
Layerscape Software Development Kit 18.03
Documentation

NXP Semiconductors Document Number: LSDK

Reference Manual Rev. 18.03, 04/2018

Contents

Chapter 1 About this document..16

Chapter 2 Acronyms and abbreviations.. 18

Chapter 3 Release notes... 23
3.1 What's New.. 23
3.2 Components...29
3.3 Feature Support Matrix.. 33
3.4 Supported Targets..35
3.5 Fixed, Open, and Closed Issues.. 36

Chapter 4 Layerscape SDK user guide..41
4.1 LSDK Quick Start...41

4.1.1 Download and assemble LSDK images.. 41
4.1.2 Deploy LSDK Images on the target board... 43

4.1.2.1 Deploy LSDK images from Linux Host... 43
4.1.2.2 Deploy LSDK images on board.. 46

4.1.3 Deploy LSDK Images for secure boot on the target board.. 48
4.1.3.1 Deploy LSDK images from Linux Host... 49
4.1.3.2 Deploy LSDK Secure images on board.. 51

4.2 How to build LSDK with Flexbuild.. 54
4.3 Advanced Use Case Instructions .. 59
4.4 Procedure to Run Secure Boot.. 62

4.4.1 Prepare board for Secure Boot..62
4.4.2 Running secure boot on target platforms.. 63
4.4.3 Steps to run Chain of Trust with Confidentiality.. 65

4.5 LSDK Memory Layout..66
4.6 Board-specific Information... 67

4.6.1 TWR-LS1021A.. 67
4.6.1.1 On-board Switch Settings... 67
4.6.1.2 Clock Frequency...68
4.6.1.3 U-Boot Environment Variables..68
4.6.1.4 Supported Boot Options... 68
4.6.1.5 System Memory Map..68
4.6.1.6 NOR Flash (Virtual) Banks... 69
4.6.1.7 Supported Reset Configuration Word (RCW) Binaries...70
4.6.1.8 FlexCAN User Manual.. 71

4.6.2 LS1012ARDB.. 76
4.6.2.1 On-board Switch Settings...76
4.6.2.2 U-Boot Environment Variables... 76
4.6.2.3 Supported Boot Options...76
4.6.2.4 System Memory Map... 77

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
2 NXP Semiconductors

4.6.2.5 Supported Reset Configuration Word (RCW) Binaries.. 77
4.6.2.6 Flash Bank Usage..77
4.6.2.7 Basic Networking Ping Test... 79
4.6.2.8 Check 'Link Up' for Serial Ethernet Interfaces..82

4.6.3 LS1043ARDB..83
4.6.3.1 On-board Switch Settings.. 83
4.6.3.2 Supported boot options..83
4.6.3.3 U-Boot Environment Variables... 83
4.6.3.4 System Memory Map... 84
4.6.3.5 NOR Flash (Virtual) Banks.. 84
4.6.3.6 Supported Reset Configuration Word (RCW) Binaries.. 85
4.6.3.7 Frame Manager Microcode (FMan ucode)...87

4.6.4 LS1046ARDB..87
4.6.4.1 On-board Switch Settings.. 87
4.6.4.2 Supported Boot Options...88
4.6.4.3 U-Boot Environment Variables... 88
4.6.4.4 System Memory Map... 88
4.6.4.5 QSPI Flash (Virtual) Banks..89
4.6.4.6 Supported Reset Configuration Word (RCW) Binaries.. 90
4.6.4.7 Frame Manager Microcode (FMan ucode)...92

4.6.5 LS1088ARDB..93
4.6.5.1 On-board Switch Settings.. 93
4.6.5.2 Supported Boot Types..93
4.6.5.3 Booting...93
4.6.5.4 U-Boot Environment Variables... 95
4.6.5.5 Supported Reset Configuration Word (RCW) Binaries.. 97
4.6.5.6 Ethernet MAC Connectivity..97

4.6.6 LS2088ARDB..98
4.6.6.1 On-board Switch Settings.. 98
4.6.6.2 Supported Boot Options...100
4.6.6.3 Booting... 100
4.6.6.4 U-Boot Environment Variables... 101
4.6.6.5 NOR Flash (Virtual) Banks...101
4.6.6.6 Supported RCW (Reset Configuration Word) Binaries.. 103
4.6.6.7 Ethernet MAC Connectivity.. 105

Chapter 5 Bootloaders...107
5.1 General boot flow... 107
5.2 U-Boot.. 108

5.2.1 LSDK U-Boot uses distro boot feature.. 108
5.3 UEFI... 110

5.3.1 Introduction..112
5.3.2 UEFI overview... 113
5.3.3 LSDK distro boot with UEFI...115
5.3.4 Product Execution..119

5.3.4.1 Flash Layout... 119
5.3.4.2 LS1043ARDB... 120
5.3.4.3 LS1046ARDB... 122
5.3.4.4 LS2088ARDB...124

5.3.5 LSDK Distro Boot Logs... 127
5.3.6 PXE Boot...140

5.3.6.1 Creating the PXE Boot Setup...141

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 3

5.3.6.2 Installing the Kernel..142

Chapter 6 Security... 146
6.1 Secure boot..146

6.1.1 Hardware Pre-Boot Loader (PBL) based platforms... 146
6.1.1.1 Introduction... 146
6.1.1.2 Secure boot process... 147
6.1.1.3 Pre-boot phase..147
6.1.1.4 ISBC phase... 148

6.1.1.4.1 Flow in the ISBC code..148
6.1.1.4.2 Super Root Keys (SRKs) and signing keys.. 149
6.1.1.4.3 Key revocation..149
6.1.1.4.4 Alternate image support...150
6.1.1.4.5 ESBC with CSF header..150

6.1.1.5 ESBC phase..150
6.1.1.5.1 Boot script.. 151

6.1.1.6 Next executable (Linux phase).. 155
6.1.1.7 Product execution..155

6.1.1.7.1 Introduction... 155
6.1.1.7.2 Chain of Trust with confidentiality... 156
6.1.1.7.3 ISBC Key Extension (IE)... 160

6.1.1.8 Troubleshooting... 166
6.1.1.9 CSF Header Data Structure.. 166
6.1.1.10 ISBC Validation Error Codes... 175
6.1.1.11 ESBC Validation Error Codes.. 179
6.1.1.12 Trust Architecture and SFP Information...180

6.1.2 Service Processor (SP) Based Platforms.. 181
6.1.2.1 Secure Boot Introduction.. 181

6.1.2.1.1 Secure Boot process.. 182
6.1.2.2 ISBC Phase.. 184

6.1.2.2.1 ISBC for PBI validation.. 184
6.1.2.2.2 ISBC for Boot1 (Boot Loader 1) validation...185

6.1.2.3 ESBC Phase...185
6.1.2.3.1 esbc_validate command.. 185
6.1.2.3.2 esbc_halt command.. 186
6.1.2.3.3 blob enc command.. 186
6.1.2.3.4 blob dec command.. 186
6.1.2.3.5 Boot Script... 186

6.1.2.4 Next executable phase... 189
6.1.2.5 Product Execution...189

6.1.2.5.1 Introduction..189
6.1.2.5.2 Chain of Trust with confidentiality.. 190
6.1.2.5.3 ISBC Key Extension (IE)..193

6.1.2.6 PBI structure...208
6.1.2.7 CSF header structure definition..209
6.1.2.8 CSF header structure definition..216
6.1.2.9 Secure boot specific RCW fields.. 221
6.1.2.10 ISBC error codes.. 222
6.1.2.11 ESBC error codes... 229
6.1.2.12 Troubleshooting.. 230

6.1.3 Code Signing Tool... 230
6.1.3.1 Key generation..231

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
4 NXP Semiconductors

6.1.3.1.1 gen_keys..231
6.1.3.1.2 gen_otpmk_drbg.. 232
6.1.3.1.3 gen_drv_drbg...234

6.1.3.2 Header creation.. 235
6.1.3.2.1 uni_pbi...235
6.1.3.2.2 uni_pbi (create_hdr_pbi)..238
6.1.3.2.3 uni_sign... 243
6.1.3.2.4 uni_sign (create_hdr_isbc).. 246
6.1.3.2.5 uni_sign (create_hdr_esbc)... 250

6.1.3.3 Signature generation.. 253
6.1.3.3.1 gen_sign..255
6.1.3.3.2 sign_embed...255

6.2 Trusted Execution (OP-TEE)..256
6.2.1 Introduction... 256

6.2.1.1 Support Platform.. 257
6.2.1.2 Test Sequence..257

6.2.2 Appendix A: Loading OP-TEE OS binary... 257
6.2.3 Appendix B: Initialization flow of OP-TEE OS... 258
6.2.4 Appendix C: Runtime flow of OP-TEE...259

6.3 Fuse Provisioning User Guide..260
6.3.1 Introduction... 260
6.3.2 Fuse Programming Scenarios...261

6.3.2.1 Fuse Provisioning during OEM Manufacturing... 261
6.3.3 Fuse Provisioning Utility.. 262

6.3.3.1 Fuse file structure...263
6.3.3.2 Sample input file for fuse provisioning tool...263

6.3.4 Steps to build fuse provisioning firmware image... 265
6.3.5 Deploy and run fuse provisioning..265

6.3.5.1 Enable POVDD for SFP... 265
6.3.5.2 Deploy firmware image on board... 265
6.3.5.3 Run firmware image on board..265

6.3.6 Validation.. 266
6.3.7 Error Codes...266

6.4 PKCS#11 and Secure Object Library ..268
6.4.1 Introduction... 268
6.4.2 Supported APIs...270

6.4.2.1 PKCS#11 Library – libpkcs11...270
6.4.2.2 Secure Object Library – libsecure_obj... 271
6.4.2.3 Integrating Secure Object Library with OpenSSL...274

6.4.2.3.1 OpenSSL Engine – libeng_secure_obj... 274
6.4.2.3.2 Example Usage with OpenSSL... 274

6.4.3 Board Bootup & Running applications.. 276
6.4.3.1 Board Bootup... 276
6.4.3.2 Running applications..276

6.4.3.2.1 sobj_app... 277
6.4.3.2.2 pkcs11_app... 279
6.4.3.2.3 mp_app... 283
6.4.3.2.4 mp_verify.. 284
6.4.3.2.5 sobj_eng_app... 284

6.4.4 Validation.. 285
6.4.5 Appendix... 285

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 5

Chapter 7 Linux kernel.. 289
7.1 Configuring and building... 290
7.2 Device Drivers.. 293

7.2.1 Enhanced Direct Memory Access (eDMA).. 293
7.2.2 CAAM Direct Memory Access (DMA).. 295
7.2.3 Enhanced Secured Digital Host Controller (eSDHC)...297
7.2.4 IEEE 1588..301
7.2.5 Integrated Flash Controller (IFC)... 304

7.2.5.1 Integrated Flash Controller NOR Flash User Manual... 304
7.2.5.2 Integrated Flash Controller NAND Flash User Manual... 309

7.2.6 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)... 315
7.2.7 Quad Serial Peripheral Interface (QSPI)..317
7.2.8 Real Time Clock (RTC)..319
7.2.9 Synchronous Audio Interface (SAI)..321
7.2.10 Serial Advanced Technology Attachment (SATA)...323
7.2.11 Security Engine (SEC)...325
7.2.12 Time Division Multiplexing (TDM).. 337
7.2.13 Universal Serial Bus Interfaces..341

7.2.13.1 USB 2.0 Host Driver User Manual.. 341
7.2.13.2 USB 2.0 Gadget Network Driver User Manual... 352
7.2.13.3 USB 3.0 Host/Peripheral Linux Driver User Manual... 356

7.2.14 Watchdog...365
7.2.15 QUICC Engine Time Division Multiplexing User Manual... 366

Chapter 8 QorIQ networking technologies..371
8.1 Summary of networking technologies..371
8.2 DPAA1-specific Software..371

8.2.1 DPAA Software Architecture Overview..371
8.2.1.1 Introduction...371

8.2.1.1.1 General architectural considerations..372
8.2.1.1.2 Multicore design...372
8.2.1.1.3 Parse/classification software offload.. 372
8.2.1.1.4 Flow order considerations.. 373
8.2.1.1.5 Managing flow-to-core affinity...374

8.2.1.2 DPAA1 Goals..376
8.2.1.3 FMan Overview...376
8.2.1.4 QMan Overview..378
8.2.1.5 QMan Scheduling...382
8.2.1.6 BMan.. 386
8.2.1.7 Order Handling... 386
8.2.1.8 Pool Channels.. 389
8.2.1.9 Application Mapping... 393
8.2.1.10 FQ/WQ/Channel... 396

8.2.2 Linux Ethernet...399
8.2.2.1 Introduction.. 399
8.2.2.2 The DPAA1-Ethernet view of the world.. 400

8.2.2.2.1 The Linux kernel APIs ..400
8.2.2.2.2 The Driver's building blocks ..401

8.2.2.3 DPAA1 resources initialization... 402
8.2.2.3.1 What, Why and How resources are initialized... 402
8.2.2.3.2 Hashing/PCD frame queues... 403

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
6 NXP Semiconductors

8.2.2.4 The (Simplified) Life of a packet...403
8.2.2.4.1 Private net device: Tx..403
8.2.2.4.2 Private net device: Rx... 404

8.2.2.5 Private DPAA1 ethernet driver... 404
8.2.2.5.1 Network driver...405
8.2.2.5.2 Configuration...406
8.2.2.5.3 Features.. 410

8.2.2.6 Quality of Service...417
8.2.2.6.1 Policing..417
8.2.2.6.2 Scheduling and Shaping... 417

8.2.2.7 Debugging..426
8.2.2.7.1 Ethtool support.. 426
8.2.2.7.2 Read/Write of FMan Registers...427
8.2.2.7.3 Sysfs support...427

8.2.2.8 Frequently Asked Questions.. 428
8.2.2.9 Known Issues...429

8.2.3 Queue Manager (QMan) and Buffer Manager (BMan)... 429
8.2.3.1 QMan/BMan Drivers Introduction...430
8.2.3.2 QMan BMan API Reference Manual..436

8.2.3.2.1 Introduction to the Queue Manager and the Buffer Manager......................................436
8.2.3.2.2 Buffer Manager... 436
8.2.3.2.3 BMan CoreNet portal APIs..440
8.2.3.2.4 Queue Manager.. 445
8.2.3.2.5 QMan portal APIs... 453
8.2.3.2.6 Sysfs and debugfs QMan/BMan interfaces... 467
8.2.3.2.7 Error handling and reporting... 480
8.2.3.2.8 Operating system specifics... 480

8.2.4 Configuring DPAA Frame Queues.. 481
8.2.4.1 Introduction.. 481
8.2.4.2 FMan Network interface Frame Queue Configuration..482
8.2.4.3 FMan network interface ingress FQs configuration..482
8.2.4.4 Ingress FQs common configuration guidelines.. 483
8.2.4.5 Dynamic load balancing with order preservation - ingress FQs configuration guidelines.......... 484
8.2.4.6 Dynamic load balancing with order restoration - ingress FQs configuration guidelines............. 484
8.2.4.7 Static distribution - Ingress FQs Configuration Guidelines...485
8.2.4.8 FMan network interface egress FQs configuration.. 486
8.2.4.9 Accelerator Frame Queue Configuration..486
8.2.4.10 DPAA1 Frame Queue Configuration Guideline Summary..487

8.2.5 Frame Manager...490
8.2.5.1 Frame Manager Linux Driver User Guide.. 490

8.2.5.1.1 Introduction..490
8.2.5.1.2 The Linux FMD Devices.. 492
8.2.5.1.3 Linux FMD Programming Model.. 494
8.2.5.1.4 Frame Manager Linux Driver API Reference...496

8.2.5.2 Frame Manager Driver User Guide..506
8.2.5.2.1 Introduction... 506
8.2.5.2.2 Frame Manager Features..506
8.2.5.2.3 Frame Manager Driver Components...507
8.2.5.2.4 Driver Modules in the System... 508
8.2.5.2.5 FMan Driver Calling Sequence... 509
8.2.5.2.6 Global FMan Driver... 510
8.2.5.2.7 FMan Parse-Classify-Distribute Driver.. 512
8.2.5.2.8 FMan Port Driver...538
8.2.5.2.9 FMan MAC Driver... 545
8.2.5.2.10 FMan VSP Driver.. 546

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 7

8.2.5.2.11 FMan RTC (IEEE 1588) Driver ...548
8.2.5.2.12 FMan MURAM Driver..550
8.2.5.2.13 Supported Network Protocols... 550

8.2.6 Frame Manager Configuration Tool User Guide..554
8.2.6.1 Introduction.. 554
8.2.6.2 FMC Tool Features...554
8.2.6.3 FMC Tool Components and Packaging..555
8.2.6.4 FMC Tool - Runtime Environment Mode.. 555
8.2.6.5 FMC Tool - Host Mode... 556

8.2.6.5.1 Host Mode Output - C Source Code Files...557
8.2.6.6 FMC Tool Command-Line Arguments..558
8.2.6.7 The NetPDL and NetPCD XML Markup Languages..559
8.2.6.8 Protocol files...559

8.2.6.8.1 Standard Protocol File...559
8.2.6.8.2 Custom Protocol File... 560

8.2.6.9 Policy file.. 560
8.2.6.9.1 Distribution Section... 561
8.2.6.9.2 Policy Section..565
8.2.6.9.3 Classification Section..570
8.2.6.9.4 Policer Section.. 571

8.2.6.10 Configuration File... 573
8.2.6.11 NXP NetPDL Reference... 573

8.2.6.11.1 Basic XML Rules..573
8.2.6.11.2 The netpdl Element.. 574
8.2.6.11.3 The protocol element..574
8.2.6.11.4 The format element..576
8.2.6.11.5 The execute-code element...577
8.2.6.11.6 Expressions... 584
8.2.6.11.7 Tips and Recommendations.. 593
8.2.6.11.8 Limitations..594

8.2.6.12 NetPCD Reference...594
8.2.6.12.1 The netpcd element.. 594
8.2.6.12.2 The policy element.. 595
8.2.6.12.3 The dist_order element... 596
8.2.6.12.4 The distributionref element..596
8.2.6.12.5 The distribution element..597
8.2.6.12.6 The key element..599
8.2.6.12.7 The fieldref element.. 599
8.2.6.12.8 The queue element... 600
8.2.6.12.9 The protocols and protocolref elements.. 600
8.2.6.12.10 The combine element..602
8.2.6.12.11 The action element (for use in a policy file)... 603
8.2.6.12.12 The classification element...605
8.2.6.12.13 The entry element... 608
8.2.6.12.14 The policer element...609
8.2.6.12.15 The nonheader element.. 610
8.2.6.12.16 Hash Tables...612
8.2.6.12.17 Virtual Storage Profiles Element..612
8.2.6.12.18 Manipulation Parameters...613

8.2.6.13 Standard Protocol File - Excerpt...622
8.2.6.14 Custom Protocol File - GTP Protocol Example...628

8.2.7 Security Engine (SEC)..629
8.2.8 Decompression/Compression Acceleration (DCE)... 631

8.3 DPAA2-specific Software... 633
8.3.1 DPAA2 Software Overview..633

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
8 NXP Semiconductors

8.3.1.1 Introduction...633
8.3.1.2 DPAA2 Hardware..634

8.3.1.2.1 Introduction..634
8.3.1.2.2 DPAA2 hardware... 634
8.3.1.2.3 LS2088A block diagram...635

8.3.1.3 DPAA2 Linux Software..636
8.3.1.3.1 Introduction..637
8.3.1.3.2 Linux and DPAA2...637
8.3.1.3.3 DPAA2, Management Complex, and drivers... 638
8.3.1.3.4 DPAA2 and plug-and-play... 638
8.3.1.3.5 Datapath layout files and restool..639

8.3.1.4 DPAA2 Networking Subsystem Deeper Dive..639
8.3.1.4.1 DPAA2 hardware abstraction example.. 640
8.3.1.4.2 Management Complex: How DPAA2 objects are created and managed.....................647
8.3.1.4.3 Objects and topology...653
8.3.1.4.4 AIOP in DPAA2..655

8.3.2 DPAA2 Standard Linux Documentation.. 656
8.3.2.1 Kernel Documentation Directory.. 656
8.3.2.2 DPAA2 Resource Management Tool (restool) User Manual.. 661

8.3.2.2.1 DPRC commands... 662
8.3.2.2.2 DPNI Commands.. 669
8.3.2.2.3 DPIO Commands..673
8.3.2.2.4 DPSW Commands.. 676
8.3.2.2.5 DPBP Commands...679
8.3.2.2.6 DPCON Commands..680
8.3.2.2.7 DPCI Commands.. 682
8.3.2.2.8 DPSECI Commands... 684
8.3.2.2.9 DPDMUX Commands... 686
8.3.2.2.10 DPMCP Commands..689
8.3.2.2.11 DPMAC Commands.. 690
8.3.2.2.12 DPDCEI Commands... 692
8.3.2.2.13 DPAIOP Commands..694

8.3.3 DPAA2 User Manual... 696
8.3.4 DPAA2 API Reference Manual..696
8.3.5 Backplane Support on Layerscape... 696

8.3.5.1 Overview.. 696
8.3.5.1.1 10GBase-KR Support on Layerscape Platforms... 697
8.3.5.1.2 Physical Layer Signaling System...697
8.3.5.1.3 Auto-negotiation...697
8.3.5.1.4 Link Training.. 697

8.3.5.2 Enable Backplane Support on Layerscape..697
8.3.5.2.1 Setup...697
8.3.5.2.2 Enable Backplane Connection from MC... 698
8.3.5.2.3 Enable Backplane Support in Linux Kernel...698
8.3.5.2.4 SerDes Setup..700
8.3.5.2.5 Board Configuration.. 700

8.3.5.3 Use Cases... 700
8.3.6 AIOP..701

8.3.6.1 AIOP Sample Applications... 701
8.3.6.1.1 Creating AIOP Containers... 701
8.3.6.1.2 AIOP Packet Reflector Application.. 702
8.3.6.1.3 AIOP Packet Classifier Application..704
8.3.6.1.4 AIOP Control Flow Application.. 708
8.3.6.1.5 AIOP Header Manipulation Application... 712
8.3.6.1.6 AIOP Statistics Application.. 715

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 9

8.3.6.1.7 AIOP QoS_demo Application.. 717
8.3.6.2 AIOP Tool User's Guide... 720

8.3.6.2.1 Introduction... 720
8.3.6.2.2 DPAA2 Software..720
8.3.6.2.3 Product Description...720
8.3.6.2.4 System Requirements... 721
8.3.6.2.5 AIOP Tool Usage.. 721
8.3.6.2.6 Known Limitations...726
8.3.6.2.7 Sample VFIO Binding Script... 726
8.3.6.2.8 Steps For Dynamic DPRC Suitable For AIOP Tool Using restool............................... 727

8.3.6.3 AIOP User Manual... 728
8.3.6.4 AIOP Program Profiling.. 728

8.3.6.4.1 Overview... 729
8.3.6.4.2 AIOP Program Design: Budgets Per Processing Elements...729
8.3.6.4.3 AIOP Program Profiling and Performance Tuning... 730
8.3.6.4.4 FDMA/CDMA.. 735
8.3.6.4.5 Core Profiling...738
8.3.6.4.6 Memory profiling..741
8.3.6.4.7 CTLU - Parser... 742
8.3.6.4.8 OSM.. 743
8.3.6.4.9 Statistics Engine..747
8.3.6.4.10 IP Fragmentation (IPF).. 748
8.3.6.4.11 IP Reassembly (IPR)... 748
8.3.6.4.12 IPSec...748
8.3.6.4.13 Appendix A.. 749

8.3.6.5 AIOP Service Layer API Reference Manual.. 754
8.3.6.6 AIOP SDK Applications Debug.. 754

8.4 Packet Forward Engine (PFE) Network Driver...754
8.4.1 Introduction... 754

8.4.1.1 Overview...755
8.4.1.2 Purpose.. 755
8.4.1.3 Features... 755

8.4.2 High level decomposition and data flow..755
8.4.3 NAPI support.. 756
8.4.4 Interrupt coalescing...756
8.4.5 Checksum offloading...756
8.4.6 Scatter gather support...757
8.4.7 Ethtool support..757

8.5 Linux Ethernet Driver for eTSEC... 757
8.5.1 Linux Ethernet Driver for eTSEC.. 757

8.5.1.1 Introduction...758
8.5.1.1.1 Overview.. 758
8.5.1.1.2 Purpose..758
8.5.1.1.3 Features... 758
8.5.1.1.4 Notes on high level decomposition and data flow.. 760

8.5.1.2 Functionality..762
8.5.1.2.1 Multi-Queue support..762
8.5.1.2.2 RSS support.. 763
8.5.1.2.3 NAPI support... 766
8.5.1.2.4 Interrupt Coalescing...767
8.5.1.2.5 Header Recognition and Csum Offload... 767
8.5.1.2.6 Scatter Gather support.. 768

8.5.1.3 Configuration and Control...768
8.5.1.3.1 Device Tree initialization.. 768
8.5.1.3.2 Ethtool support.. 769

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
10 NXP Semiconductors

Chapter 9 Linux user space.. 771
9.1 Libraries... 771

9.1.1 OpenSSL...771
9.1.1.1 Overview... 771
9.1.1.2 Manual Build of OpenSSL with Cryptodev Engine Support.. 773
9.1.1.3 Hardware Offloading with OpenSSL..774
9.1.1.4 TLS Ciphersuites and TLS Protocol Versions..776

9.1.2 Runtime Assembler Library Reference..781
9.1.2.1 Runtime Assembler Library Reference...781

9.2 Data Plane Development Kit (DPDK)...782
9.2.1 Introduction .. 782

9.2.1.1 Supported Platforms and Platform-specific Details.. 782
9.2.1.1.1 LS1043A Reference Design Board (RDB)... 782
9.2.1.1.2 LS1046A Reference Design Board (RDB)... 783
9.2.1.1.3 LS1088A Reference Design Board (RDB)... 785
9.2.1.1.4 LS2088A Reference Design Board (RDB)... 786

9.2.1.2 References... 787
9.2.2 DPDK Overview.. 788

9.2.2.1 DPDK DPAA Platform Support.. 788
9.2.2.2 DPAA: Supported DPDK Features...789
9.2.2.3 DPAA2: Supported DPDK Features...790

9.2.3 Build DPDK... 791
9.2.3.1 Build DPDK using Flexbuild... 791
9.2.3.2 Standalone build of DPDK Libraries and Applications... 793
9.2.3.3 DPDK based Packet Generator... 796
9.2.3.4 Build OVS-DPDK using Flexbuild...797
9.2.3.5 Virtual machine (VM or guest) images...798

9.2.4 Executing DPDK Applications on Host... 798
9.2.4.1 Booting up the Target board...798
9.2.4.2 Prerequisities for running DPDK Applications.. 800

9.2.4.2.1 Test Environment Setup.. 800
9.2.4.2.2 Generic Setup - DPAA...801
9.2.4.2.3 Generic Setup - DPAA2.. 802
9.2.4.2.4 DPAA2: Multiple parallel DPDK Applications.. 803

9.2.4.3 DPDK example applications...804
9.2.4.4 Command interface (CMDIF) demo application...809

9.2.5 OVS-DPDK and DPDK in VM with VIRTIO Interfaces.. 812
9.2.5.1 Generic steps - DPAA & DPAA2 platforms...812
9.2.5.2 Configuring OVS.. 813
9.2.5.3 Launch Virtual Machine... 816
9.2.5.4 Accessing virtual machine console.. 817
9.2.5.5 Launching two virtual machines...817
9.2.5.6 Running DPDK applications in VM...818
9.2.5.7 Multi Queue VIRTIO support..820

9.2.6 DPDK on Docker...821
9.2.6.1 Docker Overview..821
9.2.6.2 Traffic Multiplexer/De-Multiplexer..821
9.2.6.3 Docker's Resource Setup...823

9.2.6.3.1 Application Container Configuration..823
9.2.6.3.2 Kernel Container Configuration...824

9.2.6.4 Running the Docker Container...825
9.2.6.5 Running the DPDK Application.. 826
9.2.6.6 Example Configuration: Using DPDMUX... 826

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 11

9.2.6.7 Example Configuration: Using DPSW..828
9.2.7 Known Limitations and Future Work... 829
9.2.8 Troubleshooting...829
9.2.9 DPDK Performance Reproducibility Guide... 831

9.3 QorIQ OpenDataPlane (ODP)... 836
9.3.1 Introduction... 837

9.3.1.1 Intended audience.. 837
9.3.1.2 Definitions and acronyms... 837
9.3.1.3 Supported platforms... 837
9.3.1.4 Unsupported ODP API's...838
9.3.1.5 ODP Limitations and Known Issues... 838

9.3.2 Product Description...839
9.3.3 Using Flexbuild to Compile ODP/OFP ... 839
9.3.4 Using ODP Applications ..840

9.3.4.1 LS2088ARDB/LS2085ARDB Board Preparation and Bring-up..840
9.3.4.2 LS1088ARDB Board Preparation and Bring-up... 842
9.3.4.3 odp_pktio application... 843

9.3.4.3.1 Overview... 844
9.3.4.3.2 Test setup..844
9.3.4.3.3 Running odp_pktio on DUT...844
9.3.4.3.4 Test description... 844

9.3.4.4 odp_generator application... 845
9.3.4.4.1 Overview... 845
9.3.4.4.2 Test setup..845
9.3.4.4.3 Running odp_generator on DUT...846

9.3.4.5 ODP ipsec application (odp_ipsec, odp_ipsec_offload)...846
9.3.4.5.1 Overview... 846
9.3.4.5.2 Test setup..847
9.3.4.5.3 Running ODP ipsec applications on DUT... 848

9.3.4.6 odp_classifier application...850
9.3.4.6.1 Overview... 850
9.3.4.6.2 Test setup..851
9.3.4.6.3 Running odp_classifier on DUT.. 851

9.3.4.7 odp_timer application...851
9.3.4.7.1 Overview..852
9.3.4.7.2 Test setup.. 852
9.3.4.7.3 Running odp_timer on DUT...852

9.3.4.8 odp_lpmfwd application... 852
9.3.4.8.1 Overview... 852
9.3.4.8.2 Running odp_lpmfwd on DUT...856
9.3.4.8.3 Test description... 856

9.3.4.9 odp_tm application...856
9.3.4.9.1 Overview... 856
9.3.4.9.2 Running odp_tm on DUT.. 857
9.3.4.9.3 Test Setup... 858
9.3.4.9.4 Test Description.. 858

9.3.4.10 OpenFastPath applications.. 858
9.3.4.10.1 Overview... 858
9.3.4.10.2 Test Setup OpenFastPath (fpm & fpm_burstmode)...859
9.3.4.10.3 Running fpm and fpm_burstmode applications... 859
9.3.4.10.4 Test description-ODP OpenFastPath (fpm & fpm_burstmode)..................................860
9.3.4.10.5 OFP Webserver Application..860

9.3.5 Troubleshooting...862
9.3.6 Using Debug Tool to Get Hardware Statistics for DPAA2 Platforms..862

9.4 USDPAA...864

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
12 NXP Semiconductors

Chapter 10 Virtualization... 865
10.1 KVM/QEMU User Guide and Reference.. 865

10.1.1 KVM/QEMU Overview... 865
10.1.1.1 Using QEMU and KVM... 866

10.1.1.1.1 Overview of Using QEMU...866
10.1.1.1.2 Virtual Machine Memory...868
10.1.1.1.3 Virtual network interfaces... 868
10.1.1.1.4 Virtual block devices... 869
10.1.1.1.5 Direct assigned devices ... 869
10.1.1.1.6 VMs and the Linux Scheduler...871

10.1.1.2 Virtual Machine Overview... 872
10.1.1.3 Introduction to KVM and QEMU.. 872
10.1.1.4 Device Tree Overview..874
10.1.1.5 References.. 874
10.1.1.6 For More Information...875
10.1.1.7 Virtual machine reference... 875

10.1.1.7.1 VM Overview...875
10.1.1.7.2 Memory Map of Virtual I/O Devices.. 875
10.1.1.7.3 Virtual machine state at initialization...875
10.1.1.7.4 Virtual CPUs... 876
10.1.1.7.5 VGIC... 876

10.1.2 Configuring and Building..877
10.1.2.1 Overview...877
10.1.2.2 Quick Start - Recommended Configuration Options...877
10.1.2.3 Host Kernel: Enabling KVM.. 878
10.1.2.4 Host Kernel: Enabling Virtual Networking...878
10.1.2.5 Host kernel: Enabling DPAA2 direct assignment ... 878
10.1.2.6 Host kernel: Enabling PCIE direct assignment .. 879
10.1.2.7 Guest kernel: Enabling console.. 879
10.1.2.8 Guest Kernel: Enabling Network and Block Virtual I/O...879
10.1.2.9 Building kernel with KVM support using flexbuild... 880
10.1.2.10 Building QEMU... 880
10.1.2.11 Creating a host Linux root filesystem.. 881
10.1.2.12 Creating a guest Linux root filesystem.. 881

10.1.3 KVM/QEMU How-to's.. 881
10.1.3.1 Quick-start Steps to Build and Deploy KVM... 881
10.1.3.2 Quick-start Steps to Run KVM Using Hugetlbfs... 882
10.1.3.3 How to Use Virtual Network Interfaces Using Virtio... 883
10.1.3.4 How to use vhost-net with virtio..884
10.1.3.5 How to Use Virtual Disks Using Virtio...885
10.1.3.6 How to use virtual disks using virtio-blk-dataplane...887
10.1.3.7 How to use DPAA2 direct assignment without scripts ..887
10.1.3.8 How to use DPAA2 direct assignment with scripts ...889
10.1.3.9 How to use PCIE direct assignment... 894
10.1.3.10 Debugging: How to Examine Initial Virtual Machine State with QEMU...................................894
10.1.3.11 Debugging: How to Profile Virtualization Overhead with KVM.. 895
10.1.3.12 Debugging virtual machines... 897

10.1.3.12.1 QEMU Monitor... 897
10.1.3.12.2 QEMU GDB Stub...897

10.2 Linux Containers User Guide... 898
10.2.1 Introduction to Linux Containers..899

10.2.1.1 NXP LXC Release Notes.. 899
10.2.1.2 Overview...899

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 13

10.2.1.3 Comparing LXC and Libvirt...900
10.2.1.4 For Further Information...900

10.2.2 More Details.. 901
10.2.2.1 LXC: Command Reference...901
10.2.2.2 LXC: Configuration Files...902
10.2.2.3 LXC: Templates.. 903
10.2.2.4 Containers with Libvirt..904
10.2.2.5 Linux Control Groups (cgroups)... 905
10.2.2.6 Linux Namespaces...906
10.2.2.7 POSIX Capabilities...906

10.2.3 LXC How To's.. 907
10.2.3.1 LXC: Getting Started (with a Busybox System Container)..907
10.2.3.2 LXC: How to configure non-virtualized networking (lxc-no-netns.conf).................................... 910
10.2.3.3 LXC: How to assign a physical network interface to a container (lxc-phys.conf)...................... 911
10.2.3.4 LXC: How to configure networking with virtual Ethernet pairs (lxc-veth.conf).......................... 912
10.2.3.5 LXC: How to configure networking with macvlan (lxc-macvlan.conf)....................................... 913
10.2.3.6 LXC: How to configure networking using a VLAN (lxc-vlan.conf)... 915
10.2.3.7 LXC: How to monitor containers... 916
10.2.3.8 LXC: How to modify the capabilities of a container to provide additional isolation................... 917
10.2.3.9 LXC: How to use cgroups to manage and control a containers resources............................... 917
10.2.3.10 LXC: How to run an application in a container with lxc-execute... 919
10.2.3.11 LXC: How to run an unprivileged container.. 920
10.2.3.12 LXC: How to run containers with Seccomp protection..921

10.2.4 Libvirt.. 923
10.3 Docker Containers..932

10.3.1 Introduction to Docker Containers... 932
10.3.1.1 Overview...932

10.3.2 Docker How To's..933
10.3.2.1 Running a webserver container... 933

Chapter 11 Power Management.. 936
11.1 Power Management User Manual...936
11.2 CPU Frequency Switching User Manual...938
11.3 Thermal Management User Manual... 940
11.4 System Monitor... 942

11.4.1 Power Monitor User Manual...942
11.4.2 Thermal Monitor User Manual... 945

Chapter 12 Benchmarking guidelines..947
12.1 Coremark... 947

12.1.1 Test Environment... 947
12.1.2 Test Procedure...948

12.2 Dhrystone...949
12.2.1 Test Environment.. 949
12.2.2 Test Procedure.. 950

12.3 EEMBC.. 952
12.3.1 Test Environment.. 952
12.3.2 Test Procedure.. 954

12.4 LMBench..961
12.4.1 Test Environment.. 961

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
14 NXP Semiconductors

12.4.2 Test Procedure.. 962

Chapter 13 Connect to cloud: EdgeScale..964
13.1 What is EdgeScale...964
13.2 Building EdgeScale client...964
13.3 Procedure to start EdgeScale.. 965

Contents

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 15

Chapter 1
About this document

About QorIQ Layerscape Software Development Kit (LSDK)

LSDK is a complete Linux kit for NXP QorIQ ARM-based SoC's and the reference and evaluation boards that are available for
them.

It is a hybrid form of a Linux distribution because it combines the following major components to form a complete Linux system.

• NXP firmware components including:

— PPA, a resident EL3 privilege secure firmware for ARMv8A.

— NXP peripheral firmware components for DPAA1, DPAA2, and PPFE.

• NXP boot loaders. Two are offered:

— U-Boot, based on denx.de plus patches.

— UEFI, based on TianoCore.

• NXP Linux kernel, based on kernel.org upstream plus patches.

• NXP added user space components.

• Ubuntu standard user space file set (user land), including compilers and cross compiler.

The use of Ubuntu user land is what makes LSDK a hybrid. It is not entirely an Ubuntu distribution because it uses an NXP kernel,
but it still uses Ubuntu user space files. This hybrid is possible because NXP ARM SoC's are standards-based so programs like
bash and thousands of others run without being recompiled.

The benefit of using Ubuntu user land is the easy availability of thousands of standard Linux user space packages. The experience
of using the LSDK is similar to using Ubuntu, but the kernel, firmware, and some special NXP packages are managed separately.

For the most up-to-date version of this documentation set, see the Knowledge Center for Layerscape Software

Development Kit

 NOTE

Accessing LSDK

LSDK is distributed via git. See https://lsdk.github.io/.

There are two ways to use the LSDK, as an integration and as a source of individual components.

LSDK as an integration

Using the link above, notice the flexbuild component. You can clone it and run a script to create and install LSDK onto a mass
storage device as an integration, ready for use on an NXP reference or evaluation board. You can build NXP components from
source using a script called flex-builder or install from binaries of NXP components using flex-installer. See Layerscape SDK user
guide on page 41.

LSDK as components

The same link shows git repositories for individual components, for example the LSDK Linux kernel. If you clone and examine
this git, you will see a conventional kernel source tree. You can compile the kernel using make in the normal way, like a kernel.org
kernel. However, notice the configuration fragment in arch/arm64/configs. See Linux kernel on page 289.

Having git access to components is helpful if you assemble your own Linux distribution or wish to form a hybrid with a user land
other than Ubuntu’s.

LSDK git tags

About this document

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
16 NXP Semiconductors

https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US
https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US
https://lsdk.github.io/

LSDK git repositories use git tags to indicate component revisions that have been release tested together. Use the git tag
command to examine them and chose a tag to check out.

LSDK Relies on Mass Storage Devices

Ubuntu user land is very convenient for evaluation because it is possible to use the command apt-get install on the standard
Ubuntu components you need. It also provides native development tools.

But this richness means that the user space file is large, too large for RAM disks.

Therefore, LSDK requires installation to and use of a mass storage device such as

• SD card

• USB flash drive

• USB hard drive

• SATA drive, spinning, or SSD (for boards with a SATA port)

• eMMC flash (when available on board)

LSDK provides scripts that populate a mass storage device with the needed files. These scripts can run on a Linux PC. It is
especially simple to use an SD card or USB flash drive because they are the easiest to move between a Linux PC and the NXP
board.

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 17

Chapter 2
Acronyms and abbreviations

Term Definition

AH Authentication Header (RFC 4302) – a network protocol designed to provide authentication services in IPv4
and IPv6.

AIOP Advanced I/O Processor

ACL Access Control List

AMP Asynchronous Multi-Processing, running multiple operating system images on different processors of the
same machine without virtualization.

API Application Programming Interface

ARP Address Resolution Protocol

ASF Application Specific Fast Path – a software abstraction layer providing different network services (e.g. firewall,
IPSec, IP reassembly, forwarding, etc.) to top level applications implemented in various environments (such
as Linux kernel, Linux user space, etc.). These services may be hardware accelerated or not depending on
the hardware the ASF is running on. The hardware offloading is provided transparently to the top level
applications.

BMan Buffer Manager – a DPAA hardware block performing buffer and buffer pool management.

BPID (BMan) Buffer Pool ID

CAAM Cryptographic Acceleration and Assurance Module

CCSR Configuration and Control Status Register

CEETM Customer Edge Egress Traffic Management

CPU Central Processing Unit, also known more generally as "Processor"

DCD Device Configuration Data

DCE Data Compression/Decompression Engine

DMA Direct Memory Access

DPAA Data Path Acceleration Architecture (First Generation)

DPAA2 Data Path Acceleration Architecture (Second Generation)

DPC Data Path Configuration File

DPDK Data Plane Development Kit

DPDMUX Data Path De-multiplexer

DPL Data Path Layout

Table continues on the next page...

Acronyms and abbreviations

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
18 NXP Semiconductors

Table continued from the previous page...

Term Definition

DPNI DPAA2 object modeling a network interface

DPRC Data Path Resource Container

DSK Device Secret Key

DTB Device Tree Blob—the binary representation of device trees

DTS Device Tree Syntax—the textual representation of device trees

DUT Device Under Test

ESBC External Secure Boot Code

ESP Encapsulating Security Payload (RFC 4303) – a network protocol designed to provide a mix of security
services in IPv4 and IPv6.

EVB Edge Virtual Bridge

FDB Forwarding Data Base

FMan Frame Manager – a DPAA hardware block performing frame processing management.

FMC Frame Manager Configuration application

FRA Freescale RMan Application

FUID Freescale Unique ID

GPP General Purpose Processor

Guest/VM The term ‘Guest’ is used for Linux running inside the virtual machine(s) that are in turn running over Host
Linux operating system.VM and Guest have been used interchangeably in this guide.

GUEST_CONS
OLE_TELNET_
PORT

Telnet port for accessing guest console of VM.

HAL Hardware Abstraction Library

HIF Host Interface

HSM Hardware security modules

IBR Internal Boot ROM

IP_ADDR_BRD This term is used for LS1088ARDB and LS2088ARDB IP address.

IP_ADDR_IMAG
E_SERVER

This term is used for IP address of the machine on which all the software images are kept.

IPC Inter-Process Communication, can be interpreted as being communication between distinct application
execution flows or between distinct hardware processing units.

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 19

Table continued from the previous page...

Term Definition

inbound (traffic) Encrypted traffic which is coming from an unprotected interface. This traffic will be terminated on the CPU.

IPFwd IPv4 Forward

IPSec IP Security – a communication standard defined and refined by several public RFCs (such as RFC-2401 and
RFC-4301) where hosts exchange encrypted IP data packets.

IPSec Tunnel A communication convention between two network gateways to IPSec process certain network traffic in a
particular way. An IPSec tunnel has two endpoints (which are the gateways), a clearly delimited set of
encryption and authentication methods, keys, encapsulation headers and security policies, which define the
traffic that is sent through the tunnel.

ISBC Internal Secure Boot Code

ISR Interrupt Status Register

ITF Intent to Fail

ITS

KASLR

Intent to Secure

Kernel Address Space Layout Randomization

KVM Kernel-based Virtual Machine - A Linux kernel module that allows a user space program access to the
hardware virtualization features of NXP processors.

LIODN Logical I/O Device Number

MC Management Complex

NAT Network Address Translation

ODP OpenDataPlane

OEM Original Equipment Manufacturer

OS Operating System

OUID OEM Unique ID

outbound (traffic) Clear traffic which is coming from a software application which generates traffic that must be encrypted and
forwarded via an unprotected interface.

PAMU Peripheral Access Management Unit

PBL Pre-Boot Loader

PCD Parse, Classify, Distribute – a software architecture concept in NXP DPAA drivers which allows the user to
configure the DPAA hardware (FMan) to do frame parsing, classification or distribution on a series of frame
queues.

Table continues on the next page...

Acronyms and abbreviations

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
20 NXP Semiconductors

Table continued from the previous page...

Term Definition

PDCP Packet Data Convergence Protocol – It is one of the layers of the Radio Traffic Stack in UMTS/LTE and
performs IP header compression and decompression, transfer of user data and maintenance of sequence
numbers for Radio Bearers which are configured for lossless serving radio network subsystem (SRNS)
relocation.

PME Pattern Matcher Engine

PKCS Public-Key Cryptography Standards

QEMU Quick EMUlator - A hosted hypervisor that performs hardware virtualization.

QBMan Queue and Buffer Manager

QMan Queue Manager – a DPAA hardware block performing frame queue management.

RC Route Cache

RCW Reset Configuration Word

RFC Request for Comments – a public document which describes a software standard.

RDB Reference Design Board

SA Security Association – a data record, defined by RFC 4301, which stores the information related to the IPSec
processing needed for a specific network traffic type (such as encryption/decryption keys and algorithms,
traffic endpoints description, authentication algorithms, and so on).

SAD Security Association Database – the database holding all the valid SAs in a system.

SDK Software Development Kit

SEC Security Engine Coprocessor – a DPAA hardware block performing cryptographic acceleration and offloading
hardware.

SFP Secure Fuse Processor

SIP DIP Source Internet Protocol and Destination Internal Protocol

SKMM Secure Key Management Module

SMP Symmetric Multi-Processing, running an operating system image on multiple CPUs simultaneously.

SNVS Secure Non-Volatile Storage

SoC System on a Chip, a chip integrating one or more processors and on-chip peripherals.

SP Security Policy – a set of rules that network traffic must comply with in order to be eligible for IPSec processing.

SPD Security Policy Database – the database storing all the SPs in a system.

SRE Stateful Rule Engine

Table continues on the next page...

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 21

Table continued from the previous page...

Term Definition

SRK Super Root Key

SRKH Super Root Key Hash

STP Spanning Tree Protocol

SUI String Under Inspection

TFTP_BASE_DI
R

Base directory of TFTP server where all the images are kept.

TLB Translation Lookaside Buffer

TTL Time To Live

UDP User Datagram Protocol

UID Unique Device ID

UIO User space I/O

USDPAA User Space Data Path Acceleration Architecture

VEB Virtual Ethernet Bridge

VEPA Virtual Ethernet Port Aggregator

VID Voltage IDentifier

WRIOP Wire Rate I/O Processor

Acronyms and abbreviations

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
22 NXP Semiconductors

Chapter 3
Release notes

3.1 What's New

What's New in LSDK 18.03

Highlights

• Switching the dual kernel version to LTS 4.9.79 and LTS 4.14.16. LTS 4.4 is not tested in this release and under maintenance
mode

• U-Boot v2017.11 update

• LS2084A and LS2088A top bin and non-E part

• Direct device assignment in guest kernel on LTS 4.14 [DPAA2 processors]

• Support for edge compute on EdgeScale, including secure manufacturing, secure keys, EdgeScale dashboard for users and
application management

• MC upgrade to 10.6.0

• Python scripts to generate RCW binaries for LS1012A, LS1088A and LS2088A

• Support for DPDK 17.11 as base and OVS 2.9

• Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

• Includes additional workarounds for Chip Errata: A-008851, A-009611, A-009668, A-010131, A-010477, A-010843, A-011026

Ubuntu Userland

• No change since the last LSDK

Linux Kernel Core, Virtualization

• LTS kernel 4.9.79 update

• LTS kernel 4.14.16

• Direct device assignment in guest kernel on LTS 4.14 [DPAA2 processors]

• QEMU: MC portal emulation

Linux Kernel Drivers

• DPAA2 CAAM: generic gcm(aes), IPsec GCM - rfc4106

• DPAA2 Ethernet: XDP, L2Switch driver update to switchdev version

• USB: U1/U2 mode in host

Data Plane Development Kit (DPDK)

• Support of DPDK 17.11 as base

• Support of LTS 4.14

• AIOP cmdif support

• Ethernet poll mode driver with push mode queues, Crypto - Scatter Gather support, Eventde driver, tail drop using WRED -
CGR [DPAA1 processors]

• IPSEC protocol offload support

What's New

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 23

• KNI support

• PKTGEN 3.4.8

Virtualization - OVS-DPDK

• Support of OVS 2.9

Open Data Plane (ODP)

• No change since the last LSDK

U-Boot Boot Loader

• U-Boot v2017.11

• Support for IFC and EMMC switch support in qixis [LS1088A]

Unified Extensible Firmware Interface (UEFI)

• No change since the last LSDK

EdgeScale – Edge Compute

• Secure Manufacturing

— Tools available for Secure Fuse provisioning [LS1012A, LS1043A, LS1046A]

• Secure Keys [LS1046A]

— Support of API's to import/generate RSA keys securely

— Support of PKCS#11 interface for Ssigning operations

— Support of OPENSSL engine to access these keys

• EdgeScale Dashboard for Users

— Device management

◦ Secure device enrolment

◦ Secure key/certificate provisioning

◦ OTA: firmware update [LS1043, LS1046]

◦ Device status monitoring

— Application management

◦ Dynamic deployment of container based applications

Other Tools and Utilities

• AIOPSL

— AIOP boot error handling, error frame handling, TX buffer layout

— API for configuring timestamp passing behavior inside a recycle path flow

— ASA opaque

— User-defined exception handler

• MC upgrade to 10.6.0

• RCW

— LS2084A and LS2088A top bin and non-E part

— Python scripts to generate RCW binaries for LS1012A, LS1088A and LS2088A

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
24 NXP Semiconductors

What's New in LSDK 17.12

Highlights

• Support for 2.5G PFE MAC [LS1012A]

• MC upgrade to 10.4.0

• Support for DPDK 17.05.02 as base and OVS 2.8

• Support for sleep (LPM20) [LS1088A, LS2088A]

• Integration of Open Portable Trusted Execution Environment (OP-TEE) [LS1046A]

• Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

• Includes additional workarounds for Chip Errata: A-008708, A-008428, A-008822, A-009007, A-009668, A-009611, A-009810,
A-010151, A-010554, A-010650

Linux Kernel Core, Virtualization

• LTS kernel 4.4.98 update

• LTS kernel 4.9.62 update

Linux Kernel Drivers

• DPAA2 CAAM: Hashing

• DPAA2 Ethernet: Priority Flow Control

• OP-TEE driver [LS1046A]

• PFE: 2.5G MAC [LS1012A]

U-Boot Boot Loader

• HW load/store prefetch being disabled

• PFE: 2.5G MAC [LS1012A]

Unified Extensible Firmware Interface (UEFI)

• MC High Mem Support

Data Plane Development Kit (DPDK)

• DPDK 17.05.02 as base

• DPDK on docker [DPAA2 processors]

• UEFI support on LS2088A

Virtualization - OVS-DPDK

• OVS 2.8

Other Tools and Utilities

• MC upgrade to 10.4.0

• OP-TEE client [LS1046A]

• PPA: sleep (LPM20) [LS1088A, LS2088A], OP-TEE OS binary [LS1046A]

• Restool Bourne shell (sh) compatible

What's New in LSDK 17.09-Update-103017

Highlights

• LS1012A r1.0 and r2.0, LS1012A RDB at core frequency 1GHz by default

What's New

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 25

• MC upgrade to 10.3.4 to support 1000base-X and SGMII phyless

• Integration of PPFE driver

• Integration of CAAM DMA driver

• Including software fixes for LS2088A secure boot, MC failure to clear memory after use on LS1088A, fixup of MAC address
in DPC on LS1088A

Processor and Board Support

• LS1012A r1.0 and r2.0

• LS1012A RDB at core frequency 1.0GHz by default

Linux Kernel Drivers

• LS1012A: Crypto driver supporting SEC 5 (CAAM), CAAM DMA, DDR, DUART, DSPI, eSDHC, I2C, PCIe RC, PFE Ethernet
(Packet Rx/Tx), PHY support: RGMII & SGMII, Power management, QSPI, SAI/I2S, SATA, UART, USB 2/3 mass storage,
Watchdog

U-Boot Boot Loader

• LS1012A: Non-secure boot, Secure Boot (silicon r1.0), Clock, CPLD, DDR4, DSPI, eSDHC, I2C, Generic Timers, PCIe,
Primary Protected Application (PPA) firmware integration, QSPI, SATA, UART

Other Tools and Utilities

• MC upgrade to 10.3.4 to support 1000base-X

• Supporting multiple versions of docker image in Flexbuild

What's New in LSDK 17.09

Highlights

• LTS kernel 4.9.35, including KASLR

• U-boot 2017.07

• MC 10.3.2 update

• Support for DPDK 17.05 as base and OVS 2.7

• Flexbuild to support dual kernel build for 4.4 and 4.14

• Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

• Includes additional workarounds for Chip Errata: A-007815, A-007997, A-010053, A-010151, A-010477, A-010571

Processor and Board Support

• LS1043ARDB-PD

Linux Kernel Core, Virtualization

• LTS kernel 4.9.35, including KASLR

• LTS kernel 4.4.80 update

• LXD and LXD-Bridge

Linux Kernel Drivers

• DPAA2 Ethernet: 10G-base-KR

• RTC: adding PCF85263

• TMU on LS1088A

Data Plane Development Kit (DPDK)

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
26 NXP Semiconductors

• DPDK 17.05 as base

• Support for MC 10.3.x

Virtualization - OVS-DPDK

• OVS-DPDK 2.7

U-Boot Boot Loader

• U-boot 2017.07

• Chain of trust with confidentiality as part of distro boot

• LS1088A: QSPI boot, SD secure boot

Unified Extensible Firmware Interface (UEFI)

• Adding kernel 4.14 support

• KASLR support

• L2 cache Prefetch enable/disable support on LS2088A

• Ubuntu Distro boot support.

• USB 3.0 on LS2088A

Other Tools and Utilities

• AIOPSL: IPv6 Reassembly Atomic Fragment, QoS

• FLIB: AES-CTR algorithm, AES-GCM algorithm

• MC 10.3.2 update

• Flexbuild

— Dual kernel build for 4.4 and 4.14

— Enhanced component's repository management to support single repository in one single command

— Encapsulation and decapsulation feature for secure boot

— Removing dpdk-extras repository

— Adding lttng-modules repository

— Renaming flex_installer_<arch>.itb to flex_linux_<arch>.itb

What's New in LSDK 17.06

Highlights

• LTS kernel 4.4.65, including KASLR

• U-boot 2017.03

• Unified memory map

• Unified Extensible Firmware Interface (UEFI) Spec 2.6 on LS1043A RDB, LS1046A RDB and LS2088A RDB

• Ubuntu host 16.04, root filesystem and toolchain 5.4 verified, not shipped in this release

• Flexbuild to build component and generate the boot firmware, flex_installer.itb and the Ubuntu userland containing the
specified packages and applications

• Integrating LS1088A BSP v0.4

• LS2088A r1.1 silicon

• MC 10.2.2 update

What's New

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 27

• FLIB update

• Release on https://lsdk.github.io/

• Includes several software fixes. Refer to Fixed, Open, and Closed Issues on page 36 which has a list of all fixed issues

• Includes additional workarounds for Chip Errata: A-010160, A-010679, A-010840

Processor and Board Support

• LS1088A r1.0 and Rev. B RDB

• LS2088A r1.0, LS2088A r1.1 and Rev. F RDB

Ubuntu Userland

• Ubuntu host 16.04

• Toolchain: gcc: Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.4, glibc-2.26.1, binutils-2.23-0, gdb-7.11.1

• Linux Containers (LXC)

• QEMU 2.5

Linux Kernel Core, Virtualization

• LTS kernel 4.4.65, including KASLR

Linux Kernel Drivers

• LS1088A: DUART, DDR4, I2C, PCIe, SATA, USB, SD, MMC, NAND, Networking support, SEC

• CAAM: RSA form 1/2/3, TLS 1.0

Data Plane Development Kit (DPDK)

• Integrating LS1088A

Virtualization - OVS-DPDK

• Integrating LS1088A

Open Data Plan (ODP)

• Integrating LS1088A

• OFP (Open Fast Path) FPM and Webserver Application Support

U-Boot Boot Loader

• U-boot 2017.03

• Unified memory map

• LS1088A: DUART, DDR4, I2C, PCIe, SATA, USB, SD, MMC, NAND flash, Networking support, Boot from SD

• LS2088A: QSPI boot

Unified Extensible Firmware Interface (UEFI)

• LS1043A, LS1046A, LS2088A

• Spec 2.6

• DDR4, DUART, DSPI, GPIO, I2C, IFC, PCIe, RTC, SATA, SD, Networking support, Watchdog

• PPA integration

• SMP Linux boot via EFI_STUB on SD card

• PXE boot via PCIe and DPAA interfaces

• QSPI boot

Other Tools and Utilities

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
28 NXP Semiconductors

• LS1088A: Primary Protected Application (PPA) firmware

• MC 10.2.2 updates

• FLIB: CAPWAP DTLS, L2 header copy

• Flexbuild to build component and generate the boot firmware, flex_installer.itb and the Ubuntu userland containing the
specified packages and applications

3.2 Components
Overall

• Ubuntu userland

• Linux Kernel and Virtualization

• Linux Kernel Drivers

• Data Plane Development Kit (DPDK)

• Virtulization - OVS-DPDK

• Open Data Plan (ODP)

• U-Boot Boot Loader

• Unified Extensible Firmware Interface (UEFI)

• EdgeScale – Edge Compute

• Other Tools and Utilities

Ubuntu Userland

• Ubuntu host 16.04

• Toolchain: gcc: Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.4, glibc-2.23-0, binutils-2.26.1, gdb-7.11.1

• Linux Containers (LXC)

• QEMU 2.5

Linux Kernel Core and Virtualization

• Linux kernel 4.9.79, including KASLR

• Linux kernel 4.14.16, including KASLR

• ARM Cortex-A7 (AARCH32), Cortex-A53 and Cortex-A72 (AARCH64), Little Endian (default)

• 32-bit effective kernel addressing [Cortex-A53, Cortex-A72]

• 64-bit effective addressing [Cortex-A53, Cortex-A72]

• Direct device assignment in guest kernel [DPAA2 processors]

• Huge Pages (hugetlbfs)

• KVM and Containers

• LXD and LXD-Bridge

Linux Kernel Drivers

• Customer Edge Egress Traffic Management (CEETM)

• Crypto driver via SEC 5 & 6 (CAAM)

• CAAM DMA

Components

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 29

• Display Control Unit (DCU) and HDMI [LS1021A]

• DUART, DSPI, I2C

• Edge Virtual Bridge (EVB) [DPAA2 processors]

• Ethernet DPAA [DPAA1 processors]

• Ethernet DPAA2 [DPAA2 processors]

• Ethernet eTSEC (gianfar) [LS1012A]

• Frame Manager (FMan) [DPAA1 processors]

• GIC-400, GIC-500, GIC-ITS

• IEEE1588

• Integrated Flash Controller (IFC) NOR and NAND flash

• LPUART [LS1021A, LS1043A]

• Management Complex Bus [DPAA2 processors]

• MDIO

• Multiprocessor Interrupt Controller (MPIC)

• Open Portable Trusted Execution Environment (OP-TEE) [LS1046A]

• PCIe Root Complex and Endpoint, MSI

• PFE ethernet [LS1012A]

• Platform DMA

• PHY support: RGMII, SGMII, XFI and XAUI

• Power Management (PM) – CPU hotplug (PH20), CPU idle (PW15/20), Sleep (LPM20), Deep sleep (LPM35), Auto-
Response, Dynamic Frequency Scaling (DFS), Thermal Monitor, Power Monitor (board specific)

• Queue Manager (QMan) and Buffer Manager (BMan) [DPAA1 processors]

• QUICC Engine UART, TDM, HDLC, PPPoHT

• SATA

• Secured Digital Host Controller (eSDHC) and SD/MMC support

• System Memory Management Unit (SMMU) [ARM processors]

• Universal Serial Bus (USB) 2.0 and 3.0

• User space IO

• Virtual Function I/O (VFIO) - mmap PCI sources [Except for LS1021A]

• Watchdog Timers

Data Plane Development Kit (DPDK) [LS1043A, LS1046A, LS1088A, LS2088A]

• Support of DPDK v17.11 as base

• Following DPDK Applications have been verified

— l2fwd

— l3fwd

— l2fwd_crypto

— ipsecgateway

• DPDK with UEFI [LS2088A]

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
30 NXP Semiconductors

• DPDK on docker [DPAA2 processors]

• AIOP cmdif

• IPSEC protocol offload

• KNI support

• PKTGEN 3.4.8

Virtualization - OVS-DPDK

• OVS-DPDK 2.9

• OVS-DPDK working with vhost-virtio interfaces

• DPDK working in Virtual Machine

Open Data Plane (ODP) [LS2088A, LS1088A]

• ODP API v1.11

• ODP generator sample application

• ODP pktio sample application

• ODP ipsec transport and tunnel sample applications

• ODP packet classify sample application

• ODP timer sample application

• ODP LPM IP Forwarding sample application

• ODP Traffic Manager sample application

• ODP OpenFastPath Applications (FPM & FPM_BURSTMODE, Webserver)

U-Boot Boot Loader

• U-Boot: 2017.11

• Unified memory map

• On ARM platforms, the U-Boot image includes the device tree

• Non-secure and Secure Boot (ESBC)

• Primary Protected Application (PPA) firmware integration. See PPA features in “Other Tools …” below

• Boot from NOR, NAND flash, QSPI, SDHC

• CodeWarrior debug patch for U-Boot

• Clock, CPLD, DUART, DDR4, DSPI, eSDHC, GIC-400, GIC-500, I2C, OCRAM, PCIe, USB 2 & 3, SATA, UART

• DCU, eMMC 4.5, I2C3, LPUART, QSPI [LS1021A, LS1043A, LS1046A]

• HW load/store prefetch being disabled

• IFC access to NOR and NAND flash

• Networking support using eTSEC, FMAN Independent Mode, DPAA2 networking or PFE

• Voltage ID (board specific)

Unified Extensible Firmware Interface (UEFI) [LS1043A, LS1046A, LS2088A]

• Spec 2.6

• DDR4, DUART, DSPI, GPIO, I2C, IFC, PCIe, RTC, SATA, SD, Networking support, Watchdog, USB 3.0

• KASLR

• MC High Mem support

Components

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 31

• PPA integration

• SMP Linux boot via EFI_STUB on SD card

• PXE boot via PCIe and DPAA interfaces

• QSPI boot

• Ubuntu Distro boot

EdgeScale – Edge Compute

• Secure Manufacturing

— Tools available for Secure Fuse provisioning [LS1012A, LS1043A, LS1046A]

• Secure Keys [LS1046A]

— Support of API's to import/generate RSA keys securely

— Support of PKCS#11 interface for Ssigning operations

— Support of OPENSSL engine to access these keys

• EdgeScale Dashboard for Users

— Device management

◦ Secure device enrolment

◦ Secure key/certificate provisioning

◦ OTA: firmware update [LS1043, LS1046]

◦ Device status monitoring

— Application management

◦ Dynamic deployment of container based applications

Other Tools and Utilities

• AIOPSL [DPAA2 processors]

• Primary Protected Application (PPA) firmware [Except for LS1021A]: Power Management, OP-TEE OS binary [LS1046A]

• Management Complex (MC) Firmware version 10.6.0 – binary only, supporting DPAA2 resource containers and network
objects, Resource Manager and Link Manager, DPDMUX basic configurations

• DPAA2 resource container and object management tool (RESTOOL)

• Convenience scripts to create and manage common objects like network interfaces. There scripts are packaged in ls2-scripts
tarball

• FLIB/RTA - SEC descriptor creation library [all processors with SEC 5]

• OpenSSL 1.0.2k

• OpenSSL offload - includes TLS Record Layer and Public Key offload

• OP-TEE client [LS1046A]

• Frame Manager Configuration Tool (FMC) [DPAA1 processors]

• Frame Manager Ucode [DPAA1 processors]

• PME Tools [DPAA1 processors]

• Flexbuild to build component and generate the boot firmware, flex_linux.itb and the Ubuntu userland containing the specified
packages and applications

• Python scripts to generate RCW binaries

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
32 NXP Semiconductors

3.3 Feature Support Matrix
The following tables show the features that are supported in this release. Refer to the legend below to decipher the entries.

Legend:

• Y - Feature is supported by software

• / - Feature is not supported by software

• na - Hardware feature is not available

Table 1. Key Features

Feature LS1012
A

LS1021
A

LS1043
A

LS1046
A

LS1088
A

LS2088
A

32-bit Userspace, BE / / / / / /

64-bit Userspace, BE Y na Y Y / /

32-bit Userspace, LE Y Y Y Y / /

64-bit Userspace, LE Y na Y Y Y Y

36b phys mem na Y na na na na

40b phys mem Y na Y Y Y Y

AIOPSL na na na na Y Y

ASF / / / / / /

Data Plane Development Kit (DPDK) / / Y Y Y Y

EdgeScale - Edge Comupte Y Y Y Y Y Y

Hugetlbfs Y Y Y Y Y Y

Open Data Plane (ODP) / / / / Y Y

Open Portable Trust Execution Environment (OP-TEE) / / / Y / /

Secure Boot Y Y Y Y Y Y

Unified Extensible Firmware Interface (UEFI) / / Y Y / Y

USDPAA Applications na na / / na na

Table 2. Virtualization

Feature LS1012
A

LS1021
A

LS1043
A

LS1046
A

LS1088
A

LS2088
A

KVM/QEMU Y Y Y Y Y Y

LXC Y Y Y Y Y Y

Libvirt Y / / / / /

VFIO na na na na Y Y

Docker Y / Y Y Y Y

Feature Support Matrix

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 33

Table 3. Linux Applications

Feature LS1012
A

LS1021
A

LS1043
A

LS1046
A

LS1088
A

LS2088
A

Linux IPFwd / / / / / /

Linux IPSec / / / / / /

Linux Termination Y Y Y Y Y Y

Linux NAS / / / / / /

Linux RAID / / / / / /

Linux SATA / / / / / /

Table 4. Linux Kernel Drivers

Feature LS1012
A

LS1021
A

LS1043
A

LS1046
A

LS1088
A

LS2088
A

Audio - SAI Y Y na na na na

CAAM DMA / / / / / /

DCE na na na na / /

Direct Device Assignment na na na na Y Y

DMA Y Y Y Y Y Y

DPAA1 na na Y Y / /

DPAA2 na na na na Y Y

eSDHC Y Y Y Y Y Y

FlexCAN na / na na na na

I2C Y Y Y Y Y Y

IEEE1588, PTPD Y Y Y Y Y Y

IFC na Y Y Y Y Y

LPUART na Y Y Y / /

QSPI Y Y Y Y Y Y

PCIe RC Y Y Y Y Y Y

PCIe EP / / / / / /

PFE Y na na na na na

Power Management Y Y Y Y Y Y

SATA Y Y Y Y Y Y

SEC Y Y Y Y Y Y

dSPI / Y Y Y Y Y

TDM (QE) na na Y na na na

USB Y Y Y Y Y Y

Table continues on the next page...

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
34 NXP Semiconductors

Table 4. Linux Kernel Drivers (continued)

VeTSEC na Y na na na na

Video - DCU na Y na na na na

Watchdog Y Y Y Y Y Y

3.4 Supported Targets
Processors, development boards, and cards supported all releases.

In the following tables, in the rows corresponding to the processors, the silicon revision is indicated. In the rows

corresponding to the development boards, the board is marked with "Y" if it is supported. "N" means that a processor

or development board is not supported.

 NOTE

Table 5. QorIQ Layerscape Processors Supported

Processor Board LSDK 17.6 LSDK 17.09 LSDK
17.09-
update-1
03017

LSDK 17.12 LSDK
18.03

LS1012A N rev 1.0 rev 1.0

rev 2.0

rev 1.0

rev 2.0

rev 1.0

rev 2.0

LS1012ARDB N Y Y Y Y

LS1021A/LS1020A rev 2.0 rev 2.0 rev 2.0 rev 2.0 rev 2.0

TWR-LS1021A Y Y Y Y Y

LS1043A/LS1023A rev 1.1 rev 1.1 rev 1.1 rev 1.1 rev 1.1

LS1043ARDB-PC Y Y Y Y Y

LS1043ARDB-PD N Y Y Y Y

LS1046A/LS1026A rev 1.0 rev 1.0 rev 1.0 rev 1.0 rev 1.0

LS1046ARDB-PB Y Y Y Y Y

LS1088A rev 1.0 rev 1.0 rev1.0 rev 1.0 rev 1.0

LS1088A-RDB Y Y Y Y Y

LS2088A/LS2084A/
LS2081A

rev 1.0

rev 1.1

rev 1.0

rev 1.1

rev 1.0

rev 1.1

rev 1.0

rev 1.1

rev 1.0

rev 1.1

LS2088A-RDB Y Y Y Y Y

Supported Targets

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 35

3.5 Fixed, Open, and Closed Issues
This section contains 3 tables: Fixed, Open and Closed issues. Fixed issues have a software fix that has been integrated into the
'Fixed In' Release. Open issues do not currently have a resolution. Workaround suggestions are provided where possible. Closed
issues are issues where the root cause and fix are outside the scope of the Layerscape SDK.

Table 6. LSDK 18.03 Fixed Issues

ID Description Disposition Opened In Fixed in

DPDK-303 On LS1043A, performance degrades or I/O
stall is observed with high packet rates (6g/14g)
in forwarding.

Fixed SDK v2.0-1701 LSDK 18.03

DPDK-1083 The A-010022 hardware errata causes the
FMan to hang under high loads on LS1043A.
The current release implements a software fix
for this hardware issue. The fix impacts the
performance of LS1043A platforms.

Fixed LSDK 17.12 LSDK 18.03

QLINUX-6961 In 32-bit kernel, jumboframe floodping causes
call trace on LS1012A RDB

Fixed SDK v2.0-1701 LSDK 18.03

QLINUX-8754 LS1012A RDB cannot resume after entering
deep sleep.

Fixed LSDK 17.12 LSDK 18.03

QUBOOT-3363 On LS1046A, LPUART serial console does not
give proper output.

Fixed LSDK 17.09 LSDK 18.03

QUBOOT-3576 SD secure boot fails on LS1088A RDB. Fixed LSDK 17.12 LSDK 18.03

QUBOOT-3723 Neither U-Boot nor Linux kernel Ethernet works
"out of the box" on LS2088A in LSDK 17.12. The
root cause is two issues:

1. The Management Complex is not started by
U-Boot variable mcinitcmd.

2. The U-Boot command "fsl_mc lazyapply
dpl..." does not work.

Fixed LSDK 17.12 LSDK 18.03

Table 7. LSDK 18.03 Open Issues

ID Description Dispositi
on

Opened In Workarounds

DPDK-879 If traffic is sent on disconnected
network ports of DPAA2
running DPDK, the board
hangs and needs to be
restarted.

Open LSDK 17.06 Network ports shall be connected while sending traffic.

Table continues on the next page...

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
36 NXP Semiconductors

Table 7. LSDK 18.03 Open Issues (continued)

DPDK-938 There are performance issues
on kernel 4.9 in IPFwd test. The
issues are under investigation.
Kernel 4.4 in LSDK 17.12 should
be used for benchmarking
purpose.

Open LSDK 17.09 For the best performance, use the data cores as
isolated cpus and operate them in tickless mode. For
this:

Compile the Kernel with CONFIG_NO_HZ_FULL=y

Add bootargs with 'isolcpus=1-7 rcu_nocbs=1-7
nohz_full=1-7' for 8 core platform and 'isolcpus=1-3
rcu_nocbs=1-3 nohz_full=1-3' for 4 core platform.

DPDK-116
5

DPDK performance is not
measured on LTS 4.14.

Open LSDK
18.03

For the best performance, use the data cores as
isolated cpus and operate them in tickless mode. For
this:

Compile the Kernel with CONFIG_NO_HZ_FULL=y

Add bootargs with 'isolcpus=1-7 rcu_nocbs=1-7
nohz_full=1-7' for 8 core platform and 'isolcpus=1-3
rcu_nocbs=1-3 nohz_full=1-3' for 4 core platform.

ODP-1124 On kernel 4.4, ODP and DPDK
performance is low on 8 cores
when some Ubuntu services
are running on kernel/rootfs.
The performance data was
taken on 7 cores.

Open LSDK 17.06

PLATSEC-
469

LS1026A does not boot up with
ppa.itb image. There are two
PPA binary generated with
"data_in_ddr=on", PPA with
TEE and PPA without TEE. This
issue of PPA hang is coming
with binary PPA with TEE, but
not coming with binary PPA
without TEE.

Open LSDK 17.12 In order to get away from this issue, it is recommended
to use binary PPA without TEE.

In case users want to use PPA with TEE as mandate,
then there are required code changes in file "drivers/tzc/
src/tzc400.c" to mark OCRAM as secure even in case
of DATA_LOC == DATA_IN_DDR.

QLINUX-65
95

On LS1046A RDB, transfer
complete interrupt should be
generated by eSDHC controller
after it sends CMD18 (multiple
blocks read) to card. However,
after sleep, this interrupt didn't
occur for CMD18 and this
caused software to report
hardware timeout issue.

Open SDK
v2.0-1701

QLINUX-77
33

KVM 32-bit is not supported on
LS1043A and LS1046A. This is
a limitation in KVM opensource.

Open LSDK 17.06

QLINUX-81
64

PCIe Advance Error Reporting
is not available on LS1088A.

Open LSDK 17.09

Table continues on the next page...

Fixed, Open, and Closed Issues

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 37

Table 7. LSDK 18.03 Open Issues (continued)

QLINUX-83
62

The command of "poweroff" is
not supported on LS1012A
RDB.

Open LSDK
17.09-
update-103
017

QLINUX-87
00

The DPAA2 hardware does not
configure PFC congestion
notifications for some DPNI
objects created with restool.
General congestion is reported
correctly, as expected, but PFC
flow control frames are not sent.

Open LSDK 17.12 PFC congestion notifications and overall PFC support
works as expected when creating DPNI objects via
DPL. The problem only occurs when DPNI objects are
created using restool.

QLINUX-87
35

On Layerscape platforms,
e1000 NIC card will lose PCIe
link throughout the sleep
process, which makes the
kernel hang when resume.
Though PCIe-SATA card will
keep PCIe link in L0 in the sleep
process, it still cannot resume
from sleep all the time.

Open LSDK 17.12

QLINUX-90
78

LS1012A RDB cannot resume
after entering deep sleep.

Open LSDK
18.03

PCIe MSI interrupt balancing does not work on both LTS
4.9 and LTS 4.14.

QLINUX-90
80

PCIe endpoint mode is only
supported on LTS 4.9. The
support on LTS 4.14 will be
provided in the next release.

Open LSDK
18.03

QLINUX-91
21

Deep sleep on LS1021A TWR
is only supported on LTS 4.9.
The support on LTS 4.14 will be
provided in the next release.

Open LSDK
18.03

QPPA-28 There is performance
degradation in memory
bandwidth test on LS2088A
RDB.

Open LSDK 17.12

Table 8. LSDK 17.12 Closed Issues

ID Description Disposition Found In Workarounds

QSDK-3955 USB flash drive from some vendors like
Kingston, Transcend, Samtec does not work
reliably on LS2088ARDB.

Hardware Issue LSDK 17.06 Use USB flash
drives from other
vendors like ADATA,
Sandisk, Lexar,
Deloitte

Table continues on the next page...

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
38 NXP Semiconductors

Table 8. LSDK 17.12 Closed Issues (continued)

QSDK-3954 Transcend 8G class 10 SDHC card does not
work with 50MHz high speed mode on
LS2088ARDB.

Hardware Issue LSDK 17.06 Reducing SD clock
frequency or using
SD cards from other
vendors like
Sandisk, Kingston,
Sony.

QLINUX-5616 On LS1043A, KVM support on host machines
with 64KB pages is not functional. The limitation
exists, because the memory range associated
with the GIC CPU interface, in the GIC400
memory map, is not aligned to 64KB.

Hardware Issue SDK v2.0 Use only host
machines with 4KB
pages in order to
support KVM
virtualization.

QLINUX-7096 Jumbo and Scatter/Gather frames are not
supported on LS1043A. All outgoing Scatter/
Gather frames are linearized on egress. The
limitation is caused by the software workaround
for errata A-010022.

Hardware Issue LSDK 17.09

QUBOOT-2055 The parameter fdt_high set to 0xffffffff
causes the failure of booting images from NOR
flash directly.

Won't Fix SDK v2.0-1611 Set fdt_high in
uboot environment
variable to
0xa0000000 by
using the command
in uboot:

=>setenv fdt_high
0xa0000000

QUBOOT-3480 SGMII PHY less support is not accepted in
upstream, so the support is dropped in LSDK.

Won't Fix LSDK 18.03

ODP-417 Per CoS pool configuration is not supported. Won't Fix ODPv16.08

QLINUX-5661/
QUBOOT-1320

HP 2.0 pen drive not enumerated in Standard A
port on LS2088ARDB and LS1043ARDB board.
However, it is properly enumerated in micro port.

Hardware Issue NA

QLINUX-5671 On TWR-LS1021A, when doing deep sleep with
all three Ethernet ports on, there may be the error
message "PM: Device mdio@2d24000:02 failed
to suspend: error -16".

Hardware Issue NA Upgrade the on-
board CPLD to
version 3.2.

QLINUX-5637 On TWR-LS1021A, after resuming from deep
sleep, the kernel can't initialize SD card and call
trace occurs because the card never leaves busy
state.

Hardware Issue NA Upgrade the on-
board CPLD to
version 3.2.

QLINUX-5417 Cortina PHY LEDs are permanently off on
LS2088ARDB.

Hardware Issue NA

QLINUX-5325 AQR PHY LED remains off if link is at 1Gbps on
LS2088ARDB.

Hardware Issue NA

Table continues on the next page...

Fixed, Open, and Closed Issues

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 39

Table 8. LSDK 17.12 Closed Issues (continued)

QSDK-2478 On TWR-LS1021A, boot dtb, kernel and
filesystem directly from QSPI flash could not be
supported.

Won't Fix SDK v1.9 1.Program the
general dtb, Linux
kernel and ramdisk
to the QSPI flash by
'sf write'
command(under
sdboot or qspiboot).

2.Boot the dtb,
kernel and ramdisk
from QSPI flash.
Avoid booting from
QSPI flash directly.
Read the dtb, kernel
and ramdisk from
the QSPI flash to
RAM by 'sf read' u-
boot command and
then boot from
RAM.

By default, the QSPI
flash on the TWR-
LS1021A includes:
rcw, uboot, kernel,
dtb, and ramdisk.

Note: This
workaround only
applies to QSPI
flash.

QLINUX-3357 On TWR-LS1021A, some resolutions (e.g.
1920x1080) may not work well with some
monitors. The software will not downgrade to
another resolution automatically.

Hardware Issue NA Manually set
another resolution
such as:

1024x768@60 :
fbset -fb /dev/fb0 -g
1024 768 1024 768
24 -t 15384 168 8 29
3 144 6

QSDK-1841 On TWR-LS1021A, copy from NOR flash to NOR
flash fails. It is a known limitation with Micron
flash.

Hardware Issue NA

QSDK-1677 When telneting to board console from Linux
server connected to on TWR-LS1021A, the
board will power reset due to wrong signal sent.

Hardware Issue NA Remove R214 from
the board.

Release notes

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
40 NXP Semiconductors

Chapter 4
Layerscape SDK user guide

4.1 LSDK Quick Start

Introduction

Flexbuild is a component-oriented, integrated build framework with capabilities of flexible system build and distro installation.

The following are Flexbuild's main features:

• Automatically build Linux, U-Boot, PPA, RCW and miscellaneous user space applications.

• Generate machine-specific composite firmware for various boot types: SD/QSPI/NOR/NAND boot, secure boot, U-Boot,
UEFI.

• Support integrated management with repo-fetch, repo-branch, repo-commit, repo-tag, repo-update for git repositories of all
components (linux, u-boot, rcw, ppa, odp, dpdk, ovs-dpdk, aiopsl, qbman_userspace, ceetm, ptpd).

• Support cross build on x86 Ubuntu 16.04 host machine for aarch64/armhf arch target.

• Support native build on aarch64/armhf machine for ARM arch target.

• Support creating an Ubuntu 16.04 docker container and running scripts inside it when the host machine is using CentOS,
RHEL, Fedora, SUSE, Debian, Non-16.04 Ubuntu, etc.

• Scalability of integrating various components of both system firmware and user space applications.

• Capability of generating custom aarch64/armhf Ubuntu userland integrated configurable packages and proprietary
components.

With Flexbuild, LSDK components and custom packages can be built using Ubuntu/Linaro toolchain on a Linux host machine.
Flexbuild can build each component and generate the boot firmware (contains RCW, U-Boot/UEFI, PHY firmware, kernel image,
and ramdiskrfs), lsdk_linux_<arch>_tiny.itb, and the Ubuntu userland containing the specified packages and application
components.

4.1.1 Download and assemble LSDK images
Complete the following prerequisites before proceeding with downloading and assembling LSDK images.

• If Ubuntu 16.04 is installed on the host machine, run the flex-builder script directly.

Prerequisites:

— For root users, there is no limitation for the build. For noaan-root users, obtain sudo permission by running the command
sudoedit /etc/sudoers and adding a line <user-account-name> ALL=(ALL) NOPASSWD: ALL in /etc/sudoers.

— To build the Ubuntu userland, the user's network environment must have access to the remote Ubuntu official server.

• If a Linux distro other than Ubuntu 16.04 is installed on the host machine, use the flex-builder script to create an Ubuntu
16.04 Docker container to emulate the environment prior to running the other flex-build commands.a

Prerequisites:

— Make sure to install Docker on the host machine. You need sudo permission to execute the docker command or you
need to be added to a group of docker. Refer to https://docs.docker.com/engine/installation/ as a reference on how to
install Docker on the host machine.

— To build the Ubuntu userland, the user's network environment must have sudo permission for docker command or the
user must be added to a group of docker as specified below:

LSDK Quick Start

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 41

https://docs.docker.com/engine/installation

$ sudo newgrp – docker
$ sudo usermod -aG docker <accountname>
$ sudo gpasswd -a <accountname> docker
$ sudo service docker restart

Logout from current terminal session, then login again to ensure user can run docker ps -a

— The user's network environment must have access to the remote Ubuntu official server.

After completing the prerequisites, follow the steps below to download and assemble LSDK images:

1. Login to Linux host machine and download the flexbuild source tarball.

Login to www.nxp.com to download flexbuild source tarball in the name format flexbuild_<version>.tgz

$ tar xvzf flexbuild_<version>.tgz
$ cd flexbuild
$ source setup.env
$ flex-builder docker (optional, to run flex-builder in docker environment when local
Ubuntu 16.04 host is not available)
$ source setup.env (execute only when using Docker; run this command after entering
the docker container)

2. Download prebuilt images for boot partition and NXP-specific components tarball.

Platform Commands to download prebuilt images

LS1012ARDB

LS1043ARDB

LS1046ARDB

LS1088ARDB

LS2088ARDB

wget http://www.nxp.com/lgfiles/sdk/lsdk1803/
app_components_arm64.tgz

For Linux 4.14:

wget http://www.nxp.com/lgfiles/sdk/lsdk1803/
bootpartition_arm64_lts_4.14.tgz
wget http://www.nxp.com/lgfiles/sdk/lsdk1803/arm64-
modules-4.14.16.tgz

For Linux 4.9:

wget http://www.nxp.com/lgfiles/sdk/lsdk1803/
bootpartition_arm64_lts_4.9.tgz
wget http://www.nxp.com/lgfiles/sdk/lsdk1803/arm64-
modules-4.9.79.tgz

LS1021ATWR

LS1012ARDB 32bit

LS1043ARDB 32bit

LS1046ARDB 32bit

wget http://www.nxp.com/lgfiles/sdk/lsdk1803/
app_components_arm32.tgz

For Linux 4.14:

wget http://www.nxp.com/lgfiles/sdk/lsdk1803/
bootpartition_arm32_lts_4.14.tgz
wget http://www.nxp.com/lgfiles/sdk/lsdk1803/arm32-
modules-4.14.16.tgz

For Linux 4.9:

wget http://www.nxp.com/lgfiles/sdk/lsdk1803/
bootpartition_arm32_lts_4.9.tgz
wget http://www.nxp.com/lgfiles/sdk/lsdk1803/arm32-
modules-4.9.79.tgz

3. Generate LSDK Ubuntu userland, untar the prebuilt components tarball, and merge it into the userland.

 $ flex-builder -i mkrfs -a arm64 (locally generate default Ubuntu rootfs with
configurable packages)
 $ tar xvzf app_components_arm64.tgz -C build/apps
 $ tar xvzf arm64-modules-<kernel_version>.tgz -C build/rfs/
rootfs_ubuntu_xenial_arm64/lib/modules
 $ flex-builder -i merge-component -a arm64
 $ flex-builder -i compressrfs -a arm64 (optional)
 $ exit (optional,this command exits from docker when building in docker)

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
42 NXP Semiconductors

http://www.nxp.com/products/developer-resources/run-time-software/linux-sdk/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Design_Tools_Tab
http://www.nxp.com/lgfiles/sdk/lsdk1706/components_arm64.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1706/components_arm64.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm64_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.4.80.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm64-modules-4.4.80.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/components_arm32.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/components_arm32.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.9.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.9.35.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/bootpartition_arm32_lts_4.4.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.4.80.tgz
http://www.nxp.com/lgfiles/sdk/lsdk1712/arm32-modules-4.4.80.tgz

For 32-bit platforms, change the architecture type (-a parameter) to arm32.

 NOTE

Only Ubuntu userland is the default file system in LSDK, various firmwares and images are verified just based on

Ubuntu userland in formal LSDK releases. Although other non-official userland (Debian, tiny buildroot-based distro,

etc) can be composed with the common LSDK Linux kernel and components by flexbuild , but that is NOT part of

the standard LSDK release and there is no guarantee for other userland except formal Ubuntu userland.

