.

Environment variables that are not specific to DPAA2

bootcmd: Contains commands that are automatically executed when the U-Boot "boot" command is run. This happens
automatically when the user does not interrupt U-Boot's initial count down. In normal usage, bootcmd should contain the command
to apply the Management Complex Data Path Layout (DPL) file because this must be done before booting Linux. The default
value of bootcmd assumes that the DPL file is stored in NOR flash at a fixed address. The default is mcinitcmd && f£sl mc
lazyapply dpl 0x580400000 && cp.b S$kernel start $kernel load Skernel size && bootm $kernel load || run
distro _bootcmd for NOR-Boot

4.6.6.5 NOR Flash (Virtual) Banks

NOR flash is a simple and convenient destination for deploying images so it is frequently used. Many NXP development and
reference boards provide a special feature that allows a single NOR flash to be divided into multiple parts called “banks” This is
done by board-level logic that modifies address signals. Because there is only one NOR flash physically, the banks are sometimes
called "virtual" banks.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the one NOR flash. This
is very helpful during development because you can use the U-Boot image in one bank to program an image set into a different
bank. If the new images are flawed, the old images are still functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be divided into up to 8 banks, but almost always the feature is used to
divide the flash into two halves only. The halves are called bank 0 and bank 4.

This is relevant to SYSCLK and PBLs because PBL files are one of the image types that must be deployed. It is possible to have
different PBL files in the two banks, and they may require different SYSCLK frequencies. One must operate the board correctly
in order to avoid using the wrong SYSCLK with a PBL.

Switch Settings and NOR Banks

On the LS2085ARDB/LS2088ARDB revisions D — F, switch SW9 bits 3:5 control which bank the SoC loads from when it powers
up. The relevant values are:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 101

Layerscape SDK user guide

Table 34. Switch Settings and NOR Banks

Switch Settings NOR Banks
off off off Load from NOR Flash Bank 0
on off off Load from NOR Flash Bank 4

U-Boot prints which bank is loaded from. The output looks like following.

¢ For bank0

U-Boot 2016.01LS2088A-SDK+ge54c320 (Jul 17 2016 - 22:56:33 +0800)

SoC: LS2088E Version:1.0 (0x87090010)
Clock Configuration:
CPUO (A72) :1800 MHz CPU1l(A72):1800 MHz CPU2(A72):1800 MHz
CPU3 (A72) :1800 MHz CPU4 (A72):1800 MHz CPU5(A72):1800 MHz
CPU6 (A72) :1800 MHz CPU7(A72):1800 MHz
Bus: 700 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s
Reset Configuration Word (RCW) :
00000000: 48303838 48480048 00000000 00000000
00000010: 00000000 00000000 00200000 00000000
00000020: 00801180 00002581 00000000 00000000
00000030: 00000c0Ob 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00027000 00000000
00000070: 412a0000 00000000 00000000 00000000
I2C: ready
Model: Freescale Layerscape 2088A RDB Board
Board: LS2085A/LS2088A-RDB, Board Arch: V1, Board version: D, boot from vBank: 0

e For bank4

U-Boot 2016.01LS2088A-SDK+ge54c320 (Jul 17 2016 - 22:56:33 +0800)

SoC: LS2088E Version:1.0 (0x87090010)
Clock Configuration:
CPUO (A72) :1800 MHz CPU1l(A72):1800 MHz CPU2(A72):1800 MHz
CPU3 (A72) :1800 MHz CPU4 (A72):1800 MHz CPU5(A72):1800 MHz
CPU6 (A72) :1800 MHz CPU7(A72):1800 MHz
Bus: 700 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s
Reset Configuration Word (RCW) :
00000000: 48303838 48480048 00000000 00000000
00000010: 00000000 00000000 00200000 00000000
00000020: 00801180 00002581 00000000 00000000
00000030: 00000c0Ob 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00027000 00000000
00000070: 412a0000 00000000 00000000 00000000
I2C: ready
Model: Freescale Layerscape 2088A RDB Board
Board: LS2085A/LS2088A-RDB, Board Arch: V1, Board version: D, boot from vBank: 4

Bank Switching

U-Boot on the LS2085ARDB/LS2088ARDB has a useful command called gixis_reset. The command gixis_reset does a
hard reset, loading from the bank specified by the switches.

If the switches are set to load from bank 0, then the command gixis reset altbank will cause a reset into bank 4 (without a
need to change any switches). This is useful if banks 0 and 4 contain PBL files that require the same SYSCLK.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

102 NXP Semiconductors

Board-specific Information

NOR Flash Banks and Addresses

The “current” bank is the bank that was loaded and is currently running. The “alternate” bank is the other bank. For example, if
you are running from bank 0 then bank 4 is the alternate bank. If you are running from bank 4, bank 0 is the alternate bank. The
alternate bank if often called the "other" bank because it is the bank from which you are NOT booted.

Addressing is based on current and alternate/other banks, not banks 0 and 4. This is best explained by an example. Suppose the
address of something in the current bank is 0x5 8000 _o0000. The corresponding address in the alternate bank is changed in one
bit, 0x5_8400_0000. For example, suppose the byte at 0x5_g000_0000 have value oxaa and, while running U-Boot in the current
bank, and you read the byte at 0x5_8400_o0000 and see oxbb. Now, reboot after changing SW9 bits 3:5 so you are running U-
Boot from what was the alternate bank and is now the current bank. You will see oxbb at 0x5 8000 0000 and oxaa at
0x5_8400_0000.

This scheme is very useful, because it means you can always deploy images to the alternate bank using the same addresses,
regardless of which bank happens to be “current’ In other words, the steps to write an image into bank 4 using U-Boot running
from bank 0 are the same as the steps to write an image to bank 0 using U-Boot running from bank 4.

NOR Flash Memory Map
NOR flash memory map for LS2088A can be found on the link below.
Related information

LSDK Memory Layout on page 66

4.6.6.6 Supported RCW (Reset Configuration Word) Binaries

The release contains the RCW binaries for the LS2088ARDB with SoC revisions r1.0 and r1.1.

e For LS2088ARDB containing a LS2088A r1.0 SoC, use the RCW directory 1s2088ardb.

* For LS2088ARDB containing a LS2088A r1.1 SoC, use the RCW directory 1s2088ardb_revl.1.
These directories contains following folders:

¢ FFFFFFFF_PP_HH_0x2a_0x41

* FFFFFFFF_PP_NN_Ox2a_0x3f
The RCW sub-directories names for the LS2088ARDB boards conform to the following naming convention:
abcdefgh ij k1l mn

Table 35. LS2088ARDB RCW Directory Naming Convention

Slot Convention

a What is available in SFP cage 1
b What is available in SFP cage 2
c What is available in SFP cage 3
d What is available in SFP cage 4
e What is available in SFP cage 5
f What is available in SFP cage 6
g What is available in SFP cage 7
h What is available in SFP cage 8
i What is available in Slot 1

j What is available in Slot 2

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 103

Layerscape SDK user guide

Table 35. LS2088ARDB RCW Directory Naming Convention (continued)

k SATA1
I SATA2

NOTE
For the SFP cage and Slots (a..j) the following symbols are used:

* 'N'is NULL, not available/not used
e 'P'is PCle
* 'S'is SGMII
* 'Q'is QSGMII
e 'Fis XFI
e 'H'is SATA
Serdes1 protocol (m):
m = 'hex value of serdes1 protocol value'

Serdes2 protocol (n):

n = 'hex value of serdes2 protocol value'

RCW binaries present in above sub-directories follow below naming convention

Files naming convention

rcw_X.rcw
rcw_X y.rcw
rcw_x bootmode.rcw

x = Core frequency
y = Platform frequency
bootmode = nor(default)/sd/gspi

For example,
rcw_2000.rcw means rcw for core frequency of 2000MHz.
rcw_2000_700.rcw means rcw for core frequency 2000MHz and Platform frequecny 700MHz.
rcw_2000_gspi.rcw means rcw for core frequency of 2000MHz with QSPI boot.

Default recommended settings

Default flash image in the Release is created with for rcw_2000.bin from I1s2088ardb directory. One needs to update rcw as per
the below recommendation

directory

For LS2088ARDB with LS2088A r1.0, it is recommended to use RCWs from directory Is2088ardb
For LS2088ARDB with LS2088A r1.1, it is recommended to use RCWs from directory Is2088ardb_rev1.1

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
104 NXP Semiconductors

Board-specific Information

NOTE
To be compatible with both LS2088A 1.0 and 1.1, RCW image rcw_1800.bin is used by default for SoC running at
1800MHz in this release, if users want to use a different RCW image for LS2088A 1.1 running at 2000MHz, follow
the steps as below:

step1:$ cd flexbuild
step2: $ flex-builder -c rcw

step 3: download RCW image from flexbuild/build/firmware/rcw/Is2088ardb_rev1.1/
FFFFFFFF_PP_HH_0x2a_0x41/rcw_2000.bin to Is2088ardb board under U-Boot prompte, replace rcw_1800.bin
with rew_2000.bin

=> tftp a0000000 rcw 2000.bin
To program current bank:

=> protect off 580000000 +$filesize && erase 580000000 +S$filesize && cp.b a0000000
580000000 S$filesize

To program alternate bank:

=> protect off 584000000 +$filesize && erase 584000000 +S$filesize && cp.b a0000000
584000000 S$filesize

sub-directories

default serdes protocol for LS2088ARDB: 0x2a_0x41, so it is recommended to use RCWs from FFFFFFFF_PP_HH_0x2a_0x41
For PCI gen3 use case, it is recommeded to use RCWs from FFFFFFFF_PP_NN_Ox2a_0x3f

RCW binary

For LS2088ARDB-RevD , it is recommended to use bin2 or bin3 (details mentioed above) . Due to board errata, bin1 is instable
on this board.

For LS2088ARDB-RevF (NOR-boot), either of bin1. bin2. bin3 can be used.
For LS2088ARDB-RevF (QSPI-boot), it is recommended to use rcw_2000_gspi.bin

4.6.6.7 Ethernet MAC Connectivity

For DPAA2 SoCs, it is helpful to know which SoC Ethernet MACs are connected to which physical Ethernet ports on the board.
The figure below shows this.

Sernal Console

Port
Network App
V¥ 4
A
LS2088ARDB

MAC4 |MAC2MACT MAC8 MAC7 MACEMACS Linuxni0
MAC3

§x10G

Figure 2. Ethernet MAC Connectivity

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 105

Layerscape SDK user guide

In U-Boot, Ethernet interfaces are named according to MACs. For example, the interface connected to MAC1 is called
DPMACle@xgmii.

In Linux, only one MAC is enabled by default as a standard kernel Ethernet Interface. This interface is named nio by default. The
Ethernet port it corresponds to is shown in the figure. The reason that only one interface is enabled by default is because, in
DPAA2, Ethernet ports need not be associated with Linux kernel Ethernet driver instances. For example, they can be assigned
as ports on switches or allocated to user space. Furthermore, these associations can be made dynamically. As an example,
suppose that you want the Ethernet port connected to MAC1 to act as standard Linux Ethernet interface. To accomplish this, enter
the following (as root):

ls-addni dpmac.1l

A new Linux Ethernet interface will be created on the fly and hot-plugged into the kernel.

Interface nio is created automatically because the default data path layout (DPL) creates it. DPL's are a mechanism to create
DPAAZ2 entities prior to Linux boot. One can customize the DPL to get a different set of DPAA2 entities to be present automatically.

See the DPAA2-specific Software on page 633 for more information.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
106 NXP Semiconductors

General boot flow

Chapter 5
Bootloaders

5.1 General boot flow

NXP SoC Booting Principles

The high-level (some details omitted) boot flow of an ARMv8a SoC is:

1.

SoC comes out of reset and reads and RCW/PBL image from a boot source such as NOR flash or an SD card or eMMC
flash. The RCW/PBL image contains configuration bits that control things such as:

* Pin muxing and the protocol selected for SerDes pins.
¢ Clock parameters and PLL multipliers.
* Device containing the first software (not in an internal SoC ROM) to run.
Code in an internal boot ROM starts running and configures low-level aspects of the SoC.

The boot ROM must then load the first external software to run from a boot device such as NOR flash or SD/eMMC. In
today’s LSDK, this first software is a boot loader, either U-Boot or UEFI.

The boot ROM transfers control to the boot loader.

The boot loader does additional system configuration and then loads and starts the PPA image from NOR flash or SD/
eMMC.

The PPA is a special resident firmware that runs at the highest ARMv8A privilege level EL3. It provides services to both
the boot loader and, later, the operating system. These services include controlling core power state and bringing additional
cores out of reset.

Usually, the boot loader must also load peripheral firmware, firmware required to make peripherals such as Ethernet
controllers work. The details of this differ from SoC to SoC.

When the boot loader finishes initialization, its job is to locate a Linux kernel image and a Linux device tree image. The
device tree is a description of the board and SoC hardware that Linux uses, for example, to know which peripherals are
available for use and to associate drivers with them. Often, boot loaders do some on-the-fly “fixups” to the device tree to
pass information to Linux.

In summary, the boot loader read kernel and device tree images from memory or mass storage device. Because boot
loaders have many drivers, there are many possible choices for the location of the images.

* NOR flash (serial QSPI or parallel)
¢ NAND
SD/eMMC

* USB mass storage devices of all types.
* SATA drives of all types.
e Ethernet, normally via TFTP.

10. After the boot loader loads the kernel and device tree and does fixups, it puts kernel boot parameters and the device tree

11.

into DDR where the kernel can find them and passes control to the kernel. One of the key kernel parameters is “root=" It
tells the Linux kernel what device contains the user space file set (user land). U-Boot stores kernel parameters in
environment variable bootargs.

Because the Linux kernel supports even more device drivers than boot loaders support, the array of choices for the user
land device is even larger.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 107

Bootloaders

* NOR flash (serial QSPI or parallel)
* NAND (using special file systems)
e SD/eMMC
* USB mass storage devices of all types.
* SATA drives of all types.
* Ethernet, normally via NFS.
* RAM disks (which the boot loader populates)
 Third party PCle-based mass storage devices and controllers
a. SATA controllers
b. SAS controllers
c. Fibre Channel Host Bus Adaptors
d. NVMe cards
e. And more.

Once the kernel is up, it starts user land, starting with systemd. The startup process is part of the Ubuntu file set and conforms
to normal Ubuntu procedures.

Notes on General Boot Principles

¢ In the future, the boot flow will be altered to have the boot ROM load the PPA before the boot loader. The PPA will then
load and start the boot loader. This mechanism allows consolidation of more configuration into one place, the PPA. This
configuration is then removed from the boot loaders.

» Secure boot does not change the overall sequence. The significant difference is that secure boot involves each component
(starting with the boot ROM) validating the images it loads and starts. This sequence of image validations is called the
“chain of trust”

Linux often resets peripherals and reloads their firmware. This process is specific to SoC's.

5.2 U-Boot

5.2.1 LSDK U-Boot uses distro boot feature

As in previous versions of the NXP SDK, the U-Boot variable boot cmd contains commands that represent the default boot process.
LSDK is different in that it uses a standard U-Boot feature called distro boot to make automatic booting more flexible. In distro
boot, bootcmd runs additional commands in the variable distro bootcmd. These commands are the heart of the distro boot
process.

Distro boot sequential examines partitions on mass storage devices looking for a script file. When U-Boot finds one, it loads and
executes it to initiate the boot process.

The mass storage devices to be searched are defined in the U-Boot environment variable boot _targets. Set it to control which
mass storage devices are searched and the order in which they are searched. For example,

=> printenv boot targets
boot targets=usb0 mmcO0 scsiO dhcp

The command above shows the search order USB device 0, MMC (or SD) device 0, SCSI (SATA) device 0, followed by DHCP.

The process of searching involves a number of U-Boot variables. It ends with the variables shown below in an example from an
LS2088ARDB.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
108 NXP Semiconductors

=> printenv scan _dev_for scripts

U-Boot

scan_dev_for scripts=for script in ${boot_ scripts}; do if test -e ${devtype} ${devnum}:$
{distro bootpart} ${prefix}s${script}; then echo Found U-Boot script ${prefix}${script}; run
boot _a script; echo SCRIPT FAILED: continuing...; fi; done => printenv boot scripts

boot scripts=1s2088ardb boot.scr => printenv boot a script boot a script=load ${devtype} $
{devnum}:${distro_bootpart} ${scriptaddr} ${prefix}s${script}; env exists secureboot && load $
{devtype} ${devnum}:${distro bootpart} ${scripthdraddr} ${prefix}s{boot script hdr} &&

esbc validate ${scripthdraddr};source ${scriptaddr}

The process searches for a script named by the variable boot_scripts. In this example, the search is for a script named
1s2088ardb_boot .scr. When this script is located, it is loaded into RAM using the 10ad command and run using the source

command. This causes Linux to boot.

LSDK puts boot scripts into a file system on the second partition of a mass storage device. U-Boot can display files in a file system.
Continuing the example, the following U-Boot commands list the files in the second partition of USB device 0 (do a usb start

first):

=> 1s usb 0:2

<DIR> 4096
<DIR> 4096 ..
<DIR> 16384 lost+found

33301280 firmware_lsl043ardb_uboot_norboot.img
33301280 firmware_ lsl046ardb_uboot gspiboot.img
33301280 firmware 1s1088ardb uboot gspiboot.img
33301280 firmware 1s2088ardb uboot norboot.img

16524064 flex linux_armé64.itb
10005 fsl-1sl10l2a-frdm.dtb

10145 fsl-1s10l2a-gds.dtb

8974 fsl-1s1l0l12a-rdb.dtb
30832 fsl-1s1043a-gds.dtb
28619 fsl-1s1043a-rdb.dtb
30134 fsl-1sl043a-rdb-usdpaa.dtb
30010 fsl-1sl046a-gds.dtb
27125 fsl-1sl1046a-rdb.dtb
28556 fsl-1sl046a-rdb-usdpaa.dtb
14692 fsl-1s1088a-gds.dtb
15451 fsl-1s1088a-rdb.dtb
19713 fsl-1s2080a-gds.dtb
19243 fsl-1s2080a-rdb.dtb
20651 fsl-1s2088a-gds.dtb
19545 fsl-1s2088a-rdb.dtb

<DIR> 4096 grub

1152 hdr 1sl043ardb_bs.out
1152 hdr 1sl046ardb bs.out

16654848 Image
7443102 Image.gz

703
703
862
853

1s1043ardb_boot.scr
1sl046ardb_boot.scr
1s1088ardb_boot.scr
1s2088ardb_boot.scr

9035568 perf

8948941 ramdisk rootfs armé64.ext4.gz
8949005 ramdisk rootfs armé64.ext4.gz.uboot

<DIR> 4096 secboot hdrs

7443166 ulmage-4.4.65-dirty

<SYM> 19 vmlinuz
0 c80546ca-02

It shows that this USB drive contains scripts (and necessary images) to boot any of the boards LS1043ARDB, LS1046ARDB,
LS1088ARDB, and LS2088ARDB. For example, the LS2088ARDB boot script is 1s2088ardb_boot . scr. The script files are
binary. But one can boot Linux and look at them. LSDK mounts the boot partition containing the scripts at mount point /boot.

user@localhost:~$ 1s /boot
c80546ca-02

firmware 1sl1043ardb uboot norboot.img
firmware 1sl046ardb uboot gspiboot.img

hdr_1sl043ardb_bs.out

firmware 1s2088ardb uboot norboot.img
Image

flex linux_armé4.itb

fsl1-1s2088a-gds.dtb
fsl-1s2088a-rdb.dtb
grub firmware 1s1088ardb uboot gspiboot.img

hdr 1sl046ardb_bs.out

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

109

Bootloaders

fsl-1s1012a-frdm.dtb Image.gz

fsl-1s1012a-qgds.dtb lost+found
fsl-1s1012a-rdb.dtb 1s1043ardb_boot.scr
fsl-1s1043a-qgds.dtb 1s1046ardb_boot.scr
fsl-1s1043a-rdb.dtb 1s1088ardb_boot.scr
fsl-1s1043a-rdb-usdpaa.dtb 1s2088ardb_boot.scr
fsl-1sl1046a-qgds.dtb perf

fsl-1sl1046a-rdb.dtb ramdisk rootfs armé64.ext4.gz
fsl-1s1046a-rdb-usdpaa.dtb ramdisk rootfs armé4.ext4.gz.uboot
fsl-1s1088a-qgds.dtb secboot hdrs
fsl-1s1088a-rdb.dtb ulmage-4.4.65-dirty
fsl-1s2080a-qgds.dtb vmlinuz

fsl-1s2080a-rdb.dtb
The boot scripts are sophisticated due to secure boot. Ignore secure boot, and the key steps in a boot script are:

part uuid S$devtype S$devnum:3 partuuid3

setenv bootargs console=ttyS1,115200 earlycon=uart8250,mmio, 0x21c0600 root=PARTUUID=
S$partuuid3 rw rootwait Sothbootargs default hugepagesz=2m hugepagesz=2m hugepages=256 load
Sdevtype $devnum:2 Skernel addr r /vmlinuz; load $devtype S$devnum:2 $fdt _addr r /fsl-1s2088a-
rdb.dtb; bootm $kernel addr r - $fdt addr r

The distro boot search process sets the variables devtype and devnum. In this example, they would be "usb" and "o".

The U-Boot part command sets variable partuuid3 to the partition universal unique identifier of partition 3 of USB device 0. This
value is used in bootargs to identify the root partition to the Linux kernel. This method is better than using a device name (like /
dev/sda3) because it is not dependent on probe order.

The next steps are to load the kernel image (vmlinuz) and device tree (fs1-1s2088a-rdb.dtb) into RAM and then boot Linux
using bootm.

In summary (and ignoring secure boot), the distro boot processes searches for a partition with a file system containing a boot
script. It loads and runs the boot script. The boot script does the five steps above to boot Linux.

To boot your own kernel, replace the kernel and device tree images in /boot and reboot your system. But also install any needed
kernel modules first.

There are two types of userland in LSDK: 1) Large standard distro (Ubuntu rootfs) deployed on external SD/USB/SATA media
storage. 2) Prebuilt tiny ramdisk rootfs(currently non-customizable) deployed in flash media onboard for arm32/arm64 target.

If U-Boot is used as boatload, after LSDK is installed by flex-installer and reboots the target board, U-Boot will first automatically
search for boot script <platform>_boot . scr from SD/eMMC/USB/SATA storage media, if a valid <plat form>_boot .scr is found,
U-Boot will boot the external distro (Ubuntu as default) deployed on SD/USB/SATA media storage, otherwise U-Boot will fall back
to boot the tiny distro deployed on flash media onboard.

In case of booting LSDK tiny rootfs from flash media:
The default U-Boot environment bootargs is used and user can directly modify bootargs for custom kernel ondemand.
In case of booting LSDK distro from external SD/USB/SATA storage disk:

The default U-Boot environment 'bootargs' is NOT used by external distro, bootargs is preset in <platform>_ boot.scr, USers
can indirectly modify othbootargs ondemand, for example, setenv othbootargs fsl fm max frm=9600 in U-Boot prompt.

5.3 UEFI

Release Description

This section provides information about the LSDK UEFI release on QorlQ LS boards. The following features are supported in this
release:

* DDR4
* DUART

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
110 NXP Semiconductors

e 12C
e DSPI
* SATA

e SD, FAT32 filesystem

* GPIO Support
e RTC, Watchdog
* PPA Integration

¢ PCle — 1000 NIC card support

¢ DPAA 1.x support — XFI, RGMII, and SGMI
* DPAA2.x support - XFI

¢ SMP Linux boot via EFI_STUB on SD card
* PXE boot via PCle and DPAA interfaces

* DDR BIST Test

¢ Ubuntu Distro boot support
* KASLR Support in UEFI

¢ QSPI boot
e USB 3.0

* Prefetch configuration support
* MC High Mem Support
e RTC Support for LS1043A x2 Board

Feature Summary

UEFI

Features\Board LS1043ARDB LS2088ARDB LS1046ARDB
DDR4 YES YES YES
UART YES YES YES
12C Yes YES YES
DSPI Yes Yes No
SATA N/A YES YES
SD,FAT32 filesystem YES YES YES
GPIO YES NO YES
IFC-NAND YES YES NO
IFC-NOR YES YES N/A
RTC YES YES YES
Watchdog YES YES YES
PPA Integration YES YES YES

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

1

Bootloaders

Table continued from the previous page...

PCle — 1000 NIC YES YES YES (PCle Using legacy
interrupt)

DPAA 1.x YES N/A YES
DPAA 2.x N/A YES N/A
SMP Linux boot via YES YES YES
EFI_STUB on SD card
PXE boot via PCle and YES YES YES
DPAA interfaces
DDR BIST Test YES YES YES
Ubuntu Distro boot support | YES YES YES
KASLR Support in UEFI YES YES YES
QSPI boot No NO YES
USB 3.0 No YES NO
Prefetch Config support No YES NO
MC High Mem Support N/A YES N/A
Silicon Rev 1.0/1.1 1.0 1.0

Tool Chain

® gcc-linaro-4.9-2016.02-x86 64 aarché64-linux-gnu- Used to compile UEFI firmware (can be downloaded from
https://releases.linaro.org/components/toolchain/binaries/4.9-2016.02/aarch64-1linux-gnu/gcc-
linaro-4.9-2016.02-x86_64_aarch64-linux-gnu.tar.xz)

Known issues

QUEFI-780: Is1043ardb_uefi reconnect hang

Limitation

On LS1046ARDB, QSPI flash is disabled during device tree fix-up and Linux will not be able to use QSPI flash as UEFI run time
services will be using it for variables storage.

5.3.1 Introduction

Purpose

This section describes how to use the accompanying LSDK release on the QorlQ Layerscape platforms and how to boot LSDK
distro with UEFI. The section covers UEFI enablement on QorlQ Layerscape platforms and does not describe UEFI specifications
in detail.

References
» Unified Extensible Firmware Interface Specification
* QorlQ LS1043A Reference Manual
* QorlQ LS1046A Reference Manual

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
12 NXP Semiconductors

http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1043a-and-1023a-multicore-communications-processors:LS1043A?tab=Documentation_Tab
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1046a-and-1026a-multicore-communications-processors:LS1046A?tab=Documentation_Tab

UEFI

5.3.2 UEFI overview

UEFI (Unified Extensible Firmware Interface) describes an interface between the operating system (OS) and the platform firmware.
The interface consists of data tables that contain platform-related information, plus boot and runtime service calls that are available
to the operating system and its loader. Together, these provide a standard, modern environment for booting an operating system
and running pre-boot applications.

UEFI implementations are governed by the UEFI specifications, which are designed as a pure interface specification. As such,
the specification defines the set of interfaces and structures that platform firmware must implement.

Operating system

Extensible Firmware Interface

T

Firmware

Hardware

Figure 3. UEFI

For the latest version of UEFI, refer to References

UEFI Bootflow

The following is the Boot Execution Order on QorlQ Layerscape boards:
» Execution begins in the PBI state machine when the SoC comes out of reset
 After PBI, execution starts with SP bootcore which gives control to GPP Bootcore
* GPP bootcore gives control to UEFI
* Bootcore in UEFI branches to EL3 init code in PPA
* When PPA completes EL3 initialization, it branches back to UEFI in EL2
* Bootcore in UEFI branches to Linux kernel in EL1
¢ Linux Kernel invokes PSCI (cpu_on) to release secondary core
¢ Execution starts in the GPP bootrom when secondary core released from reset
¢ If core is marked to be disabled, core enters power-down sequence in bootrom
* Cores not disabled branch to EL3 init code in PPA

* Upon completion of EL3 initialization, cores branch to start address at EL1 in kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 113

Bootloaders

Soc Reset

h

PBI State Machine

|

SP Bootrom

{

GPP Bootrom

l

UEFI (EL3)
Pre-PEI and PEI Phase

)

UEFI DXE
Phase(EL2)

7

PPA (EL3
Initialization)

)

UEFI DXE Phase (EL2)
Continue

v

UEFI BDS
Phase (EL2)

v

Kernel (EL1)

lPSCI (cpu_on)

Release Secondary
Cores

Powe Down

Is Core Disabled Senmenec(Glaationt)

Core branch

to start address
(EL1) in Kernel

Figure 4. UEFI bootflow

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
14 NXP Semiconductors

UEFI

Here, the PPA (Primary Protected Application) firmware is the platform and runtime security firmware which allows configuring
and enforcing platform specific security policies.

Environment requirements

Hardware requirements

* Host PC: Ubuntu (64-bit variant with at least 2 GB RAM) host is preferred to compile/build the UEFI firmware.

* Board: QorlQ Layerscape, with UART cable.

e SD Card: Preferably from well-known vendors like SanDisk.

Software requirements

¢ To build the UEFI firmware on the Ubuntu host, install uuid-dev.

$ sudo apt-get install uuid-dev

* To build the UEFI firmware on the Ubuntu host, install Linaro GCC-4.9 toolchain on your host machine using the following

commands.

$ wget https://releases.linaro.org/components/toolchain/binaries/4.9-2016.02/aarch64-
linux-gnu/gcc-linaro-4.9-2016.02-x86_ 64 aarché4-linux-gnu.tar.xz
$ tar -xvf gcc-linaro-4.9-2016.02-x86_ 64 aarché64-linux-gnu.tar.xz

Add the toolchain paths to the paTH environment variable.

$ export PATH=/home/user/linaro 4.9 2016/gcc-linaro-4.9-2016.02-x86_ 64 aarché64-linux-gnu/
bin:$PATH

Ensure that Python (2.7 or higher) is installed on the build machine, for successful compilation.

$ python -version
Python 2.7.12

5.3.3 LSDK distro boot with UEFI

Boot up Image Requirements

The following images are required for UEFI boot.

UEFI images - UEFI boot loader images
RCW (Reset Configuration Word) firmware

PPA (Primary Protected Application) firmware - For secure monitor and associated functions that comprise the base EL3 sw
foundation

Device Tree image - Data structure for describing hardware

FMAN (Frame Manager) Micro Code - Required for DPAA1 (Data Path Acceleration Architecture) interfaces (applicable for
LS1043ARDB and LS1046ARDB)

MC Firmware, DPL and DPC binaries for DPAA2 interfaces (applicable for LS2088ARDB)
Phy Firmware for Cortina Phy (applicable for LS2088ARDB)

UEFI Boot Order

The UEFI boot manager will try to boot from all entries as they appear in the UEFI boot menu. Boot entries can be divided into
the following three categories.

Boot entries for Block devices
Boot entries for Network Boot (PXE boot)
Boot entry for UEFI Shell

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 115

Bootloaders

For block devices, the UEFI boot manager will look for an EFI application with a predefined name (BooT{machine type short
name} .EFI) in /EFI/BOOT. If found, the boot manager will automatically run the EFI application. In our case (AArch64 ARM
platforms), the application should be named as BooTAA64 . EFI.

Linux Boot Storage Media Layout

Table 36. Media Layout

Region 1 Region 2 Region 3 Region 4 Region 5
(4 KB) (64 MB) (20 MB) (300 MB) (left space of disk)
MBR/GPT Loaders & FW Partition 1 Partition 2 Partition 3
(EXT4)
(Not applicable for (FAT 16/32) (EXT4) LABEL: rootf
UEFI) LABEL: EFI LABEL: boot - rootts
Ubuntu
BOOTAAG64.EFI Kernel or
b.cf DTB
grub-ctg Ubuntu-Core
flex-installer.itb
or
ipts/tool
scripts/tools CenOS
other
or
Debian

In the Linux environment, fdisk utility can be used to partition and format the target as per the table above and then copy the
required images (Kernel image, Rootfs) to the target.

For LSDK, flex-builder & flex-installer utility can be used to partition and install required images to target as per above
layout. For more information on how to build and install LSDK using flex-builder and flex-installer, refer to Layerscape SDK user
guide on page 41.

Image name Partition
EFI/BOOT/BOOTAAG4.EFI EFI partition
EFI/BOOT/grub.cfg EFI partition
Kernel image boot partition
Root file system rootfs partition

NOTE
* The Kernel Image should be the standard kernelimages build as arch/armé4 /boot /Image (for armé4).

* The device tree has to be stored in flash at a fixed offset (board specific) as per the LSDK flash layout. For
NOR flash, default value is (0x60F00000 to 0x6 0FFFFFF). Update ‘PcdFdtDevicePaths’ PCD in platform
description file (.dsc) for a different flash layout.

Sample files
e BOOTAAG4.EFI

Represents grub boot loader. It will load the grub. cfg kept in the same directory and provides grub menu to the user. The
user can select the required menu entry. Follow 'Generate BOOTAAG64.EFI’ for compilation steps.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
116 NXP Semiconductors

UEFI

¢ grub.cfg

grub.cfg provides boot options to user. For example, the grub.cfg can be used for booting the LSDK distro.

set default="1"
set timeout=10

menuentry 'LSDK on QorIQ ARM64 1sl1043ardb' {

search --no-floppy --file /42013eab-02 --set root

linux /Image console=ttyS0,115200 root=PARTUUID=42013eab-03 rootwait rw
earlycon=uart8250,mmio, 0x21c0600

NOTE
The example above uses a LSDK distribution. Specific kernel boot arguments could vary per distribution.

The table below represents the configurable parameters in grub. cfg.

Option Explanation Comments
search --no-floppy --file / Search all partitions for the given file For example, for LSDK, flex-
<FileName> --set root name. First Partition containing the installer will update the FileName as
specified file is set at root so that Grub PARTUUID of the partition containing
will look for required image (kernel Kernel image. This removes the
image) in this partition. ambiguity of finding a specific partition

based on UUID/LABEL when multiple
devices are connected.

root=PARTUUID=XXXXXXXX-YY It represents the PARTUUID of the For example, for LSDK, flex-
partition containing rootfs This is passed | installer will update it with PARTUUID
as boot argument to kernel. of the partition containing rootfs. This

make sure that correct rootfs is passed

to kernel and removes the ambiguity of
finding the correct rootfs based on

UUID/LABEL when multiple devices are

connected.
set timeout=N If defined, GRUB will wait ‘N’ Seconds, Adjust the timeout value as per
before booting the default menu entry.If requirement.

not defined, user always has to select
the required menu entry.

LSDK Distro Bootflow with UEFI

All required files (RCW, PPA, Device Tree, FMan, and UEFI images) are stored in NOR flash.
UEFI boot starts from NOR

When prompted, press ESCAPE to select a Boot Option (UEFI SHELL/PXE Boot) OR else UEFI boot manager tries to boot
from all boot entries starting from ‘Removable Media’ followed by ‘Network Boot’ and ‘UEFI SHELL

If a Removable Media (e.g. SD card) has a FAT formatted partition with /EFI/BOOT/BOOT{machine type short name}.EF|
(For example, BOOTAAB4.EFI for arm64), it will be executed by UEFI boot manager.

BOOTAA64 .EFI Will load grub.cfg.

grub . cfg contains menu entry for distro along with required parameter to identify kernel image and pass ‘rootfs’ path to kernel
as boot argument.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 117

Bootloaders

Flow diagram

UEFI Boot

h 4

. Try Boot from each
Grub Shell Exit Removable
Media

Found
EFI/BOOT/
BOOTAAGL.EFI
in Removable
Media

Boot From Metwork
(Pxeboot)

Execute
EFI/BOOT/BOOTAARS.EFT and Pxeboot Success Display UEFI Shell
EFI/BOCT/grub.dg

Yes
Menu Entry in
No grub.cfg executed
successfully
Digtro Boot .
¥
Linux Login

Figure 5. UEFI Bootflow Diagram

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
118 NXP Semiconductors

UEFI

Generate BOOTAAG4.EFI

Follow the steps below to compile the grub source code to generate BooTane4 . EFI. In general, BooTAR64 . EFI is provided by the
distribution like LSDK provides prebuild BooTAR64 .EFI.

* Get the grub source code and install the prerequisites as mentioned in INSTALL file.

$ git clone git://git.savannah.gnu.org/grub.git;
$ cd grub

e Use grub-2.02 tag.
$ git checkout tags/grub-2.02

¢ Set the toolchain path and set CROSS_COMPILE environment variable. See the Software Requirements section to download
and install the toolchain.

$ export PATH=/home/user/gcc-linaro-4.9-2016.02-x86_64 aarch64-linux-gnu/bin:S$PATH
$ export CROSS_COMPILE=aarché64-linux-gnu-

» Configure and compile source code for target (arm64)

$./autogen.sh
$./configure --target=aarché64-linux-gnu
S make

* Create standalone GRUB image.

$ echo 'configfile ${cmdpath}/grub.cfg' > grub.cfg
$ grub-mkstandalone --directory=./grub-core -O armé4-efi -o BOOTAA64.EFI --modules
"part gpt part msdos" /boot/grub/grub.cfg=./grub.cfg

NOTE
* GRUB standalone application has all the modules embedded in application itself and capability to recognize
different file system (ext2, ext4, and so on), thus removing the need for having a separate directory populated
with all of the GRUB UEFI modules and other related files.

« 'configfile ${cmdpath}/grub.cfg' instruct GRUB EFI (BOOTAAG4.EFI) to use grub. cfg placed in same
directory. Thus, making them portable.

¢ Option -modules="part_gpt part_msdos” (with the quotes) is necessary for $fcmdpath} feature to work
properly and to recognize MBR and GPT partitioning.

Conventions for UEFI and U-Boot compatibility

UEFI requires that the device tree binary (dtb) be stored along with other firmware. This means that for the use case where
¢ Firmware (RCW, PPA, Fman/MC ucode, boot loader, and so on) is in NOR flash
» Kernel image is on /boot on a mass storage device
* Root file system is in a mass storage device (/)

U-Boot must boot Linux with the dtb in NOR (not in a kernel itb) but the kernel image (not itb form) is stored in /boot. This means
that U-Boot boot . scr must extload a kernel image but not the dtb. It is consistent with what the LSDK specification says about
using booti.

5.3.4 Product Execution

5.3.4.1 Flash Layout

Some prebuilt images will be stored into flash on board as per the table below:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 119

Bootloaders

Definition Max NOR/QSPI/NAND SD Card
Size Flash Offset Start Block No.

RCW+PBI 1MB 0x00000000 0x00008
Boot firmware (U-Boot, 2MB 0x00100000 0x00800
UEFI)

Boot firmware Environment | 1MB 0x00300000 0x01800
PPA firmware 2MB 0x00400000 0x02000
Secure boot headers 3MB 0x00600000 0x03000
DPAA1 FMAN ucode 256KB 0x00900000 0x04800
QE / uQE firmware 256KB 0x00940000 0x04A00
Ethernet PHY firmware 256KB 0x00980000 0x04C00
Scripts 256KB 0x009C0000 0x04E00
DPAA2 MC 3MB 0x00A00000 0x05000
DPAA2 DPL 1MB 0x00D00000 0x06800
DPAA2 DPC 1MB 0x00E00000 0x07000
Device tree 1MB 0x00F00000 0x07800
kernel 16MB 0x01000000 0x08000
ramdisk rootfs 32MB 0x01100000 0x08800

5.3.4.2 LS1043ARDB

Obtain the UEFI source code

$ git clone https://source.codeaurora.org/external/goriqg/gorig-components/uefi; cd uefi
$ git checkout tags/LS1043ARDB-QUEFI DASH V4-0_ 1803

Compile the UEFI image
1. Set the toolchain path. Follow the 'Software Requirements' section to install and set the toolchain path.
2. Compile the source code to boot via NOR flash

a. To compile UEFI source code to boot via NOR flash, use the following commands.

cd uefi

source edksetup.sh

cd LS1043aRdbPkg

source 1sl043a env.cshrc
cd ../BaseTools

make clean

make

Uy Uy Uy U U U >

If you face g++ command not found error (most likely on Ubuntu), while making BaseTools then run the following
commands:

S$sudo apt-get install g++
S make clean
$ make

For booting via NOR flash, use the command below for compilation.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
120 NXP Semiconductors

UEFI

$ cd ../LS1043aRdbPkg
$./build.sh RELEASE XIP clean
$./build.sh RELEASE XIP

b. After a successful compilation, the UEFI firmware image is built at this path:

UEFI Firmware Image:
uefi/Build/LS1043aRdb/RELEASE GCC49/FV/LS1043ARDB EFI.fd

UEFI Non Volatile Variables Image:
uefi/Build/LS1043aRdb/RELEASE GCC49/FV/LS1043ARDBNV_EFI.fd

NOTE
In case the compilation fails, ensure the following:
ARCH environment variable is unset:
$ unset ARCH
GCC49 AARCH64_PREFIX variable is set properly:

$ export GCC49 AARCH64 PREFIX=' aarché4-linux-gnu-'

Booting LS1043ARDB to UEFI prompt (via NOR Boot)
* Prerequisites for NOR boot

TFTP server is required so relevant binaries can be flashed via NOR flash within the /tftpboot folder. Make sure that the
correct permissions are set for this folder.

¢ LS1043A NOR flash map

Flash Layout on page 119 represents NOR flash available on LS1043ARDB. The base address for the primary bank (VBank0/
Bank 0 64MB) is 0x60000000 and the base address for secondary bank (VBank4/Bank 4 64MB) is 0x64000000.

NOTE
For a different flash layout, offsets/address as shown in Flash Layout on page 119 should be changed in dec
(platform declaration file), dsc (platform description file), £a£f (firmware device file) and VarStore. fdf. inc
(firmware device file for non-volatile variables).

Flashing UEFI images on NOR flash bank 4 (alternate NOR flash bank)
* Boot to U-Boot prompt from NOR flash primary bank (Bank 0).
1. Setup serial port connection on host machine to capture logs from the LS1043ARDB.
2. Reset the board in order to boot U-Boot on bank 0. Make sure that a valid U-Boot image is flashed.

* Copy Images to NOR flash alternate bank using following commands:

=> setenv uefi 'tftp 0xa0000000 LS1043ARDB EFI.fd && erase 0x64100000 +$filesize && cp.b
0xa0000000 0x64100000 $filesize'
=> run uefi

=> setenv uefi env 'tftp 0xa0000000 LS1043ARDBNV_EFI.fd && erase 0x64300000 +S$filesize &&
cp.b 0xa0000000 0x64300000 s$filesize'
=> run uefi env

=> setenv rcw 'tftp 0xa0000000 rcw_1500.bin && erase 0x64000000 Ox640FFFFF && cp.b
0xa0000000 0x64000000 $filesize'
=> run rcw

=> setenv dtb 'tftp 0xa0000000 fsl-1sl1043a-rdb.dtb && erase 64F00000 +Sfilesize && cp.b
0xa0000000 64F00000 $filesize'
=> run dtb

=> setenv ppa 'tftp 0xa0000000 ppa.itb && erase 0x64400000 +Sfilesize && cp.b 0xa0000000
0x64400000 Sfilesize’

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 121

Bootloaders

=> run ppa
Note: PPA should be built without enabling OPTEE.

=> setenv fman 'tftp 0xa0000000 fsl fman ucode 151043 rl.1 108 4 9.bin && protect off
0x64900000 +S$filesize && erase 0x64900000 +$Sfilesize && cp.b 0xa0000000

0x64900000 $filesize && protect on 0x64900000 +S$Sfilesize!

=> run fman

The precompiled binary containing the images above can be downloaded from http://www.nxp.com (wget http://
www.nxp .com/1lgfiles/sdk/1sdk1803/firmware_1s1043ardb uefi norboot.img). Follow the steps below to use the
precompiled image:

Boot to U-Boot prompt from NOR flash primary bank (Bank 0)

=> setenv raddr_ temp 0xa0000000

=> setenv faddr firmware 0x64000000

=> tftp $raddr temp firmware 1lsl043ardb uefi norboot.img

=> if cmp.b $raddr_temp $faddr_firmware $filesize; then echo "No update"; else protect off
S$faddr firmware +$filesize && erase $faddr firmware +$filesize && cp.b S$raddr temp
S$faddr firmware $filesize && protect on $faddr firmware +$filesize; fi

=> cpld reset altbank

NOTE
Composite firmware(firmware_ls1043ardb_uefi_norboot.img) contains dtb of Linux kernel version 4.9. To boot
different Linux kernel (Ex: Linux 4.14), please update the dtb.

* Reset RDB to boot from NOR flash alternate bank (Bank 4).

Use the command below to switch to bank 4:

=> cpld reset altbank

5.3.4.3 LS1046ARDB

Obtain the UEFI source code

$ git clone https://source.codeaurora.org/external/goriqg/gorig-components/uefi; cd uefi
$ git checkout tags/LSlO46ARDB—QUEFI_DASH_V4—0_1803

Compile the UEFI image
1. Set the toolchain path. Follow the 'Software Requirements' section to install and set the toolchain path.
2. Compile the source code to boot via QSPI flash

a. To compile UEFI source code for QSPI flash boot, use the following commands:

cd uefi

source edksetup.sh

cd LS1046aRdbPkg

source lsl046a env.cshrc
cd ../BaseTools

make clean

make

Uy Uy Ur U U x>

If you face g++ command not found error (most likely on Ubuntu) while making BaseTools, then run the following
commands:

$sudo apt-get install g++
S make clean
$ make

For booting via QSPI flash, use the command below for compilation.

$ cd ../LS1046aRdbPkg
$./build.sh RELEASE QSPI clean
$./build.sh RELEASE QSPI

b. After a successful compilation, the UEFI firmware image is built at this path:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
122 NXP Semiconductors

HTTP://WWW.NXP.COM

UEFI

UEFI Firmware Image:
uefi/Build/LSlO46aRdb/RELEASE_GCC49/FV/LSlO46ARDB_EFI.fd

UEFI Non Volatile Variables Image:
uefi/Build/LS1046aRdb/RELEASE GCC49/FV/LS1046ARDBNV_EFI.fd

NOTE
In case the compilation fails, ensure the following:
ARCH environment variable is unset:
$ unset ARCH
GCC49 AARCH64_PREFIX variable is set properly:

$ export GCC49 AARCH64 PREFIX=' aarché64-linux-gnu-'

Booting LS1046ARDB to UEFI prompt (via QSPI Boot)
* Prerequisites for QSPI boot

TFTP server is required so relevant binaries can be flashed via QSPI flash within the /tftpboot folder. Make sure that the
correct permissions are set for this folder.

* LS1046A QSPI flash map

Flash Layout on page 119 represents QSPI flash available on LS1046ARDB. The base address for the primary bank (VBankO/
Bank 0 64MB) is 0x40000000 and the base address for secondary bank (VBank4/Bank 4 64MB) is 0x44000000..

NOTE
For a different flash layout, offsets/address as shown in Flash Layout on page 119 should be changed in dec
(platform declaration file), dsc (platform description file), £a£ (firmware device file) and varStore. fdf. inc
(firmware device file for non-volatile variables).

Flashing UEFI images on QSPI flash bank 4 (alternate QSPI flash bank)
* Boot to U-Boot prompt from QSPI flash primary bank (Bank 0).
1. Setup serial port connection on host machine to capture logs from the LS1046ARDB.
2. Reset the board in order to boot U-Boot on bank 0. Make sure that a valid U-Boot image is flashed.

¢ Copy Images to QSPI flash alternate bank using following commands:

=> sf probe 0:1

=>setenv uefi 'tftpboot 0x82000000 LS1046ARDB EFI.fd; sf erase 100000 +$filesize && sf
write 0x82000000 100000 sfilesize'

=> run uefi

=> setenv uefi env ' tftpboot 0x82000000 LS1046ARDBNV_EFI.fd;sf erase 300000 +sfilesize &&
sf write 0x82000000 300000 $filesize'
=> run uefi env

=> setenv rcw 'tftpboot 0x82000000 rcw 1800 gspiboot.bin.swap; sf erase 0 +s$filesize && sf
write 0x82000000 0 $filesize’
=> run rcw

=> setenv dtb 'tftpboot 0x82000000 fsl-1sl046a-rdb.dtb; sf erase F00000 +S$Sfilesize && st
write 0x82000000 F00000 $filesize '
=> run dtb

=> setenv ppa 'tftpboot 0x82000000 ppa.itb;sf erase 400000 +$Sfilesize && sf write
0x82000000 400000 s$filesize'

=> run ppa

Note: PPA should be built without enabling OPTEE.

=> setenv fman 'tftpboot 0x82000000 fsl fman ucode 1s1046_rl1.0_108 4 9.bin; sf erase

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 123

Bootloaders

900000 +S$Sfilesize && sf write 0x82000000 900000 Sfilesize'
=> run fman

The precompiled binary containing the images above can be downloaded from http://www.nxp.com (wget http://
www.nxp.com/1lgfiles/sdk/1sdk1803/firmware_1sl046ardb uefi_ gspiboot.img). Follow the steps below to use the
precompiled image:

Boot to U-Boot prompt from QSPI flash primary bank (Bank 0)

=> setenv raddr_ temp 0xa0000000

=> setenv raddr temp 2 0x90000000

=> setenv faddr firmware 0x0

=> tftp $raddr temp firmware lslO46ardb _uefi gspiboot.img

=> sf probe 0:1

=> sf read $raddr temp 2 $faddr firmware $filesize

=> 1f cmp.b $raddr temp S$raddr temp 2 $filesize; then echo "No update"; else sf erase
$faddr firmware +$filesize && sf write S$raddr temp $faddr firmware $filesize; fi

=> cpld reset altbank

NOTE
Composite firmware(firmware_ls1046ardb_uefi_norboot.img) contains dtb of Linux kernel version 4.9. To boot
different Linux kernel (Ex: Linux 4.14), please update the dtb.

* Reset RDB to boot from QSPI flash alternate bank (Bank 4).

Use the command below to switch to bank 4:

=> cpld reset altbank

5.3.4.4 LS2088ARDB

Obtain the UEFI source code

$ git clone https://source.codeaurora.org/external/qoriq/qorig-components/uefi; cd uefi
$ git checkout tags/LS2088ARDB-QUEFI DASH V4-0 1803

Compile the UEFI image
1. Set the toolchain path. Follow the 'Software Requirements' section to install and set the toolchain path.
2. Compile the source code to boot via NOR flash
a. To compile UEFI source code to boot via NOR flash, use the following commands.

cd uefi

source edksetup.sh

cd LS2088aRdbPkg

source 1s2088a_env.cshrc
cd ../BaseTools

make clean

make

Uy Uy Uy Uy Uy U >

If you face g++ command not found error (most likely on Ubuntu), while making BaseTools then run the following
commands:

$sudo apt-get install g++
$ make clean
S make

For booting via NOR flash, use the command below for compilation.

$ cd ../LS2088aRdbPkg
$./build.sh RELEASE XIP clean
$./build.sh RELEASE XIP

b. After a successful compilation, the UEFI firmware image is built at this path:

UEFI Firmware Image:
uefi/Build/LS2088aRdb/RELEASE_GCC49/FV/LS2088ARDB_EFI.fd

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
124 NXP Semiconductors

http://www.nxp.com

UEFI

UEFI Non Volatile Variables Image:
uefi/Build/LSZO88aRdb/RELEASE_GCC49/FV/LSZO88ARDBNV_EFI.fd

NOTE
In case the compilation fails, ensure the following:
ARCH environment variable is unset:
$ unset ARCH
GCC49 AARCH64_PREFIX variable is set properly:

$ export GCC49_AARCH64_ PREFIX=' aarché64-linux-gnu-'

Booting LS2088ARDB to UEFI prompt (via NOR Boot)
* Prerequisites for NOR boot

TFTP server is required so relevant binaries can be flashed via NOR flash within the /tftpboot folder. Make sure that the
correct permissions are set for this folder.

* LS2088A NOR flash map

Flash Layout on page 119 represents NOR flash available on LS2088ARDB. The base address for the primary bank (VBank0/
Bank 0 64MB) is 0x580000000 and the base address for secondary bank (VBank4/Bank 4 64MB) is 0x584000000.

NOTE
For a different flash layout, offsets/address as shown in Flash Layout on page 119 should be changed in dec
(platform declaration file), dsc (platform description file), £4£ (firmware device file) and VarStore. £df. inc
(firmware device file for non-volatile variables).

Flashing UEFI images on NOR flash bank 4 (alternate NOR flash bank)
* Boot to U-Boot prompt from NOR flash primary bank (Bank 0).
1. Setup serial port connection on host machine to capture logs from the LS2088A RDB.
2. Reset the board in order to boot U-Boot on bank 0. Make sure that a valid U-Boot image is flashed.

¢ Copy Images to NOR flash alternate bank using following commands:

=> setenv rcw 'tftp 0xa0000000 rcw 1800.bin; erase 0x584000000 O0x5840FFFFF; cp.b 0xa0000000
0x584000000 sfilesize;'
=> run rcw

=> setenv uefi 'tftp 0xa0000000 LS2088ARDB_EFI.fd; erase 0x584100000 O0x5842FFFFF; cp.b
0xa0000000 0x584100000 s$filesize'
=> run uefi

=> setenv uefi nv 'tftp 0xa0000000 LS2088ARDBNV_EFI.fd; erase 0x584300000 0x5843FFFFF;
cp.b 0xa0000000 0x584300000 sfilesize'
=> run uefi nv

=> setenv mc 'tftp 0xa0000000 mc_10.4.0 1s2088a 20171101.itb; erase 0x584A00000

0x584EFFFFF; cp.b 0xa0000000 0x584A00000 $filesize ; tftp 0xa0000000 dpc-bman-4M.
0x2A 0x41.dtb ; cp.b 0xa0000000 0x584E00000 $filesize ; tftp 0xa0000000 dpl-eth.
0x2A 0x41.dtb ;cp.b 0xa0000000 0x584D00000 S$filesize!

=> run mc

=> setenv ppa 'tftp 0xa0000000 ppa.itb; erase 0x584400000 O0x5844FFFFF ; cp.b 0xa0000000
0x584400000 sfilesize'
=> run ppa

=> gsetenv dtb 'tftp 0xa0000000 fsl-1s2088a-rdb.dtb; erase 0x584F00000 0x584FFFFFF; cp.b
0xa0000000 0x584F00000 S$filesize'
=> run dtb

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 125

Bootloaders

=> setenv cortina 'tftp 0x80000000 cs4315-cs4340-PHY-ucode.txt; erase 0x584980000
0x5849BFFFF ; cp.b 0x80000000 0x584980000 $filesize'

=> run cortina

The precompiled binary containing the images above can be downloaded from http://www.nxp.com (wget http://
www.nxp .com/lgfiles/sdk/1sdk1803/firmware_1s2088ardb uefi norboot.img). Follow the steps below to use the
precompiled image:

Boot to U-Boot prompt from NOR flash primary bank (Bank 0)

=> setenv raddr_ temp 0xa0000000

=> setenv faddr firmware 0x584000000

=> tftp $raddr temp firmware 1s2088ardb_uefi norboot.img

=> if cmp.b S$raddr temp $faddr firmware $filesize; then echo "No update"; else protect off
S$faddr firmware +$filesize && erase $faddr firmware +$filesize && cp.b S$raddr temp
$faddr firmware $filesize && protect on $faddr firmware +$filesize; fi

=> gixis_reset altbank

NOTE
Composite firmware(firmware_|s2088ardb_uefi_norboot.img) contains dtb of Linux kernel version 4.9. To boot
different Linux kernel (Ex: Linux 4.14), please update the dtb.

* Reset RDB to boot from NOR flash alternate bank (Bank 4).

Use the command below to switch to bank 4:

=> gixis_reset altbank

Prefetch Enable/Disable support

LS2088ARDB can enable/disable hardware LOAD and STORE prefetching. Some applications require hardware prefetching to
be disabled in order to achieve better performance.

* Run the command below from the UEFI shell to get help for prefetch command.
=> help prefetch

Shell>= help prefetch
Displays or modifies prefetch settings for all cores.

Supported Commands
1. prefetch value -- Specify prefetch to be enabled or disabled

2. prefetch -- Display current prefetch settings

Value enable will enable prefetch on all cores
Value disable will disable prefetch on all cores
example: "prefetch enable" or "prefetch disable"

Run the command below from the UEFI shell to get the current prefetch settings.

NOTE
By default, prefetch is enabled on all the cores.

=> prefetch

Shell> prefetch

Shell> h is Enabled on all Cores

Run the command below from the UEFI shell to disable prefetch on all the cores.

=> prefetch disable

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
126 NXP Semiconductors

HTTP://WWW.NXP.COM

UEFI

Shell= prefetch disable
Shell=

Shell> prefetch
Shell> h is Disabled on all Cores

Run the command below from the UEFI shell to enable prefetch on all the cores.

=> prefetch enable

Shell> prefetch enable
Shell=

prefetch
h is Enabled on all Cores

5.3.5 LSDK Distro Boot Logs

Below are the reference boot logs of LSDK distro boot on QorlQ LS1043ARDB .