 NOTE

4.1.2 Deploy LSDK Images on the target board
This section describes how to deploy LSDK images on the target board. There are two major scenarios on how to deploy LSDK
images on the target board:

• Scenario 1: "Removable Media"- If the user can connect a removable storage device to a local Linux host machine, the
user can deploy LSDK images onto the removable storage device. The user can then connect it to the board and update the
firmware from the storage device. For more information, refer to Deploy LSDK images from Linux Host on page 43.

• Scenario 2: "Non-removable Media"- If the user wants to deploy LSDK images to a non-removable media on the board or
if the user does not have a local Linux host machine that can connect to a removable media, the user can directly deploy
LSDK images on board. For more information, refer to Deploy LSDK images on board on page 46.

The deployment covers how to program LSDK composite firmware (QSPI boot, NOR boot, or SD boot) on the target board. It also
covers how to deploy boot partition images and Ubuntu userland on different storage media (SD/USB/SATA).

Prerequisites: SD/USB/SATA capacity must be at least 8 GB.

4.1.2.1 Deploy LSDK images from Linux Host
To deploy LSDK images to the target board, users can connect a removable storage (SD/ USB/ SATA) device to a local Linux host
machine, given that LSDK images have been generated as per the instructions in Download and assemble LSDK images on
page 41section.

U-Boot based booting

1. Download appropriate LSDK images to local Linux host machine.

2. Setup the environment for flex-installer to run.

$ cd flexbuild
$ source setup.env

3. Execute flex-installer with appropriate arguments to deploy LSDK images to a second storage device.

$ flex-installer -b <bootpart> -r <rootfs> -m <machine> -d <device>
$ flex-installer -f firmware_<machine>_uboot_sdboot.img -s 8 -d <device> (optional, only
for SD boot, no need for QSPI/NOR/NAND boot)
For example:
$ flex-installer -b bootpartition_arm64_lts_4.14.tgz -r rootfs_ubuntu_xenial_arm64.tgz -
m ls1088ardb -d /dev/sdb
$ flex-installer -f firmware_ls1088ardb_uboot_sdboot.img -s 8 -d /dev/sdb

4. After a successful installation, “Installation Finished Successfully” message appears, then execute the following command
to unmount the target device.

$ sudo umount /run/media/sdX

The following table summarizes the parameters for flex-installer command for various boards:

Board
Name

<bootpart> <rootfs> <firmware> <machine
>

<device>

Table continues on the next page...

LSDK Quick Start

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 43

Table continued from the previous page...

LS1021AT
WR

bootpartition_arm3
2_lts_<version>

or

bootpartition_arm3
2_lts_<version>.tgz

rootfs_ubuntu_xenial_ar
m32

or

rootfs_ubuntu_xenial_ar
m32.tgz

firmware_ls1021atwr_uboot_sdboot.im
g

ls1021atw
r

/dev/sdX

Refer to
Note
below

LS1012AR
DB

firmware_ls1012ardb_uboot_qspiboot.i
mg

ls1012ard
b

LS1043AR
DB

firmware_ls1043ardb_uboot_sdboot.im
g

ls1043ard
b

LS1046AR
DB

firmware_ls1046ardb_uboot_sdboot.im
g

ls1046ard
b

LS1012AR
DB

bootpartition_arm6
4_lts_<version>

or

bootpartition_arm6
4_lts_<version>.tgz

rootfs_ubuntu_xenial_ar
m64

or

rootfs_ubuntu_xenial_ar
m64.tgz

firmware_ls1012ardb_uboot_qspiboot.i
mg

ls1012ard
b

/dev/sdX

Refer to
Note
below

LS1043AR
DB

firmware_ls1043ardb_uboot_sdboot.im
g

ls1043ard
b

LS1046AR
DB

firmware_ls1046ardb_uboot_sdboot.im
g

ls1046ard
b

LS1088AR
DB

firmware_ls1088ardb_uboot_sdboot.im
g

ls1088ard
b

LS2088AR
DB

firmware_ls2088ardb_uboot_norboot.i
mg

Ls2088ar
db

• The SD/USB/SATA storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c.

Make sure to choose the correct device name, because data on this device will be replaced.

• Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct

device names have been chosen.

• If your Linux host machine supports read/write SD card directly without an extra SD card reader device, the

device name of SD card generally is mmcblk0.

 NOTE

5. After unmounting, unplug the SD card from the Linux host and plugin it into the board

6. Make sure the DIP Switch settings on the board enable SD boot. (Refer to “Board-specific Information” section for switch
settings)

7. Power-on the board. The system will automatically boot up LSDK Ubuntu distro available on the SD card (exception for
LS2088ARDB).

Deploying on LS2088ARDB

As LS2088ARDB board doesn't support SD boot, users can deploy LSDK images to SD/USB/SATA device on LS2088ARDB
based on NOR boot as below.

1. Execute the following commands to program boot partition and Ubuntu userland to SD/USB/SATA storage device.

Assumption: Removable storage device is mounted as /dev/sdb on host machine.

$ flex-installer -b bootpartition_arm64_lts_<version>.tgz -r build/rfs/
rootfs_ubuntu_xenial_arm64 -m ls2088ardb -d /dev/sdb

2. Unplug SD/USB/SATA device from host machine and plug it to the target board, firmware_ls2088ardb_uboot_norboot.img
is already stored in the bootpartition of SD/USB/SATA device.

3. Program the composite firmware to IFC-NOR/QSPI flash as described below:

• Booting U-Boot on LS2088ARDB

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
44 NXP Semiconductors

Storage media Command in U-Boot

USB => usb start
=> load usb 0:2 a0000000 firmware_ls2088ardb_uboot_norboot.img

SATA => load scsi 0:2 a0000000 firmware_ls2088ardb_uboot_norboot.img

SD => load mmc 0:2 a0000000 firmware_ls2088ardb_uboot_norboot.img

• Execute the commands below to program the alternate bank:

=> protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b a0000000
584000000 $filesize
=> qixis_reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the target
boards.

Use the following default credentials to log onto to the LSDK distro:

— root/root

— user/user

UEFI based booting

• UEFI booting is supported on the following platforms:

— LS1043ARDB

— LS1046ARDB

— LS2088ARDB

• Download the composite firmware to target board via U-Boot in bank0 of NOR/QSPI flash as below:

Platform Command

LS1043ARDB => tftp a0000000 firmware_ls1043ardb_uefi_norboot.img

LS1046ARDB => tftp a0000000 firmware_ls1046ardb_uefi_qspiboot.img

LS2088ARDB => tftp a0000000 firmware_ls2088ardb_uefi_norboot.img

• Program the composite firmware into the alternate bank:

LS1043ARDB => protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
a0000000 64000000 $filesize
=> cpld reset altbank

LS1046ARDB => sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> cpld reset altbank

LS2088ARDB => protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b
a0000000 584000000 $filesize
=> qixis_reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the required target
boards.

Use the following default credentials to log onto to the LSDK distro:

• root/root or

LSDK Quick Start

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 45

• user/user

4.1.2.2 Deploy LSDK images on board
LSDK images have been generated in Download and assemble LSDK images on page 41, so the user can start to deploy LSDK
images on the board if user is deploying to a non-removable media on the board or user does not have a local Linux server to
connect removable media. In order to deploy LSDK images on the board, follow the instructions below:

1. Download LSDK composite firmware from the NXP website.

There are four types of composite firmware depending on the boot type: NOR/NAND/QSPI/SD boot. Download the LSDK
composite firmware to the Linux host machine and put it in the TFTP server root directory.

• firmware_<platform>_uboot_qspiboot.img means the firmware boots from QSPI flash. Only LS1012ARDB,
LS1046ARDB, LS1088ARD and LS2088ARDB support QSPI boot in this release. Use the following images and
command below depending on your platform:

— firmware_ls1012ardb_uboot_qspiboot.img

— firmware_ls1046ardb_uboot_qspiboot.img

— firmware_ls1088ardb_uboot_qspiboot.img

— firmware_ls2088ardb_uboot_qspiboot.img

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls1046ardb_uboot_qspiboot.img

• firmware_<platform>_uboot_sdboot.img means the firmware boots from SD card. LS1043ARDB, LS1046ARDB,
and LS1088ARDB support SD boot. Use the following images and command below depending on your platform:

— firmware_ls1021atwr_uboot_sdboot.img

— firmware_ls1043ardb_uboot_sdboot.img

— firmware_ls1046ardb_uboot_sdboot.img

— firmware_ls1088ardb_uboot_sdboot.img

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls1088ardb_uboot_sdboot.img

• firmware_<platform>_uboot_norboot.img means firmware boots from IFC NOR. LS1021ATWR, LS1043ARDB,
and LS2088ARDB support IFC NOR boot. Use the following images and command below depending on your platform:

— firmware_ls1021atwr_uboot_norboot.img

— firmware_ls1043ardb_uboot_norboot.img

— firmware_ls2088ardb_uboot_norboot.img

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls2088ardb_uboot_norboot.img

• firmware_<platform>_uboot_nandboot.img means firmware boots from NAND. LS1043ARDB supports NAND
boot. Use the following images and command below depending on your platform:

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1712/firmware_ls1043ardb_uboot_nandboot.img

• Place the LSDK composite firmware into a TFTP server, then download the firmware via TFTP to the target board
under the U-Boot prompt using the commands below:

Platform Command in U-Boot

LS1012ARDB => tftp a0000000 firmware_ls1012ardb_uboot_qspiboot.img
=> i2c mw 0x24 0x7 0xfc;i2c mw 0x24 0x3 0xf5
=> sf probe 0:0
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> reset

Table continues on the next page...

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
46 NXP Semiconductors

Table continued from the previous page...

Platform Command in U-Boot

LS1021ATWR => tftp a0000000 firmware_ls1021atwr_uboot_norboot.img
=> protect off 64000000 +$filesize && erase 64000000 +$filesize
&& cp.b a0000000 64000000 $filesize
=> boot_bank 1

LS1043ARDB => tftp a0000000 firmware_ls1043ardb_uboot_norboot.img
=> protect off 64000000 +$filesize && erase 64000000 +$filesize
&& cp.b a0000000 64000000 $filesize
=> cpld reset altbank

LS1046ARDB => tftp a0000000 firmware_ls1046ardb_uboot_qspiboot.img
=> sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> cpld reset altbank

LS1088ARDB For SD boot:

=> tftp a0000000 firmware_ls1088ardb_uboot_sdboot.img
=> mmc write a0000000 8 1fff8

For QSPI boot (programming from altbank):

=> sf probe 0:1
=> tftp 0xa0000000 firmware_ls1088ardb_uboot_qspiboot.img
=> sf erase 0 +$filesize
=> sf write 0xa0000000 0 $filesize
=> i2c mw 0x66 0x50 20;i2c mw 66 10 20;i2c mw 66 10 21

LS2088ARDB => tftp a0000000 firmware_ls2088ardb_uboot_norboot.img
=> protect off 584000000 +$filesize && erase 584000000 +
$filesize && cp.b a0000000 584000000 $filesize
=> qixis_reset altbank

LSDK firmware (for example: firmware_ls1088ardb_uboot_qspiboot.img) is a composite image for target board which
includes RCW+PBI, U-Boot/UEFI, PPA, boot loader environment variables, DPAA1 FMan ucode/PFE firmware, QE/uQE
firmware, Ethernet PHY firmware, DPAA2 MC firmware, DPAA2 DPL, DPAA2 DPC, dtb, andlsdk_linux_<arch>.itb
images.

After the steps above are completed and the DIP switches are set properly (refer to Board-specific Information on page
67), power on the board. The board will automatically boot up and enter the Linux system.

2. Deploy boot partition and Ubuntu 16.04 userland to SD/USB/SATA

Follow the instructions below to deploy boot partition and Ubuntu userland to SD/USB/SATA storage device.

• Enable network connection to download LSDK images

Command Target Board Assumption

$ udhcpc -i eth0 LS1012ARDB LS1012ARDB uses ETH0 port.

$ udhcpc -i ni0 LS2088ARDB LS2088ARDB uses ETH0 port.

$ udhcpc -i eth0 LS1088ARDB LS1088ARDB uses ETH8 port.

$ udhcpc -i eth2 LS1043ARDB LS1043ARDB uses RGMII1 port

$ udhcpc -i eth0 LS1046ARDB LS1046ARDB uses RGMII1 port

$ udhcpc -i eth2 LS1021ATWR LS1021ATWR uses RGMII port.

LSDK Quick Start

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 47

Ethernet port name can be found in frontend control panel of target board.

 NOTE

• Use flex-installer to create and format partitions (USB/SATA/SD)

Storage Media Command in Linux

USB $ flex-installer -i pf -d /dev/sdX

SATA $ flex-installer -i pf -d /dev/sdX

SD $ flex-installer -i pf -d /dev/mmcblk0

• Download and deploy two tarballs boot partition and Ubuntu userland to USB/SATA/SD storage device. Take
LS2088ARDB as example.

Storage Media Command in Linux

USB $ cd /run/media/sdX3

Download bootpartition_<arch>_<version>.tgz and
rootfs_ubuntu_xenial_<arch>_xx.tgz using the wget or scp command.

 $ flex-installer -i install -b
bootpartition_<arch>_lts_<version>.tgz -r
rootfs_ubuntu_xenial_<arch>_<timestamp>.tgz -m ls2088ardb -d /dev/sdX

SATA $ cd /run/media/sdX3

Download bootpartition_<arch>_<version>.tgz and
ubuntu_xenial_<arch>_rootfs_xx.tgz using the wget or scp command.

$ flex-installer -i install -b
bootpartition_<arch>_lts_<version>.tgz -r
rootfs_ubuntu_xenial_<arch>_<timestamp>.tgz -m ls2088ardb -d /dev/sdX

SD $ cd /run/media/mmcblk0p3

Download bootpartition_<arch>_<version>.tgz and
ubuntu_xenial_arch>_rootfs_xx.tgz using the wget or scp command.

$ flex-installer -i install -b
bootpartition_<arch>_lts_<version>.tgz -r
rootfs_ubuntu_xenial_<arch>_<timestamp>.tgz -m ls2088ardb -d /dev/
mmcblk0

• After completing the steps above, reboot the board with the LSDK images. The system will automatically boot Ubuntu
userland.

4.1.3 Deploy LSDK Images for secure boot on the target board
This section describes how to deploy LSDK images on the target board, for secure boot. There are two major scenarios on how
to deploy LSDK images on the target board:

• Scenario 1: "Removable Media"- If the user can connect a removable storage device to a local Linux host machine, the
user can deploy the images onto the removable storage device. The user can then connect it to the board and update the
firmware from the storage device. For more information, refer to Deploy LSDK images from Linux Host on page 43.

• Scenario 2: "Non-removable Media"- If the user wants to deploy LSDK images to a non-removable media on the board or
if the user does not have a local Linux host machine that can connect to a removable media, the user can directly deploy
LSDK images on board. For more information, refer to Deploy LSDK Secure images on board on page 51.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
48 NXP Semiconductors

The deployment covers how to program LSDK composite firmware (QSPI boot, NOR boot, or SD boot) on the target board. It also
covers how to deploy boot partition images and Ubuntu userland on different storage media (SD/USB/SATA).

Prerequisites: SD/USB/SATA capacity must be at least 8 GB.

4.1.3.1 Deploy LSDK images from Linux Host
To deploy LSDK images to the target board, users can connect a removable storage (SD/ USB/ SATA) device to a local Linux host
machine, given that LSDK images have been generated as per the instructions in Download and assemble LSDK images on
page 41section.

U-Boot based booting

1. Download appropriate LSDK images to local Linux host machine.

2. Setup the environment for flex-installer to run.

$ cd flexbuild
$ source setup.env

3. Execute flex-installer with appropriate arguments to deploy LSDK images to a second storage device.

$ flex-installer -b <bootpart> -r <rootfs> -m <machine> -d <device>
$ flex-installer -f firmware_<machine>_uboot_sdboot.img -s 8 -d <device> (optional, only
for SD boot, no need for QSPI/NOR/NAND boot)
For example:
$ flex-installer -b bootpartition_arm64_lts_4.14.tgz -r rootfs_ubuntu_xenial_arm64.tgz -
m ls1088ardb -d /dev/sdb
$ flex-installer -f firmware_ls1088ardb_uboot_sdboot.img -s 8 -d /dev/sdb

4. After a successful installation, “Installation Finished Successfully” message appears, then execute the following command
to unmount the target device.

$ sudo umount /run/media/sdX

The following table summarizes the parameters for flex-installer command for various boards:

Board
Name

<bootpart> <rootfs> <firmware> <machine
>

<device>

LS1021AT
WR

bootpartition_arm3
2_lts_<version>

or

bootpartition_arm3
2_lts_<version>.tgz

rootfs_ubuntu_xenial_ar
m32

or

rootfs_ubuntu_xenial_ar
m32.tgz

firmware_ls1021atwr_uboot_sdboot.im
g

ls1021atw
r

/dev/sdX

Refer to
Note
below

LS1012AR
DB

firmware_ls1012ardb_uboot_qspiboot.i
mg

ls1012ard
b

LS1043AR
DB

firmware_ls1043ardb_uboot_sdboot.im
g

ls1043ard
b

LS1046AR
DB

firmware_ls1046ardb_uboot_sdboot.im
g

ls1046ard
b

LS1012AR
DB

bootpartition_arm6
4_lts_<version>

or

bootpartition_arm6
4_lts_<version>.tgz

rootfs_ubuntu_xenial_ar
m64

or

rootfs_ubuntu_xenial_ar
m64.tgz

firmware_ls1012ardb_uboot_qspiboot.i
mg

ls1012ard
b

/dev/sdX

Refer to
Note
below

LS1043AR
DB

firmware_ls1043ardb_uboot_sdboot.im
g

ls1043ard
b

LS1046AR
DB

firmware_ls1046ardb_uboot_sdboot.im
g

ls1046ard
b

LS1088AR
DB

firmware_ls1088ardb_uboot_sdboot.im
g

ls1088ard
b

LS2088AR
DB

firmware_ls2088ardb_uboot_norboot.i
mg

Ls2088ar
db

LSDK Quick Start

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 49

• The SD/USB/SATA storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c.

Make sure to choose the correct device name, because data on this device will be replaced.

• Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct

device names have been chosen.

• If your Linux host machine supports read/write SD card directly without an extra SD card reader device, the

device name of SD card generally is mmcblk0.

 NOTE

5. After unmounting, unplug the SD card from the Linux host and plugin it into the board

6. Make sure the DIP Switch settings on the board enable SD boot. (Refer to “Board-specific Information” section for switch
settings)

7. Power-on the board. The system will automatically boot up LSDK Ubuntu distro available on the SD card (exception for
LS2088ARDB).

Deploying on LS2088ARDB

As LS2088ARDB board doesn't support SD boot, users can deploy LSDK images to SD/USB/SATA device on LS2088ARDB
based on NOR boot as below.

1. Execute the following commands to program boot partition and Ubuntu userland to SD/USB/SATA storage device.

Assumption: Removable storage device is mounted as /dev/sdb on host machine.

$ flex-installer -b bootpartition_arm64_lts_<version>.tgz -r build/rfs/
rootfs_ubuntu_xenial_arm64 -m ls2088ardb -d /dev/sdb

2. Unplug SD/USB/SATA device from host machine and plug it to the target board, firmware_ls2088ardb_uboot_norboot.img
is already stored in the bootpartition of SD/USB/SATA device.

3. Program the composite firmware to IFC-NOR/QSPI flash as described below:

• Booting U-Boot on LS2088ARDB

Storage media Command in U-Boot

USB => usb start
=> load usb 0:2 a0000000 firmware_ls2088ardb_uboot_norboot.img

SATA => load scsi 0:2 a0000000 firmware_ls2088ardb_uboot_norboot.img

SD => load mmc 0:2 a0000000 firmware_ls2088ardb_uboot_norboot.img

• Execute the commands below to program the alternate bank:

=> protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b a0000000
584000000 $filesize
=> qixis_reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the target
boards.

Use the following default credentials to log onto to the LSDK distro:

— root/root

— user/user

UEFI based booting

• UEFI booting is supported on the following platforms:

— LS1043ARDB

— LS1046ARDB

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
50 NXP Semiconductors

— LS2088ARDB

• Download the composite firmware to target board via U-Boot in bank0 of NOR/QSPI flash as below:

Platform Command

LS1043ARDB => tftp a0000000 firmware_ls1043ardb_uefi_norboot.img

LS1046ARDB => tftp a0000000 firmware_ls1046ardb_uefi_qspiboot.img

LS2088ARDB => tftp a0000000 firmware_ls2088ardb_uefi_norboot.img

• Program the composite firmware into the alternate bank:

LS1043ARDB => protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
a0000000 64000000 $filesize
=> cpld reset altbank

LS1046ARDB => sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> cpld reset altbank

LS2088ARDB => protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b
a0000000 584000000 $filesize
=> qixis_reset altbank

Systems automatically boots up the LSDK Ubuntu distro, after LSDK images are successfully deployed on the required target
boards.

Use the following default credentials to log onto to the LSDK distro:

• root/root or

• user/user

4.1.3.2 Deploy LSDK Secure images on board
LSDK secure boot images have been generated in Download and assemble LSDK images on page 41, so the user can start to
deploy LSDK images on the board if user is deploying to a non-removable media on the board or user does not have a local Linux
server to connect removable media. In order to deploy LSDK images on the board, follow the instructions below:

1. Download LSDK composite firmware from the NXP website.

There are four types of composite firmware depending on the boot type: NOR/NAND/QSPI/SD boot. Download the LSDK
composite firmware to the Linux host machine and put it in the TFTP server service directory.

• firmware_<platform>_uboot_qspiboot_secure.img means the firmware boots from QSPI flash. Only
LS1046ARDB, LS1088ARDB, and LS2088ARDB support QSPI boot in this release. Use the following images and
command below depending on your platform:

— firmware_ls1046ardb_uboot_qspiboot_secure.img

— firmware_ls1088ardb_uboot_qspiboot_secure.img

— firmware_ls2088ardb_uboot_qspiboot_secure.img

— firmware_ls1012ardb_uboot_qspiboot_secure.img

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1803/
firmware_ls1046ardb_uboot_qspiboot_secure.img

• firmware_<platform>_uboot_sdboot_secure.img means the firmware boots from SD card. LS1021ATWR,
LS1043ARDB, LS1046ARDB, and LS1088ARDB support SD boot. Use the following images and command below
depending on your platform:

LSDK Quick Start

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 51

— firmware_ls1021atwr_uboot_sdboot_secure.img

— firmware_ls1043ardb_uboot_sdboot_secure.img

— firmware_ls1046ardb_uboot_sdboot_secure.img

— firmware_ls1088ardb_uboot_sdboot_secure.img

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1709/
firmware_ls1088ardb_uboot_sdboot_secure.img

• firmware_<platform>_uboot_norboot_secure.img means firmware boots from IFC NOR. LS1021ATWR,
LS1043ARDB, and LS2088ARDB support IFC NOR boot. Use the following images and command below depending
on your platform:

— firmware_ls1021atwr_uboot_norboot_secure.img

— firmware_ls1043ardb_uboot_norboot_secure.img

— firmware_ls2088ardb_uboot_norboot_secure.img

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls2088ardb_uboot_norboot.img

2. Program LSDK composite firmware for target board

LSDK composite firmware includes RCW+PBI, U-Boot/UEFI, PPA, boot loader environment variables, DPAA1 FMan ucode,
QE/uQE firmware, Ethernet PHY firmware, DPAA2 MC firmware, DPAA2 DPL, DPAA2 DPC, device tree,
flex_linux_<arch>.itb images.

Before Deploying the images, prepare the board for secure boot. For this refer section: Prepare board for Secure Boot on
page 62

Place the LSDK composite firmware into a TFTP server, then download the firmware via TFTP to the target board under
the U-Boot prompt using the commands below:

Platform Command in U-Boot

LS1021ATWR => tftp a0000000 firmware_ls1021atwr_uboot_norboot_secure.img
=> protect off 64000000 +$filesize && erase 64000000 +$filesize &&
cp.b a0000000 64000000 $filesize
=> boot_bank 1

LS1043ARDB => tftp a0000000 firmware_ls1043ardb_uboot_norboot_secure.img
=> protect off 64000000 +$filesize && erase 64000000 +$filesize &&
cp.b a0000000 64000000 $filesize
=> cpld reset altbank

LS1046ARDB => tftp a0000000 firmware_ls1046ardb_uboot_qspiboot_secure.img
=> sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> cpld reset altbank

LS1088ARDB => tftp a0000000 firmware_ls1088ardb_uboot_qspiboot_secure.img
=> sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize
=> i2c mw 66 50 20 ;i2c mw 66 66 7f;i2c mw 66 10 20;i2c mw 66 10 21
=> reset

LS2088ARDB => tftp a0000000 firmware_ls2088ardb_uboot_norboot_secure.img
=> protect off 584000000 +$filesize && erase 584000000 +$filesize
&& cp.b a0000000 584000000 $filesize
=> qixis_reset altbank

After the steps above are completed and the DIP switches are set properly (refer to Board-specific Information on page
67), Refer section Running secure boot on target platforms on page 63 for running secure boot. Before running secure
boot download srk_hash.txt file from github. Once secure boot is run, the board comes up.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
52 NXP Semiconductors

3. Deploy boot partition and Ubuntu 16.04 userland to SD/USB/SATA

Follow the instructions below to deploy boot partition and Ubuntu userland to SD/USB/SATA storage device.

• Enable network connection to download LSDK images

Command Target Board Assumption

$ udhcpc -i ni0 LS2088ARDB LS2088ARDB uses ETH0 port.

$ udhcpc -i ni0 LS1088ARDB LS1088ARDB uses ETH8 port.

$ udhcpc -i eth2 LS1043ARDB LS1043ARDB uses RGMII1 port

$ udhcpc -i eth0 LS1046ARDB LS1046ARDB uses RGMII1 port

$ udhcpc -i eth2 LS1021ATWR LS1021ATWR uses RGMII port.

Ethernet port name can be found in frontend control panel of target board.

 NOTE

• Use flex-installer to create and format partitions (USB/SATA/SD)

Storage Media Command in Linux

USB $ flex-installer -i pf -d /dev/sdX

SATA $ flex-installer -i pf -d /dev/sdX

SD $ flex-installer -i pf '-d /dev/mmcblkX

• Download and deploy two tarballs boot partition and Ubuntu userland to USB/SATA/SD storage device. Take
LS2088ARDB as example.

Storage Media Command in Linux

USB $ cd /run/media/sdX3

Download bootpartition_arm64.tgz and ubuntu_xenial_arm64_rootfs.tgz using the
wget or scp command.

$ flex-installer -i install -b bootpartition_arm64.tgz -r
rootfs_ubuntu_xenial_arm64.tgz -m ls2088ardb -d /dev/sdX

SATA $ cd /run/media/sdX3

Download bootpartition_arm64.tgz and ubuntu_xenial_arm64_rootfs.tgz using the
wget or scp command.

$ flex-installer -i install -b bootpartition_arm64.tgz -r
rootfs_ubuntu_xenial_arm64.tgz -m ls2088ardb -d /dev/sdX

SD $ cd /run/media/sdX3

Download bootpartition_arm64.tgz and ubuntu_xenial_arm64_rootfs.tgz using the
wget or scp command.

$ flex-installer -i install -b bootpartition_arm64.tgz -r
rootfs_ubuntu_xenial_arm64.tgz -m ls2088ardb -d /dev/mmcblk0

LSDK Quick Start

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 53

• After completing the steps above, reboot the board with the LSDK images. The system will automatically boot Ubuntu
userland.

4.2 How to build LSDK with Flexbuild
Flexbuild provides cmdline for various build scenarios. The LSDK Quick Start on page 41 section introduces how to build the
LSDK distro userland with prebuilt boot partition and component tarballs for quick deployment on the target board. This section
introduces detailed steps to build LSDK with Flexbuild.

Login www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=LAYERSCAPE-SDK to download flexbuild source
tarball in the name format flexbuild_<version>.tgz

$ tar xvzf flexbuild_<version>.tgz
$ cd flexbuild
$ source setup.env
$ flex-builder -h

Build custom kernel and update boot partition images with Flexbuild

You can use the standard kernel build system to build LSDK kernel. It is possible to build and install a kernel

manually. See Configuring and building on page 290. The section below describes how to use flex-builder to

automate the kernel build process. Run the commands in the following table to build the kernel for your platform.

The commands must be run on your Ubuntu 16.04 build system or in a Docker container based on Ubuntu 16.04

docker image hosted on CentOS, Fedora, RHEL, SUSE, Debian, Ubuntu system.

 NOTE

The section below describes how to use flex-builder to automate the kernel build process.

1. To build the kernel for your platform, run the commands in the table below. The commands must be run on your Ubuntu
16.04 build system or in a Docker container on it.

Platform Command for building Linux

LS1012ARDB 64bit (ARMv8)

LS1043ARDB 64bit

LS1046ARDB 64bit

LS1088ARDB 64bit

LS2088ARDB 64bit

$ flex-builder -c linux:custom (optional, customize kernel
config in interactive menu)
or
$ flex-builder -c linux:<kernel-repo>:<branch> -B
fragment:<mycustom>.config (optional, add additional fragment
config)

$ flex-builder -c linux
$ flex-builder -i mkbootpartition
(if -a <arch> is not specified, arm64 arch is built by default)

LS1012ARDB 32bit (ARMv8)

LS1043ARDB 32bit

LS1046ARDB 32bit

$ flex-builder -c linux:custom -a arm32 (optional, customize
kernel config in interactive menu)
$ flex-builder -c linux -a arm32
$ flex-builder -i mkbootpartition -a arm32

LS1021ATWR 32bit (ARMv7) $ flex-builder -c linux:custom -a arm32 -m ls1021atwr
(optional, customize kernel config in interactive menu)
$ flex-builder -c linux -c arm32 -m ls1021atwr
$ flex-builder -i mkbootpartition -a arm32

The commands above will generate bootpartition_<arch>_Its_<version>.tgz and <arch>-modules-<version>.tgz tarball in
the directory $WORKPATH/flexbuild/build/images.

2. In case of secure boot, additional signing is required for bootpartition using the following command:

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
54 NXP Semiconductors

$ flex-builder -i signimg -m <machine> -b <boottype>
$ flex-builder -i mkbootpartition -a <arch> -s

3. Deploy updated boot partition tarball on target board

After the kernel image is rebuilt, deploy the updated boot partition images onto the storage device (USB/SATA/SD) of the
board. Prerequisites:

• Target board is running with LSDK distro.

• System date is set correctly.

To update the boot partition, run the following steps within the Linux environment of the board:

a. Download the boot partition tarball onto the target board by using either the wget or scp command.

b. Extract the boot partition tarball to the directory /boot using the command tar zxvf
bootpartition_arm64_<date>.tgz -C /boot

c. Extract <arch>-modules-<version>.tgz to the /lib/modules directory of the Ubuntu rootfs on the board using
the command cd /lib/modules && tar zxvf <arch>-modules-<version>.tgz.

Rebuild images after modifying the source code of NXP user space components locally

Flexbuild supports building specific components after the source code is changed. Flexbuild then deploys the changes to the
target board.

1. Modify source code of user space components in the directory packages/apps/<apps-component>.

2. Clean old build footprint under user space component.

Take ODP for example:

$ make clean -C packages/apps/odp

3. If necessary, build the kernel which is a dependency for the current application component (e.g. for FMC component)

$ flex_builder -c linux -a arm64

4. Build the user space component.

$ flex_builder -c <apps-component> -a arm64 # <apps-component> can be restool, odp,
openssl, dpdk, fmc, ptpd, etc

5. Generate the boot partition tarball.

$ flex-builder -i mkbootpartition -a arm64

6. Generate the compressed components tarball.

$ flex-builder -i compressapps -a arm64

7. Download the files components_arm64.tgz and bootpartition_arm64.tgz to the target board using either the wget or
scp command.

8. Extract the boot partition tarball to the directory /boot.

$ tar zxvf bootpartition_arm64 -C /boot

9. Extract components_arm64.tgz to $HOME directory.

$ tar zxvf components_arm64.tgz -C $HOME

10. Copy all files in $HOME/components_arm64 to the root filesystem.

$ cp -a $HOME/components_arm64/* /

Native build and deploying LSDK images on the target board

If LSDK Ubuntu 16.04 userland is already deployed on the target board, native build can be done using the following instructions.
Correspondingly, the redeployment with different media (USB/SATA/SD) can also be done directly on the target board.

Prerequisites:

How to build LSDK with Flexbuild

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 55

• Set the system date and time by using the date -s command.

• To build Ubuntu userland, the user's network environment must have access to the remote Ubuntu official server.

• Deploy Ubuntu 16.04 userland with full package list on target board. For example, flex-builder -i mkrfs -a arm64 -B
additional_packages_list_full.

• SD/USB/SATA capacity must at least be 16 GB.

Follow the instructions below to perform native build and deploy LSDK images on the target board.

1. Rebuild kernel and deploy kernel images on target board. For more information on how to modify the kernel source code
and how to rebuild the kernel, refer to section above: “Build custom kernel and update boot partition images with Flexbuild”.

After completing the kernel image build, use the command below to deploy kernel images and kernel modules on target
board:

$ cp -a $HOME/flexbuild/build/images/bootpartition_arm64/* /boot

2. Modify and build source of user space application and deploy changes on target board.

To modify user space application source code, refer to step 1 through step 6 of the section above: "Rebuild images after
modifying the source code of NXP user space components locally".

After completing the user space application build, run the following steps to deploy changes on the target board.

$ cp -a $HOME/flexbuild/build/apps/components_arm64/* /
$ cp -a $HOME/flexbuild/build/images/bootpartition_arm64_lts_<version>/* /boot

3. Generate LSDK composite firmware and update firmware on target board.

Take the LS1043RDB booting from IFC NOR as an example:

$ flex-builder -i mkfw -m ls1043ardb -b nor -B uboot

firmware is generated in the directory $HOME/flexbuild/build/images/

firmware_ls1043ardb_uboot_norboot.img

 NOTE

Additional steps to be run, to generate secure firmware image

$ flex-builder -i signimg -m ls1043ardb -b nor
$ flex-builder -i mkfw -m ls1043ardb -b nor -B uboot -s

For more information on how to update the firmware, refer to section “How to program firmware to SD/NOR/QSPI flash
media”.

secure firmware is generated in the directory $HOME/flexbuild/build/images/

firmware_ls1043ardb_uboot_norboot_secure.img

 NOTE

How to build Linux and U-Boot with various repository and branch?

To select various git repository and branch rather than the default repo and branch, run the following commands:

$ flex-builder -c linux:<repo-name>:<tag-name> -a <arch>
$ flex-builder -c linux:<repo-name>:<branch-name> -a <arch>
$ flex-builder -c uboot:<repo-name>:<tag-name> -m <machine> -b <boottype>
$ flex-builder -c uboot:<repo-name>:<branch-name> -m <machine> -b <boottype>
Example:
$ flex-builder -c linux:linux:LSDK-18.03-V4.14 -a arm64
$ flex-builder -c linux:dash-lts:linux-4.9 -a arm32
$ flex-builder -c uboot:u-boot:LSDK-18.03 -m ls1043ardb -b sd
$ flex-builder -c uboot:dash-uboot:devel -m ls2088ardb -b nor

To use a private Linux git repository instead of the official git repository, put a private Linux git repository <custom-linux> in
packages/linux directory, then run flex-builder -c linux:<custom-linux>:<branch> -a <arch>

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
56 NXP Semiconductors

How to generate boot partition images for distro in Flexbuild

Use the following commands to generate boot partition images for distro in Flexbuild:

$ flex-builder -i mkbootpartition -a arm64
$ flex-builder -i mkbootpartition -a arm32
or
$ flex-builder -i mkbootpartition -a arm64 -s (for secure boot)
$ flex-builder -i mkbootpartition -a arm32 -s (for secure boot)

Generate all needed images including kernel image, dtb files, boot scripts for U-Boot, grub.conf for UEFI,
flex_linux_<arch>.itb, small ramdiskrfs, etc. The flex-builder script will automatically build dependent images if not present.

How to build Linux kernel in Flexbuild
To build the kernel using the default configurations specified in configs/build_lsdk.cfg, run the following commands:

$ flex-builder -c linux -a arm64 #for 64-bit mode of all armv8 platforms by
default
$ flex-builder -c linux -a arm32 #for 32-bit mode of all armv8 platforms by
default
$ flex-builder -c linux -a arm32 -m ls1021atwr #for 32-bit armv7 ls1021atwr

To build kernel with specified linux repo, specific branch and addtional fragment config,
run as below:
$ flex-builder -c linux:<kernel-repo>:<branch> -a arm64 -B fragment:<custom-fragment>.config
Example:
flex-builder -c linux:dash-lts:linux-4.14 -a arm64 -B fragment:lttng.config

Optionally, users can build kernel for big-endian system (e.g. on LS1043ARDB, LS1046ARDB
platforms) as below:
$ flex-builder -c linux -a arm64:be

To select a different Linux git tree and a different branch instead of default configuration, refer to "How to select various git trees
and branches for Linux and U-Boot".

To change the default kernel config to customize kernel, there are two ways to customize configs to build the kernel.

1. Run flex-builder -c linux:custom -a arm64 to customize kernel config in interactive menu, then run flex-builder
-c linux -a arm64 to compile kernel with customized kernel config

2. Put user-specific configs (e.g. custom1.config, custom2.config) in packages/linux/<kernel-repo>/arch/arm64/
configs and run flex-builder -c linux -B fragment:"custom1.config custom2.config"

How to build U-Boot in Flexbuild

Use the commands below to build U-Boot in Flexbuild

$ flex-builder -c uboot -m <machine> -b <boottype> #build uboot for <machine> to generate
specified nor/sd/qspi/nand boot image
or
$ flex-builder -c uboot -m <machine> #build uboot for <machine> to generate all nor/sd/qspi/
nand boot images
or
$ flex-builder -c uboot -m all #build uboot for all machines to generate all nor/sd/
qspi/nand boot images

How to build application components in Flexbuild

The following commands are some examples of building application components

$ flex-builder -c <component> -a <arch> #build single application component for specified
<arch>
$ flex-builder -c apps #build all apps components for arm64 arch
$ flex-builder -c odp #build ODP component
$ flex-builder -c dpdk #build DPDK component for SoCs integrated DPAA1
or DPAA2
$ flex-builder -c ovs-dpdk #build OVS-DPDK component
$ flex-builder -c fmc -a arm32 #build FMC component for arm32 arch

How to build LSDK with Flexbuild

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 57

$ flex-builder -c fmc -a arm64 #build FMC component for arm64 arch
$ flex-builder -c restool #build RESTOOL component for arm64 arch, default
arch is arm64
$ flex-builder -c ptpd #build ptpd component for IEEE 1588 on arm64
platform
$ flex-builder -c edgescale #build edgescale-related components for arm64 arch
$ flex-builder -c cst #build cst component, needed for secure boot
(arm64 is the default arch if -a <arch> is not specified)

How to add new application component in Flexbuild

Follow the instructions below to add an application component in Flexbuild:

1. Add new <component-name> to apps_repo_list and set CONFIG_BUILD <component-name>=y in configs/
build_xx.cfg.

2. Configure url/branch/tag/commit info for new <component_name>in configs/build_xx.cfg, default remote. Component
git repository is specified by GIT_REPOSITORY_URL if <component>_url is not specified, user also can directly create the
new component git repository in packages/apps directory

3. Add build support of new component in packages/apps/Makefile.

4. Run flex-builder -c <component-name> -a <arch>' to build the new component

5. Run flex-builder -i merge-component -a <arch> to merger the new component package into target distro userland

How to generate a custom Ubuntu root filesystem with custom additional package list during the build stage

In Flexbulid, there are two default additional package lists for Ubuntu or Debian: additional_packages_list_moderate, and
additional_packages_list_tiny.

$ flex-builder -i mkrfs -a arm64 (use additional_packages_list_moderate with more
packages for Ubuntu rootfs by default)
$ flex-builder -i mkrfs -r ubuntu:tiny -a <arch> (use additional_packages_list_tiny with
less packages for Ubuntu rootfs)
$ flex-builder -i mkrfs -r debian:tiny -a <arch> (use additional_packages_list_tiny with
less packages for Debian rootfs)
$ flex-builder -i mkrfs -r ubuntu -a <arch> -B <custom_packages_list>

Optionally, if you do not want to use default Ubuntu userland in some use cases, you can generate buildroot-based small userland
by following instruction by Flexbuild, for examples:

$ flex-builder -i mkrfs -r buildroot:tiny -a arm64 (generate arm64 LE buildroot userland
with qoriq_arm64_tiny_defconfig)
$ flex-builder -i mkrfs -r buildroot:moderate -a arm64 (generate arm64 LE buildroot userland
with qoriq_arm64_moderate_defconfig)
$ flex-builder -i mkrfs -r buildroot:custom -a arm64 (generate arm64 LE buildroot userland
with custom qoriq_arm64_moderate_defconfig)
$ flex-builder -i mkrfs -r buildroot:custom -a arm64:be (generate arm64 big-endian buildroot
userland with custom qoriq_arm64_moderate_defconfig)

To install a new package to build/rfs/rootfs_ubuntu_xenial_arm64 filesystem, run the following commands:

$ sudo chroot build/rfs/rootfs_ubunutu_xenial_arm64
$ apt-get install <new_package_name>

How to enable or disable various components in Flexbuild

Set CONIFG_BUILD_<component> to y or n in configs/build_xx.cfg to include/exclude the specified <component>.

How to generate composite firmware and boot partition

• To generate the following firmware in build/images directory for all machines (<boottype> can be nor, qspi, sd), run the
following commands for examples:

$ flex-builder -i mkfw -m ls1043ardb -b sd -B uboot
 firmware_ls1043ardb_uboot_sdboot.img will be generated.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
58 NXP Semiconductors

$ flex-builder -i mkfw -m ls1046ardb -b qspi -B uefi
 firmware_ls1046ardb_uefi_qspi.img will be generated.

$ flex-builder -i mkfw -m ls2088ardb -b nor -B uboot
 firmware_ls2088ardb_uboot_norboot.img will be generated.

$ flex-builder -i signimg -m ls2088ardb -b nor
$ flex-builder -i mkfw -m ls2088ardb -b nor -B uboot -s
 firmware_ls2088ardb_uboot_norboot_secure.img will be generated for secure boot.

Alike, the following all composite firmware can be generated with the '-i mkfw' command.
firmware_ls1012ardb_uboot_qspiboot.img
firmware_ls1012ardb_uboot_qspiboot_secure.img
firmware_ls1021atwr_uboot_norboot.img
firmware_ls1021atwr_uboot_norboot_secure.img
firmware_ls1021atwr_uboot_sdboot.img
firmware_ls1043ardb_uboot_norboot.img
firmware_ls1043ardb_uboot_norboot_secure.img
firmware_ls1043ardb_uboot_sdboot.img
firmware_ls1043ardb_uboot_sdboot_secure.img
firmware_ls1043ardb_uefi_norboot.img
firmware_ls1046ardb_uboot_qspiboot.img
firmware_ls1046ardb_uboot_qspiboot_secure.img
firmware_ls1046ardb_uboot_sdboot.img
firmware_ls1046ardb_uboot_sdboot_secure.img
firmware_ls1046ardb_uefi_qspiboot.img
firmware_ls1088ardb_uboot_qspiboot.img
firmware_ls1088ardb_uboot_qspiboot_secure.img
firmware_ls1088ardb_uboot_sdboot.img
firmware_ls2088ardb_uboot_norboot.img
firmware_ls2088ardb_uboot_norboot_secure.img
firmware_ls2088ardb_uboot_qspiboot.img
firmware_ls2088ardb_uboot_qspiboot_secure.img
firmware_ls2088ardb_uefi_norboot.img

• To generate bootpartition_arm64_<version>.tgz or bootpartition_arm32_<version>.tgz run following commands:

$ flex-builder -i mkbootpartition -a <arch>
or
$ flex-builder -i mkbootpartition -a <arch> -s (option '-s' is for secureboot)

4.3 Advanced Use Case Instructions
Section “LSDK Quick Start” states the quick way of deploying LSDK distro onto the target board, this section elaborates the
instructions.

How to install distro to SD/USB/SATA storage drive

Use the LSDK flex-installer to install all the release binaries and distro userland onto a storage media (e.g. SD/eMMC card, USB/
SATA disk) on the Linux host machine or on the target board.

Follow the instructions below:

Step 1: Plug SD/USB/SATA storage device to Linux Host machine or target board

Step 2: Install LSDK distro

• If the prebuilt distro tarball generated by Flexbuild is available on Linux host machine, run the following command:

$ flex-installer -b bootpartition_xx.tgz -r ubuntu_xenial_arm64_rootfs_xx.tgz -m <machine>
-d /dev/sdx

sdx should be the actual device name on the host machine, for example: sdb, sdc, mmcblk0, etc.

 NOTE

Advanced Use Case Instructions

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 59

• If the user wants to modify source code and build a custom LSDK distro with flexbuild, use the commands below on the Linux
host machine:

$ flex-builder -c linux:custom -a <arch> # customize kernel config in interactive menu
$ flex-builder -c linux -a <arch>
$ flex-builder -c firmware -m <machine>
$ flex-builder -i mkfw -m <machine> -b <boottype> -B uboot
$ flex-builder -i mkrfs -a <arch>
$ flex-builder -c apps -a <arch>
$ flex-builder -i merge-component -a <arch>
$ flex-builder -i mkbootpartition -a <arch>
$ flex-installer -b build/images/bootpartition_arm64 -r build/rfs/
rootfs_ubuntu_xenial_arm64 -m <machine> -d /dev/sdx

• If the user wants to install disrto rootfs directly onto SD/USB/SATA disk on QorIQ board on which Linux is unavailable,
download the prebuilt flex_linux_<arch>.itb image using the command:

$ wget http://www.nxp.com/lgfiles/sdk/lsdk1803/lsdk_linux_arm64_tiny.itb

Optionally, locally build it using the command below:

$ flex-builder -i mklinux -a <arch> to generate lsdk_linux_<arch>_tiny.itb

Put the lsdk_linux_<arch>_tiny.itb to a TFTP service directory, then download it to the target board under U-Boot prompt
as below:

— For arm64 platforms:

=> tftp a0000000 lsdk_linux_arm64_tiny.itb
=> bootm a0000000#<board-name>

The <board-name> can be: ls1012ardb, ls1012afrdm, ls1043ardb, ls1046ardb, ls1088ardb, ls2088ardb.

— For arm32 platforms:

=> tftp a0000000 lsdk_linux_arm32_tiny.itb
=> bootm a0000000#<board-name>

The <board-name> can be: ls1012ardb, ls1012afrdm, ls1021atwr, ls1043ardb, ls1046ardb

• After booting and logging in to Linux on the target board, download the prebuilt distro tarballs generated by Flexbuild and
install using the commands below:

$ flex-installer -i pf -d /dev/sdx
$ cd /run/media/{mmcblk0p3 or sdx3}, then download distro images to sd/usb/sata storage
disk via wget or scp command
$ flex-installer -i install -b bootpartition_arm64_lts_<version>.tgz -r
rootfs_ubuntu_xenial_arm64.tgz -m <machine> -d /dev/sdX

Step 3: Power on or reboot the target board after finishing the distro installation, the system will enter boot loader (U-Boot or UEFI)
and automatically scan boot configuration script from the attached SD/USB/SATA disk and boot the target LSDK distro if found,
otherwise it falls back to boot from NOR/QSPI flash with flex_linux_<arch>.itb.

How to program firmware to SD/NOR/QSPI flash media

• For SD/eMMC card (on all platforms):

1. Download the prebuilt image (take LS1043ARDB for example):

— Option 1: Load the prebuilt image from SD card in U-Boot:

=> load mmc 0:2 a0000000 firmware_ls1043ardb_uboot_sdboot.img

— Option 2: Download the prebuilt image using the wget command:

http://www.nxp.com/lgfiles/sdk/lsdk1803/lsdk_linux_arm64_tiny.itb

— Option 3: To generate firmware_ls1043ardb_uboot_sdboot.img locally, run flex-builder -i mkfw -m
ls1043ardb -b sd -B uboot.

2. Program firmware_<machine>_uboot_sdboot.img to SD card:

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
60 NXP Semiconductors

http://www.nxp.com/lgfiles/sdk/lsdk1706/flex_installer_arm64.itb

— Under U-Boot:

=> load mmc 0:2 a0000000 firmware_ls1043ardb_uboot_sdboot.img
=> mmc write a0000000 8 1fff8 (same on all platforms)
=> cpld reset sd

— Under Linux:

$ flex-installer -f firmware_ls1043ardb_uboot_sdboot.img -s 8 -d /dev/mmcblk0

• For IFC-NOR flash

— On LS1043ARDB & LS1021ATWR:

1. Download the prebuilt image (take LS1043ARDB for example) using the following options:

◦ Option 1: Load prebuilt image from SD/USB/SATA disk:

=> load mmc 0:2 a0000000 firmware_ls1043ardb_uboot_norboot.img

◦ Option 2: Download the prebuilt image using the wget command:

http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls1043ardb_uboot_norboot.img

◦ Option 3: To generate firmware_ls1043ardb_uboot_norboot.img locally, run flex-builder -i mkfw -
m ls1043ardb -b nor -B uboot.

2. Program firmware_<machine>_uboot_norboot.img into IFC-NOR flash:

◦ To program current bank:

=> protect off 60000000 +$filesize && erase 60000000 +$filesize && cp.b
a0000000 60000000 $filesize

◦ To program alternate bank:

=> protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
a0000000 64000000 $filesize

— On LS2088ARDB:

1. Download the image using the following options:

◦ Option 1: Load prebuilt image from SD card

=> load mmc 0:2 a0000000 firmware_ls2088ardb_uboot_norboot.img

◦ Option 2: Download the prebuilt image using the wget command.

http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls2088ardb_uboot_norboot.img

◦ Option 3: To firmware_ls2088ardb_uboot_norboot.img generate locally, run flex-builder -i mkfw -
m ls2088ardb -b nor -B uboot.

2. Program firmware_ls2088ardb_uboot_norboot.img into IFC-NOR flash:

◦ To program current bank:

=> protect off 580000000 +$filesize && erase 580000000 +$filesize && cp.b
a0000000 580000000 $filesize

◦ To program alternate bank:

=> protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b
a0000000 584000000 $filesize

• For QSPI flash:

— On LS1046ARDB:

1. Download the image using the following options:

◦ Option 1: Load prebuilt image from SD card.

=> load mmc 0:2 a0000000 firmware_ls1046ardb_uboot_qspiboot.img

◦ Option 2: Download the prebuilt image using the wget command.

Advanced Use Case Instructions

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 61

http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls1046ardb_uboot_qspiboot.img

◦ Option 3: To generate firmware_ls1046ardb_uboot_qspiboot.img locally, run flex-builder -i mkfw
-m ls1046ardb -b qspi -B uboot.

2. Program firmware_ls1046ardb_uboot_qspiboot.img to QSPI flash:

=> sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize

— On LS1088ARDB:

1. Download the image using the following options:

◦ Option 1: Load prebuilt image from SD card.

=> load mmc 0:2 a0000000 firmware_ls1088ardb_uboot_qspiboot.img

◦ Option 2: Download the prebuilt image using the wget command.

http://www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls1088ardb_uboot_qspiboot.img

◦ Option 3: To generate firmware_ls1088ardb_uboot_qspiboot.img locally, run flex-builder -i mkfw -
m ls1088ardb -b qspi -B uboot.

2. Program firmware_ls1088ardb_uboot_qspiboot.img to QSPI flash:

=> sf probe 0:1
=> sf erase 0 +$filesize && sf write 0xa0000000 0 $filesize

4.4 Procedure to Run Secure Boot
This section describes the steps to be followed to run secure boot on a platform, after building the images.

4.4.1 Prepare board for Secure Boot
Steps to blow fuses

1. Enable POVDD

a. LS1021A TWR Board

• To enable SNVS in check state – J 11

• POVDD (J8 and J9)

b. LS1043A RDB Board

• Put J13 to enable PWR_PROG_SFP

c. LS1012A RDB

• Through i2c transactions you need to write to LDO1CT register to change LDO1EN bit in vr5100

• i2c mw 0x08 0x6c 0xFF

d. LS1046A RDB Board

• Put J21 to enable PWR_PROG_SFP

e. LS2088A RDB Board

• Put J12 to enable PWR_PROG_SFP

f. LS1088A RDB Board

• Put J10 to enable PWR_PROG_SFP.

2. Write the required values to be fused in the corresponding SFP Registers. Check SFP Block Guide in the SoC RM for
details..

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
62 NXP Semiconductors

3. Blow the fuses by writing PROGFB (0x2) in the INST field in INGR register of SFP.

Blowing One Time Programmable Master Key (OTPMK) fuse using the above procedure

• Check initial SNVS state

md 1e90014
88000900

The second nibble indicates that the OTPMK is not blown

• Enable POVDD

• Command to generate OTPMK

cd cst
./gen_otpmk_drbg 2

For more information on gen_otpmk_drbg, refer Code Signing Tool section in Secure Boot User Guide

 NOTE

• Write OTPMK fuse values on shadow registers:

mw.l 1e80234 <OTPMK1>
mw.l 1e80238 <OTPMK2>
mw.l 1e8023c <OTPMK3>
mw.l 1e80240 <OTPMK4>
mw.l 1e80244 <OTPMK5>
mw.l 1e80248 <OTPMK6>
mw.l 1e8024c <OTPMK7>
mw.l 1e80250 <OTPMK8>

• Check SNVS state again. There should be no parity errors.

md 1e90014
 80 000 900

Now you will see ‘0’ in second nibble.

md 1e80024
 00000000

No parity errors .

Use the below command write to INGR register :

For LS1, LS1043 and LS1046 use :

mw 1e80020 0x02000000

For LS1088 and LS2088 use the below command:

mw 1e80020 0x2

• Reset and check that SNVS is in Check state

md 1e90014
 80 000 900

4.4.2 Running secure boot on target platforms

1. Platforms LS1021, LS1043, LS1046

a. After copying images to flash, select the boot source by changing the switch settings, then boot the board.

b. In platforms LS1021, LS1043, LS1046 flexbuild generated rcw for secure boot has the boot core put in holdoff by
setting BOOT_HO = 1 and enabled secure boot by SB_EN=1.

After booting the board, core would get stuck at its first instruction. This is done to allow the user to write SRKH in
the register. When using pre-built images, use the SRK hash present in srk_hash.txt from github. If SRKH fuse is

Procedure to Run Secure Boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 63

already blown, then set BOOT_HO = 0 in rcw file in flexbuild, else write the SRK hash value (displayed while signing
images) in SFP mirror registers and then release the core out of Boot Hold off by writing to Boot Release Register
in DCFG using the below commands:

ccs::config_server 0 10000
ccs::config_chain {<platform> dap sap2}
display ccs::get_config_chain
#Check Initial SNVS State and Value in SCRATCH Registers
ccs::display_mem <dap position> 0x1e90014 4 0 4
ccs::display_mem <dap position> 0x1ee0200 4 0 4
#Wrie the SRK Hash Value in Mirror Registers
ccs::write_mem <dap position> 0x1e80254 4 0 <SRKH1>
ccs::write_mem <dap position> 0x1e80258 4 0 <SRKH2>
ccs::write_mem <dap position> 0x1e8025c 4 0 <SRKH3>
ccs::write_mem <dap position> 0x1e80260 4 0 <SRKH4>
ccs::write_mem <dap position> 0x1e80264 4 0 <SRKH5>
ccs::write_mem <dap position> 0x1e80268 4 0 <SRKH6>
ccs::write_mem <dap position> 0x1e8026c 4 0 <SRKH7>
ccs::write_mem <dap position> 0x1e80270 4 0 <SRKH8>
#Get the Core Out of Boot Hold-Off
ccs::write_mem <dap position> 0x1ee00e4 4 0 0x00000001

2. Platforms LS1088, LS2088

In these platforms key hash is written into registers by putting the core into RSP, after this, connect to the board and blow
SRKH using CCS. When using pre-built images, use the SRK hash present in srk_hash.txt from github.

If running in production environment (See the note below for more information), i.e if the SRKH fuses are already blown,
then no need to put the SoC into RSP, just change the bank/boot-source and boot, else follow the steps below:

a. Steps to put SOC in RSP (Reset Sequence Pause)

i. LS2088:

• Rev1 RDB Board Switch (Rev B): SW3.8 – 0. Switch (Rev C to Rev F): SW4.8 – 0. To boot from
vbank4, change SW9[3:5] to 100.

ii. LS1088:

• U-Boot Command to put SOC in RSP

i2c mw 66 66 0x7f #to put the SoC into RSP
i2c mw 66 10 20
i2c mw 66 10 21 # to switch to alternate bank

b. After putting the SoC into RSP, reset the board. Then use the below commands to write SRKHR in the register.

ccs::config_chain {<platform> sap2}
display ccs::get_config_chain
puts "Entry RSP: "
ccs::write_mem 2 0x7 0x001000D0 0x4 0x0 0x800
set ::littleendian(2) 1
ccs::write_mem <sap position> 0x1e80254 4 0 <SRKH1>
ccs::write_mem <sap position> 0x1e80258 4 0 <SRKH2>
ccs::write_mem <sap position> 0x1e8025c 4 0 <SRKH3>
ccs::write_mem <sap position> 0x1e80260 4 0 <SRKH4>
ccs::write_mem <sap position> 0x1e80264 4 0 <SRKH5>
ccs::write_mem <sap position> 0x1e80268 4 0 <SRKH6>
ccs::write_mem <sap position> 0x1e8026c 4 0 <SRKH7>
ccs::write_mem <sap position> 0x1e80270 4 0 <SRKH8>

set ::littleendian(2) 0
puts "Exiting RSP: "
ccs::write_mem 2 0x7 0x001000D0 0x4 0x0 0x400;

After implementing all the steps, the board will boot and user will get the Linux prompt after successful validation of all the
images.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
64 NXP Semiconductors

To blow SRKH in production environment follow procedure similar to blowing OTPMK fuses. For more detail on

production and development environment refer Flow A and Flow B under Product Execution section in Secure Boot

User Guide

 NOTE

4.4.3 Steps to run Chain of Trust with Confidentiality
1. Generate all images

$ flex-builder -c firmware
$ flex-builder -c linux -a <arch>

2. Generate autoboot script with e flag

a. with encapsulation flag enabled

$ flex-builder -i mkdistroscr -e

(OR)

b. With encapsulation and key identifier (16 bytes)

$ flex-builder -i mkdistroscr -e -k <key_id>
 Eg. Key_id = 0x20000000

For more information on key identifier, refer Section 1.7.2 of Secure Boot Guide.

 NOTE

3. Signing all images

$ flex-builder -i signimg -m <platform> -b <boottype> -s -e

4. Generating firmware image

$ flex-builder -i mkfw -m <platform> -b <boottype > -B uboot -s

5. Generating bootpartition

$ flex-builder -i mkbootpartition -a <arch> -s

6. Writing image to sd card

$ flex-installer -b build/images/bootpartition_arm64_lts_<version>.tgz -r build/rfs/
rootfs_ubuntu_xenial_arm64 -m <platform> -d /dev/sdx

BOOT FLOW

First Boot: Encapsulaton Step (Shoudl happen in OEM's premises)

1. By defult the enacap and decap bootscripts will be installed in the bootpartition.

2. When the board boots up for the first time after all images have been generated, Encap bootscript will execute. This
bootscript:

a. Authenticates and encapsulates linux and dtb images and replaces the unencrypted linux and dtb images with newly
encapsulated linux and dtb.

b. Replaces the encap bootscript and header with the decap bootscript and it's header, already present in the
bootpartition.

c. Issues reset

Subsequent Boot

1. Uboot would execute script with decap commands

a. Un-blobify linux and dtb image in DDR

b. Pass control to these images

Procedure to Run Secure Boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 65

Chain of trust with confidentiality is currently not supported for LS1012 in flexbuild

 NOTE

4.5 LSDK Memory Layout

Flash layout

The following table shows the memory layout of various firmware stored in NOR/NAND/QSPI flash device or SD card on all QorIQ
Reference Design Boards.

Table 9. Flash layout

Definition Max Size NOR/QSPI/NAND

Flash Offset

SD Card

Start Block No.

RCW+PBI 1MB 0x00000000 0x00008

Boot firmware (U-Boot or UEFI) 2MB 0x00100000 0x00800

Boot firmware Environment 1MB 0x00300000 0x01800

PPA firmware 2MB 0x00400000 0x02000

Secure boot headers 3MB 0x00600000 0x03000

DPAA1 FMAN ucode 256KB 0x00900000 0x04800

QE/uQE firmware 256KB 0x00940000 0x04A00

Ethernet PHY firmware 256KB 0x00980000 0x04C00

Reserved 256KB 0x009C0000 0x04E00

DPAA2 MC or PFE firmware 3MB 0x00A00000 0x05000

DPAA2 DPL 1MB 0x00D00000 0x06800

DPAA2 DPC 1MB 0x00E00000 0x07000

Device tree (needed by UEFI) 1MB 0x00F00000 0x07800

Kernel lsdk_linux_<arch>.itb 16MB 0x01000000 0x08000

Ramdisk RFS 32MB 0x02000000 0x10000

Storage layout on SD/USB/SATA for LSDK images deployment

With LSDK flex-installer, the LSDK distro can be installed into an SD/USB/SATA storage disk which should have at least 8GB of
memory space.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
66 NXP Semiconductors

Table 10. Storage Layout on SD/USB/SATA for LSDK Image Deployment

Region 1

(4KB)

Region 2

(RAW)

64MB

Firmware

Region 3

(Partition-1 FAT32)

20MB

EFI

Region 4

(Partition-2 EXT4)

1GB

Boot partition

Region 5

(Partition-3 EXT4)

Remaining space

RootFS partition

MBR/GPT RCW

U-Boot or UEFI

PPA firmware

Secure boot headers

FMan firmware

QE/uQE firmware

Eth PHY firmware

MC firmware

DPC firmware

DPL firmware

DTB

lsdk_linux_<arch>.itb

BOOTAA64.EFI

grub.cfg

kernel image

DTB

lsdk_linux_<arch>.itb

distro boot scripts

secure headers

other

Ubuntu

or

Ubuntu-Core

or

CentOS

or

Debian

4.6 Board-specific Information

4.6.1 TWR-LS1021A
This section provides TWR-LS1021A-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash memory layouts. For more information
about the TWR-LS1021A refer to QorIQ TWR-LS1021A Reference Manual and the QorIQ TWR-LS1021A Getting Started Guide

4.6.1.1 On-board Switch Settings

Default Settings

Table 11. Default TWR-LS1021A PB Switch Settings

Switch 1 2 3 4 5 6 7 8

SW2 ON [1] OFF [0] OFF [0] OFF [0] ON [1] ON [1] ON [1] ON [1]

SW3 OFF ON ON OFF OFF ON OFF ON

Table 12. Default Clock Frequency

ARM CPU Core Platform DDR rate

1200 MHZ 300 MHZ 1600 MT/S

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 67

https://www.nxp.com/webapp/Download?colCode=TWR-LS1021ARM&Parent_nodeId=1400248220704704973621&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=TWR-LS1021AGS&Parent_nodeId=1400248220704704973621&Parent_pageType=product&Parent_nodeId=1400248220704704973621&Parent_pageType=product

4.6.1.2 Clock Frequency
The Configuration of the Clock Frequency on TWR-LS1021A consist of two parts:

1. From the Hardware side, set the switches on the TWR-LS1021A board for the desired frequency - SW3[3:4]. Details about
the frequency options available in the TWR-LS1021AGS.pdf doc.

2. From the SW side since the U-Boot software cannot read out SW3[3:4] settings, change the clock configuration manually
in U-Boot software code, so that it matches with hardware switches (include/configs/ls1021atwr.h).

Change the following settings to the desired frequency to match the HW switch configuration:

#define CONFIG_SYS_CLK_FREQ 100000000
#define CONFIG_DDR_CLK_FREQ 100000000

4.6.1.3 U-Boot Environment Variables

hwconfig

Environment variable "hwconfig" is used within the U-Boot bootloader to convey information about desired hardware
configurations. It is an ordinary environment variable in that:

• It can be set in the U-Boot prompt using the "setenv" command.

• It can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig

• It can be modified in the U-Boot command prompt using the "editenv" command.

• It can be saved in the U-Boot environment via the "saveenv" command.

Variable "hwconfig" is set to a sequence of option:value entries separated by semicolons.

The default setting for DDR, which will disable interleaving, is as follows:

hwconfig = fsl_ddr:ctlr_intlv=null,bank_intlv=null

4.6.1.4 Supported Boot Options
TWR-LS1021A supports the following boot options:

• SD

• QSPI

• NOR

4.6.1.5 System Memory Map

Start Physical Address End Physical Address Memory Type Size

0x0100_0000 0x0FFF_FFFF CCSR 240MB

0x1000_0000 0x1000_FFFF OCRAM0 64KB

0x1001_0000 0x1001_FFFF OCRAM1 64 KB

0x2000_0000 0x20FF_FFFF DCSR 16MB

0x4000_0000 0x5FFF_FFFF QSPI 512MB

Table continues on the next page...

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
68 NXP Semiconductors

Table continued from the previous page...

Start Physical Address End Physical Address Memory Type Size

0x6000_0000 0x67FF_FFFF NOR Flash 128MB

0x7FB0_0000 0x7FB0_0FFF Board CPLD 4KB

0x8000_0000 0xFFFF_FFFF DDR 2GB

4.6.1.6 NOR Flash (Virtual) Banks
NOR flash is a simple and convenient destination for deploying images so it is frequently used. Many NXP development and
reference boards provide a special feature that allows a single NOR flash to be divided into multiple parts called “banks”. This is
done by board-level logic that modifies address signals. Because there is only one NOR flash physically, the banks are sometimes
called "virtual" banks.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the one NOR flash. This
is very helpful during development, because you can use the U-Boot image in one bank to program an image set into a different
bank. If the new images are flawed, the old images are still functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be divided into up to 8 banks, but almost always the feature is used to
divide the flash into two halves only. For the TWR-LS1021A, the 2 halves are called bank0 and bank1.

Switch Settings and NOR Banks

The NOR flash on the board can be seen as two flash banks. The board DIP switch configuration (for LS1021ATWR, SW3[5])
preselects bank 0 as the hardware default bank. The NOR flash on the TWR-LS1021A board is divided in two banks. There are
different images in each banks that supports the different functionality.

Bank0 is programmed with the RCW support for the QE, and the bank1 is programmed with the RCW support for the 2D-ACE.

To determine the current bank, refer to the U-Boot log:

CPU: Freescale LayerScape LS1021E, Version: 2.0, (0x87081120)
Clock Configuration:
 CPU0(ARMV7):1200 MHz,
 Bus:300 MHz, DDR:800 MHz (1600 MT/s data rate),
Reset Configuration Word (RCW):
 00000000: 0608000c 00000000 00000000 00000000
 00000010: 70000000 00007900 e0025a00 21046000
 00000020: 00000000 00000000 00000000 20000000
 00000030: 00080000 881b7340 00000000 00000000
Board: LS1021ATWR
CPLD: V2.0
PCBA: V1.0
VBank: 0

Bank Switching

Bank switching can be done in U-Boot using the following statements:

• Switch to bank 0:

=>reset

• Switch to alternate bank:

=>boot_bank 1

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 69

NOR Flash Memory Map

NOR flash memory map for LS1021A TWR can be found on the link below.

Related information

LSDK Memory Layout on page 66

4.6.1.7 Supported Reset Configuration Word (RCW) Binaries
The release contains the following RCW binary for use on the TWR-LS1021A:

• RSR_PPS_70/rcw_1200.bin (default for bank0)

• SSR_PNS_30/rcw_1200.bin

• SSR_PNS_30/rcw_1200_usb2.bin

• SSR_PNS_30/rcw_1200_lpuart.bin (default for bank1)

The RCW directories' names for the TWR-LS1021A conform to the following naming convention:

abc_def_g

Table 13. TWR-LS1021A Directories Naming Convention Legend

Slot Convention

a[What is available for eTSEC1] 'R' indicates RGMII@eTSEC1 is supported

'S' indicates SGMII@eTSEC1 is supported

'N' if not available/not used

b[What is available for eTSEC2] 'R' indicates RGMII@eTSEC2 is supported

'S' indicates SGMII@eTSEC3 is supported

'N' if not available/not used

c[What is available for eTSEC3] 'R' indicates RGMII@eTSEC3 is supported

'S' indicates SGMII@eTSEC3 is supported

'N' if not available/not used

d 'P' indicates PCIe@slot1 is supported

'N' if not available/not used

e 'P' indicates PCIe@slot2 is supported

'N' if not available/not used

f 'S' indicates sata is supported

'N' if not available/not used

g Hex value of serdes protocol value

For example,

SSR_PNS_30

means:

• SGMII@eTSEC1

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
70 NXP Semiconductors

• SGMII@eTSEC2

• RGMII@eTSEC3

• PCIE [Slot 1]

• SATA [Support]

• SERDES Protocol is 0x30

The RCW file names for the LS1021ATWR conform to the following naming convention:

rcw_<frequency>_<specialsetting>.rcw

Table 14. LS1021TWR Files Naming Convention Legend

Code Convention

frequency Core frequency(MHZ)

specialsetting bootmode sdboot

(default is nor boot)

special support lpuart:used for lpuart

sben:Secure boot support

usb2:USB 2.0 support

For example,

rcw_1200_sd.rcw means rcw for core frequency of 1200MHz with sd boot.
rcw_1200_lpuart.rcw means rcw for core frequency of 1200MHz with nor boot special for enable
lpuart.

Default rcw:

SSR_PNS_30/rcw_1200_lpuart.bin[1 SGMII, 1 RGMII, 2D-ACE, lpuart1, 2PCIE, SATA, CAN, SAI]
RSR_PPS_70/rcw_1200.bin[2 SGMII, 1 RGMII, 1SATA, 1PCIE, CAN]

4.6.1.8 FlexCAN User Manual

Description

The FlexCAN module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol
specification. NXP’s LS1021A can support 4 Flexcan IP module instances if there are 2 CAN ports brought out on DB9 male
connectors on the board.

Dependencies

Hardware:

TWR-IND-IO board is needed to use flexcan with LS1021A-TWR board.

Software:

LSDK Images (refer Deploy LSDK Images on the target board) and can-utils and iproute2 (both packages included in LSDK ubuntu
userland)

U-Boot Configuration

Execute the following command at the u-boot prompt:

=> setenv hwconfig “can3”

=> saveenv

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 71

https://www.nxp.com/support/developer-resources/hardware-development-tools/tower-development-boards/peripheral-modules/industrial-i-o-tower-system-module:TWR-IND-IO
https://freescalereach01.sdlproducts.com/LiveContent/content/en-US/QorIQ_LSDK/GUID-A5F0B9A1-F8D8-4121-A25F-234CA1467172

Compile time options

N/A

Runtime options

Env Variable Env Description Option Description

hwconfig setenv hwconfig "can3" CAN3 and USB2 are muxed on LS1021A-TWR. This option is used to select CAN3
feature on the LS1021A-TWR board.

Kernel Configure Options

Tree View

Following is an example of how to enable FlexCAN driver support.

Kernel Configure Tree View Options Description

[*] Networking support -->
 <*> CAN bus subsystem support -->
 -- CAN bus subsystem support
 <*> Raw CAN Protocol (raw access with CAN-ID filtering)
 < > Broadcast Manager CAN Protocol (with content filtering)
 CAN Device Drivers -->
 <*> Platform CAN drivers with Netlink support
 [*] CAN bit-timing calculation
 <*> Support for NXP FlexCAN based chips

Enable FlexCAN driver and CAN
protocol stack

The FlexCAN driver can be statically/dynamically linked with the kernel Image.

 NOTE

Identifier

Option Values Default Value Description

CONFIG_NET y/n y Enable networking support

CONFIG_CAN y/m/n n Enable CAN bus support

CONFIG_CAN_RAW y/m/n n Enable CAN RAW Protocol support

CONFIG_CAN_DEV y/m/n n Enable platform CAN driver support

CONFIG_CAN_CALC_BITTIMING y/n n Enable baud rate setting using sysfs

CONFIG_CAN_FLEXCAN y/m/n n Enable NXP FlexCAN protocol

Device Tree Binding

Below is the definition of the device tree node required by this feature

Property Description

compatible = " fsl,ls1021ar2-flexcan" Should be "fsl,ls1021ar2-flexcan”

Table continues on the next page...

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
72 NXP Semiconductors

Table continued from the previous page...

Property Description

reg = <0x0 0x2a70000 0x0 0x1000> Offset and length of the register set for the device

interrupts = < GIC_SPI 126
IRQ_TYPE_LEVEL_HIGH>

IRQ line for FlexCAN controller CAN0

clocks = <&clockgen 4 1> CAN module Clock Source.

clock-names = <per> CAN Engine Clock Source. This property selects the peripheral clock.
Valid values are ipg and per
ipg: CAN engine clock source is oscillator clock.
Current release doesn’t support this option.
per: The CAN engine clock source is the peripheral clock (platform
clock).

big-endian This means the registers of FlexCAN controller are big endian.

Below is an example device tree node required by FlexCAN.

can0: can@2a70000 {
 compatible = "fsl,ls1021ar2-flexcan";
 reg = <0x0 0x2a70000 0x0 0x1000>;
 interrupts = <GIC_SPI 126 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clockgen 4 1>, <&clockgen 4 1>;
 clock-names = "ipg", "per";
 big-endian;
};

Source Files

The following source file is related to Flexcan feature in u-boot.

Source File Description

arch/arm/cpu/armv7/ls102xa/fdt.c Providing the fix-up for clock_freq in the dts file.

board/freescale/ls1021atwr/ls1021atwr.c Provides the support for board level FlexCAN muxing when u-boot environment
variable hwconfig is set to can3.

The following source files are related to Flexcan feature in Linux kernel.

Source File Description

drivers/net/can/flexcan.c Flexcan driver module

Board Connections

For hardware connections refer to LS1021A-TWR_FLEXCAN_A manual.

User Space Application

can-utils and iproute2 (included in LSDK ubuntu userland) are needed for using flexcan.

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 73

Command Name Description Package Name

cansend Userspace SocketCAN test program for sending CAN frames on a CAN interface can-utils

candump Userspace SocketCAN test program for sniffing CAN frames received on a CAN
interface

can-utils

ip The iproute package contains networking utilities (ip and rtmon, for example) which are
designed to use the advanced networking capabilities of the Linux kernel.

iproute(2)

Verification in U-Boot

N/A

Verification in Linux

To cross check whether FlexCAN has been configured in the kernel or not, run the following command at Linux prompt:

root@ls1021aqds:~# cat /proc/interrupts
 CPU0 CPU1
118: 3889 0 GIC 118 serial
120: 126 0 GIC 120 2180000.i2c
125: 0 0 GIC 125 xhci-hcd:usb1
126: 1521 0 GIC 126 mmc0
129: 0 0 GIC 129 2110000.dspi
135: 2 0 GIC 135 1710000.jr
136: 0 0 GIC 136 1720000.jr
137: 0 0 GIC 137 1730000.jr
138: 0 0 GIC 138 1740000.jr
150: 5371 0 GIC 150 Freescale ftm timer
158: 1 0 GIC 158 can0
167: 0 0 GIC 167 eDMA
189: 21 0 GIC 189 eth2_g0_tx
190: 4 0 GIC 190 eth2_g0_rx
191: 0 0 GIC 191 eth2_g0_er
201: 0 0 GIC 201 ds3232
IPI0: 0 0 CPU wakeup interrupts
IPI1: 0 5359 Timer broadcast interrupts
IPI2: 3158 3718 Rescheduling interrupts
IPI3: 0 0 Function call interrupts
IPI4: 3 3 Single function call interrupts
IPI5: 0 0 CPU stop interrupts
Err: 0

Test Procedure

Guide lines for testing FlexCAN on the LS1021A board.

Internal LoopBack test (SoC Level loopback)

• Enable CAN interface can0 with root permissions on the Linux prompt

ip link set can0 up type can bitrate 125000 loopback on

• Set candump to snif packets on can0 interface:

candump can0 -n 2 &

• Set cansend to send a packet with standard identifier on can0 interface:

cansend can0 5A1#123412341234

Expected behavior after internal loopback testing:

• CAN0 interface which is receiving the can frame should show, that it has read the frame ID and data correctly:

5A1 [6] 12 34 12 34 12 34

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
74 NXP Semiconductors

— After the successful Tx or RX from the CAN controller, the Tx and Rx Interrupt should increment for CAN0 interface.

 root@ls1021aqds:~# cat /proc/interrupts
 CPU0 CPU1
118: 3889 0 GIC 118 serial
120: 126 0 GIC 120 2180000.i2c
125: 0 0 GIC 125 xhci-hcd:usb1
126: 1521 0 GIC 126 mmc0
129: 0 0 GIC 129 2110000.dspi
135: 2 0 GIC 135 1710000.jr
136: 0 0 GIC 136 1720000.jr
137: 0 0 GIC 137 1730000.jr
138: 0 0 GIC 138 1740000.jr
150: 5371 0 GIC 150 Freescale ftm timer
158: 2 0 GIC 158 can0
167: 0 0 GIC 167 eDMA
189: 21 0 GIC 189 eth2_g0_tx
190: 4 0 GIC 190 eth2_g0_rx
191: 0 0 GIC 191 eth2_g0_er
201: 0 0 GIC 201 ds3232
IPI0: 0 0 CPU wakeup interrupts
IPI1: 0 5359 Timer broadcast interrupts
IPI2: 3158 3718 Rescheduling interrupts
IPI3: 0 0 Function call interrupts
IPI4: 3 3 Single function call interrupts
IPI5: 0 0 CPU stop interrupts
Err: 0

The underlined number represents the interrupts on successful Tx or RX. So this number should increase on

successful Tx and Rx.

 NOTE

External LoopBack test (Single Board).

• Attach the CAN0 and CAN1 interface on the LS1021A board with serial cable (prepared as mentioned in Dependencies
section).

• Enable the CAN0 and CAN1 interface on the board:

ip link set can0 up type can bitrate 125000
ip link set can1 up type can bitrate 125000

• Set candump to snif packets on can0 interface:

candump can0 -n 1 &

• Set cansend to send a packet with standard identifier on can1 interface:

cansend can1 5A1#123412341234

Expected behavior after external loopback testing:

• CAN0 interface which is receiving the can frame should show, that it has read the frame ID and data correctly:

5A1 [6] 12 34 12 34 12 34

• After the successful Tx or RX from the CAN controllers, the Tx Interrupt should increase for CAN1 interface and Rx
Interrupt should increment for CAN0 interface.

Benchmarking

TBD

Known Bugs, Limitations, or Technical Issues
N/A

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 75

Supporting Documentation

• SoC Reference Manual (for eg. LS1021A RM)

• QorIQ TWR-LS1021A Reference Manual

• LS1021A-TWR_FLEXCAN_A Manual

4.6.2 LS1012ARDB
This section provides LS1012ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash memory layouts. For more information
about the LS1012A refer to QorIQ LS1012A Reference Manual and the QorIQ LS1012A Reference Design Board Getting Started
Guide

4.6.2.1 On-board Switch Settings
Table 15. LS1012ARDB Switch Settings for Booting from QSPI Bank 1

1 2 3 4 5 6 7 8

SW1 1 0 1 0 0 1 1 0

SW2 0 0 0 0 0 0 0 0

Table 16. LS1012ARDB Switch Settings for Booting from QSPI Bank 2

1 2 3 4 5 6 7 8

SW1 1 0 1 0 0 1 1 0

SW2 0 0 0 0 0 0 1 0

4.6.2.2 U-Boot Environment Variables

hwconfig

Environment variable hwconfig is used within the U-Boot bootloader to convey information about desired hardware configurations.
It is an ordinary environment variable in that:

• It can be set in the U-Boot prompt using the setenv command.

• It can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig

• It can be modified in the U-Boot command prompt using the editenv command.

• It can be saved in the U-Boot environment via the saveenv command.

Variable hwconfig is set to a sequence of option:value entries separated by semicolons.The default setting for for hwconfig
on LS1012ARDB is as follows:

hwconfig = fsl_ddr:bank_intlv=auto

4.6.2.3 Supported Boot Options
LS1012ARDB supports the following boot options:

• QSPI

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
76 NXP Semiconductors

http://www.nxp.com/docs/en/reference-manual/LS1012ARM.pdf
https://www.nxp.com/webapp/Download?colCode=LS1012ARDBGSG&Parent_nodeId=1462294874819702554554&Parent_pageType=product&Parent_nodeId=1462294874819702554554&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1012ARDBGSG&Parent_nodeId=1462294874819702554554&Parent_pageType=product&Parent_nodeId=1462294874819702554554&Parent_pageType=product

4.6.2.4 System Memory Map

Start Physical Address End Physical Address Memory Type Size

0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1MB

0x00_0100_0000 0x00_0FFF_FFFF CCSR 240MB

0x00_1000_0000 0x00_1000_FFFF OCRAM1 64KB

0x00_1001_0000 0x00_1001_FFFF OCRAM2 64 KB

0x00_4000_0000 0x00_5FFF_FFFF QSPI 512MB

0x00_8000_0000 0x00_FFFF_FFFF DRAM 2GB

0x08_8000_0000 0x0F_FFFF_FFFF DRAM2 30G

0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G

4.6.2.5 Supported Reset Configuration Word (RCW) Binaries
There are four RCW binaries, however, the default configuration is - RR_SPNH_3508/
PBL_0x35_0x08_1000_250_1000_default.bin:.

RR_SPNH_3508/PBL_0x35_0x08_1000_250_1000_default.bin
RR_SPNH_3508/PBL_0x35_0x08_1000_250_1000_sben.bin
RR_SPNH_3508/PBL_0x35_0x08_800_250_1000_default.bin
RR_SPNH_3508/PBL_0x35_0x08_800_250_1000_sben.bin

RR_SPNH_3508/PBL_0x35_0x08_1000_250_1000_default.bin: RCW enables:

• Boot from QSPI

• 1000MHz Core, 250MHz Platfrom, 1000MT/s DDR

• SDHC1, SDHC2, I2C1,

• SerDes Protocol 0x3508

• PCIe, SATA,

• RGMII, SGMII

• USB 3.0

4.6.2.6 Flash Bank Usage
LS1012ARDB has 2 QSPI flash connected over QSPI contoller.

Only one QSPI flash is available at a time depending upon the board switch settings. These switch settings can also be overriden
by I2C commands.

To protect the default U-Boot in flash1, it is a convention employed by NXP to deploy work images into flash2, and then switch to
flash2 for testing. Switching to flash2 can be done in software using I2C commands and effectively swaps flash1 with flash2. This
protects flash1 and keeps the board bootable under all circumstances.

U-Boot 2017.07-02268-g109fd35 (Dec 15 2017 - 10:31:00 +0530)

SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:
 CPU0(A53):1000 MHz
 Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW):

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 77

 00000000: 0800000a 00000000 00000000 00000000
 00000010: 35080000 c000000c 40000000 00001800
 00000020: 00000000 00000000 00000000 00014571
 00000030: 00000000 18c2a120 00000096 00000000
I2C: ready
DRAM: 958 MiB
Using SERDES1 Protocol: 13576 (0x3508)
PPA Firmware: Version LSDK-17.09-update-103017
WARNING: Calling __hwconfig without a buffer and before environment is ready
MMC: FSL_SDHC: 0, FSL_SDHC: 1
SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB, total 64 MiB
*** Warning - bad CRC, using default environment

In: serial
Out: serial
Err: serial
Model: LS1012A RDB Board
Board: LS1012ARDB Version: unknown, boot from QSPI: bank1
SATA link 0 timeout.
AHCI 0001.0301 32 slots 1 ports 6 Gbps 0x1 impl SATA mode
flags: 64bit ncq pm clo only pmp fbss pio slum part ccc apst
Found 0 device(s).
SCSI: Net: PFE class pe firmware
PFE tmu pe firmware
ls1012a_configure_serdes 0
PCIe0: pcie@3400000 Root Complex: x1 gen1
e1000: 68:05:ca:36:8d:8e
 pfe_eth0
Warning: pfe_eth0 (eth0) using random MAC address - 02:05:3c:25:2e:c3
, pfe_eth1
Warning: pfe_eth1 (eth1) using random MAC address - 2a:0c:d0:10:73:1f
, e1000#0
Hit any key to stop autoboot: 0

How to boot from flash 2

1. To check which bank booted, refer to “Board: LS1012ARDB Version: unknown, boot from QSPI: bank1" in the U-
Boot logs.

2. i2C command to switch from flash1 to flash2 “ i2c mw 0x24 0x7 0xfc; i2c mw 0x24 0x3 0xf5 “

3. Program QSPI flash as per flash layout

4. To boot from flash2 give “reset” command.

5. To move back to flash1 from flash2, power on/off the board or use “i2c mw 0x24 0x3 0xf4 “ and then give “reset”
command.

QSPI flash Layout

Image Size Start Address

RCW + PBI 1MB 0x4000_0000

U-boot boot loader 1MB 0x4010_0000

U-boot Env 1MB 0x4030_0000

PPA FIT image 2MB 0x4040_0000

PFE Firmware 20K 0x40A0_0000

Kernel ITB 59MB 0x4100_0000

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
78 NXP Semiconductors

4.6.2.7 Basic Networking Ping Test

U-BOOT

The LS1012ARDB has one SGMII and one RGMII. The log below shows how to ping from those 2 interfaces.