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

127

Bootloaders

=> cpld reset altbank

UEFI firmware (version built at 14:35:52 on May 29 2017)
Clock Configuration:

CPUG(A53):1500 MHz CPUL1(A53):1500 MHz CPU2(A53):1500 MHz

CPU3(A53):1500 MHz
Bus: 400 MHz DDR: 16660 MHz
FMAN ; 500 MHz

Reset Configuration Word (RCW):
QEEEREER: O08100OEF O0CEEEEEE OOEEEEOO OREEEODO
QEEEEO1IE: 14550062 200046012 EOO25008 610620006
QEEEEO26: AEOOAAEO AEEEAEOE OOREEEEA BRE3EEHR
QOPOMOE30: OOEOROEL 00001101 OOGEEAS9E GOOEOOOI

SoC: LS1043AE;: BRev 1.0

Board: LS1043A-RDB

ET L

CPLD: V1.5

PCBA: V3.0

SERDES Reference Clocks:

SD1 CLK1 = 156.25MHZ, SD1 CLK2 = 160.00MHZ

UEFI firmware (version built at 14:38:10 on May 29 2017)

Detected DSPI Flash N25Q128 With Page Size 256 Bytes,

Erase Size 64 KiB, Total 16 MiB,

PCIE1 is disabled

PCIE2? i1s Enabled

PCIe:VendorID: 1957

PCIe Device ID: 8080

PCIe Header Type: 01

PCIe2: Root Complex

PCIe Link Status: 1011

x1 genl,

PCIE3 is Enabled

PCIe:VendorID: 1957

PCIe Device ID: 8080

PCIe Header Type: 01

PCIe3: Root Complex

PCIe Link Status: 3011

x1 genl, regs @ 0x3600000

Valid Chip Addresses :

Ox0 Ox6 Ox40 Ox4C 0x52 Ox53 Ox68 0x69

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

Device: FSL SDXC
Manufacturer ID: 82

OEM: 4A54

Name: NCard

Card: 2

Product revision: 1.9

Product Serial No. : 907BAZ66
Manufacturing date : 14:2005
Tran Speed: 50000006

Rd Block Len: 512

MEMACY
MEMAC1
MEMACZ
MEMACS
MEMACG

PHY type xfi, Enabled

PHY type gsgmii, Enabled

PHY type gsgmii, Enabled

PHY type gsgmii, Enabled

PHY type gsgmii, Enabled

MEMAC3 PHY type rgmii, Enabled

MEMAC4 PHY type rgmii, Enabled

:Loading firmware microcode image version 108.4.10

i MAC address MEMACO:2E:F3:4E:44:60:
ERROR: PHY auto-negotiation failed
WARNING: Link not ready for MEMACY
: MAC address MEMAC1:2E:F3:4E:44:00:
ERROR: PHY auto-negotiation failed
WARNING: Link not ready for MEMACI
i MAC address MEMAC2:2E:F3:4E:44:60:
ERROR: PHY auto-negotiation failed
WARNING: Link not ready for MEMAC2
: MAC address MEMAC5:2E:F3:4E:44:00:
i PHY link 1s up

i MAC address MEMACG6:2E:F3:4E:44:60:
ERROR: PHY auto-negotiation failed
WARNING: Link not ready for MEMACH
: MAC address MEMAC3:2E:F3:4E:44:60:
: PHY link 1s up

: MAC address MEMAC4:2E:F3:4E:44:00:
ERROR: PHY auto-negotiation failed
WARNING: Link not ready for MEMAC4

BA ...

after Timeout.

02 ...

after Timeout.

03 ...

after Timeout.

06 ...

o7 ...

atter Timeout.

04 ...

05 ...

after Timeout.

Check Ethernet

Check Ethernet

Check Ethernet

Check Ethernet

Check Ethernet

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

cable

cable

cable

cable

cable

Bootloaders

PriBus: Discovered PPB § 9808 06]
BARIG]: Type = Mendd; Aliqument = BWFFFFFF; Length = Bxloehond; Offset = fuld
BRIL]: Type = Nendl; Aligument = BR3FFFFFF, Length = ebdteoe; Offset = Bald

ibus: Discovred P8 § (3]0
mmﬂw'hﬂdlmﬂﬁMWﬁﬂﬂ=MMW: Iffset = Bild
BIR[L]: Type = Mendd; Aligment = Gx3FFFFFF,; Lenqth = Buddfeaes; Offset = Bxld

L0AD OPTION AW, RonBase: 7EGG8000
Peibus: Resource Mep for Root Bridoe Peifoot (6xl)
Type = Mendl; Base = OT0000008; Length = OGR00800; Aligwent = G3FFFFFF
Base = BuToobeRee; Length = OudB0RD80; Aligweat = IFFFFFF; Owner = PPB [80]60]80:14] Base = B7CROB6GH; Length = BI066RE; Aligmeat = BoF
FFFFF; Owner = PPB (60)80|80:18]PciBus: Resource Map for Bridge (66|66 60]
Iype = Mendl; Base = Gu70000000; Lengfn = Ocd00ORR0; A liwent = RIFFFFFF
Type = Mendd; Base = GuICOOA08; Length = Dulogeoe; Aligment = ANFFFFFF
PriBus: Distovered PPB § 9808 06]
EMHI“*MQ“hwﬂwMWﬁmm=Mmm: Dffset = B0
RILJ: Type = Mend2; Aligmment = BIFFFFFF, Length = Buddfeae; Offset = fuld

Peibus: Discovered PCT f (81)06 o8]

| Type = Mend) Aligment = GuIFFFF; Length = Geetl; Offset = Buld

MRLL]: Type = Hﬂ-T 2, Mliqment = GXIFFFF; Length = Oupone; (ffset = B4

MR(Z): Type = o2, 1W1ﬁﬂ Length = 020, Difset = fuld
Tyoe = Nend; Allment = x3FFF; Length = nded; Dffset = Bl

nl

]}
Rl
I3

L

i
ARl
i
i
i

| Al
il Al
il il
Peibus: Discovered PR § (380800

GO Type = Mendl; Algument = FEFEF Length = DGR Offet = 0
VA(L: Type = Nl liqment = OGFFFFF, Longth = kot st = ol

USQM“HIWMW

|! Type = Memd2; Aluoment = BuFFFF; Length = G2R00; (rfset = Buld
:Ip - rlﬂﬂ-'.'!: quent = OIFFEF; Length = Ougoegl; (Ffset = B
PType s T30 Migment = 0, Length = Bi08; Offset = fuld

! Type = ML et HF Length = adeeh; [ffset = Bl

B
B[
E-.fﬁ.{
B :
”

i

A
]
]
]

Ii
li
it
L0AD OPTION W, Rondase: 706000

LORD GPTLON M, Roncse: /08060
Peias: Resource ep for Root Bridoe Peifoot (6x2)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

Base = ATo080080; Length = Gdo6teos; Aligwnent = GFFFFFF, Oer = PPG [68)68|:14] Base = ICONEMG; Length = EL0006R6; Mliqment = Baf
FEFFF Owner = PPR [66]08(06: 18] Base = xTDAGO06G; Length = Guloegee; ALiqunent = BuFFFFF, muﬁﬁuMwWLMEMMHmTTm
o (00004
Iype= lold; Base =0 Leagth = uloRS; Aligment = BxFFF

Base = O; Length = B8, Aligwent = 80F; Omer = FCT [81)9(08:18]Type = Meadl; Base = Bu70eontes; Length = Budfion;
FFFFFF
Type = Mendd; Base = Ou7Cooteds; Length = Guloogess; Aliganent = BeFFFFF
Iype = Mendd; Dose = TOORERG; Length = Gudo06E0; Alignent = BeFFFFF

Base = OT06G0R00; Lenqth = Ohoged; Aliooment = BTFFFF, Owner = PCT [61]09]09:14] Base = OTDG00008; Length = Beaeed;
FFFF; (ner = PCT (81)68(08: 18] Base = BaTDONBGES; Length = ud0dd; Aliguoent = BFFF; Owner = PCT (81|08 66:1C)
Press ESOPE for boot optices
E1698: START Driver

AlLoment = B3
f

Migment = By

ﬂﬂﬂbr-
Status Reqister = 18
mhlwm

ﬂﬁMJﬁm
ement =
(I Bus =]
(1 Device =
L Function = B
Support (1: U3, found on hendle F244B56
wwf ummmwwﬂ
: 3.1 found
ﬂm“WWwﬁW%
Already Started, on handle FATORE
|wv tarted. o handle F478%3
mmmmrww%FmM
aloome to GRLB!

NOTE

By default UEFI Boot Manager loads GRUB bootloader placed in /EFI/BOQOT/ directory of EFI partitions. Press
ESC for launching splash bios screen:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

Bootloaders

L sDK on OorIQ ARMG4 Ls1B43ardb

5\

the * and v keys to select which entry 1s highlighted.
enter to boot the fed 05, "e' to edit the commands
before booting or “c¢' for a command-Tline. ESC to return previous
menu.

Press Enter to boot LSDK distro.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
132 NXP Semiconductors

FI stub: Booting Linux Kernel...
FI stub: Using OTE from configuration table
FI stub: Exiting boot services and installing virtual address map...
: Disabling DPAAL Ethernet physical device for MEMACS ...
» Disabling DPAAL Ethernet physical device tor MEMACT ...
: Disabling DPAAL Ethernet physical device for MEMACZ ...
» Disabling DPAAL Ethernet physical device for MEMACS ...
: Disabling DPAAL Ethernet physical device for MEMACG ...
» Disabling DPAAL Ethernet physical device for MEMACS ...
: Disabling DPAAL Ethernet physical device for MEMACA ...
» Stopping OPAAL Ethernet physical device for MEMACY ...
: Stopping DPAAL Ethernet physical device for MEMACI ...
: Stopping DPAAL Ethernet physical device for MEMACZ ...
: Stopping DPAAL Ethernet physical device for MEMACS ...
: Stopping DPAAL Ethernet physical device for MEMACG ...
: Stopping DPAAL Ethernet physical device for MEMACS ...
: Stopping DPAAL Ethernet physical device for MEMACA ...
1.381796] console [ttyS6] enabled
1.385302] bootconsole [uartf] disabled
1.309471] 21cB669.serial: ttys]l at MMIO Ox21co60d (1rg = 36, base baud = 25000000) 1s a 16550A
1,396451] 21d8588.serial: tty52 at MMIO 0x21d0500 (irg = 37, base baud = 25000008} is a 165584
1.407432] 2100666, serial: ttyS3 at MMI0 Ox21de666 (irg = 37, base baud = 25000000) is a 165584
1.421976] brd: module loaded
1.427622] loop: module loaded
1.430863] at24 8-8652: 65536 byte 24c512 EEPROM, writable, 1 bytes/write
1.437754] at24 8-8653: 65536 byte 24¢512 EEPROM, writable, 1 bytesfwrite
1.445684] ahci-goriq 3260006.sata: AHCI 0061.0301 32 slots 1 ports 6 Gbps 8x1 impl platform mode
1,454644] ahci-goriq 3200060, sata: flags: 64bit ncg sntf pm clo only pmp fbs pio slum part ccc sds apst
1.464706] scsi hostB: ahci-gorig
1,468223] atal: SATA max UDMA/133 mmio [mem 0x03200008-0x03207fFf] port 0x100 irq 49
1.476578] 6BA88888.nar: Found 1 x16 devices at €x8 1n 16-bit bank. Manutacturer T0 Ox@08850 Chip ID BxBR237e
1.486577] Amd/Fujitsu Extended Query Table at @x00840
1.491719] Amd/Fujitsu Extended Query version 1.3,
1,496765] number of CFL chips: 1
1.501230] nand: device found, Manufacturer ID: ©x2c, Chip ID: 6xac
1,507503] nand: Micron MT20F4GOSABBDAHA
1.511601] nand: 512 MiB, SLC, erase size: 126 KiB, page size: 2643, 00B size: 64
1.519431] Bad block table found at page 262080, version 8x61
1,525732] Bad block table found at page 262016, version 8xA1
1.532386] fsl,1fc-nand 7eBRRRRA.nand: IFC NAND device at @x7eB0BRRR, bank 1
1,546417] m25pB8 spib.8: n259128al3 (16384 Kbytes)
1.546831] tun: Universal TUN/TAP device driver, 1.6
1,551885] tun: (C) 1999-2084 Max Krasnyansky <maxkigualcomm.com=

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

Bootloaders

1.556890] libphy:
15653571 libphy:
1.571887] libphy:
1.577036] libphy:
1,582179] libphy:
1,587325] libphy:
1.592471] Libphy:
1.597611] libphy:
1.682753] libphy:

1.630378] fsl mac
1.636397] fsl mac
1.041815] fsl mac
1.648129] fsl mac
1.652745] fs1_mac
1.659615] fsl mac
1.664231] fsl mac
1.671097] fsl mac
1.675714] fsl mac
1.682629] fsl mac
1.687446] fs1 mac
1.684557] fsl_mac

1.699173] fsl mac

Freescale XGMAC MDIO Bus:
Freescale XGMAC MDTO Bus:
Freescale XGMAC MDIO Bus:
Freescale XGMAC MDIO Bus:
Freescale XGMAC MDIO Bus:
Freescale XGMAC MDIO Bus:
Freescale XGMAC MDIO Bus:
Freescale XGMAC MDIO Bus:
Freescale XGMAC MDTO Bus:
1.619740] Freescale FM module, FMD APT version 21.1.8
1.626714] Freescale FM Ports module

probed
probed
probed
probed
probed
probed
probed
probed
probed

: fsl mac: FSL FMan MAC APT based driver

lae00a6 ., ethernet:
laeb0de ethernet:
1322060, ethernet:
13220680 . ethernet:
1aed080 . ethernet:
1ae40080 , ethernet:
1a=6060 ethernet:
lae6080 , ethernet .
laeb0dt . ethernet:
1328060 ethernet:
laeated, ethernet:
laral@n . ethernet:

FMan
FMan
FMan
FMan
FMan
FMan
FMan
FMan
FMan
FMan
FMan
FMan

MEMAC
MAC address
MEMAC

MAC address:

MEMAC

MAC address:

MEMAC

MAC address:

MEMAL

MAC address:

MEMAC

MAC address:

eeidfide: /8:00:02
ee:df:de:78:60:03
ee:df:de:78:00:04
eeidfide:758:00:85
ee:df:de:78:60:66

pa'df:da:T78-00 67

1.766845] fsl mac 1afPoee.ethernet: FMan MEMAC
1.710662] fsl mac laffoee.ethernet: FMan MAC address:

eeidfide:78:00:0a

1.717473] fsl dpa: FSL DPAA Ethernet driver

1.722730] fsl dpa soc:fsl,dpaa:ethernetf@®: Skip RX PCD High Priority FQs initialization
1.734284] fsl dpa: fsl dpa: Probed interface ethd

1.739819] fsl dpa soc:fsl, dpaa:ethernetfl: Skip RX PCD High Priority FQs initialization
1.751593] fsl dpa: fsl dpa: Probed interface ethl

1.757273] fsl dpa soc:fsl,dpaa:ethernet@2: Skip RX PCD High Priority FQs initialization
1.769330] fsl dpa: fsl dpa: Probed interface eth2

1.775138] fsl dpa soc:fsl,dpaa:ethernet@3: Skip RX PCD High Priority FQs initialization
1.787450] fsl dpa: sl dpa: Probed interface eths

1,793392] 15l dpa soc:tsl,dpaa:ethernet@d: Skip RX PCD High Priority FQs initialization
1.803782] atal: SATA Llink down (SStatus © SControl 360)

1.865849] fsl dpa: fsl dpa: Probed interface ethd

1.867039] fsl dpa soc:fsl, dpaa:ethernet@5: Skip RX PCD High Priority FQs initialization
1.811584] fsl dpa: fsl dpa: Probed interface ethd

1.812927] fsl dpa soc:fsl,dpag:ethernet@@: Skip RX PCD High Priority FQs initialization
1.817769] fsl dpa: fsl dpa: Probed interface ethd

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

1.817756] fsl_advanced: FSL DPAA Advanced drivers:

1.817761] fsl proxy: FSL DPAA Proxy initialization driver

1.818802] fsl oh: FSL FMan Offline Parsing port driver

1.818461) =100@;: Intel(R) PRO/1606 Network Driver - version 7.3.21-k8-NAPI

1,818462] el1660: Copyright (c) 1999-2606 Intel Corporation.

1.618567] el@0@e: Intel(R) PRO/1086 Network Driver - 3.2.6-k

1.818568] el1660e: Copyright(c) 1999 - 2615 Intel Corporation,

1.818860] 16802 AAA1:61:00.6: Interrupt Throttling Rate {ints/sec) set fo dynamic conservative mode
1,920928] o168 0901:61:00.6 eth7: registered PHC clock

1.935414] e1000e 0801:01:00.0 eth7: (PCI Express:2.56T/s:Width x1) 68:05:ca:35:16:c5
1,943326] el6Roe 0081:01:60.0 eth7: Intel(R) PRO/1008 Network Connection

1.950266) e16082 0AA1:01:00.0 eth7: MAC: 3, PHY: 8, PBA No: E46981-868

1.956947] igb: Intel(R) Gigabit Ethernet Network Driver - version 5.3.0-k

1.963001] igh: Copyright (c) 2887-2014 Intel Corporation.

1.969506] igbvf: Intel(R) Gigabit Virtual Function Network Driver - version 2.8.2-k
1,977328] igbvf: Copyright (c) 2089 - 2012 Intel Corporation.

1,983274] sky2: driver version 1,36

1.967762] VFID - User Level meta-driver version: 8.3

2,594368] ehci_hcd: USB 2.0 'Enhanced’ Host Controller (EHCI) Driver

2.660895] ehci-pci: EHCT PCT platform driver

2.665364] ehci-platform: EHCI generic platform driver

2.610726] ehci-msm: Qualcomm On-Chip EHCI Host Controller

2.616383] ohci hcd: USB 1.1 "Open’ Host Controller (OHCI) Driver

2.622564] ohci-pci: OHCI PCI plattorm driver

2,627633] ohci-platform: OHCI generic platform driver

7.632587] xhei-hed xhei-hed.@.auto: sHCT Host Controller

2,638879] xhci-hcd xhci-hed.@.auto: new USB bus registered, assigned bus mumber 1
2,645940] xhci-hcd xhci-hed.@.auto: hee params 0x8220F66d hci version 6x100 quirks 9x00016016
2,654660] xhci-hcd xhci-hed.@.auto: irq 46, io mem OxB2fe0660

2.660964] hub 1-8:1.0: USE hub tound

2.664663] hub 1-8:1.0: 1 port detected

7.668720) xhci-hed xhei-hed.8.auto: sHCT Host Controller

2.674207] xhci-hcd xhci-hed.@.auto: new USB bus registered, assigned bus number 2
2.6618686] usb usb2: We don't know the algorithms for LPM for this host, disabling LPM.
2,690226] hub 2-0:1.0: USB hub found

2,693980) hub 2-0:1.0: 1 port detected

2,698650] xhci-hcd xhci-hed.1.auto: xHCT Host Controller

2.703536] xhci-hed xhei-hed.1.auto: new USE bus registered, assigned bus number 3
2,711384] xhci-hed xhei-hed.1.auto: hee params 8xB228f66d hci version ©x100 quirks Bx99818618
2,720094] xhci-hcd xhci-hed.1.auto: irq 47, 1o mem 0xB3060060

2,726274] hub 3-8:1.0: USB hub found

2,130028] hub 3-08:1.0: 1 port detected

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

Bootloaders

3.800549] Frescale USORMA process driver
3.63379] fsl-usdpaa: no region found
3.037565] Freascale USOPAA process TR] driver
m#ﬂ%HMHm@anMHMl
3,0475M] nf comtrack version 0,5,0 (16364 backets, 63535 wax|
3,860 of ¢ Wﬂw“mﬂ%ﬂﬁ1MWWﬂH
HW ftl'ﬂe. conpat: (¢} 212 Pnh:u!atluﬁ,rm<pa:nh:+¢m:.f..ln.l:-|q>
p tables: (C) 2986-2096 Netfilter Core Tem
3¢:ﬂ@4 Initializing AFRM netlink socket
3.B71518] NET: Reqistered protocol family 18
3.B60677) sit: IPvG over IPvd tunneling driver
Tﬁmﬂ‘mhmwmmﬁmﬁﬂ
_MHHI% ik EW“NTWl?f}F
B96499] bridge: automatic filtering via arp/ipfipitables has been deprecated, Update your scripts to load br petfilter if you need this,
HWﬂﬁhwﬁhJHwWHJMM
Hﬁﬂ?wﬁmﬁhﬂmwﬂ
117526] Etables ¥2.0 reqistenad
wﬂﬂmuwHMuwfl
dﬂm"w Installing 972008 support
ﬁﬂffﬁﬁimhlﬂ%d
! reqistered taskstats version 1
1] ush ushé- portL: over-current condition
Btrfs Loaded
| rtc-gs187 B-8668: setting systen clock to 2917-62-21 22:41:57 UTC {14BTTI6907}
ALSH device List:
61738 Mo soundeards found
Jmﬁ]ﬁMMHﬁﬂMHWM%IMJMW'mMHm
3 465306] EXT4-fs (mchlkdod]: recovery conplete
?Mxhﬂ*mwmﬁmW#MmMMMwﬂMMmJMMH}
3500448 VFS: Mounted roof (extd filesysten) on device 170:3,
3,312649] devtnpfs: nounted
.meEmﬁmnﬂﬂWQﬂMﬁﬂmHmm-ﬁmWMmm
3,063167] random: systend: uninitialized urandon read (16 bytes read, 11 bits of entrepy available)
3.8130%4] random: systend: uninitialized urendon read (16 bytes read, 11 bits of entropy avallable)
3,004368] systead[1]: systend 229 running in system mode, [+PAN ALDTT +SELINUK 4INA <APARIIR 4SHACK 4SYSVINIT +UTHP +LIBCRYPTSETLP #6CRYPT +GHITLS 4ACL
X2 -L24 +5ECCOMP #BLRID +ELFUTILS +D - ION)
3,042535] systend[1]: Detected architecture ambd,

jelcone to Ubunty 16,84.2 LTS!

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

3.850665] systemd[1]: Set hostname to <localhosts,
3.866565] random: systemd: uninitialized urandom read (16 bytes read, 11 bits of entropy available
3.699801] random: systemd-cryptse: uninitialized urandom read (16 bytes read, 12 bits of entropy available)
3.926743] random: systemd-gpt-aut: uninitialized urandom read (16 bytes read, 12 bits of entropy available]
3.936770] random: systemd-gpt-aut: uninitialized urandom read (16 bytes read, 12 bits of entropy available]
3.946723] random: systemd-gpt-aut: uninitialized urandom read (16 bytes read, 12 bits of entropy available)
3.956741] random: systemd-gpt-aut: uninitialized urandom read (16 bytes read, 12 bits of entropy available]
3,980999] random: systemd-sysv-ge: uninitialized urandom read {16 bytes read, 12 bits of entropy available)
4,000524] random: systemd-sysv-ge: uninitialized urandom read (16 bytes read, 13 bits of entropy available)
4.540288] randem: nonblocking pool is initialized
8.417915] systemd[1]: Reached tarqet Swap.
0K | Reached target Swap.
8.432562] systemd[1]: Created slice System Slice.
0K] Created slice System Slice.
8.447897] systemd[1]: Listening on udev Control Socket.
0K] Listening on udev Control Socket.
8.463834] systemd[1]: Listening on udev Kermel Socket.
0K] Listening on udev Kernel Socket.
8.4798061] systemd[1]: Listening on /dev/initctl Compatibility Named Pipe.
0K] Listening on /dew/initctl Compatibility Mamed Pipe.
8.499876] systemd[1]: Started Forward Password Requests to Wall Directory Watch.
0K | Started Forward Password Requests to Wall Directory Watch,
8.519804] systemd[1]: Reached target Remote File Systems (Pre].
0K] Reached target Remote File Systems (Pre).
8.535801] systemd[1]: Reached target Remote File Systems.
0K | Reached target Remote File Systems.
8.551868] systemd[1]: Started Dispatch Password Requests to Console Directory Watch.
0K] Started Dispatch Password Requests to Console Directory Watch,
8.571850] systemd[1]: Listening on Journal Socket (/dev/log).
0K 1 Listening on Journal Socket (/dev/log).
8.566356] systemd[1]: Created slice User and Session Slice.
0K | Created slice User and Session Slice.
8.603802] systemd[1]: Reached target Slices.
0K] Reached target Slices.
8.615867] systemd[1]: Listening on Joumal Socket.
0K | Listening on Journal Socket.
8.647908] systemd[1]: Starting Nameserver information manager..
Starting Nameserver information manager...
8.675233] systemd[1]: Mounting Huge Pages File System..
Mounting Huge Pages File System...
8.693414] systemd[1]: Starting Set console keymap..

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

Bootloaders

Starting Set console keymap...
8.709528] systemd[1]: Mounting Debug File System...
Mounting Debug File System...
8.725464] systemd[1]: Mounting POSIX Message Queue File System...
Mounting POSIX Message Queue File System...
8.739947] systemd[1]: Listening on fsck to fsckd communication Socket.
0K | Listening on fsck to fsckd communication Socket.
§.760602] systemd[1]: Created slice system-serial\x2dgetty.slice.
0K | Created slice system-serial\x2dgetty.slice.
8.796013] systemd[1]: Starting Load Kernel Modules. ..
Starting Load Kernel Modules. ..
8.815929] systemd[1]: Listening on Syslog Socket.
0K] Listening on Syslog Socket.
6.827970] systemd[1]: Listening on Journal Audit Socket.
0K] Listening on Journal Audit Socket.
8.8640864] systemd[1]: Starting Journal Service...
Starting Journal Service...
8.877392] systemd[1]: Starting Remount Root and Kernel File Systems...
Starting Remount Root and Kernel File Systems...
§.890278] EXT4-fs (mmcblkep3): re-mounted. Opts: errors=remount-ro
8.096832] systemd[1]: Started Trigger resolvconf update for networkd DNS.
OK | Started Trigger resolvconf update for networkd DNS.
8.935980] systemd[1]: Started Read required files in advance.
0K] Started Read required files in advance.
8.952122] systemd[1]: Reached target Encrypted Volumes.
0K] Reached target Encrypted Volumes.
8.968666] systemd[1]: Created slice system-systemd\x2dfsck.slice.
0K] Created slice system-systemd\x2dfsck.slice.
§.983859] systemd[1]: Reached target Paths.
0K | Reached target Paths.
0.011979] systemd[1]: Starting Create Static Device Nodes in /dev...
Starting Create Static Device Nodes in /dev...
0.031160] systemd[1]: Mounted Huge Pages File System.
0K] Mounted Huge Pages File System.
9,047952] systemd[1]: Mounted POSIX Message Queue File System.
0K] Mounted POSIX Message Queue File System.
0.063871] systemd[1]: Mounted Debug File System.
0K] Mounted Debug File System.
9.075987] systemd[1]: Started Journal Service.
0K] Started Journal Service.
0K] Started Set console keymap.
0K] Started Load Kernel Modules.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

0K] Started Remount Root and Kernel File Systems.
0K] Started Create Static Device Nodes in [fdev.
0K 1 Started Nameserver information manager,
0K | Reached target Network (Pre].
Starting udev Kernel Device Manager...
Starting Load/Save Random Seed...
Starting udev Coldplug all Devices...
Starting Apply Kernel Variables...
Mounting Configuration File System...
Mounting FUSE Control File System...
OK] Reached target Local File Systems (Pre].
Starting Flush Journal to Persistent Storage...
0K] Mounted Configuration File System.
0K 1 Mounted FUSE Control File System.
0K] Started Load/Save Random Seed.
0K | Started Apply Kernel Variables.
0K] Started udev Kernel Device Manager.
Starting LSB: QEMU KVM module loading script...
0K 1 Started Flush Journal to Persistent Storage.
0K] Started udev Coldplug all Devices.
0K] Started LSB: QEMU KVM module loading script.
[TIME | Timed out waiting for device dev-di...dpartuuid-97f9ed7\x2d02.device,
[DEPEND] Dependency failed for File System C...ev/disk/by-partuuid/97f9e0d7-62,
[DEPEND] Dependency failed for /hoot.
[DEPEND] Dependency failed for Local File Systems.
[TIME | Timed out waiting for device dev-ttySe,device.
Starting Set console font and keymap...
[0K] Stopped Getty on tiyl.
[OK] Stopped Daily apt activities.
[0K] Stopped Serial Getty on ttySe.
[0K | Closed Virtual machine log manager socket.
[0K] Closed Virtual machine lock manager socket.
[0K] Stopped target Graphical Interface.
[0K] Started Stop ureadshead data collection 45s after completed startup.
[0K] Stopped target Multi-User System.
[0K] Stopped Docker Application Container Engine.
[0K] Closed Docker Socket for the API.
[0K | Stopped System Logging Service.
[0K] Closed Syslog Socket,
[0K] Stopped Ubuntu FAN network setup.
[0K] Stopped Suspend Active Libwirt Guests.
[

0K] Stopped Login Service.

Use ‘root’ as Username and Password to login.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

Bootloaders

Closed D-Fus System Message Bus Socket.
Stopped Regular background program processing daemon.
Stopped getty on tiyZ-tiyb if dbus and logind are not available.
Reached 1in Prompts.,
Stopped Daily Cleanup of Temporary Directories.
Reached target Timers,
Stopped LSB: network benchmark.
Stopped S5et up cgroupfts mounts..
Stopped t Basic System.
Reached et Sockets,
ot System Initialization.
gency Shell.
target Emergency Mode.
Hfa|+an Create Volatile Files and Directories.
Starting LSB: AppArmor initialization.
Starting LSB: ebtables ruleset mjnu]ﬁmﬁnt...
Started Set console font and keymap.
Started E_'Et console scheme.
Started Create Volatile Files and Directories,
Started I.. v AppArmor initialization.
Started LSB: ebtables ruleset management.
Starting Raise network interfaces...
Starting Network Time Synchronization..
Starting Update UTMP about System Enutrﬁhutduun...
Created slice system- getty. slice,
Started Network Time Synchronization
Reached target System Time Synchronized.
Started Update UTMP about System Boot/Shutdown.
Starting Update UTMP about System Runlevel Changes
Started Update UTMP about System Runlevel Changes.
0K Started Raise network interfaces.
0K Reached target Network.
[OK Reached target Network is Online.
welcome to emergGive root password for maintenance
(or pre ontrol-D to continue):
root@localhost ~#
root@localhost: ~#
~#
[i~# uname -a
4.4,65 #1 SMP PREEMPT Mon May 29 16:38:31 IST 2017 aarchGd aarch64 aarchfd GHU/Linux
=~
Li~#

5.3.6 PXE Boot

This section describes the steps required to boot the Linux kernel using PXE boot. UEFI is the primary bootloader. It loads the
GRUB2 bootloader image. PXE boot is used to load the kernel and root file system images .

Hardware Requirements
¢ Host PC: Ubuntu (64-bit variant with at least 2GB RAM) host is preferred to compile/build the UEFI firmware.
¢ Board: QorlQ Layerscape reference development board (RDB) with a UART cable.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
140 NXP Semiconductors

UEFI

Software Requirements
* To build the UEFI firmware on the Ubuntu Host, install uuid-dev. Run the following command:
$ sudo apt-get install uuid-dev

* Ensure that Python (2.7 or higher) is installed on the build machine.

DHCP server: isc-dhcp-server Version 4.2.4 or higher.

» Tftp Server: Any of below tftp server should be installed on host machine.
— tftpd-hpa

— atftpd

— dnsmasq

To build the grub bootloader on the ubuntu Host, Install Linaro GCC-4.9 toolchain on your Host machine using the following
commands:

$ wget https://releases.linaro.org/components/toolchain/binaries/4.9-2016.02/aarch64-
linux-gnu/gcc-linaro-4.9-2016.02-x86_64 aarch64-linux-gnu.tar.xz

$ tar -xvf gcc-linaro-4.9-2016.02-x86_64 aarché4-linux-gnu.tar.xz

$ export PATH=/home/user/linaro 4.9 2016/gcc-linaro-4.9-2016.02-x86_ 64 aarché64-linux-gnu/
bin:$PATH

5.3.6.1 Creating the PXE Boot Setup

Setting up DHCP server for PXE boot
1. Open /etc/dhcp/dhcpd. conf with write permissions on the server machine.

2. Add a configuration block for PXE boot to the file.

host 1s1043rdbboardl5 {
hardware ethernet 26:5E:3D:21:00:02;
fixed-address 192.168.3.41;
next-server 192.168.3.161;
filename "grub.efi"

NOTE
Use the MAC address for which PXE boot entry is created.

3. Restart the dhcp server (The command below is for Ubuntu. It may change for a different Host)
sudo service isc-dhcp-server restart
4. Place the following files in the tftp server root directory with execute permission.
* ramdisk rootfs arme4.ext4.gz (Root file system) : It can be fetched using flex-builder.
Run flex-builder -i repo-fetch to download the Root File System.
Path:packages/installer/ramdiskrfs/ramdisk_rootfs_arm64.ext4.gz.
Refer to Layerscape SDK user guide on page 41 for more info flex-builder usage.
* Image (Kernel Image) : It can be generated using flex-builder.
Run flex-builder -c linux -a armé4 to generate kernel image (Image).

Refer to Layerscape SDK user guide on page 41 for more info flex-builder usage.

NOTE
Image is the standard kernel image generated at arch/armé64 /boot /Image.

* grub.cfg : Below is the sample grub.cfg for LS1043ARDB.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 141

Bootloaders

set default="0"

function load video {

if [x$feature_all video module = xy]; then

insmod all_video

else

insmod efi gop

insmod efi uga

insmod ieeel275 fb

insmod vbe

insmod vga

insmod video bochs

insmod video cirrus

fi

}

load_video

set gfxpayload=keep

set timeout=10

menuentry 'LSDK 1706 on QorIQ ARMé4' --class red --class gnu-linux --class gnu --class
os {

linux /Image console=ttyS0,115200 root=/dev/ram0 rw earlycon=uart8250,mmio, 0x21c0500
ramdisk size=500000 default hugepagesz=2m hugepagesz=2m hugepages=256
initrd /ramdisk_rootfs armé4.ext4.gz

}

NOTE
This is a sample grub configuration file for LS1043ARDB. Kernel boot arguments may change for different QorlQ
LS board.

5. grub.efi: Grub bootloader image. The steps below can be followed to generate grub.efi:

git
git

clone git://git.savannah.gnu.org/grub.git;cd grub
checkout tags/grub-2.02

export PATH=/home/user/gcc-linaro-4.9-2016.02-x86_ 64 aarché64-linux-gnu/bin:$PATH
export CROSS COMPILE=aarché64-linux-gnu-

./autogen. sh

./configure --target=aarché64-linux-gnu

Mak

e

echo ' set root=(tftp)' > grub.cfg

echo ‘configfile /grub.cfg’ >> grub.cfg

grub-mkstandalone --directory=./grub-core -0 armé4-efi -o grub.efi --modules "tftp net
efinet gzio linux efifwsetup part gpt part msdos font gfxterm all video" /boot/grub/
grub.cfg=./grub.cfg

5.3.6.2 Installing the Kernel

* Boot UEFI to prompt using NOR Flash.

¢ Press Esc when prompted to enter the Boot Menu.

* Enter the Boot Manager

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

142

NXP Semiconductors

UEFI

Select Language <5tandard English> This selection will
take you to the Boot
Manager

> Boot Maintenance Manager

Continue
Heset

UEFI Misc Device Device Patl
UEFT Micec Device 2 MAC (FE1ICF2D70A04A, Bx1)
UEFI Misc Device 3
UEFI Misc Device 4
UEFI PXEv4 (MAC:FG61CF2D7000A)
UEFI PXEv4 (MAC:F61CF2D70002)
UEFI PXEv4 (MAC:FB1CF2D70083)
UEFI PXEv4 (MAC:FB1CF2D70006)
UEFI PXEv4 (MAC:F61CF2D70007)
:F61CF2D700804)
UEFI PXEv4 (MAC:F61CF2D70085)

* From grub menu select the option to install linux kernel.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 143

Bootloaders

GNU GRUE wversion 2.02

=LSDK 1706 on Qorl(ARMG4

e

Use the ™~ and v keys to select which entry is highlighted.

Press enter to boot the selected 05, “e' to edit the commands
before booting or "c' for a command-line. ESC to return previous
menu .

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
144 NXP Semiconductors

DPAAL: Stopping DPAAL Ethernet physical device for MEMACT ...
EFI stub: Booting Linux Kernel...
EFI stub: Using DTB from configuration table
FFT stub; Exiting boot services and installing virtual address map...
: Disabling DPAAL Ethernet physical device for MEMACY ...
: Disabling DPAAL Ethernet physical device for NEMACL ...
: Disabling DPAAL Ethernet physical device for NEMACZ ...
: Disabling DPAAL Ethernet physical device for MEMACS ...
: Disabling DPAAL Ethernet physical device for MEMACG ...
: Disabling DPAAL Ethernet physical device for MEMACI ...
: Disabling DPAAL Ethernet physical device for MEMACA ...
: Stopping DPAAL Ethernet physical device for MEMACT ..
ERROR: Failed to uninstall UEFI driver model protocols for DPAAL device BxFEB35018 (error 15)
: Stopping DPAAL Ethernet physical device for MEMACZ ...
: Stopping DPAAL Fthernet physical device for MEMACS ..
: Stopping OPAAL Ethernet physical device for MEMACH ...
: Stopping DPAAL Ethernet physical device for MEMACS ..
: Stopping DPAAL Ethernet physical device for MEMACS ...
B.008086] Booting Linux on physical CPU Bx@
B.0RAARE] Initializing cqroup subsys cpuse
0.0096060] Initializing coroup subsys cpu
B.088688] Initializing cqroup subsys cpuacct
B.088088] Linux version 4.4.65 (b4A164Quefi-workstation] (goc version 5.4.0 20166689 (Ubuntu/Linaro 5.4.0-fubuntul~16,64.4)) #1 SMP PREEMPT Mon May 29
138131 IST 2017
f.068066] Boot CPU: AArch6d Processor [418fda3d)
0.080080] earlycon: Early serial console at MMIO 8x21cA500 (eptions '')
B.066608]) bootconsole [uartl] enabled
0.008080] efi: Getting EFT parameters from FOT:
0.000000] EFI v2.60 by EDK IT
0.008006] eofi:
B.0880B8] Reserved memory: initialized node gman-fqd, compatible id fs1,man-fod
0.060086] Reserved memory: initialized node gman-pidr, compatible 1d fsl,gman-pfdr
0.088080] Reserved memory: initialized nede oman-fbpr, compatible id fs1,bman-fbpr
A,0006RA] cma: Reserved 16 MiB at AxPEARAAGATHEAGRAD
0.080060] psci: probing for conduit methed from DT.
0.0B8080] psci: PSCIvD.2 detected in fimware
0.008000] pscis Using standard PSCT w8.2 function IDs
B8] psci: Trusted 0S migration not required
B8] PERCPU: Embedded 21 pages/cpu @FfTT80AB7Th6=A00 s45336 rd192 d32488 ud6Al6
B8] Detected VIFT I-cache on CPUD

TNIT: version 2.88 booting
Starting udev
5.565793] udevd[2224]: starting version 182
5.875032] FAT-fs (mmcblkepl): Volume was not properly unmounted. Some data may be corrupt. Please run fsck.
5.895077] EXT4-fs (ram@): re-mounted. Opts: (null)
5.923480] random: dd: uninitialized urandom read (512 bytes read, 9 bits of entropy available}
Populating dev cache
tar: dev/disk/by-partlabel/BasicxZ0datax2dpartition: No such file or directory
tar: error exit delayed from previous errors
udev-cache: update failled!
Running postinst /etc/rpm-postinsts/1068-sysvinit-inittab, ..
INIT: Entering runlevel: Sun-postinsts exists du
Confiquring network interfaces... done.
Starting syslogd/klogd: done

DorI0 LSDK (FSL Reference Distro) 2.0 flex-installer /dev/ttySe

flex-installer login:
QorIQ LSDK (FSL Reference Distro) 2.0 flex-installer fdev/ttySe

flex-installer login: root
root@flex-installer:~# uname -a
Linux flex-installer 4.4.65 #1 SMP PREEMPT Mon May 29 16:38:31 IST 2017 aarche4 GNU/Linux

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors

Security

Chapter 6
Security

6.1 Secure boot

6.1.1 Hardware Pre-Boot Loader (PBL) based platforms

6.1.1.1 Introduction

This section is intended for end-users to demonstrate the image validation process. The image validation can be split into stages,
where each stage performs a specific function and validates the subsequent stage before passing control to that stage. In the
example, the ESBC is NXP* provided reference code referred to as ESBC U-Boot.

Chain of ESBC U-Boot performs minimal SoC configuration before validating the next executable using the same CSF
Trust header format as the ISBC used to validate ESBC U-Boot. The CSF Header and signature are added to the
next executable using the NXP code signing tool.

InternalSecure Barker Code Barker Code
BootCode PublickKey PublicKey
Signature Signature
Image Pointer Image Pointer

Uboot
including next

Next Executable
including

Executable the main image
validation code validation code

Figure 15. Chain of Trust

Chain of Trust with

The validated ESBC U-Boot image is allowed to use the One Time Programmable Master Key
confidentiality

to decrypt system secrets. Cryptographic blob mechanism is used to establish Chain of Trust
with confidentiality.

N N 7Y

Internal Secure Barker Code Barker Code [Biob Header
BootCode PublicKey | PublicKey
Signature Signature Ciphertext Blob
Image Pointer Image Pointer
ESEC Uboot Next Executable (Main Image)
induding including Blob
Next Execiitable Decryption
Vakdation Code and Main Image
First Instruction
Pointar

AES-CCM ICV

Figure 16. Chain of Trust with confidentiality
This document provides more details on the secure boot flow, ISBC, ESBC, and NXP Code signing tool.
NOTE

NXP and Freescale may be used synonymously in this document. Registers, register file names, and Trust
Architecture software may not be updated to NXP for an extended period of time.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

146 NXP Semiconductors

Secure boot

6.1.1.2 Secure boot process

Secure boot process uses a digital signature validation routine already present in Internal BOOT ROM. This routine performs
validation using HW bound RSA public key to decrypt the signed hash and compare it to a freshly calculated hash over the same
system image. If the comparison passes, the image can be considered as authentic.

The complete process can be broken down into following phases:
* Pre-Boot Phase
1. PBL
2. SFP
* ISBC
e ESBC

The complete secure boot process is shown in the figure below.

CSF
Header

cSF |3
Header |
5/G Table [T

Code
Signing
Tool

Internal Secure Boot Code {on-chip
ROM)

= Digest
compare [¥ Pass/Fal
/ Hash Sum

I

: Public Key Hash® mod N
Public Verify Decryption
keyis) | _J| Lk JList

Signature _t

Imag

e
= | Digest
Private Key _.
Public
key(s) |
-

Imag
e

|

i

Hash
Key/List

I B S
/

Figure 17. Secure boot process

6.1.1.3 Pre-boot phase

When the processor is powered on, reset control logic blocks all device activities (including scan and debug activity) until fuse
values can be accurately sensed. The most important fuse value at this stage of operation is the ‘Intent to Secure’ (ITS) bit. When
an OEM sets ITS, they intend for the system to operate in a secure and trusted manner.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 147

Security

The two main components involved during this process are:

The Security Fuse Processor (SFP) has two roles. The first is to physically burn fuses during device provisioning. The second
is to use these provisioned values to enforce security policy in the pre-boot phase, and to securely pass provisioned keys and
other secret values to other hardware blocks when the system is in a trusted/secure state.

Pre-Boot Loader (PBL) is the micro-sequencer that can simplify system boot by configuring the DDR memory controllers to more
optimal settings and copying code and data from low speed memory into DDR. This allows subsequent phases of boot to operate
at higher speed. The setting of ITS determines where the PBL is allowed to read and write. The use of the PBL is mandatory
when performing secure boot. At a minimum, the PBL must read a command file from a location determined by the Reset
Configuration Word (RCW) and perform a store of a value to the ESBC Pointer Register within the SoC. If the PBL does not
perform this operation (or sets the ESBC pointer to the wrong value), the ISBC will fail to validate the ESBC. Once the PBL has
completed any operations defined by its command file, the PBL is disabled until the next Power on Reset and the Boot Phase
begins.

The ISBC is capable of reading from NOR flash connected to the local bus, on-chip memory configured as SRAM, or main memory.
Unless the ESBC is stored in NOR flash, the developer is required to create a PBL Image that copies the image to be validated
from NVRAM to main memory or internal SRAM prior to writing the SCRATCHRW 1 Register and executing the ISBC code.

To assist with the creation of PBL Images (for both normal and Trust systems), NXP offers a PBL Image Tool.

Note that it is possible for an attacker to modify the board to direct the PBL to the wrong non-volatile memory interface, or change
the PBL Image and CSF Header pointer, however this will result in a secure boot failure and the system remaining in an idle loop
indefinitely.

6.1.1.4 ISBC phase
6.1.1.4.1 Flow in the ISBC code

With the PBL disabled and all external masters blocked by the PAMUs, CPU 0 is released from boot hold-off and begins executing
instructions from a hardwired location within the Internal BOOT ROM. The instructions inside the Internal BOOT ROM are NXP
developed code known as the Internal Secure Boot Code (ISBC). The ISBC leads CPU 0 to perform the following actions:

1. Who am | check? - CPU 0 reads its Processor ID Register, and if it finds any value besides physical CPU 0, the CPU
enters a loop. This insures that only CPU 0 executes the ISBC.

2. Sec_Mon check - CPU 0 confirms that the Sec_Mon is in the Check state. If not, it writes a ‘fail’ bit in a Sec_Mon control
register, leading to a state transition.

3. ESBC pointer read - CPU 0 reads the ESBC (External Secure Boot Code) Pointer Register, and then reads the word at
the indicated address, which is the first word of the Command Sequence File Header which precedes the ESBC itself. If
the contents of the word do not match a hard coded preamble value, the ISBC takes this to mean it has not found a valid
CSF and cannot proceed. This leads to a fail, as described in #2 above.

4. CSF parsing and public key check - If CPU 0 finds a valid CSF header, it parses the CSF header to locate the public
key to be used to validate the code. There can be a single public key or a table of 4 public keys present in the header. The
Secure Fuse Processor does not actually store a public key, it stores a SHA-256 hash of the public key/table of 4 keys. This
is done to allow support for up to 4096b keys without an excessively large fuse block. If the hash of the public key fails to
match the stored hash, secure boot fails.

5. Signature validation - With the validated public key, CPU 0 decrypts the digital signature stored with the CSF header. The
ISBC then uses the ESBC lengths and pointer fields in the CSF header to calculate a hash over the code. The ISBC checks
that the CSF header is included in the address range to be hashed. Option flags in the CSF header tell the ISBC whether
the NXP Unique ID and the OEM Unique ID (in the Secure Fuse Processor) are included in the hash calculation. Including
these IDs allows the image to be bound to a single platform. If the decrypted hash and generated hash do not match,
secure boot fails.

6. ESBC First Instruction Pointer check - One final check is performed by the ISBC. This check confirms that the First
Instruction Pointer in the CSF header falls within the range of the addresses included in the previous hash. If the pointer

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
148 NXP Semiconductors

Secure boot

is valid, the ISBC writes a ‘PASS’ bit in a Sec_Mon command register, the state machine transitions to ‘Trusted; and the
OTPMK is made available to the SEC.

7. In case of failure, for Trust v2.0 devices , secondary flag is checked in the CSF header. If set, ISBC reads the CSF header
pointer form SCRATCHRWS3 location and repeats from step 4.

There are many reasons the ISBC could fail to validate the ESBC. Technicians with debug access can check the SCRATCHRW2
Register to obtain an error code. For a list of error codes, refer ISBC Validation Error Codes.

6.1.1.4.2 Super Root Keys (SRKs) and signing keys

These are RSA public and private key pairs. Private keys are used to sign the images and public keys are used to validate the
image during ISBC and ESBC phase.

Public keys are embedded in the header and the hash of SRK table is fused in SRKH register of SFP.
These are Hardware Bound Keys, once the hash is fused the public private key pair cannot be modified.
Keys of sizes 1k, 2k, and 4k are supported in FSL Secure Boot Process.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot.

If this key is ever lost, the OEM will be unable to update the image.

6.1.1.4.3 Key revocation

Trust Architecture 2.x introduces support for revoking the RSA public keys used by the ISBC to verify the ESBC. The RSA public
keys used for this purpose are called Super Root Keys (SRK's).

OEM can use either a single key or a list of upto 4 SRK's in the Trust Arch v2.x devices.

In the NXP Code Signing Tool (CST), the OEM defines whether the device uses a single SRK, or offers a list of SRK's. If using a
single SRK, a new flag bit in the CSF header will indicate “Key’ otherwise the flag will indicate “Key List! Assuming key list, the

OEM can populate a list of up to 4 SRK's for trust arch v2.x onwards platforms and can calculate a SHA-256 hash over the list.

This hash is written to the SRKH registers in the SFP.

As part of code signing, the OEM defines which key in the key list is to be used for validating the image. This key number is
included as a new field in the CSF header.

During secure boot, the ISBC determines whether a key list is in use. If the key list is valid, the ISBC checks the key number
indicated in the CSF header against the revocation fuses in the SFP’s OEM Security Policy Register (SFP_OSPR). If the key is
revoked, the image validation fails.

NOTE
In order to prevent unauthorized revocation of keys, SFP provides a bit (Write Disable). If the bit is set, the Key
revocation bits cannot be written to.

In regular operation, the ESBC (early Trusted S/W) needs to set the SFP Write Disable bit. When circumstances
call for revoking a key, the OEM will use an ESBC image with “Write Disable” bit not set. So, the SFP will be in a
state in which key revocation fuses can be set.

Logically after revoking the required key(s), the OEM would then load a new signed ESBC image with code to set
the "Write Disable" bit, with new CSF header indicating which of the remaining non-revoked key to use.

So, only the possessor of a legitimate RSA private key can enable key revocation.

One possible motivation for an OEM to revoke an SRK is the loss of the associated RSA private key to an attacker. If the attacker
has gained access to a legitimate RSA private key, and the attacker can turn on power to the fuse programming circuitry, then the
attacker could maliciously revoke keys. To prevent this from being used to permanently disable the system, one SRK does not
have an associated revocation fuse.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 149

Security

6.1.1.4.4 Alternate image support

Trust 2.0 onwards will support a primary and alternate image, where failure to find a valid image at the primary location will cause
the ISBC to check a configured alternate location.

To execute, the alternate image must be validated using a non-revoked public key as defined by its CSF Header. A valid alternate
image has same rights and privileges as a valid primary image.

This feature helps to reduce risk of corrupting single valid image during firmware update or as a result of flash block wear-out.

To enable this feature, create PBI with pointers for both primary and alternate images (HW PBL uses SCRATCHRW1 &
SCRATCHRW3).

6.1.1.4.5 ESBC with CSF header

ESBC is the generic name for the code that the ISBC validates. A few ESBC scenarios are described in later sections.

The figure below provides an example of an ESBC with CSF (Command Sequence File) header. The CSF header includes lengths
and offset which allow the ISBC to locate the operands used in ESBC image validation, as well as describe the size and location
of the ESBC image itself.

Note: CSF header and ESBC header may be used synonymously in this and other NXP Trust Architecture documentation.

Barker Code

CSFHeader [“gnureoitet
Flags
Signature
Public Key
SG Table
ESBC Segment 1
«

ESBC Segment 2

Figure 18. ESBC with CSF header

6.1.1.5 ESBC phase

Unlike the ISBC, which is in an internal ROM and therefore unchangeable, the ESBC is NXP-supplied reference code, and can

be changed by OEMs. The remainder of this section is the description of a reasonable secure boot chain of trust based on NXP's
reference software for secure boot. Depending on the requirement, ESBC can be a monolithic image, including U-Boot, device

trees, boot firmware, drivers along with the OS and applications or can be mini U-Boot.

NXP provided ESBC consists of standard U-Boot which has been signed using a private key. U-Boot reserves a small space for
storing environment variables. This space is typically one sector above or below the U-Boot and is stored on persistent storage
devices like NOR flash if macro CONFIG_ENV_IS_IN_FLASH is used. In case of secure boot, macro

CONFIG_ENV_IS_NOWHERE is used and so, environment is compiled in U-Boot image and is called default environment. This
default environment cannot be stored on flash devices. User won't be able to edit this environment also as he cannot reach to U-

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
150 NXP Semiconductors

Secure boot

Boot prompt in case of secure boot. There is default boot command for secure boot in this default environment which executes
on autoboot.

ESBC validates a file called boot script and on successful validation, execute the commands in the boot script.

There are many reasons ESBC could fail to validate Client images or boot script. The error status message along with the code
is printed on the U-Boot console. For a list of error codes, refer ESBC Validation Error Codes.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

NOTE
On Soc's with ARMv8 core (For example, LS1043, LS1046, LS1012), during ISBC phase in internal BOOT ROM,
SMMU (which by default is in by-pass mode) is configured to allow only secure transactions from CAAM.

The security policy with respect to the SMMU in ESBC phase must be decided by the user/customer. So, currently
in ESBC (U-Boot), SMMU is configured back to by-pass mode allowing all transactions (secure as well as non-
secure).

6.1.1.5.1 Boot script

Boot script is a U-Boot script image which contains U-Boot commands. ESBC would validate this boot script before executing
commands in it.

NOTE
1. Boot script can have any commands which U-Boot supports. No checking on the allowed commands in
boot script. Since it is validated image, assumption is that commands in boot script would be correct.

2. If some basic scripting error done in boot script (like unknown command, missing arguments), the required
usage of that command and core is put in infinite loop.

3. After execution of commands in boot script, if control reaches back in U-Boot, error message would be
printed on U-Boot console and core would be put in spin loop by command esbc_halt.

4. Scatter gather images are not supported with validate command.

5. If ITS fuse is blown, any error in verification of the image would result in system reset. The error would be
printed on console before system goes for a reset.

6.1.1.5.1.1 Where to place the boot script?

NXP's ESBC U-Boot expects the boot script to be loaded in flash as specified in address map. ESBC U-Boot code assumes that
the public/private key pair used to sign the boot script is same as that was used while signing the U-Boot image. If user used
different key pair to sign the image, hash of the N and E component of the key pair should be defined in macro:

CONFIG_BOOTSCRIPT_KEY_HASH.

Note: The hash defined should be hex value, 256 bits long.

Both the above macros can be defined or changed in the configuration file secure_boot.h at the following location in U-Boot code:
u-boot/arch/arm/include/asm/fsl_secure boot.h

Two new commands called esbc_validate and esbc_halt have been added in NXP ESBC U-Boot.

Two more commands are present, 'blob enc' and 'blob dec' for running Chain of Trust with confideniality.

6.1.1.5.1.2 Chain of Trust

Boot script contains information about the next level of images, For example, Linux, HV, and so on. ESBC validates these images
as per their public keys and then executes bootm command to pass-on the control to next image.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

The following figure shows the Chain of Trust established for validation with this ESBC U-Boot.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 151

Security

E

S F Haeader

ICSF Header

BootSorpt PubKey

(Waladate |Image 1 addreis),

[CSF Header

image 1 Pubiey

Image 1

P Hash
E5BC Uboot Pubiey Lub!r-r ash 1]
ESBC Ubait as At
Fail cave

licdate .
Mormal Uboot stull [Valliciabe Whentge 2 aukiness).

|Pubkey Hash 2]
[SUCCELs Cale Signature
Fail cave
Wabdate [Image 3 address), T [CSF Meader
| Pubey Hash 2|
End normal Lot stufl Successcase Image & Pubkey
Validate Fail case Image 2
|Boot Script address) BootM [image 1], [Image 1.
[Boot Script Pubkiey Hash] [Image 3]
ignature

S nalure

Signature

ICSF Header

Image 3 Pubiey

Image 3

(S igmat ure

Figure 19. Secure boot flow (Chain of Trust)

6.1.1.5.1.2.1 Sample boot script

A sample boot script would look like:

esbc_validate <Imgl header addr> <pub_key hash>
esbc_validate <Img2 header addr> <pub key hash>
esbc_validate <Img3 header addr> <pub key hash>

lf'x.)étm <imgl addr> <img2 addr> <img3 addr>
6.1.1.5.1.2.1.1 esbc_validate command
esbc_validate img_hdr [pub_key_hash]
Input arguments:
img_hdr - Location of CSF header of the image to be validated

pub_key hash - hash of the public key used to verify the image. This is an optional parameter. If not provided, code makes the
assumption that the key pair used to sign the image is same as that used with ISBC. So the hash of the key in the header is
checked against the hash available in SRK fuse for verification.

Description:

The command would do the following:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
152 NXP Semiconductors

Secure boot
» Perform CSF header validation on the address passed in the image header. During parsing of the header, image address
is stored in an environment variable which is later used in source command in default secure boot command.

 Signature checks on the image

6.1.1.5.1.2.1.2 esbc_halt command
esbc_halt (no arguments)
Description:

The command would do the following:
This command puts core in spin loop.

After successful validation of images, bootm command in bootscript should execute and control should never reach back to U-
Boot. If somehow, control reaches back to U-Boot (for example, bootm not present in bootscript), core should just spin.

6.1.1.5.1.3 Chain of Trust with confidentiality

To establish Chain of Trust with confidentiality, cryptographic blob mechanism can be used. In this Chain of Trust, validated image
is allowed to use the One Time Programmable Master Key to decrypt system secrets.

Two bootscripts are to be used. First encap bootscript is used which creates a blob of the Linux images and saves them. After
that, the system is booted after replacing the encap bootscript with decap bootscript which decapsulates the blobs and boot the
Linux with the images.

The following figures show the Chain of Trust with confidentiality (Encapsulation and Decapsulation).