U-Boot 2017.07-02268-g109fd35 (Dec 15 2017 - 10:31:00 +0530)

SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:
 CPU0(A53):1000 MHz
 Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW):
 00000000: 0800000a 00000000 00000000 00000000
 00000010: 35080000 c000000c 40000000 00001800
 00000020: 00000000 00000000 00000000 00014571
 00000030: 00000000 18c2a120 00000096 00000000
I2C: ready
DRAM: 958 MiB
Using SERDES1 Protocol: 13576 (0x3508)
PPA Firmware: Version LSDK-17.09-update-103017
WARNING: Calling __hwconfig without a buffer and before environment is ready
MMC: FSL_SDHC: 0, FSL_SDHC: 1
SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB, total 64 MiB
*** Warning - bad CRC, using default environment

In: serial
Out: serial
Err: serial
Model: LS1012A RDB Board
Board: LS1012ARDB Version: unknown, boot from QSPI: bank1
SATA link 0 timeout.
AHCI 0001.0301 32 slots 1 ports 6 Gbps 0x1 impl SATA mode
flags: 64bit ncq pm clo only pmp fbss pio slum part ccc apst
Found 0 device(s).
SCSI: Net: PFE class pe firmware
PFE tmu pe firmware
ls1012a_configure_serdes 0
PCIe0: pcie@3400000 Root Complex: x1 gen1
e1000: 68:05:ca:36:8d:8e
 pfe_eth0
Warning: pfe_eth0 (eth0) using random MAC address - 22:04:f9:6a:ff:13
, pfe_eth1
Warning: pfe_eth1 (eth1) using random MAC address - 4a:0f:97:59:b8:ec
, e1000#0
Hit any key to stop autoboot: 0
=> edit ipaddr
edit: 192.168.1.136
=> ping 192.168.1.1
Speed detected 3e8
Using pfe_eth0 device
host 192.168.1.1 is alive
=>

LINUX

To enable PFE in Linux, first stop PFE in U-Boot. In order to do this, first bring the kernel-ls1012a-rdb.itb via PFE interface then
type pfe stop command on the U-Boot prompt:

=> tftp 0xa0000000 kernel-ls1012a-rdb.itb
Speed detected 3e8
Using pfe_eth1 device
TFTP from server 192.168.1.1; our IP address is 192.168.1.136
Filename 'kernel-ls1012a-rdb.itb'.
Load address: 0xa0000000
Loading: ###
 ###

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 79

 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ############
 5.6 MiB/s
done
Bytes transferred = 38342491 (2490f5b hex)
=> pfe stop
Stopping PFE...
=> bootm 0xa0000000
Loading kernel from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'kernel@1' kernel subimage
 Description: ARM64 Linux kernel
 Type: Kernel Image
 Compression: uncompressed
 Data Start: 0xa00000dc
 Data Size: 12482048 Bytes = 11.9 MiB
 Architecture: AArch64
 OS: Linux
 Load Address: 0x80080000
 Entry Point: 0x80080000
Loading ramdisk from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'ramdisk@1' ramdisk subimage
 Description: LS2 Ramdisk
 Type: RAMDisk Image
 Compression: uncompressed
 Data Start: 0xa0be9ba4
 Data Size: 25849963 Bytes = 24.7 MiB
 Architecture: AArch64
 OS: Linux
 Load Address: unavailable
 Entry Point: unavailable

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
80 NXP Semiconductors

Loading fdt from FIT Image at a0000000 ...
 Using 'config@1' configuration
 Trying 'fdt@1' fdt subimage
 Description: Flattened Device Tree blob
 Type: Flat Device Tree
 Compression: uncompressed
 Data Start: 0xa0be7790
 Data Size: 9101 Bytes = 8.9 KiB
 Architecture: AArch64
 Loading fdt from 0xa0be7790 to 0x90000000
 Booting using the fdt blob at 0x90000000
 Loading Kernel Image ... OK
 Using Device Tree in place at 0000000090000000, end 000000009000538c
Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpu
[0.000000] Linux version 4.1.8-rt8+g2511ec0 (jenkins@neptune) (gcc version 4.9.4 20150629
(prerelease) (Linaro GCC 4.9-2015.06)) #1 SMP Sat Aug 27 04:44:19 CST 2016
[0.000000] CPU: AArch64 Processor [410fd034] revision 4
[0.000000] Detected VIPT I-cache on CPU0
[0.000000] alternatives: enabling workaround for ARM erratum 845719
[0.000000] earlycon: Early serial console at MMIO 0x21c0500 (options '')
[0.000000] bootconsole [uart0] enabled
[0.046613] No BMan portals available!
[0.052448] No QMan portals available!
[0.186759] Freescale FM module, FMD API version 21.1.0
[0.192162] Freescale FM Ports module
[0.200605] vfio_fsl_mc_driver_init: Driver registration fails as no fsl_mc_bus found
[0.658570] fsl-mc bus not found, restool driver registration failed
[0.927488] usb usb1-port1: over-current condition
[0.932320] usb usb2-port1: over-current condition
INIT: version 2.88 booting
Starting udev
[3.038179] pe_load_ddr_section: load address(3fb0000) and elf file
address(ffff0000003fb000) rcvd
Populating dev cache
hwclock: can't open '/dev/misc/rtc': No such file or directory
Fri Aug 26 20:58:57 UTC 2016
hwclock: can't open '/dev/misc/rtc': No such file or directory
Running postinst /etc/rpm-postinsts/100-sysvinit-inittab...
Running postinst /etc/rpm-postinsts/101-inetutils-inetd...
Running postinst /etc/rpm-postinsts/102-inetutils-ftpd...
update-rc.d: /etc/init.d/run-postinsts exists during rc.d purge (continuing)
Removing any system startup links for run-postinsts ...
INIT: Entering runlevel: 5
Configuring network interfaces... done.
Starting system log daemon...0
Starting kernel log daemon...0
Starting internet superserver: xinetd.

QorIQ SDK (FSL Reference Distro) 2.0 ls1012ardb /dev/ttyS0

ls1012ardb login: root
root@ls1012ardb:~# find / -name pfe.ko | xargs insmod
[30.958325] pe_load_ddr_section: load
address(3fb0000) and elf file address(ffff00000c795000) rcvd

root@ls1012ardb:~# ifconfig -a
eth0 Link encap:Ethernet HWaddr 68:05:ca:36:8d:8e
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:29 Memory:40400c0000-40400e0000

eth1 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 BROADCAST MULTICAST MTU:1500 Metric:1

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 81

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

eth2 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

sit0 Link encap:UNSPEC HWaddr 00-00-00-00-3A-30-30-30-00-00-00-00-00-00-00-00
 NOARP MTU:1480 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

root@ls1012ardb:~# ifconfig eth1 hw ether 00:80:48:BA:d1:30
root@ls1012ardb:~# ifconfig eth1 192.168.1.23 up
root@ls1012ardb:~# ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=3 ttl=128 time=1.92 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=128 time=4.29 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=128 time=0.974 ms
64 bytes from 192.168.1.1: icmp_seq=6 ttl=128 time=1.19 ms
^C
--- 192.168.1.1 ping statistics ---
6 packets transmitted, 4 received, 33% packet loss, time 5036ms
rtt min/avg/max/mdev = 0.974/2.096/4.295/1.318 ms
root@ls1012ardb:~#

4.6.2.8 Check 'Link Up' for Serial Ethernet Interfaces
This section provides some basic checks that can be performed in U-Boot to help diagnose the cause of the networking errors
when experiencing problems with Ethernet interfaces.

Check Communication to External PHY

In order to check if U-Boot can communicate with the PHYs on the board, use the U-Boot command mdio list. The U-Boot
command mdio list will display all manageable Ethernet PHYs.

Example:

=> mdio list
PFE_MDIO:
1 - RealTek RTL8211F <--> pfe_eth1
2 - RealTek RTL8211F <--> pfe_eth0

The results from the mdio list command above show that U-Boot was able to see PHYs on each of the RGMII/SGMII interfaces.

Check Link Status for External PHY

In order to check the status of a RGMII/SGMII link, use the mdio read command. Since this is a Clause 22 device, we pass two
arguments to the mdio read command.

mdio read <PHY address> <REGISTER Address>

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
82 NXP Semiconductors

Example:

=> mdio read pfe_eth0 1
Reading from bus PFE_MDIO
PHY at address 2:
1 - 0x79ad
=> mdio read pfe_eth1 1
Reading from bus PFE_MDIO
PHY at address 1:
1 - 0x79ad

The link partner (“copper side”) link status bit is in Register #1 on the PHY. The 'Link Status' bit is bit #2 (from the left) of the last
nibble. In the example above, the nibble of interest is "d" (d = b'1101'), and therefore the 'Link Status' = 1, which means 'link up'.
If the link were down this bit would be a "0," and we would see 0x7989.

4.6.3 LS1043ARDB
This section provides LS1043ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash and memory map layouts.

For more information on the LS1043ARDB refer to the QorIQ LS1043A Reference Design Board Reference Manual and the QorIQ
LS1043A Reference Design Board Getting Started Guide.

4.6.3.1 On-board Switch Settings

Default Settings

The RDB has user selectable switches for evaluating different boot options and different configurations for the LS1043A device.
The table below lists the default switch settings.

Table 17. Default Switch Settings

1 2 3 4 5 6 7 8

SW3 ON [1] OFF [0] ON [1] ON [1] OFF [0] OFF [0] ON [1] ON [1]

SW4 OFF OFF OFF ON OFF OFF ON OFF

SW5 ON OFF ON OFF OFF OFF ON OFF

4.6.3.2 Supported boot options
LS1043ARDB supports the following boot options:

• NAND

• NOR

• SD

4.6.3.3 U-Boot Environment Variables
Environment variable "hwconfig" is used within the U-Boot bootloader to convey information about desired hardware
configurations. It is an ordinary environment variable in that:

• It can be set in the U-Boot prompt using the "setenv" command.

• It can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig

• It can be modified in the U-Boot command prompt using the "editenv" command.

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 83

https://www.nxp.com/webapp/Download?colCode=LS1043ARDBRM&Parent_nodeId=1441121579998719223109&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&Parent_nodeId=1441121579998719223109&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&Parent_nodeId=1441121579998719223109&Parent_pageType=product

• It can be saved in the U-Boot environment via the "saveenv" command.

Variable "hwconfig" is set to a sequence of option:value entries separated by semicolons.

The default setting for for "hwconfig" on LS1043ARDB is as follows:

hwconfig = fsl_ddr:bank_intlv=auto

4.6.3.4 System Memory Map

Start Physical Address End Physical Address Memory Type Size

0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1MB

0x00_0100_0000 0x00_0FFF_FFFF CCSRBAR 240MB

0x00_1000_0000 0x00_1000_FFFF OCRAM0 64KB

0x00_1001_0000 0x00_1001_FFFF OCRAM1 64KB

0x00_2000_0000 0x00_20FF_FFFF DCSR 16MB

0x00_6000_0000 0x00_67FF_FFFF IFC - NOR Flash 128MB

0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64KB

0x00_7FB0_0000 0x00_7FB0_0FFF IFC - FPGA 4KB

0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2GB

4.6.3.5 NOR Flash (Virtual) Banks
NOR flash is a simple and convenient destination for deploying images so it is frequently used. Many NXP development and
reference boards provide a special feature that allows a single NOR flash to be divided into multiple parts called “banks”. This is
done by board-level logic that modifies address signals. Because there is only one NOR flash physically, the banks are sometimes
called "virtual" banks.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the one NOR flash. This
is very helpful during development, because you can use the U-Boot image in one bank to program an image set into a different
bank. If the new images are flawed, the old images are still functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be divided into up to 8 banks, but almost always the feature is used to
divide the flash into two halves only. For the LS1043ARDB, the 2 halves are called bank0 and bank4.

Switch Settings and NOR Banks

The NOR flash on the board can be seen as two flash banks. The board DIP switch configuration preselects bank 0 as the
hardware default bank.

Switching to the alternate bank can be done in software and effectively swaps the first bank with the second bank, thereby putting
the alternate bank in the bank 0 address range until further configuration or until a reset occurs. This protects banks 0 and keeps
the board bootable under all circumstances.

To determine the current bank, refer to the U-Boot log:

U-Boot 2016.012.0+g2ea81ad

Clock Configuration:
 CPU0(A53):1600 MHz CPU1(A53):1600 MHz CPU2(A53):1600 MHz
 CPU3(A53):1600 MHz
 Bus: 400 MHz DDR: 1600 MT/s FMAN: 500 MHz
Reset Configuration Word (RCW):
 00000000: 08100010 0a000000 00000000 00000000
 00000010: 14550002 80004012 e0025000 c1002000

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
84 NXP Semiconductors

 00000020: 00000000 00000000 00000000 00038800
 00000030: 00000000 00001101 00000096 00000001
I2C: ready
Model: LS1043A RDB Board
Board: LS1043ARDB, boot from vBank 4
CPLD: V1.4
PCBA: V3.0
SERDES Reference Clocks:
SD1_CLK1 = 156.25MHZ, SD1_CLK2 = 100.00MHZ
DRAM: Initializing DDR....
Detected UDIMM Fixed DDR on board
2 GiB (DDR4, 32-bit, CL=11, ECC off)
SEC: RNG instantiated
Firmware 'Microcode version 0.0.1 for LS1021a r1.0' for 1021 V1.0
QE: uploading microcode 'Microcode for LS1021a r1.0' version 0.0.1
Waking secondary cores to start from ffd0e000
All (4) cores are up.
Using SERDES1 Protocol: 5205 (0x1455)
Flash: 128 MiB
NAND: 512 MiB
MMC: FSL_SDHC: 0
EEPROM: NXID v1
PCIe1: disabled
PCIe2: Root Complex no link, regs @ 0x3500000
PCIe3: Root Complex x1 gen1, regs @ 0x3600000
PCI:
 01:00.0 - 8086:10d3 - Network controller
PCIe3: Bus 00 - 01
In: serial
Out: serial
Err: serial
Net: Fman1: Uploading microcode version 106.4.18
e1000: 00:1b:21:46:61:df
 FM1@DTSEC1, FM1@DTSEC2, FM1@DTSEC3, FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1,
e1000#0 [PRIME]
Warning: e1000#0 MAC addresses don't match:
Address in SROM is 00:1b:21:46:61:df
Address in environment is 00:e0:0c:00:85:07

=>

Bank Switching

Bank switching can be done in U-Boot using the following statements:

• Switch to bank 0:

=>cpld reset

• Switch to bank4:

=>cpld reset altbank

NOR Flash Memory Map

NOR flash memory map for LS1043A RDB can be found on the link below.

Related information

LSDK Memory Layout on page 66

4.6.3.6 Supported Reset Configuration Word (RCW) Binaries
The following RCW binaries are used on the ls1043ardb

RR_FQPP_1455/rcw_1500.bin

RR_FQPP_1455/rcw_1500_qetdm.bin

RR_FQPP_1455/rcw_1500_sben.bin

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 85

RR_FQPP_1455/rcw_1600.bin

RR_FQPP_1455/rcw_1600_qetdm.bin

RR_FQPP_1455/rcw_1600_sben.bin

The RCW directories' names conform to the following naming convention:

ab_cdef_g

Table 18. RCW directories Naming Convention Legend

Slot Convention

a 'R' indicates RGMII1@DTSEC3 is supported

'N' if not available/not used

b 'R' indicates RGMII2@DTSEC4 is supported

'N' if not available/not used

c What is available in lane A

d What is available in lane B

e What is available in lane C

f What is available in lane D

g Hex value of serdes1 protocol value

Table 19. For Lanes (C through F)

Flag Convention

'N' NULL, not available/not used

'P' PCIe

'X' XAUI

'S' SGMII

'Q' QSGMII

'F' XFI

'H' SATA

'A' AURORA

For example,

RR_FQPP_1455

means:

• RGMII1@DTSEC3 on board

• RGMII2@DTSEC4 on board

• XFI

• QSGMII

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
86 NXP Semiconductors

• PCIe2 on Mini-PCIe slot

• PCIe3 on PCIe Slot

• SERDES1 Protocol is 0x1455

The RCW file names for the ls1043ardb conform to the following naming convention:

rcw_<frequency>_<specialsetting>.rcw

Table 20. RCW Files Naming Convention Legend

Code Convention

frequency Core frequency(MHZ)

specialsetting bootmode SD/NAND/NOR and so on

special support nand: Nand boot

sben: Secure boot

lpuart: lpuart1

qspiboot: qspi boot

For example,

rcw_1500_sd.rcw means rcw for core frequency of 1500MHz with sd boot.

ls1043ardb/RR_FQPP_1455/rcw_1500.rcw means rcw for core frequency 0f 1500MHz with NOR boot.

4.6.3.7 Frame Manager Microcode (FMan ucode)
There are microcode binaries for the Frame Manager hardware block that is in QorIQ products. Specific platforms require specific
binaries, and those also have to match specific software versions (i.e., match Frame Manager Driver version). See the U-Boot
log for LS1043A version information and also for the version of FMan microcode currently flashed on the LS1043A (e.g., microcode
version 106.4.18). For Layerscape SDK, the following FMan microcode binaries should be used:

fsl_fman_ucode_ls1043_r1.1_106_4_18.bin (*)
fsl_fman_ucode_ls1043_r1.1_108_4_9.bin

(i) (*) Denotes the default FMan Microcode.

(ii) Refer to the "readme" and release notes in the microcode git repository for a description of the various microcode

releases.

(iii) Using a microcode binary from an older SDK with a Linux kernel from the current SDK is not supported.

 NOTE

4.6.4 LS1046ARDB
This section provides LS1046ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash and memory map layouts.

For more information on the LS1046ARDB refer to the QorIQ LS1046A Reference Design Board Reference Manual and the QorIQ
LS1046A Reference Design Board Getting Started Guide.

4.6.4.1 On-board Switch Settings
The RDB has user selectable switches for evaluating different boot options for the LS1046A device. Table below lists the default
switch settings and the description of these settings. ('0' is OFF, '1' is ON.)

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 87

https://www.nxp.com/webapp/Download?colCode=LS1046ARDBRM&Parent_nodeId=1471021402187717731012&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&Parent_nodeId=1471021402187717731012&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&Parent_nodeId=1471021402187717731012&Parent_pageType=product

Table 21. Default Switch Settings

1 2 3 4 5 6 7 8

SW3 0 1 0 0 0 1 1 0

SW4 0 0 1 1 1 0 1 1

SW5 0 0 1 0 0 0 1 0

Below are additional switch settings for alternate boot devices. Please note that changing the boot device configuration may
require additional changes in the RCW or in other code images.

Table 22. LS1046ARDB Switch Settings

Boot Source Switch

QSPI flash 0 (bank0) SW5[1-8] +SW4[1] = 0b'00100010_0 SW3[3-5]= 0b'000

QSPI flash 1 (bank4) SW5[1-8] +SW4[1] = 0b'00100010_0 SW3[3-5]= 0b'001

SD SW5[1-8] +SW4[1] = 0b'00100000_0

4.6.4.2 Supported Boot Options
LS1046ARDB supports the following boot options:

• SD

• QSPI

4.6.4.3 U-Boot Environment Variables
Environment variable "hwconfig" is used within the U-Boot bootloader to convey information about desired hardware
configurations. It is an ordinary environment variable in that:

• It can be set in the U-Boot prompt using the "setenv" command.

• It can be removed from the U-Boot environment by setting it to an empty value, i.e.

=>setenv hwconfig

• It can be modified in the U-Boot command prompt using the "editenv" command.

• It can be saved in the U-Boot environment via the "saveenv" command.

Variable "hwconfig" is set to a sequence of option:value entries separated by semicolons.

The default setting for for "hwconfig" on LS1046ARDB is as follows:

hwconfig = fsl_ddr:bank_intlv=auto

4.6.4.4 System Memory Map
In 64-bit u-boot, there is a 1:1 mapping of physical address and effective address. After system startup, the boot loader maps
physical address and effective address as shown in the following table:

Start Physical Address End Physical Address Memory Type Size

0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1MB

Table continues on the next page...

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
88 NXP Semiconductors

Table continued from the previous page...

Start Physical Address End Physical Address Memory Type Size

0x00_0100_0000 0x00_0FFF_FFFF CCSRBAR 240MB

0x00_1000_0000 0x00_1000_FFFF OCRAM0 64KB

0x00_1001_0000 0x00_1001_FFFF OCRAM1 64KB

0x00_2000_0000 0x00_20FF_FFFF DCSR 16MB

0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64KB

0x00_7FB0_0000 0x00_7FB0_0FFF IFC - CPLD 4KB

0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2GB

0x05_0000_0000 0x05_07FF_FFFF QMAN S/W Portal 128M

0x05_0800_0000 0x05_0FFF_FFFF BMAN S/W Portal 128M

0x08_8000_0000 0x09_FFFF_FFFF DRAM2 6GB

0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G

0x48_0000_0000 0x4F_FFFF_FFFF PCI Express2 32G

0x50_0000_0000 0x57_FFFF_FFFF PCI Express3 32G

4.6.4.5 QSPI Flash (Virtual) Banks
LS1046ARDB has 2 QSPI flash connected over QSPI contoller. Only one QSPI flash is available at a time depending upon the
board switch settings. These switch settings can also be overriden by CPLD commands.

Switch Setting and QSPI Flash

To protect the default U-Boot in flash0 (bank0), it is a convention employed by NXP to deploy work images into the flash1 (bank4),
and then switch to the flash1 (bank4) for testing. Switching to the flash1 (bank4) can be done in software using CPLD commands
and effectively swaps the flash0 (bank0) with the flash1 (bank4). This protects flash1 and keeps the board bootable under all
circumstances.

To determine the current bank, refer to the U-Boot log:

U-Boot 2017.11-g00cde47 (Mar 22 2018 - 00:32:36 +0800)

SoC: LS1046AE Rev1.0 (0x87070010)
Clock Configuration:
 CPU0(A72):1800 MHz CPU1(A72):1800 MHz CPU2(A72):1800 MHz
 CPU3(A72):1800 MHz
 Bus: 700 MHz DDR: 2100 MT/s FMAN: 800 MHz
Reset Configuration Word (RCW):
 00000000: 0e150012 10000000 00000000 00000000
 00000010: 11335559 40005012 40025000 c1000000
 00000020: 00000000 00000000 00000000 00238800
 00000030: 20124000 00003101 00000096 00000001
Model: LS1046A RDB Board
Board: LS1046ARDB, boot from QSPI vBank 4
CPLD: V2.2
PCBA: V2.0
SERDES Reference Clocks:
SD1_CLK1 = 156.25MHZ, SD1_CLK2 = 100.00MHZ
I2C: ready
DRAM: Initializing DDR....using SPD
Detected UDIMM 18ASF1G72AZ-2G3B1
7.9 GiB (DDR4, 64-bit, CL=15, ECC on)

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 89

 DDR Chip-Select Interleaving Mode: CS0+CS1
SEC0: RNG instantiated
PPA Firmware: Version LSDK-18.03
SEC Firmware: 'loadables' present in config
loadables: 'trustedOS@1'
Using SERDES1 Protocol: 4403 (0x1133)
Using SERDES2 Protocol: 21849 (0x5559)
NAND: 512 MiB
MMC: FSL_SDHC: 0
SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB, total 64 MiB
*** Warning - bad CRC, using default environment

EEPROM: NXID v1
In: serial
Out: serial
Err: serial
Target spinup took 0 ms.
AHCI 0001.0301 32 slots 1 ports 6 Gbps 0x1 impl SATA mode
flags: 64bit ncq pm clo only pmp fbss pio slum part ccc apst
Found 1 device(s).
SCSI: Net: SF: Detected s25fs512s with page size 512 Bytes, erase size 256 KiB, total 64 MiB
Fman1: Uploading microcode version 106.4.18
PCIe0: pcie@3400000 Root Complex: no link
PCIe1: pcie@3500000 Root Complex: no link
PCIe2: pcie@3600000 Root Complex: x1 gen1
e1000: 00:15:17:8e:7f:1c
 FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1, FM1@TGEC2, e1000#0

Bank Switching

Bank switching can be done in U-Boot using the following statements:

• Switch to QSPI bank 0 (default):

=>cpld reset

• Switch to QSPI bank 4:

=>cpld reset altbank

QSPI Flash Memory Map

QSPI flash memory map for LS1046ARDB can be found on the link below.

Related information

LSDK Memory Layout on page 66

4.6.4.6 Supported Reset Configuration Word (RCW) Binaries

The following RCW binary is used on the LS1046ARDB:

RR_FFSSPPPH_1133_5559/rcw_1800_qspiboot.bin.swap

The RCW directories' names conform to the following naming convention:

ab_cdefghij_k_l

Table 23. RCW directories Naming Convention Legend

Slot Convention

a 'R' indicates RGMII1@DTSEC3 is supported

Table continues on the next page...

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
90 NXP Semiconductors

Table 23. RCW directories Naming Convention Legend (continued)

b 'R' indicates RGMII2@DTSEC4 is supported

'N' indicates not available/not used

c What is available in SerDes1 Lane 0

d What is available in SerDes1 Lane 1

e What is available in SerDes1 Lane 2

f What is available in SerDes1 Lane 3

g What is available in SerDes2 Lane 0

h What is available in SerDes2 Lane 1

i What is available in SerDes2 Lane 2

j What is available in SerDes2 Lane 3

Table 24. Serdes Protocol

Slot Convention

k hex value of serdes1 protocol value

l hex value of serdes2 protocol value

Table 25. For Lanes (c through j)

Flag Convention

'N' NULL, not available/not used

'P' PCIe

'X' XAUI

'S' SGMII

'Q' QSGMII

'F' XFI

'H' SATA

'A' AURORA

For example,

RR_FFSSPPPH_1133_5559

means:

• RGMII1@DTSEC3 on board

• RGMII2@DTSEC4 on board

• XFI9@TGEC1 on board

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 91

• XFI10@TGEC2 on SFP cage

• SGMII5@DTSEC5 on board

• SGMII6@DTSEC6 on board

• PCIe1 on Slot 1, mPCIe

• PCIe2 on Slot 2

• PCIe3 on Slot 3

• SATA

• SERDES1 Protocol is 0x1133

• SERDES2 Protocol is 0x5559

The RCW file names for the LS1046ARDB conform to the following naming convention:

rcw_<frequency>_<specialsetting>.rcw

Table 26. RCW Files Naming Convention Legend

Code Convention

frequency Core frequency(MHZ)

specialsetting bootmode QSPI/SD/EMMC

special support emmc: eMMC boot

sdboot: SD boot

sben: Secure boot

qspiboot: QSPI boot

For example,

RR_FFSSPPPH_1133_5559/rcw_1800_qspiboot.bin.swap means rcw for core frequency is 1800MHz with
QSPI boot.

Note: The default frequency for LS1046ARDB is 1800MHz.

4.6.4.7 Frame Manager Microcode (FMan ucode)
There are microcode binaries for the Frame Manager hardware block that is in QorIQ products. Specific platforms require specific
binaries, and those also have to match specific software versions (i.e., match Frame Manager Driver version). See the U-Boot
log for LS1046A version information and also for the version of FMan microcode currently flashed on the LS1046A (e.g., microcode
version 106.4.18). For Layerscape SDK, one of the following FMan microcode binaries should be used:

fsl_fman_ucode_ls1046_r1.0_106_4_18.bin(*)
fsl_fman_ucode_ls1046_r1.0_108_4_9.bin

(i) (*) Denotes the default FMan Microcode.

(i) Refer to the "readme" and release notes in the microcode git repository for a description of the various microcode

releases.

(iii) Using a microcode binary from an older SDK with a Linux kernel from the current SDK is not supported.

 NOTE

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
92 NXP Semiconductors

4.6.5 LS1088ARDB
This section provides LS1088ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash and memory map layouts.

For more information on the LS1088ARDB refer to the QorIQ LS1088A Reference Design Board Reference Manual and the QorIQ
LS1088A Reference Design Board Getting Started Guide.

4.6.5.1 On-board Switch Settings

Default Settings

The table below lists the default switch settings for the LS1088ARDB.

Table 27. Default Switch Settings

Switch Settings (1: ON; 0: OFF)

SW1 0011 0001 (for QSPI Boot)

0010 0000 (for SD Boot)

SW2 0100 0000

SW3 1111 0010

SW4 1001 0011

SW5 1111 0000

To switch from QSPI to SD you may also use the following command:

=> i2c mw 66 0x60 0x20; i2c mw 66 10 10;i2c mw 66 10 21

4.6.5.2 Supported Boot Types
LS1088ARDB supports the following boot types for this release:

• SD

• QSPI

4.6.5.3 Booting

Booting U-Boot

By default (as per board switch settings), the boot loader (U-Boot) image located in QSPI flash0 or SD card (Link to top where
switch settings are listed) runs when the power is turned on. Press any key while U-Boot is counting down to stop U-Boot from
automatically running the bootcmd variable and booting Linux.

As the U-Boot boots to its prompt, users can use the commands listed below to deploy new images onto the RDB.

For more details refer to On-board Switch Settings on page 93.

Booting Linux

Booting Linux is controlled by the contents of U-Boot enviroment variable bootcmd.

U-Boot passes the contents of U-Boot environment variable bootargs to Linux as boot-time kernel parameters. The commands
in this variable are automatically run and Linux boots after U-Boot counts down a number of seconds given by U-Boot environment
variable bootdelay. Variable bootdelay can be set to -1 to avoid automatically booting Linux.

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 93

https://www.nxp.com/webapp/Download?colCode=LS1088ARDBRM&Parent_nodeId=1472766065614726996732&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1088ARDBGSG&Parent_nodeId=1472766065614726996732&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1088ARDBGSG&Parent_nodeId=1472766065614726996732&Parent_pageType=product

One can view the values of U-Boot enviroment variables using the U-Boot "printenv" command. The critical variables for booting
Linux and their default values are shown below.

1. bootargs: contains parameters that are passed to the Linux kernel before it starts.

=> printenv bootargs
bootargs=console=ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio,0x21c0500,
ramdisk_size=0x2000000 default_hugepagesz=2m hugepagesz=2m hugepages=256

Notes on these kernel parameters:

• Select ttyS0 as the console serial port.

• Select file system to be a RAM disk populated from an image in the kernel itb file.

• Allocate huge pages for user space (ODP) use. This is not needed unless you plan to use ODP. Please see ODP
documentation for more information.

2. Environment variable mcinitcmd contains commands used during U-Boot for Management Complex load. It is not
mandatory but very useful. Refer to U-Boot Environment Variables on page 95 for more information.

For SD/eMMC boot:

pri mcinitcmd
mcinitcmd=mmcinfo;mmc read 0x80000000 0x5000 0x800;mmc read 0x80100000 0x7000 0x800;env
exists secureboot && mmc read 0x80700000 0x3800 0x800 && mmc read 0x80740000 0x3A00
0x800 && esbc_validate 0x80700000 && esbc_validate 0x80740000 ;fsl_mc start mc
0x80000000 0x80100000

For QSPI boot:

pri mcinitcmd
mcinitcmd=sf probe 0:0;sf read 0x80000000 0xA00000 0x100000;sf read 0x80100000 0xE00000
0x100000;env exists secureboot && sf read 0x80700000 0x700000 0x40000 && sf read
0x80740000 0x740000 0x40000 && esbc_validate 0x80700000 && esbc_validate
0x80740000 ;fsl_mc start mc 0x80000000 0x80100000

3. Environment variable bootcmd contains commands used to boot Linux. The image needs to be copied to DDR first.

For SD/eMMC boot:

=> pri bootcmd
bootcmd=env exists mcinitcmd && run mcinitcmd ;&& env exists mcinitcmd && mmcinfo; mmc
read 0x88000000 0x6800 0x800; && fsl_mc apply dpl 0x88000000;run distro_bootcmd;run
sd_bootcmd
=> pri distro_bootcmd
distro_bootcmd=setenv scsi_need_init; for target in ${boot_targets}; do run bootcmd_$
{target}; done
=> pri sd_bootcmd
sd_bootcmd=echo Trying load from sd card..;mmcinfo; mmc read $load_addr $kernel_addr_sd
$kernel_size_sd ; bootm $load_addr#$BOARD

For QSPI boot:

=> pri bootcmd
bootcmd=sf read 0x80200000 0xd00000 0x100000;env exists mcinitcmd && env exists
secureboot && sf read 0x80780000 0x780000 0x100000 && esbc_validate 0x80780000;env
exists mcinitcmd && fsl_mc apply dpl 0x80200000;run distro_bootcmd;run qspi_bootcmd;env
exists secureboot && esbc_halt;
=> pri distro_bootcmd
distro_bootcmd=setenv scsi_need_init; for target in ${boot_targets}; do run bootcmd_$
{target}; done
=> pri qspi_bootcmd
qspi_bootcmd=echo Trying load from qspi..;sf probe && sf read $load_addr $kernel_addr
$kernel_size ; env exists secureboot && sf read $kernelheader_addr_r $kernelheader_addr
$kernelheader_size && esbc_validate ${kernelheader_addr_r}; bootm $load_addr#$BOARD

U-Boot enviroment variables such as kernel_load contain addresses used in the boot process. You can inspect them using the
U-Boot printenv command. The bootcmd command may change depending upon the mcinitcmd env variable.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
94 NXP Semiconductors

4.6.5.4 U-Boot Environment Variables

DPAA2-specific Environment Vairables

• mcboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined, the complile-
time value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be the default. Normally, users do not need to set this variable
because the default is acceptable.

• mcmemsize: Defines amount of system DDR to be used by the Management Complex. If this variable is not defined, the
compile-time value 0x70000000 or 1.75GB will be the default. Normally, users do not need to set this variable because the
default is acceptable.

• mcinitcmd: Contains commands to load and start the Management Complex automatically before the U-Boot count down
to boot starts. If this variable is defined, its contents are run. The default value assumes that the Management Complex
(MC) firmware and Data Path Control file are stored in QSPI/SD flash at fixed addresses.

Environment variables that are not specific to DPAA2

• bootcmd: Contains commands that are automatically executed when the U-Boot boot command is run. This happens
automatically when the user does not interrupt U-Boot's initial count down.

=> pri
BOARD=ls1088ardb
arch=arm
baudrate=115200
board=ls1088a
board_name=ls1088a
boot_a_script=load ${devtype} ${devnum}:${distro_bootpart} ${scriptaddr} ${prefix}${script};
env exists secureboot && load ${devtype} ${devnum}:${distro_bootpart} ${scripthdraddr} $
{prefix}${boot_script_hdr} && esbc_validate ${scripthdraddr};source ${scriptaddr}
boot_efi_binary=load ${devtype} ${devnum}:${distro_bootpart} ${kernel_addr_r} efi/boot/
bootaa64.efi; if fdt addr ${fdt_addr_r}; then bootefi ${kernel_addr_r} ${fdt_addr_r};else
bootefi ${kernel_addr_r} ${fdtcontroladdr};fi
boot_extlinux=sysboot ${devtype} ${devnum}:${distro_bootpart} any ${scriptaddr} $
{prefix}extlinux/extlinux.conf
boot_net_pci_enum=pci enum
boot_net_usb_start=usb start
boot_prefixes=/ /boot/
boot_script_dhcp=boot.scr.uimg
boot_script_hdr=hdr_ls1088ardb_bs.out
boot_scripts=ls1088ardb_boot.scr
boot_targets=usb0 mmc0 scsi0 dhcp
bootargs=console=ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio,0x21c0500
ramdisk_size=0x3000000 default_hugepagesz=2m hugepagesz=2m hugepages=256
bootcmd=env exists mcinitcmd && run mcinitcmd ;&& env exists mcinitcmd && mmcinfo; mmc read
0x88000000 0x6800 0x800; && fsl_mc apply dpl 0x88000000;run distro_bootcmd;run sd_bootcmd
bootcmd_dhcp=run boot_net_usb_start; run boot_net_pci_enum; if dhcp ${scriptaddr} $
{boot_script_dhcp}; then source ${scriptaddr}; fi;setenv efi_fdtfile ${fdtfile}; setenv
efi_old_vci ${bootp_vci};setenv efi_old_arch ${bootp_arch};setenv bootp_vci PXEClient:Arch:
00011:UNDI:003000;setenv bootp_arch 0xb;if dhcp ${kernel_addr_r}; then tftpboot $
{fdt_addr_r} dtb/${efi_fdtfile};if fdt addr ${fdt_addr_r}; then bootefi ${kernel_addr_r} $
{fdt_addr_r}; else bootefi ${kernel_addr_r} ${fdtcontroladdr};fi;fi;setenv bootp_vci $
{efi_old_vci};setenv bootp_arch ${efi_old_arch};setenv efi_fdtfile;setenv
efi_old_arch;setenv efi_old_vci;
bootcmd_mmc0=setenv devnum 0; run mmc_boot
bootcmd_scsi0=setenv devnum 0; run scsi_boot
bootcmd_usb0=setenv devnum 0; run usb_boot
bootdelay=2
cpu=armv8
distro_bootcmd=setenv scsi_need_init; for target in ${boot_targets}; do run bootcmd_$
{target}; done
efi_dtb_prefixes=/ /dtb/ /dtb/current/
eth10addr=68:05:ca:26:57:43
ethact=DPMAC1@xgmii
ethprime=DPMAC1@xgmii
fdt_addr=0x64f00000

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 95

fdt_addr_r=0x90000000
fdt_high=0xa0000000
fdtcontroladdr=ffd18160
fdtheader_addr_r=0x80100000
hwconfig=fsl_ddr:bank_intlv=auto
initrd_high=0xffffffffffffffff
installer=load mmc 0:2 $load_addr /flex_linux_arm64.itb; env exists mcinitcmd && run
mcinitcmd && mmc read 0x80200000 0x6800 0x800; fsl_mc apply dpl 0x80200000;bootm
$load_addr#ls1088ardb
kernel_addr=0x1000000
kernel_addr_r=0x81000000
kernel_addr_sd=0x8000
kernel_size=0x2800000
kernel_size_sd=0x14000
kernel_start=0x580100000
kernelheader_addr=0x800000
kernelheader_addr_r=0x80200000
kernelheader_size=0x40000
kernelheader_start=0x580800000
load_addr=0xa0000000
load_efi_dtb=load ${devtype} ${devnum}:${distro_bootpart} ${fdt_addr_r} ${prefix}$
{efi_fdtfile}
mcinitcmd=mmcinfo;mmc read 0x80000000 0x5000 0x800;mmc read 0x80100000 0x7000 0x800;env
exists secureboot && mmc read 0x80700000 0x3800 0x800 && mmc read 0x80740000 0x3A00 0x800 &&
esbc_validate 0x80700000 && esbc_validate 0x80740000 ;fsl_mc start mc 0x80000000 0x80100000
mcmemsize=0x70000000
mmc_boot=if mmc dev ${devnum}; then setenv devtype mmc; run scan_dev_for_boot_part; fi
nor_bootcmd=echo Trying load from nor..;cp.b $kernel_start $load_addr $kernel_size ; env
exists secureboot && cp.b $kernelheader_start $kernelheader_addr_r $kernelheader_size &&
esbc_validate ${kernelheader_addr_r}; bootm $load_addr#$BOARD
qspi_bootcmd=echo Trying load from qspi..;sf probe && sf read $load_addr $kernel_addr
$kernel_size ; env exists secureboot && sf read $kernelheader_addr_r $kernelheader_addr
$kernelheader_size && esbc_validate ${kernelheader_addr_r}; bootm $load_addr#$BOARD
ramdisk_addr=0x800000
ramdisk_size=0x2000000
scan_dev_for_boot=echo Scanning ${devtype} ${devnum}:${distro_bootpart}...; for prefix in $
{boot_prefixes}; do run scan_dev_for_scripts; done;
scan_dev_for_boot_part=part list ${devtype} ${devnum} devplist; env exists devplist ||
setenv devplist 1; for distro_bootpart in ${devplist}; do if fstype ${devtype} ${devnum}:$
{distro_bootpart} bootfstype; then run scan_dev_for_boot; fi; done
scan_dev_for_efi=setenv efi_fdtfile ${fdtfile}; for prefix in ${efi_dtb_prefixes}; do if
test -e ${devtype} ${devnum}:${distro_bootpart} ${prefix}${efi_fdtfile}; then run
load_efi_dtb; fi;done;if test -e ${devtype} ${devnum}:${distro_bootpart} efi/boot/
bootaa64.efi; then echo Found EFI removable media binary efi/boot/bootaa64.efi; run
boot_efi_binary; echo EFI LOAD FAILED: continuing...; fi; setenv efi_fdtfile
scan_dev_for_extlinux=if test -e ${devtype} ${devnum}:${distro_bootpart} ${prefix}extlinux/
extlinux.conf; then echo Found ${prefix}extlinux/extlinux.conf; run boot_extlinux; echo
SCRIPT FAILED: continuing...; fi
scan_dev_for_scripts=for script in ${boot_scripts}; do if test -e ${devtype} ${devnum}:$
{distro_bootpart} ${prefix}${script}; then echo Found U-Boot script ${prefix}${script}; run
boot_a_script; echo SCRIPT FAILED: continuing...; fi; done
scriptaddr=0x80000000
scripthdraddr=0x80080000
scsi_boot=run scsi_init; if scsi dev ${devnum}; then setenv devtype scsi; run
scan_dev_for_boot_part; fi
scsi_init=if ${scsi_need_init}; then setenv scsi_need_init false; scsi scan; fi
scsidevs=1
sd_bootcmd=echo Trying load from sd card..;mmcinfo; mmc read $load_addr $kernel_addr_sd
$kernel_size_sd ; bootm $load_addr#$BOARD
soc=fsl-layerscape
stderr=serial
stdin=serial
stdout=serial
usb_boot=usb start; if usb dev ${devnum}; then setenv devtype usb; run
scan_dev_for_boot_part; fi
vendor=freescale

Environment size: 5821/8188 bytes
=>

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
96 NXP Semiconductors

4.6.5.5 Supported Reset Configuration Word (RCW) Binaries
LS1088A supports following RCW binaries:

Table 28. RCW binary

SoC Binary Name Descripton Required Switch setting

LS1088A rcw_x.bin

rcw_x_bootmode.bin

rcw_x_specialsetting.bin

Core: 1600 MHz, Platform: 700 MHz,
DDR: 2100 MHz

x = Core frequency

bootmode = SD/NAND/NOR and so
on.

specialsetting = special setting:
sben:Secure boot

For example, rcw_1600.rcw means
rcw for core frequency of 1600MHz
with nor boot. rcw_1600_sd.rcw
means rcw for core frequency of
1600MHz with sd boot.

SerDes protocol used here is 0x1d,
0xd

SYSCLK 100 MHz, SW3[6:8] =
010 SYSCLK Differential, SW
5[1] = 1

The RCW's provided with the release enable the following features:

 NOTE

1. The figure below shows the SERDES configuration supported for LS1088A.

Table 29. SerDes1

Protocol D C B A

0x1D XFI2 XFI1 QSGb QSGa

Table 30. SerDes2

Protocol A B C D

0x0D PCIe1 x1 PCIe2 x1 PCIe3 x1 SATA

2. Enables 4 UART without flow control

3. Enables I2C, SDHC, PCIe, SATA, USB

4.6.5.6 Ethernet MAC Connectivity
For DPAA2 SoCs, it is helpful to know which SoC Ethernet MACs are connected to which physical Ethernet ports on the board.
The figure below shows this.

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 97

Figure 1. Ethernet MAC Connectivity

In U-Boot, Ethernet interfaces are named according to MACs. For example, the interface connected to MAC1 is called
DPMAC1@xgmii.

In Linux, only one MAC is enabled by default as a standard kernel Ethernet Interface. This interface is named eth1 by default.
The Ethernet port it corresponds to is shown in the figure. The reason that only one interface is enabled by default is because, in
DPAA2, Ethernet ports need not be associated with Linux kernel Ethernet driver instances. For example, they can be assigned
as ports on switches or allocated to user space. Furthermore, these associations can be made dynamically. As an example,
suppose that you want the Ethernet port connected to MAC1 to act as standard Linux Ethernet interface. To accomplish this, enter
the following (as root):

ls-addni dpmac.1

A new Linux Ethernet interface will be created on the fly and hot-plugged into the kernel.

Interface eth1 is created automatically because the default data path layout (DPL) creates it. DPL's are a mechanism to create
DPAA2 entities prior to Linux boot. One can customize the DPL to get a different set of DPAA2 entities to be present automatically.

See the DPAA2-specific Software on page 633 for more information.

4.6.6 LS2088ARDB
This section provides LS2088ARDB-specific information on switch setting configurations, U-Boot environment variable settings
as well as supported binaries. It also provides a description of the virtual banks and flash memory layouts.

For more information on the LS2088ARDB refer to the QorIQ LS2085/LS2088A Reference Design Board Reference Manual and
the QorIQ LS2085/LS2088A Reference Design Board Getting Started Guide.

4.6.6.1 On-board Switch Settings

Default Settings

The figure below shows default configuration switch settings for rev D - F boards. Earlier boards are not supported.

The bits on the switches are numbered from 1 to 8. In the figure, bit 1 is on the left.

Table 31. Default Switch Settings for NOR Boot

Switch Settings (1: ON; 0: OFF)

SW5 1111 1111

SW3 0001 0010

SW4 1111 1111

SW6 1111 1111

Table continues on the next page...

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
98 NXP Semiconductors

https://www.nxp.com/webapp/Download?colCode=LS2085_88ARDBRM&Parent_nodeId=1472078210629724261133&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS2085_88ARDBGSG&Parent_nodeId=1472078210629724261133&Parent_pageType=product

Table 31. Default Switch Settings for NOR Boot (continued)

Switch Settings (1: ON; 0: OFF)

SW7 0100 0010 (100 MHz SYSCLOCK)

SW9 0100 0000

SW8 0111 1111

Table 32. Default Switch Settings for QSPI Boot

Switch Settings (1: ON; 0: OFF)

SW5 1111 1111

SW3 0011 0001

SW4 0111 1111

SW6 1111 1111

SW7 0100 1010 (100 MHz SYSCLOCK)

SW9 01000100

SW8 0111 1111

Jumper Settings

Make sure the following jumper settings are correct based on the preferred type of boot.

Jumper Settings

J8 For QSPI-boot, via on-board qspi flash: 1-2

For QSPI-boot, via qspi emulator: 2-3

J14 For NOR-boot: 1-2

For QSPI-boot: 2-3

SYSCLK Frequency

The SYSCLK frequency is controlled by switch settings on the RDB. For revisions D – E of the LS2088A RDB, SYSCLK is controlled
by bits 1:3 of SW7. The available SYSCLK frequencies are:

Table 33. Available SYSCLK frequencies

Switch Setting Frequency

off off off 66.666 MHz

off off on 83.333 MHz

off on off 100.000 MHz

off on on 125.000 MHz

on off off 133.333 MHz

You must set the switches to match what your PBL file expects. There is some complexity regarding when changes to switches
take effect. The easy approach is to change the switches when the board is powered off. That will always work.

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 99

4.6.6.2 Supported Boot Options
LS2088ARDB supports the following boot options:

• QSPI

• NOR

4.6.6.3 Booting

Booting U-Boot

By default (per board switch settings), the boot loader (U-Boot) image located in NOR flash bank 0 runs on power on. Press any
key while U-Boot is counting down to stop U-Boot from automatically running the "bootcmd" variable and booting Linux.

As the U-Boot boots to its prompt, users can use the commands listed below to deploy new images onto the RDB.

Booting Linux

Booting Linux is controlled by the contents of U-Boot enviroment variable "bootcmd".

U-Boot passes the contents of U-Boot environment variable "bootargs" to Linux as boot-time kernel parameters. The commands
in this variable are automatically run and Linux boots after U-Boot counts down a number of seconds given by U-Boot environment
variable "bootdelay". Variable bootdelay can be set to -1 to avoid automatically booting Linux.

One can view the values of U-Boot enviroment variables using the U-Boot "printenv" command. The critical variables for booting
Linux and their default values are shown below.

1. bootargs: contains parameters that are passed to the Linux kernel before it starts.

printenv bootargs
bootrgs=console=ttyS1,115200 root=/dev/ram0 earlycon=uart8250,mmio,0x21c0600
ramdisk_size=0x2000000 default_hugepagesz=2m hugepagesz=2m hugepages=256

2. Notes on these kernel parameters:

• Select ttyS1 (UART2) as the console serial port (ttyS0 will not work on early LS2085A RDB/ LS2088A RDB boards,
prior to Rev D).

• Select file system to be a RAM disk populated from an image in the kernel itb file.

• Allocate huge pages for user space (ODP) use. This is not needed unless you plan to use ODP. Please see ODP
documentation for more information.

3. Environment variable "mcinitcmd" contains commands used during U-Boot for Management Complex load. It is not
mandatory but very useful. Refer to U-Boot Environment Variables on page 101 for more information.

For NOR boot

printenv mcinitcmd
mcinitcmd=fsl_mc start mc 0x580a00000 0x580e00000

For QPSI boot

printenv mcinitcmd
mcinitcmd==sf probe 0:0;sf read 0x20a00000 0xA00000 0x100000;sf read 0x20e00000
0xE00000 0x100000;fsl_mc start mc 0x20a00000 0x20e00000

4. Environment variable "bootcmd" contains commands used to boot Linux. The image needs to be copied to DDR first.

e.g. For NOR boot

printenv bootcmd
bootcmd=run mcinitcmd && fsl_mc lazy apply dpl 0x580d00000 && cp.b $kernel_start
$kernel_load $kernel_size && bootm $kernel_load || run distro_bootcmd

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
100 NXP Semiconductors

U-Boot enviroment variables such as "kernel_load" contain addresses used in the boot process. You can inspect them
using the U-Boot "printenv" command. "bootcmd" command may change depending upon mcinitcmd env variable.

4.6.6.4 U-Boot Environment Variables

DPAA2-specific Environment Variables

• mcboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined the complile-time
value, CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be the default. Normally, users do not need to set this variable because the
default is acceptable.

• mcmemsize: Defines amount of system DDR to be use by the Management Complex. If this variable is not defined, the
compile-time value CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be the default. Normally, users do not need to set this
variable because the default is acceptable.

• mcinitcmd: Contains commands to load and start the Management Complex automatically before the U-Boot count down
to boot starts. If this variable is defined, its contents are run. The default value assumes that the Management Complex (MC)
firmware and Data Path Control file are stored in NOR flash at fixed addresses. The default value for NOR boot is fsl_mc
start mc 0x580a00000 0x580e00000 and for QSPI boot is fsl_mc start mc 0x20a00000 0x20e00000. Users may change
this variable as needed to load the MC files from sources other than NOR into DDR and then start the MC using the fsl_mc
command. For example, the files may be on a disk drive.

Environment variables that are not specific to DPAA2

bootcmd: Contains commands that are automatically executed when the U-Boot "boot" command is run. This happens
automatically when the user does not interrupt U-Boot's initial count down. In normal usage, bootcmd should contain the command
to apply the Management Complex Data Path Layout (DPL) file because this must be done before booting Linux. The default
value of bootcmd assumes that the DPL file is stored in NOR flash at a fixed address. The default is mcinitcmd && fsl_mc
lazyapply dpl 0x580d00000 && cp.b $kernel_start $kernel_load $kernel_size && bootm $kernel_load || run

distro_bootcmd for NOR-Boot

4.6.6.5 NOR Flash (Virtual) Banks
NOR flash is a simple and convenient destination for deploying images so it is frequently used. Many NXP development and
reference boards provide a special feature that allows a single NOR flash to be divided into multiple parts called “banks”. This is
done by board-level logic that modifies address signals. Because there is only one NOR flash physically, the banks are sometimes
called "virtual" banks.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the one NOR flash. This
is very helpful during development because you can use the U-Boot image in one bank to program an image set into a different
bank. If the new images are flawed, the old images are still functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be divided into up to 8 banks, but almost always the feature is used to
divide the flash into two halves only. The halves are called bank 0 and bank 4.

This is relevant to SYSCLK and PBLs because PBL files are one of the image types that must be deployed. It is possible to have
different PBL files in the two banks, and they may require different SYSCLK frequencies. One must operate the board correctly
in order to avoid using the wrong SYSCLK with a PBL.

Switch Settings and NOR Banks

On the LS2085ARDB/LS2088ARDB revisions D – F, switch SW9 bits 3:5 control which bank the SoC loads from when it powers
up. The relevant values are:

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 101

Table 34. Switch Settings and NOR Banks

Switch Settings NOR Banks

off off off Load from NOR Flash Bank 0

on off off Load from NOR Flash Bank 4

U-Boot prints which bank is loaded from. The output looks like following.

• For bank0

U-Boot 2016.01LS2088A-SDK+ge54c320 (Jul 17 2016 - 22:56:33 +0800)

SoC: LS2088E Version:1.0 (0x87090010)
Clock Configuration:
 CPU0(A72):1800 MHz CPU1(A72):1800 MHz CPU2(A72):1800 MHz
 CPU3(A72):1800 MHz CPU4(A72):1800 MHz CPU5(A72):1800 MHz
 CPU6(A72):1800 MHz CPU7(A72):1800 MHz
 Bus: 700 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s
Reset Configuration Word (RCW):
 00000000: 48303838 48480048 00000000 00000000
 00000010: 00000000 00000000 00a00000 00000000
 00000020: 00801180 00002581 00000000 00000000
 00000030: 00000c0b 00000000 00000000 00000000
 00000040: 00000000 00000000 00000000 00000000
 00000050: 00000000 00000000 00000000 00000000
 00000060: 00000000 00000000 00027000 00000000
 00000070: 412a0000 00000000 00000000 00000000
I2C: ready
Model: Freescale Layerscape 2088A RDB Board
Board: LS2085A/LS2088A-RDB, Board Arch: V1, Board version: D, boot from vBank: 0

• For bank4

U-Boot 2016.01LS2088A-SDK+ge54c320 (Jul 17 2016 - 22:56:33 +0800)

SoC: LS2088E Version:1.0 (0x87090010)
Clock Configuration:
 CPU0(A72):1800 MHz CPU1(A72):1800 MHz CPU2(A72):1800 MHz
 CPU3(A72):1800 MHz CPU4(A72):1800 MHz CPU5(A72):1800 MHz
 CPU6(A72):1800 MHz CPU7(A72):1800 MHz
 Bus: 700 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s
Reset Configuration Word (RCW):
 00000000: 48303838 48480048 00000000 00000000
 00000010: 00000000 00000000 00a00000 00000000
 00000020: 00801180 00002581 00000000 00000000
 00000030: 00000c0b 00000000 00000000 00000000
 00000040: 00000000 00000000 00000000 00000000
 00000050: 00000000 00000000 00000000 00000000
 00000060: 00000000 00000000 00027000 00000000
 00000070: 412a0000 00000000 00000000 00000000
I2C: ready
Model: Freescale Layerscape 2088A RDB Board
Board: LS2085A/LS2088A-RDB, Board Arch: V1, Board version: D, boot from vBank: 4

Bank Switching

U-Boot on the LS2085ARDB/LS2088ARDB has a useful command called qixis_reset. The command qixis_reset does a
hard reset, loading from the bank specified by the switches.

If the switches are set to load from bank 0, then the command qixis_reset altbank will cause a reset into bank 4 (without a
need to change any switches). This is useful if banks 0 and 4 contain PBL files that require the same SYSCLK.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
102 NXP Semiconductors

NOR Flash Banks and Addresses

The “current” bank is the bank that was loaded and is currently running. The “alternate” bank is the other bank. For example, if
you are running from bank 0 then bank 4 is the alternate bank. If you are running from bank 4, bank 0 is the alternate bank. The
alternate bank if often called the "other" bank because it is the bank from which you are NOT booted.

Addressing is based on current and alternate/other banks, not banks 0 and 4. This is best explained by an example. Suppose the
address of something in the current bank is 0x5_8000_0000. The corresponding address in the alternate bank is changed in one
bit, 0x5_8400_0000. For example, suppose the byte at 0x5_8000_0000 have value 0xaa and, while running U-Boot in the current
bank, and you read the byte at 0x5_8400_0000 and see 0xbb. Now, reboot after changing SW9 bits 3:5 so you are running U-
Boot from what was the alternate bank and is now the current bank. You will see 0xbb at 0x5_8000_0000 and 0xaa at
0x5_8400_0000.

This scheme is very useful, because it means you can always deploy images to the alternate bank using the same addresses,
regardless of which bank happens to be “current”. In other words, the steps to write an image into bank 4 using U-Boot running
from bank 0 are the same as the steps to write an image to bank 0 using U-Boot running from bank 4.

NOR Flash Memory Map
NOR flash memory map for LS2088A can be found on the link below.
Related information

LSDK Memory Layout on page 66

4.6.6.6 Supported RCW (Reset Configuration Word) Binaries
The release contains the RCW binaries for the LS2088ARDB with SoC revisions r1.0 and r1.1.

• For LS2088ARDB containing a LS2088A r1.0 SoC, use the RCW directory ls2088ardb.

• For LS2088ARDB containing a LS2088A r1.1 SoC, use the RCW directory ls2088ardb_rev1.1.

These directories contains following folders:

• FFFFFFFF_PP_HH_0x2a_0x41

• FFFFFFFF_PP_NN_0x2a_0x3f

The RCW sub-directories names for the LS2088ARDB boards conform to the following naming convention:

abcdefgh_ij_kl_mn

Table 35. LS2088ARDB RCW Directory Naming Convention

Slot Convention

a What is available in SFP cage 1

b What is available in SFP cage 2

c What is available in SFP cage 3

d What is available in SFP cage 4

e What is available in SFP cage 5

f What is available in SFP cage 6

g What is available in SFP cage 7

h What is available in SFP cage 8

i What is available in Slot 1

j What is available in Slot 2

Table continues on the next page...

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 103

Table 35. LS2088ARDB RCW Directory Naming Convention (continued)

k SATA1

l SATA2

For the SFP cage and Slots (a..j) the following symbols are used:

• 'N' is NULL, not available/not used

• 'P' is PCIe

• 'S' is SGMII

• 'Q' is QSGMII

• 'F' is XFI

• 'H' is SATA

 NOTE

Serdes1 protocol (m):

m = 'hex value of serdes1 protocol value'

Serdes2 protocol (n):

n = 'hex value of serdes2 protocol value'

=============================

RCW binaries present in above sub-directories follow below naming convention

Files naming convention

=============================

rcw_x.rcw
rcw_x_y.rcw
rcw_x_bootmode.rcw

x = Core frequency
y = Platform frequency
bootmode = nor(default)/sd/qspi

For example,
 rcw_2000.rcw means rcw for core frequency of 2000MHz.
 rcw_2000_700.rcw means rcw for core frequency 2000MHz and Platform frequecny 700MHz.
 rcw_2000_qspi.rcw means rcw for core frequency of 2000MHz with QSPI boot.

Default recommended settings

================================

Default flash image in the Release is created with for rcw_2000.bin from ls2088ardb directory. One needs to update rcw as per
the below recommendation

directory

For LS2088ARDB with LS2088A r1.0, it is recommended to use RCWs from directory ls2088ardb

For LS2088ARDB with LS2088A r1.1, it is recommended to use RCWs from directory ls2088ardb_rev1.1

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
104 NXP Semiconductors

To be compatible with both LS2088A 1.0 and 1.1, RCW image rcw_1800.bin is used by default for SoC running at

1800MHz in this release, if users want to use a different RCW image for LS2088A 1.1 running at 2000MHz, follow

the steps as below:

step 1: $ cd flexbuild

step 2: $ flex-builder -c rcw

step 3: download RCW image from flexbuild/build/firmware/rcw/ls2088ardb_rev1.1/

FFFFFFFF_PP_HH_0x2a_0x41/rcw_2000.bin to ls2088ardb board under U-Boot prompte, replace rcw_1800.bin

with rcw_2000.bin

=> tftp a0000000 rcw_2000.bin

To program current bank:

=> protect off 580000000 +$filesize && erase 580000000 +$filesize && cp.b a0000000

580000000 $filesize

To program alternate bank:

=> protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b a0000000

584000000 $filesize

 NOTE

sub-directories

default serdes protocol for LS2088ARDB: 0x2a_0x41, so it is recommended to use RCWs from FFFFFFFF_PP_HH_0x2a_0x41

For PCI gen3 use case, it is recommeded to use RCWs from FFFFFFFF_PP_NN_0x2a_0x3f

RCW binary

For LS2088ARDB-RevD , it is recommended to use bin2 or bin3 (details mentioed above) . Due to board errata, bin1 is instable
on this board.

For LS2088ARDB-RevF (NOR-boot), either of bin1. bin2. bin3 can be used.

For LS2088ARDB-RevF (QSPI-boot), it is recommended to use rcw_2000_qspi.bin

4.6.6.7 Ethernet MAC Connectivity
For DPAA2 SoCs, it is helpful to know which SoC Ethernet MACs are connected to which physical Ethernet ports on the board.
The figure below shows this.

Figure 2. Ethernet MAC Connectivity

Board-specific Information

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 105

In U-Boot, Ethernet interfaces are named according to MACs. For example, the interface connected to MAC1 is called
DPMAC1@xgmii.

In Linux, only one MAC is enabled by default as a standard kernel Ethernet Interface. This interface is named ni0 by default. The
Ethernet port it corresponds to is shown in the figure. The reason that only one interface is enabled by default is because, in
DPAA2, Ethernet ports need not be associated with Linux kernel Ethernet driver instances. For example, they can be assigned
as ports on switches or allocated to user space. Furthermore, these associations can be made dynamically. As an example,
suppose that you want the Ethernet port connected to MAC1 to act as standard Linux Ethernet interface. To accomplish this, enter
the following (as root):

ls-addni dpmac.1

A new Linux Ethernet interface will be created on the fly and hot-plugged into the kernel.

Interface ni0 is created automatically because the default data path layout (DPL) creates it. DPL's are a mechanism to create
DPAA2 entities prior to Linux boot. One can customize the DPL to get a different set of DPAA2 entities to be present automatically.

See the DPAA2-specific Software on page 633 for more information.

Layerscape SDK user guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
106 NXP Semiconductors

Chapter 5
Bootloaders

5.1 General boot flow

NXP SoC Booting Principles

The high-level (some details omitted) boot flow of an ARMv8a SoC is:

1. SoC comes out of reset and reads and RCW/PBL image from a boot source such as NOR flash or an SD card or eMMC
flash. The RCW/PBL image contains configuration bits that control things such as:

• Pin muxing and the protocol selected for SerDes pins.

• Clock parameters and PLL multipliers.

• Device containing the first software (not in an internal SoC ROM) to run.

2. Code in an internal boot ROM starts running and configures low-level aspects of the SoC.

3. The boot ROM must then load the first external software to run from a boot device such as NOR flash or SD/eMMC. In
today’s LSDK, this first software is a boot loader, either U-Boot or UEFI.

4. The boot ROM transfers control to the boot loader.

5. The boot loader does additional system configuration and then loads and starts the PPA image from NOR flash or SD/
eMMC.

6. The PPA is a special resident firmware that runs at the highest ARMv8A privilege level EL3. It provides services to both
the boot loader and, later, the operating system. These services include controlling core power state and bringing additional
cores out of reset.

7. Usually, the boot loader must also load peripheral firmware, firmware required to make peripherals such as Ethernet
controllers work. The details of this differ from SoC to SoC.

8. When the boot loader finishes initialization, its job is to locate a Linux kernel image and a Linux device tree image. The
device tree is a description of the board and SoC hardware that Linux uses, for example, to know which peripherals are
available for use and to associate drivers with them. Often, boot loaders do some on-the-fly “fixups” to the device tree to
pass information to Linux.

9. In summary, the boot loader read kernel and device tree images from memory or mass storage device. Because boot
loaders have many drivers, there are many possible choices for the location of the images.

• NOR flash (serial QSPI or parallel)

• NAND

• SD/eMMC

• USB mass storage devices of all types.

• SATA drives of all types.

• Ethernet, normally via TFTP.

10. After the boot loader loads the kernel and device tree and does fixups, it puts kernel boot parameters and the device tree
into DDR where the kernel can find them and passes control to the kernel. One of the key kernel parameters is “root=”. It
tells the Linux kernel what device contains the user space file set (user land). U-Boot stores kernel parameters in
environment variable bootargs.

11. Because the Linux kernel supports even more device drivers than boot loaders support, the array of choices for the user
land device is even larger.

General boot flow

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 107

• NOR flash (serial QSPI or parallel)

• NAND (using special file systems)

• SD/eMMC

• USB mass storage devices of all types.

• SATA drives of all types.

• Ethernet, normally via NFS.

• RAM disks (which the boot loader populates)

• Third party PCIe-based mass storage devices and controllers

a. SATA controllers

b. SAS controllers

c. Fibre Channel Host Bus Adaptors

d. NVMe cards

e. And more.

Once the kernel is up, it starts user land, starting with systemd. The startup process is part of the Ubuntu file set and conforms
to normal Ubuntu procedures.

Notes on General Boot Principles

• In the future, the boot flow will be altered to have the boot ROM load the PPA before the boot loader. The PPA will then
load and start the boot loader. This mechanism allows consolidation of more configuration into one place, the PPA. This
configuration is then removed from the boot loaders.

• Secure boot does not change the overall sequence. The significant difference is that secure boot involves each component
(starting with the boot ROM) validating the images it loads and starts. This sequence of image validations is called the
“chain of trust”.

Linux often resets peripherals and reloads their firmware. This process is specific to SoC's.

5.2 U-Boot

5.2.1 LSDK U-Boot uses distro boot feature
As in previous versions of the NXP SDK, the U-Boot variable bootcmd contains commands that represent the default boot process.
LSDK is different in that it uses a standard U-Boot feature called distro boot to make automatic booting more flexible. In distro
boot, bootcmd runs additional commands in the variable distro_bootcmd. These commands are the heart of the distro boot
process.

Distro boot sequential examines partitions on mass storage devices looking for a script file. When U-Boot finds one, it loads and
executes it to initiate the boot process.

The mass storage devices to be searched are defined in the U-Boot environment variable boot_targets. Set it to control which
mass storage devices are searched and the order in which they are searched. For example,

=> printenv boot_targets
boot_targets=usb0 mmc0 scsi0 dhcp

The command above shows the search order USB device 0, MMC (or SD) device 0, SCSI (SATA) device 0, followed by DHCP.

The process of searching involves a number of U-Boot variables. It ends with the variables shown below in an example from an
LS2088ARDB.

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
108 NXP Semiconductors

=> printenv scan_dev_for_scripts
scan_dev_for_scripts=for script in ${boot_scripts}; do if test -e ${devtype} ${devnum}:$
{distro_bootpart} ${prefix}${script}; then echo Found U-Boot script ${prefix}${script}; run
boot_a_script; echo SCRIPT FAILED: continuing...; fi; done => printenv boot_scripts
boot_scripts=ls2088ardb_boot.scr => printenv boot_a_script boot_a_script=load ${devtype} $
{devnum}:${distro_bootpart} ${scriptaddr} ${prefix}${script}; env exists secureboot && load $
{devtype} ${devnum}:${distro_bootpart} ${scripthdraddr} ${prefix}${boot_script_hdr} &&
esbc_validate ${scripthdraddr};source ${scriptaddr}

The process searches for a script named by the variable boot_scripts. In this example, the search is for a script named
ls2088ardb_boot.scr. When this script is located, it is loaded into RAM using the load command and run using the source
command. This causes Linux to boot.

LSDK puts boot scripts into a file system on the second partition of a mass storage device. U-Boot can display files in a file system.
Continuing the example, the following U-Boot commands list the files in the second partition of USB device 0 (do a usb start
first):

=> ls usb 0:2
<DIR> 4096 .
<DIR> 4096 ..
<DIR> 16384 lost+found
 33301280 firmware_ls1043ardb_uboot_norboot.img
 33301280 firmware_ls1046ardb_uboot_qspiboot.img
 33301280 firmware_ls1088ardb_uboot_qspiboot.img
 33301280 firmware_ls2088ardb_uboot_norboot.img
 16524064 flex_linux_arm64.itb
 10005 fsl-ls1012a-frdm.dtb
 10145 fsl-ls1012a-qds.dtb
 8974 fsl-ls1012a-rdb.dtb
 30832 fsl-ls1043a-qds.dtb
 28619 fsl-ls1043a-rdb.dtb
 30134 fsl-ls1043a-rdb-usdpaa.dtb
 30010 fsl-ls1046a-qds.dtb
 27125 fsl-ls1046a-rdb.dtb
 28556 fsl-ls1046a-rdb-usdpaa.dtb
 14692 fsl-ls1088a-qds.dtb
 15451 fsl-ls1088a-rdb.dtb
 19713 fsl-ls2080a-qds.dtb
 19243 fsl-ls2080a-rdb.dtb
 20651 fsl-ls2088a-qds.dtb
 19545 fsl-ls2088a-rdb.dtb
<DIR> 4096 grub
 1152 hdr_ls1043ardb_bs.out
 1152 hdr_ls1046ardb_bs.out
 16654848 Image
 7443102 Image.gz
 703 ls1043ardb_boot.scr
 703 ls1046ardb_boot.scr
 862 ls1088ardb_boot.scr
 853 ls2088ardb_boot.scr
 9035568 perf
 8948941 ramdisk_rootfs_arm64.ext4.gz
 8949005 ramdisk_rootfs_arm64.ext4.gz.uboot
<DIR> 4096 secboot_hdrs
 7443166 uImage-4.4.65-dirty
<SYM> 19 vmlinuz
 0 c80546ca-02

It shows that this USB drive contains scripts (and necessary images) to boot any of the boards LS1043ARDB, LS1046ARDB,
LS1088ARDB, and LS2088ARDB. For example, the LS2088ARDB boot script is ls2088ardb_boot.scr. The script files are
binary. But one can boot Linux and look at them. LSDK mounts the boot partition containing the scripts at mount point /boot.

user@localhost:~$ ls /boot
c80546ca-02 fsl-ls2088a-qds.dtb
firmware_ls1043ardb_uboot_norboot.img fsl-ls2088a-rdb.dtb
firmware_ls1046ardb_uboot_qspiboot.img grub firmware_ls1088ardb_uboot_qspiboot.img
hdr_ls1043ardb_bs.out
firmware_ls2088ardb_uboot_norboot.img hdr_ls1046ardb_bs.out
flex_linux_arm64.itb Image

U-Boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 109

fsl-ls1012a-frdm.dtb Image.gz
fsl-ls1012a-qds.dtb lost+found
fsl-ls1012a-rdb.dtb ls1043ardb_boot.scr
fsl-ls1043a-qds.dtb ls1046ardb_boot.scr
fsl-ls1043a-rdb.dtb ls1088ardb_boot.scr
fsl-ls1043a-rdb-usdpaa.dtb ls2088ardb_boot.scr
fsl-ls1046a-qds.dtb perf
fsl-ls1046a-rdb.dtb ramdisk_rootfs_arm64.ext4.gz
fsl-ls1046a-rdb-usdpaa.dtb ramdisk_rootfs_arm64.ext4.gz.uboot
fsl-ls1088a-qds.dtb secboot_hdrs
fsl-ls1088a-rdb.dtb uImage-4.4.65-dirty
fsl-ls2080a-qds.dtb vmlinuz
fsl-ls2080a-rdb.dtb

The boot scripts are sophisticated due to secure boot. Ignore secure boot, and the key steps in a boot script are:

part uuid $devtype $devnum:3 partuuid3
setenv bootargs console=ttyS1,115200 earlycon=uart8250,mmio,0x21c0600 root=PARTUUID=
$partuuid3 rw rootwait $othbootargs default_hugepagesz=2m hugepagesz=2m hugepages=256 load
$devtype $devnum:2 $kernel_addr_r /vmlinuz; load $devtype $devnum:2 $fdt_addr_r /fsl-ls2088a-
rdb.dtb; bootm $kernel_addr_r - $fdt_addr_r

The distro boot search process sets the variables devtype and devnum. In this example, they would be "usb" and "0".

The U-Boot part command sets variable partuuid3 to the partition universal unique identifier of partition 3 of USB device 0. This
value is used in bootargs to identify the root partition to the Linux kernel. This method is better than using a device name (like /
dev/sda3) because it is not dependent on probe order.

The next steps are to load the kernel image (vmlinuz) and device tree (fsl-ls2088a-rdb.dtb) into RAM and then boot Linux
using bootm.

In summary (and ignoring secure boot), the distro boot processes searches for a partition with a file system containing a boot
script. It loads and runs the boot script. The boot script does the five steps above to boot Linux.

To boot your own kernel, replace the kernel and device tree images in /boot and reboot your system. But also install any needed
kernel modules first.

There are two types of userland in LSDK: 1) Large standard distro (Ubuntu rootfs) deployed on external SD/USB/SATA media
storage. 2) Prebuilt tiny ramdisk rootfs(currently non-customizable) deployed in flash media onboard for arm32/arm64 target.

If U-Boot is used as boatload, after LSDK is installed by flex-installer and reboots the target board, U-Boot will first automatically
search for boot script <platform>_boot.scr from SD/eMMC/USB/SATA storage media, if a valid <platform>_boot.scr is found,
U-Boot will boot the external distro (Ubuntu as default) deployed on SD/USB/SATA media storage, otherwise U-Boot will fall back
to boot the tiny distro deployed on flash media onboard.

In case of booting LSDK tiny rootfs from flash media:

The default U-Boot environment bootargs is used and user can directly modify bootargs for custom kernel ondemand.

In case of booting LSDK distro from external SD/USB/SATA storage disk:

The default U-Boot environment 'bootargs' is NOT used by external distro, bootargs is preset in <platform>_boot.scr, users
can indirectly modify othbootargs ondemand, for example, setenv othbootargs fsl_fm_max_frm=9600 in U-Boot prompt.

5.3 UEFI

Release Description

This section provides information about the LSDK UEFI release on QorIQ LS boards. The following features are supported in this
release:

• DDR4

• DUART

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
110 NXP Semiconductors

• I2C

• DSPI

• SATA

• SD, FAT32 filesystem

• GPIO Support

• RTC, Watchdog

• PPA Integration

• PCIe – e1000 NIC card support

• DPAA 1.x support – XFI, RGMII, and SGMI

• DPAA2.x support - XFI

• SMP Linux boot via EFI_STUB on SD card

• PXE boot via PCIe and DPAA interfaces

• DDR BIST Test

• Ubuntu Distro boot support

• KASLR Support in UEFI

• QSPI boot

• USB 3.0

• Prefetch configuration support

• MC High Mem Support

• RTC Support for LS1043A x2 Board

Feature Summary

Features\Board LS1043ARDB LS2088ARDB LS1046ARDB

DDR4 YES YES YES

UART YES YES YES

I2C Yes YES YES

DSPI Yes Yes No

SATA N/A YES YES

SD,FAT32 filesystem YES YES YES

GPIO YES NO YES

IFC-NAND YES YES NO

IFC-NOR YES YES N/A

RTC YES YES YES

Watchdog YES YES YES

PPA Integration YES YES YES

Table continues on the next page...

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 111

Table continued from the previous page...

PCIe – e1000 NIC YES YES YES (PCIe Using legacy
interrupt)

DPAA 1.x YES N/A YES

DPAA 2.x N/A YES N/A

SMP Linux boot via
EFI_STUB on SD card

YES YES YES

PXE boot via PCIe and
DPAA interfaces

YES YES YES

DDR BIST Test YES YES YES

Ubuntu Distro boot support YES YES YES

KASLR Support in UEFI YES YES YES

QSPI boot No NO YES

USB 3.0 No YES NO

Prefetch Config support No YES NO

MC High Mem Support N/A YES N/A

Silicon Rev 1.0/1.1 1.0 1.0

Tool Chain

• gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu– Used to compile UEFI firmware (can be downloaded from
https://releases.linaro.org/components/toolchain/binaries/4.9-2016.02/aarch64-linux-gnu/gcc-

linaro-4.9-2016.02-x86_64_aarch64-linux-gnu.tar.xz)

Known issues

QUEFI-780: ls1043ardb_uefi reconnect hang

Limitation

On LS1046ARDB, QSPI flash is disabled during device tree fix-up and Linux will not be able to use QSPI flash as UEFI run time
services will be using it for variables storage.

5.3.1 Introduction

Purpose

This section describes how to use the accompanying LSDK release on the QorIQ Layerscape platforms and how to boot LSDK
distro with UEFI. The section covers UEFI enablement on QorIQ Layerscape platforms and does not describe UEFI specifications
in detail.

References

• Unified Extensible Firmware Interface Specification

• QorIQ LS1043A Reference Manual

• QorIQ LS1046A Reference Manual

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
112 NXP Semiconductors

http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1043a-and-1023a-multicore-communications-processors:LS1043A?tab=Documentation_Tab
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1046a-and-1026a-multicore-communications-processors:LS1046A?tab=Documentation_Tab

5.3.2 UEFI overview
UEFI (Unified Extensible Firmware Interface) describes an interface between the operating system (OS) and the platform firmware.
The interface consists of data tables that contain platform-related information, plus boot and runtime service calls that are available
to the operating system and its loader. Together, these provide a standard, modern environment for booting an operating system
and running pre-boot applications.

UEFI implementations are governed by the UEFI specifications, which are designed as a pure interface specification. As such,
the specification defines the set of interfaces and structures that platform firmware must implement.

Figure 3. UEFI

For the latest version of UEFI, refer to References

UEFI Bootflow

The following is the Boot Execution Order on QorIQ Layerscape boards:

• Execution begins in the PBI state machine when the SoC comes out of reset

• After PBI, execution starts with SP bootcore which gives control to GPP Bootcore

• GPP bootcore gives control to UEFI

• Bootcore in UEFI branches to EL3 init code in PPA

• When PPA completes EL3 initialization, it branches back to UEFI in EL2

• Bootcore in UEFI branches to Linux kernel in EL1

• Linux Kernel invokes PSCI (cpu_on) to release secondary core

• Execution starts in the GPP bootrom when secondary core released from reset

• If core is marked to be disabled, core enters power-down sequence in bootrom

• Cores not disabled branch to EL3 init code in PPA

• Upon completion of EL3 initialization, cores branch to start address at EL1 in kernel

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 113

Figure 4. UEFI bootflow

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
114 NXP Semiconductors

Here, the PPA (Primary Protected Application) firmware is the platform and runtime security firmware which allows configuring
and enforcing platform specific security policies.

Environment requirements

Hardware requirements

• Host PC: Ubuntu (64-bit variant with at least 2 GB RAM) host is preferred to compile/build the UEFI firmware.

• Board: QorIQ Layerscape, with UART cable.

• SD Card: Preferably from well-known vendors like SanDisk.

Software requirements

• To build the UEFI firmware on the Ubuntu host, install uuid-dev.

$ sudo apt-get install uuid-dev

• To build the UEFI firmware on the Ubuntu host, install Linaro GCC-4.9 toolchain on your host machine using the following
commands.

$ wget https://releases.linaro.org/components/toolchain/binaries/4.9-2016.02/aarch64-
linux-gnu/gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu.tar.xz
$ tar -xvf gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu.tar.xz

Add the toolchain paths to the PATH environment variable.

$ export PATH=/home/user/linaro_4.9_2016/gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu/
bin:$PATH

• Ensure that Python (2.7 or higher) is installed on the build machine, for successful compilation.

$ python –version
 Python 2.7.12

5.3.3 LSDK distro boot with UEFI

Boot up Image Requirements

The following images are required for UEFI boot.

• UEFI images - UEFI boot loader images

• RCW (Reset Configuration Word) firmware

• PPA (Primary Protected Application) firmware - For secure monitor and associated functions that comprise the base EL3 sw
foundation

• Device Tree image - Data structure for describing hardware

• FMAN (Frame Manager) Micro Code - Required for DPAA1 (Data Path Acceleration Architecture) interfaces (applicable for
LS1043ARDB and LS1046ARDB)

• MC Firmware, DPL and DPC binaries for DPAA2 interfaces (applicable for LS2088ARDB)

• Phy Firmware for Cortina Phy (applicable for LS2088ARDB)

UEFI Boot Order

The UEFI boot manager will try to boot from all entries as they appear in the UEFI boot menu. Boot entries can be divided into
the following three categories.

• Boot entries for Block devices

• Boot entries for Network Boot (PXE boot)

• Boot entry for UEFI Shell

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 115

For block devices, the UEFI boot manager will look for an EFI application with a predefined name (BOOT{machine type short
name}.EFI) in /EFI/BOOT. If found, the boot manager will automatically run the EFI application. In our case (AArch64 ARM
platforms), the application should be named as BOOTAA64.EFI.

Linux Boot Storage Media Layout

Table 36. Media Layout

Region 1

(4 KB)

MBR/GPT

Region 2

(64 MB)

Loaders & FW

(Not applicable for
UEFI)

Region 3

(20 MB)

Partition 1

(FAT 16/32)

LABEL: EFI

BOOTAA64.EFI

grub.cfg

Region 4

(300 MB)

Partition 2

(EXT4)

LABEL: boot

Kernel

DTB

flex-installer.itb

scripts/tools

other

Region 5

(left space of disk)

Partition 3

(EXT4)

LABEL: rootfs

Ubuntu

or

Ubuntu-Core

or

CenOS

or

Debian

In the Linux environment, fdisk utility can be used to partition and format the target as per the table above and then copy the
required images (Kernel image, Rootfs) to the target.

For LSDK, flex-builder & flex-installer utility can be used to partition and install required images to target as per above
layout. For more information on how to build and install LSDK using flex-builder and flex-installer, refer to Layerscape SDK user
guide on page 41.

Image name Partition

EFI/BOOT/BOOTAA64.EFI EFI partition

EFI/BOOT/grub.cfg EFI partition

Kernel image boot partition

Root file system rootfs partition

• The Kernel Image should be the standard kernel images build as arch/arm64/boot/Image (for arm64).

• The device tree has to be stored in flash at a fixed offset (board specific) as per the LSDK flash layout. For

NOR flash, default value is (0x60F00000 to 0x60FFFFFF). Update ‘PcdFdtDevicePaths’ PCD in platform

description file (.dsc) for a different flash layout.

 NOTE

Sample files

• BOOTAA64.EFI

Represents grub boot loader. It will load the grub.cfg kept in the same directory and provides grub menu to the user. The
user can select the required menu entry. Follow 'Generate BOOTAA64.EFI’ for compilation steps.

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
116 NXP Semiconductors

• grub.cfg

grub.cfg provides boot options to user. For example, the grub.cfg can be used for booting the LSDK distro.

set default="1"
set timeout=10

menuentry 'LSDK on QorIQ ARM64 ls1043ardb' {
 search --no-floppy --file /42013eab-02 --set root
 linux /Image console=ttyS0,115200 root=PARTUUID=42013eab-03 rootwait rw
earlycon=uart8250,mmio,0x21c0600
}

The example above uses a LSDK distribution. Specific kernel boot arguments could vary per distribution.

 NOTE

The table below represents the configurable parameters in grub.cfg.

• Option Explanation Comments

• search --no-floppy --file /
<FileName> --set root

Search all partitions for the given file
name. First Partition containing the

specified file is set at root so that Grub
will look for required image (kernel

image) in this partition.

For example, for LSDK, flex-
installer will update the FileName as
PARTUUID of the partition containing

Kernel image. This removes the
ambiguity of finding a specific partition
based on UUID/LABEL when multiple

devices are connected.

• root=PARTUUID=XXXXXXXX-YY It represents the PARTUUID of the
partition containing rootfs This is passed

as boot argument to kernel.

For example, for LSDK, flex-
installer will update it with PARTUUID

of the partition containing rootfs. This
make sure that correct rootfs is passed
to kernel and removes the ambiguity of

finding the correct rootfs based on
UUID/LABEL when multiple devices are

connected.

• set timeout=N If defined, GRUB will wait ‘N’ Seconds,
before booting the default menu entry.If
not defined, user always has to select

the required menu entry.

Adjust the timeout value as per
requirement.

LSDK Distro Bootflow with UEFI

• All required files (RCW, PPA, Device Tree, FMan, and UEFI images) are stored in NOR flash.

• UEFI boot starts from NOR

• When prompted, press ESCAPE to select a Boot Option (UEFI SHELL/PXE Boot) OR else UEFI boot manager tries to boot
from all boot entries starting from ‘Removable Media’ followed by ‘Network Boot’ and ‘UEFI SHELL’

• If a Removable Media (e.g. SD card) has a FAT formatted partition with /EFI/BOOT/BOOT{machine type short name}.EFI
(For example, BOOTAA64.EFI for arm64), it will be executed by UEFI boot manager.

• BOOTAA64.EFI will load grub.cfg.

• grub.cfg contains menu entry for distro along with required parameter to identify kernel image and pass ‘rootfs’ path to kernel
as boot argument.

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 117

Flow diagram

Figure 5. UEFI Bootflow Diagram

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
118 NXP Semiconductors

Generate BOOTAA64.EFI

Follow the steps below to compile the grub source code to generate BOOTAA64.EFI. In general, BOOTAA64.EFI is provided by the
distribution like LSDK provides prebuild BOOTAA64.EFI.

• Get the grub source code and install the prerequisites as mentioned in INSTALL file.

$ git clone git://git.savannah.gnu.org/grub.git;
$ cd grub

• Use grub-2.02 tag.

$ git checkout tags/grub-2.02

• Set the toolchain path and set CROSS_COMPILE environment variable. See the Software Requirements section to download
and install the toolchain.

$ export PATH=/home/user/gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu/bin:$PATH
$ export CROSS_COMPILE=aarch64-linux-gnu-

• Configure and compile source code for target (arm64)

$./autogen.sh
$./configure --target=aarch64-linux-gnu
$ make

• Create standalone GRUB image.

$ echo 'configfile ${cmdpath}/grub.cfg' > grub.cfg
$ grub-mkstandalone --directory=./grub-core -O arm64-efi -o BOOTAA64.EFI --modules
"part_gpt part_msdos" /boot/grub/grub.cfg=./grub.cfg

• GRUB standalone application has all the modules embedded in application itself and capability to recognize

different file system (ext2, ext4, and so on), thus removing the need for having a separate directory populated

with all of the GRUB UEFI modules and other related files.

• 'configfile ${cmdpath}/grub.cfg' instruct GRUB EFI (BOOTAA64.EFI) to use grub.cfg placed in same

directory. Thus, making them portable.

• Option –modules=”part_gpt part_msdos” (with the quotes) is necessary for ${cmdpath} feature to work

properly and to recognize MBR and GPT partitioning.

 NOTE

Conventions for UEFI and U-Boot compatibility

UEFI requires that the device tree binary (dtb) be stored along with other firmware. This means that for the use case where

• Firmware (RCW, PPA, Fman/MC ucode, boot loader, and so on) is in NOR flash

• Kernel image is on /boot on a mass storage device

• Root file system is in a mass storage device (/)

—

U-Boot must boot Linux with the dtb in NOR (not in a kernel itb) but the kernel image (not itb form) is stored in /boot. This means
that U-Boot boot.scr must extload a kernel image but not the dtb. It is consistent with what the LSDK specification says about
using booti.

5.3.4 Product Execution

5.3.4.1 Flash Layout
Some prebuilt images will be stored into flash on board as per the table below:

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 119

Definition Max

Size

NOR/QSPI/NAND

Flash Offset

SD Card

Start Block No.