Image 1 Kernel Image

SF Header
ICSF Header
BootScript PubKey Blob 1 [Kernel Image]
ESBC PubKey hlob enc
ESBC Bootloader [lmgf;ﬁg,[]
[Blob1 dest address] [size]
[Normal S6C [key_madifier_address] image 2 Root File System
initialization/Bootloader
o blob enc. e
[Img2 addr’
[Blob2 dest address] [size]
W@Lﬂgﬁjﬁﬁuﬂj Blob 2 [Root File System]
End normal initialization/ blob enc.
esbc_validate img_hdr. [img3 addr] Image 3 Device Tree
[pub_key hash] [Blob3 dest address] [size]
key modifier address]
[Esbc_Halt
Blob 3 [Device Tree]
reset

Figure 20. Chain of Trust with confidentiality (Encapsulation)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 153

Security

CSF Header

cotScript PubKey
eshc validate
[Blob 1 header addr]

JC5F Header

Blob 1 [Kernel Image]

ESBC PubKey

Kernel Image

ESEC Bootloader blob dec,
[Blob 1 addr]
Normal 5oC [Imagel dest address]
initialization/Bootloader [size]
code [key modifier address]

esbc validate
[Blob 2 header addr]
[Blob 2 pub_key hash]

Blob 2 [Root File System]

blob dec
[Blob 2 addr

[Image2 dest address]

End normal initialization/

Root File System

esbc_validate img_hdr [size]
[pub,_key _hash [key_modifier_address]

eshc validate
[Blob 3 header addr]

Esbc_Halt

blob dec
[Blob 3 addr

CSF Header
Blob 3 Pubke

Blob 3 [Device Tree]

[key modifier address]

[Image3 dest address] Device Trea
[size] /

Bootm
[Imagel][Image2][Image3]

Figure 21. Chain of Trust with Confidentiality (Decapsulation)

6.1.1.5.1.3.1 blob enc command
blob enc <src location> <dst location> <length> <key_modifier address>
Input arguments:
src location - Address of the image to be encapsulated
dst location - Address where the blob will be created
length - Size of the image to be encapsulated
key modifier address - Address where a random number 16 bytes long(key modifier) is placed
Description:
The command would do the following:
* Create a cryptographic blob of the image placed at src location and place the blob at dst location.
6.1.1.5.1.3.1.1 Sample encap boot script
A sample encap boot script would look like:
k'aic;b enc <Imgl addr> <Imgl dest addr> <Imgl size> <key modifier addresss>

erase <encap Imgl addr> +<encap Imagl size>
cp.b <Imgl dest addr> <encap Imgl addr> <encap Imagl size>

blob enc <Img2 addr> <Img2 dest addr> <Img2 size> <key modifier address>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

154

NXP Semiconductors

Secure boot

erase <encap Img2 addr> +<encap Imag2 size>
cp.b <Img2 dest addr> <encap Img2 addr> <encap Imag2 size>

blob enc <Img3 addr> <Img3 dest addr> <Img3 size> <key modifier address>
erase <encap Img3 addr> +<encap Imag3 size>
cp.b <Img3 dest addr> <encap Img3 addr> <encap Img3 size>

6.1.1.5.1.3.2 blob dec command
blob dec <src location> <dst location> <length> <key_modifier address>
Input arguments:
src location - Address of the image blob to be decapsulated
dst location - Address where the decapsulated image will be placed
length - Expected Size of the image after decapsulation.
key modifier address - Address where key modifier (Same as that used for Encapsulation) is placed
Description:
The command would do the following:
¢ Decapsulate the blob placed at src location and place the decapsulated data of expected size at dst location.
6.1.1.5.1.3.2.1 Sample Decap Boot Script
A sample decap boot script would look like:
l'aic'ab dec <Imgl blob addr> <Imgl dest addr> <expected Imgl size> <key modifier address>

blob dec <Img2 blob addr> <Img2 dest addr> <expected Img2 size> <key modifier address>
blob dec <Img3 blob addr> <Img3 dest addr> <expected Img3 size> <key modifier address>

bootm <Imgl dest addr> <Img2 dest addr> <Img3 dest addr>

6.1.1.6 Next executable (Linux phase)

The bootloader (ESBC) finishes the platform initialization and passed control to the Linux image. The boot-chain can be further
extended to be able to sign application which would be running on Linux prompt. Further RTIC can be integrated to verify memory
regions using Security Engine (SEC) during run time.

6.1.1.7 Product execution

This section presents the steps need to be followed in order to properly run the software product according to its intended use
and functionalities.

6.1.1.71 Introduction
Chain of Trust
This section presents the steps need to be followed in order to execute Chain of Trust.
Steps in the demo would be:
1. ISBC code would validate the ESBC code.
2. On successful validation, ESBC code would run, which would then validate the boot script.
3. On successful validation of boot script, commands in boot script would be executed.
4. Boot script contains commands to validate next level images, that is, rootfs, Linux ulmage, and device tree.
5

. Once all the images are validated, bootm command in boot script would be executed which would pass control to Linux.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 155

Security

Running Secure boot (Chain of Trust)
1. Setup the board for secure boot flow. You can choose any if the flows mentioned below.
a. Flow A
Program the ITS fuse. Use RCW with SB_EN=0
Or
b. Flow B
For protyping phase, don't blow the ITS fuse, but use rcw with SB_EN = 1.

Blow other required fuses on the board. (OTPMK and SRK hashl'l) For more details regarding fuse blowing, CCS
and Boot Hold Off, refer to Platform reference manual and Trust Architecture User Guide.

NOTE
SRK hash in the fuse should be same as the hash of the key pair being used to sign the ESBC u-boot.

For testing purpose, the SRK Hash can be written in the mirror registers.

gen_otpmk_drbg utility in cst can be used to generate otpmk key.

2. Flash all the generated images at locations as described in the address map.

a. Flow A - All the images would have to be flashed at the current bank addresses. Once ITS fuse is blown, the
control would automatically shift to ISBC on power on.

b. If you are using Flow B, you can use alternate bank for demo purpose. This would mean flashing the images on
alternate bank addresses from Bank0 and then switching to BankA4.

3. Give a power on cycle to the board.
a. For Flow A and Flow B (Secure boot Images flashed on default Bank)
¢ On power on, ISBC code would get control, validate the ESBC image.
* ESBC image would further validate the signed linux, rootfs and dtb images
e Linux would come up
b. Flow B (Secure boot Images flashed on alternate Bank)
¢ On power on cycle, u-boot prompt on bank 0 would come up.
¢ On switching to alternate bank, the secure boot flow as mentioned above would execute.
Two additional features are provided in secure boot:
1. Chain of Trust with confidentiality
2. ISBC Key Extension

6.1.1.7.2 Chain of Trust with confidentiality

This section presents the steps need to be followed to execute Chain of Trust with confidentiality.
The demo is divided into two parts:
1. Creating or encrypting images in form of blobs.

2. Decrypting images, and booting from decrypted images.

[1] Blowing of OTPMKis essential to run secure boot for both Production (Flow A) and Prototyping/Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. For this use RCW with
BOOT_HO = 1. This will put the core in Boot Hold off stage. Then a CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then release the core out of Boot Hold off by writing to Core Release
Register in DCFG.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
156 NXP Semiconductors

Secure boot

Steps in the demo are:
Step 1: Creating blobs
1. ISBC code would validate the ESBC code.
2. On successful validation, ESBC code would run, which would then validate the boot script.
3. On successful validation of boot script, commands in boot script would be executed.
4. The boot script contains commands to encapsulate next level images, that is rootfs, linux ulmage and device tree.
blob encapsulation command::
blob enc src dst len km - Encapsulate and create blob of data
$len - Number of bytes to be encapsulated.
$src - The address where image to be encapsulated is present.
$dst - The address where encapsulated image is stored.

$km - The address where the key modifier is stored. The modifier is required and used as key for cryptographic operation. Key
modifier should be 16 bytes long.

Step 2: Decrypting blob and booting
1. ISBC code would validate the ESBC code.
2. On successful validation, ESBC code would run, which would then validate the boot script.
3. On successful validation of boot script, commands in boot script would be executed.

4. The boot script contains commands to decapsulate or decrypt next level images, that is rootfs, linux ulmage, and device
tree.

5. After decryption, bootm command would be executed in boot script to pass control to Linux.
blob decapsulation command::
blob dec src dst len km - Decapsulate the image and recover the data
$len - Number of bytes to be decapsulated.
$src - The address where encapsulated image is present.
$dst - The address where decapsulated image will be stored.

$km - The address where the key modifier is stored. The modifier is required and used as key for cryptographic operation. Key
modifier should be 16 bytes long. It should be same as passed while encapsulating the image.

6.1.1.72.1 Other images required for the demo
Apart from SDK images described above, the following images are also required:
1. Encap boot script
Sample Boot script

load \$devtype \sdevnum:2 \$kernelheader addr r /secboot hdrs/lsl046ardb/hdr linux.out;
esbc_validate \$kernelheader addr r;

load \$devtype \s$devnum:2 \$fdtheader addr_ r /secboot hdrs/lsl046ardb/hdr dtb.out;
esbc_validate \$fdtheader addr_ r;

size \$devtype \$devnum:2 /vmlinuz; echo Encapsulating linux image;setenv key addr
0x87000000; mw \S$key addr skey id 1;

setexpr \sSkey addr \$key addr + 0x4; mw \sSkey addr Skey id 2;setexpr \skey addr \

Skey addr + 0x4; mw \$key addr skey id 3;setexpr \S$key addr \S$key addr + 0x4; mw \

Skey addr S$key id 4;

blob enc \$kernel addr r \$load addr \$filesize \Skey addr; setexpr blobsize \$filesize
+ 0x30;echo Saving encrypted linux ;save \$devtype \S$devnum:2 \$load addr /vmlinuz \
Sblobsize;size \sdevtype \$devnum:2 /fsl-1sl1046a-rdb.dtb;

echo Encapsulating dtb image; blob enc \$fdt addr r \$load addr \sfilesize \$key addr;
setexpr blobsize \$filesize + 0x30;echo Saving encrypted dtb; save \$Sdevtype \$Sdevnum:2 \

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 157

Security

$load addr /fsl-1sl046a-rdb.dtb \S$blobsize; size \$devtype \$devnum:2 /
1sl046ardb_dec_boot.scr;

load \$devtype \sdevnum:2 \$load addr /lsl046ardb_dec_ boot.scr;

echo replacing Bootscript; save \Sdevtype \$devnum:2 \$load addr /lsl046ardb boot.scr \
S$filesize;size \Sdevtype \$devnum:2 /secboot hdrs/lsl046ardb/hdr 1lsl046ardb _bs dec.out;
load \$devtype \$devnum:2 \$load addr /secboot hdrs/lsl046ardb/

hdr 1sl046ardb_bs dec.out ;echo Replacing bootscript header; save \$devtype \$devnum:2 \
$load addr /hdr 1sl046ardb bs.out \$filesize;reset;'

2. Decap boot script

size \Sdevtype \Sdevnum:2 /vmlinuz;setexpr imgsize \$filesize - 0x30 ;

echo Decapsulating linux image; setenv key addr 0x87000000; mw \S$key addr sSkey id 1;setexpr \
S$key addr \skey addr + 0x4; mw \S$key addr skey id 2;setexpr \S$key addr \skey addr + 0x4; mw \
Skey addr key id 3;setexpr \$key addr \S$key addr + 0x4; mw \S$key addr skey id 4;

blob dec \$kernel addr r \S$load addr \$imgsize \Skey addr; cp.b \$load addr \skernel addr_r
\$filesize ;size \$devtype \$devnum:2 /fsl-1sl046a-rdb.dtb;setexpr imgsize \$filesize -

0x30 ;

echo Decapsulating dtb image; blob dec \$fdt addr r \$load addr \$imgsize \skey addr; cp.b \
$load _addr \s$fdt addr_r \$filesize ;

6.1.1.72.2 Running secure boot (Chain of Trust with confidentiality)
1. Setup the board for secure boot flow. You can choose any of the flows mentioned below.
a. Flow A
Program the ITS fuse. Use RCW with SB_EN=0
Or
b. Flow B
For protyping phase, do not blow the ITS fuse, instead use rcw with SB_EN = 1.

2. Blow other required fuses on the board. (OTPMK and SRK hash)2]) For more details regarding fuse blowing, CCS and
Boot Hold Off, refer to Platform Reference Manual and Trust Architecture User Guide.

NOTE
SRK hash in the fuse should be same as the hash of the key pair being used to sign the ESBC U-Boot.

For testing purpose, the SRK hash can be written in the mirror registers.

gen_otpmk_drbg utility in cst can be used to generate otpmk key.

3. Flash all the generated images at locations as described in the address map.

a. Flow A - All the images would have to be flashed at the current bank addresses. Once ITS fuse is blown, the
control would automatically shift to ISBC on power on.

b. Flow B - You can use alternate bank for demo purpose. This would mean flashing the images on alternate bank
addresses from BankO and then switching to Bank4.

4. Give a power on cycle to the board.
a. For Flow A and Flow B (Secure boot images flashed on default bank)
* On power on, ISBC code would get control, validate the ESBC image.
¢ First Boot: Encapsulaton Step (Should happen in OEM's premises)

i. By defult the enacap and decap bootscripts will be installed in the bootpartition.

[2] Blowing of OTPMKis essential to run secure boot for both Production (Flow A) and Prototyping/Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. For this use RCW with
BOOT_HO = 1. This will put the core in Boot Hold off stage. Then a CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then release the core out of Boot Hold off by writing to Core Release
Register in DCFG.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
158 NXP Semiconductors

Secure boot

ii. When the board boots up for the first time after all images have been generated, Encap bootscript will
execute. This bootscript:

i. Authenticates and encapsulates linux and dtb images and replaces the unencrypted linux and
dtb images with newly encapsulated linux and dtb.

ii. Replaces the encap bootscript and header with the decap bootscript and it's header, already
present in the bootpartition.

iii. Issues reset

Blobification

* Subsequent Boot .
i. Uboot would execute script with decap commands
i. Un-blobify linux and dtb image in DDR

ii. Pass control to these images

deblobification

b. Flow B (Secure boot images flashed on alternate bank)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 159

Security

¢ On power on cycle, U-Boot prompt on bankO would come up.

* On switching to alternate bank, the secure boot flow as mentioned above would execute.

6.1.1.7.3 ISBC Key Extension (IE)
6.1.1.73.1 Introduction
The ISBC Key Extension feature allows the user to extend the ISBC and the number of keys available for signature validation.

The ISBC uses a key directly bound to the silicon via the SRKH, the ISBC extension code (added to downstream images in a
chain of trust) use IE_Keys, which are validated by the ISBC.

6.1.1.7.3.2 How it works

If IE feature is enabled in input file, the CST signs the image along with a number of public keys. Logically, it will be used when
signing Boot 1 (bootloader), so that the bootloader and downstream images in the chain of trust can use keys which are not
directly bound to the silicon via the SRKH. Decoupling the chain of trust from the hardware super root keys minimizes the need
to perform hardware key revocation.

toverily the Bootscrgt
uing ademprated ey from
the [E Fays Lisy

I Ehut B oo 4ript a8 warifasdl Lagin
emaiumang individan Vel Do e
vl warily e Mnages (ing &

et prsted oy froen the IE Kays List

Weardy commnd Takes £l fame
approach Tormeats to next stage
veanification &5 IEBL Ned stage images
arespnad with |E private keys, not HY
private keys

[
Image <
BB vaifiss HW Ky Lim, x
B ootionder and IE Keys List PR T
T e i A o PR S, e Pubk.Z
axaiumin of FSL relaiaras
E pothonded L 3
Bootlonder
F ol ing noamial
ety (WD Bootloader actions, begin
execubion of F5Lrefarence
Wately ORI, wabich ST emgs

Figure 22. Execution and verification of images using Key_Ext feature.
NOTE
Next stage images are signed with corresponding pair of Extension private keys list, not HW private keys.

Key Extension feature is applicable only for NOR secure Boot. It is not applicable for RAMBOOT (where
data has to be copied onto RAM, for example, NAND, SD, and SPI)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
160 NXP Semiconductors

Secure boot

6.1.1.73.3 IE Key Structure

Table 37. IE Key Structure which is embedded in header and placed in memory.

Offset Data Bits [0:31]

0x00-0x03 This 32 bit word can be used to represent which keys from the table below have
been revoked and are no longer available for use. Each bit represents 1 Key, Bit 0
represents Key 1 in the tableBit 31 is the 32nd key in the table

0x04-0x07 Total number of keys (Max N = 32 as 32 bit key revocation field is provided)

0x08-0x0b Key 1 length.

0x0c-0x40b Key 1 value.

0x40c-0x40f Key 2 length.

0x410-0x80f Key 2 value.

- Key N value

6.1.1.7.3.4 Sample Input File and Output

This file is same as file described above in <link to 4.1.2> except fields required for IE Key extension highlighted in red.

Specify the platform. [Mandatory]

Choose Platform - 1040/2080/2041/3041/4080/5020/5040/4860/4240/LS1

PLATFORM=1040

ESBC Flag. Specify ESBC=0 to sign u-boot and ESBC=1 to sign ESBC images. (default is 0)
ESBC=0

ESBC Header address. It contains address where ESBC header is loaded in memory.
ESBC_HDRADDR=c0b00000

Entry Point/Image start address field in the header. [Mandatory]

(default=ADDRESS of first file specified in images)

ENTRY POINT=cffffffc

Specify the file name of the keys seperated by comma.

The number of files and key select should lie between 1 and 4 for 1040/2080 and C290.

For rest of the platforms only one key is required and key select should not be provided.

USAGE (for 4080/5020/5040/3041/2041/1010/913x): PRI_KEY = <keyl.pris

USAGE (for 1040/2080/C290/4860/4240): PRI _KEY = <keyl.pris,<key2.pris,<key3.pris,<key4.pris>
PRI _KEY (Default private key :srk.pri) - [Optionall]

PRI_KEY=srk.pri

PUB _KEY (Default public key :srk.pub) - [Optionall]

PUB_KEY=srk.pub

Please provide KEY SELECT (between 1 to 4) (Required for 1040/2080/C290/4860/4240 only) -
[Optionall

KEY SELECT=

Specify the file name of the extension keys seperated by comma.

USAGE : IE KEY = <keyl.pub>,<key2.pub>, <key3.pub>, <key4.pub>, <key5.pub>

IE KEY=<iekeylk 1.pub>,<iekeylk 2.pub>,<iekeylk 3.pub>,<iekey2k 1.pubs>,<iekey2k 2.pubs>,<iekey
2k 3.pub>,<iekey4k 1.pub>,<iekey4k 2.pub>

Please provide Revoke keys. - [Optionall
Provide key numbers from available ie keys to be revoked. Max n-1 keys can be revoked. n

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 161

Security

is total number of IE keys.

LSb represents key0 and MSb represents key 31. So total 32 keys are supported.

IE_REVOC=1,7

Specify SG table address, only for (2041/3041/4080/5020/5040) with ESBC=0 - [Optionall

SG_TABLE_ADDR=

Specify the target where image will be loaded. (Default is NOR_16B) - [Optionall

Only required for Non-PBL Devices (1010/9131/9132/C290)

Select from - NOR 8B/NOR_16B/NAND 8B 512/NAND 8B 2K/NAND 8B 4K/NAND 16B 512/NAND 16B 2K/

NAND 16B_4K/SD/MMC/SPI

IMAGE TARGET=

Specify IMAGE, Max 8 images are possible. DST ADDR is required only for Non-PBL Platform.

[Mandatory]

In case using IE KEY, Max 7 images are possible. [Mandatory]

USAGE : IMAGE NO = {IMAGE NAME, SRC _ADDR, DST ADDR}

IMAGE l={u-boot.bin,cff40000,fEfEffff}

IMAGE 2={

IMAGE 3=({

IMAGE 4={,,

IMAGE 5=({

IMAGE 6={
{

1

Specify OEM AND FSL ID to be populated in header. [Optionall

e.g FSL UID=11111111

FSL_UID=

OEM_UID=

Specify the file names of csf header and sg table. (Default :hdr.out) [Optionall
OUTPUT HDR_FILENAME=hdr uboot .out

Specify the file names of hash file and sign file.
HASH FILENAME=img hash.out
INPUT SIGN FILENAME=sign.out

Specify the signature size.It is mandatory when neither public key nor private key is
specified.

Signature size would be [0x80 for 1k key, 0x100 for 2k key, and 0x200 for 4k key].
SIGN_SIZE=

Specify the output file name of sg table. (Default :sg table.out). [Optionall]

Please note that OUTPUT SG BIN is only required for 2041/3041/4080/5020/5040 when ESBC
flag is not set.

OUTPUT_SG_BIN=

Following fields are Required for 4240/4860/1040/2080/C290 only

Specify House keeping Area

Required for 4240/4860/1040/2080/C290 only when ESBC flag is not set. [Mandatory]
HK AREA POINTER=bff00000

HK AREA SIZE=00010000

Following field Required for 4240/4860/1040/2080/C290 only

Specify Secondary Image Flag. (0 or 1) - [Optional]
(Default is 0)
SEC_IMAGE=

Table 38. Description of new fields introduced.

Field Field Description
ESBC_HDRADDR ESBC Header address. It contains location of ESBC header in
the memory

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
162 NXP Semiconductors

Table 38. Description of new fields introduced. (continued)

Secure boot

Field

Field Description

IE_KEY

Extension Public key filenames to be used by further level
images. (File has to be in PEM format) FILE1 [,FILE2, FILES,
FILE4].

IE_REVOC

Revoked keys numbers from available ie keys. If a key is
compromised then this feature helps to avoid that key usage.
Max n-1 keys can be revoked. n is total number of IE keys and
less than equal to 32.Ex.[1,3,5]

OUTPUT

0001400:
0001410:
0001420:
0001430:
0001440:
0001450:
0001460:
0001470:
0001480:
0001490:
00014a0:
00014B0:
00014c0:
00014d0:
00014e0:
00014£0:
0001500:
0001510:
0001520:
0001530:
0001540:
0001550:
0001560:
0001570:
0001580:

000
000c
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
bde=1
02b7
e05d
8b23
9b7f
08&EG
08&e=
S=78

Size of IE Key Structure

e Talele

i Vi O
aooo
o000
o000
o000
0000
0000
lelele]
o000
o000
o000
o000
elelele]
o000
o000
o000
0001
50c5
cclOb
2313
6d4 6
S9dZ25
33cc
9r4s
fE=g

0000
Q000
Q000
Q000
Q000
Q000
Q000
Q000
Q000
0000
0000
Q000
Q000
o000
0000
Q000
0000
2827
bdc8
g9g8r8
SacO
13a6
ds5b0
31£5
£7fe

Q00f
Qo0f
Qogoo
Qo000
Qo000
Q000
Qo000
elolele]
Qogo
Qo000
Qo000
Qo000
elolele]
Qogo
Qo000
Qogo
ooog
d2ab
dbba
4bla
4554
c5ca
dS0a
cB843
225

c8b0
cff4
o000
o000
o000
0000
o000
o000
o000
o000
o000
o000
o000
o000
o000
o000
o000
abe7
£858
9198
cfol
8f8c
f5=s
4038
57589

Memory address of IEstructure

1500
o000
o000
oooo
o000
0000
o000
o000
o000
o000
oooo
o000
o000
o000
oooo
gooo
o100
52d5
&ebad
aa’g
6b40
ars8
170¢c
2137
deakb

Highlighted fields shows IE structure is embedded in the CSF header.

EEEL

£t
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
bB277
3fck
alfcZ
68d1
827d
d28b
=888
c37f
0000

EELEE

AT

£rfff
o000
o000
o000
o000
o000
o000
o000
0000
0000
o000
o000
o000
o000
o000
efs3
Ec00
dg8eZ
b452
12ac
865F
3bld
4fab
o000

6.1.1.7.3.5 Generate Header for Next Level Images (bootscript, rootfs, dtb, linux).

IE key table generated in previous is embedded along with the CSF header for u-boot. Boot ROM code verifies these keys along
with the bootloader. For the rest of the images in the chain of trust, user can use the keys in the IE key table. The IE Key Table is
in the memory already, the sample input file needs to have the IE Key number to be used.(IE_KEY_SEL). The corresponding

private key of the file needs to be provided for signature to be generated (PRI_KEY).

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

163

Security

This sample file is same as file described above in <link to 4.1.2> except fields required for IE Key extension highlighted in red.

CSF Header for bootscript

Specify the platform. [Mandatory]

Choose Platform - 1040/2080/2041/3041/4080/5020/5040/4860/4240/LS1

PLATFORM=1040

ESBC Flag. Specify ESBC=0 to sign u-boot and ESBC=1 to sign ESBC images. (default is 0)
ESBC=1

Entry Point/Image start address field in the header. [Mandatory]

(default=ADDRESS of first file specified in images)

ENTRY POINT=e8a00000

Specify the file name of the keys seperated by comma.

The number of files and key select should lie between 1 and 4 for 1040/2080 and C290.
For rest of the platforms only one key is required and key select should not be provided.
#

#

USAGE (for 4080/5020/5040/3041/2041/1010/913x): PRI _KEY = <keyl.prix>
USAGE (for 1040/2080/C290/4860/4240) : PRI_KEY = <keyl.pri>, <key2.pris>, <key3.pris,
<key4 .pris>

PRI _KEY (Default private key :srk.pri) - [Optionall]

PRI _KEY=iekey4k 2.pri

PUB_KEY (Default public key :srk.pub) - [Optional]

PUB_KEY=

Please provide KEY SELECT (between 1 to 4) (Required for 1040/2080/C290/9164/4240 only) -
[Optionall

KEY SELECT=
Specify SG table address, only for (2041/3041/4080/5020/5040) with ESBC=0 - [Optionall
SG_TABLE_ADDR=
Specify IE KEY to be used for signature verification. [Mandatory]
IE_KEY SEL=8
Specify the target where image will be loaded. (Default is NOR_16B) - [Optionall]
Only required for Non-PBL Devices (1010/9131/9132/C290)
Select from - NOR_8B/NOR 16B/NAND 8B 512/NAND 8B 2K/NAND 8B 4K/NAND 16B 512/NAND 16B 2K/
NAND_16B_4K/SD/MMC/SPI
IMAGE_TARGET=
Specify IMAGE, Max 8 images are possible. DST ADDR is required only for Non-PBL Platform.
[Mandatory]
In case using IE _KEY, Max 1 image is possible. [Mandatory]
USAGE : IMAGE NO = {IMAGE NAME, SRC_ADDR, DST ADDR}
IMAGE 1={bootscript,e8a00000,fEffffff}
IMAGE 2={,,}
IMAGE 3={
IMAGE 4={,,
{
{
!

IMAGE_ 5=
IMAGE_6=
IMAGE_7=
IMAGE 8=
Specify OEM AND FSL ID to be populated in header. [Optionall

e.g FSL UID=11111111

FSL_UID=

OEM_UID=

Specify the file names of csf header. (Default :hdr.out) [Optionall
OUTPUT_HDR_FILENAME=hdr bs.out

Specify the file names of hash file and sign file.
HASH FILENAME=img hash.out
INPUT SIGN FILENAME=sign.out

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
164 NXP Semiconductors

Secure boot

Specify the signature size.It is mandatory when neither public key nor private key is
specified.

Signature size would be [0x80 for 1k key, 0x100 for 2k key, and 0x200 for 4k keyl].
SIGN_SIZE=0x200

Specify the output file name of sg table. (Default :sg table.out). [Optionall]

Please note that OUTPUT SG BIN is only required for 2041/3041/4080/5020/5040 when ESBC
flag is not set.

OUTPUT SG BIN=

Following fields are Required for 4240/9164/1040/2080/C290 only

Specify House keeping Area

Required for 42409164/1040/2080/C290 only when ESBC flag is not set. [Mandatory]
HK _AREA POINTER=

HK AREA SIZE=

Following field Required for 4240/9164/1040/2080/C290 only

Specify Secondary Image Flag. (0 or 1) - [Optional]
(Default is 0)
SEC_IMAGE=

Table 39. Description of new fields introduced.

Field Field Description

IE_KEY_SEL IE_KEY number for public key in IE Key table to be used for
signature verification of ESBC image.

OUTPUT

Given below is a snapshot of header generated in which highlighted fields indicates IE flag is ON and IE KEY SELECT i.e. key
to be used to verify image is embedded in header.

Highlighted fields shows IE key select in CSF header.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 165

Security

6.1.1.8 Troubleshooting

Table 40. Troubleshooting

Symptoms Reasons and/or Recommended actions

1. | No print on UART console. * Check the status register of sec mon block (location 0xfe314014).
Refer to the details of the register from the Reference Manual. Bits
OTPMK_ZERO, OTMPK_SYNDROME and PE should be 0 otherwise
there is some error in the OTPMK fuse blown by you.

e |f OTMPK fuse is correct (see Step 1), check the SCRATCHRW2
register for errors. Refer to Section for error codes.

* If Error code = 0 then check the Security Monitor state in HPSR
register of Sec Mon.

Sec Mon in Check State (0x9)

If ITS fuse = 1, then it means ISBC code has reset the board. This may be
due to the following reasons:

Hash of the public key used to sign the ESBC U-BOOT does not match with
the value in SRK hash fuse

Or
Signature verification of the image failed
Sec Mon in Trusted State (0xd) or Non-Secure State (0xb)

Check the entry point field in the ESBC header. It should be Oxcffffffc for the
demo described in Section 4.

If entry point is correct, ensure that U-BOOT image has been compiled with
the required secure boot configuration.

2. |Instead of linux prompt, you get a U-BOOT | You have not booted in secure boot mode. You never get a U-BOOT prompt
command prompt instead of linux prompt. | in secure boot flow. You would reach this stage if ITS = 0 and you are using
rcw where sbenQ is present in its name.

3 | U-BOOT hangs or board resets Some validation failure occurred in ESBC U-BOOQT. Error code and
description would be printed on U-BOOT console.

6.1.1.9 CSF Header Data Structure

The CSF Header provides the ISBC with most of the information needed to validate the image.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
166 NXP Semiconductors

LS1 Platform

0x24
=28
0x2C
0x30
0x34
0x38
0x3c

Secure boot

ISBC Phase ESBC Phase
Barker Code Barker Coda 0x0
Public Key { SRK Table Offset Public Key [SRK Table Offsat 0x4
Public Key Length / SRK Flags Public Key Length / SRK Flags 0x8
REA Signature Offsat RSA Signature Offset 0xC
RSA Signature Length RSA Signature Length 0x10
Pointer to SG Table Pointer to Image 0x14
entries in SG Size of ESBC Image 0x18
ESEC Entry Point Reserved oxicC
e s
UID, SEC_IMG Flags UID, SEC_IMG Flags 0x24
FSLUID_D FEL UID_O 0x28
OEM UID_0 OEM UID_0 0x2C
Reserved Reserved 0x30
Reserved Reserved 0x34
FSL UID_1 FSL UID_1 0x38
OEM UID_1 OEM UID_1 0x3C
Header Size = 0x40 Rasenial 0x40
Reserved Oxdd
ISBC key Extension flag 0x48
IE Key Select 0xAC

Header Size = 0x50

Figure 23. CSF Header for LS1 (ISBC and ESBC Phase)

Table 41. CSF Header Format (LS1 Platform)

Offset Data Bits [0:31]
0x00-0x03 Barker code.
This location should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this location does not match the Barker code, the ISBC stops execution and reports error.
0x07-0x04 If the srk_table_flag is not set :

* Public key offset: This location contains an address which is the offset of the public key from the
start of CSF header. Using this offset and the public key length, the public key is read.

If srk_table_flag is set:

¢ Srk table offset: This location contains an address which is the offset of the srk table from the
start of CSF header. Using this offset and the number of entries is SRK Table, the SRK table is
read.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

167

Security

Table 41. CSF Header Format (LS1 Platform) (continued)

Offset

Data Bits [0:31]

0x08

Srk table flag.

This flag indicates whether hash burnt in srk fuse is of a single key or of srk table.

0x0b-0x09

If the srk_table_flag is not set :

* 0x0b-0x9 -- Public key length: This location contains the length of the public key in bytes.
If srk_table_flag is set:

* 0x09 — Key Number from srk table which is to be used for verification.

¢ 0x0b-0x0a — Number of entries in srk table. Minimum number of entries in table = 1, Maximum =
4.

0x0f-0x0c

RSA Signature offset.

This location contains an offset(in bytes) of the RSA signature from the start of CSF header. Using this
offset and the Signature length, the RSA signature is read. The RSA signature is calculated over CSF
Header, Scatter Gather table and ESBC images.

0x13-0x10

RSA Signature length in bytes.

0x17-0x14

For ISBC Phase:
SG Table offset

This location contains an address which is the offset of the SG table from the start of CSF header. Using
this offset and the number of entries is SG Table, the SG table is read.

For ESBC Phase:

Address of the image to be validated.

0x1b-0x18

For ISBC Phase:

Number of entries in SG Table (Earlier ,Based on the Scatter gather flag in CSF Header, this location
can either be treated as number of entries in SG table or ESBC image size in bytes.).

For ESBC Phase

Size of image to be validated

Ox1f-Ox1c

For ISBC Phase:
ESBC entry point.
ISBC transfers control to this location upon successful validation of ESBC image(s).

For ESBC Phase: Reserved

0x21-0x20

Manufacturing Protection Flag

Indicates if manufacturing protection has to be enabled or not in ISBC.

0x23-0x22

Reserved .(Earlier this field was SG Flag. SG flag is always assumed to be 1 in unified implementation.)

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

168

NXP Semiconductors

Secure boot

Table 41. CSF Header Format (LS1 Platform) (continued)

Offset

Data Bits [0:31]

0x24

For ISBC Phase: Reserved
For ESBC Phase: Reserved

0x25

For ISBC Phase
Secondary Image flag

Indicates if user has a secondary image available in case of failures in validating primary iamge.Valid in
case of primary Images’s Header.

For ESBC Phase:Reserved

0x27-0x26

Unique ID Usage
This location contains a flag which specifies one of these possibilities
* 0x00 - No UID’s present
* 0x01 - FSL UID and OEM UID are present
* 0x02 - Only FSL UID is present
* 0x04 - Only OEM UID is present

0x2b-0x28

NXP unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

0x2f-0x2¢c

OEM unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to OEM. This value is compared with the OEM ID
0 in Secure Fuse Processor 's OEM-ID registers

0x37-0x30

Reserved

0x3b-0x38

NXP unique ID 1

Lower 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1in Secure Fuse Processor 's FSL-ID registers

0x3f-0x3c

OEM unique ID 1

Lower 32 bits of a unique 32 bit value, which is specific to OEM. This value is compared with the OEM
ID 1 in Secure Fuse Processor 's OEM-ID registers

0x40-0x47

For ISBC Phase: Not Applicable
For ESBC Phase: Reserved

0x48-0x4b

For ISBC Phase: Not Applicable
For ESBC Phase:
ISBC key Extension flag

If this flag is set, key to be used for validation needs to be picked up from IE Key table.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

169

Security

Table 41. CSF Header Format (LS1 Platform) (continued)

Offset Data Bits [0:31]
Ox4c-0x4f For ISBC Phase: Not Applicable
For ESBC Phase:
IE Key Select
Key Number to be used from the IE Key Table if IE flag is set.
Table 42. Scatter Gather Table Format (LS1 Platform)
Offset Data Bits [0:31]
0x00-0x03 Length. This location specifies the length in bytes of the ESBC image 1.
0x04-0x07 Target where the ESBC Image 1 can be found. This field is ignored in case of PBL based SOC'’s.
0x08-0x0b Source Address of ESBC Image 1
0x0c-0x0f Destination Address of ESBC Image 1
If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.
0x10-0x13 Length. This location specifies the length in bytes of the ESBC image 2.
0x14-0x17 Target where the ESBC Image 2 can be found. This field is ignored in case of PBL based SOC'’s.
0x18-0x1b Source Address of ESBC Image 2
0x1c-0x1f Destination Address of ESBC Image 2
If the target address is Oxffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC's.
Table 43. Signature (LS1 Platform)
Offset Data Bits [0:31]
0x00-size The RSA signature calculated over CSF Header, Scatter Gather table and ESBC image(s).
Table 44. Public key (LS1 Platform)
Offset Data Bits [0:31]
0x00-size Public Key Value. The hash of this public key is compared with the hash stored in Secure Fuse Processor

SRKH registers.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

170

NXP Semiconductors

Table 45. SRK Table (LS1 Platform)

Secure boot

Offset Data Bits [0:31]
0x00-0x03 Key 1 length
0x04-0x403 Key 1 value. (Remaining bytes will be padded with zero)

0x404-0x407

Key 2 length

0x408-0x807

Key 2 value. (Remaining bytes will be padded with zero)

0x808-0x80b

Key 3 length

0x80c-0xb0b

Key 3 value. (Remaining bytes will be padded with zero)

0xb0c-0xbOf

Key 4 length

Oxb10-0xe10

Key 4 value. (Remaining bytes will be padded with zero)

LS1043/LS1046/LS1012 Platforms

ISBC Phase

ESBC Phase

Barker Code

Barker Code

Public Key / SRK Table Offset

Public Key (SRK Table Offset

Public Key Length / SRK Flags

Public Key Length / SRK Flags

REA Signature Offsat

RSA Signature Offset

RSA Signature Length

RSA Signature Length

Pointer to SG Table

Reservad

antries in SG

Size of ESBC Image

ESBC Entry Point Reserved
T o
UID, SEC_IMG Flags UID, SEC_IMG Flags
FSL UID_0 FSL UID_0O
OEM UID_O OEM UID_0
Reserved Resarved
Reserved Resarved
FSL UID_1 FSL UID_1
DEM UID_1 OEM LID_1

Header Size = 0x40

Pointer to ESBC Image (Low)

Pointer to ESBC Image (High)

ISBC key Extension flag

IE Key Select

Header Size = 0x50

Figure 24. CSF Header for LS1043/LS1046//LS1012 (ISBC and ESBC Phase)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

00

Oxd

0x8

0

0x10
Oxi4
0x13
0x1C
0x20
Ox24
Ox28
0x2C
0x30
On34
0x38
0x3C
0x40
Oxdd
0x48
0x4C

NXP Semiconductors

171

Security

Table 46. CSF Header Format (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]
0x00-0x03 Barker code.
This location should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this location does not match the Barker code, the ISBC stops execution and reports error.
0x07-0x04 If the srk_table_flag is not set :

* Public key offset: This location contains an address which is the offset of the public key from the

start of CSF header. Using this offset and the public key length, the public key is read.
If srk_table_flag is set:

* Srk table offset: This location contains an address which is the offset of the srk table from the
start of CSF header. Using this offset and the number of entries is SRK Table, the SRK table is
read.

0x08 Srk table flag.
This flag indicates whether hash burnt in srk fuse is of a single key or of srk table.
0x0b-0x09 If the srk_table_flag is not set :
* 0x0b-0x9 -- Public key length: This location contains the length of the public key in bytes.
If srk_table_flag is set:

* 0x09 — Key Number from srk table which is to be used for verification.

¢ 0x0b-0x0a — Number of entries in srk table. Minimum number of entries in table = 1, Maximum =
4.

0x0f-0x0c RSA Signature offset.
This location contains an offset(in bytes) of the RSA signature from the start of CSF header. Using this
offset and the Signature length, the RSA signature is read. The RSA signature is calculated over CSF
Header, Scatter Gather table and ESBC images.
0x13-0x10 RSA Signature length in bytes.
0x17-0x14 For ISBC Phase:
SG Table offset
This location contains an address which is the offset of the SG table from the start of CSF header. Using
this offset and the number of entries is SG Table, the SG table is read.
For ESBC Phase:
Reserved
0x1b-0x18 For ISBC Phase:
Number of entries in SG Table (Earlier ,Based on the Scatter gather flag in CSF Header, this location
can either be treated as number of entries in SG table or ESBC image size in bytes.).
For ESBC Phase
Size of image to be validated
Table continues on the next page...
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
172 NXP Semiconductors

Secure boot

Table 46. CSF Header Format (LS1043/LS1046/LS1012 Platforms) (continued)

Offset Data Bits [0:31]
0x1f-Ox1c For ISBC Phase:
ESBC entry point.
ISBC transfers control to this location upon successful validation of ESBC image(s).
For ESBC Phase: Reserved
0x21-0x20 Manufacturing Protection Flag
Indicates if manufacturing protection has to be enabled or not in ISBC.
0x23-0x22 Reserved .(Earlier this field was SG Flag. SG flag is always assumed to be 1 in unified implementation.)
0x24 For ISBC Phase: Reserved
For ESBC Phase: Reserved
0x25 For ISBC Phase
Secondary Image flag
Indicates if user has a secondary image available in case of failures in validating primary iamge.Valid in
case of primary Images’s Header.
For ESBC Phase:Reserved
0x27-0x26 Unique ID Usage
This location contains a flag which specifies one of these possibilities
* 0x00 - No UID’s present
e 0x01 - FSL UID and OEM UID are present
* 0x02 - Only FSL UID is present
* 0x04 - Only OEM UID is present
0x2b-0x28 NXP unique ID 0
Upper 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers
0x2f-0x2¢ OEM unique ID 0
Upper 32 bits of a unique 64 bit value, which is specific to OEM. This value is compared with the OEM ID
0 in Secure Fuse Processor 's OEM-ID registers
0x37-0x30 Reserved
0x3b-0x38 NXP unique ID 1

Lower 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

173

Security

Table 46. CSF Header Format (LS1043/LS1046/LS1012 Platforms) (continued)

Offset Data Bits [0:31]
0x3f-0x3¢ OEM unique ID 1
Lower 32 bits of a unique 32 bit value, which is specific to OEM. This value is compared with the OEM
ID 1 in Secure Fuse Processor 's OEM-ID registers
0x40-0x47 For ISBC Phase: Not Applicable
For ESBC Phase: 64 bit pointer to ESBC image
0x48-0x4b For ISBC Phase: Not Applicable
For ESBC Phase:
ISBC key Extension flag
If this flag is set, key to be used for validation needs to be picked up from IE Key table.
0x4c-0x4f For ISBC Phase: Not Applicable
For ESBC Phase:
IE Key Select
Key Number to be used from the IE Key Table if IE flag is set.
Table 47. Scatter Gather Table Format (LS1043/LS1046/LS1012 Platforms)
Offset Data Bits [0:31]
0x00-0x03 Length. This location specifies the length in bytes of the ESBC image 1.
0x04-0x07 Target where the ESBC Image 1 can be found. This field is ignored in case of PBL based SOC'’s.
0x08-0x0b Source Address of ESBC Image 1
0x0c-0x0f Destination Address of ESBC Image 1
If the target address is Oxffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.
0x10-0x13 Length. This location specifies the length in bytes of the ESBC image 2.
0x14-0x17 Target where the ESBC Image 2 can be found. This field is ignored in case of PBL based SOC'’s.
0x18-0x1b Source Address of ESBC Image 2
0x1c-0x1f Destination Address of ESBC Image 2
If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC's.
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
174 NXP Semiconductors

Secure boot

Table 48. Signature (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-size The RSA signature calculated over CSF Header, Scatter Gather table and ESBC image(s).

Table 49. Public key (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-size Public Key Value. The hash of this public key is compared with the hash stored in Secure Fuse Processor
SRKH registers.

Table 50. SRK Table (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-0x03 Key 1 length

0x04-0x403 Key 1 value. (Remaining bytes will be padded with zero)
0x404-0x407 Key 2 length

0x408-0x807 Key 2 value. (Remaining bytes will be padded with zero)
0x808-0x80b Key 3 length

0x80c-0xb0b Key 3 value. (Remaining bytes will be padded with zero)
0xb0c-0xbOf Key 4 length

0xb10-0xe10 Key 4 value. (Remaining bytes will be padded with zero)

6.1.1.10 ISBC Validation Error Codes

LS1/LS1043/LS1046/LS1012 platforms

Errors in the system can be of following types:
1. Core Exceptions
2. System State Failures
3. Header Checking Failures
a. General Failures
b. Key/Signature/UID related errors
4. Verification Failures

5. SEC/PAMU errors

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 175

Security

Table 51. Core Exceptions (LS1 platform)

Value Code Definition

ox1 ERROR_UNDEFINED_INSTRUCTION Ocecurs if neither the processor nor any attached co-processor
recognizes the currently executing instruction.

ox2 ERROR_SWI Software Interrupt is a user-defined interrupt instruction. It
allows a program running in User mode, for example, to request
privileged operations that run in Supervisor mode.

0x3 ERROR_PREFETCH_ABORT Occurs when the processor attempts to execute an instruction
that has been prefetched from an illegal address.

Ox4 ERROR_DATA_ABORT Occurs when a data transfer instruction attempts to load or
store data at an illegal address.

0x5 ERROR_IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and IRQ interrupts are enabled.

0x6 ERROR_FIQ Occurs when the processor external fast interrupt request pin is
asserted (LOW) and FIQ interrupts are enabled.

Table 52. Core Exceptions (LS1043/LS1046/LS1012 platforms)

Error Code Value

Current EL with SP0

ERROR_EXCEPTION_SYNC_SPO 0x01

ERROR_EXCEPTION_IRQ_SPO 0x02

ERROR_EXCEPTION_FIQ_SPO 0x03

ERROR_EXCEPTION_SERROR_SPO 0x04

Current EL with SPx

ERROR_EXCEPTION_SYNC_SPX 0x05

ERROR_EXCEPTION_IRQ_SPX 0x06

ERROR_EXCEPTION_FIQ_SPX 0x07

ERROR_EXCEPTION_SERROR_SPX 0x08

Lower EL using AArch64

ERROR_EXCEPTION_SYNC_L64 0x11

ERROR_EXCEPTION_IRQ_L64 0x12

ERROR_EXCEPTION_FIQ_L64 0x13

ERROR_EXCEPTION_SERROR_L64 0x14

Lower EL using AArch32

ERROR_EXCEPTION_SYNC_L32 0x15

ERROR_EXCEPTION_IRQ_L32 0x16

ERROR_EXCEPTION_FIQ_L32 0x17

ERROR_EXCEPTION_SERROR_L32 0x18

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

176

NXP Semiconductors

Secure boot

Table 53. System State Failures (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition
0x100 ERROR_CORE_NON_ZERO ISBC is not running on CPUQ
0x101 ERROR_STATE_NOT_CHECK SEC_MON State Machine not in CHECK state at start of ISBC.
Some Security violation could have occurred.
0x102 ERROR2_STATE_NOT_CHECK SEC_MON State Machine not in CHECK state, when trying to
transition it to Trusted/Non Secure/Soft Fail state
0x103 ERROR_SSM_TRUSTSTS SEC_MON State Machine not in TRUSTED state at end of
ISBC.
Table 54. General Header Checking Failures (LS1/LS1043/LS1046/LS1012 platforms)
Value Code Definition
0x301 ERROR_ESBC_HDR_LOC ESBC header location is not in 3.5G space
0x302 ERROR_ESBC_HEADER_BARKER Barker code in the header is incorrect.
0x303 ERROR_ESBC_HEADER_SG_ENTRIES_ | SG table/ESBC image address (header address + image offset
NOT_IN_3_5G in sg table) is beyond 3.5G
0x303 ERROR_ESBC_HEADER_SG_ENTRIES_ | One Entry in the SG table is on OCRAM
ON_OCRAM
0x304 ERROR_ESBC_HEADER_SG_ESBC_EP | ESBC entry point in header not within ESBC address range
0x305 ERROR_SGL_ENTIRES_NOT_SUPPORT | Number of entries in SG table exceeds maximum limit i.e 8
ED
0x306 ERROR_ESBC_HEADER_HKAREA_LEN_ | Houskeeping area not provided in header
ZERO
0x307 ERROR_ESBC_HEADER_HKAREA_NOT_ | House keeping area not in 3.5G boundary
IN_3_5G
0x308 ERROR_ESBC_HEADER_HKAREA_LEN_ | Housekeeping area length provided is not sufficient.
INSUFFICIENT
0x309 ERROR_SG_TABLE_NOT_IN_3_5 SG Table is not in 3.5G boundary
0x309 ERROR_SG_TABLE_ON_OCRAM SG table is on OCRAM
0x310 ERROR_ESBC_HEADER_HKAREA_NOT_ | House keeping area is not aligned to 4K boundary
4K_ALIGNED
0x311 ERROR_SGL_ENTRIES_SIZE_ZERO SG table has entry with size zero.
Table 55. Key/Signature/UID related errors (LS1/LS1043/LS1046/LS1012 platforms)
Value Code Definition
0x320 ERROR_ESBC_HEADER_KEY_LEN Length of public key in header is not one of the supported
values.
0x321 ERROR_ESBC_HEADER_KEY_LEN_ Public key is not twice the length of the RSA signature

NOT_TWICE_SIG_LEN

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

177

Security

Table 55. Key/Signature/UID related errors (LS1/LS1043/LS1046/LS1012 platforms) (continued)

Value Code Definition

0x322 ERROR_ESBC_HEADER_KEY_MOD_1 Most significant bit of modulus in header is zero.

0x323 ERROR_ESBC_HEADER_KEY_MOD_2 Modulus in header is even number

0x324 ERROR_ESBC_HEADER_SIG_KEY_MOD | Signature value is greater than modulus in header

0x325 ERROR_FSL_UID FSL_UID in ESBC Header did not match the FSL_UID in SFP if
fsl uid flag Is 1

0x326 ERROR_OEM_UID OEM_UID in ESBC Header did not match the OEM_UID in SFP
if oem uid flag is 1.

0x327 ERROR_INVALID_SRK_NUM_ENTRY Number of entries field in CSF Header is > 4(This is when
srk_flag in header is 1)

0x328 ERROR_INVALID_KEY_NUM Key number to be used from srk table is not present in table.
(This is when srk_flag in header is 1)

0x329 ERROR_KEY_REVOKED Key selected from srk table has been revoked(This is when
srk_flag in header is 1)

0x32a ERROR_INVALID_SRK_ENTRY_KEYLEN | Key length specified in one of the entries in srk table is not one
of the supported values (This is when srk_flag in header is 1)

0x32b ERROR_SRK_TBL_NOT_IN_3_5 SRK Table is not in 3.5G boundary (This is when srk_flag in
header is 1)

0x32b ERROR_SRK_TBL_ON_OCRAM SRK Table is on OCRAM

0x32c ERROR_KEY_NOT_IN_3_5G Key is not in 3.5G boundary

0x32c ERROR_KEY_ON_OCRAM Key on OCRAM

Table 56. Verification Failures (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition

0x340 ERROR_HASH_COMPARE_KEY Super Root Key Hash Comparison failure. Mismatch in the hash
of the public key/srk table as present in the header with the
value in the SRK HASH fuse.

0x341 ERROR_HASH_COMPARE_EM RSA signature check failure. Signature provided by you in the
header doesn’t match with the signature of the ESBC image
generated by ISBC. The ESBC image loaded by you may be
different than the image used while generating the
signature(using CST)

Table 57. SEC/PAMU Failures (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition

0x700 ERROR_SEC_ENQ Error when enqueuing to SEC

0x701 ERROR_SEC_DEQ Sec Block returned some error when dequeuing from it.

0x702 ERROR_SEC_DEQ_TO Timeout when trying to deq from SEC

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

178

NXP Semiconductors

Table 57. SEC/PAMU Failures (LS1/LS1043/LS1046/LS1012 platforms) (continued)

Secure boot

Value

Code

Definition

0x800

ERROR_PAMU

Error while programming PAACT/SPAACT tables in PAMU (For

PowerPC platforms only)

6.1.1.11 ESBC Validation Error Codes

For trust arch version 1.x and 2.x.

Table 58. ESBC Validation Failures

Value Code Definition

0x0 ERROR_ESBC_CLIENT_MAX NULL

0x4 ERROR_ESBC_CLIENT_HEADER_BARKE | Wrong barker code in header
R

0x8 ERROR_ESBC_CLIENT_HEADER_KEY_LE | Wrong public key length in header
N

0x10 ERROR_ESBC_CLIENT_HEADER_SIG_LE | Wrong signature length in header
N

Ox11 ERROR_ESBC_CLIENT_HEADER_KEY_R |Key used to sign the image revoked
EVOKED

0x12 ERROR_ESBC_CLIENT_HEADER_INVALID | Wrong key entry
_SRK_NUM_ENTRY

0x13 ERROR_ESBC_CLIENT_HEADER_INVALID | Selected key no. not in SRK table
_KEY_NUM

0x14 ERROR_ESBC_CLIENT_HEADER_INV_SR | Unsupported key length of key in SRK table
K_ENTRY_KEYLEN

0x15 ERROR_ESBC_CLIENT_HEADER_IE_KEY | Selected key in IE key table revoked
_REVOKED

0x16 ERROR_ESBC_CLIENT_HEADER_INVALID | Wrong IE Key entry
_IE_NUM_ENTRY

0x17 ERROR_ESBC_CLIENT_HEADER_INVALID | Selected key no. not in IE Key table
_IE_KEY_NUM

0x18 ERROR_ESBC_CLIENT_HEADER_INV_IE_ | Unsupported key length of key in IE Key table
ENTRY_KEYLEN

0x19 ERROR_IE_TABLE_NOT_FOUND information about IE table missing

0x20 ERROR_ESBC_CLIENT_HEADER_KEY_LE | Public key length not twice of signature length
N_NOT_TWICE_SIG_LEN

0x21 ERROR_KEY_TABLE_NOT_FOUND SRK Key/key table not found

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

179

Security

Table 58. ESBC Validation Failures (continued)

Value Code Definition
0x40 ERROR_ESBC_CLIENT_HEADER_KEY_M | Public key Modulus most significant bit not set
OD_1
0x80 ERROR_ESBC_CLIENT_HEADER_KEY_M | Public key Modulus in header not odd
OD_2
0x100 ERROR_ESBC_CLIENT_HEADER_SIG_KE | Signature not less than modulus
Y_MOD
0x200 ERROR_ESBC_CLIENT_HEADER_SG_ES | Entry Point error
BC_EP
0x400 ERROR_ESBC_CLIENT_HASH_COMPARE | Public key hash comparison failed
_KEY
0x800 ERROR_ESBC_CLIENT_HASH_COMPARE | RSA verification failed
_EM
0x1000 ERROR_ESBC_CLIENT_SSM_TRUSTSTS | SNVS not in TRUSTED state
0x2000 ERROR_ESBC_CLIENT_BAD_ADDRESS Bad address error
0x4000 ERROR_ESBC_CLIENT_MISC Miscallaneous error
0x8000 ERROR_ESBC_CLIENT_HEADER_SG_EN | Incorrect entries in SG table
TIRES_BAD
0x10000 ERROR_ESBC_CLIENT_HEADER_SG No SG support
0x20000 ERROR_ESBC_CLIENT_HEADER_IMG_SI |Invalid Image size
ZE
0x40000 ERROR_ESBC_WRONG_CMD Failure in command/Unknown command/Wrong arguments of
boot script.
0x80000 ERROR_ESBC_MISSING_BOOTM Bootm command missing from boot script.

6.1.1.12 Trust Architecture and SFP Information

SoC Trust Arch. | SFP Version | POVDD DRVR OTPMK SNVS/SFP
Version Register to
! Algo (CST) | Registerto |Algo (CST) |Register to chgclzk
check check .
. . Hamming
Hamming Hamming
Error
Error Error
LS1020A 2.1 3.3 189V A SFP 2 SFP
LS1043A 2.1 3.3 189V A SFP 2 SFP
LS1046A 2.1 3.3 189V A SFP 2 SFP
LS1012 2.1 3.3 189V A SFP 2 SFP

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

180

NXP Semiconductors

Secure boot

6.1.2 Service Processor (SP) Based Platforms

6.1.2.1 Secure Boot Introduction

There are three steps in the boot flow:
1. Service Processor Boot ROM

SP provides pre-boot initialization and secure boot capabilities. The on-chip SP Boot ROM offers read-only, non-volatile
storage for the Boot ROM code, including the internal secure boot code (ISBC) sub-routine for image validation. This Boot
ROM is an integral part in the booting of the SOC in non-secure and secure boot modes.

2. GPP Boot ROM

The on-chip GPP Boot ROM executes when the GPP cores are released from reset and is reponsible for passing control
to next step in the boot flow i.e. the boot-loader validated by the SP.

3. Boot Loader

The Boot Loader might further contain the External Secure Boot Code (ESBC) sub-routine for validation of next level
images.

This document is intended for end-users to demonstrate the image validation process which happens in ISBC and ESBC.

The image validation can be split into stages, where each stage performs a specific function and validates the subsequent stage
before passing control to that stage.

The Root of Trust is already established in the ISBC code residing in the Boot ROM which validates the Boot Loader 1.

Boot Loader 1 performs minimal SoC configuration before validating the Next Executable(s) which is/are known as ESBC
image(s).

The flow includes validation of all ESBC images by a previously validated image before its execution to form a Chain of
TRUST. The reference ESBC code also contains the functionality to form a Chain of TRUST with confidentiality where the next
level images are kept on flash after encryption.