RCW+PBI 1MB 0x00000000 0x00008

Boot firmware (U-Boot,
UEFI)

2MB 0x00100000 0x00800

Boot firmware Environment 1MB 0x00300000 0x01800

PPA firmware 2MB 0x00400000 0x02000

Secure boot headers 3MB 0x00600000 0x03000

DPAA1 FMAN ucode 256KB 0x00900000 0x04800

QE / uQE firmware 256KB 0x00940000 0x04A00

Ethernet PHY firmware 256KB 0x00980000 0x04C00

Scripts 256KB 0x009C0000 0x04E00

DPAA2 MC 3MB 0x00A00000 0x05000

DPAA2 DPL 1MB 0x00D00000 0x06800

DPAA2 DPC 1MB 0x00E00000 0x07000

Device tree 1MB 0x00F00000 0x07800

kernel 16MB 0x01000000 0x08000

ramdisk rootfs 32MB 0x01100000 0x08800

5.3.4.2 LS1043ARDB

Obtain the UEFI source code

$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/uefi; cd uefi
$ git checkout tags/LS1043ARDB-QUEFI_DASH_V4-0_1803

Compile the UEFI image

1. Set the toolchain path. Follow the 'Software Requirements' section to install and set the toolchain path.

2. Compile the source code to boot via NOR flash

a. To compile UEFI source code to boot via NOR flash, use the following commands.

$ cd uefi
$ source edksetup.sh
$ cd LS1043aRdbPkg
$ source ls1043a_env.cshrc
$ cd ../BaseTools
$ make clean
$ make

If you face g++ command not found error (most likely on Ubuntu), while making BaseTools then run the following
commands:

$sudo apt-get install g++
$ make clean
$ make

For booting via NOR flash, use the command below for compilation.

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
120 NXP Semiconductors

$ cd ../LS1043aRdbPkg
$./build.sh RELEASE XIP clean
$./build.sh RELEASE XIP

b. After a successful compilation, the UEFI firmware image is built at this path:

UEFI Firmware Image:
uefi/Build/LS1043aRdb/RELEASE_GCC49/FV/LS1043ARDB_EFI.fd

UEFI Non Volatile Variables Image:
uefi/Build/LS1043aRdb/RELEASE_GCC49/FV/LS1043ARDBNV_EFI.fd

In case the compilation fails, ensure the following:

ARCH environment variable is unset:

$ unset ARCH

GCC49 AARCH64_PREFIX variable is set properly:

$ export GCC49_AARCH64_PREFIX=' aarch64-linux-gnu-'

 NOTE

Booting LS1043ARDB to UEFI prompt (via NOR Boot)

• Prerequisites for NOR boot

TFTP server is required so relevant binaries can be flashed via NOR flash within the /tftpboot folder. Make sure that the
correct permissions are set for this folder.

• LS1043A NOR flash map

Flash Layout on page 119 represents NOR flash available on LS1043ARDB. The base address for the primary bank (VBank0/
Bank 0 64MB) is 0x60000000 and the base address for secondary bank (VBank4/Bank 4 64MB) is 0x64000000.

For a different flash layout, offsets/address as shown in Flash Layout on page 119 should be changed in dec

(platform declaration file), dsc (platform description file), fdf (firmware device file) and VarStore.fdf.inc

(firmware device file for non-volatile variables).

 NOTE

Flashing UEFI images on NOR flash bank 4 (alternate NOR flash bank)

• Boot to U-Boot prompt from NOR flash primary bank (Bank 0).

1. Setup serial port connection on host machine to capture logs from the LS1043ARDB.

2. Reset the board in order to boot U-Boot on bank 0. Make sure that a valid U-Boot image is flashed.

• Copy Images to NOR flash alternate bank using following commands:

=> setenv uefi 'tftp 0xa0000000 LS1043ARDB_EFI.fd && erase 0x64100000 +$filesize && cp.b
0xa0000000 0x64100000 $filesize'
=> run uefi

=> setenv uefi_env 'tftp 0xa0000000 LS1043ARDBNV_EFI.fd && erase 0x64300000 +$filesize &&
cp.b 0xa0000000 0x64300000 $filesize'
=> run uefi_env

=> setenv rcw 'tftp 0xa0000000 rcw_1500.bin && erase 0x64000000 0x640FFFFF && cp.b
0xa0000000 0x64000000 $filesize'
=> run rcw

=> setenv dtb 'tftp 0xa0000000 fsl-ls1043a-rdb.dtb && erase 64F00000 +$filesize && cp.b
0xa0000000 64F00000 $filesize'
=> run dtb

=> setenv ppa 'tftp 0xa0000000 ppa.itb && erase 0x64400000 +$filesize && cp.b 0xa0000000
0x64400000 $filesize'

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 121

=> run ppa
Note: PPA should be built without enabling OPTEE.
=> setenv fman 'tftp 0xa0000000 fsl_fman_ucode_ls1043_r1.1_108_4_9.bin && protect off
0x64900000 +$filesize && erase 0x64900000 +$filesize && cp.b 0xa0000000
0x64900000 $filesize && protect on 0x64900000 +$filesize'
=> run fman

The precompiled binary containing the images above can be downloaded from http://www.nxp.com (wget http://
www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls1043ardb_uefi_norboot.img). Follow the steps below to use the
precompiled image:

Boot to U-Boot prompt from NOR flash primary bank (Bank 0)
=> setenv raddr_temp 0xa0000000
=> setenv faddr_firmware 0x64000000
=> tftp $raddr_temp firmware_ls1043ardb_uefi_norboot.img
=> if cmp.b $raddr_temp $faddr_firmware $filesize; then echo "No update"; else protect off
$faddr_firmware +$filesize && erase $faddr_firmware +$filesize && cp.b $raddr_temp
$faddr_firmware $filesize && protect on $faddr_firmware +$filesize; fi
=> cpld reset altbank

Composite firmware(firmware_ls1043ardb_uefi_norboot.img) contains dtb of Linux kernel version 4.9. To boot

different Linux kernel (Ex: Linux 4.14), please update the dtb.

 NOTE

• Reset RDB to boot from NOR flash alternate bank (Bank 4).

Use the command below to switch to bank 4:

=> cpld reset altbank

5.3.4.3 LS1046ARDB

Obtain the UEFI source code

$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/uefi; cd uefi
$ git checkout tags/LS1046ARDB-QUEFI_DASH_V4-0_1803

Compile the UEFI image

1. Set the toolchain path. Follow the 'Software Requirements' section to install and set the toolchain path.

2. Compile the source code to boot via QSPI flash

a. To compile UEFI source code for QSPI flash boot, use the following commands:

$ cd uefi
$ source edksetup.sh
$ cd LS1046aRdbPkg
$ source ls1046a_env.cshrc
$ cd ../BaseTools
$ make clean
$ make

If you face g++ command not found error (most likely on Ubuntu) while making BaseTools, then run the following
commands:

$sudo apt-get install g++
$ make clean
$ make

For booting via QSPI flash, use the command below for compilation.

$ cd ../LS1046aRdbPkg
$./build.sh RELEASE QSPI clean
$./build.sh RELEASE QSPI

b. After a successful compilation, the UEFI firmware image is built at this path:

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
122 NXP Semiconductors

HTTP://WWW.NXP.COM

UEFI Firmware Image:
uefi/Build/LS1046aRdb/RELEASE_GCC49/FV/LS1046ARDB_EFI.fd

UEFI Non Volatile Variables Image:
uefi/Build/LS1046aRdb/RELEASE_GCC49/FV/LS1046ARDBNV_EFI.fd

In case the compilation fails, ensure the following:

ARCH environment variable is unset:

$ unset ARCH

GCC49 AARCH64_PREFIX variable is set properly:

$ export GCC49_AARCH64_PREFIX=' aarch64-linux-gnu-'

 NOTE

Booting LS1046ARDB to UEFI prompt (via QSPI Boot)

• Prerequisites for QSPI boot

TFTP server is required so relevant binaries can be flashed via QSPI flash within the /tftpboot folder. Make sure that the
correct permissions are set for this folder.

• LS1046A QSPI flash map

Flash Layout on page 119 represents QSPI flash available on LS1046ARDB. The base address for the primary bank (VBank0/
Bank 0 64MB) is 0x40000000 and the base address for secondary bank (VBank4/Bank 4 64MB) is 0x44000000..

For a different flash layout, offsets/address as shown in Flash Layout on page 119 should be changed in dec

(platform declaration file), dsc (platform description file), fdf (firmware device file) and VarStore.fdf.inc

(firmware device file for non-volatile variables).

 NOTE

Flashing UEFI images on QSPI flash bank 4 (alternate QSPI flash bank)

• Boot to U-Boot prompt from QSPI flash primary bank (Bank 0).

1. Setup serial port connection on host machine to capture logs from the LS1046ARDB.

2. Reset the board in order to boot U-Boot on bank 0. Make sure that a valid U-Boot image is flashed.

• Copy Images to QSPI flash alternate bank using following commands:

=> sf probe 0:1
=>setenv uefi 'tftpboot 0x82000000 LS1046ARDB_EFI.fd; sf erase 100000 +$filesize && sf
write 0x82000000 100000 $filesize'
=> run uefi

=> setenv uefi_env ' tftpboot 0x82000000 LS1046ARDBNV_EFI.fd;sf erase 300000 +$filesize &&
sf write 0x82000000 300000 $filesize'
=> run uefi_env

=> setenv rcw 'tftpboot 0x82000000 rcw_1800_qspiboot.bin.swap; sf erase 0 +$filesize && sf
write 0x82000000 0 $filesize'
=> run rcw

=> setenv dtb 'tftpboot 0x82000000 fsl-ls1046a-rdb.dtb; sf erase F00000 +$filesize && sf
write 0x82000000 F00000 $filesize '
=> run dtb

=> setenv ppa 'tftpboot 0x82000000 ppa.itb;sf erase 400000 +$filesize && sf write
0x82000000 400000 $filesize'
=> run ppa
Note: PPA should be built without enabling OPTEE.
=> setenv fman 'tftpboot 0x82000000 fsl_fman_ucode_ls1046_r1.0_108_4_9.bin; sf erase

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 123

900000 +$filesize && sf write 0x82000000 900000 $filesize'
=> run fman

The precompiled binary containing the images above can be downloaded from http://www.nxp.com (wget http://
www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls1046ardb_uefi_qspiboot.img). Follow the steps below to use the
precompiled image:

Boot to U-Boot prompt from QSPI flash primary bank (Bank 0)
=> setenv raddr_temp 0xa0000000
=> setenv raddr_temp_2 0x90000000
=> setenv faddr_firmware 0x0
=> tftp $raddr_temp firmware_ls1046ardb_uefi_qspiboot.img
=> sf probe 0:1
=> sf read $raddr_temp_2 $faddr_firmware $filesize
=> if cmp.b $raddr_temp $raddr_temp_2 $filesize; then echo "No update"; else sf erase
$faddr_firmware +$filesize && sf write $raddr_temp $faddr_firmware $filesize; fi
=> cpld reset altbank

Composite firmware(firmware_ls1046ardb_uefi_norboot.img) contains dtb of Linux kernel version 4.9. To boot

different Linux kernel (Ex: Linux 4.14), please update the dtb.

 NOTE

• Reset RDB to boot from QSPI flash alternate bank (Bank 4).

Use the command below to switch to bank 4:

=> cpld reset altbank

5.3.4.4 LS2088ARDB

Obtain the UEFI source code

$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/uefi; cd uefi
$ git checkout tags/LS2088ARDB-QUEFI_DASH_V4-0_1803

Compile the UEFI image

1. Set the toolchain path. Follow the 'Software Requirements' section to install and set the toolchain path.

2. Compile the source code to boot via NOR flash

a. To compile UEFI source code to boot via NOR flash, use the following commands.

$ cd uefi
$ source edksetup.sh
$ cd LS2088aRdbPkg
$ source ls2088a_env.cshrc
$ cd ../BaseTools
$ make clean
$ make

If you face g++ command not found error (most likely on Ubuntu), while making BaseTools then run the following
commands:

$sudo apt-get install g++
$ make clean
$ make

For booting via NOR flash, use the command below for compilation.

$ cd ../LS2088aRdbPkg
$./build.sh RELEASE XIP clean
$./build.sh RELEASE XIP

b. After a successful compilation, the UEFI firmware image is built at this path:

UEFI Firmware Image:
uefi/Build/LS2088aRdb/RELEASE_GCC49/FV/LS2088ARDB_EFI.fd

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
124 NXP Semiconductors

http://www.nxp.com

UEFI Non Volatile Variables Image:
uefi/Build/LS2088aRdb/RELEASE_GCC49/FV/LS2088ARDBNV_EFI.fd

In case the compilation fails, ensure the following:

ARCH environment variable is unset:

$ unset ARCH

GCC49 AARCH64_PREFIX variable is set properly:

$ export GCC49_AARCH64_PREFIX=' aarch64-linux-gnu-'

 NOTE

Booting LS2088ARDB to UEFI prompt (via NOR Boot)

• Prerequisites for NOR boot

TFTP server is required so relevant binaries can be flashed via NOR flash within the /tftpboot folder. Make sure that the
correct permissions are set for this folder.

• LS2088A NOR flash map

Flash Layout on page 119 represents NOR flash available on LS2088ARDB. The base address for the primary bank (VBank0/
Bank 0 64MB) is 0x580000000 and the base address for secondary bank (VBank4/Bank 4 64MB) is 0x584000000.

For a different flash layout, offsets/address as shown in Flash Layout on page 119 should be changed in dec

(platform declaration file), dsc (platform description file), fdf (firmware device file) and VarStore.fdf.inc

(firmware device file for non-volatile variables).

 NOTE

Flashing UEFI images on NOR flash bank 4 (alternate NOR flash bank)

• Boot to U-Boot prompt from NOR flash primary bank (Bank 0).

1. Setup serial port connection on host machine to capture logs from the LS2088A RDB.

2. Reset the board in order to boot U-Boot on bank 0. Make sure that a valid U-Boot image is flashed.

• Copy Images to NOR flash alternate bank using following commands:

=> setenv rcw 'tftp 0xa0000000 rcw_1800.bin; erase 0x584000000 0x5840FFFFF; cp.b 0xa0000000
0x584000000 $filesize;'
=> run rcw

=> setenv uefi 'tftp 0xa0000000 LS2088ARDB_EFI.fd; erase 0x584100000 0x5842FFFFF; cp.b
0xa0000000 0x584100000 $filesize'
=> run uefi

=> setenv uefi_nv 'tftp 0xa0000000 LS2088ARDBNV_EFI.fd; erase 0x584300000 0x5843FFFFF;
cp.b 0xa0000000 0x584300000 $filesize'
=> run uefi_nv

=> setenv mc 'tftp 0xa0000000 mc_10.4.0_ls2088a_20171101.itb; erase 0x584A00000
0x584EFFFFF; cp.b 0xa0000000 0x584A00000 $filesize ; tftp 0xa0000000 dpc-bman-4M.
0x2A_0x41.dtb ; cp.b 0xa0000000 0x584E00000 $filesize ; tftp 0xa0000000 dpl-eth.
0x2A_0x41.dtb ;cp.b 0xa0000000 0x584D00000 $filesize'
=> run mc

=> setenv ppa 'tftp 0xa0000000 ppa.itb; erase 0x584400000 0x5844FFFFF ; cp.b 0xa0000000
0x584400000 $filesize'
=> run ppa

=> setenv dtb 'tftp 0xa0000000 fsl-ls2088a-rdb.dtb; erase 0x584F00000 0x584FFFFFF; cp.b
0xa0000000 0x584F00000 $filesize'
=> run dtb

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 125

=> setenv cortina 'tftp 0x80000000 cs4315-cs4340-PHY-ucode.txt; erase 0x584980000
0x5849BFFFF ; cp.b 0x80000000 0x584980000 $filesize'
=> run cortina

The precompiled binary containing the images above can be downloaded from http://www.nxp.com (wget http://
www.nxp.com/lgfiles/sdk/lsdk1803/firmware_ls2088ardb_uefi_norboot.img). Follow the steps below to use the
precompiled image:

Boot to U-Boot prompt from NOR flash primary bank (Bank 0)
=> setenv raddr_temp 0xa0000000
=> setenv faddr_firmware 0x584000000
=> tftp $raddr_temp firmware_ls2088ardb_uefi_norboot.img
=> if cmp.b $raddr_temp $faddr_firmware $filesize; then echo "No update"; else protect off
$faddr_firmware +$filesize && erase $faddr_firmware +$filesize && cp.b $raddr_temp
$faddr_firmware $filesize && protect on $faddr_firmware +$filesize; fi
=> qixis_reset altbank

Composite firmware(firmware_ls2088ardb_uefi_norboot.img) contains dtb of Linux kernel version 4.9. To boot

different Linux kernel (Ex: Linux 4.14), please update the dtb.

 NOTE

• Reset RDB to boot from NOR flash alternate bank (Bank 4).

Use the command below to switch to bank 4:

=> qixis_reset altbank

Prefetch Enable/Disable support

LS2088ARDB can enable/disable hardware LOAD and STORE prefetching. Some applications require hardware prefetching to
be disabled in order to achieve better performance.

• Run the command below from the UEFI shell to get help for prefetch command.

=> help prefetch

• Run the command below from the UEFI shell to get the current prefetch settings.

By default, prefetch is enabled on all the cores.

 NOTE

=> prefetch

• Run the command below from the UEFI shell to disable prefetch on all the cores.

=> prefetch disable

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
126 NXP Semiconductors

HTTP://WWW.NXP.COM

• Run the command below from the UEFI shell to enable prefetch on all the cores.

=> prefetch enable

5.3.5 LSDK Distro Boot Logs
Below are the reference boot logs of LSDK distro boot on QorIQ LS1043ARDB .

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 127

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
128 NXP Semiconductors

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 129

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
130 NXP Semiconductors

By default UEFI Boot Manager loads GRUB bootloader placed in /EFI/BOOT/ directory of EFI partitions. Press

ESC for launching splash bios screen:

 NOTE

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 131

Press Enter to boot LSDK distro.

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
132 NXP Semiconductors

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 133

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
134 NXP Semiconductors

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 135

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
136 NXP Semiconductors

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 137

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
138 NXP Semiconductors

Use ‘root’ as Username and Password to login.

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 139

5.3.6 PXE Boot
This section describes the steps required to boot the Linux kernel using PXE boot. UEFI is the primary bootloader. It loads the
GRUB2 bootloader image. PXE boot is used to load the kernel and root file system images .

Hardware Requirements

• Host PC: Ubuntu (64-bit variant with at least 2GB RAM) host is preferred to compile/build the UEFI firmware.

• Board: QorIQ Layerscape reference development board (RDB) with a UART cable.

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
140 NXP Semiconductors

Software Requirements

• To build the UEFI firmware on the Ubuntu Host, install uuid-dev. Run the following command:

$ sudo apt-get install uuid-dev

• Ensure that Python (2.7 or higher) is installed on the build machine.

• DHCP server: isc-dhcp-server Version 4.2.4 or higher.

• Tftp Server: Any of below tftp server should be installed on host machine.

— tftpd-hpa

— atftpd

— dnsmasq

• To build the grub bootloader on the ubuntu Host, Install Linaro GCC-4.9 toolchain on your Host machine using the following
commands:

$ wget https://releases.linaro.org/components/toolchain/binaries/4.9-2016.02/aarch64-
linux-gnu/gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu.tar.xz
$ tar -xvf gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu.tar.xz
$ export PATH=/home/user/linaro_4.9_2016/gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu/
bin:$PATH

5.3.6.1 Creating the PXE Boot Setup

Setting up DHCP server for PXE boot

1. Open /etc/dhcp/dhcpd.conf with write permissions on the server machine.

2. Add a configuration block for PXE boot to the file.

host ls1043rdbboard15 {
 hardware ethernet 26:5E:3D:21:00:02;
 fixed-address 192.168.3.41;
 next-server 192.168.3.161;
 filename "grub.efi"
}

Use the MAC address for which PXE boot entry is created.

 NOTE

3. Restart the dhcp server (The command below is for Ubuntu. It may change for a different Host)

sudo service isc-dhcp-server restart

4. Place the following files in the tftp server root directory with execute permission.

• ramdisk_rootfs_arm64.ext4.gz (Root file system) : It can be fetched using flex-builder.

Run flex-builder -i repo-fetch to download the Root File System.

Path: packages/installer/ramdiskrfs/ramdisk_rootfs_arm64.ext4.gz.

Refer to Layerscape SDK user guide on page 41 for more info flex-builder usage.

• Image (Kernel Image) : It can be generated using flex-builder.

Run flex-builder -c linux -a arm64 to generate kernel image (Image).

Refer to Layerscape SDK user guide on page 41 for more info flex-builder usage.

Image is the standard kernel image generated at arch/arm64/boot/Image.

 NOTE

• grub.cfg : Below is the sample grub.cfg for LS1043ARDB.

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 141

set default="0"
function load_video {
if [x$feature_all_video_module = xy]; then
insmod all_video
else
insmod efi_gop
insmod efi_uga
insmod ieee1275_fb
insmod vbe
insmod vga
insmod video_bochs
insmod video_cirrus
fi
}
load_video
set gfxpayload=keep
set timeout=10
menuentry 'LSDK 1706 on QorIQ ARM64' --class red --class gnu-linux --class gnu --class
os {
linux /Image console=ttyS0,115200 root=/dev/ram0 rw earlycon=uart8250,mmio,0x21c0500
ramdisk_size=500000 default_hugepagesz=2m hugepagesz=2m hugepages=256
initrd /ramdisk_rootfs_arm64.ext4.gz
}

This is a sample grub configuration file for LS1043ARDB. Kernel boot arguments may change for different QorIQ

LS board.

 NOTE

5. grub.efi: Grub bootloader image. The steps below can be followed to generate grub.efi:

git clone git://git.savannah.gnu.org/grub.git;cd grub
git checkout tags/grub-2.02
export PATH=/home/user/gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu/bin:$PATH
export CROSS_COMPILE=aarch64-linux-gnu-
./autogen.sh
./configure --target=aarch64-linux-gnu
Make
echo ' set root=(tftp)' > grub.cfg
echo ‘configfile /grub.cfg’ >> grub.cfg
grub-mkstandalone --directory=./grub-core -O arm64-efi -o grub.efi --modules "tftp net
efinet gzio linux efifwsetup part_gpt part_msdos font gfxterm all_video" /boot/grub/
grub.cfg=./grub.cfg

5.3.6.2 Installing the Kernel
• Boot UEFI to prompt using NOR Flash.

• Press Esc when prompted to enter the Boot Menu.

• Enter the Boot Manager

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
142 NXP Semiconductors

• Choose PXE boot option. Make sure that connectivity to dhcp server is fine and dhcp server is set up for PXE boot.

• From grub menu select the option to install linux kernel.

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 143

Bootloaders

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
144 NXP Semiconductors

• Login after successful installation.

UEFI

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 145

Chapter 6
Security

6.1 Secure boot

6.1.1 Hardware Pre-Boot Loader (PBL) based platforms

6.1.1.1 Introduction
This section is intended for end-users to demonstrate the image validation process. The image validation can be split into stages,
where each stage performs a specific function and validates the subsequent stage before passing control to that stage. In the
example, the ESBC is NXP* provided reference code referred to as ESBC U-Boot.

Chain of
Trust

ESBC U-Boot performs minimal SoC configuration before validating the next executable using the same CSF
header format as the ISBC used to validate ESBC U-Boot. The CSF Header and signature are added to the
next executable using the NXP code signing tool.

Figure 15. Chain of Trust

Chain of Trust with
confidentiality

The validated ESBC U-Boot image is allowed to use the One Time Programmable Master Key
to decrypt system secrets. Cryptographic blob mechanism is used to establish Chain of Trust
with confidentiality.

Figure 16. Chain of Trust with confidentiality

This document provides more details on the secure boot flow, ISBC, ESBC, and NXP Code signing tool.

NXP and Freescale may be used synonymously in this document. Registers, register file names, and Trust

Architecture software may not be updated to NXP for an extended period of time.

 NOTE

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
146 NXP Semiconductors

6.1.1.2 Secure boot process
Secure boot process uses a digital signature validation routine already present in Internal BOOT ROM. This routine performs
validation using HW bound RSA public key to decrypt the signed hash and compare it to a freshly calculated hash over the same
system image. If the comparison passes, the image can be considered as authentic.

The complete process can be broken down into following phases:

• Pre-Boot Phase

1. PBL

2. SFP

• ISBC

• ESBC

The complete secure boot process is shown in the figure below.

Figure 17. Secure boot process

6.1.1.3 Pre-boot phase
When the processor is powered on, reset control logic blocks all device activities (including scan and debug activity) until fuse
values can be accurately sensed. The most important fuse value at this stage of operation is the ‘Intent to Secure’ (ITS) bit. When
an OEM sets ITS, they intend for the system to operate in a secure and trusted manner.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 147

The two main components involved during this process are:

The Security Fuse Processor (SFP) has two roles. The first is to physically burn fuses during device provisioning. The second
is to use these provisioned values to enforce security policy in the pre-boot phase, and to securely pass provisioned keys and
other secret values to other hardware blocks when the system is in a trusted/secure state.

Pre-Boot Loader (PBL) is the micro-sequencer that can simplify system boot by configuring the DDR memory controllers to more
optimal settings and copying code and data from low speed memory into DDR. This allows subsequent phases of boot to operate
at higher speed. The setting of ITS determines where the PBL is allowed to read and write. The use of the PBL is mandatory
when performing secure boot. At a minimum, the PBL must read a command file from a location determined by the Reset
Configuration Word (RCW) and perform a store of a value to the ESBC Pointer Register within the SoC. If the PBL does not
perform this operation (or sets the ESBC pointer to the wrong value), the ISBC will fail to validate the ESBC. Once the PBL has
completed any operations defined by its command file, the PBL is disabled until the next Power on Reset and the Boot Phase
begins.

The ISBC is capable of reading from NOR flash connected to the local bus, on-chip memory configured as SRAM, or main memory.
Unless the ESBC is stored in NOR flash, the developer is required to create a PBL Image that copies the image to be validated
from NVRAM to main memory or internal SRAM prior to writing the SCRATCHRW1 Register and executing the ISBC code.

To assist with the creation of PBL Images (for both normal and Trust systems), NXP offers a PBL Image Tool.

Note that it is possible for an attacker to modify the board to direct the PBL to the wrong non-volatile memory interface, or change
the PBL Image and CSF Header pointer, however this will result in a secure boot failure and the system remaining in an idle loop
indefinitely.

6.1.1.4 ISBC phase

6.1.1.4.1 Flow in the ISBC code
With the PBL disabled and all external masters blocked by the PAMUs, CPU 0 is released from boot hold-off and begins executing
instructions from a hardwired location within the Internal BOOT ROM. The instructions inside the Internal BOOT ROM are NXP
developed code known as the Internal Secure Boot Code (ISBC). The ISBC leads CPU 0 to perform the following actions:

1. Who am I check? - CPU 0 reads its Processor ID Register, and if it finds any value besides physical CPU 0, the CPU
enters a loop. This insures that only CPU 0 executes the ISBC.

2. Sec_Mon check - CPU 0 confirms that the Sec_Mon is in the Check state. If not, it writes a ‘fail’ bit in a Sec_Mon control
register, leading to a state transition.

3. ESBC pointer read - CPU 0 reads the ESBC (External Secure Boot Code) Pointer Register, and then reads the word at
the indicated address, which is the first word of the Command Sequence File Header which precedes the ESBC itself. If
the contents of the word do not match a hard coded preamble value, the ISBC takes this to mean it has not found a valid
CSF and cannot proceed. This leads to a fail, as described in #2 above.

4. CSF parsing and public key check - If CPU 0 finds a valid CSF header, it parses the CSF header to locate the public
key to be used to validate the code. There can be a single public key or a table of 4 public keys present in the header. The
Secure Fuse Processor does not actually store a public key, it stores a SHA-256 hash of the public key/table of 4 keys. This
is done to allow support for up to 4096b keys without an excessively large fuse block. If the hash of the public key fails to
match the stored hash, secure boot fails.

5. Signature validation - With the validated public key, CPU 0 decrypts the digital signature stored with the CSF header. The
ISBC then uses the ESBC lengths and pointer fields in the CSF header to calculate a hash over the code. The ISBC checks
that the CSF header is included in the address range to be hashed. Option flags in the CSF header tell the ISBC whether
the NXP Unique ID and the OEM Unique ID (in the Secure Fuse Processor) are included in the hash calculation. Including
these IDs allows the image to be bound to a single platform. If the decrypted hash and generated hash do not match,
secure boot fails.

6. ESBC First Instruction Pointer check - One final check is performed by the ISBC. This check confirms that the First
Instruction Pointer in the CSF header falls within the range of the addresses included in the previous hash. If the pointer

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
148 NXP Semiconductors

is valid, the ISBC writes a ‘PASS’ bit in a Sec_Mon command register, the state machine transitions to ‘Trusted’, and the
OTPMK is made available to the SEC.

7. In case of failure, for Trust v2.0 devices , secondary flag is checked in the CSF header. If set, ISBC reads the CSF header
pointer form SCRATCHRW3 location and repeats from step 4.

There are many reasons the ISBC could fail to validate the ESBC. Technicians with debug access can check the SCRATCHRW2
Register to obtain an error code. For a list of error codes, refer ISBC Validation Error Codes.

6.1.1.4.2 Super Root Keys (SRKs) and signing keys
These are RSA public and private key pairs. Private keys are used to sign the images and public keys are used to validate the
image during ISBC and ESBC phase.

Public keys are embedded in the header and the hash of SRK table is fused in SRKH register of SFP.

These are Hardware Bound Keys, once the hash is fused the public private key pair cannot be modified.

Keys of sizes 1k, 2k, and 4k are supported in FSL Secure Boot Process.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot.

If this key is ever lost, the OEM will be unable to update the image.

6.1.1.4.3 Key revocation
Trust Architecture 2.x introduces support for revoking the RSA public keys used by the ISBC to verify the ESBC. The RSA public
keys used for this purpose are called Super Root Keys (SRK's).

OEM can use either a single key or a list of upto 4 SRK's in the Trust Arch v2.x devices.

In the NXP Code Signing Tool (CST), the OEM defines whether the device uses a single SRK, or offers a list of SRK's. If using a
single SRK, a new flag bit in the CSF header will indicate “Key”, otherwise the flag will indicate “Key List”. Assuming key list, the
OEM can populate a list of up to 4 SRK's for trust arch v2.x onwards platforms and can calculate a SHA-256 hash over the list.
This hash is written to the SRKH registers in the SFP.

As part of code signing, the OEM defines which key in the key list is to be used for validating the image. This key number is
included as a new field in the CSF header.

During secure boot, the ISBC determines whether a key list is in use. If the key list is valid, the ISBC checks the key number
indicated in the CSF header against the revocation fuses in the SFP’s OEM Security Policy Register (SFP_OSPR). If the key is
revoked, the image validation fails.

In order to prevent unauthorized revocation of keys, SFP provides a bit (Write Disable). If the bit is set, the Key

revocation bits cannot be written to.

In regular operation, the ESBC (early Trusted S/W) needs to set the SFP Write Disable bit. When circumstances

call for revoking a key, the OEM will use an ESBC image with “Write Disable” bit not set. So, the SFP will be in a

state in which key revocation fuses can be set.

Logically after revoking the required key(s), the OEM would then load a new signed ESBC image with code to set

the "Write Disable" bit, with new CSF header indicating which of the remaining non-revoked key to use.

So, only the possessor of a legitimate RSA private key can enable key revocation.

 NOTE

One possible motivation for an OEM to revoke an SRK is the loss of the associated RSA private key to an attacker. If the attacker
has gained access to a legitimate RSA private key, and the attacker can turn on power to the fuse programming circuitry, then the
attacker could maliciously revoke keys. To prevent this from being used to permanently disable the system, one SRK does not
have an associated revocation fuse.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 149

6.1.1.4.4 Alternate image support
Trust 2.0 onwards will support a primary and alternate image, where failure to find a valid image at the primary location will cause
the ISBC to check a configured alternate location.

To execute, the alternate image must be validated using a non-revoked public key as defined by its CSF Header. A valid alternate
image has same rights and privileges as a valid primary image.

This feature helps to reduce risk of corrupting single valid image during firmware update or as a result of flash block wear-out.

To enable this feature, create PBI with pointers for both primary and alternate images (HW PBL uses SCRATCHRW1 &
SCRATCHRW3).

6.1.1.4.5 ESBC with CSF header
ESBC is the generic name for the code that the ISBC validates. A few ESBC scenarios are described in later sections.

The figure below provides an example of an ESBC with CSF (Command Sequence File) header. The CSF header includes lengths
and offset which allow the ISBC to locate the operands used in ESBC image validation, as well as describe the size and location
of the ESBC image itself.

Note: CSF header and ESBC header may be used synonymously in this and other NXP Trust Architecture documentation.

Figure 18. ESBC with CSF header

6.1.1.5 ESBC phase
Unlike the ISBC, which is in an internal ROM and therefore unchangeable, the ESBC is NXP-supplied reference code, and can
be changed by OEMs. The remainder of this section is the description of a reasonable secure boot chain of trust based on NXP's
reference software for secure boot. Depending on the requirement, ESBC can be a monolithic image, including U-Boot, device
trees, boot firmware, drivers along with the OS and applications or can be mini U-Boot.

NXP provided ESBC consists of standard U-Boot which has been signed using a private key. U-Boot reserves a small space for
storing environment variables. This space is typically one sector above or below the U-Boot and is stored on persistent storage
devices like NOR flash if macro CONFIG_ENV_IS_IN_FLASH is used. In case of secure boot, macro
CONFIG_ENV_IS_NOWHERE is used and so, environment is compiled in U-Boot image and is called default environment. This
default environment cannot be stored on flash devices. User won't be able to edit this environment also as he cannot reach to U-

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
150 NXP Semiconductors

Boot prompt in case of secure boot. There is default boot command for secure boot in this default environment which executes
on autoboot.

ESBC validates a file called boot script and on successful validation, execute the commands in the boot script.

There are many reasons ESBC could fail to validate Client images or boot script. The error status message along with the code
is printed on the U-Boot console. For a list of error codes, refer ESBC Validation Error Codes.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

On Soc's with ARMv8 core (For example, LS1043, LS1046, LS1012), during ISBC phase in internal BOOT ROM,

SMMU (which by default is in by-pass mode) is configured to allow only secure transactions from CAAM.

The security policy with respect to the SMMU in ESBC phase must be decided by the user/customer. So, currently

in ESBC (U-Boot), SMMU is configured back to by-pass mode allowing all transactions (secure as well as non-

secure).

 NOTE

6.1.1.5.1 Boot script
Boot script is a U-Boot script image which contains U-Boot commands. ESBC would validate this boot script before executing
commands in it.

1. Boot script can have any commands which U-Boot supports. No checking on the allowed commands in

boot script. Since it is validated image, assumption is that commands in boot script would be correct.

2. If some basic scripting error done in boot script (like unknown command, missing arguments), the required

usage of that command and core is put in infinite loop.

3. After execution of commands in boot script, if control reaches back in U-Boot, error message would be

printed on U-Boot console and core would be put in spin loop by command esbc_halt.

4. Scatter gather images are not supported with validate command.

5. If ITS fuse is blown, any error in verification of the image would result in system reset. The error would be

printed on console before system goes for a reset.

 NOTE

6.1.1.5.1.1 Where to place the boot script?
NXP's ESBC U-Boot expects the boot script to be loaded in flash as specified in address map. ESBC U-Boot code assumes that
the public/private key pair used to sign the boot script is same as that was used while signing the U-Boot image. If user used
different key pair to sign the image, hash of the N and E component of the key pair should be defined in macro:

CONFIG_BOOTSCRIPT_KEY_HASH.

Note: The hash defined should be hex value, 256 bits long.

Both the above macros can be defined or changed in the configuration file secure_boot.h at the following location in U-Boot code:

u-boot/arch/arm/include/asm/fsl_secure_boot.h

Two new commands called esbc_validate and esbc_halt have been added in NXP ESBC U-Boot.

Two more commands are present, 'blob enc' and 'blob dec' for running Chain of Trust with confideniality.

6.1.1.5.1.2 Chain of Trust
Boot script contains information about the next level of images, For example, Linux, HV, and so on. ESBC validates these images
as per their public keys and then executes bootm command to pass-on the control to next image.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

The following figure shows the Chain of Trust established for validation with this ESBC U-Boot.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 151

Figure 19. Secure boot flow (Chain of Trust)

6.1.1.5.1.2.1 Sample boot script
A sample boot script would look like:

 ...
 esbc_validate <Img1 header addr> <pub_key hash>
 esbc_validate <Img2 header addr> <pub_key hash>
 esbc_validate <Img3 header addr> <pub_key hash>
 ...
 bootm <img1 addr> <img2 addr> <img3 addr>

6.1.1.5.1.2.1.1 esbc_validate command

esbc_validate img_hdr [pub_key_hash]

Input arguments:

img_hdr - Location of CSF header of the image to be validated

pub_key_hash - hash of the public key used to verify the image. This is an optional parameter. If not provided, code makes the
assumption that the key pair used to sign the image is same as that used with ISBC. So the hash of the key in the header is
checked against the hash available in SRK fuse for verification.

Description:

The command would do the following:

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
152 NXP Semiconductors

• Perform CSF header validation on the address passed in the image header. During parsing of the header, image address
is stored in an environment variable which is later used in source command in default secure boot command.

• Signature checks on the image

6.1.1.5.1.2.1.2 esbc_halt command

esbc_halt (no arguments)

Description:

The command would do the following:

This command puts core in spin loop.

After successful validation of images, bootm command in bootscript should execute and control should never reach back to U-
Boot. If somehow, control reaches back to U-Boot (for example, bootm not present in bootscript), core should just spin.

6.1.1.5.1.3 Chain of Trust with confidentiality
To establish Chain of Trust with confidentiality, cryptographic blob mechanism can be used. In this Chain of Trust, validated image
is allowed to use the One Time Programmable Master Key to decrypt system secrets.

Two bootscripts are to be used. First encap bootscript is used which creates a blob of the Linux images and saves them. After
that, the system is booted after replacing the encap bootscript with decap bootscript which decapsulates the blobs and boot the
Linux with the images.

The following figures show the Chain of Trust with confidentiality (Encapsulation and Decapsulation).

Figure 20. Chain of Trust with confidentiality (Encapsulation)

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 153

Figure 21. Chain of Trust with Confidentiality (Decapsulation)

6.1.1.5.1.3.1 blob enc command
blob enc <src location> <dst location> <length> <key_modifier address>

Input arguments:

src location - Address of the image to be encapsulated

dst location - Address where the blob will be created

length - Size of the image to be encapsulated

key_modifier address - Address where a random number 16 bytes long(key modifier) is placed

Description:

The command would do the following:

• Create a cryptographic blob of the image placed at src location and place the blob at dst location.

6.1.1.5.1.3.1.1 Sample encap boot script

A sample encap boot script would look like:

...
blob enc <Img1 addr> <Img1 dest addr> <Img1 size> <key_modifier address>
erase <encap Img1 addr> +<encap Imag1 size>
cp.b <Img1 dest addr> <encap Img1 addr> <encap Imag1 size>

blob enc <Img2 addr> <Img2 dest addr> <Img2 size> <key_modifier address>

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
154 NXP Semiconductors

erase <encap Img2 addr> +<encap Imag2 size>
cp.b <Img2 dest addr> <encap Img2 addr> <encap Imag2 size>

blob enc <Img3 addr> <Img3 dest addr> <Img3 size> <key_modifier address>
erase <encap Img3 addr> +<encap Imag3 size>
cp.b <Img3 dest addr> <encap Img3 addr> <encap Img3 size>

...

6.1.1.5.1.3.2 blob dec command
blob dec <src location> <dst location> <length> <key_modifier address>

Input arguments:

src location - Address of the image blob to be decapsulated

dst location - Address where the decapsulated image will be placed

length - Expected Size of the image after decapsulation.

key_modifier address - Address where key modifier (Same as that used for Encapsulation) is placed

Description:

The command would do the following:

• Decapsulate the blob placed at src location and place the decapsulated data of expected size at dst location.

6.1.1.5.1.3.2.1 Sample Decap Boot Script

A sample decap boot script would look like:

...
blob dec <Img1 blob addr> <Img1 dest addr> <expected Img1 size> <key_modifier address>
blob dec <Img2 blob addr> <Img2 dest addr> <expected Img2 size> <key_modifier address>
blob dec <Img3 blob addr> <Img3 dest addr> <expected Img3 size> <key_modifier address>
...
bootm <Img1 dest addr> <Img2 dest addr> <Img3 dest addr>

6.1.1.6 Next executable (Linux phase)
The bootloader (ESBC) finishes the platform initialization and passed control to the Linux image. The boot-chain can be further
extended to be able to sign application which would be running on Linux prompt. Further RTIC can be integrated to verify memory
regions using Security Engine (SEC) during run time.

6.1.1.7 Product execution
This section presents the steps need to be followed in order to properly run the software product according to its intended use
and functionalities.

6.1.1.7.1 Introduction
Chain of Trust

This section presents the steps need to be followed in order to execute Chain of Trust.

Steps in the demo would be:

1. ISBC code would validate the ESBC code.

2. On successful validation, ESBC code would run, which would then validate the boot script.

3. On successful validation of boot script, commands in boot script would be executed.

4. Boot script contains commands to validate next level images, that is, rootfs, Linux uImage, and device tree.

5. Once all the images are validated, bootm command in boot script would be executed which would pass control to Linux.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 155

Running Secure boot (Chain of Trust)

1. Setup the board for secure boot flow. You can choose any if the flows mentioned below.

a. Flow A

Program the ITS fuse. Use RCW with SB_EN=0

Or

b. Flow B

For protyping phase, don't blow the ITS fuse, but use rcw with SB_EN = 1.

Blow other required fuses on the board. (OTPMK and SRK hash[1]) For more details regarding fuse blowing, CCS
and Boot Hold Off, refer to Platform reference manual and Trust Architecture User Guide.

SRK hash in the fuse should be same as the hash of the key pair being used to sign the ESBC u-boot.

For testing purpose, the SRK Hash can be written in the mirror registers.

gen_otpmk_drbg utility in cst can be used to generate otpmk key.

 NOTE

2. Flash all the generated images at locations as described in the address map.

a. Flow A - All the images would have to be flashed at the current bank addresses. Once ITS fuse is blown, the
control would automatically shift to ISBC on power on.

b. If you are using Flow B, you can use alternate bank for demo purpose. This would mean flashing the images on
alternate bank addresses from Bank0 and then switching to Bank4.

3. Give a power on cycle to the board.

a. For Flow A and Flow B (Secure boot Images flashed on default Bank)

• On power on, ISBC code would get control, validate the ESBC image.

• ESBC image would further validate the signed linux, rootfs and dtb images

• Linux would come up

b. Flow B (Secure boot Images flashed on alternate Bank)

• On power on cycle, u-boot prompt on bank 0 would come up.

• On switching to alternate bank, the secure boot flow as mentioned above would execute.

Two additional features are provided in secure boot:

1. Chain of Trust with confidentiality

2. ISBC Key Extension

6.1.1.7.2 Chain of Trust with confidentiality
This section presents the steps need to be followed to execute Chain of Trust with confidentiality.

The demo is divided into two parts:

1. Creating or encrypting images in form of blobs.

2. Decrypting images, and booting from decrypted images.

[1] Blowing of OTPMKis essential to run secure boot for both Production (Flow A) and Prototyping/Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. For this use RCW with
BOOT_HO = 1. This will put the core in Boot Hold off stage. Then a CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then release the core out of Boot Hold off by writing to Core Release
Register in DCFG.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
156 NXP Semiconductors

Steps in the demo are:

Step 1: Creating blobs

1. ISBC code would validate the ESBC code.

2. On successful validation, ESBC code would run, which would then validate the boot script.

3. On successful validation of boot script, commands in boot script would be executed.

4. The boot script contains commands to encapsulate next level images, that is rootfs, linux uImage and device tree.

blob encapsulation command::

blob enc src dst len km - Encapsulate and create blob of data

$len - Number of bytes to be encapsulated.

$src - The address where image to be encapsulated is present.

$dst - The address where encapsulated image is stored.

$km - The address where the key modifier is stored. The modifier is required and used as key for cryptographic operation. Key
modifier should be 16 bytes long.

Step 2: Decrypting blob and booting

1. ISBC code would validate the ESBC code.

2. On successful validation, ESBC code would run, which would then validate the boot script.

3. On successful validation of boot script, commands in boot script would be executed.

4. The boot script contains commands to decapsulate or decrypt next level images, that is rootfs, linux uImage, and device
tree.

5. After decryption, bootm command would be executed in boot script to pass control to Linux.

blob decapsulation command::

blob dec src dst len km - Decapsulate the image and recover the data

$len - Number of bytes to be decapsulated.

$src - The address where encapsulated image is present.

$dst - The address where decapsulated image will be stored.

$km - The address where the key modifier is stored. The modifier is required and used as key for cryptographic operation. Key
modifier should be 16 bytes long. It should be same as passed while encapsulating the image.

6.1.1.7.2.1 Other images required for the demo
Apart from SDK images described above, the following images are also required:

1. Encap boot script

Sample Boot script

load \$devtype \$devnum:2 \$kernelheader_addr_r /secboot_hdrs/ls1046ardb/hdr_linux.out;
esbc_validate \$kernelheader_addr_r;
load \$devtype \$devnum:2 \$fdtheader_addr_r /secboot_hdrs/ls1046ardb/hdr_dtb.out;
esbc_validate \$fdtheader_addr_r;
size \$devtype \$devnum:2 /vmlinuz; echo Encapsulating linux image;setenv key_addr
0x87000000; mw \$key_addr $key_id_1;
setexpr \$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_2;setexpr \$key_addr \
$key_addr + 0x4; mw \$key_addr $key_id_3;setexpr \$key_addr \$key_addr + 0x4; mw \
$key_addr $key_id_4;
blob enc \$kernel_addr_r \$load_addr \$filesize \$key_addr; setexpr blobsize \$filesize
+ 0x30;echo Saving encrypted linux ;save \$devtype \$devnum:2 \$load_addr /vmlinuz \
$blobsize;size \$devtype \$devnum:2 /fsl-ls1046a-rdb.dtb;
echo Encapsulating dtb image; blob enc \$fdt_addr_r \$load_addr \$filesize \$key_addr;
setexpr blobsize \$filesize + 0x30;echo Saving encrypted dtb; save \$devtype \$devnum:2 \

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 157

$load_addr /fsl-ls1046a-rdb.dtb \$blobsize; size \$devtype \$devnum:2 /
ls1046ardb_dec_boot.scr;
load \$devtype \$devnum:2 \$load_addr /ls1046ardb_dec_boot.scr;
echo replacing Bootscript; save \$devtype \$devnum:2 \$load_addr /ls1046ardb_boot.scr \
$filesize;size \$devtype \$devnum:2 /secboot_hdrs/ls1046ardb/hdr_ls1046ardb_bs_dec.out;
load \$devtype \$devnum:2 \$load_addr /secboot_hdrs/ls1046ardb/
hdr_ls1046ardb_bs_dec.out ;echo Replacing bootscript header; save \$devtype \$devnum:2 \
$load_addr /hdr_ls1046ardb_bs.out \$filesize;reset;'

2. Decap boot script

size \$devtype \$devnum:2 /vmlinuz;setexpr imgsize \$filesize - 0x30 ;
echo Decapsulating linux image; setenv key_addr 0x87000000; mw \$key_addr $key_id_1;setexpr \
$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_2;setexpr \$key_addr \$key_addr + 0x4; mw \
$key_addr key_id_3;setexpr \$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_4;
 blob dec \$kernel_addr_r \$load_addr \$imgsize \$key_addr; cp.b \$load_addr \$kernel_addr_r
\$filesize ;size \$devtype \$devnum:2 /fsl-ls1046a-rdb.dtb;setexpr imgsize \$filesize -
0x30 ;
echo Decapsulating dtb image; blob dec \$fdt_addr_r \$load_addr \$imgsize \$key_addr; cp.b \
$load_addr \$fdt_addr_r \$filesize ;

6.1.1.7.2.2 Running secure boot (Chain of Trust with confidentiality)
1. Setup the board for secure boot flow. You can choose any of the flows mentioned below.

a. Flow A

Program the ITS fuse. Use RCW with SB_EN=0

Or

b. Flow B

For protyping phase, do not blow the ITS fuse, instead use rcw with SB_EN = 1.

2. Blow other required fuses on the board. (OTPMK and SRK hash)[2]) For more details regarding fuse blowing, CCS and
Boot Hold Off, refer to Platform Reference Manual and Trust Architecture User Guide.

SRK hash in the fuse should be same as the hash of the key pair being used to sign the ESBC U-Boot.

For testing purpose, the SRK hash can be written in the mirror registers.

gen_otpmk_drbg utility in cst can be used to generate otpmk key.

 NOTE

3. Flash all the generated images at locations as described in the address map.

a. Flow A - All the images would have to be flashed at the current bank addresses. Once ITS fuse is blown, the
control would automatically shift to ISBC on power on.

b. Flow B - You can use alternate bank for demo purpose. This would mean flashing the images on alternate bank
addresses from Bank0 and then switching to Bank4.

4. Give a power on cycle to the board.

a. For Flow A and Flow B (Secure boot images flashed on default bank)

• On power on, ISBC code would get control, validate the ESBC image.

• First Boot: Encapsulaton Step (Should happen in OEM's premises)

i. By defult the enacap and decap bootscripts will be installed in the bootpartition.

[2] Blowing of OTPMKis essential to run secure boot for both Production (Flow A) and Prototyping/Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. For this use RCW with
BOOT_HO = 1. This will put the core in Boot Hold off stage. Then a CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then release the core out of Boot Hold off by writing to Core Release
Register in DCFG.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
158 NXP Semiconductors

ii. When the board boots up for the first time after all images have been generated, Encap bootscript will
execute. This bootscript:

i. Authenticates and encapsulates linux and dtb images and replaces the unencrypted linux and
dtb images with newly encapsulated linux and dtb.

ii. Replaces the encap bootscript and header with the decap bootscript and it's header, already
present in the bootpartition.

iii. Issues reset

• Subsequent Boot .

i. Uboot would execute script with decap commands

i. Un-blobify linux and dtb image in DDR

ii. Pass control to these images

b. Flow B (Secure boot images flashed on alternate bank)

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 159

• On power on cycle, U-Boot prompt on bank0 would come up.

• On switching to alternate bank, the secure boot flow as mentioned above would execute.

6.1.1.7.3 ISBC Key Extension (IE)
6.1.1.7.3.1 Introduction
The ISBC Key Extension feature allows the user to extend the ISBC and the number of keys available for signature validation.
The ISBC uses a key directly bound to the silicon via the SRKH, the ISBC extension code (added to downstream images in a
chain of trust) use IE_Keys, which are validated by the ISBC.

6.1.1.7.3.2 How it works
If IE feature is enabled in input file, the CST signs the image along with a number of public keys. Logically, it will be used when
signing Boot 1 (bootloader), so that the bootloader and downstream images in the chain of trust can use keys which are not
directly bound to the silicon via the SRKH. Decoupling the chain of trust from the hardware super root keys minimizes the need
to perform hardware key revocation.

Figure 22. Execution and verification of images using Key_Ext feature.

Next stage images are signed with corresponding pair of Extension private keys list, not HW private keys.

Key Extension feature is applicable only for NOR secure Boot. It is not applicable for RAMBOOT (where

data has to be copied onto RAM, for example, NAND, SD, and SPI)

 NOTE

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
160 NXP Semiconductors

6.1.1.7.3.3 IE Key Structure

Table 37. IE Key Structure which is embedded in header and placed in memory.

Offset Data Bits [0:31]

0x00-0x03 This 32 bit word can be used to represent which keys from the table below have
been revoked and are no longer available for use. Each bit represents 1 Key, Bit 0
represents Key 1 in the table ….Bit 31 is the 32nd key in the table

0x04-0x07 Total number of keys (Max N = 32 as 32 bit key revocation field is provided)

0x08-0x0b Key 1 length.

0x0c-0x40b Key 1 value.

0x40c-0x40f Key 2 length.

0x410-0x80f Key 2 value.

- -

- Key N value

6.1.1.7.3.4 Sample Input File and Output
This file is same as file described above in <link to 4.1.2> except fields required for IE Key extension highlighted in red.

Specify the platform. [Mandatory]
Choose Platform - 1040/2080/2041/3041/4080/5020/5040/4860/4240/LS1
PLATFORM=1040
ESBC Flag. Specify ESBC=0 to sign u-boot and ESBC=1 to sign ESBC images.(default is 0)
ESBC=0
ESBC Header address. It contains address where ESBC header is loaded in memory.
ESBC_HDRADDR=c0b00000

Entry Point/Image start address field in the header.[Mandatory]
(default=ADDRESS of first file specified in images)
ENTRY_POINT=cffffffc

Specify the file name of the keys seperated by comma.
The number of files and key select should lie between 1 and 4 for 1040/2080 and C290.
For rest of the platforms only one key is required and key select should not be provided.

USAGE (for 4080/5020/5040/3041/2041/1010/913x): PRI_KEY = <key1.pri>
USAGE (for 1040/2080/C290/4860/4240): PRI_KEY = <key1.pri>,<key2.pri>,<key3.pri>,<key4.pri>

PRI_KEY (Default private key :srk.pri) - [Optional]
PRI_KEY=srk.pri
PUB_KEY (Default public key :srk.pub) - [Optional]
PUB_KEY=srk.pub
Please provide KEY_SELECT(between 1 to 4) (Required for 1040/2080/C290/4860/4240 only) -
[Optional]
KEY_SELECT=

Specify the file name of the extension keys seperated by comma.
USAGE : IE_KEY = <key1.pub>,<key2.pub>,<key3.pub>,<key4.pub>,<key5.pub>
IE_KEY=<iekey1k_1.pub>,<iekey1k_2.pub>,<iekey1k_3.pub>,<iekey2k_1.pub>,<iekey2k_2.pub>,<iekey
2k_3.pub>,<iekey4k_1.pub>,<iekey4k_2.pub>

Please provide Revoke keys. - [Optional]
Provide key numbers from available ie keys to be revoked. Max n-1 keys can be revoked. n

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 161

is total number of IE keys.
LSb represents key0 and MSb represents key 31. So total 32 keys are supported.
IE_REVOC=1,7

Specify SG table address, only for (2041/3041/4080/5020/5040) with ESBC=0 - [Optional]
SG_TABLE_ADDR=

Specify the target where image will be loaded. (Default is NOR_16B) - [Optional]
Only required for Non-PBL Devices (1010/9131/9132/C290)
Select from - NOR_8B/NOR_16B/NAND_8B_512/NAND_8B_2K/NAND_8B_4K/NAND_16B_512/NAND_16B_2K/
NAND_16B_4K/SD/MMC/SPI
IMAGE_TARGET=

Specify IMAGE, Max 8 images are possible. DST_ADDR is required only for Non-PBL Platform.
[Mandatory]
In case using IE_KEY, Max 7 images are possible. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
IMAGE_1={u-boot.bin,cff40000,ffffffff}
IMAGE_2={,,}
IMAGE_3={,,}
IMAGE_4={,,}
IMAGE_5={,,}
IMAGE_6={,,}
IMAGE_7={,,}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID=11111111
FSL_UID=
OEM_UID=

Specify the file names of csf header and sg table. (Default :hdr.out) [Optional]
OUTPUT_HDR_FILENAME=hdr_uboot.out

Specify the file names of hash file and sign file.
HASH_FILENAME=img_hash.out
INPUT_SIGN_FILENAME=sign.out

Specify the signature size.It is mandatory when neither public key nor private key is
specified.
Signature size would be [0x80 for 1k key, 0x100 for 2k key, and 0x200 for 4k key].
SIGN_SIZE=

Specify the output file name of sg table. (Default :sg_table.out). [Optional]
Please note that OUTPUT SG BIN is only required for 2041/3041/4080/5020/5040 when ESBC
flag is not set.
OUTPUT_SG_BIN=

Following fields are Required for 4240/4860/1040/2080/C290 only

Specify House keeping Area
Required for 4240/4860/1040/2080/C290 only when ESBC flag is not set. [Mandatory]
HK_AREA_POINTER=bff00000
HK_AREA_SIZE=00010000

Following field Required for 4240/4860/1040/2080/C290 only
Specify Secondary Image Flag. (0 or 1) - [Optional]
(Default is 0)
SEC_IMAGE=

Table 38. Description of new fields introduced.

Field Field Description

ESBC_HDRADDR ESBC Header address. It contains location of ESBC header in
the memory

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
162 NXP Semiconductors

Table 38. Description of new fields introduced. (continued)

Field Field Description

IE_KEY Extension Public key filenames to be used by further level
images. (File has to be in PEM format) FILE1 [,FILE2, FILE3,
FILE4].

IE_REVOC Revoked keys numbers from available ie keys. If a key is
compromised then this feature helps to avoid that key usage.
Max n-1 keys can be revoked. n is total number of IE keys and
less than equal to 32.Ex.[1,3,5]

OUTPUT

Highlighted fields shows IE structure is embedded in the CSF header.

6.1.1.7.3.5 Generate Header for Next Level Images (bootscript, rootfs, dtb, linux).
IE key table generated in previous is embedded along with the CSF header for u-boot. Boot ROM code verifies these keys along
with the bootloader. For the rest of the images in the chain of trust, user can use the keys in the IE key table. The IE Key Table is
in the memory already, the sample input file needs to have the IE Key number to be used.(IE_KEY_SEL). The corresponding
private key of the file needs to be provided for signature to be generated (PRI_KEY).

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 163

This sample file is same as file described above in <link to 4.1.2> except fields required for IE Key extension highlighted in red.

CSF Header for bootscript

Specify the platform. [Mandatory]
Choose Platform - 1040/2080/2041/3041/4080/5020/5040/4860/4240/LS1
PLATFORM=1040
ESBC Flag. Specify ESBC=0 to sign u-boot and ESBC=1 to sign ESBC images.(default is 0)
ESBC=1

Entry Point/Image start address field in the header.[Mandatory]
(default=ADDRESS of first file specified in images)
ENTRY_POINT=e8a00000

Specify the file name of the keys seperated by comma.
The number of files and key select should lie between 1 and 4 for 1040/2080 and C290.
For rest of the platforms only one key is required and key select should not be provided.

USAGE (for 4080/5020/5040/3041/2041/1010/913x): PRI_KEY = <key1.pri>
USAGE (for 1040/2080/C290/4860/4240): PRI_KEY = <key1.pri>, <key2.pri>, <key3.pri>,
<key4.pri>

PRI_KEY (Default private key :srk.pri) - [Optional]
PRI_KEY=iekey4k_2.pri
PUB_KEY (Default public key :srk.pub) - [Optional]
PUB_KEY=
Please provide KEY_SELECT(between 1 to 4) (Required for 1040/2080/C290/9164/4240 only) -
[Optional]
KEY_SELECT=

Specify SG table address, only for (2041/3041/4080/5020/5040) with ESBC=0 - [Optional]
SG_TABLE_ADDR=

Specify IE_KEY to be used for signature verification. [Mandatory]
IE_KEY_SEL=8

Specify the target where image will be loaded. (Default is NOR_16B) - [Optional]
Only required for Non-PBL Devices (1010/9131/9132/C290)
Select from - NOR_8B/NOR_16B/NAND_8B_512/NAND_8B_2K/NAND_8B_4K/NAND_16B_512/NAND_16B_2K/
NAND_16B_4K/SD/MMC/SPI
IMAGE_TARGET=

Specify IMAGE, Max 8 images are possible. DST_ADDR is required only for Non-PBL Platform.
[Mandatory]
In case using IE_KEY, Max 1 image is possible. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
IMAGE_1={bootscript,e8a00000,ffffffff}
IMAGE_2={,,}
IMAGE_3={,,}
IMAGE_4={,,}
IMAGE_5={,,}
IMAGE_6={,,}
IMAGE_7={,,}
IMAGE_8={,,}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID=11111111
FSL_UID=
OEM_UID=

Specify the file names of csf header. (Default :hdr.out) [Optional]
OUTPUT_HDR_FILENAME=hdr_bs.out

Specify the file names of hash file and sign file.
HASH_FILENAME=img_hash.out
INPUT_SIGN_FILENAME=sign.out

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
164 NXP Semiconductors

Specify the signature size.It is mandatory when neither public key nor private key is
specified.
Signature size would be [0x80 for 1k key, 0x100 for 2k key, and 0x200 for 4k key].
SIGN_SIZE=0x200

Specify the output file name of sg table. (Default :sg_table.out). [Optional]
Please note that OUTPUT SG BIN is only required for 2041/3041/4080/5020/5040 when ESBC
flag is not set.
OUTPUT_SG_BIN=

Following fields are Required for 4240/9164/1040/2080/C290 only

Specify House keeping Area
Required for 42409164/1040/2080/C290 only when ESBC flag is not set. [Mandatory]
HK_AREA_POINTER=
HK_AREA_SIZE=

Following field Required for 4240/9164/1040/2080/C290 only
Specify Secondary Image Flag. (0 or 1) - [Optional]
(Default is 0)
SEC_IMAGE=

Table 39. Description of new fields introduced.

Field Field Description

IE_KEY_SEL IE_KEY number for public key in IE Key table to be used for
signature verification of ESBC image.

OUTPUT

Given below is a snapshot of header generated in which highlighted fields indicates IE flag is ON and IE KEY SELECT i.e. key
to be used to verify image is embedded in header.

Highlighted fields shows IE key select in CSF header.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 165

6.1.1.8 Troubleshooting
Table 40. Troubleshooting

Symptoms Reasons and/or Recommended actions

1. No print on UART console. • Check the status register of sec mon block (location 0xfe314014).
Refer to the details of the register from the Reference Manual. Bits
OTPMK_ZERO, OTMPK_SYNDROME and PE should be 0 otherwise
there is some error in the OTPMK fuse blown by you.

• If OTMPK fuse is correct (see Step 1), check the SCRATCHRW2
register for errors. Refer to Section for error codes.

• If Error code = 0 then check the Security Monitor state in HPSR
register of Sec Mon.

Sec Mon in Check State (0x9)

If ITS fuse = 1, then it means ISBC code has reset the board. This may be
due to the following reasons:

Hash of the public key used to sign the ESBC U-BOOT does not match with
the value in SRK hash fuse

Or

Signature verification of the image failed

Sec Mon in Trusted State (0xd) or Non-Secure State (0xb)

Check the entry point field in the ESBC header. It should be 0xcffffffc for the
demo described in Section 4.

If entry point is correct, ensure that U-BOOT image has been compiled with
the required secure boot configuration.

2. Instead of linux prompt, you get a U-BOOT
command prompt instead of linux prompt.

You have not booted in secure boot mode. You never get a U-BOOT prompt
in secure boot flow. You would reach this stage if ITS = 0 and you are using
rcw where sben0 is present in its name.

3 U-BOOT hangs or board resets Some validation failure occurred in ESBC U-BOOT. Error code and
description would be printed on U-BOOT console.

6.1.1.9 CSF Header Data Structure
The CSF Header provides the ISBC with most of the information needed to validate the image.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
166 NXP Semiconductors

LS1 Platform

Figure 23. CSF Header for LS1 (ISBC and ESBC Phase)

Table 41. CSF Header Format (LS1 Platform)

Offset Data Bits [0:31]

0x00-0x03 Barker code.

This location should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this location does not match the Barker code, the ISBC stops execution and reports error.

0x07-0x04 If the srk_table_flag is not set :

• Public key offset: This location contains an address which is the offset of the public key from the
start of CSF header. Using this offset and the public key length, the public key is read.

If srk_table_flag is set:

• Srk table offset: This location contains an address which is the offset of the srk table from the
start of CSF header. Using this offset and the number of entries is SRK Table, the SRK table is
read.

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 167

Table 41. CSF Header Format (LS1 Platform) (continued)

Offset Data Bits [0:31]

0x08 Srk table flag.

This flag indicates whether hash burnt in srk fuse is of a single key or of srk table.

0x0b-0x09 If the srk_table_flag is not set :

• 0x0b-0x9 -- Public key length: This location contains the length of the public key in bytes.

If srk_table_flag is set:

• 0x09 – Key Number from srk table which is to be used for verification.

• 0x0b-0x0a – Number of entries in srk table. Minimum number of entries in table = 1, Maximum =
4.

0x0f-0x0c RSA Signature offset.

This location contains an offset(in bytes) of the RSA signature from the start of CSF header. Using this
offset and the Signature length, the RSA signature is read. The RSA signature is calculated over CSF
Header, Scatter Gather table and ESBC images.

0x13-0x10 RSA Signature length in bytes.

0x17-0x14 For ISBC Phase:

SG Table offset

This location contains an address which is the offset of the SG table from the start of CSF header. Using
this offset and the number of entries is SG Table, the SG table is read.

For ESBC Phase:

Address of the image to be validated.

0x1b-0x18 For ISBC Phase:

Number of entries in SG Table (Earlier ,Based on the Scatter gather flag in CSF Header, this location
can either be treated as number of entries in SG table or ESBC image size in bytes.).

For ESBC Phase

Size of image to be validated

0x1f-0x1c For ISBC Phase:

ESBC entry point.

ISBC transfers control to this location upon successful validation of ESBC image(s).

For ESBC Phase: Reserved

0x21-0x20 Manufacturing Protection Flag

Indicates if manufacturing protection has to be enabled or not in ISBC.

0x23-0x22 Reserved .(Earlier this field was SG Flag. SG flag is always assumed to be 1 in unified implementation.)

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
168 NXP Semiconductors

Table 41. CSF Header Format (LS1 Platform) (continued)

Offset Data Bits [0:31]

0x24 For ISBC Phase: Reserved

For ESBC Phase: Reserved

0x25 For ISBC Phase

Secondary Image flag

Indicates if user has a secondary image available in case of failures in validating primary iamge.Valid in
case of primary Images’s Header.

For ESBC Phase:Reserved

0x27-0x26 Unique ID Usage

This location contains a flag which specifies one of these possibilities

• 0x00 - No UID’s present

• 0x01 - FSL UID and OEM UID are present

• 0x02 - Only FSL UID is present

• 0x04 - Only OEM UID is present

0x2b-0x28 NXP unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

0x2f-0x2c OEM unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to OEM. This value is compared with the OEM ID
0 in Secure Fuse Processor 's OEM-ID registers

0x37-0x30 Reserved

0x3b-0x38 NXP unique ID 1

Lower 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

0x3f-0x3c OEM unique ID 1

Lower 32 bits of a unique 32 bit value, which is specific to OEM. This value is compared with the OEM
ID 1 in Secure Fuse Processor 's OEM-ID registers

0x40-0x47 For ISBC Phase: Not Applicable

For ESBC Phase: Reserved

0x48-0x4b For ISBC Phase: Not Applicable

For ESBC Phase:

ISBC key Extension flag

If this flag is set, key to be used for validation needs to be picked up from IE Key table.

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 169

Table 41. CSF Header Format (LS1 Platform) (continued)

Offset Data Bits [0:31]

0x4c-0x4f For ISBC Phase: Not Applicable

For ESBC Phase:

IE Key Select

Key Number to be used from the IE Key Table if IE flag is set.

Table 42. Scatter Gather Table Format (LS1 Platform)

Offset Data Bits [0:31]

0x00-0x03 Length. This location specifies the length in bytes of the ESBC image 1.

0x04-0x07 Target where the ESBC Image 1 can be found. This field is ignored in case of PBL based SOC’s.

0x08-0x0b Source Address of ESBC Image 1

0x0c-0x0f Destination Address of ESBC Image 1

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

0x10-0x13 Length. This location specifies the length in bytes of the ESBC image 2.

0x14-0x17 Target where the ESBC Image 2 can be found. This field is ignored in case of PBL based SOC’s.

0x18-0x1b Source Address of ESBC Image 2

0x1c-0x1f Destination Address of ESBC Image 2

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

Table 43. Signature (LS1 Platform)

Offset Data Bits [0:31]

0x00-size The RSA signature calculated over CSF Header, Scatter Gather table and ESBC image(s).

Table 44. Public key (LS1 Platform)

Offset Data Bits [0:31]

0x00-size Public Key Value. The hash of this public key is compared with the hash stored in Secure Fuse Processor
SRKH registers.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
170 NXP Semiconductors

Table 45. SRK Table (LS1 Platform)

Offset Data Bits [0:31]

0x00-0x03 Key 1 length

0x04-0x403 Key 1 value. (Remaining bytes will be padded with zero)

0x404-0x407 Key 2 length

0x408-0x807 Key 2 value. (Remaining bytes will be padded with zero)

0x808-0x80b Key 3 length

0x80c-0xb0b Key 3 value. (Remaining bytes will be padded with zero)

0xb0c-0xb0f Key 4 length

0xb10-0xe10 Key 4 value. (Remaining bytes will be padded with zero)

LS1043/LS1046/LS1012 Platforms

Figure 24. CSF Header for LS1043/LS1046//LS1012 (ISBC and ESBC Phase)

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 171

Table 46. CSF Header Format (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-0x03 Barker code.

This location should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this location does not match the Barker code, the ISBC stops execution and reports error.

0x07-0x04 If the srk_table_flag is not set :

• Public key offset: This location contains an address which is the offset of the public key from the
start of CSF header. Using this offset and the public key length, the public key is read.

If srk_table_flag is set:

• Srk table offset: This location contains an address which is the offset of the srk table from the
start of CSF header. Using this offset and the number of entries is SRK Table, the SRK table is
read.

0x08 Srk table flag.

This flag indicates whether hash burnt in srk fuse is of a single key or of srk table.

0x0b-0x09 If the srk_table_flag is not set :

• 0x0b-0x9 -- Public key length: This location contains the length of the public key in bytes.

If srk_table_flag is set:

• 0x09 – Key Number from srk table which is to be used for verification.

• 0x0b-0x0a – Number of entries in srk table. Minimum number of entries in table = 1, Maximum =
4.

0x0f-0x0c RSA Signature offset.

This location contains an offset(in bytes) of the RSA signature from the start of CSF header. Using this
offset and the Signature length, the RSA signature is read. The RSA signature is calculated over CSF
Header, Scatter Gather table and ESBC images.

0x13-0x10 RSA Signature length in bytes.

0x17-0x14 For ISBC Phase:

SG Table offset

This location contains an address which is the offset of the SG table from the start of CSF header. Using
this offset and the number of entries is SG Table, the SG table is read.

For ESBC Phase:

Reserved

0x1b-0x18 For ISBC Phase:

Number of entries in SG Table (Earlier ,Based on the Scatter gather flag in CSF Header, this location
can either be treated as number of entries in SG table or ESBC image size in bytes.).

For ESBC Phase

Size of image to be validated

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
172 NXP Semiconductors

Table 46. CSF Header Format (LS1043/LS1046/LS1012 Platforms) (continued)

Offset Data Bits [0:31]

0x1f-0x1c For ISBC Phase:

ESBC entry point.

ISBC transfers control to this location upon successful validation of ESBC image(s).

For ESBC Phase: Reserved

0x21-0x20 Manufacturing Protection Flag

Indicates if manufacturing protection has to be enabled or not in ISBC.

0x23-0x22 Reserved .(Earlier this field was SG Flag. SG flag is always assumed to be 1 in unified implementation.)

0x24 For ISBC Phase: Reserved

For ESBC Phase: Reserved

0x25 For ISBC Phase

Secondary Image flag

Indicates if user has a secondary image available in case of failures in validating primary iamge.Valid in
case of primary Images’s Header.

For ESBC Phase:Reserved

0x27-0x26 Unique ID Usage

This location contains a flag which specifies one of these possibilities

• 0x00 - No UID’s present

• 0x01 - FSL UID and OEM UID are present

• 0x02 - Only FSL UID is present

• 0x04 - Only OEM UID is present

0x2b-0x28 NXP unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

0x2f-0x2c OEM unique ID 0

Upper 32 bits of a unique 64 bit value, which is specific to OEM. This value is compared with the OEM ID
0 in Secure Fuse Processor 's OEM-ID registers

0x37-0x30 Reserved

0x3b-0x38 NXP unique ID 1

Lower 32 bits of a unique 64 bit value, which is specific to NXP. This value is compared with the FSL ID
1 in Secure Fuse Processor 's FSL-ID registers

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 173

Table 46. CSF Header Format (LS1043/LS1046/LS1012 Platforms) (continued)

Offset Data Bits [0:31]

0x3f-0x3c OEM unique ID 1

Lower 32 bits of a unique 32 bit value, which is specific to OEM. This value is compared with the OEM
ID 1 in Secure Fuse Processor 's OEM-ID registers

0x40-0x47 For ISBC Phase: Not Applicable

For ESBC Phase: 64 bit pointer to ESBC image

0x48-0x4b For ISBC Phase: Not Applicable

For ESBC Phase:

ISBC key Extension flag

If this flag is set, key to be used for validation needs to be picked up from IE Key table.

0x4c-0x4f For ISBC Phase: Not Applicable

For ESBC Phase:

IE Key Select

Key Number to be used from the IE Key Table if IE flag is set.

Table 47. Scatter Gather Table Format (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-0x03 Length. This location specifies the length in bytes of the ESBC image 1.

0x04-0x07 Target where the ESBC Image 1 can be found. This field is ignored in case of PBL based SOC’s.

0x08-0x0b Source Address of ESBC Image 1

0x0c-0x0f Destination Address of ESBC Image 1

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

0x10-0x13 Length. This location specifies the length in bytes of the ESBC image 2.

0x14-0x17 Target where the ESBC Image 2 can be found. This field is ignored in case of PBL based SOC’s.

0x18-0x1b Source Address of ESBC Image 2

0x1c-0x1f Destination Address of ESBC Image 2

If the target address is 0xffffffff, the image is not copied to the target. This field is ignored in case of PBL
based SOC’s.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
174 NXP Semiconductors

Table 48. Signature (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-size The RSA signature calculated over CSF Header, Scatter Gather table and ESBC image(s).

Table 49. Public key (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-size Public Key Value. The hash of this public key is compared with the hash stored in Secure Fuse Processor
SRKH registers.

Table 50. SRK Table (LS1043/LS1046/LS1012 Platforms)

Offset Data Bits [0:31]

0x00-0x03 Key 1 length

0x04-0x403 Key 1 value. (Remaining bytes will be padded with zero)

0x404-0x407 Key 2 length

0x408-0x807 Key 2 value. (Remaining bytes will be padded with zero)

0x808-0x80b Key 3 length

0x80c-0xb0b Key 3 value. (Remaining bytes will be padded with zero)

0xb0c-0xb0f Key 4 length

0xb10-0xe10 Key 4 value. (Remaining bytes will be padded with zero)

6.1.1.10 ISBC Validation Error Codes
LS1/LS1043/LS1046/LS1012 platforms

Errors in the system can be of following types:

1. Core Exceptions

2. System State Failures

3. Header Checking Failures

a. General Failures

b. Key/Signature/UID related errors

4. Verification Failures

5. SEC/PAMU errors

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 175

Table 51. Core Exceptions (LS1 platform)

Value Code Definition

0x1 ERROR_UNDEFINED_INSTRUCTION Occurs if neither the processor nor any attached co-processor
recognizes the currently executing instruction.

0x2 ERROR_SWI Software Interrupt is a user-defined interrupt instruction. It
allows a program running in User mode, for example, to request
privileged operations that run in Supervisor mode.

0x3 ERROR_PREFETCH_ABORT Occurs when the processor attempts to execute an instruction
that has been prefetched from an illegal address.

0x4 ERROR_DATA_ABORT Occurs when a data transfer instruction attempts to load or
store data at an illegal address.

0x5 ERROR_IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and IRQ interrupts are enabled.

0x6 ERROR_FIQ Occurs when the processor external fast interrupt request pin is
asserted (LOW) and FIQ interrupts are enabled.

Table 52. Core Exceptions (LS1043/LS1046/LS1012 platforms)

Error Code Value

Current EL with SP0

ERROR_EXCEPTION_SYNC_SP0 0x01

ERROR_EXCEPTION_IRQ_SP0 0x02

ERROR_EXCEPTION_FIQ_SP0 0x03

ERROR_EXCEPTION_SERROR_SP0 0x04

Current EL with SPx

ERROR_EXCEPTION_SYNC_SPX 0x05

ERROR_EXCEPTION_IRQ_SPX 0x06

ERROR_EXCEPTION_FIQ_SPX 0x07

ERROR_EXCEPTION_SERROR_SPX 0x08

Lower EL using AArch64

ERROR_EXCEPTION_SYNC_L64 0x11

ERROR_EXCEPTION_IRQ_L64 0x12

ERROR_EXCEPTION_FIQ_L64 0x13

ERROR_EXCEPTION_SERROR_L64 0x14

Lower EL using AArch32

ERROR_EXCEPTION_SYNC_L32 0x15

ERROR_EXCEPTION_IRQ_L32 0x16

ERROR_EXCEPTION_FIQ_L32 0x17

ERROR_EXCEPTION_SERROR_L32 0x18

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
176 NXP Semiconductors

Table 53. System State Failures (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition

0x100 ERROR_CORE_NON_ZERO ISBC is not running on CPU0

0x101 ERROR_STATE_NOT_CHECK SEC_MON State Machine not in CHECK state at start of ISBC.
Some Security violation could have occurred.

0x102 ERROR2_STATE_NOT_CHECK SEC_MON State Machine not in CHECK state, when trying to
transition it to Trusted/Non Secure/Soft Fail state

0x103 ERROR_SSM_TRUSTSTS SEC_MON State Machine not in TRUSTED state at end of
ISBC.

Table 54. General Header Checking Failures (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition

0x301 ERROR_ESBC_HDR_LOC ESBC header location is not in 3.5G space

0x302 ERROR_ESBC_HEADER_BARKER Barker code in the header is incorrect.

0x303 ERROR_ESBC_HEADER_SG_ENTRIES_
NOT_IN_3_5G

SG table/ESBC image address (header address + image offset
in sg table) is beyond 3.5G

0x303 ERROR_ESBC_HEADER_SG_ENTRIES_
ON_OCRAM

One Entry in the SG table is on OCRAM

0x304 ERROR_ESBC_HEADER_SG_ESBC_EP ESBC entry point in header not within ESBC address range

0x305 ERROR_SGL_ENTIRES_NOT_SUPPORT
ED

Number of entries in SG table exceeds maximum limit i.e 8

0x306 ERROR_ESBC_HEADER_HKAREA_LEN_
ZERO

Houskeeping area not provided in header

0x307 ERROR_ESBC_HEADER_HKAREA_NOT_
IN_3_5G

House keeping area not in 3.5G boundary

0x308 ERROR_ESBC_HEADER_HKAREA_LEN_
INSUFFICIENT

Housekeeping area length provided is not sufficient.

0x309 ERROR_SG_TABLE_NOT_IN_3_5 SG Table is not in 3.5G boundary

0x309 ERROR_SG_TABLE_ON_OCRAM SG table is on OCRAM

0x310 ERROR_ESBC_HEADER_HKAREA_NOT_
4K_ALIGNED

House keeping area is not aligned to 4K boundary

0x311 ERROR_SGL_ENTRIES_SIZE_ZERO SG table has entry with size zero.

Table 55. Key/Signature/UID related errors (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition

0x320 ERROR_ESBC_HEADER_KEY_LEN Length of public key in header is not one of the supported
values.

0x321 ERROR_ESBC_HEADER_KEY_LEN_
NOT_TWICE_SIG_LEN

Public key is not twice the length of the RSA signature

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 177

Table 55. Key/Signature/UID related errors (LS1/LS1043/LS1046/LS1012 platforms) (continued)

Value Code Definition

0x322 ERROR_ESBC_HEADER_KEY_MOD_1 Most significant bit of modulus in header is zero.

0x323 ERROR_ESBC_HEADER_KEY_MOD_2 Modulus in header is even number

0x324 ERROR_ESBC_HEADER_SIG_KEY_MOD Signature value is greater than modulus in header

0x325 ERROR_FSL_UID FSL_UID in ESBC Header did not match the FSL_UID in SFP if
fsl uid flag Is 1

0x326 ERROR_OEM_UID OEM_UID in ESBC Header did not match the OEM_UID in SFP
if oem uid flag is 1.

0x327 ERROR_INVALID_SRK_NUM_ENTRY Number of entries field in CSF Header is > 4(This is when
srk_flag in header is 1)

0x328 ERROR_INVALID_KEY_NUM Key number to be used from srk table is not present in table.
(This is when srk_flag in header is 1)

0x329 ERROR_KEY_REVOKED Key selected from srk table has been revoked(This is when
srk_flag in header is 1)

0x32a ERROR_INVALID_SRK_ENTRY_KEYLEN Key length specified in one of the entries in srk table is not one
of the supported values (This is when srk_flag in header is 1)

0x32b ERROR_SRK_TBL_NOT_IN_3_5 SRK Table is not in 3.5G boundary (This is when srk_flag in
header is 1)

0x32b ERROR_SRK_TBL_ON_OCRAM SRK Table is on OCRAM

0x32c ERROR_KEY_NOT_IN_3_5G Key is not in 3.5G boundary

0x32c ERROR_KEY_ON_OCRAM Key on OCRAM

Table 56. Verification Failures (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition

0x340 ERROR_HASH_COMPARE_KEY Super Root Key Hash Comparison failure. Mismatch in the hash
of the public key/srk table as present in the header with the
value in the SRK HASH fuse.

0x341 ERROR_HASH_COMPARE_EM RSA signature check failure. Signature provided by you in the
header doesn’t match with the signature of the ESBC image
generated by ISBC. The ESBC image loaded by you may be
different than the image used while generating the
signature(using CST)

Table 57. SEC/PAMU Failures (LS1/LS1043/LS1046/LS1012 platforms)

Value Code Definition

0x700 ERROR_SEC_ENQ Error when enqueuing to SEC

0x701 ERROR_SEC_DEQ Sec Block returned some error when dequeuing from it.

0x702 ERROR_SEC_DEQ_TO Timeout when trying to deq from SEC

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
178 NXP Semiconductors

Table 57. SEC/PAMU Failures (LS1/LS1043/LS1046/LS1012 platforms) (continued)

Value Code Definition

0x800 ERROR_PAMU Error while programming PAACT/SPAACT tables in PAMU (For
PowerPC platforms only)

6.1.1.11 ESBC Validation Error Codes
For trust arch version 1.x and 2.x.

Table 58. ESBC Validation Failures

Value Code Definition

0x0 ERROR_ESBC_CLIENT_MAX NULL

0x4 ERROR_ESBC_CLIENT_HEADER_BARKE
R

Wrong barker code in header

0x8 ERROR_ESBC_CLIENT_HEADER_KEY_LE
N

Wrong public key length in header

0x10 ERROR_ESBC_CLIENT_HEADER_SIG_LE
N

Wrong signature length in header

0x11 ERROR_ESBC_CLIENT_HEADER_KEY_R
EVOKED

Key used to sign the image revoked

0x12 ERROR_ESBC_CLIENT_HEADER_INVALID
_SRK_NUM_ENTRY

Wrong key entry

0x13 ERROR_ESBC_CLIENT_HEADER_INVALID
_KEY_NUM

Selected key no. not in SRK table

0x14 ERROR_ESBC_CLIENT_HEADER_INV_SR
K_ENTRY_KEYLEN

Unsupported key length of key in SRK table

0x15 ERROR_ESBC_CLIENT_HEADER_IE_KEY
_REVOKED

Selected key in IE key table revoked

0x16 ERROR_ESBC_CLIENT_HEADER_INVALID
_IE_NUM_ENTRY

Wrong IE Key entry

0x17 ERROR_ESBC_CLIENT_HEADER_INVALID
_IE_KEY_NUM

Selected key no. not in IE Key table

0x18 ERROR_ESBC_CLIENT_HEADER_INV_IE_
ENTRY_KEYLEN

Unsupported key length of key in IE Key table

0x19 ERROR_IE_TABLE_NOT_FOUND information about IE table missing

0x20 ERROR_ESBC_CLIENT_HEADER_KEY_LE
N_NOT_TWICE_SIG_LEN

Public key length not twice of signature length

0x21 ERROR_KEY_TABLE_NOT_FOUND SRK Key/key table not found

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 179

Table 58. ESBC Validation Failures (continued)

Value Code Definition

0x40 ERROR_ESBC_CLIENT_HEADER_KEY_M
OD_1

Public key Modulus most significant bit not set

0x80 ERROR_ESBC_CLIENT_HEADER_KEY_M
OD_2

Public key Modulus in header not odd

0x100 ERROR_ESBC_CLIENT_HEADER_SIG_KE
Y_MOD

Signature not less than modulus

0x200 ERROR_ESBC_CLIENT_HEADER_SG_ES
BC_EP

Entry Point error

0x400 ERROR_ESBC_CLIENT_HASH_COMPARE
_KEY

Public key hash comparison failed

0x800 ERROR_ESBC_CLIENT_HASH_COMPARE
_EM

RSA verification failed

0x1000 ERROR_ESBC_CLIENT_SSM_TRUSTSTS SNVS not in TRUSTED state

0x2000 ERROR_ESBC_CLIENT_BAD_ADDRESS Bad address error

0x4000 ERROR_ESBC_CLIENT_MISC Miscallaneous error

0x8000 ERROR_ESBC_CLIENT_HEADER_SG_EN
TIRES_BAD

Incorrect entries in SG table

0x10000 ERROR_ESBC_CLIENT_HEADER_SG No SG support

0x20000 ERROR_ESBC_CLIENT_HEADER_IMG_SI
ZE

Invalid Image size

0x40000 ERROR_ESBC_WRONG_CMD Failure in command/Unknown command/Wrong arguments of
boot script.

0x80000 ERROR_ESBC_MISSING_BOOTM Bootm command missing from boot script.

6.1.1.12 Trust Architecture and SFP Information

SoC Trust Arch.
Version

SFP Version POVDD DRVR OTPMK SNVS/SFP
Register to
check
Hamming
Error

Algo (CST) Register to
check
Hamming
Error

Algo (CST) Register to
check
Hamming
Error

LS1020A 2.1 3.3 1.89 V A SFP 2 SFP

LS1043A 2.1 3.3 1.89 V A SFP 2 SFP

LS1046A 2.1 3.3 1.89 V A SFP 2 SFP

LS1012 2.1 3.3 1.89 V A SFP 2 SFP

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
180 NXP Semiconductors

6.1.2 Service Processor (SP) Based Platforms

6.1.2.1 Secure Boot Introduction
There are three steps in the boot flow:

1. Service Processor Boot ROM

SP provides pre-boot initialization and secure boot capabilities. The on-chip SP Boot ROM offers read-only, non-volatile
storage for the Boot ROM code, including the internal secure boot code (ISBC) sub-routine for image validation. This Boot
ROM is an integral part in the booting of the SOC in non-secure and secure boot modes.

2. GPP Boot ROM

The on-chip GPP Boot ROM executes when the GPP cores are released from reset and is reponsible for passing control
to next step in the boot flow i.e. the boot-loader validated by the SP.

3. Boot Loader

The Boot Loader might further contain the External Secure Boot Code (ESBC) sub-routine for validation of next level
images.

This document is intended for end-users to demonstrate the image validation process which happens in ISBC and ESBC.

The image validation can be split into stages, where each stage performs a specific function and validates the subsequent stage
before passing control to that stage.

The Root of Trust is already established in the ISBC code residing in the Boot ROM which validates the Boot Loader 1.

Boot Loader 1 performs minimal SoC configuration before validating the Next Executable(s) which is/are known as ESBC
image(s).

The flow includes validation of all ESBC images by a previously validated image before its execution to form a Chain of
TRUST. The reference ESBC code also contains the functionality to form a Chain of TRUST with confidentiality where the next
level images are kept on flash after encryption.

PBI
Validation

Internal Secure Boot Code
(ISBC)

Boot Loader 1
Validation

Barker Code

Public Key List

Signature

Image Pointer

Boot Loader 1

Includes Next Executable validation
code

External Secure Boot Code
(ESBC)

3

21

Barker Code

Public Key List

Signature

Image Pointer

Next Executable
(ESBC Image)

Includes Next Executable validation
code

External Secure Boot Code
(ESBC)

3

Figure 25. Chain of Trust

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 181

PBI
Validation

Internal Secure Boot Code
(ISBC)

Boot
Loader 1
Validation

Barker Code

Public Key List

Signature

Image Pointer

Boot Loader 1

Includes Next Executable
validation code

External Secure Boot Code
(ESBC)

3

21

Barker Code

Public Key List

Signature

Image Pointer

Next Executable
(ESBC Image)

Includes Blob Decryption Code
External Secure Boot Code

(ESBC)

3

Blob Header

Cipher Text Blob
(Main Image)

AES-CCM

Figure 26. Chain of Trust with confidentiality

The validated ESBC image is allowed to use the One Time Programmable Master Key to decrypt system secrets. Cryptographic
blob mechanism is used to establish Chain of trust with confidentiality.

The above is explained in detail in coming sections.

As depicted in figure(s) above, there are three types of images which need to be validated as part of Secure Boot.

1. PBI image by ISBC

2. Boot Loader 1 image by ISBC

3. Next level image(s) by ESBC

Typically ESBC images would include:

Boot Loader 2 - n In case Boot Loader is split in to multiple stages (Typical example is in case of NAND, SD Boot in which
there is a mini-boot loader loaded on OCRAM which is Boot Loader stage 1 verified by ISBC. Boot Loader
2 is loaded on DDR, which must be validated by the Boot Loader 1.

MC/AIOP images Management Complex images

LINUX The operating system to be executed on the SoC.

6.1.2.1.1 Secure Boot process
Secure boot process uses a digital signature validation routine already present in ISBC residing in SP Boot ROM. This routine
performs validation using HW bound RSA public key to decrypt the signed hash and compare it to a freshly calculated hash over
the same system image. If the comparison passes, the image can be considered as authentic.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
182 NXP Semiconductors

CSF
Header

S/G Table

Image

Public
Key(s)

Signature

Fuse Box
Public Key
/List Hash

E, N

D, N

Message
Digest Hash

Private Key
Encryption

Code
Signing Tool

Code Signing

Compare
Hash Sum

Pass/Fail

Internal Secure Boot Code (on-chip ROM)

Signature Verification

HashE mod N

Public
Key(s)

Private
Key

CSF
Header

S/G Table

Image

Public
Key(s)

Signature

Fuse Box
Public Key
/List Hash

Public
Key

Decryption

Message
Digest Hash

Hash
Key/List

Verify
Key/List

Figure 27. Secure Boot Process

As shown in the left side of the figure, the Code Signing Tool adds the following:

CSF Header Command Sequence File Header

This header provides the ISBC with flags, pointers, offsets, and lengths necessary to perform image validation.

S/G Table Scatter Gather Table

Optional (N/A for some stages which support only single image)

Allows support for multiple non-contiguous images.

Public Key list SRK (Super Root Key) Table

One or more public keys is appended to the image. The CSF header indicates which of the keys is to be used
in signature validation.

Signature The SHA-256 hash of the CSF header + S/G table + Image + Public Key(s), encrypted with a RSA private key
corresponding to one of the public keys in the key list.

As part of the code signing process, the CST also supports:

Generating RSA public and private key pairs The RSA private key is exported for the OEM to store securely

The CST also supports using public & private keys input by the OEM

Hashing the public key or public key list This hash becomes the Super Root Key Hash which is stored in the SFP

At a high level, the secure boot process runs code signing in reverse.

1. The ISBC locates the CSF header and S/G table to further locate the image, public key list, and signature

2. The public key (list) is hashed and compared to the SRKH

3. If the public key is good, it is used to decrypt the signature (recover the hash)

4. The CSF header + S/G table + Image + Public key list are hashed, with the result compared to above. If the two hashes
match, image is considered to be authentic.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 183

6.1.2.1.1.1 Super Root Key (SRK)
These are RSA public and private key pairs. Private keys are used to sign the images and public keys are used to validate the
image during ISBC and ESBC phase.

Public keys are embedded in the header and the hash of SRK table is fused in SRKH register of SFP.

These are Hardware Bound Keys, once the hash is fused the public private key pair can not be modified.

Keys of sizes 1k, 2k and 4k are supported in NXP Secure Boot Process.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot.

If this key is ever lost, the OEM will be unable to update the image.

Key
Revokation

Trust Architecture provides support for revoking the RSA public keys used by the ISBC to verify the ESBC. The
RSA public keys used for this purpose are called super root keys. The SRK table supports maximum of 8 public
keys and user has the option to revoke up to 7 keys.

During secure boot, the ISBC checks the key number indicated in the CSF header against the revocation fuses
in the SFP’s OEM Security Policy Register (SFP_OSPR). If the key is revoked, the image validation fails.

6.1.2.2 ISBC Phase
At reset, Service Processor core is released and begins executing instructions from reset vector address 0x0 which is mapped
to Internal Boot ROM. The Internal Boot ROM contains the code known as Internal Secure Boot Code (ISBC). The main steps in
ISBC flow are defined below.

6.1.2.2.1 ISBC for PBI validation
1. Sec_Mon check: Confirms that the Sec_Mon is in the Check state. If not, it writes a ‘fail’ bit in a Sec_Mon control register,

leading to a state transition.

2. PBI command check: Verify that the first PBI command is ‘LOAD SEC HDR’. If not found, an error is raised.

3. Valid header check: Check for a valid preamble and correct B0/1 flag set as 0 in the header. If not, an error is raised.

4. CSF parsing and public key check; If ISBC finds a valid CSF header, it parses the CSF header to locate the public key
from SRK (Super Root Key) table to be used to validate the code. There can be a table of maximum 8 public keys present
in the header. The Secure Fuse Processor doesn’t actually store a public key, it stores a SHA-256 hash of the table. If the
hash of the SRK table fails to match the stored hash, secure boot fails.

5. Signature validation: With the validated public key, ISBC decrypts the digital signature stored with the CSF header. The
ISBC then uses the PBI length field in the RCW to calculate a hash over all PBI commands (CSF header is also a part of
PBI commands) along with the SRK table. Optional flags in the CSF header tell the ISBC whether the FSL Unique ID and
the OEM Unique ID (in the Secure Fuse Processor) are to be checked or not. Including these IDs allows the image to be
bound to a single platform. If the decrypted hash and generated hash don ’ t match, secure boot fails.

6. Sec_Mon Transition: If ISS (Increment Security State) flag is set in the header, transition the SNVS state from Check to
Trusted.

1. PBI commands in Secure Boot must have a command ‘Load Boot 1 CSF Header Ptr’ to inform the ISBC

about location of CSF Header for BOOT1 image (ESBC).

2. Boot1 image and header must be placed on an XIP memory before execution of next phase (ISBC validation

of Boot1/ESBC). If these images are placed on memories like NAND/SD/eMMC, then they must be copied

to an XIP memory like OCRAM, DDR via PBI commands.

 NOTE

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
184 NXP Semiconductors

6.1.2.2.2 ISBC for Boot1 (Boot Loader 1) validation
1. Valid header check: Check for a valid preamble and correct B0/1 flag set as 1 in the header. If not, an error is raised.

2. CSF parsing and public key check: If ISBC finds a valid CSF header, it parses the CSF header to locate the public key
from SRK (Super Root Key) table to be used to validate the code. There can be a table of maximum 8 public keys present
in the header. The Secure Fuse Processor doesn’t actually store a public key, it stores a SHA-256 hash of the table. If the
hash of the SRK table fails to match the stored hash, secure boot fails.

3. Signature validation: With the validated public key, ISBC decrypts the digital signature stored with the CSF header. The
image information is stored in a SG (scatter gather) table with support of up to 8 discrete images. The ISBC calculates a
hash over the CSF header, SRK table, SG table and all entries in SG table (i.e. images). Optional flags in the CSF header
tell the ISBC whether the FSL Unique ID and the OEM Unique ID (in the Secure Fuse Processor) are to be checked or not.
Including these IDs allows the image to be bound to a single platform. If the decrypted hash and generated hash do not
match, secure boot fails.

4. Entry Point check: One final check is performed by the ISBC. This check confirms that the Entry Point to be updated in
Boot Location Pointer falls within one of the SG entries which have been validated by the ISBC.

5. Sec_Mon Transition: If ISS (Increment Security State) flag is set in the header, transition the SNVS state from Check to
Trusted or Trusted (if transitioned in PB phase) to Secure.

1. After End of ISBC, Entry Point parsed from header is written to Boot LOC PTR register.

2. GPP is waken up.

3. SP goes to sleep.

 NOTE

There are many reasons the ISBC could fail to validate the PBI or Boot1. Technicians with debug access can check the DCFG
SCRATCHRW3 register to obtain an error code. For a list of error codes refer ISBC Validation Error Codes.

6.1.2.3 ESBC Phase
Unlike the ISBC, which is in an internal ROM and therefore unchangeable, the ESBC is reference code, and can be changed by
OEMs. The remainder of this section is the description of a reasonable secure boot chain of trust based on NXP's reference
software for secure boot. The reference ESBC code is also part of the Boot 1 image validated by ISBC and would be used to
validate further ESBC images like MC, AIOP, and LINUX etc.

NXP provided ESBC consists of standard u-boot which has been signed using a private key. If the Boot Mode is secure, user
can't reach to uboot prompt as the environment variable bootdelay is defined to 0.

There is default boot command for secure boot in the environment which executes on auto boot. This default bootcmd validates
a file called boot script and on successful validation execute the commands in the boot script.

There are many reasons ESBC could fail to validate Client images or boot script. The error status message along with the code
is printed on the u-boot console. For a list of error codes refer ESBC Validation Error Codes.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system.

To establish the Secure Boot Chain of Trust, some U-Boot Commands have been added in the ESBC Code which will be discussed
in detail in coming sections.

6.1.2.3.1 esbc_validate command
esbc_validate img_hdr [pub_key_hash]

Input arguments:

img_hdr – Location of CSF header of the image to be validated

pub_key_hash – hash of the public key used to verify the image. This is optional parameter. If not provided, code makes the
assumption that the key pair used to sign the image is same as that used with ISBC. So the hash of the key in the header is
checked against the hash available in SRK fuse for verification.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 185

Description:

The command would do the following:

Perform CSF header validation on the address passed in the image header. During parsing of the header, image address in stored
in an environment variable which is later used in source command in default secure boot command.

Signature checks on the image.

6.1.2.3.2 esbc_halt command
esbc_halt (no arguments)

Description:

This command puts core in spin loop.

6.1.2.3.3 blob enc command
blob enc <src location> <dst location> <length> <key_modifier address>

Input Arguments:

src location Address of the image to be encapsulated

dst location Address where the blob will be created

length Size of the image to be encapsulated

key_modifier address Address where a random number 16 bytes long (key modifier) is placed

Description:

This command would create a cryptographic blob of the image placed at src location and place the blob at dst location.

6.1.2.3.4 blob dec command
blob dec <src location> <dst location> <length> <key_modifier address>

Input Arguments:

src location Address of the image blob to be decapsulated

dst location Address where the decapsulated image will be placed

length Expected Size of the image after decapsulation

key_modifier address Address where a random number 16 bytes long(key modifier) is placed

Description:

This command would decapsulate the blob placed at src location and place the decapsulated data of expected size at dst location.

6.1.2.3.5 Boot Script
Boot script is a U-Boot script image which contains u-boot commands. ESBC would validate this boot script before executing
commands in it.

1. Boot script can have any commands which u-boot supports. No checking is done on the allowed commands in boot script.
Since it is validated image, assumption is that commands in boot script would be correct.

2. If some basic scripting error is done in boot script like unknown command, missing arguments, the required usage of that
command and core is put in infinite loop.

3. After execution of commands in boot script, if control reaches back in u-boot, error message would be printed on u-boot
console and core would be put in spin loop by command esbc_halt.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
186 NXP Semiconductors

4. Scatter gather images are not supported with validate command.

5. If ITS fuse is blown, any error in verification of the image would result in system reset. The error would be printed on console
before system goes for a reset.

Where to place the boot script?

ESBC u-boot expects the boot script to be loaded in flash . ESBC u-boot code assumes that the public/private key pair used to
sign the boot script is same as that was used while signing the u-boot image. If user used different key pair to sign the image,
hash of the N and E component of the key pair should be defined in macro:

CONFIG_BOOTSCRIPT_KEY_HASH

6.1.2.3.5.1 Chain of Trust
Boot script contains information about the next level images, e.g. MC, LINUX etc. ESBC validates these images as per their public
keys. MC is started with validated MC images if required and finally bootm command is executed to pass control to LINUX image.

Users are free to use NXP ESBC as it is provided or to use it as reference to modify their own secure boot system. Figure below
shows the Chain of Trust established for validation with this ESBC.

Sample Boot Script

MC Images(s)

Kernel Image(s)
bootm <Kernel Fit Image Address>

fsl_mc apply DPL <MC DPL Address>

fsl_mc start mc <MC FW Address>
< MC DPC Address>

esbc_validate <Linux Img header add>
.
.

esbc_validate <MC Img header addr>
.
.

Boot Script

CSF HeaderCSF Header

Boot Loader 1

Normal Boot Loader Stuff
.
.
.
.
.

End of Normal Boot Loader Stuff

esbc_validate
<bootscript Header Address>

source <bootscript Address>

esbc_halt

ISBC

CSF Header

CSF Header

Figure 28. Secure Boot Flow (Chain of Trust)

Get Images and Headers on DDR
.
.
.
Validate the Images. (<pub_key_hash> is optional)
esbc_validate <Image1 Header Address> <pub_key_hash>
esbc_validate <Image2 Header Address> <pub_key_hash>
.
.
.
Start MC with validated images
fsl_mc start mc <MC FW Address> < MC DPC Address>
fsl_mc apply DPL <MC DPL Address>

Boot the Linux
bootm <Kernel Fit Image Address>

6.1.2.3.5.2 Chain of Trust with confidentiality
To establish chain of trust with confidentiality, cryptographic blob mechanism can be used. In this chain of trust, validated image
is allowed to use the One Time Programmable Master Key to decrypt system secrets. Two bootscripts are to be used. First encap
bootscripts is used which creates a blob of the next level images(e.g. MC, LINUX etc.) and saves them on flash. After this the
system is booted after replacing the encap bootscript with decap bootscript which decapsulates the blobs and start MC and LINUX.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 187

Sample Encap Boot Script

MC Images(s)

Kernel Image (s)

Kernel Image (s) Blob
reset

blob enc <Img2 addr>
<Img2 dest addr>

<Img1 size> <key_modifier address>
.
.

blob enc <Img1 addr>
<Img1 dest addr>

<Img1 size> <key_modifier address>
.
.

Boot Script

CSF HeaderCSF Header

Boot Loader 1

Normal Boot Loader Stuff
.
.
.
.
.

End of Normal Boot Loader Stuff

esbc_validate
<bootscript Header Address>

source <bootscript Address>

esbc_halt

ISBC

MC Images (s) Blob

Figure 29. Chain of Trust with Confidentiality (Encapsulation)

Get Images on DDR
.
.
.
Create the Blobs
blob enc <Img1 addr> <Img1 dest addr> <Img1 size> <key_modifier address>
blob enc <Img2 addr> <Img2 dest addr> <Img2 size> <key_modifier address>
blob enc <Img3 addr> <Img3 dest addr> <Img3 size> <key_modifier address>
.
.
.

Save The Blobs created on Flash
.
.
.

End of Encap Boot Script (This is one time only and must be replaced with decap Boot Script)

Sample Decap Boot Script

MC Images(s)

Kernel Image(s)

Kernel Image(s) Blob
bootm <Kernel Fit Image Address>

fsl_mc apply DPL <MC DPL Address>

fsl_mc start mc <MC FW Address>
< MC DPC Address>

blob dec <Img2 addr>
<Img2 dest addr>

,<Img1 size> <key modifier address>

blob dec <Img1 addr>
<Img1 dest addr>

<Img1 size> <key_modifier address>

Boot Script

CSF HeaderCSF Header

Boot Loader 1

Normal Boot Loader Stuff
.
.
.
.
.

End of Normal Boot Loader Stuff

esbc_validate
<bootscript Header Address>

source <bootscript Address>

esbc_halt

ISBC

MC Images(s) Blob

<

Figure 30. Chain of Trust with Confidentiality (Decapsulation)

Get Images Blobs on DDR
.
.
.
Decap the Blobs to get the actual images

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
188 NXP Semiconductors

blob dec <Img1 blob addr> <Img1 dest addr> <expected Img1 size> <key_modifier address>
blob dec <Img2 blob addr> <Img2 dest addr> <expected Img2 size> <key_modifier address>
blob dec <Img3 blob addr> <Img3 dest addr> <expected Img3 size> <key_modifier address>
.
.
.
Start MC with validated images
fsl_mc start mc <MC FW Address> < MC DPC Address>
fsl_mc apply DPL <MC DPL Address>

Boot the Linux
bootm <Kernel Fit Image Address>

6.1.2.4 Next executable phase
The boot loader (ESBC) finishes the platform initialization and passed control to the Linux image. The boot chain can be further
extended to be able to sign application which would be running on Linux prompt. Further RTIC can be integrated to verify memory
regions using Security Engine (SEC) during run time.

6.1.2.5 Product Execution
This section presents the steps to be followed in order to properly run the software product according to its intended use and
functionalities.

Steps in the demo would be:

1. ISBC code would validate PBI and Boot Loader 1.

2. On Successful validation, PBI commands would be executed by SP BootROM.

3. Boot Loader 1 execution will begin on GPP.

4. The ESBC code in Boot Loader 1 would validate and execute and bootscript.[3]

5. The boot script would contain the commands to validate and execute next level images as described in Boot Script on page
186.

6.1.2.5.1 Introduction
Running secure boot (Chain of Trust

1. Setup the board for secure boot flow. You can choose any of the flows mentioned below.

a. Flow A

Program the ITS fuse.

b. Flow B

For protyping phase, do not blow the ITS fuse, secure boot can be enabled by RCW with SB_EN = 1.

2. Blow other required fuses (TPMK and SRK Hash[4]) in the SFP in silicon. For more details regarding fuse blowing, CCS
and Reset Pause, refer to Platform Reference Manual and Trust Architecture User Guide.

[3] In case the boot loader is split into two parts, the validation and execution of boot script would happen in the final boot loader
i.e Boot Loader2. Boot Loader 1 will validate and transfer control to Boot Loader 2.

[4] Blowing of OTPMK is essential to run secure boot for both Production (Flow A) and Prototyping/ Development (Flow B).

For SRK Hash,in Development Mode (Flow B), there is a workaround to avoid blowing fuses. The SoC can be put in a Reset
Pause state. This will pause the Reset State Machinery after RCW Loading. Then CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then get the system out of Reset Pause State.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 189

SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBI and U-Boot image.

For testing purpose, the SRK hash can be written in the mirror registers.

gen_otpmk_drbg utility in CST can be used to generate otpmk key.

 NOTE

3. Flash all the generated images at locations as described in the address map

a. Flow A - All the images would have to be flashed at the current bank addresses.

b. If you are using Flow B, you can use alternate bank for demo purpose. This would mean flashing the images on
alternate bank addresses from Bank0 and then switching to Bank1.

4. Give a power on cycle to the board.

a. For Flow A and Flow B (If secure boot images flashed on default bank)

• On power on, ISBC code in SP boot ROM would validate the PBI image followed by validation of Boot loader1
(U-Boot)

• ESBC code in Boot loader 1 image would further validate the ESBC images (Boot Script, LINUX, MC, and so
on)

• MC and LINUX would be started.

b. For Flow B (If secure boot images flashed on alternate bank), the user must first do the switch settings[5] for booting
from alternate bank and also to enable reset pause.

• On power on after the correct switch setting, Reset State Machinery will be paused after RCW loading.

• Write the SRKH to SFP mirror registers and get the system out of Reset Pause via CCS.

• Secure boot flow as mentioned above would execute.

Two additional features are provided in secure boot:

1. Chain of Trust with confidentiality

2. ISBC Key Extension

6.1.2.5.2 Chain of Trust with confidentiality
This section presents the steps to be followed in order to execute chain of trust with confidentiality.

The demo would be divided into two parts:

1. Creating /encrypting images in form of blobs.

2. Decrypting the images, and booting from decrypted images.

The execution steps remain same as specified above in Product Execution on page 189. In first phase the Boot Script would
contain the commands to encrypt and create blobs of the images. After that the Boot Script is replaced and in second phase the
Boot Script would contain commands to decrypt the blobs to get back the images and boot LINUX, AIOP using these images.

6.1.2.5.2.1 Other images required for demo
Apart from SDK images described above, the following images are also required:

1. Encap boot script

Sample Encap boot script

load \$devtype \$devnum:2 \$kernelheader_addr_r /secboot_hdrs/ls2088ardb/hdr_linux.out;
esbc_validate \$kernelheader_addr_r;
load \$devtype \$devnum:2 \$fdtheader_addr_r /secboot_hdrs/ls2088ardb/hdr_dtb.out;

[5] This may also be done via writing to FPGA registers from the U-Boot Prompt of U-Boot runing in Non-Secure Mode on
Bank0. Refer the Platform FPGA guide for the same.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
190 NXP Semiconductors

esbc_validate \$fdtheader_addr_r;
size \$devtype \$devnum:2 /vmlinuz; echo Encapsulating linux image;setenv key_addr
0x87000000; mw \$key_addr $key_id_1;
setexpr \$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_2;setexpr \$key_addr \
$key_addr + 0x4; mw \$key_addr $key_id_3;setexpr \$key_addr \$key_addr + 0x4; mw \
$key_addr $key_id_4;
blob enc \$kernel_addr_r \$load_addr \$filesize \$key_addr; setexpr blobsize \$filesize
+ 0x30;echo Saving encrypted linux ;save \$devtype \$devnum:2 \$load_addr /vmlinuz \
$blobsize;size \$devtype \$devnum:2 /fsl-ls1046a-rdb.dtb;
echo Encapsulating dtb image; blob enc \$fdt_addr_r \$load_addr \$filesize \$key_addr;
setexpr blobsize \$filesize + 0x30;echo Saving encrypted dtb; save \$devtype \$devnum:2 \
$load_addr /fsl-ls1046a-rdb.dtb \$blobsize; size \$devtype \$devnum:2 /
ls1046ardb_dec_boot.scr;
load \$devtype \$devnum:2 \$load_addr /ls2088ardb_dec_boot.scr;
echo replacing Bootscript; save \$devtype \$devnum:2 \$load_addr /ls2088ardb_boot.scr \
$filesize;size \$devtype \$devnum:2 /secboot_hdrs/ls2088ardb/hdr_ls2088ardb_bs_dec.out;
load \$devtype \$devnum:2 \$load_addr /secboot_hdrs/ls2088ardb/
hdr_ls2088ardb_bs_dec.out ;echo Replacing bootscript header; save \$devtype \$devnum:2 \
$load_addr /hdr_ls2088ardb_bs.out \$filesize;reset;'

2. Decap boot script

size \$devtype \$devnum:2 /vmlinuz;setexpr imgsize \$filesize - 0x30 ;
echo Decapsulating linux image; setenv key_addr 0x87000000; mw \$key_addr $key_id_1;setexpr \
$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_2;setexpr \$key_addr \$key_addr + 0x4; mw \
$key_addr key_id_3;setexpr \$key_addr \$key_addr + 0x4; mw \$key_addr $key_id_4;
 blob dec \$kernel_addr_r \$load_addr \$imgsize \$key_addr; cp.b \$load_addr \$kernel_addr_r
\$filesize ;size \$devtype \$devnum:2 /fsl-ls2088a-rdb.dtb;setexpr imgsize \$filesize -
0x30 ;
echo Decapsulating dtb image; blob dec \$fdt_addr_r \$load_addr \$imgsize \$key_addr; cp.b \
$load_addr \$fdt_addr_r \$filesize ;

6.1.2.5.2.2 Running secure boot (Chain of Trust with confidentiality)
1. Setup the board for secure boot flow. You can choose any of the flows mentioned below.

a. Flow A

Program the ITS fuse.

b. Flow B

For protyping phase, do not blow the ITS fuse, secure boot can be enabled by RCW with SB_EN = 1.

2. Blow other required fuses(OTPMK and SRK hash[6]) in the SFP in silicon. For more details regarding fuse blowing, CCS
and Reset Pause, refer to Platform Reference Manual and Trust Architecture User Guide.

*SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBI and U-Boot image.

*For testing purpose, the SRK hash can be written in the mirror registers.

*gen_otpmk_drbg utility in CST can be used to generate otpmk key.

 NOTE

3. Flash all the generated images at locations as described in the address map.

a. Flow A - All the images would have to be flashed at the current bank addresses.

b. If you are using Flow B, you can use alternate bank for demo purpose. This would mean flashing the images on
alternate bank addresses from Bank0 and then switching to Bank4.

4. Give a power on cycle to the board.

[6] Blowing of OTPMK is essential to run secure boot for both Production (Flow A) and Prototyping/ Development (Flow B).

For SRK Hash, in Development Mode (Flow B), there is a workaround to avoid blowing fuses. The SoC can be put in a
Reset Pause state. This will pause the Reset State Machinery after RCW Loading. Then CCS can be connected via JTAG.

Write the SRK Hash value in SFP mirror registers and then get the system out of Reset Pause State.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 191

a. For Flow A and Flow B (If Secure Boot images flashed on default bank)

• On power on, ISBC code in SP Boot ROM would validate the PBI image followed by validation of Boot Loader1
(U-Boot)

• First Boot: Encapsulaton Step (Should happen in OEM's premises)

i. By defult the enacap and decap bootscripts will be installed in the bootpartition.

ii. When the board boots up for the first time after all images have been generated, Encap bootscript will
execute. This bootscript:

i. Authenticates and encapsulates linux and dtb images and replaces the unencrypted linux and dtb
images with newly encapsulated linux and dtb.

ii. Replaces the encap bootscript and header with the decap bootscript and it's header, already
present in the bootpartition.

iii. Issues reset

• Subsequent Boot .

i. Uboot would execute script with decap commands

i. Un-blobify linux and dtb image in DDR

ii. Pass control to these images

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
192 NXP Semiconductors

b. For Flow B (If Secure Boot images flashed on alternate bank), the user must first do the switch settings[7] for booting
from alternate bank and also to enable Reset Pause.

• On power on after the correct switch setting, Reset State Machinery will be paused after RCW loading.

• Write the SRKH to SFP mirror registers and get the system out of reset pause via CCS.

• Secure Boot flow as mentioned above would execute.

6.1.2.5.3 ISBC Key Extension (IE)
The ISBC Key Extension feature allows the user to extend the number of keys available for signature validation. To use this feature,
ISBC validates a table of public keys (IE keys) along with the ESBC image using one of the SRKs (Super Root Keys). These
validated IE keys later become available for ESBC to validate downstream images, for example, Linux, MC, and so on.

Figure 31. Secure boot flow (with IE)

[7] This may also be done via writing to FPGA registers from the U-Boot Prompt of U-Boot runing in Non-Secure Mode on
Bank0. Please refer the Platform FPGA guide for the same.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 193

As shown in the Secure Boot Flow (with IE),

1. ISBC code validates IE Table and Boot loader (ESBC) using one of the SRKs (Silicon Bound).

2. After IE Table is successfully validated, it becomes available for use by future images.[8](SRKs are present in SRK table
which is supplied with each image that is signed and validated using them. They are silicon bound as their hash, SRKH,
is present in SoC's fuses.)

3. ESBC validates further images using either SRKs or IE Keys, which in turn can validate other images using these keys.
Which key to use to verify image is decided based on CSF Header of the image to be validated.

Following are the advantages of IE Keys.

• Different images can be signed and validated using different IE keys. This is not possible with SRKs as they are significantly
less in number than IE Keys.

• IE key table can be changed as opposed to SRKs which are fixed as they are tied to SRKH blown in fuses.

6.1.2.5.3.1 IE table format

Table 59. Table: IE table format

Offset (In Bytes) Description

0x0 - 0x3 Keys revoked.

Each bit represents a key. If the bit is set, it indicates that this key in the table has been
revoked and cannot be used for verification purposes.

Bit 0 represents Key 1, Bit 1 represent Key 2 ..., Bit 31 represents Key 32.

0x04-0x07 Total number of keys present in the table (Max 32).

0x08-0x0b Key 1 length (In bytes. Max 1024)

0x0c-0x40b Key 1 value (Zero padded if less than 1024 bytes)

0x40c-0x40f Key 2 length

0x410-0x80f Key 2 value

.....

0x8 + 0x404 * (n - 1) -

0x8 + 0x404 8 (n - 1)
+ 0x3

Key N length (N <= 32)

0x8 + 0x404 * (n - 1)
+ 0x4 - 0x8 + 0x404 *
(n) - 0x1

Key N value

6.1.2.5.3.2 Enabling IE via the Code Signing Tool
Following are the steps that need to be executed during runtime to enable use of IE feature during secure boot:

1. During the PBI phase, scratch registers 13 and 14 (in the DCFG block) need to be populated with the address of the IE
table (to be loaded later). Scratch register 14 contains the higher 32 bits of address of the IE table and scratch register 13
contains the lower 32 bits of address (SoC supports 48-bit address space).

2. Next, during the ISBC runtime, the IE table needs to be validated along with the ESBC image. For this, the address of this
IE table is added as the first entry in SG table of CSF header.

[8] For allowing ESBC image to use IE Table, it is neccesary for the IE Table to be present in an XIP memory. This is trivial in
case of XIP memories, such as NOR. In case of Non - XIP memories, IE table needs to be copied along with CSF Header
to an XIP memory.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
194 NXP Semiconductors

3. Now ESBC can use either one of the IE keys or the SRK keys to validate next images. Which key to use, depends on the
various field of CSF header (CSF header structure definition on page 209CSF header structure definition on page 216)
of the image to be validated.

a. If IE Flag is not set, then one of the SRKs is used to verify the image. The key number is taken from the "Key No.
for verification" flag. All SRKs would be present in the SRK table, whose offset is embedded in CSF header.

b. If IE Flag is set, then one of the IE keys is used to verify the image. The key number is taken from the "IE Key Select"
flag. The key is gathered from IE table, the address of which was already populated in Scratch registers 13 and 14.

Following are the steps that need to be executed during build-time to incorporate IE table in CSF header and sign images using
IE keys using the Code Signing Tool:

1. Using uni_sign, sign ESBC image and IE table (uni_sign also generates IE table using IE keys). uni_sign also prints the
IE table address.

2. Using uni_pbi, generate PBI commands which also includes the commands to write the address of IE table given by uni_sign
to Scratch registers 13 and 14.

3. Sign next level images using one of the IE keys / SRKs.

6.1.2.5.3.2.1 uni_sign on ESBC
Sample input file for uni_sign

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Freescale Proprietary.
 */

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Entry Point/Image start address field in the header.[Mandatory]
(default=ADDRESS of first file specified in images)
Address can be 64 bit
ENTRY_POINT=30100000

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=srk.pri
IE_KEY [Mandatory] Comma Seperated List
#IE_REVOC [Optional] Comma Seperated List
IE_KEY=iekey1.pub,iekey2.pub,iekey3.pub
#ESBC_HDRADDR [Mandatory] 32bit Address of ESBC Header
#Used to Calculate IE Table Address
ESBC_HDRADDR=30020000

Specify IMAGE, Max 8 images are possible.
DST_ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={u-boot-dtb.bin,30100000,ffffffff}
IMAGE_2={,,}
IMAGE_3={,,}
IMAGE_4={,,}
IMAGE_5={,,}
IMAGE_6={,,}
IMAGE_7={,,}

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 195

IMAGE_8={,,}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_uboot.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Table 60. Description of fields in input file

Field in input file Description

IE_KEY Comma seperated list of names of files containing public keys (IE keys)

IE_REVOC Comma seperated list of key numbers that are to be revoked from IE table

ESBC_HDRADDR 32-bit address where generated header will be placed

The above file is an example of input file for running uni_sign on ESBC image to enable use of IE table. Presence of field 'IE_KEY'
indicates to the CST tool to embed IE table in the output header file. Field 'ESBC_HDRADDR' is needed to calculate the address
of IE table. It states the address at which the output of uni_sign (output header file) will be placed on memory map. The
'PUB_KEY=srk.pub' and 'PRI_KEY=srk.pri' fields indicates that SRK key needs to be used to sign both ESBC and IE table.

Note: Here ESBC_HDRADDR needs to be 32-bit address as ISBC can only access 32-bit addresses.

Output of uni_sign

$./uni_sign --verbose input_files/uni_sign/<platform>/ie_keys/input_uboot_nor_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/<platform>/ie_keys/input_uboot_nor_secure

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
196 NXP Semiconductors

- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(100)
- UID Information
- UID Flags = 00
- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 60
- ISS = 1
- MP = 0
- LW = 0
- B01 = 1
- Image Information
- SG Table Offset : 800
- Number of entries : 2
- Entry Point : 30100000
- Entry 1 : ie_table.out (Size = 00000c14 SRC = 30020a00 DST = ffffffff)
- Entry 2 : u-boot-dtb.bin (Size = 00090c16 SRC = 30100000 DST = ffffffff)
- RSA Signature Information
- RSA Offset : 1800
- RSA Size : 80

Image Hash:
fa2a5b7ba63375f18c94f2911687750e0e49c27eaf0c313617ed3ebfc006c6e6
IE Table Absolute Address: 30020a00

**
* Header File is with Signature appended
**

Header File Created: hdr_uboot.out

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688f
 SFP SRKHR0 = c9f90c97
 SFP SRKHR1 = 62e16938
 SFP SRKHR2 = 04421a4b
 SFP SRKHR3 = d8193735
 SFP SRKHR4 = b38ea03b
 SFP SRKHR5 = 83303d95
 SFP SRKHR6 = 29f7b1b5
 SFP SRKHR7 = d2e4688f

As shown, the output prints the absolute address of IE Table. This address is equal to 'ESBC_HDRADDR + offset of IE Table
within output header file' as IE table is embedded in the output header file by uni_sign.

Note: uni_sign needs to be executed with --verbose option to get the 'IE Table Absolute Address'

Partial view of hdr_uboot.out generated by uni_sign (In Hex)

......

......
0000800: 140c 0000 0000 0000 000a 0230 ffff ffff 0....
0000810: 160c 0900 0000 0000 0000 1030 ffff ffff 0....
......
......
0000a00: 0000 0000 0300 0000 0001 0000 cf9d 8fd0
0000a10: 57a4 c7be e519 6ae1 b4db 2e97 8c79 9d3f W.....j......y.?
0000a20: 61a2 5538 f1af 58c0 31cf 3484 a54d 343a a.U8..X.1.4..M4:
0000a30: 58ec 02ec e5e2 153f 9843 b0e0 7c0b f9b2 X......?.C..|...
0000a40: 76fa f87d 8780 98bd cf87 6079 3b34 87ad v..}......`y;4..

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 197

0000a50: c9d3 6fe9 71fd 884d f531 be13 2d83 dfaa ..o.q..M.1..-...
0000a60: 0ca1 0f9f 8ae1 5312 457a 251d 3fd2 0127 S.Ez%.?..'
0000a70: de51 3f3e 2da7 ae17 b203 42db a495 6c7a .Q?>-.....B...lz
0000a80: d2b9 5671 bb77 b32d 2a62 9045 0000 0000 ..Vq.w.-*b.E....
......
......

As shown above, SG table is present at offset 0x800 in the hdr_uboot.out. There are two SG entries present. The first entry is
the IE table (at address 0x30020a00). The second entry is the U-Boot image. Also, at 0xa00 offset of hdr_uboot.out, the IE table
is present with 3 keys.

6.1.2.5.3.2.2 uni_sign On ESBC
Sample Input File for uni_sign

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Freescale Proprietary.
 */

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.0: LS2085
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Entry Point/Image start address field in the header.[Mandatory]
(default=ADDRESS of first file specified in images)
Address can be 64 bit
ENTRY_POINT=20100000

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=srk.pri
IE_KEY [Mandatory] Comma Seperated List
#IE_REVOC [Optional] Comma Seperated List
IE_KEY=iekey1.pub,iekey2.pub,iekey3.pub
#ESBC_HDRADDR [Mandatory] 32bit Address of ESBC Header
#Used to Calculate IE Table Address
ESBC_HDRADDR=20c00000

Specify IMAGE, Max 8 images are possible.
DST_ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={u-boot-dtb.bin,20100000,ffffffff}
IMAGE_2={,,}
IMAGE_3={,,}
IMAGE_4={,,}
IMAGE_5={,,}
IMAGE_6={,,}
IMAGE_7={,,}
IMAGE_8={,,}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
198 NXP Semiconductors

OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_uboot.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Table 61. Description of Fields in Input File

Field in Input File Description

IE_KEY Comma seperated list of names of files containing public keys (IE Keys)

IE_REVOC Comma seperated list of key number that are to be revoked from IE Table

ESBC_HDRADDR 32 Bit address where generated header shall be placed

The above file is an example of input file for running uni_sign on ESBC image to enable use of IE Table. Presence of field 'IE_KEY'
indicates to the CST tool to embed IE Table in the output header file. Field 'ESBC_HDRADDR' is needed to calculate address of
IE Table. It states the address at which the output of uni_sign (output header file) will be placed on memory map.
'PUB_KEY=srk.pub' and 'PRI_KEY=srk.pri' indicates that SRK Key needs to be used to sign both ESBC and IE Table.

Note: Here ESBC_HDRADDR needs to be 32 bit address as ISBC can only access 32 bit addresses.

Output of uni_sign

$./uni_sign --verbose input_files/uni_sign/ls2088_1088/ie_keys/qspi/input_uboot_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/ls2088_1088/ie_keys/qspi/input_uboot_qspi_secure

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200
- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(100)
- UID Information
- UID Flags = 00
- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 199

- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 60
- ISS = 1
- MP = 0
- LW = 0
- B01 = 1
- Image Information
- SG Table Offset : 800
- Number of entries : 2
- Entry Point : 30100000
- Entry 1 : ie_table.out (Size = 00000c14 SRC = 30020a00 DST = ffffffff)
- Entry 2 : u-boot-dtb.bin (Size = 00090c16 SRC = 30100000 DST = ffffffff)
- RSA Signature Information
- RSA Offset : 1800
- RSA Size : 80

Image Hash:
fa2a5b7ba63375f18c94f2911687750e0e49c27eaf0c313617ed3ebfc006c6e6
IE Table Absolute Address: 410c00a00

**
* Header File is with Signature appended
**

Header File Created: hdr_uboot.out

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688f
 SFP SRKHR0 = c9f90c97
 SFP SRKHR1 = 62e16938
 SFP SRKHR2 = 04421a4b
 SFP SRKHR3 = d8193735
 SFP SRKHR4 = b38ea03b
 SFP SRKHR5 = 83303d95
 SFP SRKHR6 = 29f7b1b5
 SFP SRKHR7 = d2e4688f

As shown, the output prints the absolute address of IE Table. This address is equal to 'ESBC_HDRADDR + offset of IE Table
within output header file' as IE Table is embedded in the output header file by uni_sign.

Note: uni_sign needs to be executed with --verbose option to get the 'IE Table Absolute Address'

Partial view of hdr_uboot.out generated by uni_sign (In Hex)

......

......
0000800: 140c 0000 0000 0000 000a 0230 ffff ffff 0....
0000810: 160c 0900 0000 0000 0000 1030 ffff ffff 0....
......
......
0000a00: 0000 0000 0300 0000 0001 0000 cf9d 8fd0
0000a10: 57a4 c7be e519 6ae1 b4db 2e97 8c79 9d3f W.....j......y.?
0000a20: 61a2 5538 f1af 58c0 31cf 3484 a54d 343a a.U8..X.1.4..M4:
0000a30: 58ec 02ec e5e2 153f 9843 b0e0 7c0b f9b2 X......?.C..|...
0000a40: 76fa f87d 8780 98bd cf87 6079 3b34 87ad v..}......`y;4..
0000a50: c9d3 6fe9 71fd 884d f531 be13 2d83 dfaa ..o.q..M.1..-...
0000a60: 0ca1 0f9f 8ae1 5312 457a 251d 3fd2 0127 S.Ez%.?..'
0000a70: de51 3f3e 2da7 ae17 b203 42db a495 6c7a .Q?>-.....B...lz
0000a80: d2b9 5671 bb77 b32d 2a62 9045 0000 0000 ..Vq.w.-*b.E....
......
......

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
200 NXP Semiconductors

As shown above, at offset 0x800 in the hdr_uboot.out, SG Table is present. There are two SG Entries present there. The first
entry is the IE Table (at address 0x30020a00). The second entry is the u-boot image. Also, at 0xa00 offset of hdr_uboot.out, the
IE Table is present with 3 Keys.

6.1.2.5.3.2.3 uni_pbi
Sample input file for uni_pbi

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Freescale Proprietary.
 */

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=srk.pri
#IE_TABLE_ADDR [optional] Used by Uboot to get IE Table Address
#Can be 64 bit
IE_TABLE_ADDR=580020a00

For PBI Signing
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME= rcw.bin
Address of ISBC (Boot1) CSF Header [Mandatory]
BOOT1_PTR=30020000

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=rcw_sec.bin
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Table 62. Description of fields in input file

Field in Input File Description

IE_TABLE_ADDR 64 bit address of IE Table

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 201

As shown above, the field 'IE_TABLE_ADDR' is needed in the input file to uni_pbi. This field indicates the address of IE table, the
address which is written to Scratch registers 13 and 14.

Note: This address (0x580020a00) is different from the address generated from uni_sign (0x30020a00) (though both address
maps to same address. Refer to the memory map of the respective SoC). This is because ISBC can only access 32-bit addresses
and U-Boot uses only 48-bit addresses for NOR mapping because U-Boot does not make MMU table entries for the 32-bit
addresses of NOR. So uni_sign needs 32-bit address so that ISBC can access this address to validate IE table and uni_pbi needs
48-bit address so that U-Boot can access the address written in the Scratch register 13 and 14 to fetch the keys in IE table.

Output of uni_pbi

$./uni_pbi input_files/uni_pbi/<platform>/ie_keys/input_pbi_nor_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_pbi/<platform>/ie_keys/input_pbi_nor_secure

**
* Header File is with Signature appended
**

Header File Created: rcw_sec.bin

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688f
 SFP SRKHR0 = c9f90c97
 SFP SRKHR1 = 62e16938
 SFP SRKHR2 = 04421a4b
 SFP SRKHR3 = d8193735
 SFP SRKHR4 = b38ea03b
 SFP SRKHR5 = 83303d95
 SFP SRKHR6 = 29f7b1b5
 SFP SRKHR7 = d2e4688f

Partial view of rcw_sec.bin generated by uni_pbi (In Hex)

0000000: 55aa 55aa 0000 1080 2038 3038 3800 3838 U.U..... 8088.88
0000010: 0000 0000 0000 0000 0000 0000 0000 2000
0000020: 0000 2000 0000 0000 802d e102 8025 0000 -...%..
0000030: 0000 0000 0000 0000 0b0e 0000 0000 0000
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 0000 0000 0000 0000 0000 0000
0000070: 0070 0200 0000 0000 0000 2a41 0000 0000 .p........*A....
0000080: 0000 0000 0000 0000 b8b3 1bdf 0000 2080
0000090: 1219 2001 0002 0000 0101 0020 0000 0000
00000a0: 0008 0000 8000 0000 0000 0000 0000 0000
00000b0: 0000 0000 0000 0000 0000 0000 0000 0000
00000c0: 0000 0000 0000 0000 0000 0000 0000 0000
00000d0: 0000 0000 0000 0000 0000 0000 0000 0000
00000e0: 0000 2280 0000 0230 3002 e030 000a 0280 .."....00..0....
00000f0: 3402 e030 0500 0000 0404 e030 0000 0000 4..0.......0....
0000100: 0004 e030 0000 1030 0000 0833 0000 0000 ...0...0...3....

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
202 NXP Semiconductors

0000110: 0005 0833 d704 0000 2006 e030 0000 00a0 ...3.... ..0....
.....
.....

As shown above, the highlighted part are the PBI commands inserted in the rcw_sec.bin to write IE table address (64 bits) to
Scratch Registers 13 and 14.

6.1.2.5.3.2.4 uni_pbi
Sample Input File for uni_pbi

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Freescale Proprietary.
 */

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.0: LS2085
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=srk.pri
#IE_TABLE_ADDR [optional] Used by Uboot to get IE Table Address
#Can be 64 bit
IE_TABLE_ADDR=410c00a00

For PBI Signing
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME= rcw.bin
Address of ISBC (Boot1) CSF Header [Mandatory]
BOOT1_PTR=20c00000

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=rcw_sec.bin
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 203

Table 63. Description of Fields in Input File

Field in Input File Description

IE_TABLE_ADDR 64 bit address of IE Table

As shown above, in the input file to uni_pbi, the field 'IE_TABLE_ADDR' is needed. This field indicates the address of IE Table,
the address which is written to Scratch registers 13 and 14.

Note: This address (0x580020a00) is different from the address generated from uni_sign (0x30020a00) (though both address
maps to same address. Refer to the memory map of the respective SoC). This is because ISBC can only access 32 bit addresses
and u-boot uses only 48 bit addresses for NOR mapping because u-boot doesn't make MMU Table entries for the 32 bit addresses
of NOR. So uni_sign needs 32 bit address so that ISBC can access this address to validate IE Table and uni_pbi needs 48 bit
address so that u-boot can access the address written in the Scratch register 13 and 14 to fetch the keys in IE Table.

Output of uni_pbi

$./uni_pbi input_files/uni_pbi/ls2088_1088/ie_keys/qspi/input_pbi_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_pbi/ls2088_1088/ie_keys/qspi/input_pbi_qspi_secure

**
* Header File is with Signature appended
**

Header File Created: rcw_sec.bin

SRK (Public Key) Hash:
c9f90c9762e1693804421a4bd8193735b38ea03b83303d9529f7b1b5d2e4688f
 SFP SRKHR0 = c9f90c97
 SFP SRKHR1 = 62e16938
 SFP SRKHR2 = 04421a4b
 SFP SRKHR3 = d8193735
 SFP SRKHR4 = b38ea03b
 SFP SRKHR5 = 83303d95
 SFP SRKHR6 = 29f7b1b5
 SFP SRKHR7 = d2e4688f

Partial view of rcw_sec.bin generated by uni_pbi (In Hex)

0000000: 55aa 55aa 0000 1080 2038 3038 3800 3838 U.U..... 8088.88
0000010: 0000 0000 0000 0000 0000 0000 0000 2000
0000020: 0000 2000 0000 0000 802d e102 8025 0000 -...%..
0000030: 0000 0000 0000 0000 0b0e 0000 0000 0000
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 0000 0000 0000 0000 0000 0000
0000070: 0070 0200 0000 0000 0000 2a41 0000 0000 .p........*A....
0000080: 0000 0000 0000 0000 b8b3 1bdf 0000 2080
0000090: 1219 2001 0002 0000 0101 0020 0000 0000

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
204 NXP Semiconductors

00000a0: 0008 0000 8000 0000 0000 0000 0000 0000
00000b0: 0000 0000 0000 0000 0000 0000 0000 0000
00000c0: 0000 0000 0000 0000 0000 0000 0000 0000
00000d0: 0000 0000 0000 0000 0000 0000 0000 0000
00000e0: 0000 2280 0000 0230 3002 e030 000a 0280 .."....00..0....
00000f0: 3402 e030 0500 0000 0404 e030 0000 0000 4..0.......0....
0000100: 0004 e030 0000 1030 0000 0833 0000 0000 ...0...0...3....
0000110: 0005 0833 d704 0000 2006 e030 0000 00a0 ...3.... ..0....
.....
.....

As shown above, the highlighted part are the PBI commands inserted in the rcw_sec.bin to write IE Table address (64 bits) to
Scratch Registers 13 and 14.

6.1.2.5.3.2.5 uni_sign on next level images
Sample input file for uni_sign for signing Linux

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Freescale Proprietary.
 */

ESBC=1

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=iekey3.pub
IE_KEY_SEL [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 32)
IE_KEY_SEL=3
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=iekey3.pri

Specify IMAGE, Max 8 images are possible.
DST_ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={kernel.itb,a1100000,ffffffff}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_kernel.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 205

Table 64. Description of fields in input file

Field in Input File Description

IE_KEY_SEL Number of the key in IE Table that is to be used to validate image

As shown above, in the input file to uni_sign, the 'IE_KEY_SEL' field indicates that a key from IE table is being used and it also
indicates which key number from IE table needs to be used to validate this image during runtime. For build-time, CST tool needs
the IE private key. This is indicated via the 'PRI_KEY' field.

Output of uni_sign

$./uni_sign input_files/uni_sign/<platform>/ie_keys/input_kernel_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/<platform>/ie_keys/input_kernel_secure

SRK/Public Key Hash not calculated.. IE = 1

**
* Header File is with Signature appended
**

Header File Created: hdr_kernel.out
SRK (Public Key) Hash Not Available

As shown above, SRK hash is not calculated as IE key is being used.

6.1.2.5.3.2.6 uni_sign on Next Level Images
Sample Input File for uni_sign for signing Linux

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Freescale Proprietary.
 */

ESBC=1

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.0: LS2085
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=iekey3.pub
IE_KEY_SEL [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 32)
IE_KEY_SEL=3
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=iekey3.pri

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
206 NXP Semiconductors

Specify IMAGE, Max 8 images are possible.
DST_ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={kernel.itb,a1100000,ffffffff}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_kernel.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Table 65. Description of Fields in Input File

Field in Input File Description

IE_KEY_SEL Number of the key in IE Table that is to be used to validate image

As shown above, in the input file to uni_sign, the field 'IE_KEY_SEL' indicates that a Key from IE Table is being used and it also
indicates which key number from IE Table needs to be used to validate this image during run-time. For build-time, CST tool needs
the IE private key. This is indicated via the field 'PRI_KEY'.

Output of uni_sign

$./uni_sign input_files/uni_sign/ls2088_1088/ie_keys/qspi/input_kernel_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/ls2088_1088/ie_keys/qspi/input_kernel_secure

SRK/Public Key Hash not calculated.. IE = 1

**
* Header File is with Signature appended
**

Header File Created: hdr_kernel.out
SRK (Public Key) Hash Not Available

As shown above, SRK Hash is not calculated as IE Key is being used.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 207

6.1.2.6 PBI structure

Fields Offset Size (In 32-bit word)

RCW Preamble (RCW) 0x00 1

Load RCW command 0x04 1

RCW words 0x08 – 0x87 32

RCW checksum 0x88 1

PBI commands Load security header

CSF header

0x8c

0x90 – 0xdf

1

20

Load boot 1CSF header

Boot 1 pointer

0xe0

0xe4

1

1

Other PBI commands 0xe8 N

STOP command (With/
Without CRC)

0xe8 + (4*N) 2

SRK table SRK table 0x90 + SRK table offset in CSF
header

(No. of keys * Key length)

RSA signature Signature 0x90 + Sign offset in CSF
header

Sign length

RCW Preamble The preamble is always the first element in a PBI image. It contains a standard pattern that
identifies the memory location as the beginning of a valid PBI image. The preamble is a 4-byte
pattern defined as “0xaa55aa55”.

Load RCW
command

The next word is load RCW command. This command loads the 1024-bit Reset Configuration
Word from the interface specified by Power-on-Reset (POR) configuration strapping pins. It
has the following two formats.

1. Load RCW with Checksum (0x10): Read Reset Configuration Word performs simple 32-
bit checksum, and update RCW registers.

2. Load RCW without Checksum (0x11): Read Reset Configuration Word and update RCW
registers without performing checksum. The version without the checksum includes
padding with zeroes in the place of the checksum value.

RCW words 1024 RCW bits that is 32 words of 32 bits.

RCW
checksum

It is calculated as a 32-bit unsigned integer summation of the RCW Preamble, the Load RCW
with checksum command, and each of the 32 words (32-bit) of the RCW. A simple 32-bit
checksum is used for the validation of the command.

checksum(RCW_WORD[]){
 unsigned_32 sum = 0xAA55AA55 + 0x80100000 + Load RCW Command;
 for(i=0; i<32; i++)
 sum+=RCW_WORD[i];
 return (sum);
}

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
208 NXP Semiconductors

Checksum will have to be updated by CST tool as the fields like SB_EN,

PBI_LEN in the RCW words are changed.

 NOTE

PBI
commands

Load security
header

This command loads information required for authentication of the PBI image. The security
header includes pointers to an SRK key table and RSA signatures as well as other flags and
IDs. The CSF Header is part of the command. Please refer the CSF header structure in .

Load boot 1
CSF header

This command loads a pointer to a CSF Header used for authentication of the Boot 1
Secondary Program Loader. This 32-bit value used by the Boot 0 ISBC and is required for
secure boot.

Other PBI
commands

Other PBI commands input by user.

STOP
command

This command ends the PBI sequence and has two variants (with and without CRC).

The CRC check value covers all commands from the first command after the RCW up to
and including this CRC and Stop command, regardless of whether any are skipped by Jump
commands during execution.

In Stop command without CRC, it ends the PBI sequence immediately. It does not include
a CRC value, but it instead has a 32-bit padding with zeroes so that it is the same size as
the Stop with CRC command.

CST tool updates the PBI commands by adding Load Security Header

command and Load Boot 1 Security Header command. So, CRC must

also be updated.

 NOTE

SRK table Table of public keys is used in secure boot validation. It is kept at an offset from the CSF header. The offset is
specified in the CSF header.

RSA
signature

RSA signature is calculated over all PBI commands and SRK table. It is kept at an offset from the CSF header.
The offset is specified in the CSF header.

6.1.2.7 CSF header structure definition
Table 66. Trust architecture and SFP information

SoC Trust Arch.
version

SFP version POVDD DRVR OTPMK

Algo (CST) Register to
check
Hamming
Error

Algo (CST) Register to
check
Hamming
Error

LS1088A 3.1 3.5 1.89 V A2 SFP Secret
Value
Hamming
Error Status
Register
(SFP_SVHES
R)

2 SFP Secret
Value
Hamming
Error Status
Register
(SFP_SVHES
R)

LS2088A
(LS2 Rev2)

3.1 3.5 1.89 V A2 2

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 209

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

Pointer to SG Table

entries in SG

32 bit Entry Point

FSL UID_0

FSL UID_1

OEM UID_0

OEM UID_1

OEM UID_2

OEM UID_3

OEM UID_4

Reserved

Reserved

Reserved

Reserved

Header Size = 0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0xC

0x8

0x4

0x0

PBI & ISBC Phase
(Trust 3.0)

Header Size = 0x50 Header Size = 0x50

ESBC Phase
(Trust 3.0 & 3.1)

PBI & ISBC Phase
(Trust 3.1)

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

Pointer to SG Table

entries in SG

64 bit Entry Point Low

FSL UID_0

FSL UID_1

OEM UID_0

OEM UID_1

OEM UID_2

OEM UID_3

OEM UID_4

Reserved

Reserved

Reserved

64 bit Entry Point High

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

64 bit Image Address Low

FSL UID_0

FSL UID_1

OEM UID_0

OEM UID_1

OEM UID_2

OEM UID_3

OEM UID_4

Reserved

Reserved

Reserved

64 bit Image Address High

Reserved

Image Size

Figure 32. CSF header structure

Table 67. CSF header structure (ISBC trust 3.0)

Offset Description

0x00 Barker Code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)

0x00 – 0x12

0x01 – 0x19

0x02 – 0x20

0x03 – 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK table, the SRK table is read.

* Description of fields in SRK table is mentioned below.

0x08 0x08 No. of keys

This field specifies the no. of keys in the SRK table

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
210 NXP Semiconductors

Table 67. CSF header structure (ISBC trust 3.0) (continued)

Offset Description

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

0x0a Field Reserved

0x0b IE : Reserved

MP : Execute Manufacturing Protection Routine

ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification

B01 : Identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)

LW : Leave Writeable; when set; ISBC does not set the SFP Write Disable

0x0C 0x0C Reserved

0x0D Reserved

0x0E Reserved

0x0F OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table, and ESBC images.

0x14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 SG table offset

This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG Table, the SG table is read.

* Description of fields in SG table is mentioned below.

0x1C No. of entries

This field specifies the number of entries present in SG table.

0x20 Entry point (32 bit)

ISBC transfers control to this location upon successful validation of ESBC image(s).

0x24 FSL UID 0

0x28 FSL UID 1

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 211

Table 67. CSF header structure (ISBC trust 3.0) (continued)

Offset Description

0x2c OEM UID 0

0x30 OEM UID 1

0x34 OEM UID 2

0x38 OEM UID 3

0x3c OEM UID 4

0x40 Reserved

0x44 Reserved

0x48 Reserved

0x4C Reserved

Table 68. CSF header structure (ISBC trust 3.1)

Offset Description

0x00 Barker Code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)

0x00 – 0x12

0x01 – 0x19

0x02 – 0x20

0x03 – 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK table, the SRK table is read.

0x08 0x08 No. of keys

This field specifies the no. of keys in the SRK table

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

0x0a Field Reserved

0x0b IE : ISBC Extension (Reserved)

MP : Execute Manufacturing Protection Routine

ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification

B01 : identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)

LW : Leave Writeable; when set; ISBC does not set the SFP Write Disable

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
212 NXP Semiconductors

Table 68. CSF header structure (ISBC trust 3.1) (continued)

0x0C 0x0C Reserved

0x0D Reserved

0x0E Reserved

0x0F OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table, and ESBC images.

0x14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 SG table offset

This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG table, the SG table is read.

0x1C No. of entries

This field specifies the number of entries present in SG table.

0x20 Entry point (64 bit)

ISBC transfers control to this location upon successful validation of ESBC image(s).

0x28 FSL UID 0

0x2c FSL UID 1

0x30 OEM UID 0

0x34 OEM UID 1

0x38 OEM UID 2

0x3c OEM UID 3

0x40 OEM UID 4

0x44 Reserved

0x48 Reserved

0x4C Reserved

Table 69. CSF header structure (ESBC trust 3.0 and trust 3.1)

Offset Description

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 213

Table 69. CSF header structure (ESBC trust 3.0 and trust 3.1) (continued)

0x00 Barker Code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)

0x00 – 0x12

0x01 – 0x19

0x02 – 0x20

0x03 – 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK Table, the SRK table is read.

0x08 0x08 No. of keys

This field specifies the no. of keys in the SRK table

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

0x0a Field Reserved

0x0b IE : ISBC Extension Flag

0x0C 0x0C Reserved

0x0D Reserved

0x0E Reserved

0x0F OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table and ESBC images.

0x14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 Image address (64 bit)

0x20 Image size

0x24 IE Key Select

0x28 FSL UID 0

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
214 NXP Semiconductors

Table 69. CSF header structure (ESBC trust 3.0 and trust 3.1) (continued)

0x2c FSL UID 1

0x30 OEM UID 0

0x34 OEM UID 1

0x38 OEM UID 2

0x3c OEM UID 3

0x40 OEM UID 4

0x44 Reserved

0x48 Reserved

0x4c Reserved

Table 70. SRK table structure

Offset Description

0x00 SRK 0 Length (Length of Modulus or Exponent; Modulus length always equals Exponent length)

0x04 SRK 0 Value (Modulus)

0x04 + K SRK 0 Value (Exponent)

0x04 + 2K SRK 0 (Padding; 8Kb - (Exponent+Modulus))

0x04 *1 + (10 * 1)K SRK 1 Length (Length of Modulus or Exponent; Modulus length always equals Exponent length)

0x04 * 2 + (10 *1) K SRK 1 Value (Modulus)

0x04 * 2+ (10 * 1) + 1k SRK 1 Value (Exponent)

0x04 * 2 + (10 * 1) + 2K SRK 1 (Padding; 8Kb - (Exponent+Modulus))

0x04 * (N-1) + (10 *(N-1))K SRK N Length (Length of Modulus or Exponent; Modulus length always equals Exponent length)

0x04 * N + (10 *(N-1))K SRK N Value (Modulus)

0x04 * N + (10 *(N-1)) + 1K SRK N Value (Exponent)

0x04 * N + (10 *(N-1)) + 2K SRK N (Padding; 8Kb - (Exponent+Modulus))

Table 71. SG Table Structure

Offset Description

0x00 Length

0x04 Reserved

0x08 SRC Address Low

0x0C SRC Address High

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 215

6.1.2.8 CSF header structure definition
Table 72. Trust architecture and SFP information

SoC Trust Arch.
version

SFP version POVDD DRVR OTPMK

Algo (CST) Register to
check
Hamming
Error

Algo (CST) Register to
check
Hamming
Error

LS2080A
(LS2 Rev1)

3.0 3.4 1.89 V A2 SFP Secret
Value
Hamming
Error Status
Register
(SFP_SVHES
R)

2 SFP Secret
Value
Hamming
Error Status
Register
(SFP_SVHES
R)

LS1088A 3.1 3.5 1.89 V A2 2

LS2088A
(LS2 Rev2)

3.1 3.5 1.89 V A2 2

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

Pointer to SG Table

entries in SG

32 bit Entry Point

FSL UID_0

FSL UID_1

OEM UID_0

OEM UID_1

OEM UID_2

OEM UID_3

OEM UID_4

Reserved

Reserved

Reserved

Reserved

Header Size = 0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0xC

0x8

0x4

0x0

PBI & ISBC Phase
(Trust 3.0)

Header Size = 0x50 Header Size = 0x50

ESBC Phase
(Trust 3.0 & 3.1)

PBI & ISBC Phase
(Trust 3.1)

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

Pointer to SG Table

entries in SG

64 bit Entry Point Low

FSL UID_0

FSL UID_1

OEM UID_0

OEM UID_1

OEM UID_2

OEM UID_3

OEM UID_4

Reserved

Reserved

Reserved

64 bit Entry Point High

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

64 bit Image Address Low

FSL UID_0

FSL UID_1

OEM UID_0

OEM UID_1

OEM UID_2

OEM UID_3

OEM UID_4

Reserved

Reserved

Reserved

64 bit Image Address High

Reserved

Image Size

Figure 33. CSF header structure

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
216 NXP Semiconductors

Table 73. CSF header structure (ISBC trust 3.0)

Offset Description

0x00 Barker code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)

0x00 – 0x12

0x01 – 0x19

0x02 – 0x20

0x03 – 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries is SRK table, the SRK table is read.

0x08 0x08 No. of keys

This field specifies the no. of keys in the SRK table

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

0x0a Field Reserved

0x0b IE : Reserved

MP : Execute Manufacturing Protection Routine

ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification

B01 : Identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)

LW : Leave Writeable; when set, ISBC does not set the SFP Write Disable

0x0C 0x0C Reserved

0x0D Reserved

0x0E Reserved

0x0F OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF Header, Scatter Gather table and ESBC images.

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 217

Table 73. CSF header structure (ISBC trust 3.0) (continued)

Offset Description

0x14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 SG table offset

This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries is SG Table, the SG table is read.

0x1C No. of entries

This field specifies the number of entries present in SG table.

0x20 Entry point (32 bit)

ISBC transfers control to this location upon successful validation of ESBC image(s).

0x24 FSL UID 0

0x28 FSL UID 1

0x2c OEM UID 0

0x30 OEM UID 1

0x34 OEM UID 2

0x38 OEM UID 3

0x3c OEM UID 4

0x40 Reserved

0x44 Reserved

0x48 Reserved

0x4C Reserved

Table 74. CSF header structure (ISBC trust 3.1)

Offset Description

0x00 Barker Code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)

0x00 – 0x12

0x01 – 0x19

0x02 – 0x20

0x03 – 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries is SRK Table, the SRK table is read.

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
218 NXP Semiconductors

Table 74. CSF header structure (ISBC trust 3.1) (continued)

0x08 0x08 No. of keys

This field specifies the no. of keys in the SRK Table

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

0x0a Field Reserved

0x0b IE : ISBC Extension (Reserved)

MP : Execute Manufacturing Protection Routine

ISS : Increment Security State; indicates whether the ISBC should increment the SNVS SSM upon
successful verification

B01 : identifies whether this is the CSF header of a boot 0 image (PBI) or a boot 1 image (SPL)

LW : Leave Writeable; when set, ISBC does not set the SFP Write Disable

0x0C 0x0C Reserved

0x0D Reserved

0x0E Reserved

0x0F OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table and ESBC images.

0x14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 SG table offset

This location contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG Table, the SG table is read.

0x1C No. of entries

This field specifies the number of entries present in SG table.

0x20 Entry point (64 bit)

ISBC transfers control to this location upon successful validation of ESBC image(s).

0x28 FSL UID 0

0x2c FSL UID 1

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 219

Table 74. CSF header structure (ISBC trust 3.1) (continued)

0x30 OEM UID 0

0x34 OEM UID 1

0x38 OEM UID 2

0x3c OEM UID 3

0x40 OEM UID 4

0x44 Reserved

0x48 Reserved

0x4C Reserved

Table 75. CSF header structure (ESBC trust 3.0 and trust 3.1)

Offset Description

0x00 Barker code

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (12_19_20_01)

0x00 – 0x12

0x01 – 0x19

0x02 – 0x20

0x03 – 0x01

It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset

This location contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in SRK table, the SRK table is read.

0x08 0x08 No. of keys

This field specifies the no. of keys in the SRK table

0x09 Key No. for verification

Key # to use for verification; the key in the table which the ISBC uses to attempt signature verification

0x0a Field Reserved

0x0b IE : ISBC Extension Flag

0x0C 0x0C Reserved

0x0D Reserved

0x0E Reserved

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
220 NXP Semiconductors

Table 75. CSF header structure (ESBC trust 3.0 and trust 3.1) (continued)

0x0F OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.

FUID : when set, the 64b FUID is included in the digital signature verification and the FUID is included
in the CSF header

Other bits are reserved.

0x10 RSA signature offset

This location contains an address which is the offset of the RSA signature from the start of CSF header.
Using this offset and the signature length, the RSA signature is read. The RSA signature is calculated
over CSF header, Scatter Gather table and ESBC images.

0x14 RSA signature length

This location contains the length of the RSA signature in bytes.

0x18 Image address (64 bit)

0x20 Image size

0x24 IE Key Select

0x28 FSL UID 0

0x2c FSL UID 1

0x30 OEM UID 0

0x34 OEM UID 1

0x38 OEM UID 2

0x3c OEM UID 3

0x40 OEM UID 4

0x44 Reserved

0x48 Reserved

0x4c Reserved

6.1.2.9 Secure boot specific RCW fields
This section describes the various fields in RCW which are relevant to the ISBC code executed in the Service Processor Boot
ROM.

SB_EN Secure Boot Enable

Bit(s): 266

• 0 Secure Boot is not enabled[9]

• 1 Secure Boot is enabled

PBI_LENGTH Pre-Boot Initialization Length

Bit(s): 287-276

[9] Secure Boot is enabled if either this RCW bit is set or the Intent to Secure fuse value is set.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 221

Size in words of the PBI commands.

SDBGEN Secure Debug Enable

Bit(s): 288

Secure Debug (CoreSight SPIDEN) is enabled after RCW is loaded if this RCW bit is set and the ‘Intent to
Secure’ fuse value is cleared.

• 0 Secure debug is not enabled

• 1 Secure debug is enabled if the ITS fuse is not burned to asserted

GPIO_LED_EN GPIO LED Enable

Bit(s): 311

If the OEM chooses to implement a LED to indicate secure boot failure, the LED will be connected to a GPIO.
The SP Boot ROM code sequence turns on the LED (if RCW[GPIO_LED_EN] = 1) by configuring one GPIO
direction (GPDIR) register bit as an output and writing the corresponding output in a GPIO block data
(GPDAT) register.

GPIO_LED_NUM GPIO Number for LED

Bit(s): 310-304

If GPIO_LED_EN is set, these bits specify the GPIO number to which LED is connected.

• 0x1f - 0x00 : GPIO_1

• 0x3f - 0x20 : GPIO_2

• 0x5f - 0x40 : GPIO_3

• 0x7f - 0x60 : GPIO_4

The GPIO output assigned to the LED is driven high to whatever VDD voltage is supplied by

the integrated device for the chosen GPIO output.Since GPIO pins at the time of SoC reset

are initially configured as inputs, and since there will be some indeterminate period of time

from the assertion of SoC reset to when the GPIO pin is configured by SP Boot ROM as an

output, the GPIO pin chosen must be terminated with a weak pulldown to ground.

 NOTE

6.1.2.10 ISBC error codes

Error handling in production environment (ITS = 1)

• Error code would be logged in DCFG SCARTCH register.

• SNVS would be transitioned to soft fail state.

• Activate the LED. If the OEM chooses to implement a LED to indicate secure boot failure, the LED will be connected to a
GPIO. The information of GPIO is specified via bits in RCW.

GPIO_LED_EN Bit(s): 311

The SP Boot ROM code sequence turns on the LED (if RCW[GPIO_LED_EN] = 1) by configuring one
GPIO direction (GPDIR) register bit as an output and writing the corresponding output in a GPIO block
data (GPDAT) register.

GPIO_LED_NUM Bit(s): 310-304

If GPIO_LED_EN is set, these bits specify the GPIO number to which LED is connected.

— 0x1f - 0x00 : GPIO_1

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
222 NXP Semiconductors

— 0x3f - 0x20 : GPIO_2

— 0x5f - 0x40 : GPIO_3

— 0x7f - 0x60 : GPIO_4

• Soft reset would be issued

• Cores would then enter infinite loop (If Reset is disabled)[10]

Error handling in development environment (ITS = 0, SB_EN = 1)

• Error code would be logged in DCFG SCARTCH register.

• SNVS would be transitioned to non-secure state.

• Further actions depends on the type of failure

Fatal Errors Core is put in infinite Loop

Non-Fatal Error Application software is allowed to execute

Error codes

The Error codes reported by SP Boot ROM can be categorized in following sections.

1. Core exceptions

2. Device errors

3. RCW/PBI errors

4. Validation errors

Table 76. ISBC error codes

When error
generated

Error code Value Description

Core exceptions

Random ERROR_UNDEFINED_INSTRUCTION 0x1 Occurs if neither the processor nor any attached
co-processor recognizes the currently executing
instruction.

Random ERROR_SWI 0x2 Software Interrupt is a user-defined interrupt
instruction. It allows a program running in User
mode, for example, to request privileged
operations that run in Supervisor mode.

Random ERROR_PREFETCH_ABORT 0x3 Occurs when the processor attempts to execute
an instruction that has been prefetched from an
illegal address.

Random ERROR_DATA_ABORT 0x4 Occurs when a data transfer instruction attempts
to load or store data at an illegal address.

Random ERROR_IRQ 0x5 Occurs when the processor external interrupt
request pin is asserted (LOW) and IRQ interrupts
are enabled.

Table continues on the next page...

[10] To debug the root cause of failure and view the error code, Reset has to be disabled on the SoC.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 223

Table 76. ISBC error codes (continued)

When error
generated

Error code Value Description

Random ERROR_FIQ 0x6 Occurs when the processor external fast interrupt
request pin is asserted (LOW) and FIQ interrupts
are enabled.

Device Errors – I2C

Random ERROR_I2C_TIMEOUT 0x11

Random ERROR_I2C_RESTART 0x12

Random ERROR_I2C_NODEV 0x13

Random ERROR_I2C_NOT_IDLE 0x14

Random ERROR_I2C_NOT_BUSY 0x15

Random ERROR_I2C_INVALID_OFFSET 0x16

Random ERROR_I2C_NO_WAKEUP_INIT 0x17

Random ERROR_I2C_NO_WAKEUP_READ 0x18

Random ERROR_I2C_NOACK 0x19

Random ERROR_READ_TIMEOUT 0x1a

Random ERROR_SLAVE_ADDR_TIMEOUT 0x1b

Random ERROR_MEM_ADDR_TIMEOUT 0x1c

Device Errors – ESDHC

Random ERROR_ESDHC_CARD_DETECT_FAIL 0x31

Random ERROR_ESDHC_UNUSABLE_CARD 0x32

Random ERROR_ESDHC_COMMUNICATION_ER
ROR

0x33

Random ERROR_ESDHC_BLOCK_LENGTH 0x34

Device Errors – QSPI

Random ERROR_QSPI_INVALID_OFFSET 0x41

Phase – “RCW”

RCW Phase ERROR_PREAMBLE 0x50 Preamble not found.

RCW Phase ERROR_RCW_CMD_NOT_FOUND 0x51 RCW command not found

RCW Phase ERROR_RCW_CHECKSUM_MISMATCH 0x52 Checksum mismatch in RCW

RCW Phase ERROR_RCW_SRC_INVALID 0x58 RCW_SRC is not a valid source

RCW Phase ERROR_RCW_REQ_NOT_SET 0x59 RCW_REQ bit never set by Reset state machine
(RSM)

RCW Phase ERROR_PBI_REQ_NOT_SET 0x60 PBI_REQ bit never set (by RSM)

Phase = PBI

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
224 NXP Semiconductors

Table 76. ISBC error codes (continued)

When error
generated

Error code Value Description

PBI Phase ERROR_SEC_CAAM_INIT 0x61 CAAM init failed (Would rarely occur)

PBI Phase ERROR_SEC_CAAM_NOT_FOUND 0x62 CAAM block not found in case of secure boot

PBI Phase ERROR_PBI_SRC_NOT_SAME_AS_RC
W_SRC

0x64 Mismatch between RCW_SRC and PBI_SRC
fields

PBI Phase ERROR_PBI_LENGTH 0x65 PBI length defined in RCW[PBI_LEN] field is
invalid

PBI Phase ERROR_PBI_LAST _CMD_NOT_STOP 0x66 STOP or CRC&STOP not found at the end of the
specified PBI Length.

PBI Phase ERROR_PBI_ COMMAND_UNKNOWN 0x67 An invalid command parsed by PBI Parser

PBI Phase ERROR_CAAM_SELF_TEST 0x6a CAAM self-test failed

PBI Phase ERROR_PBI_ COPY_INVALID_
SRC_TYPE

0x70 Copy command, src field does not match the
RCW_SRC field

PBI Phase ERROR_PBI_ COPY_INVALID_
DST_ADDR

0x71 Copy command, dest field is not 0x00

PBI Phase ERROR_PBI_
COPY_INVALID_SRC_ADDR_
SRC_ADDR

0x72 SRC address is invalid (ROM/ OCRAM reserved
for SP)

PBI Phase ERROR_PBI_CCSR_BYTE_COUNT 0x74 Byte count in CCSR Write not valid

PBI Phase ERROR_PBI_CCSR_4_BYTE_ALLIGNED 0x75 Offset is not 4 byte aligned

PBI Phase ERROR_PBI_CCSR_OFFSET_INVALID 0x76 Offset is invalid that is less than allowed CCSR
Base 0x0100_0000

PBI Phase ERROR_PBI_ACSR_INVALID_ADDRESS 0x78 Source address in ACSR invalid (invalid
addresses - OCRAM or ROM address)

PBI Phase ERROR_PBI_ACSR_BYTE_COUNT 0x79 Byte count in ACSR write command not valid

PBI Phase ERROR_PBI_ACSR_WINDOW_NOT_SE
T

0x7a ATU Window is not configured

PBI Phase ERROR_PBI_ACSR_OFFSET_ALLIGNE
D

0x7b ACSR offset is invalid and trying to write to
Reserved space on OCRAM.

PBI Phase ERROR_PBI_ALTCFG_WNDW_INVALID 0x7c ATU Window is invalid

PBI Phase ERROR_PBI_JUMP_OUT_LENGTH 0x80 Offset specified in JUMP command does not lie in
PBI length range

PBI Phase ERROR_PBI_JUMP_4_BYTE_ALLIGNED 0x81 Offset specified in JUMP command is not 4 byte
aligned

PBI Phase ERROR_PBI_JUMP_OFFSET_0 0x82 Offset specified in JUMP command is 0

PBI Phase ERROR_PBI_LOADC_4_BYTE_ALLIGNE
D

0x84 Address specified in LOAD condition command is
not 4 byte aligned

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 225

Table 76. ISBC error codes (continued)

When error
generated

Error code Value Description

PBI Phase ERROR_PBI_JUMPC_OUT_LENGTH 0x88 Offset specified in JUMP command does not lie in
PBI length range

PBI Phase ERROR_PBI_JUMPC_4_BYTE_ALLIGNE
D

0x89 Offset specified in JUMP conditional command is
not 4 byte aligned

PBI Phase ERROR_PBI_JUMPC_CONDITION_NOT
_SET

0x8a Jump conditional command encountered before
condition is set using Load Condition

PBI Phase ERROR_PBI_CRC_MISMATCH 0x90 CRC mismatch

PBI Phase ERROR_PBI_POLL 0x91 Poll timeout

PBI Phase ERROR_PBI_POLL_4_BYTE_ALLIGNED 0x92 Address being polled is not 4 byte aligned

PBI Phase ERROR_PBI_BOOT1_CSF_INVALID_AD
DR

0x94 Address of CSF header is not valid

PBI Phase ERROR_PBI_BOOT1_CSF_ALLIGNED 0x95 Address of CSF header is not 4 byte aligned

Phase = Verify (System State Errors (Secure boot))

Before PBI
verification

ERROR_STATE_NOT_CHECK 0xf0 SEC_MON State Machine not in CHECK state at
start of ISBC in primary flow. Some Security
violation could have occurred.

Before PBI
verification

ERROR_STATE_NOT_CHECK_TRUSTE
D

0xf1 SEC_MON State Machine not in CHECK/Trusted
state at start of ISBC in secondary flow.

Phase = Verify (Secure Boot Fatal errors)

Verify PBI ERROR_PBI_COMMANDS_NOT_FOUN
D

0xf4 Not having PBI commands in RCW is error
scenario for secure boot

Verify PBI ERROR_SEC_HDR_NOT_FOUND 0xf5 Error if security header command not found in
RCW. Expected location of Security Header
command

• After Preamble for hard coded RCW

• After preamble and rcw for other RCW
sources

Phase = Verify (Secure Boot Fatal (Header parsing errors))

Verify PBI ERROR_HEADER_LOC 0xf8 Header location is invalid

Verify PBI ERROR_HEADER_BARKER 0xf9 Barker code in the header is incorrect

Verify PBI ERROR_HEADER_INVALID 0xfa Flag B01 in the header identifies this as SPL
header

Phase = Verify (Secure Boot Non Fatal (Key/UID related errors))

Verify PBI ERROR_INVALID_SRK_ENTRY_KEYLE
N

0x210 Length of public key specified in one of the entries
in srk table is not one of the supported values.

(1k, 2k, or 4k)

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
226 NXP Semiconductors

Table 76. ISBC error codes (continued)

When error
generated

Error code Value Description

Verify PBI ERROR_ KEY_LEN_
NOT_TWICE_SIG_LEN

0x211 Public key is not twice the length of the RSA
signature

Verify PBI ERROR_ KEY_MOD_1 0x212 Most significant bit of modulus in header is zero.

Verify PBI ERROR_ KEY_MOD_2 0x213 Modulus in header is even number

Verify PBI ERROR_ SIG_KEY_MOD 0x214 Signature value is greater than modulus in header

Verify PBI ERROR_ INVALID_SRK_NUM_ENTRY 0x215 Number of entries field in CSF Header is > 8 (This
is when srk_flag in header is 1)

Verify PBI ERROR_ INVALID_KEY_NUM 0x216 Key number to be used from srk table is not
present in table. (This is when srk_flag in header
is 1)

Verify PBI ERROR_ KEY_REVOKED 0x217 Key selected from srk table has been revoked
(This is when srk_flag in header is 1)

Verify PBI ERROR_ FSL_UID 0x220 FSL_UID in ESBC header did not match the
FSL_UID in SFP if fsl uid flag Is 1

Verify PBI ERROR_ OEM_UID0 0x221 OEM_UID0 in ESBC header did not match the
OEM_UID0 in SFP if oem uid0 flag is 1.

Verify PBI ERROR_ OEM_UID1 0x222 OEM_UID1 in ESBC header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify PBI ERROR_ OEM_UID2 0x223 OEM_UID1 in ESBC header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify PBI ERROR_ OEM_UID3 0x224 OEM_UID1 in ESBC header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify PBI ERROR_ OEM_UID4 0x225 OEM_UID1 in ESBC header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Phase = Verify (Header Verification Failure) Secure Boot Non Fatal

Verify PBI ERROR_ HASH_COMPARE_KEY 0x240 Super Root Key Hash Comparison failure.
Mismatch in the hash of the public key/srk table as
present in the header with the value in the SRK
HASH fuse.

Verify PBI ERROR_ HASH_COMPARE_EM 0x241 RSA signature check failure. Signature provided
by you in the header does not match with the
signature of the ESBC image generated by ISBC.
The ESBC image loaded by you may be different
than the image used while generating the
signature (using CST)

Phase = Verify (Secure Boot Fatal (Header parsing errors))

Verify Boot1 ERROR_HEADER_LOC 0x100f8 Header location is invalid

Verify Boot1 ERROR_HEADER_BARKER 0x100f9 Barker code in the header is incorrect.

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 227

Table 76. ISBC error codes (continued)

When error
generated

Error code Value Description

Verify Boot1 ERROR_HEADER_INVALID 0x100fa Flag B01 in the header identifies this as SPL
header.

Phase = Verify (Secure Boot Fatal (SG Table related errors))

Verify Boot1 ERROR_SG_ENTRY_POINT 0x10200 Entry point is not within any of SG entries

Verify Boot1 ERROR_SG_NUM_ENTRY 0x10201 No. of entries in SG table is 0 or >8

Verify Boot1 ERROR_SG_SIZE_ZERO 0x10202 A SG entry has size 0

Phase = Verify (Secure Boot Non-Fatal (Key/UID related errors))

Verify Boot1 ERROR_INVALID_SRK_ENTRY_KEYLE
N

0x10210 Length of public key specified in one of the entries
in srk table is not one of the supported values.

(1k, 2k, or 4k)

Verify Boot1 ERROR_ KEY_LEN_
NOT_TWICE_SIG_LEN

0x10211 Public key is not twice the length of the RSA
signature

Verify Boot1 ERROR_ KEY_MOD_1 0x10212 Most significant bit of modulus in header is zero

Verify Boot1 ERROR_ KEY_MOD_2 0x10213 Modulus in header is even number

Verify Boot1 ERROR_ SIG_KEY_MOD 0x10214 Signature value is greater than modulus in header

Verify Boot1 ERROR_ INVALID_SRK_NUM_ENTRY 0x10215 Number of entries field in CSF Header is > 8 (This
is when srk_flag in header is 1)

Verify Boot1 ERROR_ INVALID_KEY_NUM 0x10216 Key number to be used from srk table is not
present in table. (This is when srk_flag in header
is 1)

Verify Boot1 ERROR_ KEY_REVOKED 0x10217 Key selected from srk table has been revoked
(This is when srk_flag in header is 1)

Verify Boot1 ERROR_ FSL_UID 0x10220 FSL_UID in ESBC Header did not match the
FSL_UID in SFP if fsl uid flag Is 1

Verify Boot1 ERROR_ OEM_UID0 0x10221 OEM_UID0 in ESBC Header did not match the
OEM_UID0 in SFP if oem uid0 flag is 1.

Verify Boot1 ERROR_ OEM_UID1 0x10222 OEM_UID1 in ESBC Header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify Boot1 ERROR_ OEM_UID2 0x10223 OEM_UID1 in ESBC Header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify Boot1 ERROR_ OEM_UID3 0x10224 OEM_UID1 in ESBC Header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Verify Boot1 ERROR_ OEM_UID4 0x10225 OEM_UID1 in ESBC Header did not match the
OEM_UID1 in SFP if oem uid1 flag is 1.

Phase = Verify (Header Verification Failure) Secure Boot Non-Fatal

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
228 NXP Semiconductors

Table 76. ISBC error codes (continued)

When error
generated

Error code Value Description

Verify Boot1 ERROR_ HASH_COMPARE_KEY 0x10240 Super Root Key Hash Comparison failure.
Mismatch in the hash of the public key/srk table as
present in the header with the value in the SRK
HASH fuse.

Verify Boot1 ERROR_ HASH_COMPARE_EM 0x10241 RSA signature check failure. Signature provided
by you in the header does not match with the
signature of the ESBC image generated by ISBC.
The ESBC image loaded by you may be different
than the image used while generating the
signature(using CST)

Verify Boot1 ERROR_PRIVATE_KEY_DERIVATION 0x10250 Error in Private key derivation when enabling
Manufacturing Protection.

6.1.2.11 ESBC error codes

Table 77. ESBC validation failures

Value Code Definition

0x4 ERROR_ESBC_CLIENT_HEADER_BARKE
R

Wrong barker code in header

0x8 ERROR_ESBC_CLIENT_HEADER_KEY_LE
N

Wrong public key length in header

0x10 ERROR_ESBC_CLIENT_HEADER_SIG_LE
N

Wrong signature length in header

0x20 ERROR_ESBC_CLIENT_HEADER_KEY_LE
N_NOT_TWICE_SIG_LEN

Public key length not twice of signature length

0x40 ERROR_ESBC_CLIENT_HEADER_KEY_M
OD_1

Public key Modulus most significant bit not set

0x80 ERROR_ESBC_CLIENT_HEADER_KEY_M
OD_2

Public key Modulus in header not odd

0x100 ERROR_ESBC_CLIENT_HEADER_SIG_KE
Y_MOD

Signature not less than modulus

0x400 ERROR_ESBC_CLIENT_HASH_COMPARE
_KEY

Public key hash comparison failed

0x800 ERROR_ESBC_CLIENT_HASH_COMPARE
_EM

RSA verification failed

0x10000 ERROR_ESBC_CLIENT_HEADER_SG No SG support

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 229

Table 77. ESBC validation failures (continued)

Value Code Definition

0x20000 ERROR_ESBC_WRONG_CMD Failure in command/Unknown command/Wrong arguments of
boot script.