Internal Secure Boot Code Barker Code Barker Code
(1580) Public Key List Public Key List
Signature Signature
[Point -
PBI Boot Loader 1 mage Fointer Image Pointer
Validation Validation Next Executable

Boot Loader 1

’ ‘ (ESBC Image)

Includes Next Executable validation

Includes Next Executable validation

code code
External Secure Boot Code External Secure Boot Code
(ESBC) (ESBC)

Figure 25. Chain of Trust

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

181

Security

Y

Internal Secure Boot Code Barker Code Barker Code Blob Header
(ISBC) Public Key List Public Key List
Signature Signature
Boot Image Pointer Image Pointer
PBI
Validation Loader 1 Next Executable
Vel Boot Loader 1 (ESBC Image) Cipher Text Blob
(Main Image)
Incl Next E: tabl
ne u?/iﬁda?i)én gggg able Includes Blob Decryption Ca

External Secure Boot Code External Secure Boot Code
(ESBC) (ESBC)

. . AES-CCM

Figure 26. Chain of Trust with confidentiality

The validated ESBC image is allowed to use the One Time Programmable Master Key to decrypt system secrets. Cryptographic
blob mechanism is used to establish Chain of trust with confidentiality.
The above is explained in detail in coming sections.
As depicted in figure(s) above, there are three types of images which need to be validated as part of Secure Boot.

1. PBIlimage by ISBC

2. Boot Loader 1 image by ISBC

3. Next level image(s) by ESBC
Typically ESBC images would include:

Boot Loader 2 - n In case Boot Loader is split in to multiple stages (Typical example is in case of NAND, SD Boot in which
there is a mini-boot loader loaded on OCRAM which is Boot Loader stage 1 verified by ISBC. Boot Loader
2 is loaded on DDR, which must be validated by the Boot Loader 1.

MC/AIOP images Management Complex images

LINUX The operating system to be executed on the SoC.

6.1.2.1.1 Secure Boot process

Secure boot process uses a digital signature validation routine already present in ISBC residing in SP Boot ROM. This routine
performs validation using HW bound RSA public key to decrypt the signed hash and compare it to a freshly calculated hash over
the same system image. If the comparison passes, the image can be considered as authentic.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
182 NXP Semiconductors

Secure boot

Code Signing Signature Verification
CSF <) CSF | |
Header Header
S/G Table [S/G Table
Code Internal Secure Boot Code (on-chip ROM)
Signing Tool
Image
Message Compare)
— || Message T pi g Pare L
phess Hgash image Digest Hash > Hash Sum Pass/Fail
Y D, N
Private Key Private
Encryption Key Public
EN : Key HashE mod N
Public |_ Public 77@, Decryption
keyls) | Key(s) | | L Key/List yp

A T
Signature

ZE

Figure 27. Secure Boot Process

Signature |«

=
BE-

Hash
Key/List

As shown in the left side of the figure, the Code Signing Tool adds the following:
CSF Header Command Sequence File Header
This header provides the ISBC with flags, pointers, offsets, and lengths necessary to perform image validation.

S/G Table Scatter Gather Table
Optional (N/A for some stages which support only single image)
Allows support for multiple non-contiguous images.

Public Key list SRK (Super Root Key) Table

One or more public keys is appended to the image. The CSF header indicates which of the keys is to be used
in signature validation.

Signature The SHA-256 hash of the CSF header + S/G table + Image + Public Key(s), encrypted with a RSA private key
corresponding to one of the public keys in the key list.

As part of the code signing process, the CST also supports:
Generating RSA public and private key pairs The RSA private key is exported for the OEM to store securely

The CST also supports using public & private keys input by the OEM
Hashing the public key or public key list This hash becomes the Super Root Key Hash which is stored in the SFP

At a high level, the secure boot process runs code signing in reverse.
1. The ISBC locates the CSF header and S/G table to further locate the image, public key list, and signature
2. The public key (list) is hashed and compared to the SRKH
3. If the public key is good, it is used to decrypt the signature (recover the hash)
4

. The CSF header + S/G table + Image + Public key list are hashed, with the result compared to above. If the two hashes
match, image is considered to be authentic.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 183

Security

6.1.2.1.1.1 Super Root Key (SRK)

These are RSA public and private key pairs. Private keys are used to sign the images and public keys are used to validate the
image during ISBC and ESBC phase.

Public keys are embedded in the header and the hash of SRK table is fused in SRKH register of SFP.

These are Hardware Bound Keys, once the hash is fused the public private key pair can not be modified.

Keys of sizes 1k, 2k and 4k are supported in NXP Secure Boot Process.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot.

If this key is ever lost, the OEM will be unable to update the image.

Key

Trust Architecture provides support for revoking the RSA public keys used by the ISBC to verify the ESBC. The

Revokation RSA public keys used for this purpose are called super root keys. The SRK table supports maximum of 8 public

keys and user has the option to revoke up to 7 keys.

During secure boot, the ISBC checks the key number indicated in the CSF header against the revocation fuses
in the SFP’s OEM Security Policy Register (SFP_OSPR). If the key is revoked, the image validation fails.

6.1.2.2 ISBC Phase

At reset, Service Processor core is released and begins executing instructions from reset vector address 0x0 which is mapped
to Internal Boot ROM. The Internal Boot ROM contains the code known as Internal Secure Boot Code (ISBC). The main steps in
ISBC flow are defined below.

6.1.2.2.1 ISBC for PBI validation

1.

Sec_Mon check: Confirms that the Sec_Mon is in the Check state. If not, it writes a ‘fail’ bit in a Sec_Mon control register,
leading to a state transition.

PBI command check: Verify that the first PBI command is ‘LOAD SEC HDR! If not found, an error is raised.
Valid header check: Check for a valid preamble and correct B0/1 flag set as 0 in the header. If not, an error is raised.

CSF parsing and public key check; If ISBC finds a valid CSF header, it parses the CSF header to locate the public key
from SRK (Super Root Key) table to be used to validate the code. There can be a table of maximum 8 public keys present
in the header. The Secure Fuse Processor doesn’t actually store a public key, it stores a SHA-256 hash of the table. If the
hash of the SRK table fails to match the stored hash, secure boot fails.

Signature validation: With the validated public key, ISBC decrypts the digital signature stored with the CSF header. The
ISBC then uses the PBI length field in the RCW to calculate a hash over all PBI commands (CSF header is also a part of
PBI commands) along with the SRK table. Optional flags in the CSF header tell the ISBC whether the FSL Unique ID and
the OEM Unique ID (in the Secure Fuse Processor) are to be checked or not. Including these IDs allows the image to be
bound to a single platform. If the decrypted hash and generated hash don ’ t match, secure boot fails.

Sec_Mon Transition: If ISS (Increment Security State) flag is set in the header, transition the SNVS state from Check to
Trusted.

NOTE
1. PBI commands in Secure Boot must have a command ‘Load Boot 1 CSF Header Ptr’ to inform the ISBC
about location of CSF Header for BOOT1 image (ESBC).

2. Boot1image and header must be placed on an XIP memory before execution of next phase (ISBC validation
of Boot1/ESBC). If these images are placed on memories like NAND/SD/eMMC, then they must be copied
to an XIP memory like OCRAM, DDR via PBl commands.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

184

NXP Semiconductors

Secure boot

6.1.2.2.2 ISBC for Boot1 (Boot Loader 1) validation

1. Valid header check: Check for a valid preamble and correct BO/1 flag set as 1 in the header. If not, an error is raised.

2. CSF parsing and public key check: If ISBC finds a valid CSF header, it parses the CSF header to locate the public key
from SRK (Super Root Key) table to be used to validate the code. There can be a table of maximum 8 public keys present
in the header. The Secure Fuse Processor doesn’t actually store a public key, it stores a SHA-256 hash of the table. If the
hash of the SRK table fails to match the stored hash, secure boot fails.

3. Signature validation: With the validated public key, ISBC decrypts the digital signature stored with the CSF header. The
image information is stored in a SG (scatter gather) table with support of up to 8 discrete images. The ISBC calculates a
hash over the CSF header, SRK table, SG table and all entries in SG table (i.e. images). Optional flags in the CSF header
tell the ISBC whether the FSL Unique ID and the OEM Unique ID (in the Secure Fuse Processor) are to be checked or not.
Including these IDs allows the image to be bound to a single platform. If the decrypted hash and generated hash do not
match, secure boot fails.

4. Entry Point check: One final check is performed by the ISBC. This check confirms that the Entry Point to be updated in
Boot Location Pointer falls within one of the SG entries which have been validated by the ISBC.

5. Sec_Mon Transition: If ISS (Increment Security State) flag is set in the header, transition the SNVS state from Check to
Trusted or Trusted (if transitioned in PB phase) to Secure.

NOTE
1. After End of ISBC, Entry Point parsed from header is written to Boot LOC PTR register.

2. GPP is waken up.
3. SP goes to sleep.

There are many reasons the ISBC could fail to validate the PBI or Boot1. Technicians with debug access can check the DCFG
SCRATCHRWS register to obtain an error code. For a list of error codes refer ISBC Validation Error Codes.

6.1.2.3 ESBC Phase

Unlike the ISBC, which is in an internal ROM and therefore unchangeable, the ESBC is reference code, and can be changed by
OEMSs. The remainder of this section is the description of a reasonable secure boot chain of trust based on NXP's reference
software for secure boot. The reference ESBC code is also part of the Boot 1 image validated by ISBC and would be used to
validate further ESBC images like MC, AIOP, and LINUX etc.

NXP provided ESBC consists of standard u-boot which has been signed using a private key. If the Boot Mode is secure, user
can't reach to uboot prompt as the environment variable bootdelay is defined to 0.

There is default boot command for secure boot in the environment which executes on auto boot. This default bootecmd validates
a file called boot script and on successful validation execute the commands in the boot script.

There are many reasons ESBC could fail to validate Client images or boot script. The error status message along with the code
is printed on the u-boot console. For a list of error codes refer ESBC Validation Error Codes.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

To establish the Secure Boot Chain of Trust, some U-Boot Commands have been added in the ESBC Code which will be discussed
in detail in coming sections.

6.1.2.3.1 esbc_validate command
esbc_validate img_hdr [pub_key hash]

Input arguments:

img_hdr — Location of CSF header of the image to be validated

pub_key_hash — hash of the public key used to verify the image. This is optional parameter. If not provided, code makes the
assumption that the key pair used to sign the image is same as that used with ISBC. So the hash of the key in the header is
checked against the hash available in SRK fuse for verification.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 185

Security

Description:
The command would do the following:

Perform CSF header validation on the address passed in the image header. During parsing of the header, image address in stored
in an environment variable which is later used in source command in default secure boot command.

Signature checks on the image.

6.1.2.3.2 esbc_halt command

esbc _halt (no arguments)
Description:

This command puts core in spin loop.

6.1.2.3.3 blob enc command

blob enc <src location> <dst location> <length> <key modifier addresss>

Input Arguments:

src location Address of the image to be encapsulated

dst location Address where the blob will be created

length Size of the image to be encapsulated

key_modifier address Address where a random number 16 bytes long (key modifier) is placed
Description:

This command would create a cryptographic blob of the image placed at src location and place the blob at dst location.

6.1.2.3.4 blob dec command

blob dec <src location> <dst location> <length> <key modifier addresss>

Input Arguments:

src location Address of the image blob to be decapsulated

dst location Address where the decapsulated image will be placed

length Expected Size of the image after decapsulation

key_modifier address Address where a random number 16 bytes long(key modifier) is placed
Description:

This command would decapsulate the blob placed at src location and place the decapsulated data of expected size at dst location.

6.1.2.3.5 Boot Script

Boot script is a U-Boot script image which contains u-boot commands. ESBC would validate this boot script before executing
commands in it.

1. Boot script can have any commands which u-boot supports. No checking is done on the allowed commands in boot script.
Since it is validated image, assumption is that commands in boot script would be correct.

2. If some basic scripting error is done in boot script like unknown command, missing arguments, the required usage of that
command and core is put in infinite loop.

3. After execution of commands in boot script, if control reaches back in u-boot, error message would be printed on u-boot
console and core would be put in spin loop by command esbc_halt.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
186 NXP Semiconductors

Secure boot

4. Scatter gather images are not supported with validate command.

5. If ITS fuse is blown, any error in verification of the image would result in system reset. The error would be printed on console
before system goes for a reset.

Where to place the boot script?

ESBC u-boot expects the boot script to be loaded in flash . ESBC u-boot code assumes that the public/private key pair used to
sign the boot script is same as that was used while signing the u-boot image. If user used different key pair to sign the image,
hash of the N and E component of the key pair should be defined in macro:

CONFIG BOOTSCRIPT KEY HASH
6.1.2.3.5.1 Chain of Trust

Boot script contains information about the next level images, e.g. MC, LINUX etc. ESBC validates these images as per their public
keys. MC is started with validated MC images if required and finally bootm command is executed to pass control to LINUX image.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system. Figure below
shows the Chain of Trust established for validation with this ESBC.

Sample Boot Script

[1sBC \] CSF Header \ CSF Header [

Boot Loader 1 Boot Script

Normal Boot Loader Stuff ‘ CSF Header
. esbc_validate <MC Img header addr>
. . MC Images(s)

esbc_validate <Linux Img header add>

End of Normal Boot Loader Stuff

esbc_validate
<bootscript Header Address>

source <bootscript Address> ¢ fsl_mc start mc <MC FW Address>
< MC DPC Address> L ‘

fsl_mc apply DPL <MC DPL Address>
Kernel Image(s)
bootm <Kernel Fit Image Address> w/’//'

CSF Header

esbc_halt

Figure 28. Secure Boot Flow (Chain of Trust)

Get Images and Headers on DDR

Validate the Images. (<pub key hash> is optional)
esbc_validate <Imagel Header Address> <pub key hashs>
esbc_validate <Image2 Header Address> <pub key hash>

Start MC with validated images
fsl _mc start mc <MC FW Address> < MC DPC Address>
fsl mc apply DPL <MC DPL Address>

Boot the Linux
bootm <Kernel Fit Image Address>

6.1.2.3.5.2 Chain of Trust with confidentiality

To establish chain of trust with confidentiality, cryptographic blob mechanism can be used. In this chain of trust, validated image
is allowed to use the One Time Programmable Master Key to decrypt system secrets. Two bootscripts are to be used. First encap
bootscripts is used which creates a blob of the next level images(e.g. MC, LINUX etc.) and saves them on flash. After this the

system is booted after replacing the encap bootscript with decap bootscript which decapsulates the blobs and start MC and LINUX.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 187

Security

Sample Encap Boot Script

| ISBC CSF Header CSF Header
MC Images(s)
Boot Loader 1 Boot Script

Normal Boot Loader Stuff biob .
. ob enc <Img1 addr>
<Ilmg1 dest addr> MC Images (s) Blob

<Img1 size> <key_modifier address>

End of Normal Boot Loader Stuff blob enc <Img2 addr>
b lidat <Img2 dest addr>
e <Img1 size> <key_modifier address>

<bootscript Header Address>

source <bootscript Address> L Kernel Image (s)

esbc_halt
reset

Kernel Image (s) Blob

Figure 29. Chain of Trust with Confidentiality (Encapsulation)

Get Images on DDR

Create the Blobs
blob enc <Imgl addr> <Imgl dest addr> <Imgl size> <key modifier address>

blob enc <Img2 addr> <Img2 dest addr> <Img2 size> <key modifier address>
blob enc <Img3 addr> <Img3 dest addr> <Img3 size> <key modifier address>

Save The Blobs created on Flash

End of Encap Boot Script (This is one time only and must be replaced with decap Boot Script)

Sample Decap Boot Script

| ISBC CSF Header CSF Header
MC Images(s)
Boot Loader 1 Boot Script

Normal Boot Loader Stuff

MC Images(s) Blob

blob dec <Img1 addr>
<Img1 dest addr>
<Img1 size> <key_modifier address>

End of Normal Boot Loader Stuff

b i blob dec <Img2 addr>
b £ ?—Tvadl atAe d <Img2 dest addr>
<bootscript Header Address> ,<Img1 size> <key modifier address>

Kernel Image(s)

source <bootscript Address> L
fsl_mc start mc <MC FW Address>
esbc_halt < MC DPC Address> p

fsl_mc apply DPL <MC DPL Address>

bootm <Kernel Fit Image Address> ./

Kernel Image(s) Blob

Figure 30. Chain of Trust with Confidentiality (Decapsulation)

Get Images Blobs on DDR

Decap the Blobs to get the actual images

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

188 NXP Semiconductors

Secure boot

blob dec <Imgl blob addr> <Imgl dest addr> <expected Imgl size> <key modifier address>
blob dec <Img2 blob addr> <Img2 dest addr> <expected Img2 size> <key modifier address>
blob dec <Img3 blob addr> <Img3 dest addr> <expected Img3 size> <key modifier address>

Start MC with validated images
fsl mc start mc <MC FW Address> < MC DPC Address>
fsl mc apply DPL <MC DPL Address>

Boot the Linux
bootm <Kernel Fit Image Address>

6.1.2.4 Next executable phase

The boot loader (ESBC) finishes the platform initialization and passed control to the Linux image. The boot chain can be further
extended to be able to sign application which would be running on Linux prompt. Further RTIC can be integrated to verify memory
regions using Security Engine (SEC) during run time.

6.1.2.5 Product Execution

This section presents the steps to be followed in order to properly run the software product according to its intended use and
functionalities.

Steps in the demo would be:
1. ISBC code would validate PBI and Boot Loader 1.
2. On Successful validation, PBI commands would be executed by SP BootROM.
3. Boot Loader 1 execution will begin on GPP.
4. The ESBC code in Boot Loader 1 would validate and execute and bootscript.[?!
5

. The boot script would contain the commands to validate and execute next level images as described in Boot Script on page
186.

6.1.2.5.1 Introduction

Running secure boot (Chain of Trust
1. Setup the board for secure boot flow. You can choose any of the flows mentioned below.
a. Flow A
Program the ITS fuse.
b. Flow B
For protyping phase, do not blow the ITS fuse, secure boot can be enabled by RCW with SB_EN = 1.

2. Blow other required fuses (TPMK and SRK Hashl*)) in the SFP in silicon. For more details regarding fuse blowing, CCS
and Reset Pause, refer to Platform Reference Manual and Trust Architecture User Guide.

[3] Incase the boot loader is split into two parts, the validation and execution of boot script would happen in the final boot loader
i.e Boot Loader2. Boot Loader 1 will validate and transfer control to Boot Loader 2.
[4] Blowing of OTPMK is essential to run secure boot for both Production (Flow A) and Prototyping/ Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. The SoC can be put in a Reset
Pause state. This will pause the Reset State Machinery after RCW Loading. Then CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then get the system out of Reset Pause State.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 189

Security
NOTE
SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBI and U-Boot image.
For testing purpose, the SRK hash can be written in the mirror registers.

gen_otpmk_drbg utility in CST can be used to generate otpmk key.

3. Flash all the generated images at locations as described in the address map
a. Flow A - All the images would have to be flashed at the current bank addresses.

b. If you are using Flow B, you can use alternate bank for demo purpose. This would mean flashing the images on
alternate bank addresses from Bank0 and then switching to Bank.

4. Give a power on cycle to the board.
a. For Flow A and Flow B (If secure boot images flashed on default bank)

¢ On power on, ISBC code in SP boot ROM would validate the PBI image followed by validation of Boot loader1
(U-Boot)

* ESBC code in Boot loader 1 image would further validate the ESBC images (Boot Script, LINUX, MC, and so
on)

e MC and LINUX would be started.

b. For Flow B (If secure boot images flashed on alternate bank), the user must first do the switch settings!® for booting
from alternate bank and also to enable reset pause.

* On power on after the correct switch setting, Reset State Machinery will be paused after RCW loading.
* Write the SRKH to SFP mirror registers and get the system out of Reset Pause via CCS.
* Secure boot flow as mentioned above would execute.
Two additional features are provided in secure boot:
1. Chain of Trust with confidentiality

2. ISBC Key Extension

6.1.2.5.2 Chain of Trust with confidentiality

This section presents the steps to be followed in order to execute chain of trust with confidentiality.
The demo would be divided into two parts:

1. Creating /encrypting images in form of blobs.

2. Decrypting the images, and booting from decrypted images.

The execution steps remain same as specified above in Product Execution on page 189. In first phase the Boot Script would
contain the commands to encrypt and create blobs of the images. After that the Boot Script is replaced and in second phase the
Boot Script would contain commands to decrypt the blobs to get back the images and boot LINUX, AIOP using these images.

6.1.2.5.2.1 Other images required for demo
Apart from SDK images described above, the following images are also required:
1. Encap boot script
Sample Encap boot script

load \$devtype \$devnum:2 \$kernelheader addr r /secboot hdrs/ls2088ardb/hdr linux.out;
esbc_validate \skernelheader addr r;
load \$devtype \sdevnum:2 \$fdtheader addr_r /secboot hdrs/ls2088ardb/hdr dtb.out;

[5] This may also be done via writing to FPGA registers from the U-Boot Prompt of U-Boot runing in Non-Secure Mode on
BankO0. Refer the Platform FPGA guide for the same.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
190 NXP Semiconductors

Secure boot

esbc_validate \$fdtheader addr_ r;

size \$devtype \$devnum:2 /vmlinuz; echo Encapsulating linux image;setenv key addr
0x87000000; mw \S$key addr skey id 1;

setexpr \sSkey addr \$key addr + 0x4; mw \sSkey addr Skey id 2;setexpr \skey addr \

Skey addr + 0x4; mw \$key addr skey id 3;setexpr \S$key addr \S$key addr + 0x4; mw \

Skey addr S$key id 4;

blob enc \S$kernel addr r \$load addr \$filesize \S$key addr; setexpr blobsize \$filesize
+ 0x30;echo Saving encrypted linux ;save \$devtype \$devnum:2 \$load addr /vmlinuz \
Sblobsize;size \sdevtype \$devnum:2 /fsl-1sl1l046a-rdb.dtb;

echo Encapsulating dtb image; blob enc \$fdt addr r \$load addr \sfilesize \$key addr;
setexpr blobsize \$Sfilesize + 0x30;echo Saving encrypted dtb; save \$devtype \$Sdevnum:2 \
$load addr /fsl-1sl046a-rdb.dtb \S$blobsize; size \$devtype \Sdevnum:2 /

1sl046ardb_dec boot.scr;

load \$devtype \sdevnum:2 \$load addr /1ls2088ardb_dec boot.scr;

echo replacing Bootscript; save \$devtype \$devnum:2 \$load addr /1s2088ardb_boot.scr \
S$filesize;size \Sdevtype \S$devnum:2 /secboot hdrs/1s2088ardb/hdr 1s2088ardb bs dec.out;
load \$devtype \$devnum:2 \$load addr /secboot hdrs/ls2088ardb/

hdr 1s2088ardb bs dec.out ;echo Replacing bootscript header; save \$devtype \$devnum:2 \
$load_addr /hdr_1s2088ardb bs.out \sfilesize;reset;'

2. Decap boot script

size \S$devtype \Sdevnum:2 /vmlinuz;setexpr imgsize \$filesize - 0x30 ;

echo Decapsulating linux image; setenv key addr 0x87000000; mw \Skey addr S$key id 1;setexpr \
S$key addr \skey addr + 0x4; mw \S$key addr Skey id 2;setexpr \S$key addr \Skey addr + 0x4; mw \
Skey addr key id 3;setexpr \Skey addr \S$key addr + 0x4; mw \Skey addr skey id 4;

blob dec \$kernel addr r \S$load addr \$imgsize \Skey addr; cp.b \$load addr \skernel addr_ r
\$filesize ;size \sdevtype \Sdevnum:2 /fsl-1s2088a-rdb.dtb;setexpr imgsize \sfilesize -

0x30 ;

echo Decapsulating dtb image; blob dec \$fdt_addr r \$load addr \$imgsize \Skey addr; cp.b \
$load addr \sfdt addr_r \$filesize ;

6.1.2.5.2.2 Running secure boot (Chain of Trust with confidentiality)
1. Setup the board for secure boot flow. You can choose any of the flows mentioned below.
a. Flow A
Program the ITS fuse.
b. Flow B
For protyping phase, do not blow the ITS fuse, secure boot can be enabled by RCW with SB_EN = 1.

2. Blow other required fuses(OTPMK and SRK hashl®) in the SFP in silicon. For more details regarding fuse blowing, CCS
and Reset Pause, refer to Platform Reference Manual and Trust Architecture User Guide.

NOTE
*SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBI and U-Boot image.

*For testing purpose, the SRK hash can be written in the mirror registers.

*gen_otpmk_drbg utility in CST can be used to generate otpmk key.

3. Flash all the generated images at locations as described in the address map.
a. Flow A - All the images would have to be flashed at the current bank addresses.

b. If you are using Flow B, you can use alternate bank for demo purpose. This would mean flashing the images on
alternate bank addresses from Bank0 and then switching to Bank4.

4. Give a power on cycle to the board.

[6] Blowing of OTPMK is essential to run secure boot for both Production (Flow A) and Prototyping/ Development (Flow B).

For SRK Hash, in Development Mode (Flow B), there is a workaround to avoid blowing fuses. The SoC can be put in a
Reset Pause state. This will pause the Reset State Machinery after RCW Loading. Then CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then get the system out of Reset Pause State.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 191

Security

a. For Flow A and Flow B (If Secure Boot images flashed on default bank)

* On power on, ISBC code in SP Boot ROM would validate the PBI image followed by validation of Boot Loader1
(U-Boot)

* First Boot: Encapsulaton Step (Should happen in OEM's premises)
i. By defult the enacap and decap bootscripts will be installed in the bootpartition.

ii. When the board boots up for the first time after all images have been generated, Encap bootscript will
execute. This bootscript:

i. Authenticates and encapsulates linux and dtb images and replaces the unencrypted linux and dtb
images with newly encapsulated linux and dtb.

ii. Replaces the encap bootscript and header with the decap bootscript and it's header, already
present in the bootpartition.

iii. Issues reset

Blobification

e Subsequent Boot .
i. Uboot would execute script with decap commands
i. Un-blobify linux and dtb image in DDR

ii. Pass control to these images

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

192 NXP Semiconductors

deblobification

e

Secure boot

b. For Flow B (If Secure Boot images flashed on alternate bank), the user must first do the switch settings!”! for booting
from alternate bank and also to enable Reset Pause.

* On power on after the correct switch setting, Reset State Machinery will be paused after RCW loading.

* Write the SRKH to SFP mirror registers and get the system out of reset pause via CCS.

¢ Secure Boot flow as mentioned above would execute.

6.1.2.5.3 ISBC Key Extension (IE)

The ISBC Key Extension feature allows the user to extend the number of keys available for signature validation. To use this feature,
ISBC validates a table of public keys (IE keys) along with the ESBC image using one of the SRKs (Super Root Keys). These
validated IE keys later become available for ESBC to validate downstream images, for example, Linux, MC, and so on.

Internal Secure Boot Code
(ISBC)

PBI
Validation
z

IE Keys Table
Validation

Boot Loader 14 |-
Validation

SRKH Keys - Silicon Bound
srk 1
srk 2

srkn

Validate Using

SRKH Key iek 1
srk; iek 2
iek n
“Validate Using
SRKH Key
srk;
it + CSF Header

Boot Loader 1

Normal Boot Loader Stuff

End of Normal Boot Loader Stuff

esbe_validate <bootscript Header Address>

source <bootscript Address>

esbc_halt

[7]1 This may also be done via writing to FPGA registers from the U-Boot Prompt of U-Boot runing in Non-Secure Mode on

Validate Using
SRKH Key

ie_-ki I srk;

CSF Header

Boot Script

Validate Using

SRKH Key -

CSF Header

iek; / srk;

esbc_validate <MC Img header addr=>

MC Image(s)

/‘ fsl_me star mc <MC FW Address> < MC
DPC Address>

fsl_mc apply DPL <MC DPL Address>

/

Validate Using

esbe_validate <Linux Img header addr>

SRKH Key

" iek; /srk; -

CSF Header

bootm <Kerned Fit Image Address=>

r——»

Figure 31. Secure boot flow (with IE)

BankO. Please refer the Platform FPGA guide for the same.

Kernel Image(s)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

193

Security

As shown in the Secure Boot Flow (with IE),
1. ISBC code validates IE Table and Boot loader (ESBC) using one of the SRKSs (Silicon Bound).

2. After |E Table is successfully validated, it becomes available for use by future images.!8l(SRKs are present in SRK table
which is supplied with each image that is signed and validated using them. They are silicon bound as their hash, SRKH,
is present in SoC's fuses.)

3. ESBC validates further images using either SRKs or IE Keys, which in turn can validate other images using these keys.
Which key to use to verify image is decided based on CSF Header of the image to be validated.

Following are the advantages of IE Keys.

 Different images can be signed and validated using different IE keys. This is not possible with SRKSs as they are significantly
less in number than IE Keys.

* |E key table can be changed as opposed to SRKs which are fixed as they are tied to SRKH blown in fuses.

6.1.2.5.3.1 IE table format

Table 59. Table: IE table format

Offset (In Bytes) Description

0x0 - 0x3 Keys revoked.

Each bit represents a key. If the bit is set, it indicates that this key in the table has been
revoked and cannot be used for verification purposes.

Bit O represents Key 1, Bit 1 represent Key 2 ..., Bit 31 represents Key 32.

0x04-0x07 Total number of keys present in the table (Max 32).
0x08-0x0b Key 1 length (In bytes. Max 1024)

0x0c-0x40b Key 1 value (Zero padded if less than 1024 bytes)
0x40c-0x40f Key 2 length

0x410-0x80f Key 2 value

0x8 + 0x404 * (n- 1) - | Key N length (N <= 32)

0x8 + 0x404 8 (n - 1)
+ 0x3

0x8 + 0x404 * (n - 1) |Key N value
+ Ox4 - 0x8 + 0x404 ~*
(n) - Ox1

6.1.2.5.3.2 Enabling IE via the Code Signing Tool

Following are the steps that need to be executed during runtime to enable use of |IE feature during secure boot:

1. During the PBI phase, scratch registers 13 and 14 (in the DCFG block) need to be populated with the address of the IE
table (to be loaded later). Scratch register 14 contains the higher 32 bits of address of the IE table and scratch register 13
contains the lower 32 bits of address (SoC supports 48-bit address space).

2. Next, during the ISBC runtime, the IE table needs to be validated along with the ESBC image. For this, the address of this
IE table is added as the first entry in SG table of CSF header.

[8] For allowing ESBC image to use IE Table, it is neccesary for the IE Table to be present in an XIP memory. This is trivial in
case of XIP memories, such as NOR. In case of Non - XIP memories, |E table needs to be copied along with CSF Header
to an XIP memory.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
194 NXP Semiconductors

3.

Secure boot

Now ESBC can use either one of the IE keys or the SRK keys to validate next images. Which key to use, depends on the
various field of CSF header (CSF header structure definition on page 209CSF header structure definition on page 216)
of the image to be validated.

a. If IE Flag is not set, then one of the SRKs is used to verify the image. The key number is taken from the "Key No.
for verification" flag. All SRKs would be present in the SRK table, whose offset is embedded in CSF header.

b. IfIE Flag is set, then one of the IE keys is used to verify the image. The key number is taken from the "IE Key Select"
flag. The key is gathered from IE table, the address of which was already populated in Scratch registers 13 and 14.

Following are the steps that need to be executed during build-time to incorporate IE table in CSF header and sign images using
IE keys using the Code Signing Tool:

1.

3.

Using uni_sign, sign ESBC image and IE table (uni_sign also generates IE table using IE keys). uni_sign also prints the
IE table address.

. Using uni_pbi, generate PBl commands which also includes the commands to write the address of |E table given by uni_sign

to Scratch registers 13 and 14.

Sign next level images using one of the |IE keys / SRKs.

6.1.2.5.3.2.1 uni_sign on ESBC

Sample input file for uni_sign

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
* Freescale Proprietary.

*/

Specify the platform. [Mandatory]
Choose Platform -

TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Entry Point/Image start address field in the header. [Mandatory]
(default=ADDRESS of first file specified in images)

Address can be 64 bit

ENTRY POINT=30100000

Specify the Key Information.

PUB_KEY [Mandatory] Comma Seperated List

Usage: <srkl.pub> <srk2.pubs>

PUB KEY=srk.pub

KEY SELECT [Mandatoryl]

USAGE (for TRUST 3.x): (between 1 to 8)

KEY SELECT=1

PRI _KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>

PRI KEY=srk.pri

IE KEY [Mandatory] Comma Seperated List

#IE REVOC [Optional] Comma Seperated List

IE KEY=iekeyl.pub, iekey2.pub, iekey3.pub
#ESBC_HDRADDR [Mandatory] 32bit Address of ESBC Header
#Used to Calculate IE Table Address

ESBC HDRADDR=30020000

Specify IMAGE, Max 8 images are possible.

DST ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE NO = {IMAGE NAME, SRC_ADDR, DST ADDR}

Address can be 64 bit
IMAGE_1={u-boot-dtb.bin, 30100000, fffEffff}

IMAGE_2=

IMAGE 3=
IMAGE 4=

IMAGE_6=
IMAGE 7=

{Il
{,}
{r}
IMAGE 5={,,}
{,}
{r}

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 195

Security

IMAGE 8={,,}

Specify OEM AND FSL ID to be populated in header. [Optionall
e.g FSL UID 0=11111111

FSL_UID 0=

FSL_UID 1=

OEM_UID 0=

OEM_UID 1=

OEM_UID 2=

OEM_UID 3=

OEM UID 4=

Specify the output file names [Optional].
Default Values chosen in Tool

OUTPUT_HDR_ FILENAME=hdr uboot.out

IMAGE HASH FILENAME=

RSA SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optionall
MP_FLAG=0

ISS_FLAG=1

LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optionall
VERBOSE=0

Table 60. Description of fields in input file

Field in input file Description
IE_KEY Comma seperated list of names of files containing public keys (IE keys)
IE_REVOC Comma seperated list of key numbers that are to be revoked from |E table
ESBC_HDRADDR 32-bit address where generated header will be placed

The above file is an example of input file for running uni_sign on ESBC image to enable use of IE table. Presence of field 'IE_KEY"
indicates to the CST tool to embed IE table in the output header file. Field 'ESBC_HDRADDR' is needed to calculate the address
of IE table. It states the address at which the output of uni_sign (output header file) will be placed on memory map. The
'PUB_KEY=srk.pub' and 'PRI_KEY=srk.pri' fields indicates that SRK key needs to be used to sign both ESBC and IE table.

Note: Here ESBC_HDRADDR needs to be 32-bit address as ISBC can only access 32-bit addresses.

Output of uni_sign

$./uni_sign --verbose input files/uni sign/<platform>/ie keys/input uboot nor secure

Fo-mmmmmmmmm e #
#------- m------- -------- mmmes #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- - -------- memmes #
e i #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

- SRK Information
- SRK Offset : 200

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
196 NXP Semiconductors

- Number of Keys : 1

- Key Select : 1

- Key List

- Keyl srk.pub(100)
- UID Information

- UID Flags = 00

- FSL UID = 00000000_00000000
- OEM UIDO = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information

- MISC Flags = 60

- ISS =1
- MP = 0
- LW = 0
- B0l =1

- Image Information

- SG Table Offset : 800

- Number of entries : 2

- Entry Point : 30100000

- Entry 1 : ie table.out (Size = 00000cl4 SRC = 30020a00 DST = ffffffff)

- Entry 2 : u-boot-dtb.bin (Size = 00090clé SRC = 30100000 DST = ffffffff)
- RSA Signature Information

- RSA Offset : 1800

- RSA Size : 80

Image Hash:
fa2a5b7ba63375£18c94£2911687750e0e49c27eaf0c313617ed3ebfc006c6eeb
IE Table Absolute Address: 30020a00

khkkhkkhkhkhkkhkhkhhkhkkhhkdhhkhkdhkhkhhkdhhkdhdhkhhdkhhkdhdkhkhdkhdkhhdhdxkxx

* Header File is with Signature appended
EEEEEEEEEEEEEEEEEEEEEEREEREREEEEEESEEEEEEEESEESEESEESESES

Header File Created: hdr_ uboot.out

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688fF

SFP SRKHRO = c9£90c97

SFP SRKHR1 = 62e16938

SFP SRKHR2 = 0442la4b

SFP SRKHR3 = d8193735

SFP SRKHR4 = b38eal3b

SFP SRKHR5 = 83303d95

SFP SRKHR6 = 29f7blb5

SFP SRKHR7 = d2e4688f

As shown, the output prints the absolute address of IE Table. This address is equal to 'ESBC_HDRADDR + offset of IE Table

within output header file' as IE table is embedded in the output header file by uni_sign.

Note: uni_sign needs to be executed with --verbose option to get the '|E Table Absolute Address'

Partial view of hdr_uboot.out generated by uni_sign (In Hex)

0000800: 140c 0000 0000 0000 000a 0230 ffff £fff0....
0000810: 160c 0900 0000 0000 0000 1030 ffff ffff 0....

0000a00: 0000 0000 0300 0000 0001 0000 cf9d 8£fd0c.ccc...

0000al0: 57a4 c7be e519 6ael b4db 2e97 8c79 9d3f W..... Jooo... y.?
0000a20: 6l1la2 5538 flaf 58c0 31cf 3484 a54d 343a a.U8..X.1.4..M4:
0000a30: 58ec 02ec e5e2 153f 9843 bOe0 7c0b £9b2 X...... ?.C..|...
0000a40: 76fa £87d 8780 98bd cf87 6079 3b34 87ad v..}...... “yi4d..

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

Security

0000a50: c9d3 6fe9 71fd 884d f531 bel3 2d83 dfaa ..0.g..M.1..-...
0000a60: Ocal 0f9f 8ael 5312 457a 251d 3fd2 0127 S.Ez%.7?..

0000a70: de51 3f3e 2da7 ael7 b203 42db a495 6c7a .Q7?>-..... B...1lz
0000a80: d2b9 5671 bb77 b32d 2a62 9045 0000 0000 ..Vg.w.-*b.E....

As shown above, SG table is present at offset 0x800 in the hdr_uboot.out. There are two SG entries present. The first entry is
the IE table (at address 0x30020a00). The second entry is the U-Boot image. Also, at 0xa00 offset of hdr_uboot.out, the IE table

is present with 3 keys.

6.1.2.5.3.2.2 uni_sign On ESBC
Sample Input File for uni_sign

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
* Freescale Proprietary.

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.0: LS2085

TRUST 3.1: LS2088, LS1088

PLATFORM=<platform>

Entry Point/Image start address field in the header. [Mandatory]
(default=ADDRESS of first file specified in images)

Address can be 64 bit

ENTRY POINT=20100000

Specify the Key Information.

PUB_KEY [Mandatory] Comma Seperated List

Usage: <srkl.pub> <srk2.pubs>

PUB KEY=srk.pub

KEY SELECT [Mandatoryl

USAGE (for TRUST 3.x): (between 1 to 8)

KEY SELECT=1

PRI_KEY [Mandatory] Single Key Used for Signing

USAGE: <srk.pri>

PRI_KEY=srk.pri

IE KEY [Mandatory] Comma Seperated List

#IE REVOC [Optional] Comma Seperated List

IE KEY=iekeyl.pub, iekey2.pub, iekey3.pub

#ESBC_HDRADDR [Mandatory] 32bit Address of ESBC Header

#Used to Calculate IE Table Address

ESBC HDRADDR=20c00000

Specify IMAGE, Max 8 images are possible.

DST ADDR is required only for Non-PBL Platform. [Mandatory]

USAGE : IMAGE NO = {IMAGE NAME, SRC ADDR, DST ADDR}

Address can be 64 bit

IMAGE 1={u-boot-dtb.bin, 20100000, fEfff£ff}

IMAGE 2={,,}

IMAGE 3={,, }
IMAGE 4={,,}
IMAGE 5={,,}
IMAGE 6={,, }
IMAGE 7={,,}
IMAGE 8={,, }
Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL UID 0=11111111

FSL UID 0=

FSL _UID 1=

OEM_UID 0=

OEM UID 1=

OEM UID 2=

1

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

198

NXP Semiconductors

Secure boot

OEM_UID 3=

OEM_UID 4=

Specify the output file names [Optionall.
Default Values chosen in Tool

OUTPUT HDR FILENAME=hdr uboot.out

IMAGE HASH FILENAME=

RSA SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optionall
MP_FLAG=0

ISS FLAG=1

LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optionall
VERBOSE=0

Table 61. Description of Fields in Input File

Field in Input File Description

IE_KEY

Comma seperated list of names of files containing public keys (IE Keys)

IE_REVOC

Comma seperated list of key number that are to be revoked from IE Table

ESBC_HDRADDR

32 Bit address where generated header shall be placed

The above file is an example of input file for running uni_sign on ESBC image to enable use of IE Table. Presence of field '|E_KEY"
indicates to the CST tool to embed IE Table in the output header file. Field 'ESBC_HDRADDR' is needed to calculate address of
IE Table. It states the address at which the output of uni_sign (output header file) will be placed on memory map.
'PUB_KEY=srk.pub' and 'PRI_KEY=srk.pri' indicates that SRK Key needs to be used to sign both ESBC and IE Table.

Note: Here ESBC_HDRADDR needs to be 32 bit address as ISBC can only access 32 bit addresses.

Output of uni_sign

$./uni_sign --verbose input files/uni sign/1s2088_1088/ie_keys/gspi/input_ uboot gspi secure

Hommm s #
#------- —------- m------- mmmmoe- #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- mm------ mmm----- mmmmme- #
Hommm oo #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

- SRK Information

- SRK Offset : 200

- Number of Keys : 1

- Key Select : 1

- Key List

- Keyl srk.pub(100)
- UID Information

- UID Flags = 00

- FSL UID = 00000000_0000000O0
- OEM UIDO 00000000
- OEM UID1 = 00000000

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 199

Security

- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 00000000
- FLAGS Information

- MISC Flags = 60

- ISS =1
- MP = 0
- LW = 0
- B0l =1

- Image Information

- SG Table Offset : 800

- Number of entries : 2

- Entry Point : 30100000

- Entry 1 : ie_table.out (Size = 00000cl4 SRC = 30020a00 DST = ffffffff)

- Entry 2 : u-boot-dtb.bin (Size = 00090clé6é SRC = 30100000 DST = ffffffff)
- RSA Signature Information

- RSA Offset : 1800

- RSA Size : 80

Image Hash:
fa2a5b7ba63375£18c94£2911687750e0e49c27eaf0c313617ed3ebfc006c6eeb
IE Table Absolute Address: 410c00a00

LR SRS S SRS EE SR SRR EEE RS EEEEEEEEEEEEESEEEEESES

* Header File is with Signature appended
LR EEEEEE R RS E SRR EEEEE R R R R R R R R R R R EEEEEEEEES

Header File Created: hdr uboot.out

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688¢f

SFP SRKHRO = c9f90c97

SFP SRKHR1 = 62el1l6938

SFP SRKHR2 = 04421la4b

SFP SRKHR3 = d8193735

SFP SRKHR4 = b38eal3b

SFP SRKHR5 = 83303d95

SFP SRKHR6 = 29f7blb5

SFP SRKHR7 = d2e4688f

As shown, the output prints the absolute address of |IE Table. This address is equal to 'ESBC_HDRADDR + offset of IE Table

within output header file' as IE Table is embedded in the output header file by uni_sign.

Note: uni_sign needs to be executed with --verbose option to get the 'lE Table Absolute Address'

Partial view of hdr_uboot.out generated by uni_sign (In Hex)

0000800: 140c 0000 0000 0000 00Oa 0230 ffff f£fff 0....
0000810: 160c 0900 0000 0000 0000 1030 ffff ff£ff 0....

0000a00: 0000 0000 0300 0000 0001 0000 cf9d 8fd0

0000al0: 57a4 c7be e519 6ael b4db 2e97 8c79 9d3f W..... Jeeeonn v.?
0000a20: 61la2 5538 flaf 58c0 31cf 3484 a54d 343a a.U8..X.1.4..M4:
0000a30: 58ec 02ec e5e2 153f 9843 b0eO 7c0b f9b2 X...... ?.C..|...
0000a40: 76fa £87d 8780 98bd cf87 6079 3b34 87ad v..} “yiéd..
0000a50: c¢c9d3 6fe9 71fd 884d £531 bel3 2d83 dfaa ..o.q..M.1l..-...
0000a60: Ocal 0f9f 8ael 5312 457a 251d 3fd2 0127 S.Ez%.?.."
0000a70: de51 3f3e 2da7 ael7 b203 42db a495 6c7a .Q?>-..... B...1lz
0000a80: d2b9 5671 bb77 b32d 2a62 9045 0000 0000 ..Vg.w.-*b.E....

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

200

NXP Semiconductors

Secure boot

As shown above, at offset 0x800 in the hdr_uboot.out, SG Table is present. There are two SG Entries present there. The first
entry is the IE Table (at address 0x30020a00). The second entry is the u-boot image. Also, at 0xa00 offset of hdr_uboot.out, the
IE Table is present with 3 Keys.

6.1.2.5.3.2.3 uni_pbi

Sample input file for uni_pbi

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
* Freescale Proprietary.

*/

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.1: LS2088, LS1088

PLATFORM=<platform>

Specify the Key Information.

PUB_KEY [Mandatory] Comma Seperated List

Usage: <srkl.pub> <srk2.pubs>
PUB_KEY=srk.pub

KEY SELECT [Mandatory]

USAGE (for TRUST 3.x): (between 1 to 8)

KEY SELECT=1

PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pris>

PRI_KEY=srk.pri

#IE TABLE ADDR [optional] Used by Uboot to get IE Table Address
#Can be 64 bit

IE TABLE ADDR=580020a00

For PBI Signing

Name of RCW + PBI file [Mandatoryl

RCW_PBI FILENAME= rcw.bin

Address of ISBC (Bootl) CSF Header [Mandatoryl
BOOT1_ PTR=30020000

Specify OEM AND FSL ID to be populated in header. [Optionall
e.g FSL UID 0=11111111

FSL_UID 0=

FSL UID 1=

OEM UID 0=

OEM UID 1=

OEM _UID 2=

OEM UID 3=

OEM UID 4=

Specify the output file names [Optional].

Default Values chosen in Tool

OUTPUT HDR_ FILENAME=rcw sec.bin

IMAGE HASH FILENAME=

RSA SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optionall
MP_FLAG=0

ISS FLAG=1

LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optionall
VERBOSE=0

Table 62. Description of fields in input file

Field in Input File Description

IE_TABLE_ADDR 64 bit address of IE Table

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 201

Security

As shown above, the field 'lE_TABLE_ADDR' is needed in the input file to uni_pbi. This field indicates the address of IE table, the
address which is written to Scratch registers 13 and 14.

Note: This address (0x580020a00) is different from the address generated from uni_sign (0x30020a00) (though both address
maps to same address. Refer to the memory map of the respective SoC). This is because ISBC can only access 32-bit addresses
and U-Boot uses only 48-bit addresses for NOR mapping because U-Boot does not make MMU table entries for the 32-bit
addresses of NOR. So uni_sign needs 32-bit address so that ISBC can access this address to validate |IE table and uni_pbi needs
48-bit address so that U-Boot can access the address written in the Scratch register 13 and 14 to fetch the keys in IE table.

Output of uni_pbi

$./uni_pbi input files/uni pbi/<platform>/ie keys/input pbi nor_ secure

Fo-mmmmmmm s #
F------- m------- -------- momoee #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- - -------- mmmmes #
Fo-mmmmmmm s #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

Input File is input files/uni pbi/<platforms/ie keys/input pbi nor secure

khkkhkhkhkhhkhkdkhkhhhhkhkhhhhhhkrdhdrdhhkdkhdhrhhrdhrdhrhkdhdhx

* Header File is with Signature appended
khkkkkkhkkkhkhkhkkhkkhkhkkhkhkkkkkkkkkk*k*x

Header File Created: rcw_sec.bin

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688¢F

SFP SRKHRO = c9f90c97

SFP SRKHR1 = 62e16938

SFP SRKHR2 = 0442la4b

SFP SRKHR3 = d8193735

SFP SRKHR4 = b38eal3b

SFP SRKHR5 = 83303d95

SFP SRKHR6 = 29f7blb5

SFP SRKHR7 = d2e4688f

Partial view of rcw_sec.bin generated by uni_pbi (In Hex)

0000000: 55aa 55aa 0000 1080 2038 3038 3800 3838 U.U..... 8088.88
0000010: 0000 0000 0000 0000 0000 0000 0000 2000
0000020: 0000 2000 0000 0000 802d el02 8025 0000 I T

0000030: 0000 0000 0000 0000 ObOe 0000 0000 0000
0000040: 0000 0000 0O0OOO 0000 0OOOO 0000 0000 0000iiio...
0000050: 0000 0000 0OOO 0000 0000 0000 0000 0000 ...,
0000060: 0000 0000 0000 0000 0000 0000 0000 0000c..o.o.o....
0000070: 0070 0200 0000 0000 0000 2a41 0000 0000 .p........ *A. ...
0000080: 0000 0000 0000 0000 b8b3 1lbdf 0000 2080

0000090: 1219 2001 0002 0000 0101 0020 0000 0000 e
00000a0: 0008 0000 8000 0000 0000 0000 0000 0000o....
00000b0: 0000 0000 0000 0000 0000 0000 0000 0000
00000cO: 0000 0000 0OOOO 0000 0OOOO 0000 0000 0000
00000d0: 0000 0000 0000 0000 0000 0000 0000 0000

00000e0: 0000 2280 0000 0230 3002 e030 000a 0280 oM. 00..0.. .
00000£f0: 3402 e030 0500 0000 0404 €030 0000 0000 4..0....... 0....
0000100: 0004 e030 0000 1030 0000 0833 0000 0000 ...0...0...3....

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
202 NXP Semiconductors

0000110: 0005 0833 d704 0000 2006 €030 0000 00a0 ...3.... ..0....

Secure boot

As shown above, the highlighted part are the PBI commands inserted in the rcw_sec.bin to write |IE table address (64 bits) to

Scratch Registers 13 and 14.

6.1.2.5.3.2.4 uni_pbi
Sample Input File for uni_pbi

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
* Freescale Proprietary.

Specify the platform. [Mandatoryl]

Choose Platform -

TRUST 3.0: LS2085

TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Specify the Key Information.

PUB_KEY [Mandatory] Comma Seperated List
Usage: <srkl.pub> <srk2.pub>
PUB_KEY=srk.pub

KEY SELECT [Mandatory]

USAGE (for TRUST 3.x): (between 1 to 8)
KEY SELECT=1

PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pris

PRI _KEY=srk.pri

#IE_TABLE ADDR [optional] Used by Uboot to get IE Table Address
#Can be 64 bit

IE TABLE ADDR=410c00a00

For PBI Signing

Name of RCW + PBI file [Mandatory]
RCW_PBI FILENAME= rcw.bin

Address of ISBC (Bootl) CSF Header [Mandatory]
BOOT1 PTR=20c00000

Specify OEM AND FSL ID to be populated in header. [Optionall
e.g FSL UID 0=11111111

FSL UID 0=

FSL_UID 1=

OEM_UID 0=

OEM UID 1=

OEM UID 2=

OEM UID 3=

OEM UID 4=

Specify the output file names [Optionall.
Default Values chosen in Tool

OUTPUT HDR_FILENAME=rcw sec.bin

IMAGE HASH FILENAME=

RSA SIGN FILENAME=

Specify The Flags. (0 or 1) - [Optionall
MP_FLAG=0

ISS FLAG=1

LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information

VERBOSE=0

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

[Optionall

NXP Semiconductors

203

Security

Table 63. Description of Fields in Input File

Field in Input File Description

|IE_TABLE_ADDR 64 bit address of IE Table

As shown above, in the input file to uni_pbi, the field '1lE_TABLE_ADDR' is needed. This field indicates the address of IE Table,
the address which is written to Scratch registers 13 and 14.

Note: This address (0x580020a00) is different from the address generated from uni_sign (0x30020a00) (though both address
maps to same address. Refer to the memory map of the respective SoC). This is because ISBC can only access 32 bit addresses
and u-boot uses only 48 bit addresses for NOR mapping because u-boot doesn't make MMU Table entries for the 32 bit addresses
of NOR. So uni_sign needs 32 bit address so that ISBC can access this address to validate IE Table and uni_pbi needs 48 bit
address so that u-boot can access the address written in the Scratch register 13 and 14 to fetch the keys in IE Table.

Output of uni_pbi
$./uni_pbi input files/uni pbi/1s2088 1088/ie keys/gspi/input pbi gspi_ secure

Fommmmmm e #
#------- —------- -------- mmmes #
H------- CST (Code Signing Tool) Version 2.0 ------- #
#------- s------- -------- mmees #
Hommmmmm e #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

Input File is input files/uni pbi/1s2088 1088/ie keys/gspi/input pbi gspi secure

LR R SRS SRS R RS RS SRS SRR SRS SRR SRR SRR EEEEEEEESES

* Header File is with Signature appended
R SRR R RS SR RS SEEEEEEEE SRR EEEEEEEEEEEEEEEEEESEEREEE]

Header File Created: rcw_sec.bin

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688f

SFP SRKHRO = c9f90c97

SFP SRKHR1 = 62e16938

SFP SRKHR2 = 04421a4b

SFP SRKHR3 = d8193735

SFP SRKHR4 = b38eal3b

SFP SRKHR5 = 83303d95

SFP SRKHR6 = 29f7blb5

SFP SRKHR7 = d2e4688f

Partial view of rcw_sec.bin generated by uni_pbi (In Hex)

0000000: 55aa 55aa 0000 1080 2038 3038 3800 3838 U.U..... 8088.88
0000010: 0000 0000 00OOO 0000 0000 0000 0000 2000
0000020: 0000 2000 0000 0000 802d el02 8025 0000 -5,

0000030: 0000 0000 0000 0000 ObOe 0000 0000 0000
0000040: 0000 0000 0OOO 0000 0000 0000 0000 0000 ...,
0000050: 0000 0000 00OOO 0000 0000 0000 0000 0000c..o.o.o....
0000060: 0000 0000 00OOO 0000 0000 0000 0000 0000o.....
0000070: 0070 0200 0000 0000 0000 2241 0000 0000 .p........ *A. ...
0000080: 0000 0000 0000 0000 b8b3 1lbdf 0000 2080
0000090: 1219 2001 0002 0000 0101 0020 0000 0000

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
204 NXP Semiconductors

Secure boot

00000a0: 0008 0000 8000 0000 0000 0000 0000 0000
00000b0O: 0000 0000 0000 0000 0000 0000 0000 0000
00000cO: 0000 0000 0OOOO 0000 0000 0000 0000 0000 ...,
00000d0: 0000 0000 0000 0000 0000 0000 0000 0000c..oeenn..

00000e0: 0000 2280 0000 0230 3002 e030 000a 0280 LT 00..0. ..
00000£f0: 3402 e030 0500 0000 0404 €030 0000 0000 4..0....... 0....
0000100: 0004 e030 0000 1030 0000 0833 0000 00OO ...0...0...3....
0000110: 0005 0833 d704 0000 2006 €030 0000 00a0 ...3.... ..0....

As shown above, the highlighted part are the PBI commands inserted in the rcw_sec.bin to write |IE Table address (64 bits) to
Scratch Registers 13 and 14.

6.1.2.56.3.2.5 uni_sign on next level images
Sample input file for uni_sign for signing Linux

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
* Freescale Proprietary.

*/

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.1: LS2088, LS1088

PLATFORM=<platform>

Specify the Key Information.

PUB KEY [Mandatory] Comma Seperated List

Usage: <srkl.pub> <srk2.pub>
PUB_KEY=iekey3.pub

IE KEY SEL [Mandatoryl

USAGE (for TRUST 3.x): (between 1 to 32)

IE KEY SEL=3

PRI _KEY [Mandatoryl] Single Key Used for Signing

USAGE: <srk.pri>

PRI KEY=iekey3.pri

Specify IMAGE, Max 8 images are possible.

DST ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE NO = {IMAGE NAME, SRC_ADDR, DST ADDR}
Address can be 64 bit

IMAGE 1={kernel.itb,all00000,ffffffff}

Specify OEM AND FSL ID to be populated in header. [Optionall
e.g FSL UID 0=11111111

FSL_UID 0=

FSL _UID 1=

OEM UID 0=

OEM UID 1=

OEM _UID 2=

OEM UID 3=

OEM UID 4=

Specify the output file names [Optional].

Default Values chosen in Tool

OUTPUT HDR FILENAME=hdr kernel.out

IMAGE HASH FILENAME=

RSA SIGN_FILENAME=

Specify VERBOSE as 1, if you want to Display Header Information [Optionall
VERBOSE=0

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 205

Security

Table 64. Description of fields in input file

Field in Input File

Description

IE_KEY_SEL Number of the key in |IE Table that is to be used to validate image

As shown above, in the input file to uni_sign, the 'lE_KEY_SEL" field indicates that a key from IE table is being used and it also
indicates which key number from |E table needs to be used to validate this image during runtime. For build-time, CST tool needs

the IE private key. This is indicated via the 'PRI_KEY" field.

Output of uni_sign

$./uni_sign input files/uni sign/<platforms/ie keys/input kernel secure

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)

Input File is input files/uni sign/<platforms>/ie keys/input kernel secure

SRK/Public Key Hash not calculated.. IE = 1

khkkhkhkhkhhkhkdhkhhhkhkhkhhhkhkdhkrdhrdhhkdhhdhhhkrdhrdrhkdhhhx

* Header File is with Signature appended
khkkkkkhkkkhkkhkkkkkkkkk*x*x

Header File Created: hdr kernel.out
SRK (Public Key) Hash Not Available

As shown above, SRK hash is not calculated as IE key is being used.

6.1.2.5.3.2.6 uni_sign on Next Level Images
Sample Input File for uni_sign for signing Linux

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
* Freescale Proprietary.

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.0: LS2085

TRUST 3.1: 1LS2088, LS1088
PLATFORM=<platform>

Specify the Key Information.