0x40000 ERROR_ESBC_MISSING_BOOTM Bootm command missing from boot script.

6.1.2.12 Troubleshooting

Symptoms Reasons and/or Recommended actions

1. No print on UART console. Check the status register of sec mon block. Refer to the details of the register
from the Reference Manual. Bits OTPMK_ZERO, OTMPK_SYNDROME
and PE should be 0 otherwise there is some error in the OTPMK fuse blown
by you.

If OTMPK fuse is correct (see Step 1), check the DCFG SCRATCHRW3
register for error code. For a list of error codes, see ISBC error codes on
page 222

If Error code = 0 then check the Security Monitor state in HPSR register of
Sec Mon.

Sec Mon in Check State (0x9)

If ITS fuse = 1, then it means ISBC code has reset the board. This may be
due to the following reasons “

Hash of the public key used to sign the ESBC U-Boot does not match with
the value in SRK Hash Fuse

Or

Signature verification of the image failed

Sec Mon in Trusted State (0xd) or Non-Secure State (0xb)

Check the entry point field in the CSF header.

If entry point is correct, ensure that U-Boot image has been signed with the
correct input file.

2. Instead of Linux prompt, you get a U-
Boot command prompt.

You have not booted in secure boot mode. You never get a U-Boot prompt
in secure boot flow. You would reach this stage if ITS = 0 and you are running
normal U-Boot.

3 U-Boot hangs or board resets Some validation failure occurred in U-Boot. Error code and description would
be printed on U-Boot console. See ESBC error codes on page 229for more
details on errors.

6.1.3 Code Signing Tool
To assist with signing of various images and creation of CSF header, NXP offers a Code Signing Tool (CST). It is generally expected
that the CST signs images in an offline process

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
230 NXP Semiconductors

Figure 34. Tool in CST Package

6.1.3.1 Key generation

The CST begins by generating a RSA public and private key pair using OPENSSL APIs. The key pair consists of 3 parts; N, E,
and D.

N - Modulus

E - Encryption exponent

D - Decryption exponent

Public Key - It is a combination of E and N components.

Private Key - It is a combination of D and N components.

The application allows the user to feed 3 key sizes for generating keys. The key sizes are 1024 bits, 2048 bits, and 4096 bits.

It is the OEM's responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot. If this key is ever lost, the OEM will be unable to update the image.

6.1.3.1.1 gen_keys
This utility generates a RSA public and private key pair using OPENSSL APIs. The key pair consists of 3 parts; N, E, and D.

N – Modulus

E – Encryption exponent

D – Decryption exponent

Public Key - It is a combination of E and N components.

Private Key - It is a combination of D and N components.

It is the OEM’s responsibility to tightly control access to the RSA private signature key. If this key is ever exposed, attackers will
be able to generate alternate images that will pass secure boot. If this key is ever lost, the OEM will be unable to update the image.

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 231

Features

• The application allows the user to generate 3 sizes keys. The key sizes are 1024 bits, 2048 bits, and 4096 bits.

• It generates RSA key pairs in PEM format.

• Keys are generated and stored in the files. User can provide file names through command line option.

Usage

./gen_keys [OPTION] SIZE

SIZE refers to size of public key in bits. (Modulus size).

Size supported -- 1024, 2048, 4096. The generated keys would be in PEM format.

Options:

-h,--help Usage of the command

-k,--pubkey File where Public key would be stored in PEM format (default = srk.pub)

-p,--privkey File where Private key would be stored in PEM format (default = srk.priv)

Usage Example

$./gen_keys 1024

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

===
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
===

Generated SRK pair stored in :
 PUBLIC KEY srk.pub
 PRIVATE KEY srk.pri

$./gen_keys 4096 -k my.pub -p my.pri

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

===
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
===

Generated SRK pair stored in :
 PUBLIC KEY my.pub
 PRIVATE KEY my.pri

6.1.3.1.2 gen_otpmk_drbg
This utility in the Code Signing Tool inserts hamming code in a user defined 256b hexadecimal string, or generate a 256b
hexadecimal random number and inserts the hamming code in it which can be used as OTPMK value.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
232 NXP Semiconductors

For random number generation, Hash_DRBG library is used. The Hash_DRBG is an implementation of the NIST

approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is the Linux /

dev/random.

 NOTE

Features:

• Generates random numbers, which can be used if user defined string is not provided, to generate OTPMK value.

• Calculates and embeds the hamming code in the hexadecimal string.

Usage:

./gen_otpmk_drbg -b <bit_order> --s [string]

<bit_order> : (1 or 2) OTPMK Bit Ordering Scheme in SFP

1 : TA1.x

2 : TA2.x, TA3.x

<string> : 32 byte string

In case string is not specified, the utility generates a 32 bytes random number and embeds hamming code in it.

Usage Example:

$ gen_otpmk_drbg -b 1

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

Input string not provided
Generating a random string

* Hash_DRBG library invoked
* Seed being taken from /dev/urandom

OTPMK[255:0] is:
d2f63a662f69a1faa4c2406f83eedde7647fbd3c62ac442c67fad2d4cda8b3a0

 NAME | BITS | VALUE
_________|______________|____________
OTPMKR 0 | 31- 0 | cda8b3a0
OTPMKR 1 | 63- 32 | 67fad2d4
OTPMKR 2 | 95- 64 | 62ac442c
OTPMKR 3 | 127- 96 | 647fbd3c
OTPMKR 4 | 159-128 | 83eedde7
OTPMKR 5 | 191-160 | a4c2406f
OTPMKR 6 | 223-192 | 2f69a1fa
OTPMKR 7 | 255-224 | d2f63a66

$./gen_otpmk_drbg -b 2 --s 1111111122222222333333334444444455555555666666667777777788888888

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

OTPMK[255:0] is:
1111111122222222333333334444444455555555666666667777777788888888

 NAME | BITS | VALUE
_________|______________|____________
OTPMKR 0 | 255-224 | 11111111

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 233

OTPMKR 1 | 223-192 | 22222222
OTPMKR 2 | 191-160 | 33333333
OTPMKR 3 | 159-128 | 44444444
OTPMKR 4 | 127- 96 | 55555555
OTPMKR 5 | 95- 64 | 66666666
OTPMKR 6 | 63- 32 | 77777777
OTPMKR 7 | 31- 0 | 88888888

6.1.3.1.3 gen_drv_drbg
This utility in the Code Signing Tool inserts hamming code in a user defined 64b hexadecimal string, or generate a 64b hexadecimal
random number and inserts the hamming code in it which can be used as Debug Response Value.

For random number generation, Hash_DRBG library is used. The Hash_DRBG is an implementation of the NIST

approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is the Linux /

dev/random.

 NOTE

Features:

• Generates random numbers, which can be used if user defined string is not provided, to generate Debug Response value.

• Calculates and embeds the hamming code in the hexadecimal string.

Usage:

./gen_drv_drbg <Hamming_algo> [string]

Hamming_algo : Platforms

A1 : T10xx, T20xx, T4xxx, P4080rev1, B4xxx

A2 : LSx

B : P10xx, P20xx, P30xx, P4080rev2, P4080rev3, P50xx, BSC913x, C29x

string : 8 byte string

In case string is not specified, the utility generates an 8 byte random number and embeds hamming code in it.

Usage Example:

$./gen_drv_drbg A2

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

Input string not provided
Generating a random string

* Hash_DRBG library invoked
* Seed being taken from /dev/random

Random Key Genearted is:
f4bfc65e16284dbb
DRV[63:0] after Hamming Code is:
f4bfc65f16294daf
 NAME | BITS | VALUE
_________|______________|____________
DRV 0 | 63 - 32 | f4bfc65f
DRV 1 | 31 - 0 | 16294daf

$./gen_drv_drbg A2 1652afe595631dec

 #--#
 #------- -------- -------- -------#

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
234 NXP Semiconductors

 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

DRV[63:0] after Hamming Code is:
1652afe495631cea
 NAME | BITS | VALUE
_________|______________|____________
DRV 0 | 63 - 32 | 1652afe4
DRV 1 | 31 - 0 | 95631cea

6.1.3.2 Header creation

6.1.3.2.1 uni_pbi
Following options are available with the uni_pbi command.

$./uni_pbi
 --verbose Display header Info after Creation. This option is invalid for TA2
platform
 --hash Print the SRK(Public key) hash. This option is invalid for TA2 platform
 --img_hash Header is generated without Signature.
 Image Hash is stored in a separate file. This option is invalid for TA2
platform
 --help Show the Help for Tool Usage.

The input to this tool will be an input file specifying the platform. Based on that, there are two separate behaviour of the tool.

uni_pbi for TA2.x platforms is used for the following:

• To add boot location pointer and set SB_EN and BOOT_HO value for secure boot

• (optional) To add PBI commands (ACS write commands to add U-Boot spl and its header to OCRAM from Non-XIP
memory).

• (optional) To append images (U-Boot, Boot script, and their headers) to RCW file.

Refer Hardware Pre-Boot Loader (PBL) based platforms on page 146 for TA2.x based platforms

uni_pbi for Service processor based platforms

• uni_pbi tool is used for creating signature and header over PBI commands.

Table 78. Description of fields in input files of both type of platforms (TA2.x and TA3.x)

Field name Description Platform supported

PLATFORM The platform for which tool is being used TA 2.x and TA 3.x

RCW_PBI_FILENAME Input image file name. The rcw file which has to be modified. TA 2.x and TA 3.x

BOOT1_PTR Address of ISBC (Boot1) CSF Header TA 2.x and TA 3.x

OUTPUT_RCW_PBI_FILENAME To identify the platform for which the tool is being used. This
field is optional. If not specified, it will take default name.

TA 2.x

BOOT_SRC Only to be specified in case of SD boot TA 2.x

SB_EN Field to enable or disable secure boot, by setting SB_EN bit in
rcw file to 1

TA 2.x

BOOT_HO To put core in hold-off state to fuse key hash in case of secure
boot, by setting BOOT_HO bit in rcw file to 1

TA 2.x

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 235

Table 78. Description of fields in input files of both type of platforms (TA2.x and TA3.x) (continued)

Field name Description Platform supported

COPY_CMD To add ACS write commands to write U-Boot spl and is header
to OCRAM. This is an optional field. If not mentioned, won't add
the command.

TA 2.x

APPEND_IMAGES To append U-Boot, Boot script, and their headers to the new rcw
generated. It is an optional field. This is an optional field, if not
specified, no images will be appended.

TA 2.x

KEY_SELECT Specify the key to be used in signature generation from the SRK
table

TA 3.x

PRI_KEY Private key file name in PEM format. The maximum keys
supported are 8.

TA 3.x

FSL_UID_x FSL UID(s) to be populated in the header TA 3.x

OEM_UID_x OEM UID(s) to be populated in the header TA 3.x

OUTPUT_HDR_FILENAME Output file name of the header. An output file name is generated
with rcw commands appended with signed PBI commands.

TA 3.x

IMAGE_HASH_FILENAME used with '--img_hash' option (Name of file in which Image Hash
is stored)

TA 3.x

MP_FLAG Manufacturing Protection Flag TA 3.x

ISS_FLAG Increment Security State Flag TA 3.x

LW_FLAG Leave Writeable Flag TA 3.x

VERBOSE Specify VERBOSE as 1, if you want to display header
information. This can also be done with '--verbose' option

TA 3.x

IE_TABLE_ADDR 64-bit address of IE table(to be used in case of IE key extension
feature usage)

TA 3.x

Sample input files are present in the CST tool at location: input_files/uni_pbi/<platform>/

For example, input_files/uni_pbi/ls1/input_pbi_sd_secure

In TA 3.x, SB_EN and BOOT_HO fields are by default set to 1 to enable secure boot.

 NOTE

TA 3.x : LS1088, LS2088. To know platforms under TA 2.x, refer Trust Architecture and SFP Information on page

180

 NOTE

6.1.3.2.1.1 Sample Input File
Sample input file for TA2 based platforms

/*
 * Copyright 2016 NXP
 */
--
For PBI Creation
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME= u-boot-with-spl-pbl.bin
--
Specify the output file name [Optional].

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
236 NXP Semiconductors

Default Values chosen in Tool
OUTPUT_RCW_PBI_FILENAME=u-boot-with-spl-pbl-sec.bin
--
#specify the boot src
BOOT_SRC=SD_BOOT
Specify the platform
PLATFORM=LS1020
Specify the RCW Fields. (0 or 1) - [Optional]
SB_EN=1
BOOT_HO=1
BOOT1_PTR=10016000
--
Specify the PBI commands - [Optional]
Argument: COPY_CMD = (src_offset, dest_offset, Image name)
Split hdr_uboot_spl.out in PBI commads
COPY_CMD={ffffffff,10016000,hdr_uboot_spl.out;}
--
Specify the Images to be appended
Arguments: APPEND_IMAGES=(Image name, Offset from start)
APPEND_IMAGES={u-boot-dtb.bin,00022000;}
APPEND_IMAGES={hdr_uboot.out,00122000;}
APPEND_IMAGES={hdr_bs.out, 00124000;}
APPEND_IMAGES={bootscript,00128000;}
--

Sample input file for SP based platforms

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.1: LS2088, LS1088
PLATFORM=LS1088

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub>, <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.1): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pri>
PRI_KEY=srk.pri

For PBI Signing
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME=rcw.bin
Address of ISBC (Boot1) CSF Header [Mandatory]
BOOT1_PTR=20c00000

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=rcw_sec.bin
IMAGE_HASH_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 237

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

6.1.3.2.2 uni_pbi (create_hdr_pbi)
uni_pbi tool is used for creating signature and header over PBI commands.

This section will focus on creating PBI image for secure boot. For pre-boot initialization in a secure boot use case, RCW commands,
Security header commands, Key tables, and signature are all required.

Usage:

To view usage of tool:

$./uni_pbi --help

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

Correct Usage of Tool is:

./create_hdr_pbi [options] <input_file>
 --verbose Display header Info after Creation
 --hash Print the SRK(Public key) hash.
 --img_hash Header is generated without Signature.
 Image Hash is stored in a separate file.
 --help Show the Help for Tool Usage.

<input_file> Contains all information required by tool

* uni_pbi is a wrapper script over the TOOL
* Correct Usage (Description as specified above):
*
* ./uni_pbi [options] <input_file>
*

Usage example:

$./uni_pbi input_files/uni_pbi/ls2088_1088/qspi/input_pbi_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_pbi/ls2088_1088/qspi/input_pbi_qspi_secure

**
* Header File is with Signature appended
**

Header File Created: rcw_sec.bin

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
238 NXP Semiconductors

SRK (Public Key) Hash:
ff9a791711e01321b66d0521c31b1e03bbb55ec833a5f2233d52a160f1c099bf
 SFP SRKHR0 = ff9a7917
 SFP SRKHR1 = 11e01321
 SFP SRKHR2 = b66d0521
 SFP SRKHR3 = c31b1e03
 SFP SRKHR4 = bbb55ec8
 SFP SRKHR5 = 33a5f223
 SFP SRKHR6 = 3d52a160
 SFP SRKHR7 = f1c099bf

$./uni_pbi --verbose input_files/uni_pbi/ls2088_1088/qspi/input_pbi_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_pbi/ls2088_1088/qspi/input_pbi_qspi_secure

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200
- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(400)
- UID Information
- UID Flags = 00
- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 20
- ISS = 1
- MP = 0
- LW = 0
- B01 = 0
- Image Information
- RCW File : rcw.bin
- Boot1 PTR : 30004000
- Initial No. Of PBI Words : 4 (0x4)
- Final No. Of PBI Words : 27 (0x1b)
- RSA Signature Information
- RSA Offset : 800
- RSA Size : 200

Image Hash:
1f9a4483bf618f4d262ce9f92dcb29f6d55523cf0305db9ef0d392456f4a52bb

**
* Header File is with Signature appended
**

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 239

Header File Created: rcw_sec.bin

SRK (Public Key) Hash:
ff9a791711e01321b66d0521c31b1e03bbb55ec833a5f2233d52a160f1c099bf
 SFP SRKHR0 = ff9a7917
 SFP SRKHR1 = 11e01321
 SFP SRKHR2 = b66d0521
 SFP SRKHR3 = c31b1e03
 SFP SRKHR4 = bbb55ec8
 SFP SRKHR5 = 33a5f223
 SFP SRKHR6 = 3d52a160
 SFP SRKHR7 = f1c099bf

6.1.3.2.2.1 Sample Input File
Sample input file for TA2 based platforms

/*
 * Copyright 2016 NXP
 */
--
For PBI Creation
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME= u-boot-with-spl-pbl.bin
--
Specify the output file name [Optional].
Default Values chosen in Tool
OUTPUT_RCW_PBI_FILENAME=u-boot-with-spl-pbl-sec.bin
--
#specify the boot src
BOOT_SRC=SD_BOOT
Specify the platform
PLATFORM=LS1020
Specify the RCW Fields. (0 or 1) - [Optional]
SB_EN=1
BOOT_HO=1
BOOT1_PTR=10016000
--
Specify the PBI commands - [Optional]
Argument: COPY_CMD = (src_offset, dest_offset, Image name)
Split hdr_uboot_spl.out in PBI commads
COPY_CMD={ffffffff,10016000,hdr_uboot_spl.out;}
--
Specify the Images to be appended
Arguments: APPEND_IMAGES=(Image name, Offset from start)
APPEND_IMAGES={u-boot-dtb.bin,00022000;}
APPEND_IMAGES={hdr_uboot.out,00122000;}
APPEND_IMAGES={hdr_bs.out, 00124000;}
APPEND_IMAGES={bootscript,00128000;}
--

Sample input file for SP based platforms

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.1: LS2088, LS1088
PLATFORM=LS1088

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub>, <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.1): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pri>

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
240 NXP Semiconductors

PRI_KEY=srk.pri

For PBI Signing
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME=rcw.bin
Address of ISBC (Boot1) CSF Header [Mandatory]
BOOT1_PTR=20c00000

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=rcw_sec.bin
IMAGE_HASH_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

6.1.3.2.2.2 PBI structure

Fields Offset Size (In 32-bit word)

RCW Preamble (RCW) 0x00 1

Load RCW command 0x04 1

RCW words 0x08 – 0x87 32

RCW checksum 0x88 1

PBI commands Load security header

CSF header

0x8c

0x90 – 0xdf

1

20

Load boot 1CSF header

Boot 1 pointer

0xe0

0xe4

1

1

Other PBI commands 0xe8 N

STOP command (With/
Without CRC)

0xe8 + (4*N) 2

SRK table SRK table 0x90 + SRK table offset in CSF
header

(No. of keys * Key length)

RSA signature Signature 0x90 + Sign offset in CSF
header

Sign length

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 241

RCW Preamble The preamble is always the first element in a PBI image. It contains a standard pattern that
identifies the memory location as the beginning of a valid PBI image. The preamble is a 4-byte
pattern defined as “0xaa55aa55”.

Load RCW
command

The next word is load RCW command. This command loads the 1024-bit Reset Configuration
Word from the interface specified by Power-on-Reset (POR) configuration strapping pins. It
has the following two formats.

1. Load RCW with Checksum (0x10): Read Reset Configuration Word performs simple 32-
bit checksum, and update RCW registers.

2. Load RCW without Checksum (0x11): Read Reset Configuration Word and update RCW
registers without performing checksum. The version without the checksum includes
padding with zeroes in the place of the checksum value.

RCW words 1024 RCW bits that is 32 words of 32 bits.

RCW
checksum

It is calculated as a 32-bit unsigned integer summation of the RCW Preamble, the Load RCW
with checksum command, and each of the 32 words (32-bit) of the RCW. A simple 32-bit
checksum is used for the validation of the command.

checksum(RCW_WORD[]){
 unsigned_32 sum = 0xAA55AA55 + 0x80100000 + Load RCW Command;
 for(i=0; i<32; i++)
 sum+=RCW_WORD[i];
 return (sum);
}

Checksum will have to be updated by CST tool as the fields like SB_EN,

PBI_LEN in the RCW words are changed.

 NOTE

PBI
commands

Load security
header

This command loads information required for authentication of the PBI image. The security
header includes pointers to an SRK key table and RSA signatures as well as other flags and
IDs. The CSF Header is part of the command. Please refer the CSF header structure in .

Load boot 1
CSF header

This command loads a pointer to a CSF Header used for authentication of the Boot 1
Secondary Program Loader. This 32-bit value used by the Boot 0 ISBC and is required for
secure boot.

Other PBI
commands

Other PBI commands input by user.

STOP
command

This command ends the PBI sequence and has two variants (with and without CRC).

The CRC check value covers all commands from the first command after the RCW up to
and including this CRC and Stop command, regardless of whether any are skipped by Jump
commands during execution.

In Stop command without CRC, it ends the PBI sequence immediately. It does not include
a CRC value, but it instead has a 32-bit padding with zeroes so that it is the same size as
the Stop with CRC command.

CST tool updates the PBI commands by adding Load Security Header

command and Load Boot 1 Security Header command. So, CRC must

also be updated.

 NOTE

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
242 NXP Semiconductors

SRK table Table of public keys is used in secure boot validation. It is kept at an offset from the CSF header. The offset is
specified in the CSF header.

RSA
signature

RSA signature is calculated over all PBI commands and SRK table. It is kept at an offset from the CSF header.
The offset is specified in the CSF header.

6.1.3.2.3 uni_sign
uni_sign tool can be used for the following functions.

• CSF header generation along with signature for both ISBC and ESBC phase

• CSF header generation without signature if private key is not provided

uni_sign tool (with ESBC = 0 in input file) is used for creating signature and header over Boot1 image to be verified by ISBC

uni_sign tool (with ESBC = 1 in input file) is used for creating signature and header over images to be verified by ESBC

Following options are available with the uni_sign command.

Usage:

To view usage of tool:

./uni_sign
 --verbose Display header Info after Creation
 --hash Print the SRK(Public key) hash.
 --img_hash Header is generated without Signature.
 Image Hash is stored in a separate file.
 --help Show the Help for Tool Usage.

Table 79. Description of fields

Field Field description Platform
supported

PLATFORM To identify the platform/SoC for which CF header needs to be created. All

ESBC Do not set this flag when code signing is being performed on the image directly
verified by the ISBC. For later images in the chain of trust, set this flag.

TA3.x

ENTRY_POINT Entry point address or Image start address field in the header. All

PRI_KEY Private key file name to be used for signing the image. (File has to be in PEM format)
(default = srk.pri generated by gen_keys command) FILE1 [,FILE2, FILE3, FILE4].
Multiple key support for Trust Arch v2.x devices only.

All

PUB_KEY Public key file name in PEM format. (default = srk.pub generated by gen_keys) FILE1
[,FILE2, FILE3, FILE4]. Multiple key support for Trust Arch v2.x devices only.

All

KEY_SELECT Specify the key to be used in signature generation when more than one key has been
given as input. (Default=1, first key will be selected)

All

IMAGE_1 -
IMAGE_8

Create Entries for SG table in the format { IMAGE_NAME, SRC_ADDR,
DST_ADDR }

All

OEM_UID_x OEM UID to be populated in the header. All

FSL_UID_x FSL UID to be populated in the header. All

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 243

Table 79. Description of fields (continued)

Field Field description Platform
supported

HK_AREA_POINTE
R

House Keeping Area Starting Pointer required by Sec (Required for Trust Arch v2.x
devices only when esbc option is not provided)

TA2.x

HKAREA_SIZE House Keeping Area Size (Required for Trust Arch v2.x devices only when esbc
option is not provided)

TA2.x

OUTPUT_HDR_FIL
ENAME

Name of the combined header binary to be created by tool All

SG_TABLE_ADDR Specify SG_TABLE Address where Scatter Gather table is present for
2041/3041/4080/5020/5040 when ESBC=0.

TA1.x

OUTPUT_SG_BIN Specify the output file name of sg table. TA1.x

IMAGE_TARGET Specify the target where image will be loaded. For example,NOR_8B/NOR_16B/
NAND_8B_512/NAND_8B_2K/NAND_8B_4K/ NAND_16B_512/NAND_16B_2K/
NAND_16B_4K/SD/MMC/SPI

All

SEC_IMG Flag for Secondary Image. Required for Trust Arch v2.x devices only TA2.x

MP_FLAG Specify Manufacturing Protection Flag. Available for LS1 only. All, only needed in
ISBC phase

VERBOSE Specify Verbose option. Contents of header generated will be printed. All

IMAGE_HASH_FIL
ENAME

used with '--img_hash' option (Name of file in which Image Hash is stored) TA3.x

ISS_FLAG Increment Security State Flag TA3.x, only
needed in ISBC
phase

LW_FLAG Leave Writeable Flag TA3.x, only
needed in ISBC
phase

ESBC_HDRADDR 32-bit address where header generated will be placed. Used to calculate IE key table
address

TA3.x, only to be
used in case of IE
key extension
feature usage

IE_KEY Comma separated list of files containing public keys(IE Keys) TA3.x, only to be
used in case of IE
key extension
feature usage

IE_REVOC Comma separated list of numbers that are to be revoked from IE table TA3.x, only to be
used in case of IE
key extension
feature usage

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
244 NXP Semiconductors

Table 79. Description of fields (continued)

Field Field description Platform
supported

IE_KEY_SEL No. of keys in IE table that is to be used to validate image TA3.x, only to be
used in case of IE
key extension
feature usage

Sample input files can be referred to, from input_files/uni_sign/l<platform>

For IE keys, you can refer to input_files/uni_sign/l<platform>/ie_ke

TA3.x: LS2088 and LS1088. To know platforms under TA1.x and TA 2.x, refer Trust Architecture and SFP Information on page
180

6.1.3.2.3.1 Sample Input File
The input files will not have ESBC field (ESBC=0).

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.1: LS2088, LS1088
TRUST 1.0, 1.1, 2.0, 2.1: 1010/1040/2041/3041/4080/5020/5040/9131/9132/9164/4240/C290/LS1
PLATFORM=LS2088

Entry Point/Image start address field in the header.[Mandatory]
(default=ADDRESS of first file specified in images)
Address can be 64 bit
ENTRY_POINT=30008000

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.1): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pri>
PRI_KEY=srk.pri

Specify IMAGE, Max 8 images are possible.
DST_ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={u-boot.bin,30008000,ffffffff}
IMAGE_2={,,}
IMAGE_3={,,}
IMAGE_4={,,}
IMAGE_5={,,}
IMAGE_6={,,}
IMAGE_7={,,}
IMAGE_8={,,}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 245

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_uboot.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Following fields are Required for 4240/9164/1040/C290 only

Specify House keeping Area
Required for 42409164/1040/C290 only when ESBC flag is not set. [Mandatory]
HK_AREA_POINTER=
HK_AREA_SIZE=

Following field Required for 4240/9164/1040/C290 only
Specify Secondary Image Flag. (0 or 1) - [Optional]
(Default is 0)
SEC_IMAGE=

Specify SG table address, only for (2041/3041/4080/5020/5040) with ESBC=0 - [Optional]
SG_TABLE_ADDR=

6.1.3.2.4 uni_sign (create_hdr_isbc)
uni_sign tool (with ESBC = 0 in input file) is used for creating signature and header over Boot1 image to be verified by ISBC.

Usage:

If INPUT file does not have ESBC = 1, uni_sign invokes create_hdr_isbc

To view usage of tool:

$./uni_sign --help

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

Correct Usage of Tool is:

./create_hdr_isbc [options] <input_file>
 --verbose Display header Info after Creation
 --hash Print the SRK(Public key) hash.
 --img_hash Header is generated without Signature.
 Image Hash is stored in a separate file.
 --help Show the Help for Tool Usage.

<input_file> Contains all information required by tool

* uni_sign is a wrapper script over the TOOL
* Correct Usage (Description as specified above):
*
* ./uni_sign [options] <input_file>

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
246 NXP Semiconductors

*

Usage Example:

$./uni_sign input_files/uni_sign/ls2088_1088/qspi/input_uboot_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/ls2088_1088/qspi/input_uboot_qspi_secure

**
* Header File is with Signature appended
**

Header File Created: hdr_uboot.out

SRK (Public Key) Hash:
ff9a791711e01321b66d0521c31b1e03bbb55ec833a5f2233d52a160f1c099bf
 SFP SRKHR0 = ff9a7917
 SFP SRKHR1 = 11e01321
 SFP SRKHR2 = b66d0521
 SFP SRKHR3 = c31b1e03
 SFP SRKHR4 = bbb55ec8
 SFP SRKHR5 = 33a5f223
 SFP SRKHR6 = 3d52a160
 SFP SRKHR7 = f1c099bf

$./uni_sign --verbose input_files/uni_sign/ls2088_1088/qspi/input_uboot_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/ls2088_1088/qspi/input_uboot_qspi_secure

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200
- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(400)
- UID Information
- UID Flags = 00

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 247

- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 60
- ISS = 1
- MP = 0
- LW = 0
- B01 = 1
- Image Information
- SG Table Offset : 800
- Number of entries : 1
- Entry Point : 30008000
- Entry 1 : u-boot.bin (Size = 000c0000 SRC = 30008000 DST = ffffffff)
- RSA Signature Information
- RSA Offset : a00
- RSA Size : 200

Image Hash:
b23f4393067ad31b046ec16b235e7732db675033abb20eed50e7c4ec2bedcad3

**
* Header File is with Signature appended
**

Header File Created: hdr_uboot.out

SRK (Public Key) Hash:
ff9a791711e01321b66d0521c31b1e03bbb55ec833a5f2233d52a160f1c099bf
 SFP SRKHR0 = ff9a7917
 SFP SRKHR1 = 11e01321
 SFP SRKHR2 = b66d0521
 SFP SRKHR3 = c31b1e03
 SFP SRKHR4 = bbb55ec8
 SFP SRKHR5 = 33a5f223
 SFP SRKHR6 = 3d52a160
 SFP SRKHR7 = f1c099bf

6.1.3.2.4.1 Sample Input File (ISBC)
The input files will not have ESBC field (ESBC=0).

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.0: LS2080
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Entry Point/Image start address field in the header.[Mandatory]
(default=ADDRESS of first file specified in images)
Address can be 64 bit
ENTRY_POINT=20100000

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pri>
PRI_KEY=srk.pri

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
248 NXP Semiconductors

Specify IMAGE, Max 8 images are possible.
DST_ADDR is required only for Non-PBL Platform. [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={u-boot.bin,20100000,ffffffff}
IMAGE_2={,,}
IMAGE_3={,,}
IMAGE_4={,,}
IMAGE_5={,,}
IMAGE_6={,,}
IMAGE_7={,,}
IMAGE_8={,,}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_uboot.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Table 80. Description of Fields

Field Name Description

PLATFORM To identify the platform/SoC and Trust Architecture for which Header needs to be created.

PUB_KEY Public key filename in PEM format. Maximum 8 keys supported

KEY_SELECT Specify the key to be used in signature generation from the SRK Table

PRI_KEY Private key filename in PEM format. Maximum 8 keys supported

IMAGE_x Information of 8 discrete images to be verified by ISBC

ENTRY_POINT Address to be populated in Boot LOC Pointer by ISBC.

FSL_UID_x FSL UID(s) to be populated in the header

OEM_UID_x OEM UID(s) to be populated in the header

OUTPUT_HDR_FILENAME Output File name of the Header

IMAGE_HASH_FILENAME used with '--img_hash' option (Name of file in which Image Hash is stored)

MP_FLAG Manufacturing Protection Flag

ISS_FLAG Increment Security State Flag

LW_FLAG Leave Writeable Flag

Table continues on the next page...

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 249

Table 80. Description of Fields (continued)

VERBOSE Specify VERBOSE as 1, if you want to Display Header Information. Can also be done
with '--verbose' option

6.1.3.2.5 uni_sign (create_hdr_esbc)
uni_sign tool (with ESBC = 1 in input file) is used for creating signature and header over ESBC images to be verified by Boot1/
ESBC.

Usage:

If INPUT file haa ESBC = 1, uni_sign invokes create_hdr_esbc

To view usage of tool:

$./uni_sign --help

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

Correct Usage of Tool is:

./create_hdr_esbc [options] <input_file>
 --verbose Display header Info after Creation
 --hash Print the SRK(Public key) hash.
 --img_hash Header is generated without Signature.
 Image Hash is stored in a separate file.
 --help Show the Help for Tool Usage.

<input_file> Contains all information required by tool

* uni_sign is a wrapper script over the TOOL
* Correct Usage (Description as specified above):
*
* ./uni_sign [options] <input_file>
*

Usage Example:

$./uni_sign input_files/uni_sign/ls2088_1088/qspi/input_bootscript_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/ls2088_1088/qspi/input_bootscript_qspi_secure

**
* Header File is with Signature appended

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
250 NXP Semiconductors

**

Header File Created: hdr_bs.out

SRK (Public Key) Hash:
ff9a791711e01321b66d0521c31b1e03bbb55ec833a5f2233d52a160f1c099bf
 SFP SRKHR0 = ff9a7917
 SFP SRKHR1 = 11e01321
 SFP SRKHR2 = b66d0521
 SFP SRKHR3 = c31b1e03
 SFP SRKHR4 = bbb55ec8
 SFP SRKHR5 = 33a5f223
 SFP SRKHR6 = 3d52a160
 SFP SRKHR7 = f1c099bf

$./uni_sign --verbose input_files/uni_sign/ls2088_1088/qspi/input_bootscript_qspi_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/ls2088_1088/qspi/input_bootscript_qspi_secure

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200
- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(400)
- UID Information
- UID Flags = 00
- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 00
- Image Information
- bootscript (Size = 00000004 SRC = 00000000_30008000)
- RSA Signature Information
- RSA Offset : 800
- RSA Size : 200

Image Hash:
937ffc563c0c78544815616ab682d85bff2dbe43d330422aeb662bb9def4929b

**
* Header File is with Signature appended
**

Header File Created: hdr_bs.out

SRK (Public Key) Hash:

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 251

ff9a791711e01321b66d0521c31b1e03bbb55ec833a5f2233d52a160f1c099bf
 SFP SRKHR0 = ff9a7917
 SFP SRKHR1 = 11e01321
 SFP SRKHR2 = b66d0521
 SFP SRKHR3 = c31b1e03
 SFP SRKHR4 = bbb55ec8
 SFP SRKHR5 = 33a5f223
 SFP SRKHR6 = 3d52a160
 SFP SRKHR7 = f1c099bf

6.1.3.2.5.1 Sample Input File (ESBC)
The input files will have ESBC field (ESBC=1).

ESBC=1

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.0: LS2080
TRUST 3.1: LS2088, LS1088
PLATFORM=<platform>

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Comma Seperated List for Signing
USAGE: <srk.pri>, <srk2.pri>
PRI_KEY=srk.pri

Specify the IMAGE Information [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={bootscript,a0e00000,ffffffff}

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_bs.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=0

Table 81. Description of Fields

ESBC Flag to indicate that the image is ECBC (Must be 1)

PLATFORM To identify the platform/SoC and Trust Architecture for which Header needs to be created.

PUB_KEY Public key filename in PEM format. Maximum 8 keys supported

KEY_SELECT Specify the key to be used in signature generation from the SRK Table

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
252 NXP Semiconductors

Table 81. Description of Fields (continued)

PRI_KEY Private key filename in PEM format. Maximum 8 keys supported

IMAGE_1 Information of ESBC Image.

FSL_UID_x FSL UID(s) to be populated in the header

OEM_UID_x OEM UID(s) to be populated in the header

OUTPUT_HDR_FILENAME Output File name of the Header

IMAGE_HASH_FILENAME used with '--img_hash' option (Name of file in which Image Hash is stored)

VERBOSE Specify VERBOSE as 1, if you want to Display Header Information. Can also be done
with '--verbose' option

6.1.3.3 Signature generation
The tools in this category are provided in case the user does not want to share the Private Key with the CST tool. The --img_hash
option in Header creation on page 235 tools provides OEMs with the ability to perform code signing in a secure environment
which does not run the NXP Code Signing Tool.

--img_hash option

• Generates hash file in binary format which contains SHA256 hash of the components required for signature.

• Generates output header binary file based on the fields specified in input file.

• Output header binary file does not contain signature.

• Provides flexibility to manually append signature at the end of output header file. Users can use their own custom tool to
generate the signature. The signature offset chosen in the header is such that the signature can be appended at the end of
the header file.

• This option does not require private key to be provided. But the corresponding public key from the public/ private key pair
must be provided to calculate correct SHA256 hash.

• The SHA256 hash generated over CF header (in case of TA1.x platforms)) is then signed using RSA algorithm (OPENSSL
APIs) with the private key. This encrypted hash is known as digital signature. This signature is placed at an offset from the
CF header, which is later read by IBR.

• The SHA256 hash generated over CSF header, the public Key, the S/G table and the ESBC is also signed using RSA algorithm
with the same private key. The signature generated is placed at an offset from the CSF header, which is again later read by
IBR.

Figure 35. Dual signature generation

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 253

Usage example

$./uni_sign --img_hash --verbose input_files/uni_sign/<platform>/input_uboot_nor_secure

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==

Input File is input_files/uni_sign/<platform>/input_uboot_nor_secure

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200
- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(100)
- UID Information
- UID Flags = 00
- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 60
- ISS = 1
- MP = 0
- LW = 0
- B01 = 1
- Image Information
- SG Table Offset : 800
- Number of entries : 1
- Entry Point : 30008000
- Entry 1 : u-boot.bin (Size = 000c0000 SRC = 30008000 DST = ffffffff)
- RSA Signature Information
- RSA Offset : a00
- RSA Size : 80

Image Hash:
8588c174dd92f4a1b114b9029fc647e18cac4aaa46f03a6538ef20531e796e8f

**
* Image Hash Stored in File: hash.out
* Header File is w/o Signature appended
**

Header File Created: hdr_uboot.out

SRK (Public Key) Hash:
7df50d4256c4cbde4ef4ae9931042b1e44ff13aeb5107a7e0e9ee07e0fbfc236
 SFP SRKHR0 = 7df50d42
 SFP SRKHR1 = 56c4cbde
 SFP SRKHR2 = 4ef4ae99

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
254 NXP Semiconductors

 SFP SRKHR3 = 31042b1e
 SFP SRKHR4 = 44ff13ae
 SFP SRKHR5 = b5107a7e
 SFP SRKHR6 = 0e9ee07e
 SFP SRKHR7 = 0fbfc236

The tools are provided to create the signature file and embed the signature at the end of header file.

6.1.3.3.1 gen_sign
This tool is provided for the user to calculate signature for a given hash using CST tool. The tool requires only the hash file and
private key file from the user as input. It would generate signature file as output.

It uses RSA_sign API of openssl to calculate signature over hash provided.

Usage

./gen_sign [option] <HASH_FILE> <PRIV_KEY_FILE>

--sign_file SIGN_FILE Provides file name for signature to be generated as operand. SIGN_FILE is generated containing
signature calculated over hash provided through HASH_FILE using private key provided through
PRIV_KEY_FILE. With this option, HASH_FILE and PRIV_KEY_FILE are compulsory while
SIGN_FILE is optional. The default value of SIGN_FILE is signout.

HASH_FILE Name of hash file containing hash over signature needs to be calculated.

PRIV_KEY_FILE Name of key file containing private key.

Usage example

After the hash file has been created as described in Signature generation on page 253, the tool can be used as described below.

$./uni_sign --img_hash input_files/uni_sign/<platform>/input_uboot_nor_secure
.
.
.

**
* Image Hash Stored in File: hash.out
* Header File is w/o Signature appended
**

Header File Created: hdr_uboot.out

$./gen_sign hash.out srk.pri

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#
Signature Length = 80
Hash in hash.out is signed with srk.pri
Signature is stored in file : sign.out

6.1.3.3.2 sign_embed
This tool embeds signature in the header file generated using img_hash option which generates header but does not embed
signature in the header. This option opens header file and copies signature at the end of the file.

The header file generated with 'img_hash' option has padding added till signature offset, so that signature can be directly
embedded to the end of the file.

Usage

Secure boot

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 255

./sign_embed <hdr_file> <sign_file>

hdr_file Name of header file in which signature needs to be embedded

sign_file Name of sign file containing signature which needs to be embedded

Usage example

$./sign_embed hdr_uboot.out sign.out

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#

hdr_uboot.out is appended with file sign.out (0x80)

User can generate the complete header along with signature in a single step using uni_sign/uni_pbi tool without

any option.

./uni_sign <input_file>

Or

User may wish to do it in three separate steps:

1. ./uni_sign --img_hash <input_file> (Create header file without signature and store the hash in a separate

file)

2. ./gen_sign[11] [option] <HASH_FILE> <PRIV_KEY_FILE> (Sign the image hash using private key)

3. ./sign_embed <hdr_file> <sign_file> (Embed the signature at the end of header file)

 NOTE

6.2 Trusted Execution (OP-TEE)

6.2.1 Introduction
Trusted Execution Environment (TEE), for ARM-based chips supporting TrustZone technology.

NXP Platforms are enabled with Open Portable TEE (OP-TEE), which is an open source project which contains a full
implementation to make up a complete Trusted Execution Environment. This component meets the Global Platform TEE System
Architecture specification. It also provides the TEE Internal core API v1.1 as defined by the Global Platform TEE Standard for the
development of Trusted Applications.

OP-TEE consists of three components.

• OP-TEE Client, which is the client API running in normal world user space.

• OP-TEE Linux Kernel driver, which is the driver that handles the communication between normal world user space and secure
world.

• OP-TEE Trusted OS, which is the Trusted OS running in secure world.

OP-TEE OS is made of 2 main components: the OP-TEE core and a collection of libraries designed for being used by Trusted
Applications. While OP-TEE core executes in the ARM CPU privileged level (also referred to as 'kernel land'), the Trusted
Applications execute in the non-privileged level (also referred to as the 'userland'). The static libraries provided by the OP-TEE
OS enable Trusted Applications to call secure services executing at a more privileged level.

[11] This may be done by user's own tool in case he does not want to share the private key with the CST tool.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
256 NXP Semiconductors

6.2.1.1 Support Platform
LS1046ARDB is the only currently supported NXP board for OP-TEE enablement.

6.2.1.2 Test Sequence
Execute the test sequence specified below on target machine:

Refer to the steps below to verify if the OP-TEE is successfully:

• Loaded (refer Appendix A for more details),

• Initialized (refer Appendix B for more details) &

• Running (refer Appendix C: Runtime flow of OP-TEE on page 259Appendix C for more details)

On the target NXP board:

• To check if the OP-TEE kernel driver is successfully initialized (after successfully communicating with OP-TEE OS running
in OP-TEE), look for the following in Linux boot logs:

optee: probing for conduit method from DT.
optee: initialized driver

Note: ppa.itb must be loaded with loadable

 node. Else, an error appears : optee: api uid mismatch

• Now, run the tee-supplicant (binary generated from optee_client repo) binary

$>: tee-supplicant & (press enter).

• Run the xtest(binary generated from optee_test repo) app as follows:

 $>: xtest -l 15 (press enter and look for the below logs to verify app runs successfully):
 47123 subtests of which 0 failed
 79 test cases of which 0 failed
 0 test case was skipped
 OP-TEE test application done!

6.2.2 Appendix A: Loading OP-TEE OS binary
1. OP-TEE binary is part of ppa.itb image as loadables node in ppa.itb image.

2. Corresponding ppa.its file content is as follows:

printf "/dts-v1/;\n" > $1
printf "\n" >> $1
printf "/{\n" >> $1
printf " description = \"PPA Firmware\";\n" >> $1
printf " #address-cells = <1>;\n" >> $1
printf " images {\n" >> $1
printf " firmware@1 {\n" >> $1
printf " description = \"PPA Firmware: Version %s\";\n" $VERSION >> $1
printf " data = /incbin/(\"../obj/monitor.bin\");\n" >> $1
printf " type = \"firmware\";\n" >> $1
printf " arch = \"arm64\";\n" >> $1
printf " compression = \"none\";\n" >> $1
printf " };\n" >> $1
printf " trustedOS@1 {\n" >> $1
printf " description = \"Trusted OS\";\n" >> $1
printf " data = /incbin/(\"../../tee.bin\");\n" >> $1
printf " type = \"OS\";\n" >> $1
printf " arch = \"arm64\";\n" >> $1
printf " compression = \"none\";\n" >> $1
printf " load = <0x00200000>;\n" >> $1
printf " };\n" >> $1
printf " };\n" >> $1
printf "\n" >> $1

Trusted Execution (OP-TEE)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 257

https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_test

printf " configurations {\n" >> $1
printf " default = \"config@1\";\n" >> $1
printf " config@1 {\n" >> $1
printf " description = \"PPA Secure firmware\";\n" >> $1
printf " firmware = \"firmware@1\";\n" >> $1
printf " loadables = \"trustedOS@1\";\n" >> $1
printf " };\n" >> $1
printf " };\n" >> $1
printf "};\n" >> $1

3. U-Boot parses the ppa.itb image and check if any loadables node is present in ppa.itb image.

From U-Boot console logs, it can be seen if loadable present or not:

 Using SERDES1 Protocol: 5205 (0x1455)
 SEC0: RNG instantiated
 FSL_SDHC: 0
 PPA Firmware: Version LSDK-1712-TC1-dirty
 SEC Firmware: 'loadables' present in config
 MCFGR12201
 Resetting Job ring %p
 ….

4. If loadables is present, then U-Boot loads the OP-TEE OS binary tee.bin.

5. As part of loading U-Boot:

Copy the binary tee.bin to DDR.

OP-TEE binary is authenticated as part of ppa.itb image authentication using Secure Boot header

6. After loading OP-TEE, U-Boot passes the address where OP-TEE is loaded via SCRATCHRW registers to PPA.

Figure 36. Loading Flow of OP-TEE OS

6.2.3 Appendix B: Initialization flow of OP-TEE OS
1. After the binary tee.bin is loaded to the DDR, U-Boot initiate the PPA initialization.

2. As part of OP-TEE initialization, PPA checks if loadables load address is not null, it initializes that OP-TEE.

3. Once the OP-TEE initialization is done, PPA initialization resumes. Before exiting to U-Boot after its initialization, PPA
change the exception level from EL3 to EL2. Now, U-Boot run in EL2 mode.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
258 NXP Semiconductors

Figure 37. Loading and initialization flow of OP-TEE OS

6.2.4 Appendix C: Runtime flow of OP-TEE
To understand the runtime flow of OP-TEE, refer the figure below, which explains how the context switching is done between OP-
TEE and Rich Execution Environment (Linux) (REE).

Trusted Execution (OP-TEE)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 259

6.3 Fuse Provisioning User Guide

6.3.1 Introduction
NXP SoC’s Trust Architecture provides non-volatile secure storage in form of on-chip fuse memory. Following information can be
programmed into fuse memory via Security Fuse Processor (SFP):

• One Time Programmable Master Key Registers (OTPMKRs)

• Super Root Key Hash Registers (SRKHRs)

• Debug Challenge and Response Value Registers (DCVRs & DRVRs)

• OEM Security Policy Registers (OSPRs)

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
260 NXP Semiconductors

• OEM Unique ID/Scratch Pad Registers (OUIDRs)

6.3.2 Fuse Programming Scenarios

6.3.2.1 Fuse Provisioning during OEM Manufacturing
This stage may be split into two stages:

Stage 1 (Non-secure boot) – Minimal Fuse Provisioning

The following few fuses (Minimal Fuse File) programmed for secure boot to run:

• SRKH

• DP

• CSFF

• Minimal OTPMK

• ITS.

Fuse Provisioning User Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 261

This stage does not pass secure boot to execute, but must set up the system so that the next boot passes secure boot. If this
step happens in a trusted environment, OEM can choose to blow all the fuses in this stage itself.

Stage 2 (Secure Boot) – Final Fuse Provisioning

Rest of the fuses can be programmed after secure boot is up and running. This step ends with OEM WP fuse getting blown which
renders most of the fuses as un- writable.

6.3.3 Fuse Provisioning Utility
PPA/secure firmware provides support to do the fuse provisioning. By default, the support is enabled and requires a built in. Steps
to do so using flex build are available in Steps to build fuse provisioning firmware image on page 265.

The information about the fuse values to be blown to be provided via a fuse file. The fuse file is a binary file with bits to indicate
what fuses to be blown and their corresponding values.

CST provides an input file where user can enter the required values. Tool generates a Fuse file which is parsed in PPA to do fuse
provisioning.

PPA would have the required checks to determine if the provided input values are correct or not.

For example, OTPMK, SRKH etc. cannot be programmed when OEM_WP is already set in SFP fuses.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
262 NXP Semiconductors

6.3.3.1 Fuse file structure

6.3.3.2 Sample input file for fuse provisioning tool

Specify the platform. [Mandatory]
Choose Platform - LS1/LS1043/LS1012/LS1046
PLATFORM=LS1046

GPIO Pin to be set for raising POVDD [Optional]
POVDD_GPIO=

One time programmable master key flags in binary form.[Mandatory]
0000 -> Program default minimal OTPMK value
0001 -> Program random OTPMK value
0010 -> Program user supplied OTPMK value
0101 -> Program random OTPMK value with pre-programmed minimal value
0110 -> Program user supplied OTPMK value with pre-programmed minimal value

Fuse Provisioning User Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 263

1xxx -> Don't blow OTPMK
OTPMK_FLAGS=0000
One time programmable master key value.
[Optional dependent on flags, Mandatory in case OTPMK_FLAGS="0010" or "0110"]
OTPMK_0=
OTPMK_1=
OTPMK_2=
OTPMK_3=
OTPMK_4=
OTPMK_5=
OTPMK_6=
OTPMK_7=

Super root key hash [Optional]
SRKH_0=
SRKH_1=
SRKH_2=
SRKH_3=
SRKH_4=
SRKH_5=
SRKH_6=
SRKH_7=

Specify OEM UIDs. [Optional]
e.g OEM_UID_0=11111111
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify Debug challenge and response values. [Optional]
e.g DCV_0=11111111
DCV_0=
DCV_1=
DRV_0=
DRV_1=

Specify Debug Level in binary form. [Optional]
000 -> Wide open: Debug portals are enabled unconditionally.
001 -> Conditionally open via challenge response, without notification.
01x -> Conditionally open via challenge response, with notification.
1xx -> Closed. All debug portals are disabled.
DBG_LVL=

System Configuration register bits in binary form [Optional]
WP (OEM write protect)
ITS (Intent to Secure)
NSEC (Non secure)
ZD (ZUC Disable)
K0,K1,K2 (Key revocation bits)
FR0 (Field return 0)
FR1 (Field return 1)
WP=
ITS=
NSEC=
ZD=
K0=
K1=
K2=
FR0=
FR1=

Specify the output fuse provisioning file name. (Default:fuse_scr.bin) [Optional]
OUTPUT_FUSE_FILENAME=fuse_scr.bin

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
264 NXP Semiconductors

6.3.4 Steps to build fuse provisioning firmware image
Use following Flexbuild commands to build composite fuse provisioning firmware image. For detailed info regarding usage of
Flexbuild, refer to Layerscape SDK user guide.

1. Command to build Code Signing Tool (CST):

$:> flex-builder -c cst

2. Command to generate PPA image with fuse provisioning support:

$:> flex-builder -c ppa-fuse -m ls1046ardb

3. Command to generate firmware image for SD boot source:

$:> flex-builder -i mkfw -m ls1046ardb -b sd -B uboot

4. Optional to edit input file used for fuse provisioning present here:

“<flexbuild_dir>/packages/apps/cst/input_files/gen_fusescr/ls104x_1012/input_fuse_file

”. Again, repeat above steps 2 & 3 to generate composite image.

5. Composite firmware image present here:

<flexbuild_dir>/build/images/firmware_ls1046ardb_uboot_sdboot.img

6.3.5 Deploy and run fuse provisioning

6.3.5.1 Enable POVDD for SFP
1. LS1046A RDB Board

• Put J21 to enable PWR_PROG_SFP

6.3.5.2 Deploy firmware image on board
1. Program composite firmware image (firmware_ls1046ardb_uboot_<boot-source>boot.img) built using Steps to build fuse

provisioning firmware image on page 265, on corresponding boot-source using U-Boot commands as shown in below
example for SD boot-source:

=> tftp a0000000 firmware_ls1088ardb_uboot_sdboot.img
 => mmc write a0000000 8 1fff8

6.3.5.3 Run firmware image on board
1. Execute the following U-Boot command to switch to boot-source. Below is example to switch to SD boot-source on

LS1046ARDB:

=> cpld reset sd

2. Check for following logs as part of U-Boot boot logs:

PPA Firmware:<Version Info>
SEC Firmware: 'loadables' present in config
loadables:'fuse_scr'

3. On U-Boot prompt, check for any error code in DCFG scratch 4 register for any Error Codes on page 266 as follows:

=> md 1ee020c 1

4. If above “md” command shows that no error as follows, then fuse provisioning is successful:

01ee020c: 00000000

Fuse Provisioning User Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 265

6.3.6 Validation
The procedure specified above is fully validated and verified on LS1046ARDB platform.

6.3.7 Error Codes
Table 1: Error Codes

Error Code Value Description

ERROR_FUSE_BARKER 0x1 Occurs if fuse script not found.

ERROR_READFB_CMD 0x2 Occurs if SFP Read Fuse Box (READFB) command
fails.

ERROR_PROGFB_CMD 0x3 Occurs if SFP Program Fuse Box (PROGFB)
command fails.

ERROR_SRKH_ALREADY_BLOWN 0x4 Occurs if SRKH is already blown.

ERROR_SRKH_WRITE 0x5 Occurs if write to SRKH mirror registers fails.

ERROR_OEMUID_ALREADY_BLOWN 0x6 Occurs if OEMUID is already blown.

ERROR_OEMUID_WRITE 0x7 Occurs if write to OEMUID mirror registers fails.

ERROR_DCV_ALREADY_BLOWN 0x8 Occurs if DCV is already blown.

ERROR_DCV_WRITE 0x9 Occurs if write to DCV mirror registers fails.

ERROR_DRV_ALREADY_BLOWN 0xa Occurs if DRV is already blown.

ERROR_DRV_HAMMING_ERROR 0xb Occurs if write to DRV mirror registers gives
hamming error.

ERROR_OTPMK_ALREADY_BLOWN 0xc Occurs if OTPMK is already blown.

ERROR_OTPMK_HAMMING_ERROR 0xd Occurs if write to OTPMK mirror registers gives
hamming error.

ERROR_OTPMK_USER_MIN 0xe Occurs if user supplied OTPMK does not have
minimal OTPMK bits set in case where OTPMK
flags represents to program user supplied OTPMK
value with pre-programmed minimal value.

ERROR_OSPR1_ALREADY_BLOWN 0xf Occurs if OSPR1 is already blown.

ERROR_OSPR1_WRITE 0x10 Occurs if write to OSPR1 mirror register fails.

ERROR_SC_ALREADY_BLOWN 0x11 Occurs if SysCfg is already blown.

ERROR_SC_WRITE 0x12 Occurs if write to SysCfg mirror register fails.

Appendix A Manual steps to build PPA fuse image

CST

1. Clone cst from LSDK components.

2. Now make.

$:> make

3. Default sample input file programs minimal OTPMK values only in fuse memory. Edit “input_files/gen_fusescr/
ls104x_1012/input_fuse_file” file to select/change values to be programmed in fuses.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
266 NXP Semiconductors

4. To generate fuse_scr.bin, execute the following command:

$:> ./gen_fusescr input_files/gen_fusescr/ls104x_1012/input_fuse_file

PPA

1. Clone ppa from LSDK components.

2. Set path for the following:

$:> export CROSS_COMPILE=<aarch64-toolchain-path->

3. Copy fuse_scr.bin file

$:> cp <cst-clone-dir>/fuse_scr.bin
 <ppa-clone-dir>/ppa/soc-ls1046/

4. Now build.

$:> ./build rdb-fit fuse ls1046

5. Fuse provisioning PPA image is built in “<ppa-clone-dir>/ppa/soc-ls1046/build/obj/ppa.itb” directory.

Appendix B Loading Fuse Script binary

1. Fuse script binary is a part of ppa.itb image as “loadables” node in ppa.itb image.

2. Corresponding ppa.its file content is as follows for better clarity.

printf "/dts-v1/;\n" > $1
printf "\n" >> $1
printf "/{\n" >> $1
printf " description = \"PPA Firmware\";\n" >> $1
printf " #address-cells = < 1 >\n" >> $1
printf " images {\n" >> $1
printf " firmware@1 {\n" >> $1
printf " description = \"PPA Firmware: Version %s\";\n" $VERSION
>> $1
printf " data = /incbin/(\"../obj/monitor.bin\");\n" >> $1
printf " type = \"firmware\";\n" >> $1
printf " arch = \"arm64\";\n" >> $1
printf " compression = \"none\";\n" >> $1
printf " };\n" >> $1
printf " fuse_scr {\n" >> $1
printf " description = \"Fuse Script\";\n" >> $1
printf " data = /incbin/(\"../../fuse_scr.bin\");\n" >> $1
printf " type = \"firmware\";\n" >> $1
printf " arch = \"arm64\";\n" >> $1
printf " compression = \"none\";\n" >> $1
printf " load = <0x00180000>;\n" >> $1
printf " };\n" >> $1
printf " };\n" >> $1
printf "\n" >> $1
printf " configurations {\n" >> $1
printf " default = \"config@1\";\n" >> $1
printf " config@1 {\n" >> $1
printf " description = \"PPA Secure firmware\";\n" >> $1
printf " firmware = \"firmware@1\";\n" >> $1
printf " loadables = \"fuse_scr\";\n" >> $1
printf " };\n" >> $1
printf " };\n" >> $1
printf "};\n" >> $1

3. U-Boot parses the ppa.itb image and check if any “loadables” node is present in ppa.itb image.

4. From U-Boot console logs, it can be seen if loadable present or not:

….
PPA Firmware: <Version Info>
SEC Firmware: 'loadables' present in config
loadables: 'fuse_scr'
….

Fuse Provisioning User Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 267

5. If ‘loadable’ is present, then U-Boot loads the fuse script binary ‘fuse_scr.bin’.

6. As part of loading U-Boot:

a. Copy the binary ‘fuse_scr.bin’ to DDR.

b. Fuse script binary is authenticated as part of ppa.itb image authentication using Secure Boot header.

Figure 40. Loading Flow of Fuse Script

6.4 PKCS#11 and Secure Object Library

6.4.1 Introduction
NXP SoCs such as LS1046A can store keys securely using built-in SoC capabilities - virtual HSM. With such devices, sensitive
private keys never leave the device and cryptographic operations are performed on this virtual HSM.

The PKCS#11 is a standard programming interface to communicate with HSMs. This standard specifies an application
programming interface (API), called “Cryptoki” to devices which hold cryptographic information and perform cryptographic
functions.

Proprietary interfaces using Secure Object Library are provided to interact with the HSM for:

• Generating key pair within the HSM.

• Installing existing key in the HSM.

• Manufacturing Protection key operations. (MPKey)

The private keys are never visible to normal world.

Sensitive Cryptographic operations using these keys can only be done using PKCS#11 cryptographic token standard.

An OpenSSL engine on Secure Object Library is also provided to interface directly with OpenSSL APIs

The PKCS#11 library release is compliant to v2.40. It is targeted for LS1046ARDB and supports RSA keys of size up to 2k.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
268 NXP Semiconductors

Figure 41. Block Diagram

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 269

Figure 42. Details of HSM

6.4.2 Supported APIs

6.4.2.1 PKCS#11 Library – libpkcs11
The PKCS11 interfaces are exposed and implemented via a shared library with a name called libpkcs11.so (Cryptoki Library). Any
PKCS11 library has a static CK_FUNCTION_LIST structure, and a pointer to it may be obtained by the C_GetFunctionList()
function.

The table below, summarizes the list of supported PKCS11 interfaces. The return values and API behaviors are compliant with
the PKCS11 standard v2.40. Library expects the caller to use them in a standard way.

API Description

C_Initialize Initialize Cryptoki library

Currently library does not support multithreaded application.

Hence would return CKR_CANT_LOCK in case application
initializes library with locking primitives.

C_Finalize Clean up cryptoki related resources

C_GetFunctionList Obtains entry points of Cryptoki library functions.

C_GetInfo Obtains general information about Cryptoki

C_GetSlotInfo Obtains information about a particular slot

C_GetTokenInfo Obtains information about a particular token

Table continues on the next page...

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
270 NXP Semiconductors

Table continued from the previous page...

C_GetSlotList Obtain list of slots in the system.

Only a fixed slot with fixed token is supported. Dynamic slot or
token addition is not supported.

C_OpenSession

C_CloseSession

C_CloseAllSessions

Opens/Closes a session.

• “Read Only (R/O)” Public sessions are only supported.

• This PKCS#11 library provides read-only access to
token’s public objects. This means that keys cannot be
created/deleted/modified via the PKCS#11 interface.

• R/O SO or R/W User/SO sessions are not supported.

C_FindObjectsInit

C_FindObjects

C_FindObjectsFinal

Objects search operations.

RSA Public and Private key objects of size up to 2048bits are
supported.

C_SignInit

C_Sign

Initialize signature operation and signing single part data.

Mechanisms supported:

• RSA-based Mechanisms

— CKM_RSA_PKCS

— CKM_MD5_RSA_PKCS

— CKM_SHA1_RSA_PKCS

— CKM_SHA256_RSA_PKCS

— CKM_SHA384_RSA_PKCS

— CKM_SHA512_RSA_PKCS

C_GetAttributeValue Obtains the value of one or more attributes of the objects.

C_GetMechanismList Obtains List of mechanism supported by token.

C_GetMechanismInfo Obtains the information about a mechanism.

6.4.2.2 Secure Object Library – libsecure_obj
The following are the details of the supported interfaces to generate/import keys using the Secure Object library.

1. Import Keys

SK_RET_CODE SK_CreateObject(SK_ATTRIBUTE *attr, uint16_t attrCount, SK_OBJECT_HANDLE *phObject);

The API creates an Object on the HSM, and returns a handle to it. API always succeeds even if an object with same
attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate objects should not be
created.

attr is an array of attributes that the object should be created with. Some of the attributes may be mandatory, such as
SK_ATTR_OBJECT_TYPE and SK_ATTR_OBJECT_INDEX (the id of the object), and some are optional.

Application needs to take care that valid attributes are passed, library does not return any error on receiving inconsistent/
incompatible attributes.

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 271

param[in] attr: The array of attributes to be used in creating the Object.

param[in] attrCount: The number of attributes in attr

param[in, out] phObjectIN: A pointer to a handle (must not be NULL);

OUT: The handle of the created Object

Return Values:

SKR_OK Successful execution, phObject filled with created object handle.

SKR_ERR_BAD_PARAMETERS Invalid function arguments

SKR_ERR_OUT_OF_MEMORY Memory allocation failed.

SKR_ERR_NOT_SUPPORTED The function and/or parameters are not supported by the library.

-- Some internal error code other than mentioned above can be returned. Refer to securekey_api_types.h for error code
description.

2. Generate Key.

SK_RET_CODE SK_GenerateKeyPair(SK_MECHANISM_INFO *pMechanism, SK_ATTRIBUTE *attr, uint16_t
attrCount, SK_OBJECT_HANDLE *phKey);

This API generates key pair on the HSM, and returns a handle to it. API always succeeds even if an object with same
attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate objects should not be
created.

pMechanism is mechanism for key pair generation. For example: SKM_RSA_PKCS_KEY_PAIR_GEN.

attr is an array of attributes that the object should be created with. Some of the attributes may be mandatory, such as
SK_ATTR_OBJECT_INDEX (the id of the object), and some are optional.

Application needs to take care that valid attributes are passed, library does not return any error on receiving inconsistent/
incompatible attributes.

param[in] pMechanism Mechanism for key pair generation

param[in] attr The array of attributes to be used in creating the Object.

param[in] attrCount The number of attributes in attr

param[in, out] phKey IN: A pointer to a handle (must not be NULL);

OUT: The handle of the created Object

Return Values:

SKR_OK Successful execution, phObject is filled with created object handle.

SKR_ERR_BAD_PARAMETERS Invalid function arguments

SKR_ERR_OUT_OF_MEMORY Memory allocation failed.

SKR_ERR_NOT_SUPPORTED The function and/or parameters are not supported by the library.

--Some internal error code other than mentioned above can be returned. Refer to securekey_api_types.h for error code
description.

3. Erase Object.

SK_RET_CODE SK_EraseObject(SK_OBJECT_HANDLE hObject);

Erases an object from the HSM. This means that the object with the specified handle can no longer be used.

param[in] hObject

The handle of the Object to be erased.

Return Values:

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
272 NXP Semiconductors

SKR_OK Successful execution SKR_ERR_BAD_PARAMETERS Invalid function arguments -- Some internal error code
other than mentioned above to be returned. Refer to securekey_api_types.h for error code description.

Further details of the APIs and its types are available in the files <securekey_api.h> and <securekey_api_types.h> in folder
secure_obj.

1. Maximum of 50 objects can be created/generated as of now.

2. Secure Object Library will not be throwing any error if multiple objects having same attributes are being

created. It is applications responsibility to take care of attributes that are passed during creation/generation

of objects.

 NOTE

Manufacturing Key APIs:

Following secure boot, the system runs the key generation routine producing an ECC Public and Private Key pair, referred to as
Manufacturing Protection Key Pair(MPKey).

Key Generation is performed by BootRom. APIs for getting MP Public key, signing using MP Private key and for getting the MP
Tag are described below.

For complete documentation on how to perform the key generation, public key export, and signing with the ECC private key, refer
to the Manufacturing-protection chip authentication

process section in the SoC’s Security (SEC) Reference Manual 5.6

NOTE: For this feature to work board must be booted in Secure Boot mode, with ITS bit set to 1.

1. Get MP Public key.

enum sk_status_code sk_mp_get_pub_key(struct sk_EC_point *pub_key);

Get Manufacturing Protection(MP) Public Key (ECC P256 Key).

param[in,out] pub_key: This is MP Public Key to be returned. Application needs to allocate memory for sk_EC_point.
Each of the coordinate x & y needs to allocate sk_EC_point.len memory. sk_EC_point.len can be obtained using
sk_mp_get_pub_key_len().

Return Values:

SK_SUCCESS on success, error value otherwise.

2. Sign using MP Private Key

enum sk_status_code sk_mp_sign(unsigned char * msg, uint8_t msglen,

struct sk_EC_sig * sig, uint8_t * digest, uint8_t digest_len)

Sign the msg using MP Priv Key. While signing MP Message, it will be prepended to message. Message over which
signature will be calculated = MP message + msg.

param[in] msg: Pointer to the message to be signed.

param[in] msglen: Length of the message to be signed.

param[in,out] sig: This is Signature calculated. Application needs to allocate memory for sk_EC_sig. Each of the parts r
& s needs to be allocated sk_EC_sig.len memory. sk_EC_sig.len can be obtained using sk_mp_get_sig_len().

param[in, out] digest: Digest(SHA256) of the message to be signed. Digest is calculated by prepending MP Message to
the msg.

param[in] digest_len: Length of digest. Application needs to allocate memory for sk_EC_point. Each of the coordinate x
& y needs to allocate sk_EC_point.len memory. sk_EC_point.len can be obtained using sk_mp_get_pub_key_len().

Return Values:

SK_SUCCESS on success, error value otherwise.

3. Get MP Tag.

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 273

enum sk_status_code sk_mp_get_mp_tag(uint8_t *mp_tag_ptr,uint8_t mp_tag_len);

Get the MP Message. While signing, MP Message is prepended to message automatically. User can call this function to
get MP message tag during verification operation.

param[in, out] mp_tag_ptr: Pointer to the message to be signed. Application needs to allocate memory of length returned
by sk_mp_get_tag_len().

param[in] mp_tag_len: Length of the mp_tag_ptr buffer

Return Values:

SK_SUCCESS on success, error value otherwise.

The API definition can be found in file securekey_mp.h. Sample applications have also been provided which demonstrate
how to use APIs.

6.4.2.3 Integrating Secure Object Library with OpenSSL
It is recommended that you should familiarize yourself with Open SSL. Refer to the appropriate documents for Open SSL
commands at the following location:

http://www.openssl.org/docs/

Open SSL provides the support of engine (basically hardware devices) to store the keys on hardware devices to make keys more
secure. NXP provides the Open SSL toolkit having support of Secure Object Library Engine that is used to communicate with
underlying HSM.

6.4.2.3.1 OpenSSL Engine – libeng_secure_obj
This engine is based on Secure Object Library It does following things:

1. Loads the particular key from underlying HSM.

2. RSA Private Encryption. (RSA_Private_Encrypt)

3. RSA Private Decryption. (RSA_Private_Decrypt)

All other RSA operations will be done by OpenSSL itself.

This engine does not support generation of RSA Keys. Keys to be generatd via another app “sobj_app” and these keys are used
in the applications using this OpenSSL Engine.

Screenshot of app using this OpenSSL engine is given in Running the sobj_eng_app section.

6.4.2.3.2 Example Usage with OpenSSL
This topic provides examples of usage with OpenSSL:

• Using the engine from command Line.

Change the following in “openssl.cnf”(often in /etc/ssl/openssl.cnf)

This line must be placed at the top, before any sections are defined:

openssl_conf = conf_section

Add following section at bottom of file:

[conf_section]
engines = engine_section

[engine_section]
secure_obj = sobj_section

[sobj_section]
engine_id = eng_secure_obj
dynamic_path = <path where lib_eng_secure_obj.so is placed>

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
274 NXP Semiconductors

http://www.openssl.org/docs/

default_algorithms = RSA
init = 1

Testing the engine operation:

To verify that the engine is properly operating, you can use the following example

If you do not update the OpenSSL configuration file, specify the engine configuration explicitly.

openssl engine -t dynamic -pre SO_PATH: <path-to-libeng_secure_obj.so> -pre
ID:eng_secure_obj -pre LIST_ADD:1 -pre LOAD

• Using OpenSSL from the command line

This section describes how to use the command line to create a self-signed certificate for "NXP Semiconductor". The key
of the certificate generated in the Secure Object HSM and will not exportable.

As per the following examples, generate a private key in the HSM with sobj_app.

$ sobj_app -G -m rsa-pair -s 2048 -l "Test_Key" -i 1

Make sure that the label “Test_Key” shown above and use it in the commands below:

You can optionally generate a false .pem file, which is having this label encoded in pem format by giving “-w” as shown below.
A file <label>.pem is generated.

$ sobj_app -G -m rsa-pair -s 2048 -l "Test_Key" -i 1 -w

The -key option in commands below accepts both label as well as this false .pem file.

To generate a certificate with its key in the Secure Object module, the following commands can be used.

The first command creates a self-signed Certificate for “NXP Semiconductor". The signing is done using the key specified
by the key label.

The second command creates a self-signed certificate for the request, the private key used to sign the certificate is the same
private key used to create the request.

$ openssl
OpenSSL> req -engine eng_secure_obj -new -key "Test_Key" \
 -keyform engine -out req.pem -text -x509 -subj "/CN=NXP Semiconductor"
OpenSSL> x509 -engine eng_secure_obj -signkey "Test_Key" \
-keyform engine -in req.pem -out cert.pem

You can also use the fake .pem file with -key option as below:

$ openssl
OpenSSL> req -engine eng_secure_obj -new -key "Test_Key.pem" \
 -keyform engine -out req.pem -text -x509 -subj "/CN=NXP Semiconductor"
OpenSSL> x509 -engine eng_secure_obj -signkey "Test_Key.pem" \
 -keyform engine -in req.pem -out cert.pem

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 275

6.4.3 Board Bootup & Running applications

6.4.3.1 Board Bootup

1. Prepare the images using the LSDK documentation and bootup the board with secure-boot and ITS set to 1. ITS = 1 is
required for bootrom to generate the Manufacturing Protection Private Key.

For setting ITS bit to 1 run following command after programming SRK Hash and before removing the boot hold-off. The
test is performed on LS1046ARDB.

#To do ITS=1

ccs::write_mem 32 0x1e80200 4 0 0x00000004

You can refer here for documentation - https://lsdk.github.io/document.html

2. After booting up the board with LSDK1803 images, Check if following images are placed in corresponding places.

Binary Place in rootfs

b05bcf48-9732-4efa-a9e0-141c7c888c34.ta /lib/optee_armtz/

libsecure_obj.so /usr/lib

sobj_app /usr/bin

mp_app /usr/bin

mp_verify /usr/bin

libeng_secure_obj.so /usr/lib/aarch64-linux-gnu/openssl-1.0.0/engines/

sobj_eng_app /usr/bin

securekeydev.ko This path depends on Linux Kernel Version:

Linux Kernel 4.9 - /lib/modules/4.9.79-01376-g58c5568/extra/

Linux Kernel 4.14 - /lib/modules/4.14.16/extra/

libpkcs11.so /usr/lib

pkcs11_app /usr/bin

For Compilation steps, refer Appendix Section at end of this document.

3. Run “tee-supplicant &” command from linux prompt.

4. Depending on linux kernel version used “insmod securekeydev.ko” from right folder.

5. Run the applications as described in Running the applications.

6.4.3.2 Running applications
Two applications are available with the package.

• sobj_app - Provides interface to generate/import key objects via Secure Object Library

• pkcs11_app – Provides interface to enumerate objects in the HSM and perform cryptographic operations.

• mp_app - This application demonstrates how to Get MP Public Key, sign a message using MP Private Key, Get Message
tag.

• mp_verify - This app uses OpenSSL APIs to verify the signature obtained by using mp_app application.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
276 NXP Semiconductors

https://lsdk.github.io/document.html

• sobj_eng_app – This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine. This
application is loading the private key and then doing cryptographic operations using this key.

NOTE: These are reference applications to demonstrate the usage of APIs as described in Supported APIs

6.4.3.2.1 sobj_app
To create/generate objects, run sobj_app application.

• sobj_app – This command shows help related to sobj_app.

• Importing an RSA key pair to HSM

sobj_app -C -f <private.pem> -k <key-type> -o <obj-type> -s <key-size> -l <obj-label> -i <obj-ID>

This command helps in importing a key to the HSM. It creates an object in HSM reading key from <private.pem> with
object label <obj-label> and object ID <obj-ID>. This private.pem can be generated by openssl using the command below:

openssl genpkey -algorithm RSA -out sk_private.pem -pkeyopt rsa_keygen_bits:2048

Handle of the object created in the HSM is printed as an output to the command. This handle can be used for further
operations on the created object (for example, delete, printing attributes and so on)

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 277

• Generating an RSA key pair in HSM

sobj_app -G -m <mechanism-ID> -s <key-size> -l <key-label> -i <key-ID>

This command generates an object of type derived from mechanism-ID of size <key-size> with label <key-label> and ID
<key-ID>

Handle of the object created is printed as an output to the command. This handle can be used for further operations on the
created object (for example, delete, printing attributes and so on)

• Display attributes of an object in the HSM

sobj_app -A -h <obj-handle>

This command shows some attributes related to object created. Pass the object handle <obj-handle> to the command.
This <obj-handle> is printed during generation/import of objects to HSM.

• List handles of the objects available in the HSM

sobj_app -L [-n <num-of-obj> -k <key-type> -l <obj-label> -s <key-size> -i <obj-id>]

This command lists handles of the objects already created/generated based on some search criteria (if given). User can
then use this handle to print the rest of the attributes. (See above command)

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
278 NXP Semiconductors

6.4.3.2.2 pkcs11_app
• pkcs11_app – This command shows commands available.

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 279

sha224-rsa mechanism is not supported.

 NOTE

• pkcs11_app -I: Library Information

pkcs11_app -P -l: List the all available slots

pkcs11_app -P -i -p <slot-ID> : Provides the information about Slot with <slot-ID>

pkcs11_app -T -i -p <slot-ID> : Provides the information about Token inserted in Slot <slot-ID>

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
280 NXP Semiconductors

• pkcs11_app -M -l -p <slot-ID> : Lists the Mechanism List supported by token in Slot <slot-ID>

pkcs11_app -M -m <mech-ID> -i -p <slot-ID> : Gives information about the mechanism with <mech-ID> for Slot <slot-ID>

• pkcs11_app -F -p <slot-ID>: List all objects associated with token present in slot <slot-ID>

We have 2 objects already created via the sobj_app, which will be shown here through pkcs11_app find operation.

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 281

• Currently search can be made based on 3 criteria via this app:

-o: Object type (Can be public key, private key, certificates and so on)(For now supports only Public and Private keys)

-k: Key type (Can be RSA, EC, AES and so on)(For now supports only RSA)

-b: Object Label associated with object while creating/generating.

pkcs11_app -F -o <obj-type> -k <key-type> -b <label> -p <slot-ID> : List all objects which are having object type <obj-type>
of key type <key-type> and with label < label> on token present in slot <slot-ID>

• pkcs11_app -S -k <key-type> -b <key-label> -d <Data-to-be-signed> -m <mech-ID> -p <slot-ID>

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
282 NXP Semiconductors

This command will sign the <Data> with private key of type <key-type> having label <key-label> using mechanism specified by
<mech-ID> with functions provided by token in slot <slot-ID>

After successful signing, the signature will be saved in file “sig.data”

• pkcs11_app -V -k <key-type> -b <key-label> -d <Data-previously-signed> -s <signature-file> -m <mech-ID> -p
<slot-ID>

This command verifies the signature <signature-file> with public key of type <key-type> having label <key-label> using mechanism
specified by <mech-ID> with functions provided by token in slot <slot-ID> by comparing the data recovered from signature to
<Data-previously-signed>. This command uses openssl APIs to do the verification. Refer to the application code for more details.

<mech-ID> passed must match with the <mech-ID> passed during signature otherwise verification fails, as shown in following
picture.

6.4.3.2.3 mp_app
This application demonstrates how to use the following APIs:

• Get MP Public Key.

• Sign a message using MP Private Key.

• Get Message tag.

The application source code at location “secure_obj/securekey_lib/app/mp_app.c” can be used as reference for integration of
these APIs.

mp_app - This application gives 3 options.

Usage:

• mp_app -p: Get the MP Public key and store it in a file "pub_key"

• mp_app -s <MSG>: Sign <MSG> with MP Priv key and store signature in file "signature"

• mp_app -m: Get the MP Message tag and store it in file "mtag"

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 283

6.4.3.2.4 mp_verify
This app uses OpenSSL APIs to verify the signature obtained by using “mp_app” application. The application source code at
location “secure_obj/securekey_lib/app/mp_verify.c” can be used as reference.

mp_verify - This application verifies the signature generated by mp_app -s.

Usage:

mp_verify -p <pubkeyfile> -s <signaturefile> -m <mtagfile> -M <MSG>

This <MSG> must be same which is used in mp_app -s <MSG>

6.4.3.2.5 sobj_eng_app
This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine.

Code for this app is at “secure_obj/secure_obj-openssl-engine/app/sobj_eng_app.c “.

This application is internally loading RSA private key and then doing cryptographic operations using this key.

Private Key operations are offloaded to Secure Object via this engine, and Public Key operations are done through OpenSSL
itself.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
284 NXP Semiconductors

In Following screenshot, see creating a key via sobj_app. It will be used by sobj_eng_app (using OpenSSL APIs) to do the
cryptographic operations.

This sobj_eng_app is internally offloading the cryptographic operation to Secure Object Library using the OpenSSL Engine based
on Secure Object Library.

6.4.4 Validation
Above steps are fully validated and verified on LS1046ARDB platform.

6.4.5 Appendix
Appendix A: Steps to build the PKCS#11 Library

PKCS Library is using Secure Object Library. For steps compiling Secure Object Library, see section Appendix B: Steps to build
the Secure Object Library.

From flexbuild environment:

flex-builder -c libpkcs11 -m ls1046ardb

Standalone Build:

1. Clone the libpkcs11 from: https://source.codeaurora.org/external/qoriq/qoriq-components/libpkcs11

2. Checkout tag “LSDK-18.03”.

3. Set path for cross-compile:

$:> export CROSS_COMPILE=<aarch64-toolchain>

4. Set path for Secure Object:

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 285

https://source.codeaurora.org/external/qoriq/qoriq-components/libpkcs11

$:> export
SECURE_OBJ_PATH=<path-to-secure_obj>/secure_obj/securekey_lib/out/export/

5. Set path for OpenSSL:

Note: For interoperability, we are verifying the signature generated by PKCS Library via OpenSSL, so reference application
needs OpenSSL library, so exporting OPENSSL_PATH.

We have cloned and compiled the OpenSSL in “Steps to build the Secure Object Library”, hence only give path of that folder
in OPENSSL_PATH.

$:> export OPENSSL_PATH=<openssl-folder>

6. Run make:

$:>make

This compiles the libpkcs11 and reference applications and put it into “images” folder in libpkcs11. Following images are
generated:

• libpkcs11.so – PKCS#11 User space library.

• pkcs11_app – PKCS#11 Test App.

Appendix B: Steps to build the Secure Object Library

From flexbuild environment:

flex-builder -c secure_obj -m ls1046ardb

Standalone Build:

Order of repo compilation for Secure Object Library.

1. OP-TEE OS

a. Clone optee_os from: https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os

b. Checkout tag “LSDK-18.03”

c. Set the path for the following:

$:> export CROSS_COMPILE64=<aarch64-toolchain>

d. Now make.

$:> make CFG_ARM64_core=y PLATFORM=ls-ls1046ardb ARCH=arm

2. OP-TEE Client

a. Clone optee_client from: https://source.codeaurora.org/external/qoriq/qoriq-components/optee_client

b. Checkout tag “LSDK-18.03”

c. Set path for the following:

$:> export CROSS_COMPILE=<aarch64-toolchain-path->

d. Now make.

$:> make

3. OpenSSL:

a. Clone openssl from: https://source.codeaurora.org/external/qoriq/qoriq-components/openssl

b. Checkout tag “LSDK-18.03”

c. Set path for the following:

 $:> export CROSS_COMPILE=<aarch64-toolchain-path->

d. Run configure as follows:

$:>. /Configure shared linux-aarch64

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
286 NXP Semiconductors

https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os
https://source.codeaurora.org/external/qoriq/qoriq-components/optee_client
https://source.codeaurora.org/external/qoriq/qoriq-components/openssl

e. Run make

 $:> make

4. Secure Object:

a. Clone secure_obj from: https://source.codeaurora.org/external/qoriq/qoriq-components/secure_obj

b. Checkout tag “LSDK-18.03”.

• Secure Object Library code - securekey_lib

• Secure Object Trusted Application code - secure_storage_ta

• Secure Key Dev Kernel Module - securekeydev

• Secure Object OpenSSL Engine - secure_obj-openssl-engine

There is script “compile.sh” which compiles all above components and put all binaries in “images”.

c. Follow the below compilation steps:

• export CROSS_COMPILE path:

$:> export CROSS_COMPILE= <aarch64-toolchain-path->

• export ARCH path:

$:> export ARCH=arm64

• Set the paths from OP-TEE OS:

$:> export TA_DEV_KIT_DIR=<path-to-optee-os>/optee_os/out/arm-plat-ls/export-
ta_arm64/

• Set path for OP-TEE Client

$:> export OPTEE_CLIENT_EXPORT=<path-to-optee-client>/optee_client/out/export/

• Set path for Secure Storage:

$:> export SECURE_STORAGE_PATH=<path-to-secure_obj>/secure_obj/
secure_storage_ta/ta/

• Set path for OpenSSL:

$:> export OPENSSL_PATH=<openssl-folder-path>

• Set path for Linux Code (Used Flexbuild kernel for this):

$:> export KERNEL_SRC=<path-in-flexbuild-containing-kernel-source-code>
For example,
$:> export KERNEL_SRC=/home/b42224/flexbuild_1712/flexbuild/build/linux/linux/
arm64/lib/modules/4.9.62/source

• Set path for Linux Build Directory (Used Flexbuild kernel for this):

$:> export KERNEL_BUILD=<path-in-flexbuild-containing-kernel-build>
For example,
$:> export KERNEL_BUILD=/home/b42224/flexbuild_1712/flexbuild/build/linux/linux/
arm64/lib/modules/4.9.62/build

• Run “./compile.sh” (It will compile TA, library and Kernel Module).

$:> ./compile.sh

This will compile all the binaries and put them into the images folder in secure_obj. After compilation, images
folder have the following:

• b05bcf48-9732-4efa-a9e0-141c7c888c34.ta - Trusted application for Secure Object library.

• libsecure_obj.so - User space Secure Object Library

• sobj_app - Application for creating and erasing objects.

• mp_app - Application for getting MP Public Key, signing using MP Private key and getting the MP tag.

PKCS#11 and Secure Object Library

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 287

https://source.codeaurora.org/external/qoriq/qoriq-components/secure_obj

• mp_verify - Application for verifying the signature generated through mp_app.

• securekeydev.ko - Kernel Module for offloading MP Key feature to CAAM. Binaries to be placed at following
locations in rootfs.

• libeng_secure_obj - Secure Object based OpenSSL engine offloading Private Key Operations to the Secure
Object Library.

• sobj_eng_app - This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine.
This application is loading the private key and then doing cryptographic operations using this key.

Security

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
288 NXP Semiconductors

Chapter 7
Linux kernel

Introduction

The Linux kernel is a monolithic Unix-like computer operating system kernel. It is the central part of Linux operating systems that
are extensively used on PCs, servers, handheld devices and various embedded devices such as routers, switches, wireless access
points, set-top boxes, smart TVs, DVRs, and NAS appliances. It manages tasks/applications running on the system and manages
system hardware. A typical Linux system looks like this:

Figure 58. Typical Linux System

The Linux kernel was created in 1991 by Linus Torvalds and released as an open source project under GNU General Public
License(GPL) version 2. It rapidly attracted developers around the world. In 2015 the Linux kernel has received contributions from
nearly 12,000 programmers from more than 1,200 companies. The software is officially released on http://www.kernel.org website

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 289

http://www.kernel.org

through downloadable packages and GIT repositories. A general Linux kernel introduction from kernel.org can also be found at
https://www.kernel.org/doc/html/latest/admin-guide/README.html.