PUB _KEY [Mandatory] Comma Seperated List
Usage: <srkl.pub> <srk2.pub>
PUB_KEY=iekey3.pub

IE_KEY SEL [Mandatoryl]

USAGE (for TRUST 3.x): (between 1 to 32)
IE KEY SEL=3

PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>

PRI KEY=iekey3.pri

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

206

NXP Semiconductors

Secure boot

Specify IMAGE, Max 8 images are possible.

DST _ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE NO = {IMAGE NAME, SRC_ADDR, DST ADDR}

Address can be 64 bit

IMAGE l={kernel.itb,all00000,ffffffff}

Specify OEM AND FSL ID to be populated in header. [Optionall]
e.g FSL UID 0=11111111

FSL_UID 0=

FSL_UID 1=

OEM_UID 0=

OEM UID 1=

OEM _UID 2=

OEM _UID 3=

OEM _UID 4=

Specify the output file names [Optionall].

Default Values chosen in Tool

OUTPUT HDR_FILENAME=hdr kernel.out

IMAGE HASH FILENAME=

RSA SIGN_FILENAME=

Specify VERBOSE as 1, if you want to Display Header Information [Optionall
VERBOSE=0

Table 65. Description of Fields in Input File

Field in Input File Description

IE_KEY_SEL Number of the key in IE Table that is to be used to validate image

As shown above, in the input file to uni_sign, the field 'lE_KEY_SEL' indicates that a Key from IE Table is being used and it also
indicates which key number from |IE Table needs to be used to validate this image during run-time. For build-time, CST tool needs
the IE private key. This is indicated via the field 'PRI_KEY".

Output of uni_sign

$./uni_sign input files/uni sign/1s2088 1088/ie keys/gspi/input kernel secure

Homm oo #
#------- —------- mm------ mmmoo e #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- m------- mm------ mmmmme- #
Homm s #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

Input File is input files/uni sign/1s2088_1088/ie keys/gspi/input kernel secure

SRK/Public Key Hash not calculated.. IE = 1

khkkhkkhkhkhkkhkhkhhkhkkhkhkdhkhhdhkhkkhhkdhhkdhkdkhhkdkhhkhhdkhkhkdkhrdkrhdkdxkxx

* Header File is with Signature appended
khkkkkkhkkkhkhkhkhkhkhkhkhkhkhkdkhkhkhkhkhkhkhkdkhkdhkdhkdkdkhkdkkkxkxkx*x*x

Header File Created: hdr kernel.out
SRK (Public Key) Hash Not Available

As shown above, SRK Hash is not calculated as IE Key is being used.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 207

Security

6.1.2.6 PBI structure

Fields Offset Size (In 32-bit word)
RCW Preamble (RCW) 0x00 1
Load RCW command 0x04 1
RCW words 0x08 — 0x87 32
RCW checksum 0x88 1
PBI commands Load security header 0x8c 1
CSF header 0x90 — Oxdf 20
Load boot 1CSF header 0xe0 1
Boot 1 pointer Oxe4 1
Other PBI commands 0xe8 N
STOP command (With/ 0xe8 + (4*N) 2
Without CRC)
SRK table SRK table 0x90 + SRK table offset in CSF | (No. of keys * Key length)
header
RSA signature Signature 0x90 + Sign offset in CSF Sign length
header
RCW Preamble The preamble is always the first element in a PBI image. It contains a standard pattern that
identifies the memory location as the beginning of a valid PBl image. The preamble is a 4-byte
pattern defined as “Oxaa55aa55’
Load RCW The next word is load RCW command. This command loads the 1024-bit Reset Configuration
command Word from the interface specified by Power-on-Reset (POR) configuration strapping pins. It
has the following two formats.

1. Load RCW with Checksum (0x10): Read Reset Configuration Word performs simple 32-
bit checksum, and update RCW registers.

2. Load RCW without Checksum (0x11): Read Reset Configuration Word and update RCW
registers without performing checksum. The version without the checksum includes
padding with zeroes in the place of the checksum value.

RCW words 1024 RCW bits that is 32 words of 32 bits.
RCW It is calculated as a 32-bit unsigned integer summation of the RCW Preambile, the Load RCW
checksum with checksum command, and each of the 32 words (32-bit) of the RCW. A simple 32-bit
checksum is used for the validation of the command.
checksum (RCW_WORD []) {
unsigned 32 sum = OxAA55AA55 + 0x80100000 + Load RCW Command;
for (i=0; i<32; 1i++)
sum+=RCW_WORD [1i] ;
return (sum) ;
}
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
208 NXP Semiconductors

PBI
commands

SRK table

RSA
signature

Load security
header

Load boot 1
CSF header

Other PBI
commands

STOP
command

Secure boot

NOTE
Checksum will have to be updated by CST tool as the fields like SB_EN,
PBI_LEN in the RCW words are changed.

This command loads information required for authentication of the PBI image. The security
header includes pointers to an SRK key table and RSA signatures as well as other flags and
IDs. The CSF Header is part of the command. Please refer the CSF header structure in .

This command loads a pointer to a CSF Header used for authentication of the Boot 1
Secondary Program Loader. This 32-bit value used by the Boot 0 ISBC and is required for
secure boot.

Other PBI commands input by user.

This command ends the PBI sequence and has two variants (with and without CRC).

The CRC check value covers all commands from the first command after the RCW up to
and including this CRC and Stop command, regardless of whether any are skipped by Jump
commands during execution.

In Stop command without CRC, it ends the PBI sequence immediately. It does not include
a CRC value, but it instead has a 32-bit padding with zeroes so that it is the same size as
the Stop with CRC command.

NOTE
CST tool updates the PBI commands by adding Load Security Header
command and Load Boot 1 Security Header command. So, CRC must
also be updated.

Table of public keys is used in secure boot validation. It is kept at an offset from the CSF header. The offset is
specified in the CSF header.

RSA signature is calculated over all PBI commands and SRK table. It is kept at an offset from the CSF header.
The offset is specified in the CSF header.

6.1.2.7 CSF header structure definition

Table 66. Trust architecture and SFP information

SoC Trust Arch. SFP version | POVDD DRVR OTPMK
ersion
verst Algo (CST) |Registerto | Algo (CST) | Register to
check check
Hamming Hamming
Error Error
LS1088A 3.1 3.5 189V A2 SFP Secret 2 SFP Secret
LS2088A |3.1 35 189V A2 xz'::;mg > xz'::;mg
(LS2 Rev2) Error Status Error Status
Register Register
(SFP_SVHES (SFP_SVHES
R) R)
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 209

Security

0x0
0x4
0x8
0xC
0x10
0x14
0x18

Pointer to SG Table Pointer to SG Table

PBI & ISBC Phase PBI & ISBC Phase ESBC Phase
(Trust 3.0) (Trust 3.1) (Trust 3.0 & 3.1)

0x1C
0x20
0x24
0x28
0x2C
0x30
0x34
0x38
0x3C
0x40
Ox44
0x48
0x4C

entries in SG # entries in SG

Header Size = 0x50 Header Size = 0x50 Header Size = 0x50

Figure 32. CSF header structure

Table 67. CSF header structure (ISBC trust 3.0)

Offset

Description

0x00

Barker Code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)
0x00 — 0x12

0x01 — 0x19

0x02 — 0x20

0x03 — 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04

SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK table, the SRK table is read.

* Description of fields in SRK table is mentioned below.

0x08 0x08

No. of keys
This field specifies the no. of keys in the SRK table

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

210

NXP Semiconductors

Secure boot

Table 67. CSF header structure (ISBC trust 3.0) (continued)

Offset Description

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

Ox0a Field Reserved

0x0b IE : Reserved
MP : Execute Manufacturing Protection Routine

ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification

BO01 : Identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)
LW : Leave Writeable; when set; ISBC does not set the SFP Write Disable

0x0C 0x0C Reserved
0x0D Reserved
OxOE Reserved
OxOF OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature

verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table, and ESBC images.

Ox14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 SG table offset

This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG Table, the SG table is read.

* Description of fields in SG table is mentioned below.

0x1C No. of entries

This field specifies the number of entries present in SG table.

0x20 Entry point (32 bit)

ISBC transfers control to this location upon successful validation of ESBC image(s).

0x24 FSLUID O

0x28 FSL UID 1

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 211

Security

Table 67. CSF header structure (ISBC trust 3.0) (continued)

Offset Description
0x2c OEM UID 0
0x30 OEM UID 1
0x34 OEM UID 2
0x38 OEM UID 3
0x3c OEM UID 4
0x40 Reserved
0x44 Reserved
0x48 Reserved
0x4C Reserved
Table 68. CSF header structure (ISBC trust 3.1)
Offset Description
0x00 Barker Code
Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)
0x00 — 0x12
0x01 — 0x19
0x02 — 0x20
0x03 — 0x01
It is numeric encoding of LSTA (LS Series Trust Architecture)
0x04 SRK table offset
This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK table, the SRK table is read.
0x08 0x08 No. of keys
This field specifies the no. of keys in the SRK table
0x09 Key No. for verification
Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification
0x0a Field Reserved
0x0b IE : ISBC Extension (Reserved)
MP : Execute Manufacturing Protection Routine
ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification
BO1 : identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)
LW : Leave Writeable; when set; ISBC does not set the SFP Write Disable
Table continues on the next page...
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
212 NXP Semiconductors

Secure boot

Table 68. CSF header structure (ISBC trust 3.1) (continued)

0x0C 0x0C Reserved
0x0D Reserved
O0xO0E Reserved
OxOF OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.
FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header
Other bits are reserved.
0x10 RSA signature offset
This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table, and ESBC images.
Ox14 RSA signature length
This location contains the length of the RSA signature in bytes.
0x18 SG table offset
This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG table, the SG table is read.
0x1C No. of entries
This field specifies the number of entries present in SG table.
0x20 Entry point (64 bit)
ISBC transfers control to this location upon successful validation of ESBC image(s).
0x28 FSL UID 0
0x2c FSL UID 1
0x30 OEM UID 0
0x34 OEM UID 1
0x38 OEM UID 2
0x3c OEM UID 3
0x40 OEM UID 4
0x44 Reserved
0x48 Reserved
0x4C Reserved
Table 69. CSF header structure (ESBC trust 3.0 and trust 3.1)
Offset Description

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

213

Security

Table 69. CSF header structure (ESBC trust 3.0 and trust 3.1) (continued)

0x00 Barker Code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)
0x00 — 0x12

0x01 — 0x19

0x02 — 0x20

0x03 — 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK Table, the SRK table is read.

0x08 0x08 No. of keys

This field specifies the no. of keys in the SRK table

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

0x0a Field Reserved
0x0b IE : ISBC Extension Flag
0x0C 0x0C Reserved
0x0D Reserved
O0xOE Reserved
OxOF OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature

verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table and ESBC images.

Ox14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 Image address (64 bit)
0x20 Image size

0x24 IE Key Select

0x28 FSLUIDO

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
214 NXP Semiconductors

Table 69. CSF header structure (ESBC trust 3.0 and trust 3.1) (continued)

Secure boot

0x2c FSL UID 1
0x30 OEM UID 0
0x34 OEM UID 1
0x38 OEM UID 2
0x3c OEM UID 3
0x40 OEM UID 4
0x44 Reserved
0x48 Reserved
Ox4c Reserved
Table 70. SRK table structure
Offset Description
0x00 SRK 0 Length (Length of Modulus or Exponent; Modulus length always equals Exponent length)

0x04 SRK 0 Value (Modulus)
0x04 + K SRK 0 Value (Exponent)
0x04 + 2K SRK 0 (Padding; 8Kb - (Exponent+Modulus))

0x04 *1 + (10 * 1)K

SRK 1 Length (Length of Modulus or Exponent; Modulus length always equals Exponent length)

0x04 * 2 + (10 *1) K

SRK 1 Value (Modulus)

0x04 * 2+ (10 * 1) + 1k

SRK 1 Value (Exponent)

0x04 *2 + (10 * 1) + 2K

SRK 1 (Padding; 8Kb - (Exponent+Modulus))

0x04 * (N-1) + (10 *(N-1))K

SRK N Length (Length of Modulus or Exponent; Modulus length always equals Exponent length)

0x04 * N + (10 *(N-1))K

SRK N Value (Modulus)

0x04 * N + (10 *(N-1)) + 1K

SRK N Value (Exponent)

0x04 * N + (10 *(N-1)) + 2K

SRK N (Padding; 8Kb - (Exponent+Modulus))

Table 71. SG Table Structure

Offset Description

0x00 Length

0x04 Reserved

0x08 SRC Address Low
0x0C SRC Address High

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

215

Security

6.1.2.8 CSF header structure definition

Table 72. Trust architecture and SFP information

SoC Trust Arch. SFP version | POVDD DRVR OTPMK
version Algo (CST) |Registerto | Algo (CST) | Register to
check check
Hamming Hamming
Error Error
LS2080A 3.0 3.4 1.89V A2 SFP Secret |2 SFP Secret
(LS2 Rev1) Value Value
Hammin Hammin
LS1088A 31 3.5 189V A2 Error Stag:us 2 Error Stag:us
LS2088A 3.1 35 1.89 V A2 Register 2 Register
(LS2 Rev2) (SFP_SVHES (SFP_SVHES
R) R)
PBI & ISBC Phase PBI & ISBC Phase ESBC Phase
(Trust 3.0) (Trust 3.1) (Trust 3.0 & 3.1)
0x0
0x4
0x8
0xC
0x10
Ox14
0x18 Pointer to SG Table Pointer to SG Table
0x1C # entries in SG # entries in SG
0x20
0x24
0x28
0x2C
0x30
0x34
0x38
0x3C
0x40
0Ox44
0x48
0x4C
Header Size = 0x50 Header Size = 0x50 Header Size = 0x50
Figure 33. CSF header structure
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
216 NXP Semiconductors

Secure boot

Table 73. CSF header structure (ISBC trust 3.0)

Offset

Description

0x00

Barker code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)
0x00 — 0x12

0x01 — 0x19

0x02 — 0x20

0x03 — 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04

SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries is SRK table, the SRK table is read.

0x08

0x08

No. of keys
This field specifies the no. of keys in the SRK table

0x09

Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

Ox0a

Field Reserved

0x0b

IE : Reserved
MP : Execute Manufacturing Protection Routine

ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification

BO1 : Identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)
LW : Leave Writeable; when set, ISBC does not set the SFP Write Disable

0x0C

0x0C

Reserved

0x0D

Reserved

Ox0E

Reserved

OxOF

OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10

RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF Header, Scatter Gather table and ESBC images.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

217

Security

Table 73. CSF header structure (ISBC trust 3.0) (continued)

Offset Description
Ox14 RSA signature length
This location contains the length of the RSA signature in bytes.
0x18 SG table offset
This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries is SG Table, the SG table is read.
0x1C No. of entries
This field specifies the number of entries present in SG table.
0x20 Entry point (32 bit)
ISBC transfers control to this location upon successful validation of ESBC image(s).
0x24 FSL UID 0
0x28 FSL UID 1
0x2c OEM UID 0
0x30 OEM UID 1
0x34 OEM UID 2
0x38 OEM UID 3
0x3c OEM UID 4
0x40 Reserved
0x44 Reserved
0x48 Reserved
0x4C Reserved
Table 74. CSF header structure (ISBC trust 3.1)
Offset Description
0x00 Barker Code
Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)
0x00 — 0x12
0x01 — 0x19
0x02 — 0x20
0x03 — 0x01
It is numeric encoding of LSTA (LS Series Trust Architecture)
0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries is SRK Table, the SRK table is read.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

218

NXP Semiconductors

Secure boot

Table 74. CSF header structure (ISBC trust 3.1) (continued)

0x08 0x08 No. of keys
This field specifies the no. of keys in the SRK Table
0x09 Key No. for verification
Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification
0x0a Field Reserved
0x0b IE : ISBC Extension (Reserved)
MP : Execute Manufacturing Protection Routine
ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification
BO1 : identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)
LW : Leave Writeable; when set, ISBC does not set the SFP Write Disable
0x0C 0x0C Reserved
0x0D Reserved
O0xOE Reserved
OxOF OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.
FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header
Other bits are reserved.
0x10 RSA signature offset
This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table and ESBC images.
Ox14 RSA signature length
This location contains the length of the RSA signature in bytes.
0x18 SG table offset
This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG Table, the SG table is read.
0x1C No. of entries
This field specifies the number of entries present in SG table.
0x20 Entry point (64 bit)
ISBC transfers control to this location upon successful validation of ESBC image(s).
0x28 FSL UID 0
0x2c FSL UID 1

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

219

Security

Table 74. CSF header structure (ISBC trust 3.1) (continued)

0x30 OEMUID 0
0x34 OEM UID 1
0x38 OEM UID 2
0x3c OEM UID 3
0x40 OEM UID 4
0x44 Reserved
0x48 Reserved
0x4C Reserved
Table 75. CSF header structure (ESBC trust 3.0 and trust 3.1)
Offset Description
0x00 Barker code
Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)
0x00 — 0x12
0x01 — 0x19
0x02 — 0x20
0x03 — 0x01
It is numeric encoding of LSTA (LS Series Trust Architecture)
0x04 SRK table offset
This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK table, the SRK table is read.
0x08 0x08 No. of keys
This field specifies the no. of keys in the SRK table
0x09 Key No. for verification
Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification
0x0a Field Reserved
0x0b IE : ISBC Extension Flag
0x0C 0x0C Reserved
0x0D Reserved
OxOE Reserved
Table continues on the next page...
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
220 NXP Semiconductors

Secure boot

Table 75. CSF header structure (ESBC trust 3.0 and trust 3.1) (continued)

OxOF OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table and ESBC images.

Ox14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 Image address (64 bit)
0x20 Image size
0x24 IE Key Select
0x28 FSLUID 0
0x2c FSL UID 1
0x30 OEMUID 0
0x34 OEM UID 1
0x38 OEM UID 2
0x3c OEM UID 3
0x40 OEM UID 4
0x44 Reserved
0x48 Reserved
Ox4c Reserved

6.1.2.9 Secure boot specific RCW fields

This section describes the various fields in RCW which are relevant to the ISBC code executed in the Service Processor Boot
ROM.

SB_EN Secure Boot Enable
Bit(s): 266
* 0 Secure Boot is not enabled!®!
* 1 Secure Boot is enabled

PBI_LENGTH Pre-Boot Initialization Length
Bit(s): 287-276

[9] Secure Boot is enabled if either this RCW bit is set or the Intent to Secure fuse value is set.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 221

Security

Size in words of the PBI commands.

SDBGEN Secure Debug Enable
Bit(s): 288

Secure Debug (CoreSight SPIDEN) is enabled after RCW is loaded if this RCW bit is set and the ‘Intent to
Secure’ fuse value is cleared.

* 0 Secure debug is not enabled

* 1 Secure debug is enabled if the ITS fuse is not burned to asserted

GPIO_LED_EN GPIO LED Enable
Bit(s): 311
If the OEM chooses to implement a LED to indicate secure boot failure, the LED will be connected to a GPIO.
The SP Boot ROM code sequence turns on the LED (if RCW[GPIO_LED_EN] = 1) by configuring one GPIO
direction (GPDIR) register bit as an output and writing the corresponding output in a GPIO block data
(GPDAT) register.
GPIO_LED_NUM GPIO Number for LED
Bit(s): 310-304
If GPIO_LED_EN is set, these bits specify the GPIO number to which LED is connected.
e Ox1f-0x00 : GPIO_1
e 0x3f - 0x20 : GPIO_2
e 0x5f - 0x40 : GPIO_3

* 0x7f - 0x60 : GPIO_4
NOTE
The GPIO output assigned to the LED is driven high to whatever VDD voltage is supplied by
the integrated device for the chosen GPIO output.Since GPIO pins at the time of SoC reset
are initially configured as inputs, and since there will be some indeterminate period of time

from the assertion of SoC reset to when the GPIO pin is configured by SP Boot ROM as an
output, the GPIO pin chosen must be terminated with a weak pulldown to ground.

6.1.2.10 ISBC error codes

Error handling in production environment (ITS = 1)
¢ Error code would be logged in DCFG SCARTCH register.
* SNVS would be transitioned to soft fail state.

¢ Activate the LED. If the OEM chooses to implement a LED to indicate secure boot failure, the LED will be connected to a
GPIO. The information of GPIO is specified via bits in RCW.
GPIO_LED_EN Bit(s): 311

The SP Boot ROM code sequence turns on the LED (if RCW[GPIO_LED_EN] = 1) by configuring one
GPIO direction (GPDIR) register bit as an output and writing the corresponding output in a GPIO block
data (GPDAT) register.

GPIO_LED_NUM Bit(s): 310-304
If GPIO_LED_EN is set, these bits specify the GPIO number to which LED is connected.

— Ox1f - 0x00 : GPIO_1

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
222 NXP Semiconductors

Secure boot

— 0x3f - 0x20 : GPIO_2
— 0x5f - 0x40 : GPIO_3
— Ox7f-0x60 : GPIO_4

¢ Soft reset would be issued

» Cores would then enter infinite loop (If Reset is disabled)!'0]

Error handling in development environment (ITS = 0, SB_EN = 1)
* Error code would be logged in DCFG SCARTCH register.
* SNVS would be transitioned to non-secure state.

* Further actions depends on the type of failure

Fatal Errors Core is put in infinite Loop

Non-Fatal Error Application software is allowed to execute

Error codes
The Error codes reported by SP Boot ROM can be categorized in following sections.
1. Core exceptions
2. Device errors
3. RCW/PBI errors
4

. Validation errors

Table 76. ISBC error codes

When error Error code Value Description
generated

Core exceptions

Random ERROR_UNDEFINED_INSTRUCTION 0x1 Occurs if neither the processor nor any attached
co-processor recognizes the currently executing
instruction.

Random ERROR_SWI 0x2 Software Interrupt is a user-defined interrupt

instruction. It allows a program running in User
mode, for example, to request privileged
operations that run in Supervisor mode.

Random ERROR_PREFETCH_ABORT 0x3 Occurs when the processor attempts to execute
an instruction that has been prefetched from an
illegal address.

Random ERROR_DATA_ABORT Ox4 Occurs when a data transfer instruction attempts
to load or store data at an illegal address.

Random ERROR_IRQ 0x5 Occurs when the processor external interrupt
request pin is asserted (LOW) and IRQ interrupts
are enabled.

Table continues on the next page...

[10] To debug the root cause of failure and view the error code, Reset has to be disabled on the SoC.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 223

Security

Table 76. ISBC error codes (continued)

When error Error code Value Description

generated

Random ERROR_FIQ 0x6 Occurs when the processor external fast interrupt
request pin is asserted (LOW) and FIQ interrupts
are enabled.

Device Errors - 12C

Random ERROR_I2C_TIMEOUT 0x11

Random ERROR_I2C_RESTART 0x12

Random ERROR_I2C_NODEV 0x13

Random ERROR_I2C_NOT_IDLE 0x14

Random ERROR_I2C_NOT_BUSY 0x15

Random ERROR_I2C_INVALID_OFFSET 0x16

Random ERROR_I2C_NO_WAKEUP_INIT 0x17

Random ERROR_I2C_NO_WAKEUP_READ 0x18

Random ERROR_I2C_NOACK 0x19

Random ERROR_READ_TIMEOUT Ox1a

Random ERROR_SLAVE_ADDR_TIMEOUT Ox1b

Random ERROR_MEM_ADDR_TIMEOUT Ox1c

Device Errors — ESDHC

Random ERROR_ESDHC_CARD_DETECT_FAIL | 0x31

Random ERROR_ESDHC_UNUSABLE_CARD 0x32

Random ERROR_ESDHC_COMMUNICATION_ER | 0x33

ROR

Random ERROR_ESDHC_BLOCK_LENGTH 0x34

Device Errors — QSPI

Random ERROR_QSPI_INVALID_OFFSET 0x41

Phase — “RCW”

RCW Phase ERROR_PREAMBLE 0x50 Preamble not found.

RCW Phase ERROR_RCW_CMD_NOT_FOUND 0x51 RCW command not found

RCW Phase ERROR_RCW_CHECKSUM_MISMATCH | 0x52 Checksum mismatch in RCW

RCW Phase ERROR_RCW_SRC_INVALID 0x58 RCW_SRC is not a valid source

RCW Phase ERROR_RCW_REQ_NOT_SET 0x59 RCW_REQ bit never set by Reset state machine
(RSM)

RCW Phase ERROR_PBI_REQ_NOT_SET 0x60 PBI_REQ bit never set (by RSM)

Phase = PBI

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

224

NXP Semiconductors

Secure boot

Table 76. ISBC error codes (continued)

When error Error code Value Description
generated
PBI Phase ERROR_SEC_CAAM_INIT 0x61 CAAM init failed (Would rarely occur)
PBI Phase ERROR_SEC_CAAM_NOT_FOUND 0x62 CAAM block not found in case of secure boot
PBI Phase ERROR_PBI_SRC_NOT SAME_AS RC |0x64 Mismatch between RCW_SRC and PBI_SRC
W_SRC fields
PBI Phase ERROR_PBI_LENGTH 0x65 PBI length defined in RCW[PBI_LEN] field is
invalid
PBI Phase ERROR_PBI_LAST _CMD_NOT_STOP 0x66 STOP or CRC&STOP not found at the end of the
specified PBI Length.
PBI Phase ERROR_PBI_ COMMAND_UNKNOWN 0x67 An invalid command parsed by PBI Parser
PBI Phase ERROR_CAAM_SELF_TEST Ox6a CAAM self-test failed
PBI Phase ERROR_PBI_ COPY_INVALID_ 0x70 Copy command, src field does not match the
SRC_TYPE RCW_SRC field
PBI Phase ERROR_PBI_ COPY_INVALID_ 0x71 Copy command, dest field is not 0x00
DST_ADDR
PBI Phase ERROR_PBI_ 0x72 SRC address is invalid (ROM/ OCRAM reserved
COPY_INVALID_SRC_ADDR_ for SP)
SRC_ADDR
PBI Phase ERROR_PBI_CCSR_BYTE_COUNT 0x74 Byte count in CCSR Write not valid
PBI Phase ERROR_PBI_CCSR_4_BYTE_ALLIGNED | 0x75 Offset is not 4 byte aligned
PBI Phase ERROR_PBI_CCSR_OFFSET_INVALID |0x76 Offset is invalid that is less than allowed CCSR
Base 0x0100_0000
PBI Phase ERROR_PBI_ACSR_INVALID_ADDRESS | 0x78 Source address in ACSR invalid (invalid
addresses - OCRAM or ROM address)
PBI Phase ERROR_PBI_ACSR_BYTE_COUNT 0x79 Byte count in ACSR write command not valid
PBI Phase ERROR_PBI_ACSR_WINDOW_NOT_SE | 0x7a ATU Window is not configured
T
PBI Phase ERROR_PBI_ACSR_OFFSET_ALLIGNE |0x7b ACSR offset is invalid and trying to write to
D Reserved space on OCRAM.
PBI Phase ERROR_PBI_ALTCFG_WNDW_INVALID |0x7c ATU Window is invalid
PBI Phase ERROR_PBI_JUMP_OUT_LENGTH 0x80 Offset specified in JUMP command does not lie in
PBI length range
PBI Phase ERROR_PBI_JUMP_4_BYTE_ALLIGNED | 0x81 Offset specified in JUMP command is not 4 byte
aligned
PBI Phase ERROR_PBI_JUMP_OFFSET_0 0x82 Offset specified in JUMP command is 0
PBI Phase ERROR_PBI_LOADC_4_BYTE_ALLIGNE | 0x84 Address specified in LOAD condition command is

D

not 4 byte aligned

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

225

Security

Table 76. ISBC error codes (continued)

When error Error code Value Description
generated
PBI Phase ERROR_PBI_JUMPC_OUT_LENGTH 0x88 Offset specified in JUMP command does not lie in
PBI length range
PBI Phase ERROR_PBI_JUMPC_4_BYTE_ALLIGNE | 0x89 Offset specified in JUMP conditional command is
D not 4 byte aligned
PBI Phase ERROR_PBI_JUMPC_CONDITION_NOT | 0x8a Jump conditional command encountered before
_SET condition is set using Load Condition
PBI Phase ERROR_PBI_CRC_MISMATCH 0x90 CRC mismatch
PBI Phase ERROR_PBI_POLL 0x91 Poll timeout
PBI Phase ERROR_PBI_POLL_4_BYTE_ALLIGNED | 0x92 Address being polled is not 4 byte aligned
PBI Phase ERROR_PBI_BOOT1_CSF_INVALID_AD |0x94 Address of CSF header is not valid
DR
PBI Phase ERROR_PBI_BOOT1_CSF_ALLIGNED 0x95 Address of CSF header is not 4 byte aligned
Phase = Verify (System State Errors (Secure boot))
Before PBI ERROR_STATE_NOT_CHECK 0xf0 SEC_MON State Machine not in CHECK state at
verification start of ISBC in primary flow. Some Security
violation could have occurred.
Before PBI ERROR_STATE_NOT_CHECK_TRUSTE | Oxf1 SEC_MON State Machine not in CHECK/Trusted
verification D state at start of ISBC in secondary flow.
Phase = Verify (Secure Boot Fatal errors)
Verify PBI ERROR_PBI_COMMANDS_NOT_FOUN | 0xf4 Not having PBI commands in RCW is error
D scenario for secure boot
Verify PBI ERROR_SEC_HDR_NOT_FOUND Oxf5 Error if security header command not found in
RCW. Expected location of Security Header
command
¢ After Preamble for hard coded RCW
» After preamble and rcw for other RCW
sources
Phase = Verify (Secure Boot Fatal (Header parsing errors))
Verify PBI ERROR_HEADER_LOC 0xf8 Header location is invalid
Verify PBI ERROR_HEADER_BARKER 0xf9 Barker code in the header is incorrect
Verify PBI ERROR_HEADER_INVALID Oxfa Flag BO1 in the header identifies this as SPL

header

Phase = Verify (S

ecure Boot Non Fatal (Key/UID related errors))

Verify PBI ERROR_INVALID_SRK_ENTRY_KEYLE |0x210 Length of public key specified in one of the entries
N in srk table is not one of the supported values.
(1k, 2k, or 4k)
Table continues on the next page...
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
226 NXP Semiconductors

Secure boot

Table 76. ISBC error codes (continued)

When error Error code Value Description

generated

Verify PBI ERROR_KEY_LEN_ 0ox211 Public key is not twice the length of the RSA

NOT_TWICE_SIG_LEN signature

Verify PBI ERROR_KEY_MOD_1 0x212 Most significant bit of modulus in header is zero.

Verify PBI ERROR_KEY_MOD_2 0x213 Modulus in header is even number

Verify PBI ERROR_ SIG_KEY_MOD 0x214 Signature value is greater than modulus in header

Verify PBI ERROR_ INVALID_SRK_NUM_ENTRY 0x215 Number of entries field in CSF Header is > 8 (This
is when srk_flag in header is 1)

Verify PBI ERROR_ INVALID_KEY_NUM 0x216 Key number to be used from srk table is not
present in table. (This is when srk_flag in header
is 1)

Verify PBI ERROR_ KEY_REVOKED 0x217 Key selected from srk table has been revoked
(This is when srk_flag in header is 1)

Verify PBI ERROR_ FSL_UID 0x220 FSL_UID in ESBC header did not match the
FSL_UID in SFP if fsl uid flag Is 1

Verify PBI ERROR_ OEM_UIDO 0x221 OEM_UIDO in ESBC header did not match the
OEM_UIDO in SFP if oem uidO flag is 1.

Verify PBI ERROR_ OEM_UID1 0x222 OEM_UID1 in ESBC header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify PBI ERROR_ OEM_UID2 0x223 OEM_UID1 in ESBC header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify PBI ERROR_ OEM_UID3 0x224 OEM_UID1 in ESBC header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify PBI ERROR_ OEM_UID4 0x225 OEM_UID1 in ESBC header did not match the

OEM_UID1 in SFP if oem uid1 flag is 1.

Phase = Verify (H

eader Verification Failure) Secure Boot Non

Fatal

Verify PBI

ERROR_ HASH_COMPARE_KEY

0x240

Super Root Key Hash Comparison failure.
Mismatch in the hash of the public key/srk table as
present in the header with the value in the SRK
HASH fuse.

Verify PBI

ERROR_ HASH_COMPARE_EM

0x241

RSA signature check failure. Signature provided
by you in the header does not match with the
signature of the ESBC image generated by ISBC.
The ESBC image loaded by you may be different
than the image used while generating the
signature (using CST)

Phase = Verify (S

ecure Boot Fatal (Header parsing errors))

Verify Boot1

ERROR_HEADER_LOC

0x100f8

Header location is invalid

Verify Boot1

ERROR_HEADER_BARKER

0x100f9

Barker code in the header is incorrect.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

227

Security

Table 76. ISBC error codes (continued)

When error Error code Value Description

generated

Verify Boot1 ERROR_HEADER_INVALID 0x100fa Flag BO1 in the header identifies this as SPL
header.

Phase = Verify (Secure Boot Fatal (SG Table related errors))

Verify Boot1 ERROR_SG_ENTRY_POINT 0x10200 Entry point is not within any of SG entries

Verify Boot1 ERROR_SG_NUM_ENTRY 0x10201 No. of entries in SG table is 0 or >8

Verify Boot1 ERROR_SG_SIZE_ZERO 0x10202 | A SG entry has size 0

Phase = Verify (S

ecure Boot Non-Fatal (Key/UID related errors))

N in srk table is not one of the supported values.

(1k, 2k, or 4k)

Verify Boot1 ERROR_KEY_LEN_ 0x10211 Public key is not twice the length of the RSA

NOT_TWICE_SIG_LEN signature

Verify Boot1 ERROR_KEY_MOD_1 0x10212 Most significant bit of modulus in header is zero

Verify Boot1 ERROR_KEY_MOD_2 0x10213 Modulus in header is even number

Verify Boot1 ERROR_ SIG_KEY_MOD 0x10214 | Signature value is greater than modulus in header

Verify Boot1 ERROR_ INVALID_SRK_NUM_ENTRY 0x10215 | Number of entries field in CSF Header is > 8 (This
is when srk_flag in header is 1)

Verify Boot1 ERROR_ INVALID_KEY_NUM 0x10216 Key number to be used from srk table is not
present in table. (This is when srk_flag in header
is 1)

Verify Boot1 ERROR_ KEY_REVOKED 0x10217 Key selected from srk table has been revoked
(This is when srk_flag in header is 1)

Verify Boot1 ERROR_FSL_UID 0x10220 FSL_UID in ESBC Header did not match the
FSL_UID in SFP if fsl uid flag Is 1

Verify Boot1 ERROR_ OEM_UIDO 0x10221 OEM_UIDO in ESBC Header did not match the
OEM_UIDO in SFP if oem uidO flag is 1.

Verify Boot1 ERROR_ OEM_UID1 0x10222 | OEM_UID1 in ESBC Header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify Boot1 ERROR_ OEM_UID2 0x10223 | OEM_UID1 in ESBC Header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify Boot1 ERROR_ OEM_UID3 0x10224 | OEM_UID1 in ESBC Header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify Boot1 ERROR_ OEM_UID4 0x10225 | OEM_UID1 in ESBC Header did not match the

OEM_UID1 in SFP if oem uid1 flag is 1.

Phase = Verify (Header Verification Failure) Secure Boot Non-Fatal

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

228

NXP Semiconductors

Secure boot

Table 76. ISBC error codes (continued)

When error
generated

Error code

Value

Description

Verify Boot1

ERROR_ HASH_COMPARE_KEY

0x10240

Super Root Key Hash Comparison failure.
Mismatch in the hash of the public key/srk table as
present in the header with the value in the SRK
HASH fuse.

Verify Boot1

ERROR_ HASH_COMPARE_EM

0x10241

RSA signature check failure. Signature provided
by you in the header does not match with the
signature of the ESBC image generated by ISBC.
The ESBC image loaded by you may be different
than the image used while generating the
signature(using CST)

Verify Boot1

ERROR_PRIVATE_KEY_DERIVATION

0x10250

Error in Private key derivation when enabling
Manufacturing Protection.

6.1.2.11 ESBC error codes
Table 77. ESBC validation failures

Value Code Definition

Ox4 ERROR_ESBC_CLIENT_HEADER_BARKE | Wrong barker code in header
R

0x8 ERROR_ESBC_CLIENT_HEADER_KEY_LE | Wrong public key length in header
N

0x10 ERROR_ESBC_CLIENT_HEADER_SIG_LE | Wrong signature length in header
N

0x20 ERROR_ESBC_CLIENT_HEADER_KEY_LE | Public key length not twice of signature length
N_NOT_TWICE_SIG_LEN

0x40 ERROR_ESBC_CLIENT_HEADER_KEY_M | Public key Modulus most significant bit not set
OD_1

0x80 ERROR_ESBC_CLIENT_HEADER_KEY_M | Public key Modulus in header not odd
OD_2

0x100 ERROR_ESBC_CLIENT_HEADER_SIG_KE | Signature not less than modulus
Y_MOD

0x400 ERROR_ESBC_CLIENT_HASH_COMPARE | Public key hash comparison failed
_KEY

0x800 ERROR_ESBC_CLIENT_HASH_COMPARE | RSA verification failed
_EM

0x10000 ERROR_ESBC_CLIENT_HEADER_SG No SG support

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

229

Security

Table 77. ESBC validation failures (continued)

Value Code Definition

0x20000 ERROR_ESBC_WRONG_CMD Failure in command/Unknown command/Wrong arguments of
boot script.

0x40000 ERROR_ESBC_MISSING_BOOTM Bootm command missing from boot script.

6.1.2.12 Troubleshooting

Symptoms Reasons and/or Recommended actions

1. No print on UART console. Check the status register of sec mon block. Refer to the details of the register
from the Reference Manual. Bits OTPMK_ZERO, OTMPK_SYNDROME
and PE should be 0 otherwise there is some error in the OTPMK fuse blown
by you.

If OTMPK fuse is correct (see Step 1), check the DCFG SCRATCHRW3
register for error code. For a list of error codes, see ISBC error codes on
page 222

If Error code = 0 then check the Security Monitor state in HPSR register of
Sec Mon.

Sec Mon in Check State (0x9)

If ITS fuse = 1, then it means ISBC code has reset the board. This may be
due to the following reasons “

Hash of the public key used to sign the ESBC U-Boot does not match with
the value in SRK Hash Fuse

Or

Signature verification of the image failed

Sec Mon in Trusted State (0xd) or Non-Secure State (0xb)
Check the entry point field in the CSF header.

If entry point is correct, ensure that U-Boot image has been signed with the
correct input file.

2. Instead of Linux prompt, you get a U- | You have not booted in secure boot mode. You never get a U-Boot prompt
Boot command prompt. in secure boot flow. You would reach this stage if ITS = 0 and you are running
normal U-Boot.

3 U-Boot hangs or board resets Some validation failure occurred in U-Boot. Error code and description would
be printed on U-Boot console. See ESBC error codes on page 229for more
details on errors.

6.1.3 Code Signing Tool

To assist with signing of various images and creation of CSF header, NXP offers a Code Signing Tool (CST). Itis generally expected
that the CST signs images in an offline process

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
230 NXP Semiconductors

Secure boot

s 24 N a
Key Header Signature
Generation Creation Generation
r r N N
gen_keys] { uni_pbi)
L) gen_sign
p
. . P —
gen_drv_drbg] [uni_cfsign
A A
(o B sign_embed
gen_otpmk_drbg uni_sign
\ J w
AN

Figure 34. Tool in CST Package

6.1.3.1 Key generation

The CST begins by generating a RSA public and private key pair using OPENSSL APIs. The key pair consists of 3 parts; N, E,
and D.

N - Modulus

E - Encryption exponent

D - Decryption exponent

Public Key - It is a combination of E and N components.

Private Key - It is a combination of D and N components.

The application allows the user to feed 3 key sizes for generating keys. The key sizes are 1024 bits, 2048 bits, and 4096 bits.

It is the OEM's responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot. If this key is ever lost, the OEM will be unable to update the image.

6.1.3.1.1 gen_keys

This utility generates a RSA public and private key pair using OPENSSL APIs. The key pair consists of 3 parts; N, E, and D.
N — Modulus

E — Encryption exponent

D — Decryption exponent

Public Key - It is a combination of E and N components.

Private Key - It is a combination of D and N components.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot. If this key is ever lost, the OEM will be unable to update the image.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 231

Security

Features
* The application allows the user to generate 3 sizes keys. The key sizes are 1024 bits, 2048 bits, and 4096 bits.
* |t generates RSA key pairs in PEM format.

» Keys are generated and stored in the files. User can provide file names through command line option.

Usage

./gen_keys [OPTION] SIZE

SIZE refers to size of public key in bits. (Modulus size).

Size supported -- 1024, 2048, 4096. The generated keys would be in PEM format.
Options:

-h,--help Usage of the command

-k,--pubkey File where Public key would be stored in PEM format (default = srk.pub)

-p,--privkey File where Private key would be stored in PEM format (default = srk.priv)

Usage Example

$./gen_keys 1024

Hommmmmm o #
#------- m------- m------- —momoe- #
#------- CST (Code Signing Tool) Version 2.0 ------- #
H------- —mmm---- mmm----- e #
Homm oo #

This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)

This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)

Generated SRK pair stored in
PUBLIC KEY srk.pub
PRIVATE KEY srk.pri

$./gen _keys 4096 -k my.pub -p my.pri

Hommmmmmm e #
#------- —------- m------- —mmmoe- #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- —-mm---- mmme---- e #
Hommmmm oot #

This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)

This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)

Generated SRK pair stored in
PUBLIC KEY my.pub
PRIVATE KEY my.pri

6.1.3.1.2 gen_otpmk_drbg

This utility in the Code Signing Tool inserts hamming code in a user defined 256b hexadecimal string, or generate a 256b
hexadecimal random number and inserts the hamming code in it which can be used as OTPMK value.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
232 NXP Semiconductors

NOTE
For random number generation, Hash_DRBG library is used. The Hash_DRBG is an implementation of the NIST
approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is the Linux /
dev/random.

Features:

Secure boot

¢ Generates random numbers, which can be used if user defined string is not provided, to generate OTPMK value.

* Calculates and embeds the hamming code in the hexadecimal string.
Usage:
./gen_otpmk_drbg -b <bit_order> --s [string]
<bit_order> : (1 or 2) OTPMK Bit Ordering Scheme in SFP
1:TA1x
2 : TA2.x, TA3.x
<string> : 32 byte string
In case string is not specified, the utility generates a 32 bytes random number and embeds hamming code in it.
Usage Example:

$ gen otpmk drbg -b 1

e i #
F------- m------- -------- memmes #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- —------- -------- mmmes #
e i #

Input string not provided

Generating a random string

* Hash DRBG library invoked

* Seed being taken from /dev/urandom

OTPMK [255:0] is:
d2fe3a662f69alfaadc2406f83eedde7647fbd3c62ac442c67fad2d4cdas8b3al

NAME BITS VALUE
OTPMKR 0 31- 0 cda8b3a0
OTPMKR 1 63- 32 67fad2d4
OTPMKR 2 95- 64 62ac442c
OTPMKR 3 127- 96 647fbd3c
OTPMKR 4 159-128 83eedde?
OTPMKR 5 191-160 ad4c2406f
OTPMKR 6 223-192 2f69alfa
OTPMKR 7 255-224 d2f63a66

$./gen_otpmk drbg -b 2 --s 1111111122222222333333334444444455555555666666667777777788888888

Hommmmm s #
#------- —------- -------- mmmes #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- m------- -------- mmmes #
Hommmmm s #

OTPMK [255:0] is:
1111111122222222333333334444444455555555666666667777777788888888

NAME | BITS | VALUE

OTPMKR 0 | 255-224 | 11111111

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

233

Security

OTPMKR 1 | 223-192 | 22222222
OTPMKR 2 | 191-160 | 33333333
OTPMKR 3 | 159-128 | 44444444
OTPMKR 4 | 127- 96 | 55555555
OTPMKR 5 | 95- 64 | 66666666
OTPMKR 6 | 63- 32 | 77777777
OTPMKR 7 | 31- 0 | 88888888

6.1.3.1.3 gen_drv_drbg

This utility in the Code Signing Tool inserts hamming code in a user defined 64b hexadecimal string, or generate a 64b hexadecimal
random number and inserts the hamming code in it which can be used as Debug Response Value.

For random number generation, Hash_DRBG library :?J:(fd The Hash_DRBG is an implementation of the NIST
approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is the Linux /
dev/random.
Features:
* Generates random numbers, which can be used if user defined string is not provided, to generate Debug Response value.
¢ Calculates and embeds the hamming code in the hexadecimal string.
Usage:
J/gen_drv_drbg <Hamming_algo> [string]
Hamming_algo : Platforms
A1 : T10xx, T20xx, T4xxx, P4080rev1, B4xxx
A2 : LSx
B : P10xx, P20xx, P30xx, P4080rev2, P4080rev3, P50xx, BSC913x, C29x
string : 8 byte string
In case string is not specified, the utility generates an 8 byte random number and embeds hamming code in it.
Usage Example:
$./gen _drv_drbg A2

e e #
#------- m------- -------- oo #
H------- CST (Code Signing Tool) Version 2.0 ------- #
#------- —------- —mm----- mmes #
- #

Input string not provided
Generating a random string

* Hash DRBG library invoked
* Seed being taken from /dev/random

Random Key Genearted is:

f4bfc65e16284dbb

DRV[63:0] after Hamming Code is:

f4bfce5f16294daf

NAME | BITS | VALUE
| |

DRV 0 | 63 - 32 | f4bfcest

DRV 1 | 31 - 0 | 16294daf

$./gen _drv _drbg A2 1652afe595631dec

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
234 NXP Semiconductors

Secure boot

H------- CST (Code Signing Tool) Version 2.0 ------- #
H------- —mmm---- mmme---- e #
Hommmmmmm e #
DRV[63:0] after Hamming Code is:
l1652afe495631cea
NAME | BITS | VALUE
| |
DRV 0 | 63 - 32 | 1652afe4
DRV 1 | 31 -0 | 95631cea
6.1.3.2 Header creation
6.1.3.2.1 uni_pbi
Following options are available with the uni_pbi command.
$./uni_pbi
--verbose Display header Info after Creation. This option is invalid for TA2
platform
--hash Print the SRK(Public key) hash. This option is invalid for TA2 platform
--img hash Header is generated without Signature.
Image Hash is stored in a separate file. This option is invalid for TA2
platform

--help Show the Help

for Tool Usage.

The input to this tool will be an input file specifying the platform. Based on that, there are two separate behaviour of the tool.

uni_pbi for TA2.x platforms is used for the following:

¢ To add boot location pointer and set SB_EN and BOOT_HO value for secure boot

¢ (optional) To add PBI commands (ACS write commands to add U-Boot spl and its header to OCRAM from Non-XIP

memory).

¢ (optional) To append images (U-Boot, Boot script, and their headers) to RCW file.

Refer Hardware Pre-Boot Loader (PBL) based

platforms on page 146 for TA2.x based platforms

uni_pbi for Service processor based platforms

* uni_pbi tool is used for creating signature and header over PBl commands.

Table 78. Description of fields in input files of both type of platforms (TA2.x and TA3.x)

Field name Description Platform supported
PLATFORM The platform for which tool is being used TA 2.x and TA 3.x
RCW_PBI_FILENAME Input image file name. The rcw file which has to be modified. TA 2.x and TA 3.x
BOOT1_PTR Address of ISBC (Boot1) CSF Header TA 2.x and TA 3.x

OUTPUT_RCW_PBI_FILENAME | To identify the platform for which the tool is being used. This TA 2.x
field is optional. If not specified, it will take default name.

BOOT_SRC Only to be specified in case of SD boot TA 2.x

SB_EN Field to enable or disable secure boot, by setting SB_EN bit in TA 2.x
rcw file to 1

BOOT_HO To put core in hold-off state to fuse key hash in case of secure TA 2.x
boot, by setting BOOT_HO bit in rcw file to 1

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

235

Security

Table 78. Description of fields in input files of both type of platforms (TA2.x and TA3.x) (continued)

Field name Description Platform supported
COPY_CMD To add ACS write commands to write U-Boot spl and is header | TA 2.x
to OCRAM. This is an optional field. If not mentioned, won't add
the command.
APPEND_IMAGES To append U-Boot, Boot script, and their headers to the new rcw | TA 2.x
generated. It is an optional field. This is an optional field, if not
specified, no images will be appended.
KEY_SELECT Specify the key to be used in signature generation from the SRK | TA 3.x
table
PRI_KEY Private key file name in PEM format. The maximum keys TA 3.x
supported are 8.
FSL_UID_x FSL UID(s) to be populated in the header TA 3.x
OEM_UID_x OEM UID(s) to be populated in the header TA 3.x
OUTPUT_HDR_FILENAME Output file name of the header. An output file name is generated | TA 3.x
with rcw commands appended with signed PBI commands.
IMAGE_HASH_FILENAME used with '--img_hash' option (Name of file in which Image Hash | TA 3.x
is stored)
MP_FLAG Manufacturing Protection Flag TA 3.x
ISS_FLAG Increment Security State Flag TA 3.x
LW_FLAG Leave Writeable Flag TA 3.x
VERBOSE Specify VERBOSE as 1, if you want to display header TA 3.x
information. This can also be done with '--verbose' option
IE_TABLE_ADDR 64-bit address of IE table(to be used in case of IE key extension | TA 3.x

feature usage)

Sample input files are present in the CST tool at location: input_files/uni_pbi/<platform>/

For example, input_files/uni_pbi/ls1/input_pbi_sd_secure

NOTE

In TA 3.x, SB_EN and BOOT_HO fields are by default set to 1 to enable secure boot.

NOTE

TA 3.x : LS1088, LS2088. To know platforms under TA 2.x, refer Trust Architecture and SFP Information on page

180

6.1.3.2.1.1 Sample Input File
Sample input file for TA2 based platforms

/*
* Copyright 2016 NXP

For PBI Creation

Name of RCW + PBI file

[Mandatory]

RCW_PBI FILENAME= u-boot-with-spl-pbl.bin

Specify the output file name [Optional].

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

236

NXP Semiconductors

Default Values chosen in Tool
OUTPUT RCW_PBI FILENAME=u-boot-with-spl-pbl-sec.bin

#specify the boot src

BOOT_SRC=SD_BOOT

Specify the platform

PLATFORM=LS1020

Specify the RCW Fields. (0 or 1) - [Optionall
SB_EN=1

BOOT_HO=1

BOOT1_ _PTR=10016000

Specify the PBI commands - [Optionall

Argument: COPY CMD = (src_offset, dest offset, Image name)
Split hdr uboot spl.out in PBI commads

COPY CMD={ffffffff,10016000,hdr uboot spl.out;}

Specify the Images to be appended

Arguments: APPEND_IMAGES= (Image name, Offset from start)
APPEND IMAGES={u-boot-dtb.bin, 00022000;}

APPEND IMAGES={hdr uboot.out,00122000;}

APPEND IMAGES={hdr bs.out, 00124000;}

APPEND IMAGES={bootscript,00128000;}

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.1: LS2088, LS1088

PLATFORM=LS1088

Specify the Key Information.

PUB _KEY [Mandatory] Comma Seperated List
Usage: <srkl.pub>, <srk2.pub>
PUB_KEY=srk.pub

KEY SELECT [Mandatoryl

USAGE (for TRUST 3.1): (between 1 to 8)
KEY SELECT=1

PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pris>

PRI KEY=srk.pri

For PBI Signing

Name of RCW + PBI file [Mandatoryl

RCW PBI FILENAME=rcw.bin

Address of ISBC (Bootl) CSF Header [Mandatoryl
BOOT1 PTR=20c00000

Specify OEM AND FSL ID to be populated in header. [Optionall]
e.g FSL UID 0=11111111

FSL_UID 0=

FSL_UID 1=

OEM UID 0=

OEM UID 1=

OEM UID 2=

OEM UID 3=

OEM UID 4=

Specify the output file names [Optionall].
Default Values chosen in Tool

OUTPUT HDR FILENAME=rcw sec.bin
IMAGE HASH FILENAME=

Specify The Flags. (0 or 1) - [Optionall]
MP_FLAG=0

ISS FLAG=1

LW_FLAG=0

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

Secure boot

NXP Semiconductors

237

Security

Specify VERBOSE as 1, if you want to Display Header Information [Optionall
VERBOSE=0

6.1.3.2.2 uni_pbi (create_hdr_pbi)

uni_pbi tool is used for creating signature and header over PBI commands.

This section will focus on creating PBl image for secure boot. For pre-boot initialization in a secure boot use case, RCW commands,
Security header commands, Key tables, and signature are all required.

Usage:

To view usage of tool:

$./uni_pbi --help

Fommm #
$------- m------- —------- mmmmo oo #
$------- CST (Code Signing Tool) Version 2.0 ------- #
#------- m------- -------- mmmmme #
Fommm #

Correct Usage of Tool is:

./create hdr pbi [options] <input files
--verbose Display header Info after Creation
--hash Print the SRK(Public key) hash.
--img_hash Header is generated without Signature.
Image Hash is stored in a separate file.
--help Show the Help for Tool Usage.

<input file> Contains all information required by tool

khkkhkkhkhkkhkkhkhkkhhkhkkhhkhkhhkkhhkhkhkhkhhhkkhhdhhkhkhhkdhhkdhdhhkdhhkdhdhkhkdhkdkdhdhkhhxkxx*x

uni pbi is a wrapper script over the TOOL
Correct Usage (Description as specified above) :

*
*
*
* _/uni pbi [options] <input filex>

*

R RS S S S S S SR SRS SRS SRR RS SR SRR SRR RS S SRS RE SRS SRR EEEEEEEEEEEEEESSEES

Usage example:

$./uni pbi input files/uni pbi/1s2088 1088/gspi/input pbi gspi secure

- #
#------- m------- —mm----- s #
H------- CST (Code Signing Tool) Version 2.0 ------- #
#------- -------- -------- mmmees #
- #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

Input File is input files/uni pbi/1s2088 1088/gspi/input pbi gspi_ secure

LR R SRS SRS R RS RS E SRS SRR R E R EEEEEEEREEEEEEESES

* Header File is with Signature appended
R SRR R RS SR RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEESEEEEEE]

Header File Created: rcw_sec.bin

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
238 NXP Semiconductors

SRK (Public Key) Hash:

££9a791711e01321b66d0521c31ble03bbb55ec833a5£2233d52a160£1c099bf

SFP SRKHRO = f££9a7917
SFP SRKHR1 = 11e01321
SFP SRKHR2 = b66d0521
SFP SRKHR3 = c31ble03
SFP SRKHR4 = bbb55ec8
SFP SRKHR5 = 33a5f223
SFP SRKHR6 = 3d52al60
SFP SRKHR7 = £1c099bf

$./uni_pbi --verbose input files/uni pbi/1s2088 1088/gspi/input pbi gspi secure

- #
#------- -------- -------- —-moooo #
H------- CST (Code Signing Tool) Version 2.0 ------- #
#------- =------- -------- —mmees #
- #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

- SRK Information

- SRK Offset : 200

- Number of Keys : 1

- Key Select : 1

- Key List :

- Keyl srk.pub(400)
- UID Information

- UID Flags = 00

- FSL UID = 00000000 00000000
- OEM UIDO 00000000
- OEM UID1 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information

- MISC Flags = 20

- ISS = 1
- MP = 0
- ILWw =0
- B0l = 0

- Image Information

- RCW File : rcw.bin

- Bootl PTR : 30004000

- Initial No. Of PBI Words : 4 (0x4)
- Final No. Of PBI Words : 27 (0xlb)
- RSA Signature Information

- RSA Offset : 800

- RSA Size : 200

Image Hash:

1£f9a4483b£f618£4d262ce9£92dcb29£6d55523¢c£0305db9%e£0d392456£4a52bb

khkkhkhkhkhhkhkdkhkhdhhhkhkhhhhdhkrdhrdhhkdhddhhhhrdhrdhhkdhhhx

* Header File is with Signature appended
khkkkkkhkkkkhkkhkkkkkhkkkkkkkkkk*x*x

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

Secure boot

NXP Semiconductors

239

Security

Header File Created: rcw_sec.bin

SRK (Public Key) Hash:
££9a791711e01321b66d0521c31ble03bbb55ec833a5£2233d52a160£1c099bf

SFP SRKHRO = ff9a7917

SFP SRKHR1 = 11e01321

SFP SRKHR2 = b66d0521

SFP SRKHR3 = c31ble03

SFP SRKHR4 = bbb55ec8

SFP SRKHR5 = 33a5f223

SFP SRKHR6 = 3d52al60

SFP SRKHR7 = f£1c099bf

6.1.3.2.2.1 Sample Input File
Sample input file for TA2 based platforms

/*
* Copyright 2016 NXP
*/

For PBI Creation
Name of RCW + PBI file [Mandatoryl
RCW_PBI_ FILENAME= u-boot-with-spl-pbl.bin

Specify the output file name [Optionall].
Default Values chosen in Tool
OUTPUT_RCW_PBI_FILENAME=u-boot-with-spl-pbl-sec.bin

#specify the boot src

BOOT _SRC=SD_BOOT

Specify the platform

PLATFORM=LS1020

Specify the RCW Fields. (0 or 1) - [Optionall
SB_EN=1

BOOT_HO=1

BOOT1_ PTR=10016000

Specify the PBI commands - [Optionall

Argument: COPY CMD = (src_offset, dest_offset, Image name)
Split hdr uboot spl.out in PBI commads

COPY CMD={ffffffff,10016000,hdr uboot_ spl.out;}

Specify the Images to be appended

Arguments: APPEND IMAGES=(Image name, Offset from start)
APPEND IMAGES={u-boot-dtb.bin, 00022000;}

APPEND IMAGES={hdr uboot.out,00122000;}

APPEND IMAGES={hdr bs.out, 00124000;}

APPEND IMAGES={bootscript,00128000; }

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.1: LS2088, LS1088
PLATFORM=LS1088

Specify the Key Information.

PUB_KEY [Mandatory] Comma Seperated List
Usage: <srkl.pub>, <srk2.pub>

PUB KEY=srk.pub

KEY SELECT [Mandatory]

USAGE (for TRUST 3.1): (between 1 to 8)
KEY SELECT=1

PRI _KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pris

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

240

NXP Semiconductors

Secure boot

PRI KEY=srk.pri

For PBI Signing

Name of RCW + PBI file [Mandatoryl

RCW PBI FILENAME=rcw.bin

Address of ISBC (Bootl) CSF Header [Mandatoryl
BOOT1 PTR=20c00000

Specify OEM AND FSL ID to be populated in header. [Optionall]
e.g FSL UID 0=11111111

FSL_UID 0=

FSL_UID 1=

OEM UID 0=

OEM UID 1=

OEM UID 2=

OEM UID 3=

OEM UID 4=

Specify the output file names [Optionall].

Default Values chosen in Tool

OUTPUT HDR FILENAME=rcw sec.bin
IMAGE HASH FILENAME=

Specify The Flags. (0 or 1) - [Optionall
MP_FLAG=0

ISS FLAG=1

LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optionall
VERBOSE=0

6.1.3.2.2.2 PBI structure

Fields Offset Size (In 32-bit word)
RCW Preamble (RCW) 0x00 1
Load RCW command 0x04 1
RCW words 0x08 — 0x87 32
RCW checksum 0x88 1
PBI commands Load security header 0x8c 1
CSF header 0x90 — Oxdf 20
Load boot 1CSF header 0xe0 1
Boot 1 pointer Oxe4 1
Other PBI commands Oxe8 N
STOP command (With/ 0xe8 + (4*N) 2
Without CRC)
SRK table SRK table 0x90 + SRK table offsetin CSF | (No. of keys * Key length)
header
RSA signature Signature 0x90 + Sign offset in CSF Sign length
header

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 241

Security

RCW

PBI
commands

Preamble

Load RCW
command

RCW words

RCW
checksum

The preamble is always the first element in a PBI image. It contains a standard pattern that
identifies the memory location as the beginning of a valid PBl image. The preamble is a 4-byte
pattern defined as “Oxaa55aa55”

The next word is load RCW command. This command loads the 1024-bit Reset Configuration
Word from the interface specified by Power-on-Reset (POR) configuration strapping pins. It
has the following two formats.

1. Load RCW with Checksum (0x10): Read Reset Configuration Word performs simple 32-
bit checksum, and update RCW registers.

2. Load RCW without Checksum (0x11): Read Reset Configuration Word and update RCW
registers without performing checksum. The version without the checksum includes
padding with zeroes in the place of the checksum value.

1024 RCW bits that is 32 words of 32 bits.

It is calculated as a 32-bit unsigned integer summation of the RCW Preamble, the Load RCW
with checksum command, and each of the 32 words (32-bit) of the RCW. A simple 32-bit
checksum is used for the validation of the command.

checksum (RCW_WORD []) {
unsigned 32 sum = OxAAS55AA55 + 0x80100000 + Load RCW Command;
for(i=0; 1i<32; i++)
sum+=RCW_WORD [1i] ;
return (sum) ;

NOTE
Checksum will have to be updated by CST tool as the fields like SB_EN,
PBI_LEN in the RCW words are changed.

Load security This command loads information required for authentication of the PBl image. The security

header

Load boot 1
CSF header

Other PBI
commands

STOP
command

header includes pointers to an SRK key table and RSA signatures as well as other flags and
IDs. The CSF Header is part of the command. Please refer the CSF header structure in .

This command loads a pointer to a CSF Header used for authentication of the Boot 1
Secondary Program Loader. This 32-bit value used by the Boot 0 ISBC and is required for
secure boot.

Other PBI commands input by user.

This command ends the PBI sequence and has two variants (with and without CRC).

The CRC check value covers all commands from the first command after the RCW up to
and including this CRC and Stop command, regardless of whether any are skipped by Jump
commands during execution.

In Stop command without CRC, it ends the PBI sequence immediately. It does not include
a CRC value, but it instead has a 32-bit padding with zeroes so that it is the same size as
the Stop with CRC command.

NOTE
CST tool updates the PBI commands by adding Load Security Header
command and Load Boot 1 Security Header command. So, CRC must
also be updated.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

242

NXP Semiconductors

SRK table

specified in the CSF header.

RSA
signature

6.1.3.2.3 uni_sign

uni_sign tool can be used for the following functions.

¢ CSF header generation along with signature for both ISBC and ESBC phase

* CSF header generation without signature if private key is not provided

Secure boot

Table of public keys is used in secure boot validation. It is kept at an offset from the CSF header. The offset is

RSA signature is calculated over all PBI commands and SRK table. It is kept at an offset from the CSF header.
The offset is specified in the CSF header.

uni_sign tool (with ESBC = 0 in input file) is used for creating signature and header over Boot1 image to be verified by ISBC

uni_sign tool (with ESBC = 1 in input file) is used for creating signature and header over images to be verified by ESBC

Following options are available with the uni_sign command.

Usage:

To view usage of tool:

./uni_sign

--verbose Display header Info after Creation
--hash Print the SRK(Public key) hash.
--img _hash Header is generated without Signature.
Image Hash is stored in a separate file.
--help Show the Help for Tool Usage.
Table 79. Description of fields
Field Field description Platform
supported
PLATFORM To identify the platform/SoC for which CF header needs to be created. All
ESBC Do not set this flag when code signing is being performed on the image directly TA3.x
verified by the ISBC. For later images in the chain of trust, set this flag.
ENTRY_POINT Entry point address or Image start address field in the header. All
PRI_KEY Private key file name to be used for signing the image. (File has to be in PEM format) All
(default = srk.pri generated by gen_keys command) FILE1 [,FILE2, FILE3, FILE4].
Multiple key support for Trust Arch v2.x devices only.
PUB_KEY Public key file name in PEM format. (default = srk.pub generated by gen_keys) FILE1 All
[,FILE2, FILE3, FILE4]. Multiple key support for Trust Arch v2.x devices only.
KEY_SELECT Specify the key to be used in signature generation when more than one key has been | All
given as input. (Default=1, first key will be selected)
IMAGE_1 - Create Entries for SG table in the format { IMAGE_NAME, SRC_ADDR, All
IMAGE_8 DST_ADDR}
OEM_UID_x OEM UID to be populated in the header. All
FSL_UID x FSL UID to be populated in the header. All

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

243

Security

Table 79. Description of fields (continued)

Field Field description Platform
supported
HK_AREA_POINTE | House Keeping Area Starting Pointer required by Sec (Required for Trust Arch v2.x | TA2.x
R devices only when esbc option is not provided)
HKAREA_SIZE House Keeping Area Size (Required for Trust Arch v2.x devices only when esbc TA2.x
option is not provided)
OUTPUT_HDR_FIL | Name of the combined header binary to be created by tool All
ENAME
SG_TABLE_ADDR | Specify SG_TABLE Address where Scatter Gather table is present for TA1.x
2041/3041/4080/5020/5040 when ESBC=0.
OUTPUT_SG_BIN | Specify the output file name of sg table. TA1.x
IMAGE_TARGET Specify the target where image will be loaded. For example,NOR_8B/NOR_16B/ | All
NAND_8B_512/NAND_8B_2K/NAND_8B_4K/ NAND_16B_512/NAND_16B_2K/
NAND_16B_4K/SD/MMC/SPI
SEC_IMG Flag for Secondary Image. Required for Trust Arch v2.x devices only TA2.x
MP_FLAG Specify Manufacturing Protection Flag. Available for LS1 only. All, only needed in
ISBC phase
VERBOSE Specify Verbose option. Contents of header generated will be printed. All
IMAGE_HASH_FIL |used with '--img_hash' option (Name of file in which Image Hash is stored) TA3.x
ENAME
ISS_FLAG Increment Security State Flag TAS3.x, only
needed in ISBC
phase
LW_FLAG Leave Writeable Flag TAS3.x, only

needed in ISBC
phase

ESBC_HDRADDR

32-bit address where header generated will be placed. Used to calculate |IE key table
address

TAS3.x, only to be
used in case of |IE
key extension
feature usage

IE_KEY

Comma separated list of files containing public keys(IE Keys)

TAS3.x, only to be
used in case of IE
key extension
feature usage

IE_REVOC

Comma separated list of numbers that are to be revoked from IE table

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

TAS3.x, only to be
used in case of IE
key extension
feature usage

244

NXP Semiconductors

Secure boot

Table 79. Description of fields (continued)

Field Field description Platform
supported
IE_KEY_SEL No. of keys in |E table that is to be used to validate image TAS3.x, only to be

used in case of IE
key extension
feature usage

Sample input files can be referred to, from input_files/uni_sign/l<platform>
For IE keys, you can refer to input_files/uni_sign/I<platform>/ie_ke

TA3.x: LS2088 and LS1088. To know platforms under TA1.x and TA 2.x, refer Trust Architecture and SFP Information on page
180

6.1.3.2.3.1 Sample Input File
The input files will not have ESBC field (ESBC=0).

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.1: LS2088, LS1088

TRUST 1.0, 1.1, 2.0, 2.1: 1010/1040/2041/3041/4080/5020/5040/9131/9132/9164/4240/C290/LS1
PLATFORM=LS2088

Entry Point/Image start address field in the header. [Mandatory]
(default=ADDRESS of first file specified in images)

Address can be 64 bit

ENTRY POINT=30008000

Specify the Key Information.

PUB KEY [Mandatory] Comma Seperated List

Usage: <srkl.pub> <srk2.pub>

PUB KEY=srk.pub

KEY_SELECT [Mandatoryl

USAGE (for TRUST 3.1): (between 1 to 8)

KEY SELECT=1

PRI_KEY [Mandatory] Comma Seperated List for Signing

USAGE: <srk.pris>, <srk2.pris

PRI KEY=srk.pri

Specify IMAGE, Max 8 images are possible.

DST ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE NO = {IMAGE NAME, SRC ADDR, DST ADDR}

Address can be 64 bit

IMAGE 1={u-boot.bin,30008000,ffffffff}

IMAGE 2={,,}

IMAGE 3=

Specify OEM AND FSL ID to be populated in header. [Optionall
e.g FSL UID 0=11111111

FSL UID 0=

FSL UID 1=

OEM UID 0=

OEM UID 1=

OEM UID 2=

OEM UID 3=

OEM UID 4=

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 245

Security

Specify the output file names [Optionall].
Default Values chosen in Tool

OUTPUT HDR FILENAME=hdr uboot.out
IMAGE HASH FILENAME=

RSA SIGN_ FILENAME=

Specify The Flags. (0 or 1) - [Optionall
MP_FLAG=0

ISS_FLAG=1

LW FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information

VERBOSE=0

Following fields are Required for 4240/9164/1040/C290 only

Specify House keeping Area

Required for 42409164/1040/C290 only when ESBC flag is not set.

HK_AREA POINTER=
HK_AREA SIZE=

Following field Required for 4240/9164/1040/C290 only

Specify Secondary Image Flag. (0 or 1) - [Optionall
(Default is 0)
SEC_IMAGE=

Specify SG table address, only for (2041/3041/4080/5020/5040) with ESBC=0 -

SG_TABLE ADDR=

6.1.3.2.4 uni_sign (create_hdr_isbc)

[Optionall

[Mandatory]

[Optionall

uni_sign tool (with ESBC = 0 in input file) is used for creating signature and header over Boot1 image to be verified by ISBC.

Usage:

If INPUT file does not have ESBC = 1, uni_sign invokes create hdr isbc

To view usage of tool:

$./uni_sign --help

Hommm oo #
#------- —------- m------- —mmo e #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- m------- m------- mmmmme- #
Hommm oo #

Correct Usage of Tool is:

./create hdr isbc [options] <input files>
--verbose Display header Info after Creation
--hash Print the SRK(Public key) hash.
--img _hash Header is generated without Signature.
Image Hash is stored in a separate file.
--help Show the Help for Tool Usage.

<input file> Contains all information required by tool

khkkhkkhkkkhkkhkhkkhhkhkkhhkhkhhkkhhkhkhkhkdhhhkhhdhhkhkkhhkdhhdhdhkhhkdhhkdhdhkhkdkhkdkdhkdhkhkhhhxx*x

* uni sign is a wrapper script over the TOOL
* Correct Usage (Description as specified above) :
*
*

./uni_sign [options] <input_file>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

246

NXP Semiconductors

Secure boot

*
LR R R SRS SRR SRS SRR SRS SRR SRS RS EEEEEEEEE SRR SRR SRS EEEEESEEEEEES]

Usage Example:

$./uni_sign input files/uni_ sign/1s2088 1088/gspi/input uboot gspi secure

Hommm s #
$------- —m------ mmm----- mmmeo e #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- mm------ m-m----- mmmmme- #
Hommm s #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

Input File is input files/uni sign/1s2088_1088/gspi/input_ uboot gspi secure

LR R SRS S S SRS EE SRR SRS SRS EEE SRR EEEEEEEEEEEEEEEEESES

* Header File is with Signature appended
LR EEEEEE R RS E SRR EEEEE R R R R R R R R R R R R R EEREEEREEES

Header File Created: hdr uboot.out

SRK (Public Key) Hash:
££9a791711e01321b66d0521c31ble03bbb55ec833a5£2233d52a160£1c099bf

SFP SRKHRO = ff9a7917

SFP SRKHR1 = 11e01321

SFP SRKHR2 = b66d0521

SFP SRKHR3 = c31ble03

SFP SRKHR4 = bbb55ec8

SFP SRKHR5 = 33a5f223

SFP SRKHR6 = 3d52al60

SFP SRKHR7 = f£1c099bf

$./uni_sign --verbose input files/uni sign/1s2088 1088/gspi/input uboot gspi secure

Hommmmm oo #
#------- m------- m------- —mmmoe- #
#------- CST (Code Signing Tool) Version 2.0 ------- #
H------- —mmm---- mmm----- e #
Hommmmmmm e #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

- SRK Information

- SRK Offset : 200

- Number of Keys : 1

- Key Select : 1

- Key List :

- Keyl srk.pub(400)
- UID Information

- UID Flags = 00

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 247

Security

- FSL UID = 00000000 00000000
- OEM UIDO = 00000000

- OEM UID1 = 00000000

- OEM UID2 = 00000000

- OEM UID3 = 00000000

- OEM UID4 = 00000000

- FLAGS Information

- MISC Flags = 60

- ISsS =1
- MP = 0
- IW =0
- B0l =1

- Image Information

- SG Table Offset : 800

- Number of entries : 1

- Entry Point : 30008000

- Entry 1 : u-boot.bin (Size = 000c0000 SRC = 30008000 DST =
- RSA Signature Information

- RSA Offset : al0

- RSA Size : 200

Image Hash:
b23£4393067ad31b046ecl6b235e7732db675033abb20eed50e7c4ec2bedcad3

LR SRS S SRS EE SR SRR EEE RS EEEEEEEEEEEEESEEEEESES

* Header File is with Signature appended
LR EEEEEE R RS E SRR EEEEE R R R R R R R R R R R EEEEEEEEES

Header File Created: hdr uboot.out

SRK (Public Key) Hash:
£f£9a791711e01321b66d0521c31ble03bbb55ec833a5£2233d52a160£1c099bf

SFP SRKHRO = ff9a7917

SFP SRKHR1 = 11e01321

SFP SRKHR2 = b66d0521

SFP SRKHR3 = c31ble03

SFP SRKHR4 = bbb55ec8

SFP SRKHR5 = 33a5f223

SFP SRKHR6 = 3d52al60

SFP SRKHR7 = f£1c099bf

6.1.3.2.4.1 Sample Input File (ISBC)
The input files will not have ESBC field (ESBC=0).

Specify the platform. [Mandatory]

Choose Platform -

TRUST 3.0: LS2080

TRUST 3.1: LS2088, LS1088

PLATFORM=<platform>

Entry Point/Image start address field in the header. [Mandatory]
(default=ADDRESS of first file specified in images)
Address can be 64 bit

ENTRY POINT=20100000

Specify the Key Information.

PUB_KEY [Mandatory] Comma Seperated List

Usage: <srkl.pub> <srk2.pub>

PUB KEY=srk.pub

KEY_SELECT [Mandatory]

USAGE (for TRUST 3.x): (between 1 to 8)

KEY SELECT=1

PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pris

PRI _KEY=srk.pri

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

248

NXP Semiconductors

Specify IMAGE, Max 8 images are possible.

DST _ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE NO = {IMAGE NAME, SRC_ADDR, DST ADDR}

Address can be 64 bit

IMAGE 1={u-boot.bin,20100000,ffffffff}

IMAGE 2={,,}

IMAGE 3=

Specify OEM AND FSL ID to be populated in header. [Optionall
e.g FSL UID 0=11111111

FSL_UID 0=
FSL_UID 1=
OEM UID 0=
OEM UID 1=
OEM _UID 2=
OEM UID 3=
OEM UID 4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT HDR FILENAME=hdr uboot.out

IMAGE HASH FILENAME=
RSA SIGN FILENAME=

Specify The Flags.
MP FLAG=0

ISS FLAG=1

LW _FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optionall

- [Optionall

Secure boot

VERBOSE=0
Table 80. Description of Fields
Field Name Description
PLATFORM To identify the platform/SoC and Trust Architecture for which Header needs to be created.
PUB_KEY Public key filename in PEM format. Maximum 8 keys supported
KEY_SELECT Specify the key to be used in signature generation from the SRK Table
PRI_KEY Private key filename in PEM format. Maximum 8 keys supported
IMAGE_x Information of 8 discrete images to be verified by ISBC
ENTRY_POINT Address to be populated in Boot LOC Pointer by ISBC.
FSL_UID_x FSL UID(s) to be populated in the header
OEM_UID_x OEM UID(s) to be populated in the header
OUTPUT_HDR_FILENAME Output File name of the Header
IMAGE_HASH_FILENAME used with --img_hash' option (Name of file in which Image Hash is stored)
MP_FLAG Manufacturing Protection Flag
ISS_FLAG Increment Security State Flag
LW_FLAG Leave Writeable Flag

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

249

Security

Table 80. Description of Fields (continued)

VERBOSE Specify VERBOSE as 1, if you want to Display Header Information. Can also be done
with '--verbose' option

6.1.3.2.5 uni_sign (create_hdr_eshc)

uni_sign tool (with ESBC = 1 in input file) is used for creating signature and header over ESBC images to be verified by Boot1/
ESBC.

Usage:

If INPUT file haa ESBC = 1, uni_sign invokes create hdr _esbc

To view usage of tool:

$./uni_sign --help

e #
#------- -------- -------- oo #
H------- CST (Code Signing Tool) Version 2.0 ------- #
#------- m------- mmm----- mees #
fommmm #

Correct Usage of Tool is:

./create_hdr esbc [options] <input filex>
--verbose Display header Info after Creation
--hash Print the SRK(Public key) hash.
--img hash Header is generated without Signature.
Image Hash is stored in a separate file.
--help Show the Help for Tool Usage.

<input file> Contains all information required by tool

khkkhhkkhhkhkdhkhdhkhhkhdhhhdhkhkdhhdhhddrdhhhkdhkhkdhdrdhhhkrdhkrdrrkdhrdrhkhxdx

uni sign is a wrapper script over the TOOL
Correct Usage (Description as specified above) :

*

*

*

* _/uni_sign [options] <input filex>

*

EEE R SRR SRR EE SRS SRS EEEREEEEEEEEEEEEEEEEEEEEEESEEEEEEEESEEEEESEEEEE

Usage Example:

$./uni_sign input files/uni sign/1s2088 1088/gspi/input bootscript gspi secure

Fommm #
$------- m------- —------- mmmmooo #
$------- CST (Code Signing Tool) Version 2.0 ------- #
#------- m------- -------- mmmmme- #
Fommm #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

Input File is input files/uni sign/1s2088 1088/gspi/input bootscript gspi secure

EEE R SRS S S SRS SRS SRS EEEEEEEEEEEEEEEEESEEEEESES

* Header File is with Signature appended

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
250 NXP Semiconductors

LR R SRS SR R R R SRR SRR SR SRR R RS SRR R EEE SRR EREEEEEEES S

Header File Created: hdr bs.out

SRK (Public Key) Hash:
££9a791711e01321b66d0521c31ble03bbb55ec833a5£2233d52a160£1c099bf

SFP SRKHRO = f£f9a7917

SFP SRKHR1 = 11e01321

SFP SRKHR2 = b66d0521

SFP SRKHR3 = c31ble03

SFP SRKHR4 = bbb55ec8

SFP SRKHR5 = 33a5f223

SFP SRKHR6 = 3d52al60

SFP SRKHR7 = f£1c099bf

Secure boot

$./uni_sign --verbose input files/uni sign/1s2088 1088/gspi/input bootscript gspi secure

e bbb #
F------- m------- -------- m-mmeo #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- —------- -------- mmees #
Fo-mmmmmmm s #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

- SRK Information

- SRK Offset : 200

- Number of Keys : 1

- Key Select : 1

- Key List :

- Keyl srk.pub(400)

- UID Information

- UID Flags = 00

- FSL UID = 00000000 00000000

- OEM UIDO = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000

- OEM UID3 = 00000000

- OEM UID4 = 00000000

- FLAGS Information

- MISC Flags = 00

- Image Information

- bootscript (Size = 00000004 SRC = 00000000 _30008000)
- RSA Signature Information

- RSA Offset : 800

- RSA Size : 200

Image Hash:
937£f£c563c0c78544815616ab682d85bff2dbe43d330422aeb662bb9def4929b

khkkhkhkhkhhkhkdkhkhhhhkhkhhhhhhkrdhrdhhkdkhdhhdhrdhrdrhkdhkhx

* Header File is with Signature appended
khkkkkkkkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkkhkhkkkkkkkkkk*x*x

Header File Created: hdr bs.out

SRK (Public Key) Hash:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

251

Security

££9a791711e01321b66d0521c31ble03bbb55ec833a5£2233d52a160£1c099bf

SFP SRKHRO = ££9a7917
SFP SRKHR1 = 11e01321
SFP SRKHR2 = b66d0521
SFP SRKHR3 = c31ble03
SFP SRKHR4 = bbb55ec8
SFP SRKHR5 = 33a5f£223
SFP SRKHR6 = 3d52al60
SFP SRKHR7 = £1c099bf

6.1.3.2.5.1 Sample Input File (ESBC)
The input files will have ESBC field (ESBC=1).

Specify the platform. [Mandatory]

Choose Platform -
TRUST 3.0: LS2080

TRUST 3.1: LS2088, LS1088

PLATFORM=<platform>

Specify the Key Information.
PUB KEY [Mandatory] Comma Seperated List
Usage: <srkl.pub> <srk2.pubs>

PUB KEY=srk.pub
KEY SELECT [Mandatoryl

USAGE (for TRUST 3.x): (between 1 to 8)

KEY SELECT=1

PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pris>, <srk2.pris

PRI _KEY=srk.pri

Specify the IMAGE Information [Mandatory]
USAGE : IMAGE NO = {IMAGE NAME, SRC_ADDR, DST ADDR}

Address can be 64 bit

IMAGE 1l={bootscript,a0e00000,f£f£££££ff}

Specify OEM AND FSL ID to be populated in header. [Optionall

e.g FSL_UTD 0=11111111
FSL_UID 0=
FSL_UID 1=
OEM UID 0=
OEM UID 1=
OEM UID 2=
OEM UID 3=
OEM UID 4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT HDR FILENAME=hdr bs.out

IMAGE HASH FILENAME=
RSA SIGN FILENAME=

Specify VERBOSE as 1, if you want to Display Header Information [Optionall

VERBOSE=0
Table 81. Description of Fields
ESBC Flag to indicate that the image is ECBC (Must be 1)
PLATFORM To identify the platform/SoC and Trust Architecture for which Header needs to be created.
PUB_KEY Public key filename in PEM format. Maximum 8 keys supported
KEY_SELECT Specify the key to be used in signature generation from the SRK Table

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

252

NXP Semiconductors

Table 81. Description of Fields (continued)

Secure boot

PRI_KEY Private key filename in PEM format. Maximum 8 keys supported
IMAGE_1 Information of ESBC Image.

FSL_UID_x FSL UID(s) to be populated in the header

OEM_UID_x OEM UID(s) to be populated in the header

OUTPUT_HDR_FILENAME

Output File name of the Header

IMAGE_HASH_FILENAME

used with '--img_hash' option (Name of file in which Image Hash is stored)

VERBOSE

Specify VERBOSE as 1, if you want to Display Header Information. Can also be done
with '--verbose' option

6.1.3.3 Signature generation

The tools in this category are provided in case the user does not want to share the Private Key with the CST tool. The --img_hash
option in Header creation on page 235 tools provides OEMs with the ability to perform code signing in a secure environment
which does not run the NXP Code Signing Tool.

--img_hash option

Generates hash file in binary format which contains SHA256 hash of the components required for signature.
Generates output header binary file based on the fields specified in input file.
Output header binary file does not contain signature.

Provides flexibility to manually append signature at the end of output header file. Users can use their own custom tool to
generate the signature. The signature offset chosen in the header is such that the signature can be appended at the end of
the header file.

This option does not require private key to be provided. But the corresponding public key from the public/ private key pair
must be provided to calculate correct SHA256 hash.

The SHA256 hash generated over CF header (in case of TA1.x platforms)) is then signed using RSA algorithm (OPENSSL
APIs) with the private key. This encrypted hash is known as digital signature. This signature is placed at an offset from the
CF header, which is later read by IBR.

The SHA256 hash generated over CSF header, the public Key, the S/G table and the ESBC is also signed using RSA algorithm
with the same private key. The signature generated is placed at an offset from the CSF header, which is again later read by
IBR.

CF Header Public Key CSF Header Public Key 5G Table ESBCImage(s)
- = — —
e SHA256
SHA 256 l L 4
Hash Private Key
Hash Private Key \ %
\= ./ Rsa Y
Y
RSA l
F
ESBC Signature
CF Header Signature
Figure 35. Dual signature generation
Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 253

Security

Usage example

$./uni_sign --img hash --verbose input files/uni_sign/<platform>/input_uboot nor_ secure

Hommmmmmm e #
#------- m------- o------- mmmmoe- #
#------- CST (Code Signing Tool) Version 2.0 ------- #
H------- —mmm---- mmme---- e #
Hommmmmmm e #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

- SRK Information

- SRK Offset : 200

- Number of Keys : 1

- Key Select : 1

- Key List

- Keyl srk.pub(100)
- UID Information

- UID Flags = 00

- FSL UID = 00000000_000000O0O
- OEM UIDO = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information

- MISC Flags = 60

- ISS =1
- MP = 0
- LW = 0
- B0l =1

- Image Information

- SG Table Offset : 800

- Number of entries : 1

- Entry Point : 30008000

- Entry 1 : u-boot.bin (Size = 000c0000 SRC = 30008000 DST = ffffffff)
- RSA Signature Information

- RSA Offset : a00

- RSA Size : 80

Image Hash:
8588c174dd92f4albl114b9029fc647el8cac4aaad6£f03a6538e£20531e796e8£

khkkkhkhkhkhkkhkhkkhkhkhkkkhkhkhkhkhkkhkhkkhkhkhkhkkhkkhkhkkkhkhkkhkkkkkkkk

* Image Hash Stored in File: hash.out

* Header File is w/o Signature appended
khkkkhkkkhhkhkhhkhhkhhhkhhkhkhhkhkhhkhkhhkhkhhkhhkhhkhkhkhkhkhkhkkk*k

Header File Created: hdr_ uboot.out

SRK (Public Key) Hash:
7df50d4256c4cbde4ef4ae9931042bled44ff13aeb5107a7e0e9ee07e0fbfc236
SFP SRKHRO = 7df50d42
SFP SRKHR1 56c4cbde
SFP SRKHR2 = 4ef4ae99

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

254 NXP Semiconductors

Secure boot

SFP SRKHR3 = 31042ble
SFP SRKHR4 = 44ffl3ae
SFP SRKHR5 = b5107a7e
SFP SRKHR6 = 0Oe9eel7e
SFP SRKHR7 = 0fbfc236

The tools are provided to create the signature file and embed the signature at the end of header file.

6.1.3.3.1 gen_sign

This tool is provided for the user to calculate signature for a given hash using CST tool. The tool requires only the hash file and
private key file from the user as input. It would generate signature file as output.

It uses RSA_sign API of openssl to calculate signature over hash provided.

Usage

/gen_sign [option] <HASH_FILE> <PRIV_KEY_FILE>

--sign_file SIGN_FILE Provides file name for signature to be generated as operand. SIGN_FILE is generated containing
signature calculated over hash provided through HASH_FILE using private key provided through
PRIV_KEY_FILE. With this option, HASH_FILE and PRIV_KEY_FILE are compulsory while
SIGN_FILE is optional. The default value of SIGN_FILE is signout.

HASH_FILE Name of hash file containing hash over signature needs to be calculated.

PRIV_KEY_FILE Name of key file containing private key.

Usage example

After the hash file has been created as described in Signature generation on page 253, the tool can be used as described below.

$./uni_sign --img hash input files/uni_sign/<platforms>/input uboot nor secure

LR R SRS SRS R R SR SRR SR SRR R RS SRR SRR SRR EREEEREEES S

* Image Hash Stored in File: hash.out

* Header File is w/o Signature appended
IR SRR SRS S SRS R EEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEE]

Header File Created: hdr uboot.out

$./gen_sign hash.out srk.pri

Ho-mm e #
e #
$------- CST (Code Signing Tool) Version 2.0 ------- #
#------- m------- -------- —ememee #
B #

Signature Length = 80
Hash in hash.out is signed with srk.pri
Signature is stored in file : sign.out

6.1.3.3.2 sign_embed

This tool embeds signature in the header file generated using img_hash option which generates header but does not embed
signature in the header. This option opens header file and copies signature at the end of the file.

The header file generated with 'img_hash' option has padding added till signature offset, so that signature can be directly
embedded to the end of the file.

Usage

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 255

Security

/sign_embed <hdr_file> <sign_file>

hdr_file Name of header file in which signature needs to be embedded

sign_file Name of sign file containing signature which needs to be embedded

Usage example

$./sign_embed hdr uboot.out sign.out

Fommm o #
$------- m------- —------- mmmm oo #
#------- CST (Code Signing Tool) Version 2.0 ------- #
#------- mmm----- -------- mmmmme #
Fommm #

hdr uboot.out is appended with file sign.out (0x80)

NOTE
User can generate the complete header along with signature in a single step using uni_sign/uni_pbi tool without
any option.

Juni_sign <input_file>
Or
User may wish to do it in three separate steps:

1. /uni_sign --img_hash <input_file> (Create header file without signature and store the hash in a separate
file)

2. ./gen_signl' [option] <HASH_FILE> <PRIV_KEY_FILE> (Sign the image hash using private key)

3. ./sign_embed <hdr_file> <sign_file> (Embed the signature at the end of header file)

6.2 Trusted Execution (OP-TEE)

6.2.1 Introduction

Trusted Execution Environment (TEE), for ARM-based chips supporting TrustZone technology.

NXP Platforms are enabled with Open Portable TEE (OP-TEE), which is an open source project which contains a full
implementation to make up a complete Trusted Execution Environment. This component meets the Global Platform TEE System
Architecture specification. It also provides the TEE Internal core APl v1.1 as defined by the Global Platform TEE Standard for the
development of Trusted Applications.

OP-TEE consists of three components.
* OP-TEE Client, which is the client API running in normal world user space.

e OP-TEE Linux Kernel driver, which is the driver that handles the communication between normal world user space and secure
world.

* OP-TEE Trusted OS, which is the Trusted OS running in secure world.

OP-TEE OS is made of 2 main components: the OP-TEE core and a collection of libraries designed for being used by Trusted
Applications. While OP-TEE core executes in the ARM CPU privileged level (also referred to as 'kernel land'), the Trusted
Applications execute in the non-privileged level (also referred to as the 'userland'). The static libraries provided by the OP-TEE
OS enable Trusted Applications to call secure services executing at a more privileged level.

[11] This may be done by user's own tool in case he does not want to share the private key with the CST tool.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
256 NXP Semiconductors

Trusted Execution (OP-TEE)

6.2.1.1 Support Platform

LS1046ARDB is the only currently supported NXP board for OP-TEE enablement.

6.2.1.2 Test Sequence

Execute the test sequence specified below on target machine:
Refer to the steps below to verify if the OP-TEE is successfully:

* Loaded (refer Appendix A for more details),

¢ |nitialized (refer Appendix B for more details) &

* Running (refer Appendix C: Runtime flow of OP-TEE on page 259Appendix C for more details)
On the target NXP board:

* To check if the OP-TEE kernel driver is successfully initialized (after successfully communicating with OP-TEE OS running
in OP-TEE), look for the following in Linux boot logs:

optee: probing for conduit method from DT.
optee: initialized driver

Note: ppa.itb must be loaded with 10adable
node. Else, an error appears : optee: api uid mismatch
* Now, run the tee-supplicant (binary generated from optee_client repo) binary
$>: tee-supplicant & (press enter).
* Run the xtest(binary generated from optee_test repo) app as follows:

$>: xtest -1 15 (press enter and look for the below logs to verify app runs successfully):
47123 subtests of which 0 failed
79 test cases of which 0 failed
0 test case was skipped
OP-TEE test application done!

6.2.2 Appendix A: Loading OP-TEE OS binary

1. OP-TEE binary is part of ppa.itb image as 1loadables node in ppa.itb image.
2. Corresponding ppa.its file content is as follows:

printf "/dts-vl/;\n" > $1
printf "\n" >> $1
printf "/{\n" >> $1

printf " description = \"PPA Firmware\";\n" >> $1

printf " #address-cells = <1>;\n" >> $1

printf images {\n" >> $1

printf firmware@l {\n" >> $1

printf " description = \"PPA Firmware: Version %s\";\n" $VERSION >> $1
printf " data = /incbin/(\"../obj/monitor.bin\");\n" >> $1
printf " type = \"firmware\";\n" >> $1

printf " arch = \"armé4\";\n" >> $1

printf " compression = \"none\";\n" >> $1

printf " bi\n" >> 81

printf trustedosel {\n" >> $1

printf " description = \"Trusted OS\";\n" >> $1

printf " data = /incbin/(\"../../tee.bin\");\n" >> $1
printf " type = \"0S\";\n" >> $1

printf " arch = \"arm64\";\n" >> S$1

printf " compression = \"none\";\n" >> $1

printf " load = <0x00200000>;\n" >> $1

printf " bi\n" >> 81

printf }i\n" >> $1

printf "\n" >> $1

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 257

https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_test

Security

default = \"configel\";\n" >> $1

S1

\"firmware@l\";\n"

description = \"PPA Secure firmware\";\n" >> $1

>> $1

\"trustedos@l\";\n" >> $1

printf " configurations {\n" >> $1
printf "

printf " configel {\n" >>
printf "

printf " firmware =
printf " loadables =
printf " Fi\n" >> $1

printf bi\n" >> 81

printf "};\n" >> $1

3. U-Boot parses the ppa.itb image and check if any loadables node is present in ppa.itb image.

From U-Boot console logs, it can be seen if loadable present or not:

Using SERDES1 Protocol: 5205 (0x1455)

SECO: RNG instantiated
FSL_SDHC: 0

PPA Firmware: Version LSDK-1712-TCl-dirty
SEC Firmware: 'loadables' present in config

MCFGR12201
Resetting Job ring %p

4. If 1oadables is present, then U-Boot loads the OP-TEE OS binary tee.bin.

5. As part of loading U-Boot:
Copy the binary tee.bin to DDR.

OP-TEE binary is authenticated as part of ppa.itb image authentication using Secure Boot header

6. After loading OP-TEE, U-Boot passes the address where OP-TEE is loaded via SCRATCHRW registers to PPA.

U-Boot

Loading the
PP imaga

Iz
loadable
node

fes

Losdng the
OP-TEE

Image

Figure 36.

PPA

TEE

Loading Flow of OP-TEE OS

6.2.3 Appendix B: Initialization flow of OP-TEE OS

1. After the binary tee.bin is loaded to the DDR, U-Boot initiate the PPA initialization.

2. As part of OP-TEE initialization, PPA checks if 10adables load address is not null, it initializes that OP-TEE.

3. Once the OP-TEE initialization is done, PPA initialization resumes. Before exiting to U-Boot after its initialization, PPA

change the exception level from EL3 to EL2. Now, U-Boot run in EL2 mode.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

258

NXP Semiconductors

Trusted Execution (OP-TEE)

U-Boot PPA, TEE

Loaading the
PP#& imags

Is
‘lnadable’

Yes

Leading the
node
QP-TEE
presant image

e i lizaticon of F'F".El._..-

e
‘lnadabia’
node
address '=
MULL

af————0P-TEE Loading Dnne_Y

Yas
nitializing QP - TEE s==={j=]

af—————FFA Init Done

=

—— T

Figure 37. Loading and initialization flow of OP-TEE OS

6.2.4 Appendix C: Runtime flow of OP-TEE

To understand the runtime flow of OP-TEE, refer the figure below, which explains how the context switching is done between OP-
TEE and Rich Execution Environment (Linux) (REE).

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 259

Security

ELD Non-Secure l Secure
B
E
= C
EEAalETEE S u
E
[, | L A :
e 000.E) — =
A
Benchridar Tt
e s o0 "
e Test st Sule (xlest_manc !
: . | =
.
]w,,_u“..d | W |Test Trusted Application
TR ‘YU NI S J—
EL1
| Kernal OP-TEE Drivar ‘ | IDF'-TEE o=
\ | =4
_______________ R, (RO g
EL2 bk s8f |
1 la o 1
____..__h___:-i__..J 86 1
i !
ELY T =y T
1 P o
l:.g SMC Handler ;j ppa_main}
Existing PPA E &
3 1
g 2
£ ;4
8 i s
BT % 5 &
2—= §—
23 o
5 {
M-SP Module '\ g ltl I 5P Module
1 S
' I
1 [
\ I i ¥
\ A AR
i, A
SN
BT
Context Managemant Modula
SFD

6.3 Fuse Provisioning User Guide

6.3.1 Introduction

NXP SoC’s Trust Architecture provides non-volatile secure storage in form of on-chip fuse memory. Following information can be
programmed into fuse memory via Security Fuse Processor (SFP):

* One Time Programmable Master Key Registers (OTPMKRs)

* Super Root Key Hash Registers (SRKHRs)

* Debug Challenge and Response Value Registers (DCVRs & DRVRs)

* OEM Security Policy Registers (OSPRs)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

260

NXP Semiconductors

* OEM Unique ID/Scratch Pad Registers (OUIDRs)

6.3.2 Fuse Programming Scenarios

Phase

NXP Manufacturing

NXP Fuses

FUID, FSV,
CSFF, WP

(+ On Trust 3.0,

DPL)

Can set RT &
ROPL up to 4x
before shipping
part)

Ship to contract manufacturer

Minimal Fuse
Provisioning

OEM
Manufacturing
(Can be split
into two
stages if
required)

In field, later in lifecycle

Lifecycle fuse update

Final Fuse
Provisioning

OEM Fuses

SREKH, DF. CSFF,
ITS

Minimal OTPMK
&

Optional OEM,
DRv UIDs, DCV

At contract manufacturer or in the field

Final OTPMK &
DRV, WP
Optional OEM
UIDs, DCYV

Key Revocation,
Monotonic
Counter Era,
OEM Scratchpad,
Field Return

Fuse Provisioning User Guide

Software

Fuse programming done
on tester, no software
involved

Fuse Provisioning Tool
Doesn't need to pass
secure boot to execute,
but must set up the
system so that the next

boot passes secure boot.

Fuse Provisioning Tool
pass secure boot.

Currently no software
utility available. Can be
done by custom app.

6.3.2.1 Fuse Provisioning during OEM Manufacturing

This stage may be split into two stages:

Stage 1 (Non-secure boot) — Minimal Fuse Provisioning

The following few fuses (Minimal Fuse File) programmed for secure boot to run:

* SRKH

CSFF
Minimal OTPMK
ITS.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

261

Security

This stage does not pass secure boot to execute, but must set up the system so that the next boot passes secure boot. If this
step happens in a trusted environment, OEM can choose to blow all the fuses in this stage itself.

Stage 2 (Secure Boot) — Final Fuse Provisioning

Rest of the fuses can be programmed after secure boot is up and running. This step ends with OEM WP fuse getting blown which
renders most of the fuses as un- writable.

6.3.3 Fuse Provisioning Utility

PPA/secure firmware provides support to do the fuse provisioning. By default, the support is enabled and requires a built in. Steps
to do so using flex build are available in Steps to build fuse provisioning firmware image on page 265.

The information about the fuse values to be blown to be provided via a fuse file. The fuse file is a binary file with bits to indicate
what fuses to be blown and their corresponding values.

CST provides an input file where user can enter the required values. Tool generates a Fuse file which is parsed in PPA to do fuse
provisioning.

PPA would have the required checks to determine if the provided input values are correct or not.

For example, OTPMK, SRKH etc. cannot be programmed when OEM_WP is already set in SFP fuses.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
262 NXP Semiconductors

6.3.3.1

WordD

Word1
‘Word2
Word3
Wordd
WordS
WordE
Word?
‘WordE
WordS
‘Word 10
Word 11
Word 12
Word 13
‘Word 14
‘Word 15
‘Word 16
Word 17
‘Word 18
‘Word 19
‘Word2D
WordZ1
Word22
WordZ3
‘Word24
'WordZ5
‘Word2E
‘WordZ7
‘Word28

‘Word 23
'Word30
‘Word31

6.3.3.2

0000 ->
0001 ->
0010 ->
0101 ->
0110 ->

Fuse Provisioning User Guide

Fuse file structure

Aags

GP1ID P Musmibe
OTPNED
OTPAEL
OTENEZ
OTPME3
OTFMEL
OTPMES
OTPMEE
OTPNET
SRKHD
SRKHL
SRKHZ
SREHE
ZAREHS
SAKHS
SRKHE
SREHT
DN LIDD
OEM LD
OiENt LIC2
OEM LIDS
OEN LD

O5PRO-Setting
of any bHitinthis
field controlied

by Sys Of fiedd

Bk r Codie
OTPMEK Fazs

Drther flams

o 1

& 9
31 30 X 38 7 26 B 24 B 1

2

3 4

3 & 7

p L+ 1 I S R = i T A
21 X0 19 1B 17 16

DEM LIDO

DEM LADL

Reserved

R merwed

Sepime wadue to indicate & valid fuss fils

o

[SRL=R=R1=]

o
o
o
o
o
1

i
o

o

T

o

[= I = T =

Program hinimal Vaiee

Program random OTPME vailbue

Program weer suppi ed OTPME vabee

Promram random OTPME vabue with pre-programme d mini mal val e
Program weer suppi ed OTPME vahee with pre-poggremme d mi nimal vafue
Dion't blow OTPME

Bl ovev the fuses ax per value indicate dinthe conre sponds ne word
The comnespondine fuse i not supposed tobe Bowmn

Sample input file for fuse provisioning tool

Specify the platform.
Choose Platform - LS1/LS1043/LS1012/LS1046
PLATFORM=LS1046
GPIO Pin to be set for raising POVDD [Optionall

POVDD_GPIO=

[Mandatory]

One time programmable master key flags in binary form. [Mandatory]

Program default minimal OTPMK value

Program random OTPMK value

Program user supplied OTPMK value

Program random OTPMK value with pre-programmed minimal value
Program user supplied OTPMK value with pre-programmed minimal wvalue

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

263

Security

1lxxx -> Don't blow OTPMK
OTPMK_FLAGS=0000

One time programmable master key value.
[Optional dependent on flags, Mandatory in case OTPMK FLAGS="0010" or "0110"]
OTPMK_0=

OTPMK_1=

OTPMK_2=

OTPMK_3=

OTPMK_4=

OTPMK_5=

OTPMK_6=

OTPMK_ 7=

Super root key hash [Optionall
SRKH_0=

SRKH 1=

SRKH 2=

SRKH 3=

SRKH_4=

SRKH 5=

SRKH_ 6=

SRKH 7=

Specify OEM UIDs. [Optionall

e.g OEM UID 0=11111111
OEM_UID 0=

OEM_UID 1=

OEM_UID 2=

OEM_UID 3=

OEM_UID 4=

Specify Debug challenge and response values. [Optionall
e.g DCV_0=11111111

DCV_0=

DCV_1=

DRV 0=

Specify Debug Level in binary form. [Optionall

000 -> Wide open: Debug portals are enabled unconditionally.

001 -> Conditionally open via challenge response, without notification.
0lx -> Conditionally open via challenge response, with notification.

1xx -> Closed. All debug portals are disabled.

D

System Configuration register bits in binary form [Optionall
WP (OEM write protect)

ITS (Intent to Secure)

NSEC (Non secure)

ZD (ZUC Disable)

KO,Kl,K2 (Key revocation bits)
FRO (Field return 0)

FR1 (Field return 1)

WP=

ITS=

NSEC=

ZD=

KO=

Kl=

K2=

FRO=

FR1=

Specify the output fuse provisioning file name. (Default:fuse scr.bin) [Optionall]
OUTPUT FUSE_FILENAME=fuse scr.bin

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
264 NXP Semiconductors

Fuse Provisioning User Guide

6.3.4 Steps to build fuse provisioning firmware image

Use following Flexbuild commands to build composite fuse provisioning firmware image. For detailed info regarding usage of
Flexbuild, refer to Layerscape SDK user guide.

1. Command to build Code Signing Tool (CST):
$:> flex-builder -c cst
2. Command to generate PPA image with fuse provisioning support:
$:> flex-builder -c ppa-fuse -m 1lsl046ardb
3. Command to generate firmware image for SD boot source:
$:> flex-builder -i mkfw -m 1lsl046ardb -b sd -B uboot
4. Optional to edit input file used for fuse provisioning present here:
“<flexbuild dir>/packages/apps/cst/input files/gen fusescr/1sl104x 1012/input fuse file
” Again, repeat above steps 2 & 3 to generate composite image.
5. Composite firmware image present here:

<flexbuild dir>/build/images/firmware lslO046ardb uboot sdboot.img

6.3.5 Deploy and run fuse provisioning

6.3.5.1 Enable POVDD for SFP

1. LS1046A RDB Board
¢ Put J21 to enable PWR_PROG_SFP

6.3.5.2 Deploy firmware image on board

1. Program composite firmware image (firmware_ls1046ardb_uboot_<boot-source>boot.img) built using Steps to build fuse
provisioning firmware image on page 265, on corresponding boot-source using U-Boot commands as shown in below
example for SD boot-source:

=> tftp a0000000 firmware 1sl088ardb uboot sdboot.img
=> mmc write a0000000 8 1fff8

6.3.5.3 Run firmware image on board

1. Execute the following U-Boot command to switch to boot-source. Below is example to switch to SD boot-source on
LS1046ARDB:

=> cpld reset sd
2. Check for following logs as part of U-Boot boot logs:

PPA Firmware:<Version Infox>
SEC Firmware: 'loadables' present in config
loadables: 'fuse scr'

3. On U-Boot prompt, check for any error code in DCFG scratch 4 register for any Error Codes on page 266 as follows:
=> md lee020c 1
4. If above “md” command shows that no error as follows, then fuse provisioning is successful:

0lee020c: 00000000

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 265

Security

6.3.6 Validation

The procedure specified above is fully validated and verified on LS1046ARDB platform.

6.3.7 Error Codes

Table 1: Error Codes

Error Code Value Description
ERROR_FUSE_BARKER 0x1 Ocecurs if fuse script not found.
ERROR_READFB_CMD 0x2 Occurs if SFP Read Fuse Box (READFB) command
fails.
ERROR_PROGFB_CMD 0x3 Occurs if SFP Program Fuse Box (PROGFB)
command fails.
ERROR_SRKH_ALREADY_BLOWN 0x4 Occurs if SRKH is already blown.
ERROR_SRKH_WRITE 0x5 Occurs if write to SRKH mirror registers fails.
ERROR_OEMUID_ALREADY_BLOWN 0x6 Occurs if OEMUID is already blown.
ERROR_OEMUID_WRITE 0x7 Occurs if write to OEMUID mirror registers fails.
ERROR_DCV_ALREADY_BLOWN 0x8 Occurs if DCV is already blown.
ERROR_DCV_WRITE 0x9 Occurs if write to DCV mirror registers fails.
ERROR_DRV_ALREADY_BLOWN Oxa Occurs if DRV is already blown.
ERROR_DRV_HAMMING_ERROR Oxb Occurs if write to DRV mirror registers gives
hamming error.
ERROR_OTPMK_ALREADY_BLOWN Oxc Occurs if OTPMK is already blown.
ERROR_OTPMK_HAMMING_ERROR Oxd Occurs if write to OTPMK mirror registers gives

hamming error.

ERROR_OTPMK_USER_MIN Oxe Occurs if user supplied OTPMK does not have
minimal OTPMK bits set in case where OTPMK
flags represents to program user supplied OTPMK
value with pre-programmed minimal value.

ERROR_OSPR1_ALREADY_BLOWN Oxf Occurs if OSPRH1 is already blown.
ERROR_OSPR1_WRITE 0x10 Occurs if write to OSPR1 mirror register fails.
ERROR_SC_ALREADY_BLOWN Ox11 Occurs if SysCfg is already blown.
ERROR_SC_WRITE 0x12 Occurs if write to SysCfg mirror register fails.

Appendix A Manual steps to build PPA fuse image
CSsT
1. Clone cst from LSDK components.
2. Now make.
S:> make

3. Default sample input file programs minimal OTPMK values only in fuse memory. Edit “input_files/gen_fusescr/
Is104x_1012/input_fuse_file” file to select/change values to be programmed in fuses.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
266 NXP Semiconductors

Fuse Provisioning User Guide

4. To generate fuse_scr.bin, execute the following command:
$:> ./gen_fusescr input_files/gen fusescr/1s104x_1012/input_fuse_file
PPA
1. Clone ppa from LSDK components.
2. Set path for the following:
$:> export CROSS COMPILE=<aarch64-toolchain-path->
3. Copy fuse_scr.bin file

$:> cp <cst-clone-dir>/fuse scr.bin
<ppa-clone-dir>/ppa/soc-1s1046/

4. Now build.
$:> ./build rdb-fit fuse Is1046
5. Fuse provisioning PPA image is built in “<ppa-clone-dirs>/ppa/soc-1s1046/build/obj/ppa.itb” directory.
Appendix B Loading Fuse Script binary
1. Fuse script binary is a part of ppa.itb image as “loadables” node in ppa.itb image.
2. Corresponding ppa.its file content is as follows for better clarity.
printf "/dts-vl/;\n" > $1

printf "\n" >> $1
printf "/{\n" >> $1

printf " description = \"PPA Firmware\";\n" >> $1

printf " #address-cells = < 1 >\n" >> $1

printf " images {\n" >> $1

printf " firmware@l {\n" >> $1

printf " description = \"PPA Firmware: Version %s\";\n" S$VERSION
>> $1

printf " data = /incbin/ (\"../obj/monitor.bin\");\n" >> $1
printf " type = \"firmware\";\n" >> $1

printf " arch = \"armé4\";\n" >> $1

printf " compression = \"none\";\n" >> $1

printf bi\n" >> s1

printf " fuse _scr {\n" >> $1

printf " description = \"Fuse Script\";\n" >> $1

printf " data = /incbin/(\"../../fuse_scr.bin\");\n" >> s$1
printf " type = \"firmware\";\n" >> $1

printf " arch = \"armé64\";\n" >> 3$1

printf " compression = \"none\";\n" >> $1

printf " load = <0x00180000>;\n" >> $1

printf }i\n" >> s$1

printf " bi\n" >> $1

printf "\n" >> $1

printf " configurations {\n" >> $1

printf " default = \"configel\";\n" >> 351

printf " configel {\n" >> $1

printf " description = \"PPA Secure firmware\";\n" >> $1
printf " firmware = \"firmware@l\";\n" >> $1

printf " loadables = \"fuse scr\";\n" >> $1

printf " bi\n" >> $1

printf " bi\n" >> 81

printf "};\n" >> $1
3. U-Boot parses the ppa.itb image and check if any “loadables” node is present in ppa.itb image.
4. From U-Boot console logs, it can be seen if loadable present or not:

PPA Firmware: <Version Info>

SEC Firmware: 'loadables' present in config
loadables: 'fuse_scr'

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 267

Security

5. If ‘loadable’ is present, then U-Boot loads the fuse script binary ‘fuse_scr.bin:
6. As part of loading U-Boot:
a. Copy the binary ‘fuse_scr.bin’ to DDR.

b. Fuse script binary is authenticated as part of ppa.itb image authentication using Secure Boot header.

U-Boot PPA

Loadirg tha
PPA magn

Loading e
T senipt
mage in DDA
i
Figure 40. Loading Flow of Fuse Script

6.4 PKCS#11 and Secure Object Library

6.4.1 Introduction

NXP SoCs such as LS1046A can store keys securely using built-in SoC capabilities - virtual HSM. With such devices, sensitive
private keys never leave the device and cryptographic operations are performed on this virtual HSM.

The PKCS#11 is a standard programming interface to communicate with HSMs. This standard specifies an application
programming interface (API), called “Cryptoki” to devices which hold cryptographic information and perform cryptographic
functions.

Proprietary interfaces using Secure Object Library are provided to interact with the HSM for:
* Generating key pair within the HSM.
* Installing existing key in the HSM.
* Manufacturing Protection key operations. (MPKey)
The private keys are never visible to normal world.
Sensitive Cryptographic operations using these keys can only be done using PKCS#11 cryptographic token standard.
An OpenSSL engine on Secure Object Library is also provided to interface directly with OpenSSL APls
The PKCS#11 library release is compliant to v2.40. It is targeted for LS1046ARDB and supports RSA keys of size up to 2k.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
268 NXP Semiconductors

PKCS#11 and Secure Object Library

Apphcations

l *

T T T T T T T T T

SMC Interface

Secure Storage , ..-.,
CAAM DRVR =
Modute

Slot

T T T

e e)
FasEEEE R SRR EE RS R

Figure 41. Block Diagram

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 269

Security

USER

PRIVILEGED

OpeniSL App

[sob Ei\q app) Dhtilam mo_agp
OpenSS5L Engine i
(MDY _ S0 L) ibpkestt —

ibspcung_obj

l

TEE client AP j

l sscureheydev o Jl TEE Dieeer

1

REE | Normal Ward

i
Z |
USER

TEE Intarnal AP

PRIVILEGED !

QP-TEE/ Secure World

Figure 42. Details of HSM

6.4.2 Supported APIs

6.4.2.1 PKCS#11 Library - libpkcs11

The PKCS11 interfaces are exposed and implemented via a shared library with a name called libpkcs11.so (Cryptoki Library). Any
PKCS11 library has a static CK_FUNCTION_LIST structure, and a pointer to it may be obtained by the C_GetFunctionList()

function.

The table below, summarizes the list of supported PKCS11 interfaces. The return values and API behaviors are compliant with
the PKCS11 standard v2.40. Library expects the caller to use them in a standard way.

API Description

C_lnitialize Initialize Cryptoki library
Currently library does not support multithreaded application.
Hence would return CKR_CANT_LOCK in case application
initializes library with locking primitives.

C_Finalize Clean up cryptoki related resources

C_GetFunctionList

Obtains entry points of Cryptoki library functions.

C_Getinfo

Obtains general information about Cryptoki

C_GetSlotInfo

Obtains information about a particular slot

C_GetTokenInfo

Obtains information about a particular token

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

270

NXP Semiconductors

PKCS#11 and Secure Object Library

Table continued from the previous page...

C_GetSlotList Obtain list of slots in the system.

Only a fixed slot with fixed token is supported. Dynamic slot or
token addition is not supported.

C_OpenSession Opens/Closes a session.
C_CloseSession * “Read Only (R/O)” Public sessions are only supported.
C_CloseAllSessions » This PKCS#11 library provides read-only access to

token’s public objects. This means that keys cannot be
created/deleted/modified via the PKCS#11 interface.

¢ R/O SO or R/W User/SO sessions are not supported.

C_FindObjectsinit Objects search operations.

C_FindObjects RSA Public and Private key objects of size up to 2048bits are
C_FindObjectsFinal supported.

C_SignInit Initialize signature operation and signing single part data.
C_Sign Mechanisms supported:

* RSA-based Mechanisms
— CKM_RSA_PKCS
— CKM_MD5_RSA_PKCS
— CKM_SHA1_RSA_PKCS
— CKM_SHA256_RSA_PKCS
— CKM_SHA384_RSA_PKCS
— CKM_SHA512_RSA_PKCS

C_GetAttributeValue Obtains the value of one or more attributes of the objects.
C_GetMechanismList Obtains List of mechanism supported by token.
C_GetMechanisminfo Obtains the information about a mechanism.