Kernel Releases and relationship with Layerscape SDK

There are different Linux kernel releases coming from different sources. Below we listed the ones that are related to the LSDK
kernel.

Kernel.org official kernel releases

• Mainline

Mainline tree is maintained by Linus Torvalds. It's the tree where all new features are introduced and where all the exciting
new development happens. New mainline kernels are released every 2-3 months.

• Longterm (LTS)

There are usually several "longterm maintenance" kernel releases provided for the purposes of backporting bugfixes for older
kernel trees. Only important bugfixes are applied to such kernels and they don't usually see very frequent releases, especially
for older trees.

Refer to https://www.kernel.org/category/releases.html for the current maintained Longterm releases.

Linaro LSK kernel release

Linaro is an open organization focused on improving Linux on ARM. They are also providing a Linux kernel release called Linaro
Stable Kernel (LSK). It is based on kernel.org Longterm kernel releases and included ARM related features developed by Linaro.
Normally these features are generic kernel features for the ARM architecture. Please refer to https://wiki.linaro.org/LSK for more
information about the LSK releases.

NXP Layerscape SDK kernel

NXP’s SDK kernel often contains patches that are not upstream yet so essentially the LSDK kernel is an enhanced Linaro LSK
which is in turn an enhanced kernel.org LTS. In order to fully utilize the ARM open source eco-system. The kernel versions provided
in NXP LSDK will be chosen from the kernel.org Longterm releases to include the important bugfixes backported. It will also
include generic ARM kernel features provided by the Linaro LSK release which could be important for some users.

Getting the LSDK kernel source code

With Layerscape SDK, NXP owned/updated software components are published on github. You can use git commands to get the
latest kernel source code.

• Install git command if not there already. For example, on Ubuntu:

$ sudo apt-get install git

• Clone the Linux kernel source code with git.

$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/linux

7.1 Configuring and building
Configuring and building the Linux kernel is controlled by the Kbuild sub-system. You can find documents describing the internal
of Kbuild sub-system under the Documentation/kbuild/ folder in the Linux source code tree if you are adding new files or new
configure options to the kernel. Otherwise as a user of Linux kernel, you probably only want to know how to fine tune the kernel
configuration base on your system requirements and build new kernel image with updated configuration. These are done through
make commands, below we will talk about make commands you probably need to know as a kernel user.

Environment setting for cross-compiling

This chapter only matters when you are configuring and building kernel on a different architecture from the target. For example,
compiling an ARMv8 kernel on an X86 computer. If you are compiling the kernel natively on a machine of the same architecture
as the target, you should skip this chapter.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
290 NXP Semiconductors

https://www.kernel.org/doc/html/latest/admin-guide/README.html
https://www.kernel.org/category/releases.html

• Install the cross compiler of your distribution

• Specify the target architecture in ARCH environment variable

• Specify the prefix (and path) of a cross compiler in CROSS_COMPILE environment variable

$ export CROSS_COMPILE=/path/to/dir/tool-chain-prefix-

Or just the prefix if the cross-compiler commands are already in the execution PATH.

$ export CROSS_COMPILE=tool-chain-prefix-

For example, the commands needed on Ubuntu Linux will be like:

• 64-bit ARM:

$ sudo apt-get install gcc-aarch64-linux-gnu
$ export CROSS_COMPILE=aarch64-linux-gnu-
$ export ARCH=arm64

• 32-bit ARM (ARMv7 / 32-bit mode of ARMv8):

$ sudo apt-get install gcc-arm-linux-gnueabihf
$ export CROSS_COMPILE=arm-linux-gnueabihf-
$ export ARCH=arm

For the shell environment variables exported above, you can also include them directly in each make command you use. E.g. $
ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make {targets}. Exporting them will save effort if you are using make in
kernel frequently.

Configuring kernel

The current kernel configuration for a kernel source tree will be kept in a hidden file named .config at the top level of the kernel
source code after you changed the configuration with any of the make config command variants. You can copy it directly from one
kernel source tree to another with the same kernel version to duplicate the configuration exactly. Also, you can edit it with a text
editor, in which you can see a list of CONFIG_* symbols corresponding to each of the kernel configure option.

The following targets from the Linux kernel Kbuild framework are used to load the default kernel configuration for LSDK:

• defconfig/${PLATFORM}_defconfig

Create the .config file by using the default config options of the architecture or platform defined in the arch/$ARCH/configs/
directory. This normally includes all the device drivers needed for the architecture or platform.

• ${FRAGMENT}.config

Merge a configuration fragment that enables certain features into the .config file.

Specific command to load the default configuration of different platforms for LSDK will be:

• For Layerscape ARMv8 platforms in 64bit mode:

$ make defconfig lsdk.config

• For Layerscape ARMv7 platforms:

$ make multi_v7_defconfig multi_v7_lpae.config lsdk.config

• For Layerscape ARMv8 platforms in 32bit mode:

$ make multi_v7_defconfig multi_v7_lpae.config multi_v8.config lsdk.config

To further fine tune the configuration base on your system need you can use the following make commands.

• $ make menuconfig

Choose configure options in text based color menus, radiolists & dialogs. It is a good way to navigate through all the selectable
kernel configure options in a well-organized human-readable hierarchy and you can get a description of every option when
it is highlighted by selecting the <Help> button. In the device driver part of this User’s Manual we also provided the path to
the configure options needed for a feature to work in the menuconfig.

• $ make ${FRAGMENT}.config

Configuring and building

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 291

You can also utilize this capability to enable options for a specific feature in your custom kernel configuration quickly without
selecting each one of them in the menuconfig. In the device driver part of this User’s Manual, we listed the CONFIG_* symbols
needed by a specific feature/driver. Put these symbols with “=y” or “=m” depending on if you want these features/drivers to
be built-in or built as loadable kernel module into a ${FEATURE}.config file under arch/$ARCH/configs/ directory. Run $
make ${FEATURE}.config command, it will enable all these listed kernel configure options together.

Building kernel

Building the kernel is simple.

• To build kernel images and device tree images.

make

• To build loadable kernel modules:

make modules

• To generate image with u-boot image wrapper:

make uImage

You can supply -j <NUM> option to the above make commands to spin NUM concurrent threads to reduce build time on multicore
systems.

After a successful build:

• Compiled kernel images are in arch/${ARCH}/boot/ folder.

• Compiled device trees (dtb files) are in arch/${ARCH}/boot/dts folder.

• Compiled kernel modules are spread out in driver folders. You can extract them to a specific folder (e.g. /folder/to/install) by
using command:

$ make modules_install INSTALL_MOD_PATH=/folder/to/install

Install new kernel and modules

The path or naming convention of kernel images and modules are different for different Linux distributions. The following
instructions are based on the convention of LSDK.

Using the flex-build scripts

• Copy kernel image, dtb and kernel modules from your kernel tree to the staging folder of the flexbuild script (Skip if you are
using the flexbuild -c linux to build the kernel directly).

— For 64-bit ARM:

$ cp arch/arm64/boot/Image.gz ${path-to-flexbuild}/build/qoriq-linux/kernel/arm64/
$ cp arch/arm64/boot/dts/freescale/*.dtb ${path-to-flexbuild}/build/qoriq-linux/
kernel/arm64/
$ make modules_install INSTALL_MOD_PATH=${path-to-flexbuild}/build/qoriq-linux/kernel/
arm64/

— For 32-bit ARM:

$ cp arch/arm/boot/Image.gz ${path-to-flexbuild}/build/qoriq-linux/kernel/arm/
$ cp arch/arm/boot/dts/ls*.dtb ${path-to-flexbuild}/build/qoriq-linux/kernel/arm/
$ make modules_install INSTALL_MOD_PATH=${path-to-flexbuild}/build/qoriq-linux/
kernel/arm/

• Regenerate the boot partition and rootfs (for commands below: ${ARCH} = arm32 | arm64)

$ flex-builder -i uimg (for arm64)
$ flex-builder -i mkbootpartition -a ${ARCH}
$ flex-builder -i merge-component -a ${ARCH}
$ flex-builder -i compressrfs -a ${ARCH}

• Use flex-installer to deploy the updated boot partition and rootfs to the device following the Layerscape SDK user guide.

Update the target filesystem directly

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
292 NXP Semiconductors

This can be more convenient if you are compiling the kernel on the target device locally or you can easily update the filesystem
of target device remotely (e.g. using scp, tftp, or etc.).

• Generate uImage

— For 64-bit ARM:

$ mkimage -A arm64 -O linux -T kernel -C gzip -a 0x80080000 -e 0x80080000 -n Linux -d
arch/arm64/boot/Image.gz uImage

— For 32-bit ARM:

$ make uImage

• Copy your uImage file to /boot folder on the target using cp if compiled locally; Use any available remote update approach
if compiled remotely.

• Update the symbol link of vmlinuz/vmlinuz.v7/vmlinuz.v8 to the new uImage file on the target.

• Copy dtb files to /boot folder on the target using cp if compiled locally; Use any available remote update approach to do the
same if compiled remotely.

• Update kernel modules. (Note: kernel modules are required to be updated when you updated the kernel image).

— If you compiled the kernel on the target device locally. Use the command below:

$ make modules_install

— If you compiled the kernel remotely. Do the following:

◦ Install the modules into a temporary folder (e.g. /tmp/lsdk/).

$ make modules_install INSTALL_MOD_PATH=/tmp/lsdk/

◦ Transfer the lib/ directory from the temporary location above to the target device using any file transfer approach
and put it in the / path of the filesystem.

7.2 Device Drivers

7.2.1 Enhanced Direct Memory Access (eDMA)

Description

The SoC integrates NXP's Enhanced Direct Memory Access module. Slave device such as I2C or SAI can deploy the DMA
functionality to accelerate the transfer and release the CPU from heavy load.

Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->

 [*] DMA Engine support ---> --->

 <*> Freescale eDMA engine support

DMA engine subsystem driver and eDMA driver support

Identifier

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 293

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_FSL_EDMA y/m/n n eDMA Driver

Device Tree Binding

Device Tree Node

Below is an example device tree node required by this feature. Note that it may has differences among platforms.

edma0: edma@2c00000 {
 #dma-cells = <2>;
 compatible = "fsl,vf610-edma";
 reg = <0x0 0x2c00000 0x0 0x10000>,
 <0x0 0x2c10000 0x0 0x10000>,
 <0x0 0x2c20000 0x0 0x10000>;
 interrupts = <GIC_SPI 135 IRQ_TYPE_LEVEL_HIGH>,
 <GIC_SPI 135 IRQ_TYPE_LEVEL_HIGH>;
 interrupt-names = "edma-tx", "edma-err";
 dma-channels = <32>;
 big-endian;
 clock-names = "dmamux0", "dmamux1";
 clocks = <&platform_clk 1>,
 <&platform_clk 1>;
 };

Device Tree Node Binding for Slave Device

Below is the device tree node binding for a slave device which deploy the eDMA functionality.

i2c0: i2c@2180000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,vf610-i2c";
 reg = <0x0 0x2180000 0x0 0x10000>;
 interrupts = <GIC_SPI 88 IRQ_TYPE_LEVEL_HIGH>;
 clock-names = "i2c";
 clocks = <&platform_clk 1>;
 dmas = <&edma0 1 39>,
 <&edma0 1 38>;
 dma-names = "tx", "rx";
 status = "disabled";
 };

Source Files

The following source files are related the this feature in Linux kernel.

Table 82. Source Files

Source File Description

drivers/dma/fsl-edma.c The eDMA driver file

Verification in Linux

1. Use the slave device which deploy the eDMA functionality to verify the eDMA driver, below is a verification with the I2C
salve.

root@ls1021aqds:~# i2cdetect 0
WARNING! This program can confuse your I2C bus, cause data loss and worse!
I will probe file /dev/i2c-0.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
294 NXP Semiconductors

I will probe address range 0x03-0x77.
Continue? [Y/n]
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- 69 -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
root@ls1021aqds:~# i2cdump 0 0x69 i
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
00: 05 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ??..]U?U???.???.
10: ff e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 .???....???....x
20: 05 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 ???..?@??`<??.@.
30: fe 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ???)...z........
40: 05 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ??..]U?U???.???.
50: ff e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 .???....???....x
60: 05 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 ???..?@??`<??.@.
70: fe 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ???)...z........
80: 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ff ?..]U?U???.???..
90: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 ???....???....x.
a0: 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ??..?@??`<??.@.?
b0: 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ff ??)...z.........
c0: 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ff ?..]U?U???.???..
d0: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 ???....???....x.
e0: 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ??..?@??`<??.@.?
f0: 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ff ??)...z.........
root@ls1021aqds:~# cat /proc/interrupts
 CPU0 CPU1
 29: 0 0 GIC 29 arch_timer
 30: 5563 5567 GIC 30 arch_timer
112: 260 0 GIC 112 fsl-lpuart
120: 32 0 GIC 120 2180000.i2c
121: 0 0 GIC 121 2190000.i2c
167: 8 0 GIC 167 eDMA
IPI0: 0 1 CPU wakeup interrupts
IPI1: 0 0 Timer broadcast interrupts
IPI2: 1388 1653 Rescheduling interrupts
IPI3: 0 0 Function call interrupts
IPI4: 2 4 Single function call interrupts
IPI5: 0 0 CPU stop interrupts
Err: 0
root@ls1021aqds:~#

7.2.2 CAAM Direct Memory Access (DMA)

Description

The CAAM DMA module implements a DMA driver that uses the CAAM DMA controller to provide both SG and MEMCPY DMA
capability to be used by the platform. It is based on the CAAM JR interface that must be enabled in the kernel config as a
prerequisite for the CAAM DMA driver.

The driver is based on the DMA engine framework and it is located under the DMA Engine support category in the kernel config
menu.

Kernel Configure Options

Tree Overview

To enable the CAAM DMA module, set the following options for make menuconfig:

-*- Cryptographic API --->
 [*] Hardware crypto devices --->
 <*> Freescale CAAM-Multicore driver backend

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 295

 <*> Freescale CAAM Job Ring driver backend
Device Drivers --->
 <*> DMA Engine support --->
 <*> CAAM DMA engine support

Be aware that the CAAM DMA driver depends on the CAAM and CAAM JR drivers, which also have to be enabled.

 NOTE

Identifier

The following configure identifier is used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_CRYPTO_DEV_FS
L_CAAM_DMA

y/m/n n CAAM DMA engine support

Device Tree Node

Below is an example device tree node required by this feature.

caam_dma {
 compatible = "fsl,sec-v5.4-dma";
};

Source Files

The following source file is related to this feature in the Linux kernel.

Source File Description

drivers/dma/caam_dma.c The CAAM DMA driver

Verification in Linux

On a successful probing, the driver will print the following message in dmesg:

 [1.443940] caam-dma 1700000.crypto:caam_dma: caam dma support with 4 job rings

Additionally, you can also run the following commands:

ls -l /sys/class/dma/
total 0
lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan0 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan0
lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan1 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan1
lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan2 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan2
lrwxrwxrwx 1 root root 0 Jan 1 1970 dma0chan3 -> ../../devices/platform/soc/1700000.crypto/
1700000.crypto:caam_dma/dma/dma0chan3

Component Testing

To test both the SG and memcpy capability of the CAAM DMA driver use the dmatest module provided by the kernel.

Build dmatest

Build the dmatest utility as a module by running the command:

$ make menuconfig

Then select from the kernel menuconfig to build the dmatest.ko as a module:

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
296 NXP Semiconductors

Device Drivers --->
 <*> DMA Engine support --->
 <M> DMA Test client

Configure dmatest

Before testing insert the module:

$ insmod dmatest.ko

The configure the dmatest. There is a general configuration that applies for both the sg and memcpy functionality:

$ echo 1 > /sys/module/dmatest/parameters/max_channels
$ echo 2000 > /sys/module/dmatest/parameters/timeout
$ echo 0 > /sys/module/dmatest/parameters/noverify
$ echo 4 > /sys/module/dmatest/parameters/threads_per_chan
$ echo 0 > /sys/module/dmatest/parameters/dmatest
$ echo 1 > /sys/module/dmatest/parameters/iterations
$ echo 2000 > /sys/module/dmatest/parameters/test_buf_size

The above configuration is self explanatory except a few:

If you set the 'noverify' parameter to 0 it will not perform check of the copied buffer at the end of each testing round. This should
be used for performance testing. Set the 'noverify' parameter to 1 for functional testing.

Set the 'dmatest' parameter to 0 to test the memcpy functionality and to 1 to test the sg functionality.

Perform the test

To perform the test simply run the command:

$ echo 1 > /sys/module/dmatest/parameters/run

Depending on the type of test performed (sg/memcpy) the output may vary. Here is an example of output obtained with the above
parameters:

[72.113769] dmatest: Started 4 threads using dma0chan0
[72.105334] dmatest: dma0chan0-copy0: summary 1 tests, 0 failures 9009 iops 9009 KB/s (0)
[72.113649] dmatest: dma0chan0-copy1: summary 1 tests, 0 failures 119 iops 119 KB/s (0)
[72.114927] dmatest: dma0chan0-copy2: summary 1 tests, 0 failures 24390 iops 0 KB/s (0)
[72.115098] dmatest: dma0chan0-copy3: summary 1 tests, 0 failures 37037 iops 0 KB/s (0)

7.2.3 Enhanced Secured Digital Host Controller (eSDHC)

Description

The enhanced secured host controller (eSDHC) provides an interface between the host system and the SD/SDIO cards and
eMMC devices.

The eSDHC device driver supports either kernel built-in or module.

Kernel Configure Options

Tree View

Kernel Configure Options Tree View Description

 Device Drivers --->
 <*> MMC/SD/SDIO card support --->
 <*> MMC block device driver
 (8) Number of minors per block device
 [*] Use bounce buffer for simple hosts

Enables SD/MMC block device driver support

Table continues on the next page...

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 297

Table continued from the previous page...

Kernel Configure Options Tree View Description

*** MMC/SD/SDIO Host Controller Drivers ***

<*> Secure Digital Host Controller Interface support
<*> SDHCI platform and OF driver helper
[*] SDHCI OF support for the NXP eSDHC controller

Enables NXP eSDHC driver support

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_MMC y/n y Enable SD/MMC bus protocol

CONFIG_MMC_BLOCK y/n y Enable SD/MMC block device driver support

CONFIG_MMC_BLOCK_MINORS integer 8 Number of minors per block device

CONFIG_MMC_BLOCK_BOUNCE y/n y Enable continuous physical memory for transmit

CONFIG_MMC_SDHCI y/n y Enable generic sdhc interface

CONFIG_MMC_SDHCI_PLTFM y/n y Enable common helper function support for sdhci platform
and OF drivers

CONFIG_MMC_SDHCI_OF_ESDHC y/n y Enable NXP eSDHC support

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/mmc/host/sdhci.c Linux SDHCI driver support

drivers/mmc/host/sdhci-pltfm.c Linux SDHCI platform devices support driver

drivers/mmc/host/sdhci-of-esdhc.c Linux eSDHC driver

Device Tree Binding

Property Type Status Description

compatible String Required Should be 'fsl,esdhc'

reg integer Required Register map

example:

esdhc: esdhc@1560000 {
 compatible = "fsl,ls1046a-esdhc", "fsl,esdhc";
 reg = <0x0 0x1560000 0x0 0x10000>;
 interrupts = <GIC_SPI 62 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clockgen 2 1>;
 voltage-ranges = <1800 1800 3300 3300>;
 sdhci,auto-cmd12;

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
298 NXP Semiconductors

 big-endian;
 bus-width = <4>;
};

Verification in U-boot

The u-boot log

=> mmcinfo
Device: FSL_SDHC
Manufacturer ID: 74
OEM: 4a45
Name: SDC
Tran Speed: 50000000
Rd Block Len: 512
SD version 3.0
High Capacity: Yes
Capacity: 7.5 GiB
Bus Width: 4-bit
Erase Group Size: 512 Bytes
=> mw.l 81000000 11111111 100
=> mw.l 82000000 22222222 100
=> cmp.l 81000000 82000000 100
word at 0x0000000081000000 (0x11111111) != word at 0x0000000082000000 (0x22222222)
Total of 0 word(s) were the same
=> mmc write 81000000 0 2

MMC write: dev # 0, block # 0, count 2 ... 2 blocks written: OK
=> mmc read 82000000 0 2

MMC read: dev # 0, block # 0, count 2 ... 2 blocks read: OK
=> cmp.l 81000000 82000000 100
Total of 256 word(s) were the same
=>

Verification in Linux

Set u-boot environment

=> setenv hwconfig sdhc

The linux booting log

......
[3.913163] sdhci: Secure Digital Host Controller Interface driver
[3.919339] sdhci: Copyright(c) Pierre Ossman
[3.931467] sdhci-pltfm: SDHCI platform and OF driver helper
[3.938900] sdhci-esdhc 1560000.esdhc: No vmmc regulator found
[3.944728] sdhci-esdhc 1560000.esdhc: No vqmmc regulator found
[3.978676] mmc0: SDHCI controller on 1560000.esdhc [1560000.esdhc] using ADMA 64-bit
[4.197784] mmc0: new high speed SDHC card at address b368
[4.203502] mmcblk0: mmc0:b368 SDC 7.45 GiB

Partition the card with fdisk

~# fdisk /dev/mmcblk0

Welcome to fdisk (util-linux 2.26.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0x5a5f34b3.

Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p):

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 299

Using default response p.
Partition number (1-4, default 1):
First sector (2048-15628287, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-15628287, default 15628287):

Created a new partition 1 of type 'Linux' and of size 7.5 GiB.

Command (m for help): w
The partition table has been altered.
Calling ioctl() [410.501876] mmcblk0: p1
to re-read partition table.
Syncing disks.

~#
~# fdisk -l /dev/mmcblk0
Disk /dev/mmcblk0: 7.5 GiB, 8001683456 bytes, 15628288 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x5a5f34b3

Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 2048 15628287 15626240 7.5G 83 Linux

Format the card with mkfs

~# mkfs.ext2 /dev/mmcblk0p1
mke2fs 1.42.9 (28-Dec-2013)
Discarding device blocks: [37.611042] random: nonblocking pool is initialized
done
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
488640 inodes, 1953280 blocks
97664 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2000683008
60 block groups
32768 blocks per group, 32768 fragments per group
8144 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done

~#

Mount, read and write

~# mount /dev/mmcblk0p1 /mnt/
~# ls /mnt/
lost+found
~# cp -r /lib /mnt/
~# sync
~# ls /mnt/
lib lost+found
~# umount /dev/mmcblk0p1
~# ls /mnt/
~#

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
300 NXP Semiconductors

Known Bugs, Limitations, or Technical Issues

1. Call trace of more than 120 seconds task blocking when running iozone to test card performance. This is not issue and
use below command to disable the warning.

echo 0 > /proc/sys/kernel/hung_task_timeout_secs

2. Layerscape boards couldn't provide a power cycle to SD card but according to SD specification, only a power cycle could
reset the SD card working on UHS-I speed mode. When the card is on UHS-I speed mode, this hardware problem may
cause unexpected result after board reset. The workaround is using power off/on instead of reset when using SD UHS-I
card.

3. Transcend 8G class 10 SDHC card has some compatibility issue. It's observed it couldn't work on 50MHz high speed mode
on LS2 boards, but other brand SD cards (Sandisk, Kingston, Sony ...) worked fine. Reducing SD clock frequency could
also resolve the issue. The workaround is using other kind SD cards instead.

4. After sleep of LS1046ARDB, the card will get below interrupt timeout issue. This is hardware issue. CMD18 (multiple blocks
read) has hardware interrupt timeout issue.

mmc0: Timeout waiting for hardware interrupt.

5. Linux MMC stack doesn't have SD UHS-II support currently. It couldn't handle SD UHS-II card well. If UHS-I support is
enabled in eSDHC dts node, the driver may make SD UHS-II card enter 1.8v mode. Only a power cycle could reset the
card, so use power off/on instead of reset for SD UHS-II card if UHS-I support is enabled in eSDHC dts node.

7.2.4 IEEE 1588

Description

From IEEE-1588 perspective, the components required are:

1. IEEE-1588 extensions to the gianfar driver or DPAA/DPAA2 driver.

2. A stack application for IEEE-1588 protocol.

IEEE 1588 device driver supports either kernel built-in or module.

Kernel Configure Options

Tree View

1. eTSEC - Using PTPd stack

Kernel Configure Tree View Options Description

Device Drivers --->
 PTP clock support --->
 <*> Freescale eTSEC as PTP clock

Enable 1588 driver for PTPd stack

2. DPAA - Using PTPd stack

Kernel Configure Tree View Options Description

Device Drivers --->
 PTP clock support --->
 <*> Freescale DPAA as PTP clock

Enable 1588 driver for PTPd stack

3. DPAA2 - Using PTPd stack

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 301

Kernel Configure Tree View Options Description

Device Drivers --->
 PTP clock support --->
 <*> Freescale DPAA2 as PTP clock

Enable 1588 driver for PTPd stack

Compile-time Configuration Options

1. eTSEC - Using PTPd stack

Option Values Default Value Description

CONFIG_GIANFAR y/n y Enable eTSEC driver support

CONFIG_PTP_1588_CLOCK_GIANFAR y/n y Enables 1588 driver support

2. DPAA - Using PTPd stack

Option Values Default Value Description

CONFIG_PTP_1588_CLOCK_DPAA y/n n Enable IEEE 1588 support

CONFIG_FSL_SDK_DPAA_ETH y/n y Enables DPAA driver support

3. DPAA2 - Using PTPd stack

Option Values Default Value Description

CONFIG_PTP_1588_CLOCK_DPAA2 y/n y Enable IEEE 1588 support

CONFIG_FSL_DPAA2_ETH y/n y Enables DPAA2 driver support

Source Files

The driver source is maintained in the Linux kernel source tree.

1. eTSEC (for PTPd)

Source File Description

drivers/net/ethernet/freescale/gianfar.c eTSEC Ethernet driver

drivers/net/ethernet/freescale/gianfar_ptp.c IEEE 1588 driver

2. DPAA (for PTPd)

Source File Description

drivers/net/ethernet/freescale/sdk_dpaa/dpaa_ptp.c IEEE 1588 driver

drivers/net/ethernet/freescale/sdk_dpaa/dpaa_eth.c DPAA Ethernet driver

3. DPAA2 (for PTPd)

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
302 NXP Semiconductors

Source File Description

drivers/staging/fsl-dpaa2/rtc/rtc.c IEEE 1588 driver

drivers/staging/fsl-dpaa2/ethernet/dpaa2-eth.c DPAA2 Ethernet driver

Device Tree Binding

1. eTSEC (for PTPd)

Property Type Status Description

compatible String Required Should be 'fsl,etsec-ptp'

reg integer Required Register map

Example:

ptp_clock@2d10e00 {
 compatible = "fsl,etsec-ptp";
 reg = <0x0 0x2d10e00 0x0 0xb0>;
 interrupts = <GIC_SPI 173 IRQ_TYPE_LEVEL_HIGH>;
 fsl,tclk-period = <5>;
 fsl,tmr-prsc = <2>;
 fsl,tmr-add = <0xaaaaaaab>;
 fsl,tmr-fiper1 = <999999990>;
 fsl,tmr-fiper2 = <99990>;
 fsl,max-adj = <499999999>;
};

2. DPAA (For PTPd)

Property Type Status Description

compatible String Required Should be 'fsl,fman-rtc'

reg integer Required Register map

Example:

ptp_timer0: ptp-timer@fe000 {
 compatible = "fsl,fman-ptp-timer", "fsl,fman-rtc";
 reg = <0xfe000 0x1000>;
};

3. DPAA2

NA.

Verification in Linux

Connect Ethernet interfaces of two boards with back-to-back method (for example, eth0 to eth0).

One board runs as master and the other one runs as slave.

• The linux booting log

...
pps pps0: new PPS source ptp0
...

• On the master side

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 303

ifconfig eth0 up
ifconfig eth0 192.168.1.100
ptpd2 -i eth0 -MV

• On the slave side

ifconfig eth0 up
ifconfig eth0 192.168.1.200
ptpd2 -i eth0 -sV --servo:kp=0.32 --servo:ki=0.05

The slave side would print synchronization messages.

• Note:

ptpd2 stack would use /dev/ptp0 in default. If 1588 timer is initialized as ptp1 or others, please use '-o' option to clarify that
such as,

-o /dev/ptp1

Known Bugs, Limitations, or Technical Issues

• Packet loss issue could be observed on LS1021ATWR when Ethernet interfaces are connected in back-to-back way. The
root cause is that the PHY supports IEEE 802.11az EEE mode by default. The low speed traffic will make it go into low
power mode. It affects 1588 synchronization performance greatly. Use the workaround below to disable the feature.

ifconfig eth0 up
ethtool --set-eee eth0 advertise 0
ifconfig eth0 down
ifconfig eth0 up

7.2.5 Integrated Flash Controller (IFC)

7.2.5.1 Integrated Flash Controller NOR Flash User Manual

Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes e.g. NOR/NAND on board for boot functionality
as well as data storage.

U-Boot Configuration

Compile time options

Below are major u-boot configuration options related to this feature defined in platform specific config files under include/configs/
directory.

Option Identifier Description

CONFIG_FSL_IFC Enable IFC support

CONFIG_FLASH_CFI_DRIVER

CONFIG_SYS_FLASH_CFI

CONFIG_SYS_FLASH_EMPTY_INFO

Enable CFI Driver for NOR Flash devices

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
304 NXP Semiconductors

Source Files

The following source files are related to this feature in u-boot.

Source File Description

./drivers/misc/fsl_ifc.c Set up the different chip select parameters from board header file

drivers/mtd/cfi_flash.c CFI driver support for NOR flash devices

Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->

 <*> Memory Technology Device (MTD) support --->

 [*] MTD partitioning support

 [*] Command line partition table parsing

 <*> Flash partition map based on OF description

 <*> Direct char device access to MTD devices

 -*- Common interface to block layer for MTD
'translation layers'

 <*> Caching block device access to MTD devices

 < > FTL (Flash Translation Layer) support

 RAM/ROM/Flash chip drivers --->

 <*> Detect flash chips by Common Flash Interface
(CFI) probe

 <*> Support for Intel/Sharp flash chips

 <*> Support for AMD/Fujitsu/Spansion flash chips

 Mapping drivers for chip access --->

 <*> Flash device in physical memory map based on
OF description

These options enable CFI
support for NOR Flash
under MTD subsystem and
Integrated Flash Controller
support on Linux

File systems --->

 [*] Miscellaneous filesystems --->

 <*> Journalling Flash File System v2 (JFFS2)
support

This option enables JFFS2
file system support for
MTD Devices

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 305

Special Configure needs to be enabled("Y") for LS1021. Please find in below table with default value as "N"

Option Values Default Value Description

CONFIG_FSL_IFC Y/N Y Integrated Flash Controller support

CONFIG_MTD Y/N Y Memory Technology Device (MTD) support

CONFIG_MTD_PARTITIONS Y/N Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS Y/N Y Allow generic configuration of the MTD partition tables via
the kernel command line.

CONFIG_MTD_OF_PARTS Y/N Y This provides a partition parsing function which derives the
partition map from the children of the flash nodes
described in Documentation/powerpc/booting-without-
of.txt

CONFIG_MTD_CHAR Y/N Y Direct char device access to MTD devices

CONFIG_MTD_BLOCK Y/N Y Caching block device access to MTD devices

CONFIG_MTD_CFI Y/N Y Detect flash chips by Common Flash Interface (CFI) probe

CONFIG_MTD_GEN_PROBE Y/N Y NA

CONFIG_MTD_MAP_BANK_WIDTH_1 Y/N Y Support 8-bit buswidth

CONFIG_MTD_MAP_BANK_WIDTH_2 Y/N Y Support 16-bit buswidth

CONFIG_MTD_MAP_BANK_WIDTH_4 Y/N Y Support 32-bit buswidth

CONFIG_MTD_PHYSMAP_OF Y/N Y Flash device in physical memory map based on OF
description

CONFIG_FTL Y/N N FTL (Flash Translation Layer) support

CONFIG_MTD_CFI_INTELEXT Y/N Y Support for Intel/Sharp flash chips

CONFIG_MTD_CFI_AMDSTD Y/N Y Support for AMD/Fujitsu/Spansion flash chips

Device Tree Binding

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/memory/fsl_ifc.c Integrated Flash Controller driver to handle error interrupts

drivers/mtd/mtdpart.c Simple MTD partitioning layer

drivers/mtd/mtdblock.c Direct MTD block device access

drivers/mtd/mtdchar.c Character-device access to raw MTD devices.

drivers/mtd/ofpart.c Flash partitions described by the OF (or flattened) device tree

Table continues on the next page...

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
306 NXP Semiconductors

Table continued from the previous page...

Source File Description

drivers/mtd/ftl.c FTL (Flash Translation Layer) support

drivers/mtd/chips/cfi_probe.c Common Flash Interface probe

drivers/mtd/chips/cfi_util.c Common Flash Interface support

drivers/mtd/chips/cfi_cmdset_0001.c Support for Intel/Sharp flash chips

drivers/mtd/chips/cfi_cmdset_0002.c Support for AMD/Fujitsu/Spansion flash chips

Verification in U-Boot

Test the Read/Write/Erase functionality of NOR Flash

1. Boot the u-boot with above config options to get NOR Flash access enabled. Check this in boot log,

FLASH: * MiB

where * is the size of NOR Flash

2. Erase NOR Flash

3. Make test pattern on memory e.g. DDR

4. Write test pattern on NOR Flash

5. Read the test pattern from NOR Flash to memory e.g DDR

6. Compare the test pattern data to verify functionality.

Test Log :

Test log with initial u-boot log removed

--
--

FLASH: 128 MiB

--
--
/* u-boot prompt */
=> mw.b 80000000 0xa5 10000
=> md 80000000
80000000: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000010: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000020: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000030: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
=> protect off all
Un-Protect Flash Bank # 1
=> erase 0x584100000 +0x10000

. done
Erased 1 sectors
=> cp.b 80000000 0x584100000 10000
Copy to Flash... 9....8....7....6....5....4....3....2....1....done
=> cmp.b 80000000 0x584100000 10000
Total of 65536 bytes were the same
=>

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 307

Verification in Linux

To cross check whether IFC NOR driver has been configured in the kernel or not, see the kernel boot log with following entries.
Please note mtd partition number can be changed depending upon device tree.

[2.368207] 60000000.nor: Found 1 x16 devices at 0x0 in 16-bit bank. Manufacturer ID
0x000001 Chip ID 0x002801
[2.378219] Amd/Fujitsu Extended Query Table at 0x0040
[2.383374] Amd/Fujitsu Extended Query version 1.3.
[2.388427] number of CFI chips: 1
[2.391835] 8 cmdlinepart partitions found on MTD device 60000000.nor
[2.398277] Creating 8 MTD partitions on "60000000.nor":
[2.403591] 0x000000000000-0x000000100000 : "nor_bank0_rcw"
[2.409553] 0x000000100000-0x000001000000 : "nor_bank0_uboot"
[2.415653] 0x000001000000-0x000002000000 : "nor_bank0_kernel"
[2.421839] 0x000002000000-0x000004000000 : "nor_bank0_rootfs"
[2.428027] 0x000004000000-0x000004100000 : "nor_bank4_rcw"
[2.433948] 0x000004100000-0x000005000000 : "nor_bank4_uboot"
[2.440043] 0x000005000000-0x000006000000 : "nor_bank4_kernel"
[2.446228] 0x000006000000-0x000008000000 : "nor_bank4_rootfs"

Note: NOR address and number of partition will vary from SoC to SoC supported in LSDK

To verify NOR flash device accesses see the following test,

[root@ root]# cat /proc/mtd
dev: size erasesize name
mtd0: 00100000 00020000 "nor_bank0_rcw"
mtd1: 00f00000 00020000 "nor_bank0_uboot"
mtd2: 01000000 00020000 "nor_bank0_kernel"
mtd3: 02000000 00020000 "nor_bank0_rootfs"
mtd4: 00100000 00020000 "nor_bank4_rcw"
mtd5: 00f00000 00020000 "nor_bank4_uboot"
mtd6: 01000000 00020000 "nor_bank4_kernel"
mtd7: 02000000 00020000 "nor_bank4_rootfs"
mtd8: 01000000 00040000 "nand_uboot"
mtd9: 01000000 00040000 "nand_kernel"
mtd10: 02000000 00040000 "nand_free"
mtd11: 00600000 00001000 "uboot"
mtd12: 00a00000 00001000 "free"
mtd13: 00080000 00001000 "spi0.1"
mtd14: 00800000 00001000 "spi0.2"

[root@ root]# flash_eraseall -j /dev/mtd2

Erasing 128 Kibyte @ 1400000 -- 100% complete. Cleanmarker written at 13e0000.

[root@P1010RDB root]# mount -t jffs2 /dev/mtdblock2 /mnt/

JFFS2 notice: (1202) jffs2_build_xattr_subsystem: complete building xattr subsystem, 0 of
xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan) found.

[root@ root]# cd /mnt/

[root@ mnt]# ls -l

[root@ mnt]# touch flash_file

[root@ root]# umount mnt
//ls must list local_file
[root@ root]# ls mnt
//mount again
[root@ root]# mount -t jffs2 /dev/mtdblock2 /mnt/
JFFS2 notice: (1219) jffs2_build_xattr_subsystem: complete building xattr subsystem, 0 of
xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan) found.
//use ls ; it must show the created file
[root@ root]# ls /mnt/
flash_file

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
308 NXP Semiconductors

//unmount
[root@ root]# umount /mnt/

7.2.5.2 Integrated Flash Controller NAND Flash User Manual

Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes (e.g. NOR/NAND) on board for boot functionality
as well as data storage.

U-Boot Configuration

Compile time options

Below are major U-Boot configuration options related to this feature defined in platform specific config files under include/configs/
directory.

Option Identifier Description

CONFIG_FSL_IFC Enable IFC support

CONFIG_NAND_FSL_IFC Enable NAND Machine support on IFC

CONFIG_SYS_MAX_NAND_DEVICE No of NAND Flash chips on platform

CONFIG_MTD_NAND_VERIFY_WRITE Verify NAND flash writes

CONFIG_CMD_NAND Enable various commands support for NAND Flash

CONFIG_SYS_NAND_BLOCK_SIZE Block size of the NAND flash connected on Platform

Source Files

The following source files are related to this feature in u-boot.

Source File Description

./drivers/misc/fsl_ifc.c Set up the different chip select parameters from board header file

drivers/mtd/nand/fsl_ifc_nand.c IFC nand flash machine driver file

Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->

 <*> Memory Technology Device (MTD) support --->

 [*] MTD partitioning support

 [*] Command line partition table parsing=

These options enable
Integrated Flash Controller
NAND support to work with
MTD subsystem available
on Linux.

Also UBIFS support needs
to be enabled.

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 309

Kernel Configure Tree View Options Description

 <*> Flash partition map based on OF description

 <*> Direct char device access to MTD devices

 -*- Common interface to block layer for MTD 'translation layers'

 <*> Caching block device access to MTD devices

 <*> NAND Device Support --->

 <*> NAND support for Freescale IFC controller

Enable UBIFS filesystem in linux configuration

Device Drivers --->

 <*> Memory Technology Device (MTD) support --->

 UBI - Unsorted block images --->

 <*> Enable UBI

 (4096) UBI wear-leveling threshold

 (1) Percentage of reserved eraseblocks for bad eraseblocks handling

 < > MTD devices emulation driver (gluebi)

 *** UBI debugging options ***

 [] UBI debugging

File systems --->

 [*] Miscellaneous filesystems --->

 <*> UBIFS file system support

 [*] Extended attributes support

 [] Advanced compression options
 [] Enable debugging

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
310 NXP Semiconductors

Option Values Default Value Description

CONFIG_FSL_IFC y/n y Enable Integrated Flash Controller support

CONFIG_MTD_NAND_FSL_IFC y/n Y Enable Integrated Flash Controller NAND Machine support

CONFIG_MTD_PARTITIONS y/n Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS y/n Y Allow generic configuration of the MTD partition tables via the
kernel command line.

CONFIG_MTD_OF_PARTS y/n Y This provides a partition parsing function which derives the
partition map from the children of the flash nodes described in
Documentation/powerpc/booting-without-of.txt

CONFIG_MTD_CHAR y/n Y Direct char device access to MTD devices

CONFIG_MTD_BLOCK y/n Y Caching block device access to MTD devices

CONFIG_MTD_GEN_PROBE y/n Y NA

CONFIG_MTD_PHYSMAP_OF y/n Y Flash device in physical memory map based on OF description

Device Tree Binding

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/memory/fsl_ifc.c Integrated Flash Controller driver to handle error interrupts

drivers/mtd/nand/fsl_ifc_nand.c Integrated Flash Controller NAND Machine driver

include/linux/fsl_ifc.h IFC Memory Mapped Registers

Verification in U-Boot

Test the Read/Write/Erase functionality of NAND Flash

1. Boot the u-boot with above config options to get NAND Flash driver enabled. Check this in boot log,

NAND: * MiB

Where * is NAND flash size

2. Erase NAND Flash

3. Make test pattern on memory e.g. DDR

4. Write test pattern on NAND Flash

5. Read the test pattern from NAND Flash to memory e.g DDR

6. Compare the test pattern data to verify functionality.

Test Log :

...

...

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 311

NAND: 512 MiB

...

...

/* U-boot prompt */
=> nand erase.chip

NAND erase.chip: device 0 whole chip

Bad block table found at page 65504, version 0x01 Bad block table found at page 65472,
version 0x01

Skipping bad block at 0x01ff0000

Skipping bad block at 0x01ff4000

Skipping bad block at 0x01ff8000

Skipping bad block at 0x01ffc000

OK

=> mw.b 80000000 0xa5 100000

=> md 80000000

80000000: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5

80000010: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5

80000020: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5

80000030: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5

=> nand write 80000000 0 100000

NAND write: device 0 offset 0x0, size 0x100000

 1048576 bytes written: OK

=> nand read 90000000 0 100000

NAND read: device 0 offset 0x0, size 0x100000

 1048576 bytes read: OK

=> cmp.b 80000000 90000000 100000

Total of 1048576 bytes were the same

Verification in Linux

To cross check whether IFC NAND driver has been configured in the kernel or not, check the following. Please note mtd partition
numbers can be changed depending upon board device tree

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
312 NXP Semiconductors

[root@(none) root]# cat /proc/mtd
dev: size erasesize name
mtd0: 00100000 00020000 "nor_bank0_rcw"
mtd1: 00f00000 00020000 "nor_bank0_uboot"
mtd2: 01000000 00020000 "nor_bank0_kernel"
mtd3: 02000000 00020000 "nor_bank0_rootfs"
mtd4: 01000000 00040000 "nand_uboot"
mtd5: 01000000 00040000 "nand_kernel"
mtd6: 02000000 00040000 "nand_free"

[root@(none) root]# flash_eraseall /dev/mtd4 Erasing 16 Kibyte @ f00000 -- 100% complete.

[root@(none) root]# ubiattach /dev/ubi_ctrl -m 4

UBI: attaching mtd4 to ubi0

UBI: physical eraseblock size: 16384 bytes (16 KiB)

UBI: logical eraseblock size: 15360 bytes

UBI: smallest flash I/O unit: 512

UBI: VID header offset: 512 (aligned 512)

UBI: data offset: 1024

UBI: empty MTD device detected

UBI: create volume table (copy #1)

UBI: create volume table (copy #2)

UBI: attached mtd4 to ubi0

UBI: MTD device name: "NAND Root File System"

UBI: MTD device size: 15 MiB

UBI: number of good PEBs: 960

UBI: number of bad PEBs: 0

UBI: max. allowed volumes: 89

UBI: wear-leveling threshold: 4096

UBI: number of internal volumes: 1

UBI: number of user volumes: 0

UBI: available PEBs: 947

UBI: total number of reserved PEBs: 13

UBI: number of PEBs reserved for bad PEB handling: 9

UBI: max/mean erase counter: 0/0

UBI: image sequence number: 0

UBI: background thread "ubi_bgt0d" started, PID 7541 UBI device number 0, total 960 LEBs
(14745600 bytes, 14.1 MiB), available 947 LEBs (14545920 bytes, 13.9 MiB), LEB size 15360
bytes (15.0 KiB)

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 313

[root@(none) root]# ubimkvol /dev/ubi0 -N rootfs -s 14205KiB Volume ID 0, size 947 LEBs
(14545920 bytes, 13.9 MiB), LEB size 15360 bytes (15.0 KiB), dynamic, name "rootfs",
alignment 1

[root@(none) root]# mount -t ubifs /dev/ubi0_0 /mnt/

UBIFS: default file-system created

UBIFS: mounted UBI device 0, volume 0, name "rootfs"

UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB, 935 LEBs)
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBs)

UBIFS: media format: w4/r0 (latest is w4/r0)

UBIFS: default compressor: lzo

UBIFS: reserved for root: 678333 bytes (662 KiB)

[root@(none) root]# cd /mnt/

[root@(none) mnt]# ls

[root@(none) mnt]# touch flash_file

[root@(none) mnt]# ls -l

total 0

-rw-r--r-- 1 root root 0 Jul 6 14:45 flash_file

[root@(none) mnt]# cd

[root@(none) root]# umount /mnt/

UBIFS: un-mount UBI device 0, volume 0

[root@(none) root]# mount -t ubifs /dev/ubi0_0 /mnt/

UBIFS: mounted UBI device 0, volume 0, name "rootfs"

UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB, 935 LEBs)
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBs)

UBIFS: media format: w4/r0 (latest is w4/r0)

UBIFS: default compressor: lzo

UBIFS: reserved for root: 678333 bytes (662 KiB)

[root@(none) root]# ls -l /mnt/

total 0

-rw-r--r-- 1 root root 0 Jul 6 14:45 flash_file

Known Bugs, Limitations, or Technical Issues

Boards which have NAND Flash with 512byte page size, JFFS2 cannot be supported using H/W ECC support of IFC , as there
is not enough remaining space in the OOB area.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
314 NXP Semiconductors

To use JFFS2 use SOFT ECC.

7.2.6 Low Power Universal Asynchronous Receiver/Transmitter
(LPUART)

Description

Low Power Universal asynchronous receiver/transmitter (LPUART) is a high speed and low power uart. Refer to below table for
the NXP soc can support LPUART.

SOC Num of LPUART module

LS1021A 6

LS1043A 6

U-boot ConfigurationCompile time options

Below are major u-boot configuration options related to this feature defined in platform specific config files under include/configs/
directory.

Option Identifier Description

CONFIG_LPUART Enable lpuart support

CONFIG_FSL_LPUART Enable NXP lpuart support

CONFIG_LPUART_32B_REG Select 32-bit lpuart register mode

Choosing predefined u-boot board configs:

Please make the defconfig include 'lpuart', like: ls1021atwr_nor_lpuart_defconfig. That's will supoort lpuart.

Runtime options

Env Variable Env Description Sub option Option Description

bootargs Kernel command line argument passed to
kernel

console=ttyLP0,1152000 select LPUART0 as the system console

Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->

 Character devices --->

 Serial drivers --->

 <*> Freescale lpuart serial port support
 [*] Console on Freescale lpuart serial port

LPUART driver and enable console
support

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 315

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_SERIAL_FSL_LPUART y/m/n n LPUART Driver

Device Tree Binding

Below is an example device tree node required by this feature. Note that it may has differences among platforms.

lpuart0: serial@2950000 {
 compatible = "fsl,vf610-lpuart";
 reg = <0x0 0x2950000 0x0 0x1000>;
 interrupts = <GIC_SPI 80 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&sysclk>;
 clock-names = "ipg";
 fsl,lpuart32;
 status = "okay";

Source Files

The following source file are related the this feature in u-boot.

Source File Description

drivers/serial/serial_lpuart.c The LPUART driver file

The following source file are related the this feature in Linux kernel.

Source File Description

drivers/tty/serial/fsl_lpuart.c The LPUART driver file

Verification in U-Boot

1. Boot up U-Boot from bank0, and update rcw and u-boot for lpuart support to bank4, first copy the rcw and U-Boot binary
to the tftp directory.

2. Please refer to the platform depoly document to update the rcw and uboot.

3. After all is updated, run u-boot command to switch to alt bank, then will bring up the new U-Boot to the lpuart console.

CPU: Freescale LayerScape LS1020E, Version: 1.0, (0x87081010)
Clock Configuration:
 CPU0(ARMV7):1000 MHz,
 Bus:300 MHz, DDR:800 MHz (1600 MT/s data rate),
Reset Configuration Word (RCW):
 00000000: 0608000a 00000000 00000000 00000000
 00000010: 60000000 00407900 e0025a00 21046000
 00000020: 00000000 00000000 00000000 08038000
 00000030: 00000000 001b7200 00000000 00000000
I2C: ready
Board: LS1021ATWR
CPLD: V2.0
PCBA: V1.0
VBank: 0
DRAM: 1 GiB
Using SERDES1 Protocol: 48 (0x30)
Flash: 0 Bytes

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
316 NXP Semiconductors

MMC: FSL_SDHC: 0
EEPROM: NXID v16777216
PCIe1: Root Complex no link, regs @ 0x3400000
PCIe2: disabled
In: serial
Out: serial
Err: serial
SATA link 0 timeout.
AHCI 0001.0300 1 slots 1 ports ? Gbps 0x1 impl SATA mode
flags: 64bit ncq pm clo only pmp fbss pio slum part ccc
Found 0 device(s).
SCSI: Net: eTSEC1 is in sgmii mode.
eTSEC2 is in sgmii mode.
eTSEC1, eTSEC2 [PRIME], eTSEC3
=>

Verification in Linux

1. After uboot startup, set the command line parameter to pass to the linux kernel including console=ttyLP0,115200 in
boootargs. For deploy the ramdisk as rootfs, the bootargs can be set as: "set bootargs root=/dev/ram0 rw
console=ttyLP0,115200"

=> set bootargs root=/dev/ram0 rw console=ttyLP0,115200

=> dhcp 81000000 <tftpboot dir>/zImage.ls1021a;tftp 88000000 <tftpboot dir>/
initrd.ls1.uboot;tftp 8f000000 <tftpboot dir>/ls1021atwr.dtb;bootz 81000000 88000000
8f000000

[...]

Starting kernel ...

Uncompressing Linux... done, booting the kernel.
Booting Linux on physical CPU 0xf00
Linux version 3.12.0+ (xxx@rock) (gcc version 4.8.3 20131202 (prerelease) (crosstool-NG
linaro-1.13.1-4.8-2013.12 - LinaroGCC 2013.11)) #664 SMP Tue Jun 24 15:30:45 CST 2014
CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=30c73c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
Machine: Freescale Layerscape LS1021A, model: LS1021A TWR Board
Memory policy: ECC disabled, Data cache writealloc
PERCPU: Embedded 7 pages/cpu @8901c000 s7936 r8192 d12544 u32768
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 520720
Kernel command line: root=/dev/ram rw console=ttyLP0,115200
PID hash table entries: 4096 (order: 2, 16384 bytes)

[...]

ls1021atwr login: root
root@ls1021atwr:~#

2. After the kernel boot up to the console, You can type any shell command in the LPUART TERMINAL.

7.2.7 Quad Serial Peripheral Interface (QSPI)

U-Boot Configuration

Make sure your boot mode support QSPI.

Use QSPI boot mode to boot an board, please check the board user manual and boot from QSPI. (or some other boot mode
decide by your board.)

Kernel Configure Tree View Options

Device Drivers --->

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 317

 Memory Technology Device (MTD) support
 RAM/ROM/Flash chip drviers --->
 < > Detect flash chips by Common Flash Interface (CFI) probe
 < > Detect non-CFI AMD/JEDEC-compatible flash chips
 < > Support for RAM chips in bus mapping
 < > Support for ROM chips in bus mapping
 < > Support for absent chips in bus mapping
 Self-contained MTD device drivers --->
 <*> Support most SPI Flash chips (AT26DF, M25P, W25X, ...)
 < > NAND Device Support ----
 [*] the framework for SPI-NOR support
 <*> Freescale Quad SPI controller

Device Drivers --->
 [] Memory Controller drivers ----

Compile-time Configuration Options

Config Values Defualt Value Description

CONFIG_SPI_FSL_QUADSPI y/n y Enable QSPI module

CONFIG_MTD_SPI_NOR_BASE y/n y Enables the framework for SPI-NOR

Verification in U-Boot

=> sf probe 0:0
SF: Detected N25Q128A13 with page size 256 Bytes, erase size 4 KiB, total 16 MiB
=> sf erase 0 100000
SF: 1048576 bytes @ 0x0 Erased: OK
=> sf write 82000000 0 1000
SF: 4096 bytes @ 0x0 Written: OK
=> sf read 81100000 0 1000
SF: 4096 bytes @ 0x0 Read: OK
=> cm.b 81100000 82000000 1000
Total of 4096 byte(s) were the same

Verification in Linux:

The booting log

......
fsl-quadspi 1550000.quadspi: n25q128a13 (16384 Kbytes)
fsl-quadspi 1550000.quadspi: QuadSPI SPI NOR flash driver
......

Erase the QSPI flash

~ # mtd_debug erase /dev/mtd0 0x1100000 1048576
Erased 1048576 bytes from address 0x00000000 in flash

Write the QSPI flash

~ # dd if=/bin/tempfile.debianutils of=tp bs=4096 count=1
~ # mtd_debug write /dev/mtd0 0 4096 tp
Copied 4096 bytes from tp to address 0x00000000 in flash

Read the QSPI flash

~ # mtd_debug read /dev/mtd0 0 4096 dump_file

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
318 NXP Semiconductors

Copied 4096 bytes from address 0x00000000 in flash to dump_file

Check Read and Write

Use compare tools(yacto has tools named diff).
~ # diff tp dump_file
~ #
If diff command has no print log, the QSPI verification is passed.

7.2.8 Real Time Clock (RTC)

Linux SDK for QorIQ Processors

Description
Provides the RTC function.

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers->
 Real Time Clock-->
 [*] Set system time from RTC on startup and resume (new)
 (rtc0) RTC used to set the system time (new)
 <[*] /sys/class/rtc/rtcN (sysfs)
 <[*] /proc/driver/rtc (procfs for rtc0)
 <[*] /dev/rtcN (character devices)

Enable RTC driver

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_RTC_LIB y/m/n y Enable RTC lib

CONFIG_RTC_CLASS y/m/n y Enable generic RTC class support

CONFIG_RTC_HCTOSYS y/n y Set the system time from RTC when startup and resume

CONFIG_RTC_HCTOSYS_DEVICE "rtc0" RTC used to set the system time

CONFIG_RTC_INTF_SYSFS y/m/n y Enable RTC to use sysfs

CONFIG_RTC_INTF_PROC y/m/n y Use RTC through the proc interface

CONFIG_RTC_INTF_DEV y/m/n y Enable RTC to use /dev interface

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/rtc/ Linux RTC driver

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 319

Device Tree Binding

Preferred node name: rtc

Property Type Status Description

compatible string Required Should be "dallas,ds3232"

Default node:

 i2c@3000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl-i2c";
 reg = <0x3000 0x100>;
 interrupts = <43 2>;
 interrupt-parent = <&mpic>;
 dfsrr;
 rtc@68 {
 compatible = "dallas,ds3232";
 reg = <0x68>;
 };
 };

Verification in Linux

Here is the rtc booting log

 ...
 rtc-ds3232 1-0068: rtc core: registered ds3232 as rtc0
 MC object device driver dpaa2_rtc registered
 rtc-ds3232 0-0068: setting system clock to 2000-01-01 00:00:51 UTC (946684851)
 ...

NOTE: Please refer to the related DTS file to enable the RTC driver before building.
 For example, LS2080AQDS board, should enable the below option:
 <*> Dallas/Maxim DS3232

Change the RTC time in Linux Kernel

 ~ # ls /dev/rtc -l
 lrwxrwxrwx 1 root root 4 Jan 11 17:55 /dev/rtc -> rtc0
 ~ # date
 Sat Jan 1 00:01:38 UTC 2000
 ~ # hwclock
 Sat Jan 1 00:01:41 2000 0.000000 seconds
 ~ # date 011115502011
 Tue Jan 11 15:50:00 UTC 2011
 ~ # hwclock -w
 ~ # hwclock
 Tue Jan 11 15:50:36 2011 0.000000 seconds
 ~ # date 011115502010
 Mon Jan 11 15:50:00 UTC 2010
 ~ # hwclock -s
 ~ # date
 Tue Jan 11 15:50:49 UTC 2011
 ~ #

 NOTE: Before using the rtc driver, make sure the /dev/rtc node in your file system
is correct. Otherwise, you need to make correct node for /dev/rtc

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
320 NXP Semiconductors

7.2.9 Synchronous Audio Interface (SAI)

Description

This document describes how to configure and test SAI audio driver for TWR-LS1021A. The integrated I2S module is NXP's
Synchronous Audio Interface (SAI). The codec is SGTL5000 stereo audio codec.

RCW configuration

Refer to the below table for the RCW for Audio on the TWR-LS1021A.

Board RCW

TWR-LS1021A Bit 364, EC1_EXT_SAI2_TX = 1; Bit 365, EC1_EXT_SAI2_RX
=1; Bit 366-367, EC1_BASE = 00

Kernel Configure Options Tree View

Kernel Configure Tree View Options Description

Device Drivers --->
<*> I2C support --->
 [*] Enable compatibility bits for old user-space
 [*] I2C device interface
 [*] I2C bus multiplexing support
 Multiplexer I2C Chip support --->
 <*> Philips PCA954x I2C Mux/switches
 [*] Autoselect pertinent helper modules
 I2C Hardware Bus support --->
 <*> IMX I2C interface

<*> Voltage and Current Regulator Support --->
 [*] Regulator debug support
 [*] Provide a dummy regulator if regulator lookups fail
 [*] Fixed voltage regulator support

<*> Sound card support
 <*> Advanced Linux Sound Architecture ->
 [*] OSS PCM (digital audio) API
 [*] OSS PCM (digital audio) API - Include plugin system
 [*] Support old ALSA API
 [*] Verbose procfs contents
 ALSA for SoC audio support --->
 SoC Audio for Freescale CPUs --->
 <*> Synchronous Audio Interface (SAI) module support
 CODEC drivers --->
 <*> Freescale SGTL5000 CODEC
 <*> ASoC Simple sound card support
<*> DMA Engine support --->
 <*> Freescale eDMA engine support support

Enable ALSA SOC driver, I2C
driver and EDMA driver.

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

Table continues on the next page...

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 321

Table continued from the previous page...

CONFIG_I2C_IMX y/m/n y I2C driver needed for
configuring SGTL5000

CONFIG_SOUND y/m/n y Enable sound card support

CONFIG_SND y/m/n y Enable advanced Linux
sound architecture supports

CONFIG_SND_PCM_OSS y/m/n y Enable OSS digital audio

CONFIG_SND_PCM_OSS_P
LUGINS

y/m/n y Support conversion of
channels, formats and rates

CONFIG_SND_SUPPORT_O
LD_API

y/m/n y Enable support old ALSA API

CONFIG_SND_SOC_FSL_S
AI

y/m/n y Enable SAI module support

CONFIG_SND_SOC_GENE
RIC_DMAENGINE_PCM

y/m/n y Enable generic dma engine
for PCM

CONFIG_SND_SIMPLE_CA
RD

y/m/n y Enable generic simple sound
card support

CONFIG_SND_SOC_SGTL5
000

y/m/n y Enable codec sgtl5000
support

CONFIG_FSL_EMDA y/m/n y Enable EDMA engine support

Source Files
The driver source is maintained in the Linux kernel source tree.

Source File Description

sound/soc/fsl ALSA SOC driver source

Verification in Linux

1. The following messages will be shown in the kernel boot process:

sgtl5000 5-000a: sgtl5000 revision 0x11
sgtl5000 5-000a: Using internal LDO instead of VDDD
......
asoc-simple-card sound: sgtl5000 <-> 2b60000.sai mapping ok
......
ALSA device list:
 #0: 2b60000.sai-sgtl5000

2. If the device nodes don't already exist, create directory /dev/snd/, and create device nodes with the following commands
in /dev/snd/ directory.

mknod controlC0 c 116 0
mknod pcmC0D0c c 116 24
mknod pcmC0D0p c 116 16

3. On TWR-LS1021A, the LineOut interface is J8 and the LineIn interface is J13

4. Run the following aplay commands to test playback. Run the following arecord command to test record.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
322 NXP Semiconductors

aplay -f S16_LE -r 44100 -t wav -c 2 44k-16bit-stereo.wav

arecord -d 10 -f S16_LE -r 44100 -t wav -c 2 44k-16bit-stereo-10s.wav
aplay -f S16_LE -r 44100 -t wav -c 2 44k-16bit-stereo-10s.wav

5. Use alsamixer to adjust the volume for playing by the option “PCM” and recording gain by the option "Mic" . Use
alsamixer to choose LINE IN or MIC.

7.2.10 Serial Advanced Technology Attachment (SATA)

Description
The driver supports NXP native SATA controller.

Module Loading

SATA driver supports either kernel built-in or module.

Kernel Configure Tree View Options Description

Device Drivers--->
 <*> Serial ATA and Parallel ATA drivers --->
--- Serial ATA and Parallel ATA drivers
<*> AHCI SATA support
<*> Freescale QorIQ AHCI SATA support

Enables SATA controller
support on ARM-based
SoCs

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_SATA_AHCI=y y/m/n y Enables SATA controller

CONFIG_SATA_AHCI_QORIQ=y y/m/n y Enables SATA controller

Source Files
The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/ata/ahci_qoriq.c Platform AHCI SATA support

Test Procedure

Please follow the following steps to use USB in Simics
(1) Boot up the kernel
...
fsl-sata ffe18000.sata: Sata FSL Platform/CSB Driver init
scsi0 : sata_fsl
ata1: SATA max UDMA/133 irq 74
fsl-sata ffe19000.sata: Sata FSL Platform/CSB Driver init
scsi1 : sata_fsl
ata2: SATA max UDMA/133 irq 41
...
(2) The disk will be found by kernel.
...
ata1: Signature Update detected @ 504 msecs

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 323

ata2: No Device OR PHYRDY change,Hstatus = 0xa0000000
ata2: SATA link down (SStatus 0 SControl 300)
ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300)
ata1.00: ATA-8: WDC WD1600AAJS-22WAA0, 58.01D58, max UDMA/133
ata1.00: 312581808 sectors, multi 0: LBA48 NCQ (depth 16/32)
ata1.00: configured for UDMA/133
scsi 0:0:0:0: Direct-Access ATA WDC WD1600AAJS-2 58.0 PQ: 0 ANSI: 5
sd 0:0:0:0: [sda] 312581808 512-byte logical blocks: (160 GB/149 GiB)
sd 0:0:0:0: Attached scsi generic sg0 type 0
sd 0:0:0:0: [sda] Write Protect is off
sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO
 or FUA
 sda: sda1 sda2 sda3 sda4 < sda5 sda6 >
sd 0:0:0:0: [sda] Attached SCSI disk

(3)play with the disk according to the following log.
[root@ls1046 root]# fdisk -l /dev/sda
Disk /dev/sda: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 1 237 1903671 83 Linux
/dev/sda2 238 480 1951897+ 82 Linux swap
/dev/sda3 481 9852 75280590 83 Linux
/dev/sda4 9853 19457 77152162+ f Win95 Ext'd (LBA)
/dev/sda5 9853 14655 38580066 83 Linux
/dev/sda6 14656 19457 38572033+ 83 Linux
[root@ls1046 root]#
[root@ls1046 root]# mke2fs /dev/sda1
mke2fs 1.41.4 (27-Jan-2009)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
65280 inodes, 261048 blocks
13052 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=268435456
8 block groups
32768 blocks per group, 32768 fragments per group
8160 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 22 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@ls1046 root]#
[root@ls1046 root]# mkdir sata
[root@ls1046 root]# mount /dev/sda1 sata
[root@ls1046 root]# ls sata/
lost+found
[root@ls1046 root]# cp /bin/busybox sata/
[root@ls1046 root]# umount sata/
[root@ls1046 root]# mount /dev/sda1 sata/
[root@ls1046 root]# ls sata/
busybox lost+found
[root@ls1046 root]# umount sata/
[root@ls1046 root]# mount /dev/sda3 /mnt
[root@ls1046 root]# df
Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 852019676 794801552 13937948 99% /
/dev/root 852019676 794801552 13937948 99% /
tmpfs 1036480 52 1036428 1% /dev
shm 1036480 0 1036480 0% /dev/shm

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
324 NXP Semiconductors

/dev/sda3 74098076 4033092 66300956 6% /mnt

Known Bugs, Limitations, or Technical Issues

• CDROM is not supported due to the silicon limitation

7.2.11 Security Engine (SEC)
SEC Device Drivers

Introduction and Terminology

The Linux kernel contains a Scatterlist Crypto API driver for the NXP SEC v4.x, v5.x security hardware blocks.

It integrates seamlessly with in-kernel crypto users, such as IPsec, in a way that any IPsec suite that configures IPsec tunnels
with the kernel will automatically use the hardware to do the crypto.

SEC v5.x is backward compatible with SEC v4.x hardware, so one can assume that subsequent SEC v4.x references include
SEC v5.x hardware, unless explicitly mentioned otherwise.

SEC v4.x hardware is known in Linux kernel as 'caam', after its internal block name: Cryptographic Accelerator and Assurance
Module.

There are several HW interfaces ("backends") that can be used to communicate (i.e. submit requests) with the engine, their
availability depends on the SoC:

• Register Interface (RI) - available on all SoCs (though access from kernel is restricted on DPAA2 SoCs)

Its main purpose is debugging (for e.g. single-stepping through descriptor commands), though it is used also for RNG
initialization.

• Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there are 4 rings

Note: there are cases when fewer rings are accessible / visible in the kernel - for e.g. when firmware like Primary
Protected Application (PPA) reserves one of the rings.

• Queue Interface (QI) - available on SoCs implementing DPAA v1.x (Data Path Acceleration Architecture)

Requests are submitted indirectly via Queue Manager (QMan) HW block that is part of DPAA1.

• Data Path SEC Interface (DPSECI) - available on SoCs implementing DPAA v2.x

Similar to QI, requests are submitted via Queue Manager (QMan) HW block; however, the architecture is different -
instead of using the platform bus, the Management Complex (MC) bus is used, MC firmware performing needed
configuration to link DP* objects - see DPAA2 Linux Software on page 636 chapter for more details.

NXP provides device drivers for all these interfaces. Current chapter is focused on JRI, though some general / common topics
are also covered. For QI and DPSECI backends and compatible frontends, please refer to the dedicated chapters: Security Engine
(SEC) on page 629 for DPAA1, Security Engine (SEC) for DPAA2.

On top of these backends, there are the "frontends" - drivers that sit between the Linux Crypto API and backend drivers. Their
main tasks are to:

• register supported crypto algorithms

• process crypto requests coming from users (via the Linux Crypto API) and translate them into the proper format understood
by the backend being used

• forward the CAAM engine responses from the backend being used to the users

Note: It is obvious that QI and DPSECI backends cannot co-exist (they can be compiled in the same "multi-platform" kernel image,
however run-time detection will make sure only the proper one is active). However, JRI + QI and JRI + DPSECI are valid
combinations, and both backends will be active if enabled; if a crypto algorithm is supported by both corresponding frontends (for

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 325

e.g. both caamalg and caamalg_qi register cbc(aes)), a user requesting cbc(aes) will be bound to the implementation having the
highest "crypto algorithm priority". If the user wants to use a specific implementation:

• it is possible to ask for it explicitly by using the specifc (unique) "driver name" instead of the generic "algorithm name" - please
see official Linux kernel Crypto API documentation (section Crypto API Cipher References And Priority); currently default
priorities are: 3000 for JRI frontend and 2000 for QI and DPSECI frontends

• crypto algorithm priority could be changed dynamically using the "Crypto use configuration API" (provided that
CONFIG_CRYPTO_USER is enabled); one of the tools available that is capable to do this is "Linux crypto layer configuration
tool" and an example of increasing the priority of QI frontend based implementation of
echainiv(authenc(hmac(sha1),cbc(aes))) algorithm is:

$./crconf update driver "echainiv-authenc-hmac-sha1-cbc-aes-caam-qi" type 3 priority 5000

Figure 59. Linux kernel - SEC device drivers overview

Source Files

The drivers source code is maintained in the Linux kernel source tree, under drivers/crypto/caam. Below is a non-exhaustive list
of files, mapping to Figure 59. on page 326 (some files have been omitted since their existence is justified only by driver logic /
design):

Source File(s) Description Module name

ctrl.[c,h] Init (global settings, RNG, power management etc.) caam

desc.h HW description (CCSR registers etc.) N/A

desc_constr.h Inline append - descriptor construction library N/A

caamalg_desc.[c,h] (Shared) Descriptors library (symmetric encryption, AEAD) caamalg_desc

caamrng.c RNG (runtime) caamrng

jr.[c,h] JRI backend caam_jr

qi.[c,h] QI backend caam

dpseci.[c,h], dpseci_cmd.h DPSECI backend N/A (built-in)

caamalg.c JRI frontend (symmetric encryption, AEAD) caamalg

caamhash.c JRI frontend (hashing) caamhash

caampkc.c, pkc_desc.c JRI frontend (public key cryptography) caam_pkc

Table continues on the next page...

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
326 NXP Semiconductors

https://www.kernel.org/doc/html/latest/crypto/architecture.html#crypto-api-cipher-references-and-priority
https://sourceforge.net/projects/crconf
https://sourceforge.net/projects/crconf

Table continued from the previous page...

Source File(s) Description Module name

caamalg_qi.c QI frontend (symmetric encryption, AEAD) caamalg_qi

caamalg_qi2.[c,h] DPSECI frontend (symmetric encryption, AEAD) caamalg_qi2

Module loading

CAAM device drivers can be compiled either built-in or as modules (with the exception of DPSECI backend, which is always built-
in). See section Source Files on page 326 for the list of module names and section Kernel Configuration on page 327 for how
kernel configuration looks like and a mapping between menu entries and modules and / or functionalities enabled.

Kernel Configuration

CAAM device drivers are located in the "Cryptographic API" -> "Hardware crypto devices" sub-menu in the kernel configuration.
Depending on the target platform and / or configuration file(s) used, the output will be different; below is an example taken from
NXP Layerscape SDK for ARMv8 platforms with default options:

Kernel Configure Tree View Options Description

Cryptographic API --->
 [*] Hardware crypto devices --->
 <*> Freescale CAAM-Multicore
platform driver backend (SEC)
 [] Enable debug output in CAAM
driver
 <*> Freescale CAAM Job Ring
driver backend (SEC)
 (9) Job Ring size
 [] Job Ring interrupt
coalescing
 <*> Register algorithm
implementations with the Crypto API
 <*> Queue Interface as Crypto
API backend
 <*> Register hash algorithm
implementations with Crypto API
 <*> Register public key
cryptography implementations with Crypto
API
 <*> Register caam device for
hwrng API
 <M> QorIQ DPAA2 CAAM (DPSECI)
driver

Enable CAAM device drivers, options:

• basic platform driver: Freescale CAAM-Multicore platform
driver backend (SEC); all non-DPAA2 sub-options depend on
it

• backends / interfaces:

— Freescale CAAM Job Ring driver backend (SEC) - JRI;
this also enables QI (QI depends on JRI)

— QorIQ DPAA2 CAAM (DPSECI) driver - DPSECI

• frontends / crypto algorithms:

— symmetric encryption, AEAD, "stitched" AEAD, TLS;
Register algorithm implementations with the Crypto API
- via JRI (caamalg driver) or Queue Interface as Crypto
API backend - via QI (caamalg_qi drive)

— Register hash algorithm implementations with Crypto
API - hashing (only via JRI - caamhash driver)

— Register public key cryptography implementations with
Crypto API - asymmetric / public key (only via JRI -
caam_pkc driver)

— Register caam device for hwrng API - HW RNG (only
via JRI - caamrng driver)

— QorIQ DPAA2 CAAM (DPSECI) driver - DPSECI

• options: debugging, JRI ring size, JRI interrupt coalescing

Networking support --->
 Network option --->
 <*> TCP/IP networking
 <*> IP: AH transformation
 <*> IP: ESP transformation
 <*> IP: IPsec transport mode
 <*> IP: IPsec tunnel mode

For IPsec support the TCP/IP networking option and
corresponding sub-options should be enabled.

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 327

Device Tree binding

Property Type Status Description

compatible String Required fsl,sec-vX.Y (preferred) OR fsl,secX.Y

Sample Device Tree crypto node

 crypto@30000 {
 compatible = "fsl,sec-v4.0";
 fsl,sec-era = <2>;
 #address-cells = <1>;
 #size-cells = <1>;
 reg = <0x300000 0x10000>;
 ranges = <0 0x300000 0x10000>;
 interrupt-parent = <&mpic>;
 interrupts = <92 2>;
 clocks = <&clks IMX6QDL_CLK_CAAM_MEM>,
 <&clks IMX6QDL_CLK_CAAM_ACLK>,
 <&clks IMX6QDL_CLK_CAAM_IPG>,
 <&clks IMX6QDL_CLK_EIM_SLOW>;
 clock-names = "mem", "aclk", "ipg", "emi_slow";
 };

See linux/Documentation/devicetree/bindings/crypto/fsl-sec4.txt file in the Linux kernel tree for more info.

 NOTE

How to test the drivers

To test the drivers, under the "Cryptographic API -> Cryptographic algorithm manager" kernel configuration sub-menu,
ensure that run-time self tests are not disabled, i.e. the "Disable run-time self tests" entry is not set
(CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=n). This will run standard test vectors against the drivers after they register
supported algorithms with the kernel crypto API, usually at boot time. Then run test on the target system. Below is a snippet
extracted from the boot log of ARMv8-based LS1046A platform, with JRI and QI enabled:

[...]
platform caam_qi: Linux CAAM Queue I/F driver initialised
caam 1700000.crypto: Instantiated RNG4 SH1
caam 1700000.crypto: device ID = 0x0a11030100000000 (Era 8)
caam 1700000.crypto: job rings = 4, qi = 1, dpaa2 = no
alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-ecb-cipher_null-
caam)
alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-ecb-cipher_null-
caam)
alg: No test for authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-ecb-cipher_null-
caam)
alg: No test for authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-ecb-cipher_null-
caam)
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-
caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-
caam)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-hmac-sha224-cbc-
aes-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-hmac-sha256-cbc-
aes-caam)
alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-hmac-sha384-cbc-
aes-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-hmac-sha512-cbc-
aes-caam)
alg: No test for authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-hmac-md5-cbc-

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
328 NXP Semiconductors

des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-hmac-sha1-cbc-
des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-authenc-hmac-sha224-
cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-authenc-hmac-sha256-
cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-authenc-hmac-sha384-
cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-authenc-hmac-sha512-
cbc-des3_ede-caam)
alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-md5-cbc-des-
caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-sha1-cbc-des-
caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-hmac-sha224-cbc-
des-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-hmac-sha256-cbc-
des-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-
des-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-
des-caam)
alg: No test for authenc(hmac(md5),rfc3686(ctr(aes))) (authenc-hmac-md5-rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(md5),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-md5-rfc3686-
ctr-aes-caam)
alg: No test for authenc(hmac(sha1),rfc3686(ctr(aes))) (authenc-hmac-sha1-rfc3686-ctr-aes-
caam)
alg: No test for seqiv(authenc(hmac(sha1),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha1-
rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha224),rfc3686(ctr(aes))) (authenc-hmac-sha224-rfc3686-ctr-
aes-caam)
alg: No test for seqiv(authenc(hmac(sha224),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha224-
rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha256),rfc3686(ctr(aes))) (authenc-hmac-sha256-rfc3686-ctr-
aes-caam)
alg: No test for seqiv(authenc(hmac(sha256),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha256-
rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha384),rfc3686(ctr(aes))) (authenc-hmac-sha384-rfc3686-ctr-
aes-caam)
alg: No test for seqiv(authenc(hmac(sha384),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha384-
rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha512),rfc3686(ctr(aes))) (authenc-hmac-sha512-rfc3686-ctr-
aes-caam)
alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha512-
rfc3686-ctr-aes-caam)
caam algorithms registered in /proc/crypto
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-
caam-qi)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-hmac-sha224-cbc-
aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-hmac-sha256-cbc-
aes-caam-qi)
alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-hmac-sha384-cbc-
aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-hmac-sha512-cbc-
aes-caam-qi)
alg: No test for authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-hmac-md5-cbc-
des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-hmac-sha1-cbc-
des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-authenc-hmac-sha224-

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 329

cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-authenc-hmac-sha256-
cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-authenc-hmac-sha384-
cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-authenc-hmac-sha512-
cbc-des3_ede-caam-qi)
alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-md5-cbc-des-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-sha1-cbc-des-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-hmac-sha224-cbc-
des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-hmac-sha256-cbc-
desi-caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-
des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-
des-caam-qi)
platform caam_qi: algorithms registered in /proc/crypto
caam_jr 1710000.jr: registering rng-caam
caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto
[...]

Crypto algorithms support

Algorithms Supported in the linux kernel scatterlist Crypto API

The Linux kernel contains various users of the Scatterlist Crypto API, including its IPsec implementation, sometimes referred to
as the NETKEY stack. The driver, after registering supported algorithms with the Crypto API, is therefore used to process per-
packet symmetric crypto requests and forward them to the SEC hardware.

Since SEC hardware processes requests asynchronously, the driver registers asynchronous algorithm implementations with the
crypto API: ahash, ablkcipher, and aead with CRYPTO_ALG_ASYNC set in .cra_flags.

Different combinations of hardware and driver software version support different sets of algorithms, so searching for the driver
name in /proc/crypto on the desired target system will ensure the correct report of what algorithms are supported.

Authenticated Encryption with Associated Data (AEAD) algorithms

These algorithms are used in applications where the data to be encrypted overlaps, or partially overlaps, the data to be
authenticated, as is the case with IPsec and TLS protocols. These algorithms are implemented in the driver such that the hardware
makes a single pass over the input data, and both encryption and authentication data are written out simultaneously. The AEAD
algorithms are mainly for use with IPsec ESP (however there is also support for TLS 1.0 record layer encryption).

CAAM drivers currently supports offloading the following AEAD algorithms:

• "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-EDE, RFC3686-CTR-AES } x HMAC-{MD-5,
SHA-1,-224,-256,-384,-512}

• "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and RFC4106-GCM-AES

• TLS 1.0 record layer encryption using the "stitched" AEAD cipher suite CBC-AES-HMAC-SHA1

Encryption algorithms

The CAAM driver currently supports offloading the following encryption algorithms.

Authentication algorithms

The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing algorithms.

Asymmetric (public key) algorithms

Currently, RSA is the only public key algorithm supported.

Random Number Generation

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
330 NXP Semiconductors

caamrng frontend driver supports random number generation services via the kernel's built-in hwrng interface when implemented
in hardware. To enable:

1. verify that the hardware random device file, e.g., /dev/hwrng or /dev/hwrandom exists. If it doesn't exist, make it with:

$ mknod /dev/hwrng c 10 183

2. verify /dev/hwrng doesn't block indefinitely and produces random data:

$ rngtest -C 1000 < /dev/hwrng

3. verify the kernel gets entropy:

$ rngtest -C 1000 < /dev/random

If it blocks, a kernel entropy supplier daemon, such as rngd, may need to be run. See linux/Documentation/hw_random.txt for
more info.

Table 83. Algorithms supported by each interface / backend

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

rsa Yes No No

tls10(hmac(sha1),cbc(aes)) No Yes Yes

authenc(hmac(md5),cbc(aes)
)

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1),cbc(aes
))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512),cbc(a
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5),cbc(des
3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1),cbc(des
3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512),cbc(d
es3_ede))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5),cbc(des)
)

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

Table continues on the next page...

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 331

Table 83. Algorithms supported by each interface / backend (continued)

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

authenc(hmac(sha1),cbc(des
))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512),cbc(d
es))

Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5),rfc3686(
ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha1),rfc3686(
ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha224),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha256),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha384),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha512),rfc36
86(ctr(aes)))

Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(md5),ecb(ciph
er_null))

Yes No No

authenc(hmac(sha1),ecb(ciph
er_null))

Yes No No

authenc(hmac(sha224),ecb(ci
pher_null))

Yes No No

authenc(hmac(sha256),ecb(ci
pher_null))

Yes No No

authenc(hmac(sha384),ecb(ci
pher_null))

Yes No No

authenc(hmac(sha512),ecb(ci
pher_null))

Yes No No

gcm(aes) Yes Yes Yes

rfc4543(gcm(aes)) Yes Yes Yes

rfc4106(gcm(aes)) Yes Yes Yes

cbc(aes) Yes Yes Yes

Table continues on the next page...

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
332 NXP Semiconductors

Table 83. Algorithms supported by each interface / backend (continued)

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

cbc(des3_ede) Yes Yes Yes

cbc(des) Yes Yes Yes

ctr(aes) Yes Yes Yes

rfc3686(ctr(aes)) Yes Yes Yes

xts(aes) Yes Yes Yes

hmac(md5) Yes No Yes

hmac(sha1) Yes No Yes

hmac(sha224) Yes No Yes

hmac(sha256) Yes No Yes

hmac(sha384) Yes No Yes

hmac(sha512) Yes No Yes

md5 Yes No Yes

sha1 Yes No Yes

sha224 Yes No Yes

sha256 Yes No Yes

sha384 Yes No Yes

sha512 Yes No Yes

CAAM Job Ring backend driver specifics

CAAM Job Ring backend driver (caam_jr) implements and utilizes the job ring interface (JRI) for submitting crypto API service
requests from the frontend drivers (caamalg, caamhash, caam_pkc, caamrng) to CAAM engine.

CAAM drivers have a few options, most notably hardware job ring size and interrupt coalescing. They can be used to fine-tune
performance for a particular use case.

The option Freescale CAAM-Multicore platform driver backend enables the basic platform driver (caam). All (non-DPAA2) sub-
options depend on this.

The option Freescale CAAM Job Ring driver backend (SEC) enables the Job Ring backend (caam_jr).

The sub-option Job Ring Size allows the user to select the size of the hardware job rings; if requests arrive at the driver enqueue
entry point in a bursty nature, the bursts' maximum length can be approximated etc. One can set the greatest burst length to save
performance and memory consumption.

The sub-option Job Ring interrupt coalescing allows the user to select the use of the hardware’s interrupt coalescing feature.
Note that the driver already performs IRQ coalescing in software, and zero-loss benchmarks have in fact produced better results
with this option turned off. If selected, two additional options become effective:

• Job Ring interrupt coalescing count threshold (CRYPTO_DEV_FSL_CAAM_INTC_THLD)

Selects the value of the descriptor completion threshold, in the range 1-256. A selection of 1 effectively defeats the coalescing
feature, and any selection equal or greater than the selected ring size will force timeouts for each interrupt.

• Job Ring interrupt coalescing timer threshold (CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD)

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 333

Selects the value of the completion timeout threshold in multiples of 64 SEC interface clocks, to which, if no new descriptor
completions occur within this window (and at least one completed job is pending), then an interrupt will occur. This is selectable
in the range 1-65535.

The options to register to Crypto API, hwrng API respectively, allow the frontend drivers to register their algorithm capabilities with
the corresponding APIs. They should be deselected only when the purpose is to perform Crypto API requests in software (on the
GPPs) instead of offloading them on SEC engine.

caamhash frontend (hash algorithms) may be individually turned off, since the nature of the application may be such that it prefers
software (core) crypto latency due to many small-sized requests.

caam_pkc frontend (public key / asymmetric algorithms) can be turned off too, if needed.

caamrng frontend (Random Number Generation) may be turned off in case there is an alternate source of entropy available to
the kernel.

Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is doing the crypto
by looking for driver messages in dmesg.

The driver emits console messages at initialization time:

caam algorithms registered in /proc/crypto
caam_jr 1710000.jr: registering rng-caam
caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto

If the messages are not present in the logs, either the driver is not configured in the kernel, or no SEC compatible device tree
node is present in the device tree.

Incrementing IRQs in /proc/interrupts

Given a time period when crypto requests are being made, the SEC hardware will fire completion notification interrupts on the
corresponding Job Ring:

$ cat /proc/interrupts | grep jr
 CPU0 CPU1 CPU2 CPU3
[...]
 78: 1007 0 0 0 GICv2 103 Level 1710000.jr
 79: 7 0 0 0 GICv2 104 Level 1720000.jr
 80: 0 0 0 0 GICv2 105 Level 1730000.jr
 81: 0 0 0 0 GICv2 106 Level 1740000.jr

If the number of interrupts fired increment, then the hardware is being used to do the crypto.

If the numbers do not increment, then first check the algorithm being exercised is supported by the driver. If the algorithm is
supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and the hardware statistics in debugfs
(inbound / outbound bytes encrypted / protected - see below) should be monitored.

Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the kernel crypto API:

name : cbc(aes)
driver : cbc-aes-caam
module : kernel
priority : 3000
refcnt : 1
selftest : passed
internal : no
type : givcipher
async : yes
blocksize : 16
min keysize : 16
max keysize : 32
ivsize : 16
geniv : <built-in>

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
334 NXP Semiconductors

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will emit messages
saying which algorithms weren't tested, and mark them as 'passed' anyway:

[...]
alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-ecb-cipher_null-
caam)
alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-ecb-cipher_null-
caam)
[...]
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-
caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-
caam)
[...]
alg: No test for authenc(hmac(sha512),rfc3686(ctr(aes))) (authenc-hmac-sha512-rfc3686-ctr-aes-
caam)
alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha512-
rfc3686-ctr-aes-caam)
[...]

Examining the hardware statistics registers in debugfs

When using the JRI or QI backend, performance monitor registers can be checked, provided CONFIG_DEBUG_FS is enabled
in the kernel’s configuration. If debugfs is not automatically mounted at boot time, then a manual mount must be performed in
order to view these registers. This normally can be done with a superuser shell command:

$ mount -t debugfs none /sys/kernel/debug

Once done, the user can read controller registers in /sys/kernel/debug/1700000.crypto/ctl. It should be noted that debugfs will
provide a decimal integer view of most accessible registers provided, with the exception of the KEK/TDSK/TKEK registers; those
registers are long binary arrays, and should be filtered through a binary dump utility such as hexdump.