6.4.2.2 Secure Object Library — libsecure_obj

The following are the details of the supported interfaces to generate/import keys using the Secure Object library.
1. Import Keys
SK_RET_CODE SK_CreateObject(SK_ATTRIBUTE *attr, uint16_t attrCount, SK_OBJECT_HANDLE *phObject);
The API creates an Object on the HSM, and returns a handle to it. API always succeeds even if an object with same

attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate objects should not be
created.

attr is an array of attributes that the object should be created with. Some of the attributes may be mandatory, such as
SK_ATTR_OBJECT_TYPE and SK_ATTR_OBJECT_INDEX (the id of the object), and some are optional.

Application needs to take care that valid attributes are passed, library does not return any error on receiving inconsistent/
incompatible attributes.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 271

Security

param[in] attr: The array of attributes to be used in creating the Object.

param[in] attrCount: The number of attributes in attr

param[in, out] phObjectIN: A pointer to a handle (must not be NULL);

OUT: The handle of the created Object

Return Values:

SKR_OK Successful execution, phObject filled with created object handle.
SKR_ERR_BAD_PARAMETERS Invalid function arguments

SKR_ERR_OUT_OF_MEMORY Memory allocation failed.

SKR_ERR_NOT_SUPPORTED The function and/or parameters are not supported by the library.

-- Some internal error code other than mentioned above can be returned. Refer to securekey_api_types.h for error code
description.

. Generate Key.

SK_RET_CODE SK_GenerateKeyPair(SK_MECHANISM_INFO *pMechanism, SK_ATTRIBUTE *attr, uint16_t
attrCount, SK_OBJECT_HANDLE *phKey);

This API generates key pair on the HSM, and returns a handle to it. APl always succeeds even if an object with same
attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate objects should not be
created.

pMechanism is mechanism for key pair generation. For example: SKM_RSA_PKCS_KEY_PAIR_GEN.

attr is an array of attributes that the object should be created with. Some of the attributes may be mandatory, such as
SK_ATTR_OBJECT_INDEX (the id of the object), and some are optional.

Application needs to take care that valid attributes are passed, library does not return any error on receiving inconsistent/
incompatible attributes.

param[in] pMechanism Mechanism for key pair generation

param[in] attr The array of attributes to be used in creating the Object.

param[in] attrCount The number of attributes in attr

param[in, out] phKey IN: A pointer to a handle (must not be NULL);

OUT: The handle of the created Object

Return Values:

SKR_OK Successful execution, phObiject is filled with created object handle.
SKR_ERR_BAD_PARAMETERS Invalid function arguments

SKR_ERR_OUT_OF_MEMORY Memory allocation failed.

SKR_ERR_NOT_SUPPORTED The function and/or parameters are not supported by the library.

--Some internal error code other than mentioned above can be returned. Refer to securekey_api_types.h for error code
description.

. Erase Object.

SK_RET_CODE SK_EraseObject(SK_OBJECT_HANDLE hObject);

Erases an object from the HSM. This means that the object with the specified handle can no longer be used.
param[in] hObject

The handle of the Object to be erased.

Return Values:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

272

NXP Semiconductors

PKCS#11 and Secure Object Library

SKR_OK Successful execution SKR_ERR_BAD_PARAMETERS Invalid function arguments -- Some internal error code
other than mentioned above to be returned. Refer to securekey_api_types.h for error code description.

Further details of the APIs and its types are available in the files <securekey_api.h> and <securekey_api_types.h> in folder
secure_obj.

NOTE
1. Maximum of 50 objects can be created/generated as of now.

2. Secure Object Library will not be throwing any error if multiple objects having same attributes are being
created. It is applications responsibility to take care of attributes that are passed during creation/generation
of objects.

Manufacturing Key APIs:

Following secure boot, the system runs the key generation routine producing an ECC Public and Private Key pair, referred to as
Manufacturing Protection Key Pair(MPKey).

Key Generation is performed by BootRom. APIs for getting MP Public key, signing using MP Private key and for getting the MP
Tag are described below.

For complete documentation on how to perform the key generation, public key export, and signing with the ECC private key, refer
to the Manufacturing-protection chip authentication

process section in the SoC’s Security (SEC) Reference Manual 5.6

NOTE: For this feature to work board must be booted in Secure Boot mode, with ITS bit set to 1.

1.

Get MP Public key.
enum sk_status_code sk_mp_get_pub_key(struct sk_EC_point *pub_key);
Get Manufacturing Protection(MP) Public Key (ECC P256 Key).

param[in,out] pub_key: This is MP Public Key to be returned. Application needs to allocate memory for sk_EC_point.
Each of the coordinate x & y needs to allocate sk_EC_point.len memory. sk_EC_point.len can be obtained using
sk_mp_get_pub_key_len().

Return Values:

SK_SUCCESS on success, error value otherwise.

2. Sign using MP Private Key
enum sk_status_code sk_mp_sign(unsigned char * msg, uint8_t msglen,
struct sk_EC_sig * sig, uint8_t * digest, uint8_t digest_len)
Sign the msg using MP Priv Key. While signing MP Message, it will be prepended to message. Message over which
signature will be calculated = MP message + msg.
param[in] msg: Pointer to the message to be signed.
param[in] msglen: Length of the message to be signed.
param[in,out] sig: This is Signature calculated. Application needs to allocate memory for sk_EC_sig. Each of the parts r
& s needs to be allocated sk_EC_sig.len memory. sk_EC_sig.len can be obtained using sk_mp_get_sig_len().
param[in, out] digest: Digest(SHA256) of the message to be signed. Digest is calculated by prepending MP Message to
the msg.
paramlin] digest_len: Length of digest. Application needs to allocate memory for sk_EC_point. Each of the coordinate x
&y needs to allocate sk_EC_point.len memory. sk_EC_point.len can be obtained using sk_mp_get_pub_key_len().
Return Values:
SK_SUCCESS on success, error value otherwise.

3. Get MP Tag.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 273

Security

enum sk_status_code sk_mp_get_mp_tag(uint8_t *mp_tag_ptr,uint8_t mp_tag_len);

Get the MP Message. While signing, MP Message is prepended to message automatically. User can call this function to
get MP message tag during verification operation.

param[in, out] mp_tag_ptr: Pointer to the message to be signed. Application needs to allocate memory of length returned
by sk_mp_get_tag_len().

param[in] mp_tag_len: Length of the mp_tag_ptr buffer
Return Values:
SK_SUCCESS on success, error value otherwise.

The API definition can be found in file securekey_mp.h. Sample applications have also been provided which demonstrate
how to use APls.

6.4.2.3 Integrating Secure Object Library with OpenSSL

It is recommended that you should familiarize yourself with Open SSL. Refer to the appropriate documents for Open SSL
commands at the following location:

http://www.openssl.org/docs/

Open SSL provides the support of engine (basically hardware devices) to store the keys on hardware devices to make keys more
secure. NXP provides the Open SSL toolkit having support of Secure Object Library Engine that is used to communicate with
underlying HSM.

6.4.2.3.1 OpenSSL Engine — libeng_secure_obj
This engine is based on Secure Object Library It does following things:

1. Loads the particular key from underlying HSM.

2. RSA Private Encryption. (RSA_Private_Encrypt)

3. RSA Private Decryption. (RSA_Private_Decrypt)
All other RSA operations will be done by OpenSSL itself.

This engine does not support generation of RSA Keys. Keys to be generatd via another app “sobj_app” and these keys are used
in the applications using this OpenSSL Engine.

Screenshot of app using this OpenSSL engine is given in Running the sobj_eng_app section.

6.4.2.3.2 Example Usage with OpenSSL

This topic provides examples of usage with OpenSSL:
¢ Using the engine from command Line.
Change the following in “openssl.cnf”’(often in /etc/ssl/openssl.cnf)
This line must be placed at the top, before any sections are defined:
openssl_conf = conf_section
Add following section at bottom of file:

[conf section]
engines = engine section

[engine_section]
secure_obj = sobj section

[sobj section]
engine_id = eng_secure_obj
dynamic_path = <path where lib eng secure obj.so is placeds>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
274 NXP Semiconductors

http://www.openssl.org/docs/

PKCS#11 and Secure Object Library

default algorithms = RSA
init =1
Testing the engine operation:

To verify that the engine is properly operating, you can use the following example

If you do not update the OpenSSL configuration file, specify the engine configuration explicitly.

openssl engine -t dynamic -pre SO PATH: <path-to-libeng secure_obj.so> -pre
ID:eng secure obj -pre LIST ADD:1 -pre LOAD

¢ Using OpenSSL from the command line

This section describes how to use the command line to create a self-signed certificate for "NXP Semiconductor". The key
of the certificate generated in the Secure Object HSM and will not exportable.

As per the following examples, generate a private key in the HSM with sobj_app.
$ sobj app -G -m rsa-pair -s 2048 -1 "Test Key" -i 1
Make sure that the label “Test_Key” shown above and use it in the commands below:

You can optionally generate a false .pem file, which is having this label encoded in pem format by giving “-w” as shown below.
A file <label>.pem is generated.

$ sobj app -G -m rsa-pair -s 2048 -1 "Test Key" -i 1 -w
The -key option in commands below accepts both label as well as this false .pem file.
To generate a certificate with its key in the Secure Object module, the following commands can be used.

The first command creates a self-signed Certificate for “NXP Semiconductor". The signing is done using the key specified
by the key label.

The second command creates a self-signed certificate for the request, the private key used to sign the certificate is the same
private key used to create the request.

$ openssl
OpenSSL> req -engine eng secure obj -new -key "Test Key" \
-keyform engine -out reqg.pem -text -x509 -subj "/CN=NXP Semiconductor"
OpenSSL> x509 -engine eng secure obj -signkey "Test Key" \
-keyform engine -in req.pem -out cert.pem

You can also use the fake .pem file with -key option as below:

$ openssl
OpenSSL> req -engine eng secure obj -new -key "Test Key.pem" \

-keyform engine -out reqg.pem -text -x509 -subj "/CN=NXP Semiconductor"
OpenSSL> x509 -engine eng secure obj -signkey "Test Key.pem" \

-keyform engine -in reqg.pem -out cert.pem

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 275

Security

6.4.3 Board Bootup & Running applications

6.4.3.1 Board Bootup

1. Prepare the images using the LSDK documentation and bootup the board with secure-boot and ITS setto 1. ITS=1is
required for bootrom to generate the Manufacturing Protection Private Key.

For setting ITS bit to 1 run following command after programming SRK Hash and before removing the boot hold-off. The

test is performed on LS1046ARDB.
#To do ITS=1

ccs::write_mem 32 0x1e80200 4 0 0x00000004

You can refer here for documentation - https://Isdk.github.io/document.html

2. After booting up the board with LSDK1803 images, Check if following images are placed in corresponding places.

Binary

Place in rootfs

b05bcf48-9732-4efa-a9e0-141¢c7¢888c34.ta

/lib/optee_armtz/

libsecure_obj.so /usr/lib
sobj_app /usr/bin
mp_app /usr/bin
mp_verify /usr/bin

libeng_secure_obj.so

/usr/lib/aarch64-linux-gnu/openssl-1.0.0/engines/

sobj_eng_app

/usr/bin

securekeydev.ko

This path depends on Linux Kernel Version:

Linux Kernel 4.9 - /lib/modules/4.9.79-01376-g58c5568/extra/

Linux Kernel 4.14 - /lib/modules/4.14.16/extra/

libpkcs11.so

/usr/lib

pkcs11_app

/usr/bin

For Compilation steps, refer Appendix Section at end of this document.

3. Run “tee-supplicant &’ command from linux prompt.

4. Depending on linux kernel version used “insmod securekeydev.ko” from right folder.

5. Run the applications as described in Running the applications.

6.4.3.2 Running applications

Two applications are available with the package.

* sobj_app - Provides interface to generate/import key objects via Secure Object Library

* pkecs11_app — Provides interface to enumerate objects in the HSM and perform cryptographic operations.

* mp_app - This application demonstrates how to Get MP Public Key, sign a message using MP Private Key, Get Message

tag.

* mp_verify - This app uses OpenSSL APIs to verify the signature obtained by using mp_app application.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

276

NXP Semiconductors

https://lsdk.github.io/document.html

PKCS#11 and Secure Object Library

* sobj_eng_app — This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine. This
application is loading the private key and then doing cryptographic operations using this key.

NOTE: These are reference applications to demonstrate the usage of APIs as described in Supported APIs

6.4.3.2.1 sobj_app

To create/generate objects, run sobj_app application.

¢ sobj_app — This command shows help related to sobj_app.

* Importing an RSA key pair to HSM
sobj_app -C -f <private.pem> -k <key-type> -0 <obj-type> -s <key-size> -I <obj-label> -i <obj-ID>

This command helps in importing a key to the HSM. It creates an object in HSM reading key from <private.pem> with
object label <obj-label> and object ID <obj-ID>. This private.pem can be generated by openssl using the command below:

openssl genpkey -algorithm RSA -out sk_private.pem -pkeyopt rsa_keygen_bits:2048

Handle of the object created in the HSM is printed as an output to the command. This handle can be used for further
operations on the created object (for example, delete, printing attributes and so on)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 277

Security

¢ Generating an RSA key pair in HSM
sobj_app -G -m <mechanism-ID> -s <key-size> -I <key-label> -i <key-ID>

This command generates an object of type derived from mechanism-ID of size <key-size> with label <key-label> and ID
<key-ID>

Handle of the object created is printed as an output to the command. This handle can be used for further operations on the
created object (for example, delete, printing attributes and so on)

* Display attributes of an object in the HSM
sobj_app -A -h <obj-handle>

This command shows some attributes related to object created. Pass the object handle <obj-handle> to the command.
This <obj-handle> is printed during generation/import of objects to HSM.

¢ List handles of the objects available in the HSM
sobj_app -L [-n <num-of-obj> -k <key-type> -l <obj-label> -s <key-size> -i <obj-id>]

This command lists handles of the objects already created/generated based on some search criteria (if given). User can
then use this handle to print the rest of the attributes. (See above command)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
278 NXP Semiconductors

PKCS#11 and Secure Object Library

6.4.3.2.2 pkcsi1_app

e pkes11_app — This command shows commands available.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 279

Security

NOTE
sha224-rsa mechanism is not supported.

¢ pkecs11_app -I: Library Information
pkes11_app -P -I: List the all available slots
pkcs11_app -P -i -p <slot-ID> : Provides the information about Slot with <slot-ID>

pkcs11_app -T -i -p <slot-ID> : Provides the information about Token inserted in Slot <slot-ID>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

280

NXP Semiconductors

PKCS#11 and Secure Object Library

e pkcs11_app -M -l -p <slot-ID> : Lists the Mechanism List supported by token in Slot <slot-ID>

pkcs11_app -M -m <mech-ID> -i -p <slot-ID> : Gives information about the mechanism with <mech-ID> for Slot <slot-ID>

* pkcs11_app -F -p <slot-ID>: List all objects associated with token present in slot <slot-ID>

We have 2 objects already created via the sobj_app, which will be shown here through pkes11_app find operation.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 281

Security

¢ Currently search can be made based on 3 criteria via this app:
-o0: Object type (Can be public key, private key, certificates and so on)(For now supports only Public and Private keys)
-k: Key type (Can be RSA, EC, AES and so on)(For now supports only RSA)
-b: Object Label associated with object while creating/generating.

pkcs11_app -F -o <obj-type> -k <key-type> -b <label> -p <slot-ID> : List all objects which are having object type <obj-type>
of key type <key-type> and with label < label> on token present in slot <slot-ID>

e pkcs11_app -S -k <key-type> -b <key-label> -d <Data-to-be-signed> -m <mech-ID> -p <slot-ID>

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
282 NXP Semiconductors

PKCS#11 and Secure Object Library

This command will sign the <Data> with private key of type <key-type> having label <key-label> using mechanism specified by
<mech-ID> with functions provided by token in slot <slot-ID>

After successful signing, the signature will be saved in file “sig.data”

* pkcs11_app -V -k <key-type> -b <key-label> -d <Data-previously-signed> -s <signature-file> -m <mech-ID> -p
<slot-ID>

This command verifies the signature <signature-file> with public key of type <key-type> having label <key-label> using mechanism
specified by <mech-ID> with functions provided by token in slot <slot-ID> by comparing the data recovered from signature to
<Data-previously-signed>. This command uses openssl APIs to do the verification. Refer to the application code for more details.

<mech-ID> passed must match with the <mech-ID> passed during signature otherwise verification fails, as shown in following
picture.

6.4.3.2.3 mp_app

This application demonstrates how to use the following APIs:
* Get MP Public Key.
¢ Sign a message using MP Private Key.
* Get Message tag.

The application source code at location “secure_obj/securekey_lib/app/mp_app.c” can be used as reference for integration of
these APIs.

mp_app - This application gives 3 options.
Usage:
e mp_app -p: Get the MP Public key and store it in a file "pub_key"
* mp_app -s <MSG>: Sign <MSG> with MP Priv key and store signature in file "signature”

* mp_app -m: Get the MP Message tag and store it in file "mtag"

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 283

Security

6.4.3.2.4 mp_verify

This app uses OpenSSL APIs to verify the signature obtained by using “mp_app” application. The application source code at
location “secure_obj/securekey_lib/app/mp_verify.c” can be used as reference.

mp_verify - This application verifies the signature generated by mp_app -s.
Usage:
mp_verify -p <pubkeyfile> -s <signaturefile> -m <mtagfile> -M <MSG>

This <MSG> must be same which is used in mp_app -s <MSG>

6.4.3.2.5 sobj_eng_app

This app uses OpenSSL APlIs to show how to use Secure Object based OpenSSL Engine.

Code for this app is at “secure_obj/secure_obj-openssl-engine/app/sobj_eng_app.c “

This application is internally loading RSA private key and then doing cryptographic operations using this key.

Private Key operations are offloaded to Secure Object via this engine, and Public Key operations are done through OpenSSL
itself.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
284 NXP Semiconductors

PKCS#11 and Secure Object Library

In Following screenshot, see creating a key via sobj_app. It will be used by sobj_eng_app (using OpenSSL APIs) to do the
cryptographic operations.

This sobj_eng_app is internally offloading the cryptographic operation to Secure Object Library using the OpenSSL Engine based
on Secure Object Library.

6.4.4 Validation

Above steps are fully validated and verified on LS1046ARDB platform.

6.4.5 Appendix

Appendix A: Steps to build the PKCS#11 Library

PKCS Library is using Secure Object Library. For steps compiling Secure Object Library, see section Appendix B: Steps to build
the Secure Object Library.

From flexbuild environment:

flex-builder -c libpkcs11 -m Is1046ardb

Standalone Build:
1. Clone the libpkcs11 from: https://source.codeaurora.org/external/qorig/qorig-components/libpkcs11
2. Checkout tag “LSDK-18.03".

3. Set path for cross-compile:
$:> export CROSS COMPILE=<aarché64-toolchains>
4. Set path for Secure Object:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 285

https://source.codeaurora.org/external/qoriq/qoriq-components/libpkcs11

Security

$:> export
SECURE_OBJ_PATH=<path-to-secure objs>/secure_ obj/securekey lib/out/export/

Set path for OpenSSL:

Note: For interoperability, we are verifying the signature generated by PKCS Library via OpenSSL, so reference application
needs OpenSSL library, so exporting OPENSSL_PATH.

We have cloned and compiled the OpenSSL in “Steps to build the Secure Object Library; hence only give path of that folder
in OPENSSL_PATH.

$:> export OPENSSL PATH=<openssl-folders
Run make:
$:>make

This compiles the libpkcs11 and reference applications and put it into “images” folder in libpkcs11. Following images are
generated:

* libpkcs11l.so — PKCS#11 User space library.
¢ pkcs11_app — PKCS#11 Test App.

Appendix B: Steps to build the Secure Object Library

From flexbuild environment:

flex-builder -c secure_obj -m Is1046ardb

Standalone Build:

Order of repo compilation for Secure Object Library.

1.

OP-TEE OS
a. Clone optee_os from: https://source.codeaurora.org/external/qorig/qorig-components/optee_os
b. Checkout tag “LSDK-18.03"
c. Set the path for the following:
$:> export CROSS COMPILE64=<aarché64-toolchain>
d. Now make.
$:> make CFG ARM64 core=y PLATFORM=1s-1sl046ardb ARCH=arm

2. OP-TEE Client

a. Clone optee_client from: https://source.codeaurora.org/external/qorig/qorig-components/optee_client
b. Checkout tag “LSDK-18.03”
c. Set path for the following:
$:> export CROSS COMPILE=<aarché64-toolchain-path->
d. Now make.

$:> make

3. OpenSSL:

a. Clone openssl from: https://source.codeaurora.org/external/qorig/qorig-components/openssl|
b. Checkout tag “LSDK-18.03”
c. Set path for the following:
$:> export CROSS COMPILE=<aarché64-toolchain-path->
d. Run configure as follows:

$:>. /Configure shared linux-aarché64

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

286

NXP Semiconductors

https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os
https://source.codeaurora.org/external/qoriq/qoriq-components/optee_client
https://source.codeaurora.org/external/qoriq/qoriq-components/openssl

PKCS#11 and Secure Object Library

e. Run make

S:

> make

4. Secure Object:

a. Clone secure_obj from: https://source.codeaurora.org/external/qorig/qorig-components/secure_obj

b. Checkout tag “LSDK-18.03"

Secure Object Library code - securekey_lib

Secure Object Trusted Application code - secure_storage_ta
Secure Key Dev Kernel Module - securekeydev

Secure Object OpenSSL Engine - secure_obj-openssl-engine

There is script “compile.sh” which compiles all above components and put all binaries in “images”

c. Follow the below compilation steps:

export CROSS_COMPILE path:

$:> export CROSS COMPILE= <aarché64-toolchain-path->
export ARCH path:

$:> export ARCH=armé64

Set the paths from OP-TEE OS:

$:> export TA DEV_KIT DIR=<path-to-optee-os>/optee os/out/arm-plat-1ls/export-
ta arm64/

Set path for OP-TEE Client
$:> export OPTEE_CLIENT EXPORT=<path-to-optee-clients>/optee client/out/export/
Set path for Secure Storage:

$:> export SECURE_STORAGE PATH=<path-to-secure_obj>/secure_obj/
secure_storage_ta/ta/

Set path for OpenSSL:
$:> export OPENSSL PATH=<openssl-folder-paths>
Set path for Linux Code (Used Flexbuild kernel for this):

$:> export KERNEL SRC=<path-in-flexbuild-containing-kernel-source-code>

For example,

$:> export KERNEL SRC=/home/b42224/flexbuild 1712/flexbuild/build/linux/linux/
armé4/lib/modules/4.9.62/source

Set path for Linux Build Directory (Used Flexbuild kernel for this):

$:> export KERNEL BUILD=<path-in-flexbuild-containing-kernel-builds>

For example,

$:> export KERNEL BUILD=/home/b42224/flexbuild 1712/flexbuild/build/linux/linux/
armé4/lib/modules/4.9.62/build

Run “/compile.sh” (It will compile TA, library and Kernel Module).

$:> ./compile.sh

This will compile all the binaries and put them into the images folder in secure_obj. After compilation, images
folder have the following:

b05bcf48-9732-4efa-a9e0-141¢c7c888c34.ta - Trusted application for Secure Object library.

libsecure_obj.so - User space Secure Object Library

¢ sobj_app - Application for creating and erasing objects.

mp_app - Application for getting MP Public Key, signing using MP Private key and getting the MP tag.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 287

https://source.codeaurora.org/external/qoriq/qoriq-components/secure_obj

Security

¢ mp_verify - Application for verifying the signature generated through mp_app.

* securekeydev.ko - Kernel Module for offloading MP Key feature to CAAM. Binaries to be placed at following
locations in rootfs.

¢ libeng_secure_obj - Secure Object based OpenSSL engine offloading Private Key Operations to the Secure
Object Library.

¢ sobj_eng_app - This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine.
This application is loading the private key and then doing cryptographic operations using this key.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
288 NXP Semiconductors

Chapter 7
Linux kernel

Introduction

The Linux kernel is a monolithic Unix-like computer operating system kernel. It is the central part of Linux operating systems that
are extensively used on PCs, servers, handheld devices and various embedded devices such as routers, switches, wireless access
points, set-top boxes, smart TVs, DVRs, and NAS appliances. It manages tasks/applications running on the system and manages
system hardware. A typical Linux system looks like this:

User Applications

User System Windowing Graphics System Data Plane
Space ET T System Libraries Frameworks
C Standard Library
A F Y &
Linux Kernel

System Call interface

Kernel

Space Process Memory
Scheduler WEREEENED

Architecture support

==

Virtual File IPC Networking
System

Device Drivers

+

NXP updated SW components

Legend: - Standard SW components

Figure 58. Typical Linux System

The Linux kernel was created in 1991 by Linus Torvalds and released as an open source project under GNU General Public
License(GPL) version 2. It rapidly attracted developers around the world. In 2015 the Linux kernel has received contributions from
nearly 12,000 programmers from more than 1,200 companies. The software is officially released on http://www.kernel.org website

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 289

http://www.kernel.org

Linux kernel

through downloadable packages and GIT repositories. A general Linux kernel introduction from kernel.org can also be found at
https://www.kernel.org/doc/html/latest/admin-guide/README.html.

Kernel Releases and relationship with Layerscape SDK

There are different Linux kernel releases coming from different sources. Below we listed the ones that are related to the LSDK
kernel.

Kernel.org official kernel releases
* Mainline

Mainline tree is maintained by Linus Torvalds. It's the tree where all new features are introduced and where all the exciting
new development happens. New mainline kernels are released every 2-3 months.

¢ Longterm (LTS)

There are usually several "longterm maintenance" kernel releases provided for the purposes of backporting bugfixes for older
kernel trees. Only important bugfixes are applied to such kernels and they don't usually see very frequent releases, especially
for older trees.

Refer to https://www.kernel.org/category/releases.html for the current maintained Longterm releases.
Linaro LSK kernel release

Linaro is an open organization focused on improving Linux on ARM. They are also providing a Linux kernel release called Linaro
Stable Kernel (LSK). It is based on kernel.org Longterm kernel releases and included ARM related features developed by Linaro.
Normally these features are generic kernel features for the ARM architecture. Please refer to https://wiki.linaro.org/LSK for more
information about the LSK releases.

NXP Layerscape SDK kernel

NXP’s SDK kernel often contains patches that are not upstream yet so essentially the LSDK kernel is an enhanced Linaro LSK
which is in turn an enhanced kernel.org LTS. In order to fully utilize the ARM open source eco-system. The kernel versions provided
in NXP LSDK will be chosen from the kernel.org Longterm releases to include the important bugfixes backported. It will also
include generic ARM kernel features provided by the Linaro LSK release which could be important for some users.

Getting the LSDK kernel source code

With Layerscape SDK, NXP owned/updated software components are published on github. You can use git commands to get the
latest kernel source code.

¢ Install git command if not there already. For example, on Ubuntu:
$ sudo apt-get install git
* Clone the Linux kernel source code with git.

$ git clone https://source.codeaurora.org/external/qoriq/gorig-components/linux

7.1 Configuring and building

Configuring and building the Linux kernel is controlled by the Kbuild sub-system. You can find documents describing the internal
of Kbuild sub-system under the Documentation/kbuild/ folder in the Linux source code tree if you are adding new files or new
configure options to the kernel. Otherwise as a user of Linux kernel, you probably only want to know how to fine tune the kernel
configuration base on your system requirements and build new kernel image with updated configuration. These are done through
make commands, below we will talk about make commands you probably need to know as a kernel user.

Environment setting for cross-compiling

This chapter only matters when you are configuring and building kernel on a different architecture from the target. For example,
compiling an ARMv8 kernel on an X86 computer. If you are compiling the kernel natively on a machine of the same architecture
as the target, you should skip this chapter.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
290 NXP Semiconductors

https://www.kernel.org/doc/html/latest/admin-guide/README.html
https://www.kernel.org/category/releases.html

Configuring and building

¢ Install the cross compiler of your distribution

» Specify the target architecture in ARCH environment variable

» Specify the prefix (and path) of a cross compiler in crRoss_coMPILE environment variable
$ export CROSS COMPILE=/path/to/dir/tool-chain-prefix-
Or just the prefix if the cross-compiler commands are already in the execution PATH.
$ export CROSS COMPILE=tool-chain-prefix-

For example, the commands needed on Ubuntu Linux will be like:
¢ 64-bit ARM:

$ sudo apt-get install gcc-aarché64-linux-gnu
$ export CROSS COMPILE=aarché4-linux-gnu-
$ export ARCH=armé4

* 32-bit ARM (ARMv7 / 32-bit mode of ARMv8):

$ sudo apt-get install gcc-arm-linux-gnueabihf
$ export CROSS_ COMPILE=arm-linux-gnueabihf-
$ export ARCH=arm

For the shell environment variables exported above, you can also include them directly in each make command you use. E.g. $
ARCH=armé64 CROSS_COMPILE=aarché64-linux-gnu- make {targets}.Exporting them will save effort if you are using make in
kernel frequently.

Configuring kernel

The current kernel configuration for a kernel source tree will be kept in a hidden file named .config at the top level of the kernel

source code after you changed the configuration with any of the make config command variants. You can copy it directly from one
kernel source tree to another with the same kernel version to duplicate the configuration exactly. Also, you can edit it with a text
editor, in which you can see a list of conr1c_* symbols corresponding to each of the kernel configure option.

The following targets from the Linux kernel Kbuild framework are used to load the default kernel configuration for LSDK:
® defconfig/${PLATFORM} defconfig

Create the . config file by using the default config options of the architecture or platform defined in the arch/$ARCH/configs/
directory. This normally includes all the device drivers needed for the architecture or platform.

* ${FRAGMENT}.config
Merge a configuration fragment that enables certain features into the .config file.
Specific command to load the default configuration of different platforms for LSDK will be:
* For Layerscape ARMv8 platforms in 64bit mode:
$ make defconfig lsdk.config
* For Layerscape ARMv7 platforms:
$ make multi v7_defconfig multi_v7_ lpae.config lsdk.config
¢ For Layerscape ARMv8 platforms in 32bit mode:
$ make multi v7 defconfig multi v7 lpae.config multi v8.config lsdk.config
To further fine tune the configuration base on your system need you can use the following make commands.
® $ make menuconfig

Choose configure options in text based color menus, radiolists & dialogs. Itis a good way to navigate through all the selectable
kernel configure options in a well-organized human-readable hierarchy and you can get a description of every option when
it is highlighted by selecting the <He1p> button. In the device driver part of this User’s Manual we also provided the path to
the configure options needed for a feature to work in the menuconfig.

® $ make ${FRAGMENT}.config

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 291

Linux kernel

You can also utilize this capability to enable options for a specific feature in your custom kernel configuration quickly without
selecting each one of them in the menuconfig. In the device driver part of this User’s Manual, we listed the conFIc_* symbols
needed by a specific feature/driver. Put these symbols with “=y” or “=m” depending on if you want these features/drivers to
be built-in or built as loadable kernel module into a ${FEATURE} . config file under arch/$ARCH/configs/ directory. Run s
make ${FEATURE}.config command, it will enable all these listed kernel configure options together.

Building kernel
Building the kernel is simple.
* To build kernel images and device tree images.
make
* To build loadable kernel modules:
make modules
* To generate image with u-boot image wrapper:
make ulmage

You can supply -3 <NuMs> option to the above make commands to spin NuM concurrent threads to reduce build time on multicore
systems.

After a successful build:
¢ Compiled kernel images are in arch/${ARCH}/boot/ folder.
e Compiled device trees (dtb files) are in arch/${ARCH}/boot/dts folder.

e Compiled kernel modules are spread out in driver folders. You can extract them to a specific folder (e.g. /folder/to/install) by
using command:

$ make modules install INSTALL MOD PATH=/folder/to/install

Install new kernel and modules

The path or naming convention of kernel images and modules are different for different Linux distributions. The following
instructions are based on the convention of LSDK.

Using the flex-build scripts

» Copy kernel image, dtb and kernel modules from your kernel tree to the staging folder of the flexbuild script (Skip if you are
using the flexbuild -c linux to build the kernel directly).

— For 64-bit ARM:

$ cp arch/armé4/boot/Image.gz ${path-to-flexbuild}/build/gorig-linux/kernel/armé4/

$ cp arch/armé4/boot/dts/freescale/*.dtb ${path-to-flexbuild}/build/gorig-linux/
kernel/armé4/

$ make modules install INSTALL MOD PATH=${path-to-flexbuild}/build/gorig-linux/kernel/
armé64/

— For 32-bit ARM:

$ cp arch/arm/boot/Image.gz ${path-to-flexbuild}/build/gorig-linux/kernel/arm/

$ cp arch/arm/boot/dts/ls*.dtb ${path-to-flexbuild}/build/gorig-linux/kernel/arm/
$ make modules install INSTALL MOD PATH=${path-to-flexbuild}/build/gorig-linux/
kernel/arm/

* Regenerate the boot partition and rootfs (for commands below: ${ARCH} = arm32 | armé4)

$ flex-builder -i uimg (for armé4)

$ flex-builder -i mkbootpartition -a ${ARCH}
$ flex-builder -i merge-component -a ${ARCH}
$ flex-builder -i compressrfs -a ${ARCH}

» Use flex-installer to deploy the updated boot partition and rootfs to the device following the Layerscape SDK user guide.

Update the target filesystem directly

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
292 NXP Semiconductors

Device Drivers

This can be more convenient if you are compiling the kernel on the target device locally or you can easily update the filesystem

of target device remotely (e.g. using scp, tftp, or etc.).
¢ Generate uImage

— For 64-bit ARM:

$ mkimage -A armé64 -O linux -T kernel -C gzip -a 0x80080000 -e 0x80080000 -n Linux -d

arch/armé4 /boot/Image.gz ulmage
— For 32-bit ARM:

$ make ulmage

¢ Copy your ulmage file to /oot folder on the target using cp if compiled locally; Use any available remote update approach

if compiled remotely.

¢ Update the symbol link of vmlinuz/vmlinuz.v7/vmlinuz.v8 to the new uimage file on the target.

¢ Copy dtb files to /boot folder on the target using cp if compiled locally; Use any available remote update approach to do the

same if compiled remotely.
¢ Update kernel modules. (Note: kernel modules are required to be updated when you updated the kernel image).
— If you compiled the kernel on the target device locally. Use the command below:
$ make modules install
— If you compiled the kernel remotely. Do the following:
> Install the modules into a temporary folder (e.g. /tmp/1sdk/).
$ make modules install INSTALL MOD_ PATH=/tmp/lsdk/

- Transfer the 1ib/ directory from the temporary location above to the target device using any file transfer approach

and put it in the / path of the filesystem.

7.2 Device Drivers

7.2.1 Enhanced Direct Memory Access (eDMA)

Description

The SoC integrates NXP's Enhanced Direct Memory Access module. Slave device such as 12C or SAl can deploy the DMA
functionality to accelerate the transfer and release the CPU from heavy load.

Kernel Configure Options
Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

DMA engine subsystem driver and eDMA driver support

Device Drivers --->
[*] DMA Engine support ---> --->
<*> Freescale eDMA engine support
Identifier

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

293

Linux kernel

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option

Values Default Value Description

CONFIG_FSL_EDMA

y/m/n n eDMA Driver

Device Tree Binding

Device Tree Node

Below is an example device tree node required by this feature. Note that it may has differences among platforms.

edmal: edma@2c00000

bi

#dma-cells = <2>;
compatible = "fsl,vf6l0-edma";
reg = <0x0 0x2c00000 0x0 0x10000>,
<0x0 0x2cl0000 0x0 0x10000>,
<0x0 0x2c20000 0x0 0x10000>;
interrupts = <GIC_SPI 135 IRQ TYPE LEVEL HIGH>,
<GIC_SPI 135 IRQ TYPE LEVEL HIGH>;

interrupt-names = "edma-tx", "edma-err";
dma-channels = <32>;

big-endian;

clock-names = "dmamuxO0", "dmamuxl";

clocks = <&platform clk 1>,
<&platform clk 1>;

Device Tree Node Binding for Slave Device

Below is the device tree node binding for a slave device which deploy the eDMA functionality.

i2c0: i2c@2180000

Source Files

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,vf61l0-i2c";

reg = <0x0 0x2180000 0x0 0x10000>;
interrupts = <GIC SPI 88 IRQ TYPE LEVEL HIGH>;
clock-names = "i2c";
clocks = <&platform clk 1>;
dmas = <&edmalO 1 39>,
<&edmalO 1 38>;
dma-names = "tx", "rx";
status = "disabled";

The following source files are related the this feature in Linux kernel.

Table 82. Source Files

Source File

Description

drivers/dma/fsl-edma.c

The eDMA driver file

Verification in Linux

1. Use the slave device which deploy the eDMA functionality to verify the eDMA driver, below is a verification with the 12C

salve.

root@lslO2lagds:~# i2cdetect 0

WARNING! This program can confuse your I2C bus,

I will probe file /dev/i2c-0.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

cause data loss and worse!

294

NXP Semiconductors

Device Drivers

I will probe address range 0x03-0x77.
Continue? [Y/nl]
0o 1 2 3 4 5 6 7 8 9 a b c¢c 4 e f£

00: e e em e el m o oo oo
10: == == == —— mm mm mm m e e e e e e e o
20. e
30. U U
AQ: —= —= —= D= —m —— —m oo —m oo Mmoo oo oo oo -
5Q: == —= == —= = mm e m mm e e e e e —e e o
60: -= == == == == == = == == 69 = —= —m - - -
70: = —= = mm —m oo oo -
root@lslO2lagds:~# i2cdump 0 0x69 i

0O 1 2 3 4 5 6 7 8 9 a b ¢ d e f£ 0123456789%abcdef
00: 05 07 £f f£f 54 55 10 55 11 05 le 00 e8 03 b5 ff ??7..]U0?0??22.?2°72°7.
10: £f e8 03 95 00 00 00 00 aa fe 9a 00 00 00 0O 78 PR LLL0PP7 000X
20: 05 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 ???..7@?7 <??.@.
30: fe 80 c6 29 00 00 00 7a 00 ff ff ff ff f£ff ff ff PP?) L i Z .
40: 05 07 ff ff 5d 55 10 55 11 05 le 00 e8 03 b5 ff ?7..]U0?0??22.72°72°7.
50: £ff e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 LPRRLLLLPP7 000X
60: 05 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 ???..7@?7 <??.@.
70: fe 80 c6 29 00 00 00 7a 00 ff ff ff f£ff f£ff ff ff PP?) L i Z .
80: 07 £ff f£ff 5d 55 10 55 11 05 le 00 e8 03 b5 ff ff ?..]10?U0??72.2?27..
90: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 A Y r A S o
a0: 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ??7..?7@?7°<??.@.°7
b0: 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ff ?2) i Z e
c0: 07 £f f£ff 5d 55 10 55 11 05 le 00 e8 03 b5 ff ff ?..]10?U0??272.2?27..
d0o: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 A Y r A S o
e0: 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ??7..?7@?7°<??.@.°
f0: 80 c6 29 00 00 00 7a 00 ff ff ff £f ff ff ff ff ?2) i Z e
root@lsl02lagds:~# cat /proc/interrupts

CPUO CPU1L

29: 0 0 GIC 29 arch timer
30: 5563 5567 GIC 30 arch timer
112: 260 0 GIC 112 fsl-1puart
120: 32 0 GIC 120 2180000.i2c
121: 0 0 GIC 121 2190000.i2c
167: 8 0 GIC 167 eDMA
IPIO: 0 1 CPU wakeup interrupts
IPI1: 0 0 Timer broadcast interrupts
IPI2: 1388 1653 Rescheduling interrupts
IPI3: 0 0 Function call interrupts
IPI4: 2 4 Single function call interrupts
IPIS: 0 0 CPU stop interrupts
Err: 0

root@lsl02laqgds: ~#

7.2.2 CAAM Direct Memory Access (DMA)

Description

The CAAM DMA module implements a DMA driver that uses the CAAM DMA controller to provide both SG and MEMCPY DMA
capability to be used by the platform. It is based on the CAAM JR interface that must be enabled in the kernel config as a
prerequisite for the CAAM DMA driver.

The driver is based on the DMA engine framework and it is located under the DMA Engine support category in the kernel config
menu.

Kernel Configure Options
Tree Overview

To enable the CAAM DMA module, set the following options for make menuconfig:

-*- Cryptographic API --->
[*] Hardware crypto devices --->
<*> Freescale CAAM-Multicore driver backend

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 295

Linux kernel

<*> Freescale CAAM Job Ring driver backend
Device Drivers --->
<*> DMA Engine support --->
<*> CAAM DMA engine support
NOTE

Be aware that the CAAM DMA driver depends on the CAAM and CAAM JR drivers, which also have to be enabled.

Identifier

The following configure identifier is used in kernel source code and default configuration files.

Option Values Default Value Description
CONFIG_CRYPTO_DEV_FS |y/m/n n CAAM DMA engine support
L_CAAM_DMA

Device Tree Node

Below is an example device tree node required by this feature.

caam_dma {
compatible = "fsl,sec-v5.4-dma";

Source Files

The following source file is related to this feature in the Linux kernel.

Source File Description

drivers/dma/caam_dma.c The CAAM DMA driver

Verification in Linux
On a successful probing, the driver will print the following message in dmesg:

[1.443940] caam-dma 1700000.crypto:caam dma: caam dma support with 4 job rings
Additionally, you can also run the following commands:

ls -1 /sys/class/dma/

total 0

lrwxrwxrwx 1 root root 0 Jan 1 1970 dmaOchanO ->
1700000.crypto:caam_dma/dma/dma0chan0

lrwxrwxrwx 1 root root 0 Jan 1 1970 dmaOchanl ->
1700000.crypto:caam dma/dma/dmaOchanl

lrwxrwxrwx 1 root root 0 Jan 1 1970 dmaOchan2 ->
1700000.crypto:caam_dma/dma/dmaOchan2

lrwxrwxrwx 1 root root 0 Jan 1 1970 dmaOchan3 ->
1700000.crypto:caam dma/dma/dmaOchan3

./devices/platform/soc/1700000.crypto/
./devices/platform/soc/1700000.crypto/

./devices/platform/soc/1700000.crypto/

~ N N

./devices/platform/soc/1700000.crypto/

Component Testing
To test both the SG and memcpy capability of the CAAM DMA driver use the dmatest module provided by the kernel.
Build dmatest

Build the dmatest utility as a module by running the command:
$ make menuconfig

Then select from the kernel menuconfig to build the dmatest.ko as a module:

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
296 NXP Semiconductors

Device Drivers

Device Drivers --->
<*> DMA Engine support --->
<M> DMA Test client

Configure dmatest

Before testing insert the module:

$ insmod dmatest.ko

The configure the dmatest. There is a general configuration that applies for both the sg and memcpy functionality:

echo 1 > /sys/module/dmatest/parameters/max channels
echo 2000 > /sys/module/dmatest/parameters/timeout

echo 0 > /sys/module/dmatest/parameters/noverify

echo 4 > /sys/module/dmatest/parameters/threads per chan
echo 0 > /sys/module/dmatest/parameters/dmatest

echo 1 > /sys/module/dmatest/parameters/iterations

echo 2000 > /sys/module/dmatest/parameters/test buf size

Uy Uy Uy Ur U Ur x

The above configuration is self explanatory except a few:

If you set the 'noverify' parameter to 0 it will not perform check of the copied buffer at the end of each testing round. This should
be used for performance testing. Set the 'noverify' parameter to 1 for functional testing.

Set the 'dmatest' parameter to 0 to test the memcpy functionality and to 1 to test the sg functionality.
Perform the test

To perform the test simply run the command:

$ echo 1 > /sys/module/dmatest/parameters/run

Depending on the type of test performed (sg/memcpy) the output may vary. Here is an example of output obtained with the above
parameters:

72.113769] dmatest: Started 4 threads using dmaOchanO
72.105334] dmatest: dmaOchanO-copyO: summary 1 tests,
72.113649] dmatest: dmaOchanO-copyl: summary 1 tests,
72.114927] dmatest: dmaOchanO-copy2: summary 1 tests,
72.115098] dmatest: dmaOchanO-copy3: summary 1 tests,

7.2.3 Enhanced Secured Digital Host Controller (eSDHC)

failures 9009 iops 9009 KB/s (0)
failures 119 iops 119 KB/s (0)
failures 24390 iops 0 KB/s (0)
failures 37037 iops 0 KB/s (0)

O O O o

Description

The enhanced secured host controller (eSDHC) provides an interface between the host system and the SD/SDIO cards and
eMMC devices.

The eSDHC device driver supports either kernel built-in or module.

Kernel Configure Options

Tree View
Kernel Configure Options Tree View Description
Device Drivers ---> Enables SD/MMC block device driver support
<*> MMC/SD/SDIO card support --->
<*> MMC block device driver
(8) Number of minors per block device
[*] Use bounce buffer for simple hosts

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 297

Linux kernel

Table continued from the previous page...

Kernel Configure Options Tree View

Description

<*> Secure Digital Host Controller
<*>

[*] SDHCI OF support for the NXP

**% MMC/SD/SDIO Host Controller Drivers **x*

SDHCI platform and OF driver helper

Enables NXP eSDHC driver support

Interface support

eSDHC controller

Compile-time Configuration Options

Option Values | Default Value | Description

CONFIG_MMC y/n y Enable SD/MMC bus protocol

CONFIG_MMC_BLOCK y/n y Enable SD/MMC block device driver support

CONFIG_MMC_BLOCK_MINORS integer | 8 Number of minors per block device

CONFIG_MMC_BLOCK_BOUNCE |y/n y Enable continuous physical memory for transmit

CONFIG_MMC_SDHCI y/n y Enable generic sdhc interface

CONFIG_MMC_SDHCI_PLTFM y/n y Enable common helper function support for sdhci platform
and OF drivers

CONFIG_MMC_SDHCI_OF_ESDHC | y/n y Enable NXP eSDHC support

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File

Description

drivers/mmc/host/sdhci.c

Linux SDHCI driver support

drivers/mmc/host/sdhci-pltfm.c

Linux SDHCI platform devices support driver

drivers/mmc/host/sdhci-of-esdhc.c Linux eSDHC driver
Device Tree Binding
Property Type Status Description
compatible String Required Should be 'fsl,esdhc'
reg integer Required Register map
example:
esdhc: esdhc@l560000 {

compatible = "fsl,1s1046a-esdhc", "fsl,esdhc";

reg = <0x0 0x1560000 0x0 0x10000>;

interrupts = <GIC_SPI 62 IRQ TYPE LEVEL HIGH>;

clocks = <&clockgen 2 1>;

voltage-ranges <1800 1800 3300

sdhci,auto-cmdl2;

3300>;

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

298

NXP Semiconductors

big-endian;
bus-width = <4>;

Vi

Verification in U-boot

The u-boot log

=> mmcinfo

Device: FSL SDHC

Manufacturer ID: 74

OEM: 4a45

Name: SDC

Tran Speed: 50000000

Rd Block Len: 512

SD version 3.0

High Capacity: Yes

Capacity: 7.5 GiB

Bus Width: 4-bit

Erase Group Size: 512 Bytes
=> mw.l 81000000 11111111 100
=> mw.l 82000000 22222222 100
=> cmp.l 81000000 82000000 100

word at 0x0000000081000000 (0x11111111) != word at 0x0000000082000000

Total of 0 word(s) were the same
=> mmc write 81000000 0 2

MMC write: dev # 0, block # 0, count 2 ... 2 blocks written: OK
=> mmc read 82000000 0 2

MMC read: dev # 0, block # 0, count 2 ... 2 blocks read: OK
=> cmp.l 81000000 82000000 100

Total of 256 word(s) were the same

=>

Verification in Linux
Set u-boot environment
=> setenv hwconfig sdhc

The linux booting log

.919339] sdhci: Copyright (c) Pierre Ossman

.931467] sdhci-pltfm: SDHCI platform and OF driver helper
.938900] sdhci-esdhc 1560000.esdhc: No vmmc regulator found
.944728] sdhci-esdhc 1560000.esdhc: No vgmme regulator found

.197784] mmcO: new high speed SDHC card at address b368
.203502] mmcblk0: mmcO0:b368 SDC 7.45 GiB

B WWwWwwww

Partition the card with fdisk
~# fdisk /dev/mmcblk0

Welcome to fdisk (util-linux 2.26.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0x5a5£f34b3.

Command (m for help): n
Partition type

P primary (0 primary, 0 extended, 4 free)

e extended (container for logical partitions)
Select (default p):

.913163] sdhci: Secure Digital Host Controller Interface driver

(0x22222222)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

Device Drivers

.978676] mmcO: SDHCI controller on 1560000.esdhc [1560000.esdhc] using ADMA 64-bit

NXP Semiconductors

299

Linux kernel

Using default response p.

Partition number (1-4, default 1):

First sector (2048-15628287, default 2048):

Last sector, +sectors or +size{K,M,G,T,P} (2048-15628287, default 15628287):

Created a new partition 1 of type 'Linux' and of size 7.5 GiB.

Command (m for help): w

The partition table has been altered.
Calling ioctl() [410.501876] mmcblk0: pl
to re-read partition table.

Syncing disks.

~#

~# fdisk -1 /dev/mmcblkO

Disk /dev/mmcblk0: 7.5 GiB, 8001683456 bytes, 15628288 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x5a5f34b3

Device Boot Start End Sectors Size Id Type
/dev/mmcblkOpl 2048 15628287 15626240 7.5G 83 Linux

Format the card with mkfs

~# mkfs.ext2 /dev/mmcblkOpl
mke2fs 1.42.9 (28-Dec-2013)
Discarding device blocks: [37.611042] random: nonblocking pool is initialized
done
Filesystem label=
0OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
488640 inodes, 1953280 blocks
97664 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2000683008
60 block groups
32768 blocks per group, 32768 fragments per group
8144 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done

~#
Mount, read and write

~# mount /dev/mmcblkOpl /mnt/
~# 1ls /mnt/

lost+found

~# cp -r /lib /mnt/

~# sync

~# 1ls /mnt/

lib lost+found

~# umount /dev/mmcblkOpl

~# 1ls /mnt/

~#

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
300 NXP Semiconductors

Device Drivers

Known Bugs, Limitations, or Technical Issues

1.

Call trace of more than 120 seconds task blocking when running iozone to test card performance. This is not issue and
use below command to disable the warning.

echo 0 > /proc/sys/kernel/hung task_timeout_ secs

Layerscape boards couldn't provide a power cycle to SD card but according to SD specification, only a power cycle could
reset the SD card working on UHS-I speed mode. When the card is on UHS-I speed mode, this hardware problem may
cause unexpected result after board reset. The workaround is using power off/on instead of reset when using SD UHS-I
card.

Transcend 8G class 10 SDHC card has some compatibility issue. It's observed it couldn't work on 50MHz high speed mode
on LS2 boards, but other brand SD cards (Sandisk, Kingston, Sony ...) worked fine. Reducing SD clock frequency could
also resolve the issue. The workaround is using other kind SD cards instead.

After sleep of LS1046ARDB, the card will get below interrupt timeout issue. This is hardware issue. CMD18 (multiple blocks
read) has hardware interrupt timeout issue.

mmcO0: Timeout waiting for hardware interrupt.

Linux MMC stack doesn't have SD UHS-II support currently. It couldn't handle SD UHS-II card well. If UHS-I support is
enabled in eSDHC dts node, the driver may make SD UHS-II card enter 1.8v mode. Only a power cycle could reset the
card, so use power off/on instead of reset for SD UHS-II card if UHS-I support is enabled in eSDHC dts node.

7.2.4 |IEEE 1588

Description

From IEEE-1588 perspective, the components required are:

1.
2.

IEEE-1588 extensions to the gianfar driver or DPAA/DPAA2 driver.
A stack application for IEEE-1588 protocol.

IEEE 1588 device driver supports either kernel built-in or module.

Kernel Configure Options

Tree View

1.

3.

eTSEC - Using PTPd stack

Kernel Configure Tree View Options Description
Device Drivers ---> Enable 1588 driver for PTPd stack
PTP clock support ---»>
<*> Freescale eTSEC as PTP clock

DPAA - Using PTPd stack

Kernel Configure Tree View Options Description
Device Drivers ---> Enable 1588 driver for PTPd stack
PTP clock support --->
<*> Freescale DPAA as PTP clock

DPAA2 - Using PTPd stack

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 301

Linux kernel

Kernel Configure Tree View Options Description
Device Drivers ---> Enable 1588 driver for PTPd stack
PTP clock support --->
<*> Freescale DPAA2 as PTP clock

Compile-time Configuration Options
1. eTSEC - Using PTPd stack

Option Values | Default Value Description
CONFIG_GIANFAR y/n y Enable eTSEC driver support
CONFIG_PTP_1588_CLOCK_GIANFAR y/n y Enables 1588 driver support

2. DPAA - Using PTPd stack

Option Values Default Value Description
CONFIG_PTP_1588_CLOCK_DPAA y/n n Enable IEEE 1588 support
CONFIG_FSL_SDK_DPAA_ETH y/n y Enables DPAA driver support

3. DPAA2 - Using PTPd stack

Option Values | Default Value Description
CONFIG_PTP_1588_CLOCK_DPAA2 y/n y Enable IEEE 1588 support
CONFIG_FSL_DPAA2_ETH y/n y Enables DPAA2 driver support

Source Files
The driver source is maintained in the Linux kernel source tree.

1. eTSEC (for PTPd)

Source File Description
drivers/net/ethernet/freescale/gianfar.c eTSEC Ethernet driver
drivers/net/ethernet/freescale/gianfar_ptp.c IEEE 1588 driver

2. DPAA (for PTPd)

Source File Description
drivers/net/ethernet/freescale/sdk_dpaa/dpaa_ptp.c IEEE 1588 driver
drivers/net/ethernet/freescale/sdk_dpaa/dpaa_eth.c DPAA Ethernet driver

3. DPAA2 (for PTPd)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
302 NXP Semiconductors

Device Drivers

Source File Description
drivers/staging/fsl-dpaa2/rtc/rtc.c IEEE 1588 driver
drivers/staging/fsl-dpaa2/ethernet/dpaa2-eth.c DPAAZ2 Ethernet driver

Device Tree Binding

1. eTSEC (for PTPd)

Property Type Status Description

compatible String Required Should be 'fsl,etsec-ptp’
reg integer Required Register map
Example:

ptp_clock@2d10e00
compatible = "fsl,etsec-ptp";
reg = <0x0 0x2d10e00 0x0 0xb0>;
interrupts = <GIC_SPI 173 IRQ TYPE LEVEL HIGH>;

fsl,tclk-period = <5>;
fsl,tmr-prsc = <2>;
fsl,tmr-add = <0Oxaaaaaaab>;
fsl,tmr-fiperl = <999999990>;
fsl,tmr-fiper2 = <99990>;
fsl,max-adj = <499999999>;
}i
2. DPAA (For PTPd)
Property Type Status Description
compatible String Required Should be 'fsl,fman-rtc'
reg integer Required Register map

Example:

ptp timer0: ptp-timer@fe000 {
compatible = "fsl, fman-ptp-timer", "fsl,fman-rtc";
reg = <0xfe000 0x1000>;

3. DPAA2
NA.

Verification in Linux
Connect Ethernet interfaces of two boards with back-to-back method (for example, eth0 to eth0).
One board runs as master and the other one runs as slave.

¢ The linux booting log
pps ppsO0: new PPS source ptpl

¢ On the master side

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

303

Linux kernel

ifconfig ethO up
ifconfig eth0 192.168.1.100
ptpd2 -1 etho -MV

¢ On the slave side

ifconfig ethO up
ifconfig eth0 192.168.1.200
ptpd2 -i eth0 -sV --servo:kp=0.32 --servo:ki=0.05

The slave side would print synchronization messages.

¢ Note:

ptpd2 stack would use /dev/ptp0 in default. If 1588 timer is initialized as ptp1 or others, please use '-0' option to clarify that
such as,

-o /dev/ptpl

Known Bugs, Limitations, or Technical Issues

* Packet loss issue could be observed on LS1021ATWR when Ethernet interfaces are connected in back-to-back way. The
root cause is that the PHY supports IEEE 802.11az EEE mode by default. The low speed traffic will make it go into low
power mode. It affects 1588 synchronization performance greatly. Use the workaround below to disable the feature.

ifconfig eth0 up

ethtool --set-eee eth0 advertise 0
ifconfig eth0 down

ifconfig eth0 up

7.2.5 Integrated Flash Controller (IFC)

H o H

7.2.5.1 Integrated Flash Controller NOR Flash User Manual

Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes e.g. NOR/NAND on board for boot functionality
as well as data storage.

U-Boot Configuration
Compile time options

Below are major u-boot configuration options related to this feature defined in platform specific config files under include/configs/
directory.

Option Identifier Description
CONFIG_FSL_IFC Enable IFC support
CONFIG_FLASH_CFI_DRIVER Enable CFI Driver for NOR Flash devices

CONFIG_SYS_FLASH_CFI
CONFIG_SYS_FLASH_EMPTY_INFO

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
304 NXP Semiconductors

Device Drivers

Source Files

The following source files are related to this feature in u-boot.

Source File Description
Jdrivers/misc/fsl_ifc.c Set up the different chip select parameters from board header file
drivers/mtd/cfi_flash.c CFI driver support for NOR flash devices

Kernel Configure Options
Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

These options enable CFI

' ' support for NOR Flash
Device Drivers ---> under MTD subsystem and
Integrated Flash Controller

<*> Memory Technology Device (MTD) support --->
support on Linux

[*] MTD partitioning support

[*] Command line partition table parsing

<*> Flash partition map based on OF description
<k > Direct char device access to MTD devices

-*- Common interface to block layer for MTD
'translation layers'

<*> Caching block device access to MTD devices
< > FTL (Flash Translation Layer) support
RAM/ROM/Flash chip drivers --->

<*> Detect flash chips by Common Flash Interface
(CFI) probe

<*> Support for Intel/Sharp flash chips
<*> Support for AMD/Fujitsu/Spansion flash chips
Mapping drivers for chip access --->

<*> Flash device in physical memory map based on
OF description

This option enables JFFS2

File systems ---> file system support for

MTD Devices
[*] Miscellaneous filesystems --->

<*> Journalling Flash File System v2 (JFFS2)
support

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors 305

Linux kernel

Special Configure needs to be enabled("Y") for LS1021. Please find in below table with default value as "N"

Option Values | Default Value | Description

CONFIG_FSL_IFC Y/N Y Integrated Flash Controller support

CONFIG_MTD Y/N Y Memory Technology Device (MTD) support

CONFIG_MTD_PARTITIONS Y/N Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS Y/N Y Allow generic configuration of the MTD partition tables via
the kernel command line.

CONFIG_MTD_OF_PARTS Y/N Y This provides a partition parsing function which derives the
partition map from the children of the flash nodes
described in Documentation/powerpc/booting-without-
of.txt

CONFIG_MTD_CHAR Y/N Y Direct char device access to MTD devices

CONFIG_MTD_BLOCK Y/N Y Caching block device access to MTD devices

CONFIG_MTD_CFI Y/N Y Detect flash chips by Common Flash Interface (CFI) probe

CONFIG_MTD_GEN_PROBE Y/N Y NA

CONFIG_MTD_MAP_BANK_WIDTH_1 | Y/N Y Support 8-bit buswidth

CONFIG_MTD_MAP_BANK_WIDTH_2 | Y/N Y Support 16-bit buswidth

CONFIG_MTD_MAP_BANK_WIDTH_4 | Y/N Y Support 32-bit buswidth

CONFIG_MTD_PHYSMAP_OF Y/N Y Flash device in physical memory map based on OF
description

CONFIG_FTL Y/N FTL (Flash Translation Layer) support

CONFIG_MTD_CFI_INTELEXT Y/N Support for Intel/Sharp flash chips

CONFIG_MTD_CFI_AMDSTD Y/N Support for AMD/Fujitsu/Spansion flash chips

Device Tree Binding

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File

Description

drivers/memory/fsl_ifc.c

Integrated Flash Controller driver to handle error interrupts

drivers/mtd/mtdpart.c

Simple MTD partitioning layer

drivers/mtd/mtdblock.c

Direct MTD block device access

drivers/mtd/mtdchar.c

Character-device access to raw MTD devices.

drivers/mtd/ofpart.c

Flash partitions described by the OF (or flattened) device tree

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

306

NXP Semiconductors

Table continued from the previous page...

Device Drivers

Source File Description

drivers/mtd/ftl.c FTL (Flash Translation Layer) support
drivers/mtd/chips/cfi_probe.c Common Flash Interface probe
drivers/mtd/chips/cfi_util.c Common Flash Interface support
drivers/mtd/chips/cfi_cmdset_0001.c Support for Intel/Sharp flash chips
drivers/mtd/chips/cfi_cmdset_0002.c Support for AMD/Fujitsu/Spansion flash chips

Verification in U-Boot

Test the Read/Write/Erase functionality of NOR Flash

1. Boot the u-boot with above config options to get NOR Flash access enabled. Check this in boot log,

FLASH: * MiB
where * is the size of NOR Flash
2. Erase NOR Flash
3. Make test pattern on memory e.g. DDR
4. Write test pattern on NOR Flash
5. Read the test pattern from NOR Flash to memory e.g DDR
6. Compare the test pattern data to verify functionality.
Test Log :

Test log with initial u-boot log removed

FLASH: 128 MiB

/* u-boot prompt */

=> mw.b 80000000 Oxa5 10000

=> md 80000000

80000000: abababab ababab5a5 ab5ababa5 abababab
80000010: abababab abababab abababab abababab
80000020: abababab5 abababa5 ababab5ab abababab
80000030: abababab abababab5 abababab abababab
=> protect off all

Un-Protect Flash Bank # 1

=> erase 0x584100000 +0x10000

done
Erased 1 sectors
=> cp.b 80000000 0x584100000 10000

Copy to Flash... 9....8....7....6....5....4....3...

=> cmp.b 80000000 0x584100000 10000
Total of 65536 bytes were the same
=>

.2....1....done

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

307

Linux kernel

Verification in Linux

To cross check whether IFC NOR driver has been configured in the kernel or not, see the kernel boot log with following entries.
Please note mtd partition number can be changed depending upon device tree.

2.368207] 60000000.nor: Found 1 x16 devices at 0x0 in 16-bit bank. Manufacturer ID
x000001 Chip ID 0x002801
2.378219] Amd/Fujitsu Extended Query Table at 0x0040

[

0

[

[2.383374] Amd/Fujitsu Extended Query version 1.3.

[2.388427] number of CFI chips: 1

[2.391835] 8 cmdlinepart partitions found on MTD device 60000000.nor
[2.398277] Creating 8 MTD partitions on "60000000.nor":

[2.403591] 0x000000000000-0x000000100000 : "nor bankO rcw"

[2.409553] 0x000000100000-0x000001000000 - "nor_bankO_uboot"
[2.415653] 0x000001000000-0x000002000000 : "nor bankO_kernel"
[2.421839] 0x000002000000-0x000004000000 : "nor bankO rootfs"
[2.428027] 0x000004000000-0x000004100000 : "nor bank4 rcw"

[2.433948] 0x000004100000-0x000005000000 : "nor bank4 uboot"
[2.440043] 0x000005000000-0x000006000000 : "nor_. "~ bank4 kernel"
[2.446228] 0x000006000000-0x000008000000 : "nor | ~bank4 rootfs"

Note: NOR address and number of partition will vary from SoC to SoC supported in LSDK

To verify NOR flash device accesses see the following test,

[root@ rootl# cat /proc/mtd

dev: size erasesize name

mtd0: 00100000 00020000 "nor bankO_ rcw"
mtdl: 00£00000 00020000 "nor_ bankO_uboot"
mtd2: 01000000 00020000 "nor_bank0_kernel"
mtd3: 02000000 00020000 "nor bankO rootfs"
mtd4: 00100000 00020000 "nor bank4 rcw"
mtd5: 00£00000 00020000 "nor_ bank4 uboot"
mtdé6: 01000000 00020000 "nor_bank4 kernel"
mtd7: 02000000 00020000 "nor bank4 rootfs"
mtd8: 01000000 00040000 "nand uboot"

mtd9: 01000000 00040000 "nand kernel"
mtdl0: 02000000 00040000 "nand free"
mtdll: 00600000 00001000 "uboot"

mtdl2: 00a00000 00001000 "free"

mtdl3: 00080000 00001000 "spiO.1l"

mtdl4: 00800000 00001000 "spiO.2"

[root@ root]# flash eraseall -j /dev/mtd2
Erasing 128 Kibyte @ 1400000 -- 100% complete. Cleanmarker written at 13e0000.
[root@P1010RDB root]# mount -t jffs2 /dev/mtdblock2 /mnt/

JFFS2 notice: (1202) jffs2 build xattr subsystem: complete building xattr subsystem, 0 of
xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan) found.

[root@ rootl# cd /mnt/
[root@ mnt]# 1ls -1
[root@ mnt]# touch flash file

[root@ root]# umount mnt

//1s must list local file

[root@ root]# ls mnt

//mount again

[root@ root]l# mount -t Jffs2 /dev/mtdblock2 /mnt/

JFFS2 notice: (1219) jffs2 build xattr subsystem: complete building xattr subsystem, 0 of
xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan) found.

//use ls ; it must show the created file

[root@ root]# 1ls /mnt/

flash file

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
308 NXP Semiconductors

//unmount
[root@ root]# umount /mnt/

Device Drivers

7.2.5.2 Integrated Flash Controller NAND Flash User Manual

Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes (e.g. NOR/NAND) on board for boot functionality

as well as data storage.

U-Boot Configuration

Compile time options

Below are major U-Boot configuration options related to this feature defined in platform specific config files under include/configs/

directory.

Option Identifier

Description

CONFIG_FSL_IFC

Enable IFC support

CONFIG_NAND_FSL_IFC

Enable NAND Machine support on IFC

CONFIG_SYS_MAX_NAND_DEVICE

No of NAND Flash chips on platform

CONFIG_MTD_NAND_VERIFY_WRITE

Verify NAND flash writes

CONFIG_CMD_NAND

Enable various commands support for NAND Flash

CONFIG_SYS_NAND_BLOCK_SIZE

Block size of the NAND flash connected on Platform

Source Files

The following source files are related to this feature in u-boot.

Source File

Description

Jdrivers/misc/fsl_ifc.c

Set up the different chip select parameters from board header file

drivers/mtd/nand/fsl_ifc_nand.c

IFC nand flash machine driver file

Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options

Description

Device Drivers --->

<*> Memory Technology Device (MTD) support --->

[*] MTD partitioning support

[*] Command line partition table parsing=

These options enable
Integrated Flash Controller
NAND support to work with
MTD subsystem available
on Linux.

Also UBIFS support needs
to be enabled.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

309

Linux kernel

Kernel Configure Tree View Options Description

<*> Flash partition map based on OF description

<*> Direct char device access to MTD devices

-*- Common interface to block layer for MTD 'translation layers'

<*> Caching block device access to MTD devices

<*> NAND Device Support --->

<*> NAND support for Freescale IFC controller

Enable UBIFS filesystem in linux configuration

Device Drivers --->
<*> Memory Technology Device (MTD) support --->
UBI - Unsorted block images --->

<*> Enable UBI
(4096) UBI wear-leveling threshold
(1) Percentage of reserved eraseblocks for bad eraseblocks handling
< > MTD devices emulation driver (gluebi)
*** UBI debugging options ***

[1] UBI debugging
File systems --->

[*] Miscellaneous filesystems --->
<*> UBIFS file system support

[*] Extended attributes support

Advanced compression options

[]
[1] Enable debugging

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
310 NXP Semiconductors

Device Drivers

Option Values | Default Value | Description

CONFIG_FSL_IFC y/n y Enable Integrated Flash Controller support

CONFIG_MTD_NAND_FSL_IFC |y/n Y Enable Integrated Flash Controller NAND Machine support

CONFIG_MTD_PARTITIONS y/n Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS | y/n Y Allow generic configuration of the MTD partition tables via the
kernel command line.

CONFIG_MTD_OF_PARTS y/n Y This provides a partition parsing function which derives the
partition map from the children of the flash nodes described in
Documentation/powerpc/booting-without-of.ixt

CONFIG_MTD_CHAR y/n Y Direct char device access to MTD devices

CONFIG_MTD_BLOCK y/n Y Caching block device access to MTD devices

CONFIG_MTD_GEN_PROBE y/n Y NA

CONFIG_MTD_PHYSMAP_OF y/n Y Flash device in physical memory map based on OF description

Device Tree Binding

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File

Description

drivers/memory/fsl_ifc.c

Integrated Flash Controller driver to handle error interrupts

drivers/mtd/nand/fsl_ifc_nand.c

Integrated Flash Controller NAND Machine driver

include/linux/fsl_ifc.h

IFC Memory Mapped Registers

Verification in U-Boot

Test the Read/Write/Erase functionality of NAND Flash

1. Boot the u-boot with above config options to get NAND Flash driver enabled. Check this in boot log,

NAND: * MiB

Where * is NAND

o &~ 0 b

flash size

Erase NAND Flash
Make test pattern on memory e.g. DDR

Write test pattern on NAND Flash

Read the test pattern from NAND Flash to memory e.g DDR

6. Compare the test pattern data to verify functionality.

Test Log :

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

311

Linux kernel

NAND: 512 MiB

/* U-boot prompt */
=> nand erase.chip

NAND erase.chip: device 0 whole chip

Bad block table found at page 65504, version 0x01 Bad block table found at page 65472,
version 0x01

Skipping bad block at 0x01££f0000

Skipping bad block at 0x01£f4000

Skipping bad block at 0x01££8000

Skipping bad block at 0x01£ffc000

OK

=> mw.b 80000000 0O0xa5 100000

=> md 80000000

80000000: aS5a5aba5 a5aS5aba5 a5aS5abab ab5ab5abab
80000010: ab5a5ab5a5 ababab5a5 abababa5 abab5abab
80000020: aS5a5aba5 a5aS5aba5 a5aS5ab5ab ab5ab5abab,
80000030: aba5ab5ab ababab5a5 abababab5 abab5abab L.

=> nand write 80000000 0 100000

NAND write: device 0 offset 0x0, size 0x100000
1048576 bytes written: OK

=> nand read 90000000 0 100000

NAND read: device 0 offset 0x0, size 0x100000
1048576 bytes read: OK
=> cmp.b 80000000 90000000 100000

Total of 1048576 bytes were the same

Verification in Linux

To cross check whether IFC NAND driver has been configured in the kernel or not, check the following. Please note mtd partition
numbers can be changed depending upon board device tree

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
312 NXP Semiconductors

[root
dev:

mtdo:
mtdl:
mtd2:
mtd3:
mtd4 :
mtd5:
mtdé:

[root

[root
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:

UBI:

(14745600 bytes,

bytes

@ (none) root]# cat /proc/mtd

size erasesize name
00100000 00020000 "nor_bank0_rcw"
00£00000 00020000 "nor bankO uboot"
01000000 00020000 "nor bankO kernel"
02000000 00020000 "nor bankO rootfs"
01000000 00040000 "nand uboot"
01000000 00040000 "nand kernel"
02000000 00040000 "nand free"
@(none) root]# flash eraseall /dev/mtd4 Erasing 16 Kibyte @ £00000 -- 100%

@(none) root]# ubiattach /dev/ubi ctrl -m 4

attaching mtd4 to ubio

physical eraseblock size:

logical eraseblock size:

smallest flash I/0 unit: 512

VID header offset:

data offset:

512

1024

empty MTD device detected

create volume table

create volume table

(copy #1)

(copy #2)

attached mtd4 to ubioO

MTD device name:

"NAND Root File System"

16384 bytes (16 KiB)

15360 bytes

(aligned 512)

MTD device size: 15 MiB
number of good PEBs: 960
number of bad PEBs: 0

max. allowed volumes: 89
wear-leveling threshold: 4096

number of internal volumes: 1

number of user volumes: 0

available

total number of reserved PEBs:

PEBs:

947

13

number of PEBs reserved for bad PEB handling: 9

max/mean erase counter: 0/0

image sequence number: 0

background thread "ubi bgt0d" started, PID 7541 UBI device number O,
available 947 LEBs

(15.0 KiB)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

14.1 MiB),

(14545920 bytes, 13.9 MiB),

Device Drivers

complete.

total 960 LEBs
LEB size 15360

NXP Semiconductors

313

Linux kernel

[root@ (none) rootl# ubimkvol /dev/ubi0 -N rootfs -s 14205KiB Volume ID 0, size 947 LEBs
(14545920 bytes, 13.9 MiB), LEB size 15360 bytes (15.0 KiB), dynamic, name "rootfs",
alignment 1

[root@ (none) rootl# mount -t ubifs /dev/ubi0_0 /mnt/
UBIFS: default file-system created

UBIFS: mounted UBI device 0, volume 0, name "rootfs"

UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB, 935 LEBs)
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBSs)
UBIFS: media format: w4 /r0 (latest is w4/r0)

UBIFS: default compressor: lzo

UBIFS: reserved for root: 678333 bytes (662 KiB)

[root@ (none) rootl# cd /mnt/

[root@(none) mnt]# 1s

[root@(none) mnt]# touch flash file

[root@(none) mntl# 1s -1

total 0

-rw-r--r-- 1 root root 0 Jul 6 14:45 flash file
[root@ (none) mnt]# cd

[root@ (none) root]l# umount /mnt/

UBIFS: un-mount UBI device 0, volume 0

[root@ (none) root]# mount -t ubifs /dev/ubi0O 0 /mnt/

UBIFS: mounted UBI device 0, volume 0, name "rootfs"

UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB, 935 LEBs)
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBSs)
UBIFS: media format: w4/r0 (latest is w4/r0)

UBIFS: default compressor: lzo

UBIFS: reserved for root: 678333 bytes (662 KiB)

[root@ (none) rootl# 1ls -1 /mnt/
total 0

-rw-r--r-- 1 root root 0 Jul 6 14:45 flash file

Known Bugs, Limitations, or Technical Issues

Boards which have NAND Flash with 512byte page size, JFFS2 cannot be supported using H/'W ECC support of IFC , as there
is not enough remaining space in the OOB area.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
314 NXP Semiconductors

Device Drivers

To use JFFS2 use SOFT ECC.

7.2.6 Low Power Universal Asynchronous Receiver/Transmitter
(LPUART)

Description

Low Power Universal asynchronous receiver/transmitter (LPUART) is a high speed and low power uart. Refer to below table for
the NXP soc can support LPUART.

SOC Num of LPUART module
LS1021A 6
LS1043A 6

U-boot ConfigurationCompile time options

Below are major u-boot configuration options related to this feature defined in platform specific config files under include/configs/
directory.

Option Identifier

Description

CONFIG_LPUART

Enable Ipuart support

CONFIG_FSL_LPUART

Enable NXP Ipuart support

CONFIG_LPUART_32B_REG

Select 32-bit Ipuart register mode

Choosing predefined u-boot board configs:

Please make the defconfig include 'Ipuart’, like: Is1021atwr_nor_Ipuart_defconfig. That's will supoort Ipuart.

Runtime options

Env Variable | Env Description

Sub option Option Description

bootargs Kernel command line argument passed to

kernel

console=ttyL P0,1152000 | select LPUARTO as the system console

Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options

Description

Device Drivers --->

Character devices --->

Serial drivers --->

<*> Freescale lpuart serial port support
[*] Console on Freescale lpuart serial port

LPUART driver and enable console
support

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

315

Linux kernel

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option

Values Default Value Description

CONFIG_SERIAL_FSL_LPUART y/m/n n LPUART Driver

Device Tree Binding

Below is an example device tree node required by this feature. Note that it may has differences among platforms.

lpuart0: serial@2950000

Source Files

compatible = "fsl,vf610-lpuart";

reg = <0x0 0x2950000 0x0 0x1000>;

interrupts = <GIC_SPI 80 IRQ TYPE LEVEL HIGH>;
clocks = <&sysclks;

clock-names = "ipg";

fsl,lpuart32;

status = "okay";

The following source file are related the this feature in u-boot.

Source File Description
drivers/serial/serial_lpuart.c The LPUART driver file
The following source file are related the this feature in Linux kernel.

Source File Description
drivers/tty/serial/fsl_lpuart.c The LPUART driver file

Verification in U-Boot

1. Boot up U-Boot from bank0, and update rcw and u-boot for Ipuart support to bank4, first copy the rcw and U-Boot binary
to the tftp directory.

2. Please refer to the platform depoly document to update the rcw and uboot.

3. After all is updated, run u-boot command to switch to alt bank, then will bring up the new U-Boot to the Ipuart console.

CPU:

Reset

I2C:

Board:

CPLD:
PCBA:

VBank :

DRAM:
Using

Flash:

Freescale LayerScape LS1020E, Version: 1.0, (0x87081010)
Clock Configuration:
CPUO (ARMV7) : 1000 MHz,

Bus:300

MHz, DDR:800 MHz (1600 MT/s data rate),

Configuration Word (RCW) :

00000000: 0608000a 00000000 00000000 00OO0OCOOOO
00000010: 60000000 00407900 e0025a00 21046000
00000020: 00000000 00000000 00000000 08038000
00000030: 00000000 001b7200 00000000 00000000
ready

LS1021ATWR

V2.0

V1.0

0

1 GiB
SERDES1 Protocol: 48 (0x30)

0 Bytes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

316

NXP Semiconductors

Device Drivers

MMC : FSL_SDHC: 0

EEPROM: NXID v16777216

PCIel: Root Complex no link, regs @ 0x3400000
PCIe2: disabled

In: serial
out: serial
Err: serial

SATA link 0 timeout.

AHCI 0001.0300 1 slots 1 ports ? Gbps 0xl impl SATA mode
flags: 64bit ncqg pm clo only pmp fbss pio slum part ccc
Found 0 device(s).

SCSI: Net: eTSEC1 is in sgmii mode.

eTSEC2 is in sgmii mode.

eTSEC1, eTSEC2 [PRIME], eTSEC3

=>

Verification in Linux

1. After uboot startup, set the command line parameter to pass to the linux kernel including console=ttyL P0,115200 in
boootargs. For deploy the ramdisk as rootfs, the bootargs can be set as: "set bootargs root=/dev/ramO rw
console=ttyL P0,115200"

=> set bootargs root=/dev/ram0 rw console=ttyLP0,115200

=> dhcp 81000000 <tftpboot dir>/zImage.lsl02la;tftp 88000000 <tftpboot dirs/
initrd.lsl.uboot;tftp 8£000000 <tftpboot dir>/lsl02latwr.dtb;bootz 81000000 88000000
8£000000

[...]
Starting kernel

Uncompressing Linux... done, booting the kernel.

Booting Linux on physical CPU 0xf00

Linux version 3.12.0+ (xxx@rock) (gcc version 4.8.3 20131202 (prerelease) (crosstool-NG
linaro-1.13.1-4.8-2013.12 - LinaroGCC 2013.11)) #664 SMP Tue Jun 24 15:30:45 CST 2014
CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=30c73c7d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache

Machine: Freescale Layerscape LS1021A, model: LS1021A TWR Board

Memory policy: ECC disabled, Data cache writealloc

PERCPU: Embedded 7 pages/cpu @8901c000 s7936 r8192 dl2544 u32768

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 520720

Kernel command line: root=/dev/ram rw console=ttyLP0,115200

PID hash table entries: 4096 (order: 2, 16384 bytes)

[...]

1sl02latwr login: root
root@lslO2latwr: ~#

2. After the kernel boot up to the console, You can type any shell command in the LPUART TERMINAL.

7.2.7 Quad Serial Peripheral Interface (QSPI)

U-Boot Configuration
Make sure your boot mode support QSPI.

Use QSPI boot mode to boot an board, please check the board user manual and boot from QSPI. (or some other boot mode
decide by your board.)

Kernel Configure Tree View Options

Device Drivers --->

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 317

Linux kernel

Memory Technology Device (MTD) support
RAM/ROM/Flash chip drviers --->

< > Detect flash chips by Common Flash Interface (CFI) probe

< > Detect non-CFI AMD/JEDEC-compatible flash

< > Support for RAM chips in bus mapping

< > Support for ROM chips in bus mapping

< > Support for absent chips in bus mapping
Self-contained MTD device drivers --->

chips

<*> Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

< > NAND Device Support ----
[*] the framework for SPI-NOR support
<*> Freescale Quad SPI controller

Device Drivers --->
[1] Memory Controller drivers ----

Compile-time Configuration Options

Config Values Defualt Value Description
CONFIG SPI_FSL QUADSPI y/n y Enable QSPI module
CONFIG_MTD_SPI_NOR_BASE y/n v Enables the framework for SPI-NOR

Verification in U-Boot

=> sf probe 0:0

SF: Detected N25Q128A13 with page size 256 Bytes, erase s
=> sf erase 0 100000

SF: 1048576 bytes @ 0x0 Erased: OK

=> sf write 82000000 0 1000

SF: 4096 bytes @ 0x0 Written: OK

=> sf read 81100000 0 1000

SF: 4096 bytes @ 0x0 Read: OK

=> cm.b 81100000 82000000 1000

Total of 4096 byte(s) were the same

Verification in Linux:

The booting log

fsl-quadspi 1550000.quadspi: n25gl28al3 (16384 Kbytes)
fsl-quadspi 1550000.quadspi: QuadSPI SPI NOR flash driver

Erase the QSPI flash

~ # mtd_debug erase /dev/mtd0 0x1100000 1048576
Erased 1048576 bytes from address 0x00000000 in flash

Write the QSPI flash
~ # dd if=/bin/tempfile.debianutils of=tp bs=4096 count=1

~ # mtd debug write /dev/mtd0 0 4096 tp
Copied 4096 bytes from tp to address 0x00000000 in flash

Read the QSPI flash

~ # mtd _debug read /dev/mtd0 0 4096 dump file

ize 4 KiB, total 16 MiB

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

318

NXP Semiconductors

Device Drivers

Copied 4096 bytes from address 0x00000000 in flash to dump file
Check Read and Write

Use compare tools(yacto has tools named diff).

~ # diff tp dump_file

~ #
If diff command has no print log, the QSPI verification is passed.

7.2.8 Real Time Clock (RTC)

Linux SDK for QorlQ Processors

Description
Provides the RTC function.

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers-»> Enable RTC driver
Real Time Clock-->
[*] Set system time from RTC on startup and resume (new)
(rtc0) RTC used to set the system time (new)
<[*] /sys/class/rtc/rtcN (sysfs)
<[*] /proc/driver/rtc (procfs for rtco)
<[*] /dev/rtcN (character devices)

Compile-time Configuration Options

Option Values | Default Value | Description

CONFIG_RTC_LIB y/m/n |y Enable RTC lib

CONFIG_RTC_CLASS y/m/n |y Enable generic RTC class support
CONFIG_RTC_HCTOSYS y/n y Set the system time from RTC when startup and resume
CONFIG_RTC_HCTOSYS_DEVICE "rtc0" RTC used to set the system time
CONFIG_RTC_INTF_SYSFS y/m/n |y Enable RTC to use sysfs

CONFIG_RTC_INTF_PROC y/m/n |y Use RTC through the proc interface
CONFIG_RTC_INTF_DEV y/m/n |y Enable RTC to use /dev interface

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/rtc/ Linux RTC driver

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

319

Linux kernel

Device Tree Binding

Preferred node name: rtc

Property Type Status Description

compatible string Required Should be "dallas,ds3232"

Default node:

i2c@3000
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl-i2c";

reg = <0x3000 0x100>;
interrupts = <43 2>;

interrupt-parent = <&mpics;
dfsrr;
rtc@68 {
compatible = "dallas,ds3232";

reg = <0x68>;
}i
Vi
Verification in Linux

Here is the rtc booting log

rtc-ds3232 1-0068: rtc core: registered ds3232 as rtcO
MC object device driver dpaa2 rtc registered

rtc-ds3232 0-0068: setting system clock to 2000-01-01 00:00:51 UTC (946684851)

NOTE: Please refer to the related DTS file to enable the RTC driver before building.

For example, LS2080AQDS board, should enable the below option:
<*> Dallas/Maxim DS3232

Change the RTC time in Linux Kernel

~ # 1ls /dev/rtc -1

lrwXrwxrwx 1 root root 4 Jan 11 17:55 /dev/rtc -> rtco
~ # date

Sat Jan 1 00:01:38 UTC 2000

~ # hwclock

Sat Jan 1 00:01:41 2000 0.000000 seconds
~ # date 011115502011

Tue Jan 11 15:50:00 UTC 2011

~ # hwclock -w

~ # hwclock

Tue Jan 11 15:50:36 2011 0.000000 seconds
~ # date 011115502010

Mon Jan 11 15:50:00 UTC 2010

~ # hwclock -s

~ # date

Tue Jan 11 15:50:49 UTC 2011

~ #

NOTE: Before using the rtc driver, make sure the /dev/rtc node in your file system

is correct. Otherwise, you need to make correct node for /dev/rtc

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

320

NXP Semiconductors

Device Drivers

7.2.9 Synchronous Audio Interface (SAl)

Description

This document describes how to configure and test SAl audio driver for TWR-LS1021A. The integrated 12S module is NXP's
Synchronous Audio Interface (SAI). The codec is SGTL5000 stereo audio codec.

RCW configuration
Refer to the below table for the RCW for Audio on the TWR-LS1021A.

Board RCW

TWR-LS1021A Bit 364, EC1_EXT_SAI2_TX = 1; Bit 365, EC1_EXT_SAI2_RX
=1; Bit 366-367, EC1_BASE = 00

Kernel Configure Options Tree View

Kernel Configure Tree View Options Description

Enable ALSA SOC driver, 12C
Device Drivers ---> driver and EDMA driver.
<*> T2C support --->

[*] Enable compatibility bits for old user-space
[*] I2C device interface
[*] I2C bus multiplexing support
Multiplexer I2C Chip support --->
<*> Philips PCA954x I2C Mux/switches
[*] Autoselect pertinent helper modules
C Hardware Bus support --->
<*> IMX I2C interface

<*> Voltage and Current Regulator Support --->
[*] Regulator debug support
[*] Provide a dummy regulator if regulator lookups fail
[*] Fixed voltage regulator support

<*> Sound card support
<*> Advanced Linux Sound Architecture ->
[*] 0SS PCM (digital audio) API
[*] 0SS PCM (digital audio) API - Include plugin system
[*] Support old ALSA API
[*] Verbose procfs contents

ALSA for SoC audio support --->

SoC Audio for Freescale CPUs --->

<*> Synchronous Audio Interface (SAI) module support
CODEC drivers --->

<*> Freescale SGTL5000 CODEC
<*> ASoC Simple sound card support
<*> DMA Engine support --->
<*> Freescale eDMA engine support support

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 321

Linux kernel

Table continued from the previous page...

CONFIG_I2C_IMX y/m/n y 12C driver needed for
configuring SGTL5000

CONFIG_SOUND y/m/n y Enable sound card support

CONFIG_SND y/m/n y Enable advanced Linux
sound architecture supports

CONFIG_SND_PCM_0OSS y/m/n y Enable OSS digital audio

CONFIG_SND_PCM_OSS_P | y/m/n y Support conversion of

LUGINS channels, formats and rates

CONFIG_SND_SUPPORT_O | y/m/n y Enable support old ALSA API

LD_API

CONFIG_SND_SOC_FSL_S |y/m/n y Enable SAI module support

Al

CONFIG_SND_SOC_GENE |y/m/n y Enable generic dma engine

RIC_DMAENGINE_PCM for PCM

CONFIG_SND_SIMPLE_CA |y/m/n y Enable generic simple sound

RD card support

CONFIG_SND_SOC_SGTL5 |y/m/n y Enable codec sgtl5000

000 support

CONFIG_FSL_EMDA y/m/n y Enable EDMA engine support

Source Files
The driver source is maintained in the Linux kernel source tree.
Source File Description
sound/soc/fsl ALSA SOC driver source

Verification in Linux

1. The following messages will be shown in the kernel boot process:

sgtl5000 5-000a:

sgtl5000 revision 0x11

sgtl5000 5-000a: Using internal LDO instead of VDDD

ALSA device list:

sgtl5000 <-> 2b60000.sai mapping ok

#0: 2b60000.sai-sgtl5000

. If the device nodes don't already exist, create directory /dev/snd/, and create device nodes with the following commands

in /dev/snd/ directory.

mknod controlCO0 ¢ 116 0
mknod pcmCODOc c¢ 116 24
mknod pcmCODOp c 116 16

On TWR-LS1021A, the LineOut interface is J8 and the Lineln interface is J13

Run the following aplay commands to test playback. Run the following arecord command to test record.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

322

NXP Semiconductors

aplay -f S16 LE -r 44100 -t wav -c 2 44k-lé6bit-stereo.wav

Device Drivers

arecord -d 10 -f S16_LE -r 44100 -t wav -c 2 44k-16bit-stereo-10s.wav

aplay -f S16 LE -r 44100 -t wav -c 2 44k-1l6bit-stereo-10s.wav

5. Use alsamixer to adjust the volume for playing by the option “PCM” and recording gain by the option "Mic" . Use

alsamixer to choose LINE IN or MIC.

7.2.10 Serial Advanced Technology Attachment (SATA)

Description
The driver supports NXP native SATA controller.

Module Loading

SATA driver supports either kernel built-in or module.

Kernel Configure Tree View Options

Description

Device Drivers--->
<*> Serial ATA and Parallel ATA drivers

Enables SATA controller
support on ARM-based

-—->
--- Serial ATA and Parallel ATA drivers SoCs

<*> AHCI SATA support

<*> Freescale QorIQ AHCI SATA support
Compile-time Configuration Options

Option Values Default Value Description
CONFIG_SATA_AHCI=y y/m/n y Enables SATA controller
CONFIG_SATA_AHCI_QORIQ=y y/m/n y Enables SATA controller

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File

Description

drivers/ata/ahci_goriq.c

Platform AHCI SATA support

Test Procedure

Please follow the following steps to use USB in Simics

(1) Boot up the kernel

fsl-sata £fel8000.sata: Sata FSL Platform/CSB Driver init

scsi0 : sata fsl
atal: SATA max UDMA/133 irg 74

fsl-sata ffel9000.sata: Sata FSL Platform/CSB Driver init

scsil : sata fsl
ata2: SATA max UDMA/133 irqg 41

(2) The disk will be found by kernel.

atal: Signature Update detected @ 504 msecs

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

323

Linux kernel

ata2: No Device OR PHYRDY change,Hstatus = 0xa0000000

ata2: SATA link down (SStatus 0 SControl 300)

atal: SATA link up 1.5 Gbps (SStatus 113 SControl 300)
atal.00: ATA-8: WDC WD1600AAJS-22WAAQO, 58.01D58, max UDMA/133
atal.00: 312581808 sectors, multi 0: LBA48 NCQ (depth 16/32)
atal.00: configured for UDMA/133

0 ANST:

scsi 0:0:0:0: Direct-Access ATA WDC WD1600AAJS-2 58.0 PQ:
sd 0:0:0: [sda] 312581808 512-byte logical blocks: (160 GB/149 GiB)
sd 0:0:0: Attached scsi generic sg0 type 0

0

0
sd 0:0:0:0: [sda]l Write Protect is off
sd 0:0:0:0

or FUA

sda: sdal sda2 sda3 sdad4 < sda5 sda6 >
sd 0:0:0:0: [sda]l Attached SCSI disk

(3)play with the disk according to the following log.
[root@ls1046 rootl# fdisk -1 /dev/sda

Disk /dev/sda: 160.0 GB, 160041885696 bytes

255 heads, 63 sectors/track, 19457 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sdal 1 237 1903671 83 Linux
/dev/sda2 238 480 1951897+ 82 Linux swap
/dev/sda3 481 9852 75280590 83 Linux
/dev/sda4 9853 19457 77152162+ £ Win95 Ext'd (LBA)
/dev/sda5 9853 14655 38580066 83 Linux
/dev/sdaé 14656 19457 38572033+ 83 Linux

[root@ls1046 root]#
[root@ls1046 root]l# mke2fs /dev/sdal
mke2fs 1.41.4 (27-Jan-2009)
Filesystem label=
0S type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
65280 inodes, 261048 blocks
13052 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=268435456
8 block groups
32768 blocks per group, 32768 fragments per group
8160 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 22 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@ls1046 rootl#

[root@ls1046 root]# mkdir sata

[root@ls1046 root]# mount /dev/sdal sata

[root@ls1046 rootl# ls sata/

lost+found

[root@ls1046 rootl]l# cp /bin/busybox sata/

[root@ls1046 root]l# umount sata/

[root@ls1046 root]# mount /dev/sdal sata/

[root@ls1046 root]# 1ls sata/

busybox lost+found

[root@ls1046 root]l# umount sata/

[root@ls1046 root]# mount /dev/sda3 /mnt

[root@lsl1046 rootl# df

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 852019676 794801552 13937948 99% /
/dev/root 852019676 794801552 13937948 99% /

tmpfs 1036480 52 1036428 1% /dev

shm 1036480 0 1036480 0% /dev/shm

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

5

[sda] Write cache: enabled, read cache: enabled, doesn't support DPO

324

NXP Semiconductors

Device Drivers

/dev/sda3 74098076 4033092 66300956 6% /mnt

Known Bugs, Limitations, or Technical Issues

* CDROM is not supported due to the silicon limitation

7.2.11 Security Engine (SEC)

SEC Device Drivers

Introduction and Terminology
The Linux kernel contains a Scatterlist Crypto API driver for the NXP SEC v4.x, v5.x security hardware blocks.

It integrates seamlessly with in-kernel crypto users, such as IPsec, in a way that any IPsec suite that configures IPsec tunnels
with the kernel will automatically use the hardware to do the crypto.

SEC v5.x is backward compatible with SEC v4.x hardware, so one can assume that subsequent SEC v4.x references include
SEC v5.x hardware, unless explicitly mentioned otherwise.

SEC v4.x hardware is known in Linux kernel as 'caam’, after its internal block name: Cryptographic Accelerator and Assurance
Module.

There are several HW interfaces ("backends") that can be used to communicate (i.e. submit requests) with the engine, their
availability depends on the SoC:

¢ Register Interface (RI) - available on all SoCs (though access from kernel is restricted on DPAA2 SoCs)
Its main purpose is debugging (for e.g. single-stepping through descriptor commands), though it is used also for RNG
initialization.

¢ Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there are 4 rings

Note: there are cases when fewer rings are accessible / visible in the kernel - for e.g. when firmware like Primary
Protected Application (PPA) reserves one of the rings.

¢ Queue Interface (Ql) - available on SoCs implementing DPAA v1.x (Data Path Acceleration Architecture)
Requests are submitted indirectly via Queue Manager (QMan) HW block that is part of DPAA1.
» Data Path SEC Interface (DPSECI) - available on SoCs implementing DPAA v2.x

Similar to Ql, requests are submitted via Queue Manager (QMan) HW block; however, the architecture is different -
instead of using the platform bus, the Management Complex (MC) bus is used, MC firmware performing needed
configuration to link DP* objects - see DPAA2 Linux Software on page 636 chapter for more details.

NXP provides device drivers for all these interfaces. Current chapter is focused on JRI, though some general / common topics
are also covered. For Ql and DPSECI backends and compatible frontends, please refer to the dedicated chapters: Security Engine
(SEC) on page 629 for DPAA1, Security Engine (SEC) for DPAA2.

On top of these backends, there are the "frontends" - drivers that sit between the Linux Crypto APl and backend drivers. Their
main tasks are to:

¢ register supported crypto algorithms

e process crypto requests coming from users (via the Linux Crypto API) and translate them into the proper format understood
by the backend being used

 forward the CAAM engine responses from the backend being used to the users

Note: It is obvious that Ql and DPSECI backends cannot co-exist (they can be compiled in the same "multi-platform” kernel image,
however run-time detection will make sure only the proper one is active). However, JRI + Ql and JRI + DPSECI are valid
combinations, and both backends will be active if enabled; if a crypto algorithm is supported by both corresponding frontends (for

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 325

Linux kernel

e.g. both caamalg and caamalg_gqi register cbc(aes)), a user requesting cbc(aes) will be bound to the implementation having the
highest "crypto algorithm priority". If the user wants to use a specific implementation:

* itis possible to ask for it explicitly by using the specifc (unique) "driver name" instead of the generic "algorithm name" - please
see official Linux kernel Crypto AP documentation (section Crypto API Cipher References And Priority); currently default
priorities are: 3000 for JRI frontend and 2000 for QI and DPSECI frontends

* crypto algorithm priority could be changed dynamically using the "Crypto use configuration API" (provided that
CONFIG_CRYPTO_USER is enabled); one of the tools available that is capable to do this is "Linux crypto layer configuration
tool" and an example of increasing the priority of QI frontend based implementation of
echainiv(authenc(hmac(sha1),cbc(aes))) algorithm is:

$./crconf update driver "echainiv-authenc-hmac-shal-cbc-aes-caam-gi" type 3 priority 5000

User space

Kernel space

Interface specific

JRI frontends
RNG (caamalg, caamhash,
caam_pkc)

{caammg)

JRI backend (caam_jr)

cryptodev-linux AF_ALG
Linwx Crypto API

DPSECI frontend
(caamalg_qi2)

Ql frontend
(caamalg_qi)

QI backend
(caam) (dpseci)

I N4

Job Ring Interface

(JRI)

Queue Interface
(Qn

Figure 59. Linux kernel - SEC device drivers overview

Source Files

Descriptors library
(caamalg_desc)

Descriptor construction
DPSECI backend library. (inline append /

HW descniption
(CCSR regs, etc)
Power
Management

Init {global settings,
RNG, etc.) (caam)

Register Interface

The drivers source code is maintained in the Linux kernel source tree, under drivers/crypto/caam. Below is a non-exhaustive list
of files, mapping to Figure 59. on page 326 (some files have been omitted since their existence is justified only by driver logic /

design):
Source File(s) Description Module name
ctrl.[c,h] Init (global settings, RNG, power management etc.) caam
desc.h HW description (CCSR registers etc.) N/A
desc_constr.h Inline append - descriptor construction library N/A

caamalg_desc.[c,h]

(Shared) Descriptors library (symmetric encryption, AEAD)

caamalg_desc

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

caamrng.c RNG (runtime) caamrng
jr.lc,h] JRI backend caam_jr
qi.[c,h] Ql backend caam
dpseci.[c,h], dpseci_cmd.h DPSECI backend N/A (built-in)
caamalg.c JRI frontend (symmetric encryption, AEAD) caamalg
caamhash.c JRI frontend (hashing) caamhash
caampkc.c, pkc_desc.c JRI frontend (public key cryptography) caam_pkc

Table continues on the next page...

326

NXP Semiconductors

https://www.kernel.org/doc/html/latest/crypto/architecture.html#crypto-api-cipher-references-and-priority
https://sourceforge.net/projects/crconf
https://sourceforge.net/projects/crconf

Device Drivers

Table continued from the previous page...

Source File(s) Description Module name
caamalg_qi.c Ql frontend (symmetric encryption, AEAD) caamalg_qi
caamalg_gqi2.[c,h] DPSECI frontend (symmetric encryption, AEAD) caamalg_qi2

Module loading

CAAM device drivers can be compiled either built-in or as modules (with the exception of DPSECI backend, which is always built-
in). See section Source Files on page 326 for the list of module names and section Kernel Configuration on page 327 for how
kernel configuration looks like and a mapping between menu entries and modules and / or functionalities enabled.

Kernel Configuration

CAAM device drivers are located in the "Cryptographic API" -> "Hardware crypto devices" sub-menu in the kernel configuration.
Depending on the target platform and / or configuration file(s) used, the output will be different; below is an example taken from
NXP Layerscape SDK for ARMv8 platforms with default options:

Kernel Configure Tree View Options

Description

Cryptographic API --->
[*] Hardware crypto devices --->
<*> Freescale CAAM-Multicore

platform driver backend (SEC)
[] Enable debug output in CAAM

driver

<*> Freescale CAAM Job Ring
driver backend (SEC)

(9) Job Ring size

[] Job Ring interrupt
coalescing

<*> Register algorithm
implementations with the Crypto API

<*> Queue Interface as Crypto
API backend

<*> Register hash algorithm
implementations with Crypto API

<*> Register public key

cryptography implementations with Crypto
API

<*> Register caam device for
hwrng API

<M> QorIQ DPAA2 CAAM (DPSECI)
driver

Enable CAAM device drivers, options:

* basic platform driver: Freescale CAAM-Multicore platform
driver backend (SEC); all non-DPAA2 sub-options depend on
it

¢ backends / interfaces:

— Freescale CAAM Job Ring driver backend (SEC) - JRI;
this also enables QI (Ql depends on JRI)

— QorlQ DPAA2 CAAM (DPSECI) driver - DPSECI
* frontends / crypto algorithms:

— symmetric encryption, AEAD, "stitched" AEAD, TLS;
Register algorithm implementations with the Crypto AP/
- via JRI (caamalg driver) or Queue Interface as Crypto
API backend - via Ql (caamalg_qi drive)

— Register hash algorithm implementations with Crypto
API - hashing (only via JRI - caamhash driver)

— Register public key cryptography implementations with
Crypto API - asymmetric / public key (only via JRI -
caam_pkc driver)

— Register caam device for hwrng APl - HW RNG (only
via JRI - caamrng driver)

— QorlQ DPAA2 CAAM (DPSECI) driver - DPSECI

» options: debugging, JRI ring size, JRI interrupt coalescing

Networking support --->
Network option --->
<*> TCP/IP networking
<*> IP: AH transformation
<*> IP: ESP transformation
<*> IP: IPsec transport mode
<*> IP: IPsec tunnel mode

For IPsec support the TCP/IP networking option and
corresponding sub-options should be enabled.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018

NXP Semiconductors

327

Linux kernel

Device Tree binding

Property Type Status Description

compatible String Required fsl,sec-vX.Y (preferred) OR fsl,secX.Y

Sample Device Tree crypto node

crypto@30000 {

compatible = "fsl,sec-v4.0";
fsl,sec-era = <2>;
#address-cells = <1>;

#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpics>;
interrupts = <92 2>;
clocks = <&clks IMX6QDL_CLK_CAAM MEM>,
<&clks IMX6QDL_CLK CAAM ACLK>,
<&clks IMX6QDL_CLK CAAM IPG>,
<&clks IMX6QDL_CLK EIM SLOW>;
clock-names = "mem", "aclk", "ipg", "emi slow";

NOTE
See linux/Documentation/devicetree/bindings/crypto/fsl-sec4.ixt file in the Linux kernel tree for more info.

How to test the drivers

To test the drivers, under the "Ccryptographic API -> Cryptographic algorithm manager" kernel configuration sub-menu,
ensure that run-time self tests are not disabled, i.e. the "Disable run-time self tests" entry is not set
(CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=n). This will run standard test vectors against the drivers after they register
supported algorithms with the kernel crypto API, usually at boot time. Then run test on the target system. Below is a snippet
extracted from the boot log of ARMv8-based LS1046A platform, with JRI and QI enabled:

[...]

platform caam gi: Linux CAAM Queue I/F driver initialised
caam 1700000.crypto: Instantiated RNG4 SH1

caam 1700000.crypto: device ID = 0x0al1030100000000 (Era 8)
caam 1700000.crypto: job rings = 4, gi = 1, dpaa2 = no

alg: No test for authenc (hmac(sha224),ecb(cipher null)) (authenc-hmac-sha224-ecb-cipher null-
Z?;T)NO test for authenc (hmac(sha256),ecb(cipher null)) (authenc-hmac-sha256-ecb-cipher null-
:?;T)No test for authenc (hmac(sha384),ecb(cipher null)) (authenc-hmac-sha384-ecb-cipher null-
Z?;T)NO test for authenc (hmac(sha512),ecb(cipher null)) (authenc-hmac-sha5l12-ecb-cipher null-
:?;T)No test for authenc (hmac (md5) ,cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)

iig%)NO test for echainiv (authenc (hmac (md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-

alg: No test for echainiv(authenc (hmac(shal), cbc(aes))) (echainiv-authenc-hmac-shal-cbc-aes-
caam)

alg: No test for authenc (hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam)

alg: No test for echainiv(authenc (hmac (sha224),cbc(aes))) (echainiv-authenc-hmac-sha224-cbc-
aes-caam)

alg: No test for echainiv(authenc (hmac (sha256),cbc(aes))) (echainiv-authenc-hmac-sha256-cbc-
aes-caam)

alg: No test for authenc (hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-caam)

alg: No test for echainiv(authenc (hmac(sha384),cbc(aes))) (echainiv-authenc-hmac-sha384-cbc-
aes-caam)

alg: No test for echainiv(authenc (hmac (sha512),cbc(aes))) (echainiv-authenc-hmac-sha512-cbc-
aes-caam)

alg: No test for authenc (hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac (md5),cbc(des3 ede))) (echainiv-authenc-hmac-md5-cbc-

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
328 NXP Semiconductors

Device Drivers

des3 ede-caam)

alg: No test for echainiv(authenc (hmac (shal),h cbc(des3 ede))) (echainiv-authenc-hmac-shal-cbc-
des3_ede-caam)

alg: No test for echainiv(authenc (hmac (sha224),cbc(des3 ede))) (echainiv-authenc-hmac-sha224-
cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac (sha256),cbc(des3 ede))) (echainiv-authenc-hmac-sha256-
cbc-des3_ede-caam)

alg: No test for echainiv(authenc (hmac(sha384),cbc(des3 ede))) (echainiv-authenc-hmac-sha384-
cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac(sha512),cbc(des3 ede))) (echainiv-authenc-hmac-sha512-
cbc-des3_ede-caam)

alg: No test for authenc (hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam)

alg: No test for echainiv(authenc (hmac (md5),cbc(des))) (echainiv-authenc-hmac-md5-cbc-des-
caam)

alg: No test for echainiv(authenc (hmac(shal),cbc(des))) (echainiv-authenc-hmac-shal-cbc-des-
caam)

alg: No test for echainiv(authenc (hmac (sha224),cbc(des))) (echainiv-authenc-hmac-sha224-cbc-
des-caam)
alg: No test for echainiv(authenc (hmac (sha256),cbc(des))) (echainiv-authenc-hmac-sha256-cbc-
des-caam)
alg: No test for echainiv(authenc (hmac (sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-
des-caam)

alg: No test for echainiv(authenc (hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-
des-caam)

alg: No test for authenc (hmac(md5),rfc3686 (ctr(aes))) (authenc-hmac-md5-rfc3686-ctr-aes-caam)
alg: No test for segiv(authenc (hmac (md5),rfc3686 (ctr(aes)))) (segiv-authenc-hmac-md5-rfc3686-
ctr-aes-caam)

alg: No test for authenc (hmac(shal),rfc3686(ctr(aes))) (authenc-hmac-shal-rfc3686-ctr-aes-
caam)

alg: No test for segiv(authenc (hmac(shal),rfc3686(ctr(aes)))) (segiv-authenc-hmac-shal-
rfc3686-ctr-aes-caam)

alg: No test for authenc (hmac(sha224),rfc3686(ctr(aes))) (authenc-hmac-sha224-rfc3686-ctr-
aes-caam)

alg: No test for segiv(authenc (hmac (sha224),rfc3686(ctr(aes)))) (segiv-authenc-hmac-sha224-
rfc3686-ctr-aes-caam)

alg: No test for authenc (hmac(sha256),rfc3686(ctr(aes))) (authenc-hmac-sha256-rfc3686-ctr-
aes-caam)

alg: No test for segiv(authenc (hmac (sha256),rfc3686(ctr(aes)))) (segiv-authenc-hmac-sha256-
rfc3686-ctr-aes-caam)

alg: No test for authenc (hmac(sha384),rfc3686(ctr(aes))) (authenc-hmac-sha384-rfc3686-ctr-
aes-caam)

alg: No test for segiv(authenc (hmac (sha384),rfc3686(ctr(aes)))) (segiv-authenc-hmac-sha384-
rfc3686-ctr-aes-caam)

alg: No test for authenc (hmac(sha512),rfc3686(ctr(aes))) (authenc-hmac-sha512-rfc3686-ctr-
aes-caam)

alg: No test for segiv(authenc (hmac (sha512),rfc3686(ctr(aes)))) (segiv-authenc-hmac-sha512-

rfc3686-ctr-aes-caam)
caam algorithms registered in /proc/crypto

alg: No test for authenc (hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qgi)

alg: No test for echainiv(authenc (hmac (md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-
caam-qgi)

alg: No test for echainiv(authenc (hmac (shal),h cbc(aes))) (echainiv-authenc-hmac-shal-cbc-aes-
caam-qgi)

alg: No test for authenc (hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam-gi)

alg: No test for echainiv(authenc (hmac(sha224),cbc(aes))) (echainiv-authenc-hmac-sha224-cbc-
aes-caam-gi)

alg: No test for echainiv(authenc (hmac (sha256),cbc(aes))) (echainiv-authenc-hmac-sha256-cbc-
aes-caam-gi)

alg: No test for authenc (hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-caam-gi)

alg: No test for echainiv(authenc (hmac (sha384),cbc(aes))) (echainiv-authenc-hmac-sha384-cbc-
aes-caam-gi)

alg: No test for echainiv(authenc (hmac (sha512),cbc(aes))) (echainiv-authenc-hmac-sha512-cbc-
aes-caam-gi)

alg: No test for authenc (hmac(md5),cbc(des3 ede)) (authenc-hmac-md5-cbc-des3 ede-caam-qgi)
alg: No test for echainiv(authenc (hmac (md5),cbc(des3 ede))) (echainiv-authenc-hmac-md5-cbc-

des3 ede-caam-gi)
alg: No test for echainiv(authenc (hmac(shal),h cbc(des3_ede))) (echainiv-authenc-hmac-shal-cbc-
des3 ede-caam-qgi)
alg: No test for echainiv(authenc (hmac(sha224),cbc(des3 ede))) (echainiv-authenc-hmac-sha224-

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 329

Linux kernel

cbc-des3 ede-caam-qgi)

alg: No test for echainiv(authenc (hmac(sha256),cbc(des3 ede))) (echainiv-authenc-hmac-sha256-
cbc-des3_ede-caam-qgi)

alg: No test for echainiv(authenc (hmac (sha384),cbc(des3 ede))) (echainiv-authenc-hmac-sha384-
cbc-des3 ede-caam-qgi)

alg: No test for echainiv(authenc (hmac(sha512),cbc(des3 ede))) (echainiv-authenc-hmac-sha512-
cbc-des3_ede-caam-qgi)

alg: No test for authenc (hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam-qgi)

alg: No test for echainiv(authenc (hmac (md5),cbc(des))) (echainiv-authenc-hmac-md5-cbc-des-
caam-gi)

alg: No test for echainiv(authenc (hmac(shal),cbc(des))) (echainiv-authenc-hmac-shal-cbc-des-
caam-qgi)

alg: No test for echainiv(authenc (hmac (sha224),cbc(des))) (echainiv-authenc-hmac-sha224-cbc-
des-caam-gi)

alg: No test for echainiv(authenc (hmac (sha256),cbc(des))) (echainiv-authenc-hmac-sha256-cbc-
desi-caam-qgi)

alg: No test for echainiv(authenc (hmac (sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-
des-caam-gi)

alg: No test for echainiv(authenc (hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-

des-caam-qgi)

platform caam gi: algorithms registered in /proc/crypto

caam_jr 1710000.jr: registering rng-caam

caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto
[...]

Crypto algorithms support

Algorithms Supported in the linux kernel scatterlist Crypto API

The Linux kernel contains various users of the Scatterlist Crypto API, including its IPsec implementation, sometimes referred to
as the NETKEY stack. The driver, after registering supported algorithms with the Crypto API, is therefore used to process per-
packet symmetric crypto requests and forward them to the SEC hardware.

Since SEC hardware processes requests asynchronously, the driver registers asynchronous algorithm implementations with the
crypto API: ahash, ablkcipher, and aead with CRYPTO_ALG_ASYNC set in .cra_flags.

Different combinations of hardware and driver software version support different sets of algorithms, so searching for the driver
name in /proc/crypto on the desired target system will ensure the correct report of what algorithms are supported.

Authenticated Encryption with Associated Data (AEAD) algorithms

These algorithms are used in applications where the data to be encrypted overlaps, or partially overlaps, the data to be
authenticated, as is the case with IPsec and TLS protocols. These algorithms are implemented in the driver such that the hardware
makes a single pass over the input data, and both encryption and authentication data are written out simultaneously. The AEAD
algorithms are mainly for use with IPsec ESP (however there is also support for TLS 1.0 record layer encryption).

CAAM drivers currently supports offloading the following AEAD algorithms:

« "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-EDE, RFC3686-CTR-AES } x HMAC-{MD-5,
SHA-1,-224,-256,-384,-512}

¢ "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and RFC4106-GCM-AES
* TLS 1.0 record layer encryption using the "stitched" AEAD cipher suite CBC-AES-HMAC-SHA1

Encryption algorithms

The CAAM driver currently supports offloading the following encryption algorithms.

Authentication algorithms

The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing algorithms.

Asymmetric (public key) algorithms

Currently, RSA is the only public key algorithm supported.

Random Number Generation

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
330 NXP Semiconductors

Device Drivers

caamrng frontend driver supports random number generation services via the kernel's built-in hwrng interface when implemented

in hardware. To enable:

1. verify that the hardware random device file, e.g., /dev/hwrng or /dev/hwrandom exists. If it doesn't exist, make it with:

$ mknod /dev/hwrng c¢ 10 183

2. verify /dev/hwrng doesn't block indefinitely and produces random data:

$ rngtest -C 1000 < /dev/hwrng

3. verify the kernel gets entropy:

$ rngtest -C 1000 < /dev/random

If it blocks, a kernel entropy supplier daemon, such as rngd, may need to be run. See linux/Documentation/hw_random.txt for

more info.

Table 83. Algorithms supported by each interface / backend

Algorithm name / Backend

Job Ring Interface

Queue Interface

DPSEC Interface

rsa

Yes

No

No

tis10(hmac(shat),cbc(aes))

No

Yes

Yes

authenc(hmac(md>5),cbc(aes)

)

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha1),cbc(aes

)

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha224),cbc(a
es))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha256),cbc(a
es))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha384),cbc(a
es))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha512),cbc(a
es))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(md>5),cbc(des
3_ede))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha1),cbc(des
3_ede))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha224),cbc(d
es3_ede))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv)

authenc(hmac(sha256),cbc(d
es3_ede))