Specifically, the CAAM hardware statistics registers available are:

fault_addr, or FAR (Fault Address Register): - holds the value of the physical address where a read or write error occurred.

fault_detail, or FADR (Fault Address Detail Register): - holds details regarding the bus transaction where the error occurred.

fault_status, or CSTA (CAAM Status Register): - holds status information relevant to the entire CAAM block.

ib_bytes_decrypted: - holds contents of PC_IB_DECRYPT (Performance Counter Inbound Bytes Decrypted Register)

ib_bytes_validated: - holds contents of PC_IB_VALIDATED (Performance Counter Inbound Bytes Validated Register)

ib_rq_decrypted: - holds contents of PC_IB_DEC_REQ (Performance Counter Inbound Decrypt Requests Register)

kek: - holds contents of JDKEKR (Job Descriptor Key Encryption Key Register)

ob_bytes_encrypted: - holds contents of PC_OB_ENCRYPT (Performance Counter Outbound Bytes Encrypted Register)

ob_bytes_protected: - holds contents of PC_OB_PROTECT (Performance Counter Outbound Bytes Protected Register)

ob_rq_encrypted: - holds contents of PC_OB_ENC_REQ (Performance Counter Outbound Encrypt Requests Register)

rq_dequeued: - holds contents of PC_REQ_DEQ (Performance Counter Requests Dequeued Register)

tdsk: - holds contents of TDKEKR (Trusted Descriptor Key Encryption Key Register)

tkek: - holds contents of TDSKR (Trusted Descriptor Signing Key Register)

For more information see section "Performance Counter, Fault and Version ID Registers" in the Security (SEC) Reference Manual
(SECRM) of each SoC (available on company's website).

Note: for QI backend there is also qi_congested: SW-based counter that shows how many times queues going to / from CAAM
to QMan hit the congestion threshold.

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 335

Kernel configuration to support CAAM device drivers

Using the driver

Once enabled, the driver will forward kernel crypto API requests to the SEC hardware for processing.

Running IPsec

The IPsec stack built-in to the kernel (usually called NETKEY) will automatically use crypto drivers to offload crypto operations to
the SEC hardware. Documentation regarding how to set up an IPsec tunnel can be found in corresponding open source IPsec
suite packages, e.g. strongswan.org, openswan, setkey, etc. DPAA2-specific section Running IPsec contains a generic helper
script to configure IPsec tunnels.

Running OpenSSL

Please see Hardware Offloading with OpenSSL on page 774 for more details on how to offload OpenSSL cryptographic
operations in the SEC crypto engine (via cryptodev).

Executing custom descriptors

SEC drivers have public descriptor submission interfaces corresponding to the following backends:

• JRI: drivers/crypto/caam/jr.c:caam_jr_enqueue()

• QI: drivers/crypto/caam/qi.c:caam_qi_enqueue()

• DPSECI: drivers/crypto/caam/caamalg_qi2.c:dpaa2_caam_enqueue()

caam_jr_enqueue()

Name

caam_jr_enqueue — Enqueue a job descriptor head. Returns 0 if OK, -EBUSY if the ring is full, -EIO if it cannot map the caller's
descriptor.

Synopsis

int caam_jr_enqueue (struct device *dev, u32 *desc,
 void (*cbk) (struct device *dev, u32 *desc, u32 status, void *areq),
 void *areq);

Arguments

dev: contains the job ring device that is to process this request.

desc: descriptor that initiated the request, same as “desc” being argued to caam_jr_enqueue.

cbk: pointer to a callback function to be invoked upon completion of this request. This has the form: callback(struct device *dev,
u32 *desc, u32 stat, void *arg)

areq: optional pointer to a user argument for use at callback time.

caam_qi_enqueue()

Name

caam_qi_enqueue — Enqueue a frame descriptor (FD) into a QMan frame queue. Returns 0 if OK, -EIO if it cannot map the
caller's S/G array, -EBUSY if QMan driver fails to enqueue the FD for some reason.

Synopsis

int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req);

Arguments

qidev: contains the queue interface device that is to process this request.

req: pointer to the request structure the driver application should fill while submitting a job to driver, containing a callback function
and its parameter, Queue Manager S/Gs for input and output, a per-context structure containing the CAAM shared descriptor etc.

dpaa2_caam_enqueue()

Name

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
336 NXP Semiconductors

dpaa2_caam_enqueue — Enqueue a frame descriptor (FD) into a QMan frame queue. Returns 0 if OK, -EBUSY if QMan driver
fails to enqueue the FD for some reason or if congestion is detected.

Synopsis

int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req);

Arguments

dev: DPSECI device.

req: pointer to the request structure the driver application should fill while submitting a job to driver, containing a callback function
and its parameter, Queue Manager S/Gs for input and output, a per-context structure containing the CAAM shared descriptor etc.

Please refer to the source code for usage examples.

Supporting Documentation

DPAA1-specific SEC details - Queue Interface (QI):Security Engine (SEC) on page 629

DPAA2-specific SEC details - Data Path SEC Interface (DPSECI):Security Engine (SEC)

7.2.12 Time Division Multiplexing (TDM)

Description

Time Division Multiplexing (TDM) is a type of digital or analog multiplexing in which two or more signals or bit streams are
transferred apparently simultaneously as sub-channels in one communication channel, but are physically taking turns on the
channel. The time domain is divided into several recurrent timeslots of fixed length, one for each sub-channel. A sample byte or
data block of sub-channel 1 is transmitted during timeslot 1, sub-channel 2 during timeslot 2, etc. One TDM frame consists of
one timeslot per sub-channel. After the last sub-channel the cycle starts all over again with a new frame, starting with the second
sample, byte or data block from sub-channel 1, etc.

TDM or Time Division Multiplexing is an essential component to run VoIP applications on NXP Platforms. Its function is to receive
and send time division multiplexed voice samples on the physical TDM lines.

This document explains the procedure to test the TDM on FSL MPC85xx platforms.

The test procedure shows the method to run a small TDM demo application which transfers voice from one TDM channel to the
other.

The overall TDM software stack and the data flow is depicted below. On the top is a generic TDM framework layer which can
ideally integrate with any TDM driver beneath it.

Generally NXP platforms offer two types of TDM interfaces:

1. NXP TDM

2. QE based TDM

This manual specifically talks about NXP TDM

U-Boot Configuration

Compile time options

Please check the platform specific document to check if any specific u-boot configuration is required for TDM feature.

Also please ensure if there is any requirement from pin mux perspective to enable TDM.

Runtime options

Refer to platform specific document for any specific hwconfig or environment variables which may be required for TDM functionality.

Also the FXS ports location will be mentioned in the platform specific document.

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 337

Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree view options Description

Device Drivers --->

 <*> TDM support --->

 --- TDM support

 [] TDM Core debugging messages (NEW)

 <M> TDM test Module

 TDM Device support --->

 <*> Driver for Freescale TDM controller

 Line Control Devices --->
 <*> Zarlink Slic intialization Module

Enable TDM Framework

Enable TDM test as Module

Enable TDM driver

Enable SLIC driver

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Value Default value in
BSP

Description

CONFIG_TDM y/n/m N Enable / Disable TDM Framework support

CONFIG_TDM_FSL y/n/m N Enable / Disable TDM driver, depends on TDM framework and
CONFIG_FSL_SOC

CONFIG_SLIC_ZARLINK y/n/m N Enable / Disable SLIC driver , depends on TDM driver and TDM
framework, and CONFIG_FSL_ESPI

CONFIG_TDM_TEST y/n/m N Enable / disable TDM test module

Device Tree Binding

Below is the definition of the device tree node required by this feature

TDM device dts entries.(as many entries as the number of TDM controllers on the platform)

Property Type Status Description

compatible = "fsl,tdm1.0"; <string> Should contain "fsl,tdm1.0"

reg = <0x16000 0x200
0x2c000 0x2000>;

<tdm-reg-offset tdm-reg-size
dmac-reg-offset dmac-reg-
size>

Offset and length of the register set for the NXP
TDM and TDM-DMAC

interrupts = <16 8 62 8>; <tdm-err-intr tdm-err-intr-type
dmac-intr dmac-intr-type>

Defines two interrupt specifiers namely interrupt +
number and interrupt type for TDM error and TDM
DMAC

Table continues on the next page...

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
338 NXP Semiconductors

Table continued from the previous page...

Property Type Status Description

fsl-max-time-slots = <128> <u32> Maximum number of 8-bit time slots in one TDM
frame that hardware supports.

SLIC device dts entries (As many entries as the number of SLICs on the platform)

Please note that the below mentioned SLIC entry is for the Legerity SLIC which is connected to the chip through SPI interface.

Property Type Status Description

compatible = "zarlink,le88266"; Should be "zarlink,le88266"

reg = <1>; Chip select number of the SPI bus SLIC is connected to

spi-max-frequency =<8000000>; The maximum frequency the SLIC can operate at.

Below is an example device tree node required by this feature. Note that it may have differences among platforms.

 tdm@16000 {
 compatible = "fsl,tdm1.0";
 reg = <0x16000 0x200 0x2c000 0x2000>;
 clock-frequency = <0>;
 interrupts = <16 8 62 8>;
 phy-handle = <zarlink1>
 fsl-max-time-slots = <128>
 };

spi@7000 {
 cell-index = <0>;
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,espi";
 reg = <0x7000 0x1000>;
 interrupts = <59 0x2>;
 interrupt-parent = <&mpic>;
 mode = "cpu";
 ………….
 …………..
 …………..
 legerity@0{
 compatible = "zarlink,le88266";
 reg = <1>;
 spi-max-frequency = <8000000>;
 };

 legerity@1{
 compatible = "zarlink,le88266";
 reg = <2>;
 spi-max-frequency = <8000000>;
 };
};

Source Files

The following source file are related the this feature in Linux kernel.

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 339

Source file Purpose

include/linux/tdm.h Header file for TDM framework

drivers/tdm/tdm-core.c Source file for TDM framework

drivers/tdm/device/tdm_fsl.h Header file for TDM driver

drivers/tdm/device/tdm_fsl.c Source file for TDM driver

drivers/tdm/line_ctrl/slic_zarlink.h Header file for SLIC driver

drivers/tdm/line_ctrl/slic_zarlink.c Source file for SLIC driver

drivers/tdm/test/tdm_test.c Source file for TDM test module

Verification in U-Boot

N/A

Verification in Linux

1. Attach two analog phones at the two FXS ports of the board. (Incase there are two SLIC devices there would be 4 FXS
ports available).

Please refer to the platform documentation for specific information on FXS ports.

 NOTE

2. Bring up the platform with the kernel image and dts configured as explained above.

Look for the below mentioned messages in the kernel boot log.

This will ensure TDM and SLIC initialization.

...

...

EDAC MC: Ver: 2.1.0
fsl_tdm: Freescale TDM Driver Adapter:Init
adapter [fsl_tdm] registered
SLIC: Freescale DEVELOPED ZARLINK SLIC DRIVER
##
This driver was created solely by Freescale,
without the assistance, support or intellectual
property of Zarlink Semiconductor. No
maintenance or support will be provided by
Zarlink Semiconductor regarding this driver.
##
SLIC probed!
SLIC config success
SLIC: product code 1 read is 4
SLIC: product code 2 read is b3
SLIC: config read is ff
SLIC: config read is 8a
DEV reg is 82
DEV reg after is 2
Mask reg before setting is 3f bf
Mask reg after setting is f6 f6
Read Tx Timeslot for CH1 is 0
Read Tx Timeslot for CH2 is 2
Read Rx Timeslot for CH1 is 0
Read Rx Timeslot for CH2 is 2
Operating Fun for channel 1 is 82
Cadence Timer Reg for CH1 before is 7 ff0 0
Cadence Timer Reg for CH1 after is 1 903 20
Switching control for channel 1 is 20

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
340 NXP Semiconductors

Operating Fun for channel 2 is a0
Cadence Timer Reg for CH2 before is 7 ff0 0
Cadence Timer Reg for CH2 after is 1 903 20
Switching control for channel 2 is 20
SLIC 1 configuration success
TDM_TEST: Test Module for Freescale Platforms with TDM support
TDM_TEST module installed
...
...

3. Check /proc/device-tree/soc for tdm and slic nodes.

4. Run cat /proc/interrupts to check for TDM interrupts. Following is an example log details may vary over different platforms.

[root@ /root]# insmod tdm_test.ko
TDM_TEST: Test Module for Freescale Platforms with TDM support
TDM Driver(ID=1)is attached with Adapterfsl_tdm(ID = 0) drv_count=1
TDM_TEST module installed
[root@ /root]# cat /proc/interrupts
 CPU0
 20: 0 OpenPIC Level fsldma-chan
 21: 0 OpenPIC Level fsldma-chan
 22: 0 OpenPIC Level fsldma-chan
 23: 0 OpenPIC Level fsldma-chan
 28: 0 OpenPIC Level ehci_hcd:usb1
 42: 57 OpenPIC Level serial
 43: 0 OpenPIC Level i2c-mpc, i2c-mpc
 59: 0 OpenPIC Level fsl_espi
 62: 993 OpenPIC Edge dmac_done_isr
LOC: 698 Local timer interrupts
SPU: 0 Spurious interrupts
CNT: 0 Performance monitoring interrupts
MCE: 0 Machine check exceptions

5. To test the TDM functionality Pick up both the phones. Anything spoken on one phone will be heard on the other.

Benchmarking

Voice must be clearly audible and must not break.

Known Bugs, Limitations, or Technical Issues

1. TDM functionality is not supported in 36bit Physical address mode. This is because of hardware limitation on current
FSL platforms.

2. TDM_TEST is for demo purpose only and hence runs only for a small duration.

7.2.13 Universal Serial Bus Interfaces

7.2.13.1 USB 2.0 Host Driver User Manual

Description
The driver supports USB controller in host mode

Module Loading
The USB Host driver in linux supports either kernel built-in or module driver. U-boot USB driver is always built-in

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 341

U-Boot Compile Time Configuration Options

U-Boot Configure Options Description

#define CONFIG_HAS_FSL_DR_USB

#ifdef CONFIG_HAS_FSL_DR_USB
#define CONFIG_USB_EHCI

#ifdef CONFIG_USB_EHCI
#define CONFIG_CMD_USB
#define CONFIG_USB_STORAGE
#define CONFIG_USB_EHCI_FSL
#define CONFIG_EHCI_HCD_INIT_AFTER_RESET
#define CONFIG_CMD_EXT2

Enables USB host Dual Role controller support. Defined inside
platform config file: include/configs/<platform.h>.

CONFIG_SYS_FSL_USB_INTERNAL_UTMI_PHY
Enable internal UTMI Phy support. Required only for SoCs having
internal UTMI PHY. Defined inside file: arch/powerpc/include/asm/
config_mpc85xx.h

CONFIG_USB_MAX_CONTROLLER_COUNT
Tell maximum no. of USB controllers in this SoC. Defined inside file:
arch/powerpc/include/asm/config_mpc85xx.h

For LS1012A, due to the USB2.0 controller and the Ethernet controller being pin muxed, you need to remove

CONFIG_FSL_PPFE from the include/configs/ls1012a_common.h directory if it exists. In the include/

configs/ls1012aqds.h directory, enable CONFIG_HAS_FSL_XHCI_USB and remove

CONFIG_HAS_FSL_XHCI_USB in the U-Boot source code.

 NOTE

U-Boot Source Files

The driver source is maintained in the U-boot source in following files

Source File Description

drivers/usb/host/ehci-fsl.c EHCI FSL USB host controller driver

common/cmd_usb.c Common usb command file

drivers/usb/host/ehci-hcd.c EHCI USB host controller driver

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers--->

 USB support --->

 [*] Support for Host-side USB

Enables USB host
controller support

Device Drivers--->

 USB support --->

 <*> EHCI HCD (USB 2.0) support

Enables EHCI Host
Controller Driver and
transaction translator.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
342 NXP Semiconductors

Table continued from the previous page...

Kernel Configure Tree View Options Description

 -*- Root Hub Transaction Translators

 [] Improved Transaction Translator scheduling
(EXPERIMENTAL)

 [*] Support for Freescale on-chip EHCI USB controller

 [*] EHCI support for PPC USB controller on OF platform
bus

 <*> OHCI HCD support

 [*] OHCI support for PPC USB controller on OF platform
bus

 [*] Support big endian HC

 [*] Support little endian HC

 [*] OHCI support for PCI-bus USB controllers

For LS1012A, due to the USB2.0 controller and the Ethernet controller being pin muxed, you need to disable

CONFIG_FSL_PPFE in Linux kernel .config file.

 NOTE

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_USB y/m/n y Enables USB host controller

CONFIG_USB_EHCI_HCD y/m/n y Enables EHCI HCD

CONFIG_USB_EHCI_ROOT_HUB_TT y/n y Enables EHCI to support USB1.1 device

CONFIG_USB_OHCI_HCD y/m/n y Enables OHCI HCD

Kernel Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/usb/host/ehci-fsl.c EHCI USB host controller driver

arch/powerpc/sysdev/fsl_soc.c Hook between OF tree and platform device

drivers/usb/host/ohci_hcd.c OHCI USB host controller driver

Device Tree Binding

usb@22000 {

 #address-cells = <1>;

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 343

 #size-cells = <0>;

 compatible = "fsl-usb2-<controller-type>-v<controller version>",

 "fsl-usb2-<controller-type>";

 reg = <0x22000 0x1000>;

 interrupt-parent = <&mpic>;

 interrupts = <28 0x2>;

 phy_type = "ulpi"; /* ulpi/utmi/utmi_dual */

 dr_mode = "host" /* host, peripheral */

 };

controller-type: dr(dual-role), mph(multi-port-host) controller-version: 1.6, 2.2, or earlier default mode is always host

 NOTE

Verification in U-Boot

U-boot environment to specify usb phy and usb mode type

=> setenv hwconfig 'usb<controller-no>:dr_mode=<mode>,phy_type=<phy_type>;<next usb
controller>'

For example:
For socs having single usb controller and ULPI phy
=> setenv hwconfig 'usb1:dr_mode=host,phy_type=ulpi'

For socs having single usb controller and UTMI phy
=> setenv hwconfig 'usb1:dr_mode=host,phy_type=utmi'

For socs having two usb controllers and ULPI phys only
=> setenv hwconfig 'usb1:dr_mode=host,phy_type=ulpi;usb2:dr_mode=host,phy_type=ulpi'

Then use usb start to start the usb device

=> usb start

(Re)start USB...

USB: Register 10011 NbrPorts 1

USB EHCI 1.00

scanning bus for devices... 2 USB Device(s) found

 scanning bus for storage devices... 1 Storage Device(s) found

=> usb dev

USB device 0: Vendor: SanDisk Rev: 8.02 Prod: Cruzer Colors+

 Type: Removable Hard Disk

 Capacity: 7663.9 MB = 7.4 GB (15695871 x 512)

=> usb tree

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
344 NXP Semiconductors

Device Tree:
 1 Hub (480 Mb/s, 0mA)
 | u-boot EHCI Host Controller
 |
 |+-2 Mass Storage (480 Mb/s, 500mA)
 JetFlash Mass Storage Device 63ZOA56O8TZFZ0AC

=> usb info
1: Hub, USB Revision 2.0
 - u-boot EHCI Host Controller
 - Class: Hub
 - PacketSize: 64 Configurations: 1
 - Vendor: 0x0000 Product 0x0000 Version 1.0
 Configuration: 1
 - Interfaces: 1 Self Powered 0mA
 Interface: 0
 - Alternate Setting 0, Endpoints: 1
 - Class Hub
 - Endpoint 1 In Interrupt MaxPacket 2048 Interval 255ms

2: Mass Storage, USB Revision 2.0
 - JetFlash Mass Storage Device 63ZOA56O8TZFZ0AC
 - Class: (from Interface) Mass Storage
 - PacketSize: 64 Configurations: 1
 - Vendor: 0x8564 Product 0x1000 Version 17.0
 Configuration: 1
 - Interfaces: 1 Bus Powered 500mA
 Interface: 0
 - Alternate Setting 0, Endpoints: 2
 - Class Mass Storage, Transp. SCSI, Bulk only
 - Endpoint 1 In Bulk MaxPacket 512
 - Endpoint 2 Out Bulk MaxPacket 512

=> md 2000000
02000000: 02992004 02060002 08462cc0 84990329 F,....)
02000010: 00c48e24 82181008 06501810 01a80004 ...$.....P......
02000020: 083d3881 00808270 40a00000 b012a502 .=8....p@.......
02000030: d4000088 28840b45 80028200 40244400 (..E....@$D.
02000040: 022b1004 04842482 20610b81 0494d020 .+....$. a.....
02000050: 8012b628 08200100 010c6300 0411b880 ...(.c.....
02000060: 42400200 8004a4c8 29802818 904000c0 B@......).(..@..
02000070: 08210200 2040a8c0 448aae00 a0000000 .!.. @..D.......
02000080: 2800c800 04b62080 60199885 02a62324 (..... .`.....#$
02000090: 04870a08 a0008000 18020003 0281a232 2
020000a0: 50414020 4000850b 02044c00 10013018 PA@ @.....L...0.
020000b0: 00208810 000c2280 081805a8 88800010 ".........
020000c0: 000c020a 0012b024 01282c02 00808181 $.(,.....
020000d0: 00010824 0160b602 81621008 00828082 ...$.`...b......
020000e0: 38d0f028 42010e03 1d242290 02000120 8..(B....$"....
020000f0: 6c217230 00920800 20200d40 41c08011 l!r0.... .@A...
=> mw 2000000 ffffaaaa 100
=> md 2000000
02000000: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000010: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000020: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000030: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000040: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000050: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000060: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000070: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000080: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
02000090: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
020000a0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
020000b0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
020000c0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
020000d0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
020000e0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
020000f0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
=> usb write 2000000 0 100

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 345

USB write: device 0 block # 0, count 256 ... 256 blocks write: OK
=> md 1000000
01000000: fbf3eae6 2feeffbf dbf7775d ff5bebf7 /.....w].[..
01000010: abefefaf 7dbb3e3b bfffb5bb bfb86a7f }.>;......j.
01000020: eff7b68f deaadfff eebf7bff bd7fed1f {.....
01000030: ffef7deb e7bfbbef dfeff7df 7f3ffcba ..}..........?..
01000040: ab3bfbfe dfdee69b ffe18fd5 ff3e777f .;...........>w.
01000050: da7effef bfabff7f f58ef768 9ffffeff .~.........h....
01000060: cfebf8b0 f1b7dfef e9eefbfe f37bbadb {..
01000070: b7f34ea2 da7efbff dfdff7ff f7effde3 ..N..~..........
01000080: fffbebff fe56ff5d 6ffd7ffd ff87efdf V.]o.......
01000090: b6bfafac ddebfbfb ffacebfd f87bff9f {..
010000a0: ffebffff ff7e7ff9 aefefd7f 5f7f5ebf ~......_.^.
010000b0: 6fe87e7b fabfdbcf d3faefad 6fbb5e7a o.~{........o.^z
010000c0: f6af86de ffdb7bbf ff5ff6ba bfa4bfdf {.._......
010000d0: ffbfa87f ffe67fcd efeffb9a 9b7e6a6f ~jo
010000e0: fffcf76f efbfeebb ffaceab1 5cfbfffe ...o........\...
010000f0: edebffde e29fefff deaeafdb f97bdff5 {..
=> usb read 1000000 0 100

USB read: device 0 block # 0, count 256 ... 256 blocks read: OK
=> md 1000000
01000000: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000010: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000020: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000030: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000040: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000050: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000060: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000070: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000080: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
01000090: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
010000a0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
010000b0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
010000c0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
010000d0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
010000e0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
010000f0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
=>

Verification in Linux

· Kernel configuration for USB memory stick support

 * Device Drivers---> SCSI Device Support---> SCSI Device Support ---> <*> SCSI disk support

* Device Drivers---> SCSI Device Support---> SCSI Device Support ---> <*> SCSI generic
support

 * Device Drivers---> USB Support---> [*] USB Mass Storage Support

 (The user can enable it either in kernel mode (set option as True) or as module (set option
as Module)).

* File Systems---> DOS/FAT/NT Filesystems---> <*> MSDOS fs support

* File Systems---> DOS/FAT/NT Filesystems---> <*> VFAT(Window-95)fs support

 * File Systems---> DOS/FAT/NT Filesystems---> VFAT(Window-95)fs support---> Default
codepage for FAT - 437

 * File Systems---> DOS/FAT/NT Filesystems---> VFAT(Window-95)fs support---> Default
iocharset for FAT - "iso8859-1"

 * File Systems---> Partition Types---> [*] Advanced partition selection

 * File Systems---> Partition Types---> [*] PC BIOS (MSDOS partition tables) support

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
346 NXP Semiconductors

 * File Systems---> Native Language Support---> Base native language support---> (iso8859-1)
Default NLS Option

* File Systems---> Native Language Support---> Base native language support---> <*> Codepage
437 (United States, Canada)

* File Systems---> Native Language Support---> Base native language support---> <*> NLS ISO
8859-1 (Latin 1; Western European Languages)

· plug in memory stick

~ # usb 1-1: new high speed USB device using fsl-ehci and address 2

usb 1-1: configuration #1 chosen from 1 choice

scsi6 : SCSI emulation for USB Mass Storage devices

scsi 6:0:0:0: Direct-Access SanDisk Cruzer 7.01 PQ: 0 ANSI: 0 CCS

sd 6:0:0:0: [sda] 3907583 512-byte hardware sectors: (2.00 GB/1.86 GiB)

sd 6:0:0:0: [sda] Write Protect is off

sd 6:0:0:0: [sda] Assuming drive cache: write through

sd 6:0:0:0: [sda] 3907583 512-byte hardware sectors: (2.00 GB/1.86 GiB)

sd 6:0:0:0: [sda] Write Protect is off

sd 6:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 6:0:0:0: [sda] Attached SCSI removable disk

sd 6:0:0:0: Attached scsi generic sg0 type 0

scsi 6:0:0:1: CD-ROM SanDisk Cruzer 7.01 PQ: 0 ANSI: 0

sr0: scsi3-mmc drive: 48x/48x tray

Uniform CD-ROM driver Revision: 3.20

sr 6:0:0:1: Attached scsi generic sg1 type 5

~ # fdisk -l

Disk /dev/sda: 2000 MB, 2000682496 bytes

64 heads, 63 sectors/track, 969 cylinders

Units = cylinders of 4032 * 512 = 2064384 bytes

 Device Boot Start End Blocks Id System

/dev/sda1 1 969 1953439+ b Win95 FAT32

~ # mount -t vfat /dev/sda1 /mnt/cdrom/

~ # cd /mnt/cdrom/

/mnt/cdrom # ls

/mnt/cdrom # cp /usr/sbin/wd_keepalive .

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 347

/mnt/cdrom # ls

wd_keepalive

/mnt/cdrom # cd ..

/mnt # umount /mnt/cdrom/

==
To create ext2 file-system on USB flash drive, follow below steps:
fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklab
el
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that the previous content
won't be recoverable.

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1011, default 1): Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1011, default 1011): Using default
 value 1011

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table
sd 2:0:0:0: [sda] Test WP failed, assume Write Enabled
sd 2:0:0:0: [sda] Assuming drive cache: write through
 sda: sda1
[root@p5020 root]# mke2fs /dev/sda1
mke2fs 1.41.4
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
65536 inodes, 262094 blocks
13104 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=268435456
8 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 38 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@p5020 /root]# mount /dev/sda1 /mnt

· Kernel configuration for USB Human Input Devices support

 * Device Drivers--->

 [*] HID Devices --->

 -*- Generic HID support

 <*> USB Human Interface Device (full HID) support

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
348 NXP Semiconductors

 Input device support --->

 -*- Generic input layer (needed for keyboard, mouse, ...)

 <*> Mouse interface

 [*] Provide legacy /dev/psaux device

 (1024) Horizontal screen resolution

 (768) Vertical screen resolution

 [*] Keyboards --->

 <*> AT keyboard

 [*] Mice --->

 <*> PS/2 mouse

 [*] ALPS PS/2 mouse protocol extension

 [*] Logitech PS/2++ mouse protocol extension

 [*] Synaptics PS/2 mouse protocol extension

 [*] IBM Trackpoint PS/2 mouse protocol extension

· plug in USB keyboard

~ # usb 1-1: new full speed USB device using fsl-ehci and address 3

usb 1-1: configuration #1 chosen from 1 choice

hub 1-1:1.0: USB hub found

hub 1-1:1.0: 3 ports detected

usb 1-1.1: new full speed USB device using fsl-ehci and address 4

usb 1-1.1: configuration #1 chosen from 1 choice

input: Dell Dell USB Keyboard Hub as /class/input/input1

generic-usb 0003:413C:2002.0002: input: USB HID v1.10 Keyboard [Dell Dell USB Ke yboard Hub]
on usb-fsl-ehci.0-1.1/input0

input: Dell Dell USB Keyboard Hub as /class/input/input2

generic-usb 0003:413C:2002.0003: input: USB HID v1.10 Device [Dell Dell USB Keyb

· plug in USB mouse

~ # usb 1-1: new low speed USB device using fsl-ehci and address 2

usb 1-1: configuration #1 chosen from 1 choice

input: HID 413c:3010 as /class/input/input0

generic-usb 0003:413C:3010.0001: input: USB HID v1.00 Mouse [HID 413c:3010] on u

Power Management

Following Pwr. Mgmt. features are supported:

1) Sleep

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 349

2) Deep Sleep

Pwr. Mgmt. Kernel Configuration Option(s)

Kernel Configure Tree View Options Description

Kernel options--->

 [*] Suspend to RAM and standby
 [*] Hibernation (aka 'suspend to disk')
 () Default resume partition (NEW)

Enable Power Management feature

Platform support -->
 CPU Frequency scaling -->
 [*] CPU Frequency scaling
 <*> CPU frequency translation statistics
 Default CPUFreq governor (userspace) -->
 -*- 'userspace' governor for userspace frequency scaling

 CPU Frequency drivers -->
 [*] Support for Freescale MPC85xx CPU freq

Enable the CPU frequency driver

Verification in Linux

Sleep Capability

A system can be put into Suspend state, and can also be Resumed (woken-up) by USB. For this the following needs to be done:

1. Enable USB remote wake-up capability before putting the system into Suspend state

~ # echo enabled >/sys/bus/usb/devices/usb1/power/wakeup

2. Insert/Remove a USB flash drive into USB port after the system is put into SUSPEND state. This will bring the system out of
the SUSPEND state

echo standby > /sys/power/state
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.01 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.01 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
sd 0:0:0:0: [sda] Synchronizing SCSI cache
sd 0:0:0:0: [sda] Stopping disk
PM: suspend of devices complete after 519.108 msecs
PM: late suspend of devices complete after 0.489 msecs
PM: noirq suspend of devices complete after 0.555 msecs
Disabling non-boot CPUs ...

USB Flash drive inserted --->

Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.513 msecs
PM: early resume of devices complete after 0.349 msecs
fsl-lbc ffe05000.localbus: Chip select error: LTESR 0x00080000
/pcie@ffe09000: PCICSRBAR @ 0xfff00000
/pcie@ffe0a000: PCICSRBAR @ 0x0
/pcie@ffe0a000: WARNING: Outbound window cfg leaves gaps in memory map. Adjusting the memory
map could reduce unnecessary bounce buffering.
/pcie@ffe0a000: DMA window size is 0x0
/pcie@ffe0b000: PCICSRBAR @ 0x0
/pcie@ffe0b000: WARNING: Outbound window cfg leaves gaps in memory map. Adjusting the memory
map could reduce unnecessary bounce buffering.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
350 NXP Semiconductors

/pcie@ffe0b000: DMA window size is 0x0
pci 0000:00:00.0: enabling device (0106 -> 0107)
pci 0001:02:00.0: enabling device (0106 -> 0107)
pci 0002:04:00.0: enabling device (0106 -> 0107)
ata2: No Device OR PHYRDY change,Hstatus = 0xa0000000
ata2: SATA link down (SStatus 0 SControl 300)
ata1: Signature Update detected @ 504 msecs
ata1: SATA link up 3.0 Gbps (SStatus 123 SControl 300)
ata1.00: configured for UDMA/133
sd 0:0:0:0: [sda] Starting disk
PM: resume of devices complete after 5419.653 msecs
Restarting tasks ... done.
root@p1022ds:~# usb 1-1: new high-speed USB device number 2 using fsl-ehci
scsi2 : usb-storage 1-1:1.0
scsi 2:0:0:0: Direct-Access SRT USB 1100 PQ: 0 ANSI: 4
sd 2:0:0:0: Attached scsi generic sg1 type 0
sd 2:0:0:0: [sdb] 15568896 512-byte logical blocks: (7.97 GB/7.42 GiB)
sd 2:0:0:0: [sdb] Write Protect is off
sd 2:0:0:0: [sdb] Mode Sense: 43 00 00 00
sd 2:0:0:0: [sdb] No Caching mode page present
sd 2:0:0:0: [sdb] Assuming drive cache: write through
sd 2:0:0:0: [sdb] No Caching mode page present
sd 2:0:0:0: [sdb] Assuming drive cache: write through
 sdb: sdb1
sd 2:0:0:0: [sdb] No Caching mode page present
sd 2:0:0:0: [sdb] Assuming drive cache: write through
sd 2:0:0:0: [sdb] Attached SCSI removable disk
FAT-fs (sdb): error, fat_get_cluster: invalid cluster chain (i_pos 0)
FAT-fs (sdb): Filesystem has been set read-only

Deep Sleep Capability

USB working across Deep sleep using Timer Interrupt

System is put into deep sleep using the following command :

~# echo 30 > /sys/devices/system/mpic/timer_wakeup;echo mem > /sys/power/state
PM: Syncing filesystems ... done.
mmc0: card e624 removed
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
sd 0:0:0:0: [sda] Synchronizing SCSI cache
sd 0:0:0:0: [sda] Stopping disk
PM: suspend of devices complete after 316.061 msecs
PM: late suspend of devices complete after 0.217 msecs
PM: noirq suspend of devices complete after 31.099 msecs
Disabling non-boot CPUs ...
/pcie@ffe240000: PCICSRBAR @ 0xff000000
/pcie@ffe240000: Setup 64-bit PCI DMA window
/pcie@ffe240000: WARNING: Outbound window cfg leaves gaps in memory map. Adjusting the
memory map could reduce unnecessary bounce buffering.
/pcie@ffe240000: DMA window size is 0xe0000000
/pcie@ffe250000: PCICSRBAR @ 0xff000000
/pcie@ffe250000: Setup 64-bit PCI DMA window
/pcie@ffe250000: WARNING: Outbound window cfg leaves gaps in memory map. Adjusting the
memory map could reduce unnecessary bounce buffering.
/pcie@ffe250000: DMA window size is 0xe0000000
/pcie@ffe260000: PCICSRBAR @ 0x0
/pcie@ffe260000: WARNING: Outbound window cfg leaves gaps in memory map. Adjusting the
memory map could reduce unnecessary bounce buffering.
/pcie@ffe260000: DMA window size is 0x0
/pcie@ffe270000: PCICSRBAR @ 0xff000000
/pcie@ffe270000: Setup 64-bit PCI DMA window
/pcie@ffe270000: WARNING: Outbound window cfg leaves gaps in memory map. Adjusting the
memory map could reduce unnecessary bounce buffering.
/pcie@ffe270000: DMA window size is 0xe0000000

After 30 seconds, system comes out of deep sleep and usb storage device is successfully detected

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 351

Enabling non-boot CPUs ...
CPU1 is up
CPU2 is up
CPU3 is up
PM: noirq resume of devices complete after 63.844 msecs
PM: early resume of devices complete after 0.166 msecs
caam ffe300000.crypto: Instantiated RNG4 SH0
caam ffe300000.crypto: Instantiated RNG4 SH1
ata2: No Device OR PHYRDY change,Hstatus = 0x80000000
ata2: SATA link down (SStatus 10 SControl 300)
ata1: Signature Update detected @ 504 msecs
ata1: SATA link up 3.0 Gbps (SStatus 123 SControl 300)
ata1.00: configured for UDMA/133
sd 0:0:0:0: [sda] Starting disk
PM: resume of devices complete after 4461.429 msecs
Restarting tasks ... done.
usb 1-1: USB disconnect, device number 3
root@t1040rdb:~# EXT2-fs (sdb1): previous I/O error to superblock detected

EXT2-fs (sdb1): previous I/O error to superblock detected

EXT2-fs (sdb1): previous I/O error to superblock detected

EXT2-fs (sdb1): previous I/O error to superblock detected

mmc0: new high speed SDHC card at address e624
mmcblk0: mmc0:e624 SU08G 7.40 GiB
 mmcblk0: p1
usb 1-1: new high-speed USB device number 4 using fsl-ehci
usb-storage 1-1:1.0: USB Mass Storage device detected
scsi4 : usb-storage 1-1:1.0
scsi 4:0:0:0: Direct-Access JetFlash Transcend 4GB 8.07 PQ: 0 ANSI: 4
sd 4:0:0:0: Attached scsi generic sg1 type 0
sd 4:0:0:0: [sdb] 7843200 512-byte logical blocks: (4.01 GB/3.73 GiB)
sd 4:0:0:0: [sdb] Write Protect is off
sd 4:0:0:0: [sdb] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
 sdb: sdb1
sd 4:0:0:0: [sdb] Attached SCSI removable disk

Deep Sleep using USB wake-up interrupt

This feature is not yet supported.

Known Bugs, Limitations, or Technical Issues

1. Across system Deep Sleep, if a device is already mounted, it may get umounted automatically. Hence, to use it again,
the user needs to re-mount the device

2. USB remote wake-up during system Deep-Sleep is not yet supported

3. On some platforms where USB2 controller is muxed with some other IP, USB2 is disabled in default platform
configurations inside both U-boot and Linux. For more details, please refer Platform BSP/Board User Manuals

4. Dual-Utmi Phy HW register restoration requirement for System Deep-Sleep feature: Some SoCs have a new utmi phy
version called "dual-utmi" phy (for example: T1040, T1042, T1020, T1022, T2080, T2081: rev1.0 and rev1.1). This dual-
phy hw registers need to be saved and restored across system Deep-Sleep. Hence, a code is added in u-boot usb driver
that identifies all socs having this dual-utmi phy, and adds "dual_utmi" in phy_type property. This is used to determine if
all phy registers are to be saved (during system-suspend) and restored (during system-resume). In absence of
restoration of dual-phy hw registers, system restore during deep-sleep is going to fail - system hangs and goes into non-
recoverable state.

7.2.13.2 USB 2.0 Gadget Network Driver User Manual

Description
The NXP processor has a High speed Dual-Role(DR) USB controller, which supports device mode

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
352 NXP Semiconductors

Module Loading

USB device controller driver can be built in kernel or compiled as a module.

Gadget drivers are recommended to be built as modules, because parameters will be passed as module parameter

Table 84. Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers --->

 USB support --->

 <*> Support for Host-side USB
 <*> EHCI HCD (USB 2.0) support
 -*- Root Hub Transaction Translators
 [] Use Xilinx usb host EHCI
controller core
 [*] Support for Freescale PPC on-chip
EHCI USB controller

Need to enable CONFIG_USB_FSL_MPH_DR_OF

Device Drivers --->

 USB support --->

 USB Gadget Support --->

 < M > Support for USB Gadgets

 USB Peripheral Controller
(Freescale Highspeed USB DR Peripheral
Controller) --->

 Freescale Highspeed USB DR
Peripheral Controller

Enable NXP USB Device Controller support

Device Drivers --->

 USB support --->

 USB Gadget Support --->

 < M > Support for USB Gadgets

 USB Gadget Drivers

 <M> Ethernet Gadget (with CDC
Ethernet support)
 [*]RNDIS support (NEW)
 []Ethernet Emulation Model
(EEM) support (NEW)

Enable USB Gadget support

Table 85. Compile-time Configuration Options

Options Values Default Description

CONFIG_USB_SUPPORT y/n/m Ym Enable USB Support

CONFIG_USB_FSL_MPH_D
R_OF

y/n/m Y Enable NXP EHCI USB
controller

Table continues on the next page...

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 353

Table 85. Compile-time Configuration Options (continued)

Options Values Default Description

CONFIG_USB_GADGET y/n/m m Enable USB Gadget modules

CONFIG_USB_GADGET_FS
L_USB2

y/n/m m Enable NXP USB peripheral
controller

CONFIG_USB_ETH y/n/m m Enable Ethernet Gadget

CONFIG_USB_ETH_RNDIS y/n y Enable Ethernet Gadget

Source Files

The driver source is maintained in the Linux kernel source tree.

Table 86. Source Files

Source File Description

drivers/usb/gadget/fsl_usb2_udc.c NXP USB peripheral controller driver

drivers/usb/host/fsl-mph-dr-of.c Hook between OF tree and platform device

drivers/usb/gadget/ether.c Ethernet gadget driver

Drivers/usb/gadget/rndis.[ch] Microsoft’s RNDIS support

Device Tree Entry

usb@22000 {

 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl-usb2-<controller-type>-v<controller version>",
 "fsl-usb2-<controller-type>";
 reg = <0x22000 0x1000>; /* specifies register base addr, soc dependent */
 interrupt-parent = <&mpic>;
 interrupts = <28 0x2>; /* specifies usb interrupt line, soc dependent */
 phy_type = "ulpi"; /* phy can be ulpi(external)/utmi(internal) */
 dr_mode = "peripheral" /* this entry specifies usb mode */
 };

Controller-type: dr(dual-role), mph(multi-port-host) controller-version: 1.6, 2.2, or earlier default mode is always

host. It can be either changed to peripheral inside the dts entry like above. In this case re-compilation of dts is

required. DR mode can also be changed to peripheral via u-boot command line. This won't require DTS

recompilation, and can work with default DTS For USB1 controller.

 NOTE

=> setenv hwconfig 'usb1:dr_mode=peripheral,phy_type=<ulpi/utmi>

Test Procedure

For board specific changes (required for USB Gadget mode), please refer to the board BSP User Manual.

1. Bring all USB Gadget modules (driver/usb/gadget/*.ko including fs/configfs/configfs.ko) onto the target board.

2. Load device controller driver and test ethernet gadget

Load FSL gadget driver module udc-core.ko & fsl_usb2_udc.ko

bash# insmod udc-core.ko
bash# insmod fsl_usb2_udc.ko

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
354 NXP Semiconductors

Load Ethernet modules

bash# insmod configfs.ko
bash# insmod libcomposite.ko
bash# insmod u_ether.ko
bash# insmod u_rndis.ko
bash# insmod usb_f_rndis.ko
bash# insmod usb_f_ecm.ko
bash# insmod usb_f_ecm_subset.ko
bash# insmod g_ether.ko
using random self ethernet address
using random host ethernet address
usb0: HOST MAC 82:14:b4:63:d1:85
usb0: MAC 4a:b1:59:3b:b3:bd
using random self ethernet address
using random host ethernet address
g_ether gadget: Ethernet Gadget, version: Memorial Day 2008
g_ether gadget: g_ether ready

bash# ifconfig usb0
usb0 Link encap:Ethernet HWaddr 5e:0c:de:2f:f9:0f
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

3. Assign an IP to usb0

bash# ifconfig usb0 10.232.1.11 netmask 255.255.255.0 up
IPv6: ADDRCONF(NETDEV_UP): usb0: link is not ready

bash# ifconfig usb0

usb0 usb0 Link encap:Ethernet HWaddr 5e:0c:de:2f:f9:0f
 inet addr:10.232.1.11 Bcast:10.232.1.255 Mask:255.255.255.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

4. Connect a USB cable between target board USB port and the USB port on Windows host machine.

As soon as USB cable is plugged into a Windows XP host, the following message displays:

http://embedded.seattle.intel-research.net/wiki/index.php?
title=Setting_up_USBnet#Install_the_RNDIS_Driver

5. Download linux.inf from either of the following, and install the Windows XP RNDIS driver as mentioned in the previous
step:

http://www.davehylands.com/linux/gumstix/usbnet/linux.inf
http://embedded.seattle.intel-research.net/wiki/files/linux.inf

For Windows 7, driver will automatically install.

6. As soon as driver installed on host, the following message displays on the target:

bash# g_ether gadget: high-speed config #2: RNDIS
IPv6: ADDRCONF(NETDEV_CHANGE): usb0: link becomes ready

7. Once the RNDIS driver is installed, configured, and loaded, configure the IP address for the new network device.

For example, assign 10.232.1.10 as IP to the RNDIS device and run ipconfig to verify the network configuration.

8. Now run ping both ways to check the connectivity between RNDIS@Windows and usb0@linux

D:\Profiles>ping 10.232.1.11

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 355

Pinging 10.232.1.11 with 32 bytes of data:

Reply from 10.232.1.11: bytes=32 time<1ms TTL=64
Reply from 10.232.1.11: bytes=32 time<1ms TTL=64
Reply from 10.232.1.11: bytes=32 time<1ms TTL=64

Ping statistics for 10.232.1.11:
 Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

bash# ping 10.232.1.10

PING 10.232.1.10 (10.232.1.10): 56 data bytes

64 bytes from 10.232.1.10: seq=0 ttl=128 time=4.352 ms
64 bytes from 10.232.1.10: seq=1 ttl=128 time=1.015 ms
64 bytes from 10.232.1.10: seq=2 ttl=128 time=0.974 ms
64 bytes from 10.232.1.10: seq=3 ttl=128 time=0.935 ms
64 bytes from 10.232.1.10: seq=4 ttl=128 time=1.021 ms

--- 10.232.1.10 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.935/1.659/4.352 ms

Known Bugs, Limitations, or Technical Issues

If a board/platform is having multiple USB controller, they cannot be simultaneously used in "gadget/peripheral" mode. Please do
not set dr_mode as “peripheral” for both the controllers at the same time.

Supporting Documentation

Linux USB gadget framework - http://www.linux-usb.org/gadget/

Please refer to http://embedded.seattle.intel-research.net/wiki/index.php?title=Setting_up_USBnet for setting up the RNDIS on
Windows XP.

Linux USBnet @ http://www.linux-usb.org/usbnet/

7.2.13.3 USB 3.0 Host/Peripheral Linux Driver User Manual

Description

The driver supports xHCI SuperSpeed (SS) Dual-Role-Device (DRD) controller

Main features of xHCI controller

• Supports operation as a standalone USB xHCI host controller

• USB dual-role operation and can be configured as host or device

• Super-speed (5 GT/s), High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations

• Supports operation as a standalone single port USB

• Supports eight programmable, bidirectional USB endpoints

Modes of Operation

• Host Mode: SS/HS/FS/LS

• Device Mode: SS/HS/FS

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
356 NXP Semiconductors

Super-speed operation is not supported when OTG is enabled
 NOTE

This document explains working of HS Host and HS Device in Linux

 NOTE

Module Loading
The default kernel configuration enables support for USB_DWC3 as built-in kernel module.

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers--->

 USB support --->

 [*] Support for Host-side USB

Enables USB host controller support

Device Drivers--->

 USB support --->
 <*> xHCI HCD (USB 3.0) support

Enables XHCI Host Controller Driver and
transaction translator

Device Drivers--->

 USB support --->
 <*> USB Mass Storage support

 [] USB Mass Storage verbose debug

Enable support for USB mass storage
devices. This is the driver needed for
USB flash devices, and memory sticks

<*> Sound card support --->
<*> Advanced Linux Sound Architecture --->
 <*> OSS Mixer API
 <*> OSS PCM (digital audio) API
 [*] OSS PCM (digital audio) API - Include plugin
system
 [*] Support old ALSA API
 [*] USB sound devices --->
 <*> USB Audio/MIDI driver

Enables support for USB Audio devices.
This driver is needed for USB microphone.

Device Drivers--->

 USB support --->
 <*> USB Gadget Support --->

 <M> USB Gadget Drivers
 < > USB functions configurable through configfs
 < > Gadget Zero (DEVELOPMENT)
 <M> Ethernet Gadget (with CDC Ethernet support)
 [*] RNDIS support
 [] Ethernet Emulation Model (EEM) support
 < > Network Control Model (NCM) support
 < > Gadget Filesystem
 < > Function Filesystem
 <M> Mass Storage Gadget
 < > Serial Gadget (with CDC ACM and CDC OBEX
support)

Note: Required only for USB Gadget/
Peripheral Support

• Enable driver for peripheral/device
controller

• Enable Ethernet Gadget Client
driver

• Enable Mass Storage Client driver

Table continues on the next page...

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 357

Table continued from the previous page...

Kernel Configure Tree View Options Description

Device Drivers--->

 <*> DesignWare USB3 DRD Core Support
 DWC3 Mode Selection (Dual Role mode) --->

Enable XHCI DRD Core Support

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_USB y/m/n y Enables USB host controller

CONFIG_USB_XHCI_HCD y/m/n y Enables XHCI HCD

CONFIG_USB_DWC3 y/m/n y Enables DWC3 Controller

CONFIG_USB_GADGET y/m/n n Enables USB peripheral device

CONFIG_USB_ETH y/m/n n Enable Ethernet style communication

CONFIG_USB_MASS_STORAGE m/n n Enable USB Mass Storage disk drive

CONFIG_SOUND y/m/n y Enables Sound Card Support

CONFIG_SND y/m/n y Enables ALSA (Advanced Linux Sound Architecture)

CONFIG_SND_MIXER_OSS y/m/n y Enables OSS Mixer API

CONFIG_SND_PCM_OSS y/m/n y Enables OSS PCM (digital audio) API

CONFIG_SND_PCM_OSS_PLUGINS y/n y Enables OSS PCM (digital audio) API - Include plugin
system

CONFIG_SND_SUPPORT_OLD_API y/n y Enables old ALSA API

CONFIG_SND_USB y/n n Enables USB sound devices

CONFIG_SND_USB_AUDIO y/m/n n Enables USB Audio/MIDI driver

NOTE: USB Audio configuration options default value is listed for LS1021A platform.

Source Files

The driver source is maintained in the Linux kernel source tree in below files

Table continued from the previous page...

Source File Description

drivers/usb/host/xhci-* xhci platform driver

drivers/usb/gadget/mass_storage.c USB Mass Storage

drivers/usb/gadget/ether.c Ethernet gadget driver

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
358 NXP Semiconductors

Device Tree Binding for Host

usb@3100000 {
 compatible = "snps,dwc3";
 reg = <0x0 0x3100000 0x0 0x10000>;
 interrupts = <GIC_SPI 93 IRQ_TYPE_LEVEL_HIGH>;
 dr_mode = "host;
 };

Device Tree Binding for Peripheral

Note: with multiple USB controller, just one can be peripheral mode at a time.

usb@3100000 {
 compatible = "snps,dwc3";
 reg = <0x0 0x3100000 0x0 0x10000>;
 interrupts = <GIC_SPI 93 IRQ_TYPE_LEVEL_HIGH>;
 dr_mode = "peripheral;
 maximum-speed = "super-speed";
 };

Host Testing

Following are serial console logs that appear during bootup if dr_mode set to host in device-tree

usbcore: registered new interface driver usbfs
usbcore: registered new interface driver hub
usbcore: registered new device driver usb
xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
xhci-hcd xhci-hcd.0.auto: new USB bus registered, assigned bus number 1
xhci-hcd xhci-hcd.0.auto: irq 125, io mem 0x03100000
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 1 port detected
xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
xhci-hcd xhci-hcd.0.auto: new USB bus registered, assigned bus number 2
hub 2-0:1.0: USB hub found
hub 2-0:1.0: 1 port detected
usbcore: registered new interface driver usb-storage

Following are serial-console logs after connecting a USB flash drive

For High-Speed Device attach
usb 1-1.2: new high-speed USB device number 3 using xhci-hcd
usb-storage 1-1.2:1.0: USB Mass Storage device detected
scsi0 : usb-storage 1-1.2:1.0
scsi 0:0:0:0: Direct-Access SanDisk Cruzer 7.01 PQ: 0 ANSI: 0 CCS
sd 0:0:0:0: [sda] 1957887 512-byte logical blocks: (1.00 GB/955 MiB)
sd 0:0:0:0: Attached scsi generic sg0 type 0
sd 0:0:0:0: [sda] Write Protect is off
sd 0:0:0:0: [sda] No Caching mode page found
sd 0:0:0:0: [sda] Assuming drive cache: write through
sd 0:0:0:0: [sda] No Caching mode page found
sd 0:0:0:0: [sda] Assuming drive cache: write through
 sda: sda1
sd 0:0:0:0: [sda] No Caching mode page found
sd 0:0:0:0: [sda] Assuming drive cache: write through
sd 0:0:0:0: [sda] Attached SCSI removable disk

For Super-Speed Device attach
usb 2-1: new SuperSpeed USB device number 2 using xhci-hcd
usb 2-1: Parent hub missing LPM exit latency info. Power management will be impacted.
usb-storage 2-1:1.0: USB Mass Storage device detected
scsi0 : usb-storage 2-1:1.0
scsi 0:0:0:0: Direct-Access SanDisk Extreme 0001 PQ: 0 ANSI: 6
sd 0:0:0:0: [sda] 31277232 512-byte logical blocks: (16.0 GB/14.9 GiB)
sd 0:0:0:0: Attached scsi generic sg0 type 0
sd 0:0:0:0: [sda] Write Protect is off

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 359

sd 0:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
 sda:
sd 0:0:0:0: [sda] Attached SCSI removable disk
FAT-fs (sda): Volume was not properly unmounted. Some data may be corrupt. Please run fsck.

Make filesystem and mount connected USB flash drive using below commands

root@freescale /$ fdisk -l

Disk /dev/sda: 16.0 GB, 16013942784 bytes
255 heads, 63 sectors/track, 1946 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 1 1946 15631213+ 83 Linux
root@freescale /$
root@freescale /$ df
Filesystem 1K-blocks Used Available Use% Mounted on
shm 516684 0 516684 0% /dev/shm
rwfs 512 0 512 0% /mnt/rwfs
root@freescale /$
root@freescale /$
root@freescale /$
root@freescale /$
root@freescale /$ fdisk /dev/sda

The number of cylinders for this disk is set to 1946.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

Command (m for help): d
Selected partition 1

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1946, default 1): Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1946, default 1946): Using default value 1946

Command (m for help): w
The partition table has been alter sda: sda1
ed!

Calling ioctl() to re-read partition table
root@freescale /$
root@freescale /$
root@freescale /$ fdisk -l

Disk /dev/sda: 16.0 GB, 16013942784 bytes
255 heads, 63 sectors/track, 1946 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 1 1946 15631213+ 83 Linux
root@freescale /$ df
Filesystem 1K-blocks Used Available Use% Mounted on
shm 516684 0 516684 0% /dev/shm
rwfs 512 0 512 0% /mnt/rwfs
root@freescale /$ mkdir my_mnt
root@freescale /$
root@freescale /$
root@freescale /$ mkfs.ext2 /dev/sda1
Filesystem label=
OS type: Linux

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
360 NXP Semiconductors

Block size=4096 (log=2)
Fragment size=4096 (log=2)
977280 inodes, 3907803 blocks
195390 blocks (5%) reserved for the super user
First data block=0
Maximum filesystem blocks=4194304
120 block groups
32768 blocks per group, 32768 fragments per group
8144 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208
root@freescale /$
root@freescale /$
root@freescale /$
root@freescale /$
root@freescale /$
root@freescale /$ mount /dev/sda1 my_mnt/
root@freescale /$
root@freescale /$
root@freescale /$
root@freescale /$ df
Filesystem 1K-blocks Used Available Use% Mounted on
shm 516684 0 516684 0% /dev/shm
rwfs 512 0 512 0% /mnt/rwfs
/dev/sda1 15385852 20 14604272 0% /my_mnt
root@freescale /$

Test by wring/reading data on mount drive

root@freescale /$ dd if=/dev/urandom of=/tmp/123 bs=1M count=100
100+0 records in
100+0 records out
104857600 bytes (100.0MB) copied, 54.535026 seconds, 1.8MB/s
root@freescale /$
root@freescale /$
root@freescale /$
root@freescale /$ cp /tmp/123 /my_mnt/.
root@freescale /$ sync
root@freescale /$ ls /my_mnt/
123 lost+found
root@freescale /$

Peripheral testing with Win7 as Host

In gadget mode standard USB cables with micro plug should be used.

 NOTE

Below Message will appear during bootup if dr_mode set as peripheral in device-tree

usbcore: registered new interface driver usbfs
usbcore: registered new interface driver hub
usbcore: registered new device driver usb

usbcore: registered new interface driver usb-storage

Make sure "dr_mode" contains "peripheral" string

root@freescale /$# cat /proc/device-tree/soc/usb\@3100000/dwc3/dr_mode
peripheral root@freescale /$

Move all below modeules to platform

fs/configfs/configfs.ko
driver/usb/gadget/libcomposite.ko
driver/usb/gadget/g_mass_storage.ko
driver/usb/gadget/u_rndis.ko
driver/usb/gadget/u_ether.ko
driver/usb/gadget/usb_f_ecm.ko
driver/usb/gadget/usb_f_ecm_subset.ko

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 361

driver/usb/gadget/usb_f_rndis.ko
driver/usb/gadget/g_ether.ko

Mass Storage Gadget

To use ramdisk as a backing store use the following

root@freescale /$ mkdir /mnt/ramdrive
root@freescale /$ mount -t tmpfs tmpfs /mnt/ramdrive -o size=600M
root@freescale /$ dd if=/dev/zero of=/mnt/ramdrive/vfat-file bs=1M count=500
root@freescale /$ mke2fs -F /mnt/ramdrive/vfat-file
root@freescale /$ insmod configfs.ko
root@freescale /$ insmod libcomposite.ko
root@freescale /$ insmod usb_f_mass_storage.ko
root@freescale /$ insmod g_mass_storage.ko file=/mnt/ramdrive/vfat-file stall=n

We will get below messages

[39.987594] g_mass_storage gadget: Mass Storage Function, version: 2009/09/11
[39.994822] g_mass_storage gadget: Number of LUNs=1
[39.989240] lun0: LUN: file: /home/backing_file_20mb
[39.994367] g_mass_storage gadget: Mass Storage Gadget, version: 2009/09/11
[39.990902] g_mass_storage gadget: userspace failed to provide iSerialNumber
[39.987547] g_mass_storage gadget: g_mass_storage ready

Attached ***USB3.0 only*** gadget cable to host and you will get below message. Now Storage is ready to use.

g_mass_storage gadget: super-speed config #1: Linux File-Backed Storage

Speaker and Microphone

1. Aplay utility can be used to list the available sound cards e.g. Here Jabra 410 USB speaker is detected as a second sound
card and can be addressed as –D hw:1,0 OR –c1:

[root@freescale ~]$ aplay –l**** List of PLAYBACK Hardware Devices ****
 card 0: FSLVF610TWRBOAR [FSL-VF610-TWR-BOARD], device 0: HiFi sgtl5000-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
 card 1: USB [Jabra SPEAK 410 USB], device 0: USB Audio [USB Audio] Subdevices: 1/1
Subdevice #0: subdevice #0

2. Sample wav file can be played using the below command:

[root@freescale ~]$ aplay -D hw:1,0 LYNC_fsringing.wav
Playing WAVE 'LYNC_fsringing.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo

3. Sample wav file can be recorded using the below command:

[root@freescale ~]$ arecord -f S16_LE -t wav -Dhw:1,0 -r 16000 foobar.wav -d 5
Recording WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 16000 Hz, Mono

NOTE: If recorded audio is not played, try to use "-D plughw:1,0" in above command.

4. Audio controls can be checked using the below command, control details and name of the controls can be checked from
output of “amixer –c1” as below:

[root@freescale ~]$ amixer –c1 controls
numid=3,iface=MIXER,name='PCM Playback Switch'
numid=4,iface=MIXER,name='PCM Playback Volume'
numid=5,iface=MIXER,name='Headset Capture Switch'
numid=6,iface=MIXER,name='Headset Capture Volume'
numid=2,iface=PCM,name='Capture Channel Map'
numid=1,iface=PCM,name='Playback Channel Map'

[root@freescale ~]$ amixer –c1
Simple mixer control 'PCM',0 Capabilities: pvolume pvolume-joined pswitch pswitch-joined
penum
 Playback channels: Mono
 Limits: Playback 0 - 11

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
362 NXP Semiconductors

 Mono: Playback 4 [36%] [-20.00dB] [on]

Simple mixer control 'Headset',0 Capabilities: cvolume cvolume-joined cswitch cswitch-
joined penum
 Capture channels: Mono
 Limits: Capture 0 - 7
 Mono: Capture 5 [71%] [0.00dB] [on]

For Example, in above output there are two controls named “PCM” and “Headset” for Speaker and microphone respectively.

Sample Audio controls Usage:

a. mute/unmute

[root@freescale ~]$ amixer -c1 set PCM mute
Simple mixer control 'PCM',0
 Capabilities: pvolume pvolume-joined pswitch pswitch-joined
 Playback channels: Mono
 Limits: Playback 0 - 11
 Mono: Playback 2 [18%] [-28.00dB] [off]
[root@freescale ~]$ amixer -c1 set PCM unmute
Simple mixer control 'PCM',0
 Capabilities: pvolume pvolume-joined pswitch pswitch-joined
 Playback channels: Mono
 Limits: Playback 0 - 11
 Mono: Playback 2 [18%] [-28.00dB] [on]

b. volume up/down – Below commands are trying to set volume to 11 and 2 performing volume up and down respectively.

root@freescale ~]$ amixer -c1 set PCM 11
Simple mixer control 'PCM',0
Capabilities: pvolume pvolume-joined pswitch pswitch-joined
Playback channels: Mono
Limits: Playback 0 - 11
Mono: Playback 11 [100%] [8.00dB] [on]
[root@freescale ~]$ amixer -c1 set PCM 2
Simple mixer control 'PCM',0
Capabilities: pvolume pvolume-joined pswitch pswitch-joined
Playback channels: Mono
Limits: Playback 0 - 11
Mono: Playback 2 [18%] [-28.00dB] [on]

Ethernet Gadget

To use Ethernet gadget use the following

root@freescale /$ insmod configfs.ko
root@freescale /$ insmod libcomposite.ko
root@freescale /$ insmod u_ether.ko
root@freescale /$ insmod u_rndis.ko
root@freescale /$ insmod usb_f_ecm.ko
root@freescale /$ insmod usb_f_ecm_subset.ko
root@freescale /$ insmod usb_f_rndis.ko
root@freescale /$ insmod g_ether.ko

We will get below messages

[28.692611] using random self ethernet address
[28.697156] using random host ethernet address
[28.694271] usb0: HOST MAC 82:96:69:7e:a5:7d
[28.698928] usb0: MAC 72:00:a5:80:2b:e8
[28.692586] using random self ethernet address
[28.697080] using random host ethernet address
[28.691368] g_ether gadget: Ethernet Gadget, version: Memorial Day 2008
[28.698028] g_ether gadget: g_ether ready

Make sure USB0 ethernet interface is available after this

root@freescale /$ ifconfig -a
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 363

 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:158

can1 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:159

eth0 Link encap:Ethernet HWaddr 00:E0:0C:BC:E5:60
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

eth1 Link encap:Ethernet HWaddr 00:E0:0C:BC:E5:61
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

eth2 Link encap:Ethernet HWaddr 00:E0:0C:BC:E5:62
 inet addr:10.232.132.212 Bcast:10.232.135.255 Mask:255.255.252.0
 inet6 addr: fe80::2e0:cff:febc:e562/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2311 errors:0 dropped:3 overruns:0 frame:0
 TX packets:66 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:290810 (283.9 KiB) TX bytes:8976 (8.7 KiB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:2 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:100 (100.0 B) TX bytes:100 (100.0 B)

sit0 Link encap:IPv6-in-IPv4
 NOARP MTU:1480 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

usb0 Link encap:Ethernet HWaddr 72:00:A5:80:2B:E8
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Attached the cable with Win7 and Configure RNDS interface in windows under "Control Panel -> Network and Internet -> Network
Connections" and set IP Address

Set IP Address in Platform and start Ping

root@freescale /$ ifconfig usb0 10.232.1.11
root@freescale /$
root@freescale /$

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
364 NXP Semiconductors

root@freescale /$ ping usb 10.232.1.10
PING 10.232.1.10 (10.232.1.10): 56 data bytes
64 bytes from 10.232.1.10: seq=0 ttl=128 time=5.294 ms
64 bytes from 10.232.1.10: seq=1 ttl=128 time=6.101 ms
64 bytes from 10.232.1.10: seq=2 ttl=128 time=4.170 ms
64 bytes from 10.232.1.10: seq=3 ttl=128 time=4.233 ms

Known Bugs, Limitations, or Technical Issues

• Linux only allows one peripheral at one time. Make sure that when one of DWC3 controller is set as peripheral, then the
others should not be set to the same mode.

• For USB host mode, some Pen drives such as Kingston / Transcend / SiliconPower / Samtec might have a compatibility
issue.

• Some USB micro ports might have a OTG3.0 cable compatibility issue. An OTG 2.0 cable and USB standard port will work
fine.

7.2.14 Watchdog

Module Loading
Watchdog device driver support kernel built-in mode.

U-Boot Configuration

Runtime options

Env Variable Env Description Sub option Option Description

bootargs Kernel command line argument
passed to kernel

setenv othbootargs
wdt_period=35

Sets the watchdog timer period
timeout

Kernel Configure Options

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers --->

 [*] Watchdog Timer Support --->

 [*] Disable watchdog shutdown on close

 [*] IMX2+ Watchdog

IMX2 Watchdog Timer

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_IMX2_WDT y/n y IMX2 Watchdog Timer

Source Files

The driver source is maintained in the Linux kernel source tree.

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 365

Source File Description

drivers/watchdog/imx2_wdt.c IMX2 Watchdog Timer

User Space Application

The following applications will be used during functional or performance testing. Please refer to the SDK UM document for the
detailed build procedure.

Command Name Description Package Name

watch watchdog is a daemon for watchdog feeding watchdog

Verification in Linux

• Set NFS rootfs. Build a rootfs image which includes watchdog daemon.

• Set boot parameter. On the U-Boot prompt, set following parameter:

Set nfsargs:

setenv bootargs wdt_period=35 root=/dev/nfs rw nfsroot=$serverip:$rootpath ip=$ipaddr:
$serverip:$gatewayip:$netmask:$hostname:$netdev:off
console=$consoledev,$baudrate $othbootargs

Set nfsboot

run nfsargs;tftp $loadaddr $bootfile;tftp $fdtaddr $fdtfile;bootm $loadaddr - $fdtaddr
run nfsboot

wdt_period is a watchdog timeout period. Set this parameter with the proper value depending on your board

bus frequency.

 NOTE

wdt_period is inversely proportional to watchdog expiry time ie. the higher the wdt_period, the lower the watchdog expiry
time. So if wdt_period is increased to high, watchdog will expiry early.

When using watchdog as wake-up source with the default Ubuntu root filesystem, add watchdog-device

= /dev/watchdog to /etc/watchdog.conf

 NOTE

7.2.15 QUICC Engine HDLC/TDM User Manual

Linux SDK for QorIQ Processors

Description

HDLC, standing for High-level Data Link Control, is one of the most common protocols of the Layer 2 (Data Link Layer) of the
seven-layer OSI model. HDLC uses a zero insertion/deletion process (commonly known as bit stuffing) to ensure that the bit
pattern of the delimiter flag does not occur in the fields between flags. The HDLC frame is synchronous and therefore relies on
the physical layer for a method of clocking and of synchronizing the transmitter/receiver.

The HDLC/TDM driver is implemented by UCC and TSA(HDLC is upper layer protocol of TDM). It enables UCC1/3 to work in
hdlc protocol, connected with X-TDM-DS26522 card to support T1/E1 function. It can work in normal or loopback mode both for
tdm controller and phy. connect X-TDM-DS26522 card to TDM Riser slot, it can transmit data and receive data.

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
366 NXP Semiconductors

U-Boot Configuration

Compile time options

Below are major u-boot configuration options related to this feature defined in platform specific config files under include/configs/
directory.

Option Identifier Description

Choosing predefined u-boot modes:

make ls1043ardb_deconfig

before doing the actually build

Runtime options

Env Variable Env Description Sub option Option Description

hwconfig Hardware configuration for u-boot qe-hdlc Assgin pins for HDLC;

QUICC Engine TDM enabled in DTB

bootargs Kernel command line argument passed to kernel

Kernel Configure Options

Tree View

LS1043ARDB and X-TDM-DS26522 card:

Kernel Configure Tree View Options Description

Device Drivers --->
 SOC (System On Chip) specific Drivers --->
 [*] Freescale QUICC Engine (QE) Support
 [*] Network device support --->
 [*] Wan interfaces support --->
 <*> Generic HDLC layer
 <*> Raw HDLC support
 <*> Freescale QUICC Engine HDLC support
 <*> SLIC MAXIM DS26522 CARD SUPPORT

Enable the QE TDM driver and X-TDM-
DS26522 card driver.

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_QUICC_ENGINE y/n n QUICC Engine enabled

CONFIG_FSL_UCC_TDM y/n n QUICC Engine TDM lib

CONFIG_SLIC_MAXIM y/m/n n Enable x-tdm-ds26522 card support

FSL_UCC_HDLC y/m/n n QUICC Engine driver driver

Device Tree Binding

Below is the definition of the device tree node required by this feature

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 367

Property Type Status Description

qe qe enable QUICC Engine node

ucc hdlc enable QE UCC HDLC node.

si si si QE TSA node

Below is an example device tree node required by this feature. Note that it may have differences among platforms.

LS1040ARDB and X-TDM-DS26522 card:

 ucc_hdlc: ucc@2000 {
 compatible = "fsl,ucc-hdlc";
 rx-clock-name = "clk8";
 tx-clock-name = "clk9";
 fsl,rx-sync-clock = "rsync_pin";
 fsl,tx-sync-clock = "tsync_pin";
 fsl,tx-timeslot-mask = <0xfffffffe>;
 fsl,rx-timeslot-mask = <0xfffffffe>;
 fsl,tdm-framer-type = "e1";
 fsl,tdm-id = <0>;
 fsl,siram-entry-id = <0>;
 fsl,tdm-interface;
 };
 slic@3 {
 compatible = "maxim,ds26522";
 reg = <3>;
 spi-max-frequency = <2000000>;
 fsl,spi-cs-sck-delay = <100>;
 fsl,spi-sck-cs-delay = <50>;
 };

Source Files

The following source file are related the this feature in Linux.

T1040RDB and X-TDM-DS26522 card:

Source File Description

drivers/soc/fsl/qe/qe_tdm.c QE UCC TDM lib

include/soc/fsl/qe/qe_tdm.h QE UCC TDM lib head file.

drivers/net/tdm/slic_ds26522.c X-TDM-DS26522 card driver.

drivers/net/wan/fsl_ucc_hdlc.* QE HDLC driver

arch/arm64/boot/dts/freescale/fsl-ls1043a.dtsi Define the device tree nodes for LS1043ARDB QE

arch/arm64/boot/dts/freescale/fsl-ls1043a-rdb.dts Define the device tree nodes for LS1043ARDB ds26522

User Space Application

The following applications will be used during functional or performance testing. Please refer to the SDK UM document for the
detailed build procedure.

Command Name Description Package Name

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
368 NXP Semiconductors

Verification in U-boot

N/A

Verification in Linux

1. After u-boot startup,set "qe-hdlc" parameter in hwconfig.

2. After bootup kernel, Kernel boot log for hdlc:

hdlc: HDLC support module revision 1.22

3. QE HDLC T1/E1 test

a. Make X-TDM-DS26522 card connected to T1040RDB board Slot.

b. To test tdm external ports, please plugin tdm t1/e1 loopback cable in the related port.

The following is HDLC port mapping with X-TDM-DS26522 card:

HDLC Port X-TDM-DS26522 Port
Port A CH1;
Port B CH2;

c. HDLC test using E1.

Use the default dts to test E1 function. Test module can receive ucc_num as parameter. This number should be 1/3
related to the tdm port.

ls1043ardb login: root
root@ls1043ardb:~# ./sethdlc hdlc0 hdlc;
root@ls1043ardb:~# ifconfig hdlc0 192.168.0.1 up
[41.072590] hdlc0: Carrier detected
root@ls1043ardb:~# route add -net 192.168.0.0 netmask 255.255.255.0 gw 192.168.0.1
hdlc0;
root@ls1043ardb:~# ping 192.168.0.2;
PING 192.168.0.2[52.208784] Tx data skb->len:86 (192.168.0.2) 56(84) bytes of
d[52.213119]
[52.213119] Transmitted data:
ata.
[52.220324] ff
[52.222491] 44
[52.224154] 45
[52.225810] 00
[52.227472] 00
[52.229125] 54
[52.230778] c3
[52.232440] 89
[52.234094] 40
[52.235755] 00
[52.237408] 40
[52.239069] 01
[52.240722] f5
[52.242375] cb
[52.244038] c0
[52.245691] a8
[52.247844] irq ucce:20000
[52.250543] TxBD: 1c00
[52.252900] Received data length:88[52.256206] while entry times:0
[52.259338]
[52.259338] Received data:
[52.263512] ff
[52.265165] 44
[52.266818] 45
[52.268474] 00
[52.270127] 00
[52.271782] 54
[52.273435] c3

Device Drivers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 369

[52.275091] 89
[52.276744] 40
[52.278397] 00
[52.280052] 40
[52.281705] 01
[52.283361] f5
[52.285014] cb
[52.286667] c0
[52.288322] a8
[52.289980] skb->protocol:8
[52.292784] irq ucce:80000
[53.262909] Tx data skb->len:86 [53.265951]

Linux kernel

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
370 NXP Semiconductors

Chapter 8
QorIQ networking technologies

8.1 Summary of networking technologies
NXP provides several different hardware networking architectures. Each SoC incorporates one of them. The hardware
architectures are:

HW networking architectures Blocks

DPAA1 QMan, BMan, and FMan

DPAA2 QBMan, WRIOP, and optionally AIOP

DPAA2 and DPAA1 are relatives in that they both use generic hardware-based queues. Also, each supports additional
accelerators such as SEC via these queues.

PFE PFE package engine block

veTSEC veTSEC traditional Ethernet controller block

The following table shows which SoCs supported by LSDK use which networking hardware architecture.

HW networking architectures SoCs

DPAA1 LS1023A, LS1043A, LS1026A, LS1046A

DPAA2 LS1044A, LS1048A, LS1084A, LS1088A, LS2044A,
LS2048A, LS2084A, LS2088A

PFE LS1012A

veTSEC L1021A

8.2 DPAA1-specific Software

8.2.1 DPAA1 software architecture overview

8.2.1.1 Introduction
Multicore processing, or multiple execution thread processing, introduces unique considerations to the architecture of networking
systems, including processor load balancing/utilization, flow order maintenance, and efficient cache utilization. Herein is a review
of the key features, functions, and properties enabled by the QorIQ DPAA1 (Data Path Acceleration Architecture first generation)
hardware and demonstrates how to best architect software to leverage the DPAA1 hardware.

Summary of networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 371

In most hardware and other past documentation, DPAA first generation is refered to as DPAA. To avoid confusion

with DPAA2 (second generation), we will refer to the first generation as DPAA1 in this documentation set.

 NOTE

By exploring how the DPAA1 is configured and leveraged in a particular application, the user can determine which elements and
features to use. This streamlines the software development stage of implementation by allowing programmers to focus their
technical understanding on the elements and features that are implemented in the system under development, thereby reducing
the overall DPAA1 learning curve required to implement the application.

Our target audience is familiar with the material in QorIQ Data Path Acceleration Architecture (DPAA1) Reference Manual.

Benefits of DPAA1

The primary intent of DPAA1 is to provide intelligence within the IO portion of the System-on-Chip (SOC) to route and manage
the processing work associated with traffic flows to simplify ordering and load balance concerns associated with multi core
processing. The DPAA1 hardware inspects ingress traffic and extracts user defined flows from the port traffic. It then steers specific
flows (or related traffic) to a specific core or set of cores.

Architecting a networking application with a multicore processor presents challenges, such as workload balance and maintaining
flow order, which are not present in a single core design. Without hardware assistance, the software must implement techniques
that are inefficient and cumbersome, reducing the performance benefit of multiple cores. To address workload balance and flow
order challenges, DPAA1 determines and separates ingress flows then manages the temporary, permanent, or semi-permanent
flow-to-core affinity. DPAA1 also provides a work priority scheme, which ensures ingress critical flows are addressed properly and
frees software from the need to implement a queuing mechanism on egress. As the hardware determines which core will process
which packet, performance is boosted by direct cache warming/stashing as well as by providing biasing for core-to-flow affinity,
which ensures that flow-specific data structures can remain in the core’s cache.

By understanding how the DPAA1 is leveraged in a particular design, the system architect can map out the application to meet
the performance goals and to utilize the DPAA1 features to leverage any legacy application software that may exist. Once this
application map is defined, the architect can focus on more specific details of the implementation.

8.2.1.1.1 General architectural considerations
As the need for processing capability has grown, the only practical way to increase the performance on a single silicon part is to
increase the number of general purpose processing cores (CPUs). However, many legacy designs run on a single processor;
introducing multiple processors into the system creates special considerations, especially for a networking application.

8.2.1.1.2 Multicore design
Multicore processing, or multiple execution thread processing, introduces unique considerations. Most networking applications
are split between data and control plane tasks. In general, control plane tasks manage the system within the broad network of
equipment. While the control plane may process control packets between systems, the control plane process is not involved in
the bulk processing of the data traffic. This task is left to the data plane processing task or program.

The general flow of the data plane program is to receive data traffic (in general, packets or frames), process or transform the data
in some way and then send the packets to the next hop or device in the network. In many cases, the processing of the traffic
depends on the type of traffic. In addition, the traffic usually exists in terms of a flow, a stream of traffic where the packets are
related. A simple example could be a connection between two clients that, at the packet level, is defined by the source and
destination IP address. Typically, multiple flows are interleaved on a single interface port; the number of flows per port depends
on the interface bandwidth as well as on the bandwidth and type of flows involved.

8.2.1.1.3 Parse/classification software offload
DPAA1 provides intelligence within the IO subsection of the SoC to split traffic into user-defined queues. One advantage is that
the intelligence used to divide the traffic can be leveraged at a system level.

In addition to sorting and separating the traffic, DPAA1 can append useful processing information into the stream; offloading the
need for the software to perform these functions (see the following figure).

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
372 NXP Semiconductors

Note that DPAA1 is not intended to replace significant packet processing or to perform extensive classification tasks. However,
some applications may benefit from the streamlining that results from the parse/classify/distribute function within DPAA1. The
ability to identify and separate flow traffic is fundamental to how DPAA1 solves other multicore application issues.

Data Plane Programs

Protocol1_packet1+info

Protocol1_packet2+info

Protocol1_packet2+info

Protocol2_packet1+info

Protocol2_packet2+info

Protocol3_packet1+info

Protocol3_packet2+info

get_packet

xxxx

xxxx

process_protocol1

xxxx

xxxx

send_packet

xxxx

xxxx

get_packet

xxxx

xxxx

process_protocol2

xxxx

xxxx

send_packet

xxxx

xxxx

get_packet

xxxx

xxxx

process_protocol3

xxxx

xxxx

send_packet

xxxx

xxxx

Figure 60. Hardware-sorted protocol flow

8.2.1.1.4 Flow order considerations
In most networking applications, individual traffic flows through the system require that the egress packets remain in the order
they are received. In a single processor core system, this requirement is easy to implement. As long as the data plane software
follows a run-to-completion model on a per-packet basis, the egress order will match the ingress packet order. However, if multiple
processors are implemented in a true Symmetrical Multicore Processing (SMP) model in the system, the egress packet flow may
be out of order with respect to the ingress flow. This may be caused when multiple cores simultaneously process packets from
the same flow.

Even if the code flow is identical, factors such as cache hits/misses, DRAM page hits/misses, interrupts, control plane and OS
tasks can cause some variability in the processing path, allowing egress packets to “pass” within the same flow, as shown in the
below figure.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 373

Progam run duration
variability:

get_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

- Cache hit/miss
- DDR Page hit/miss
- Interrupts
- OS tasks
- Control plan tasks

CPU1

CPU2

CPU3

Data Plane Program

Out of Order
Flows

in
gr

es
s

pa
ck

et
 fl

ow
s

E
gress packet flow

s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P2

F1_P2

F2_P3

F3_P1

F1_P3

F2_P2

F3_P3

Figure 61. Multicore Flow Reordering

For some applications, it is acceptable to reorder the flows from ingress to egress. However, most applications require that order
is maintained. When no hardware is available to assist with this ordering, the software must maintain flow order. Typically, this
requires additional code to determine the sequence of the packet currently being processed, as well as a reference to a data
structure that maintains order information for each flow in the system. As multiple processors need to access and update this
state information, access to this structure must be carefully controlled, typically by using a lock mechanism that can be expensive
with regard to program cycles and processing flow (see the below figure). One of the goals of the DPAA1 architecture is to provide
the system designer with hardware to assist with packet ordering issues.

Flow state info:
Access must be controlled/locked

get_packet
xxxx
xxxx
check/reorder_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

CPU1

CPU2

CPU3

Data Plane Program

In
gr

es
s

pa
ck

et
 fl

ow
s

E
gress packet flow

s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

Flow 1
xxxx
xxxx
Flow 2
xxxx
xxxx
Flow 3
xxxx
xxxx

Figure 62. Implementing Order in Software

8.2.1.1.5 Managing flow-to-core affinity
Multicore processing, or multiple execution thread processing, introduces unique considerations to the architecture of networking
systems, including processor load balancing/utilization, flow order maintenance, and efficient cache utilization. Herein is a review

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
374 NXP Semiconductors

of the key features, functions, and properties enabled by the QorIQ DPAA1 (Data Path Acceleration Architecture) hardware and
demonstrates how to best architect software to leverage the DPAA1 hardware.

In a multicore networking system, if the hardware configuration always allows a specific core to process a specific flow then the
binding of the flow to the core is described as providing flow affinity. If a specific flow is always processed by a specific processor
core then for that flow the system acts like a single core system. In this case, flow order is preserved because there is a single
thread of operation processing the flow; with a run-to-completion model, there is no opportunity for egress packets to be reordered
with respect to ingress packets.

Another advantage of a specific flow being affined to a core is that the cache local to that core (L1 and possibly L2, depending
on the specific core type) is less likely to miss when processing the packets because the core’s data cache will not fetch flow state
information for flows to which it is not affined. Also, because multiple processing entities have no need to access the same
individual flow state information, the system need not lock the access to the individual flow state data. DPAA1 offers several options
to define and manage flow-to-core affinity.

CPU3

Flow state info:
No locks required

get_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

Data plane program:
No order checking required

In
gr

es
s

pa
ck

et
flo

w
s

E
gress packet

flow
s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

Flow 1
xxxx
xxxx
Flow 2
xxxx
xxxx
Flow 3
xxxx
xxxx

DS
Flow3
xxxxx

CPU2

DS
Flow2
xxxxx

CPU1

DS
Flow1
xxxxx

Figure 63. Managing flow-to-core affinity

Many networking applications require intensive, repetitive algorithms to be performed on large portions of the data stream(s).
While software in the processor cores could perform these algorithms, specific hardware offload engines often better address
specific algorithms. Cryptographic and pattern matching accelerators are examples of this in the QorIQ family. These accelerators
act as standalone hardware elements that are fed blocks or streams of data, perform the required processing, and then provide
the output in a separate (or perhaps overwritten) data block within the system. The performance boost is significant for tasks that
can be done by these hardware accelerators as compared to a software implementation.

In DPAA1-equipped SoCs, these offload engines exist as peers to the cores and IO elements, and they use the same queuing
mechanism to obtain and transfer data. The details of the specific processing performed by these offload engines is beyond the
scope of this document; however, it is important to determine which of these engines will be leveraged in the specific application.
DPAA1 can then be properly defined to implement the most efficient configuration or definition of the DPAA1 elements.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 375

8.2.1.2 DPAA1 Goals
A brief overview of the DPAA1 elements in order to contextualize the application mapping activities. For more details on the
DPAA1 architecture, see the QorIQ Data Path Acceleration Architecture (DPAA1) Reference Manual

The primary goals of DPAA1 are as follows:

• To provide intelligence within the IO portion of the SoC.

• To route and manage the processing work associated with traffic flows.

• To simplify the ordering and load balance concerns associated with multicore processing.

DPAA1 achieves these goals by inspecting and separating ingress traffic into Frame Queues (FQs). In general, the intent is to
define a flow or set of flows as the traffic in a particular FQ. The FQs are associated to a specific core or set of cores via a channel.
Within the channel definition, the FQs can be prioritized among each other using the Work Queue (WQ) mechanism. The egress
flow is similar to the ingress flow. The processors place traffic on a specific FQ, which is associated to a particular physical port
via a channel. The same priority scheme using WQs exists on egress, allowing higher priority traffic to pass lower priority traffic
on egress without software intervention.

8.2.1.3 FMan Overview
The FMan inspects traffic, splits it into FQs on ingress, and sends traffic from the FQs to the interface on egress.

On ingress traffic, the FMan is configured to determine the traffic split required by the PCD (Parse, Classify, Distribute) function.
This allows the user to decide how he wants to define his traffic: typically, by flows or classes of traffic. The PCD can be configured
to route all traffic on one port to a single queue or with a higher level of complexity where large numbers of queues are defined
and managed. The PCD can identify traffic based on the specific content of the incoming packets (usually within the header) or
packet reception rates (policing).

The parse function is used to identify which fields within the data frame determine the traffic split. The fields used may be defined
by industry standards, or the user may employ a programmable soft parse feature to accommodate proprietary field (typically
header) definition(s). The results of the parse function may be used directly to determine the frame queue; or, the contents of the
fields selected by the parse function may be used as a key to select the frame queue. The parse function employs a programmed
mask to allow the use of selected fields.

The resultant key from the parse function may be used to assign traffic to a specific queue based on a specific exact match
definition of fields in the header. Alternatively, a range of queues can be defined either by using the resultant key directly (if there
are a small number of bits in the key) or by performing a hash of the key to use a large number of bits in the flow identifier and
create a manageable number of queues.

The FMan also provides a policer function, which is rate-based and allows the user to mark or drop a specific frame that exceeds
a traffic threshold. The policing is based on a two-rate, three-color marking algorithm (RFC2698). The sustained and peak rates
as well as the burst sizes are user-configurable.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
376 NXP Semiconductors

F1_P1

F2_P1F3_P1F1_P2 F2_P2

F2_P3

F1_P1

F2_P1 F3_P1

F3_P2

F1_P3 F3_P3

F1_P2 F2_P2

FMan

Ingress flow

Traffic Enqueued to FQ's

Figure 64. Ingress FMan Flow

The figure above shows the FMan splitting ingress traffic on an external port into a number of queues. However, the FMan works
in a similar way on egress: it receives traffic from FQs then transmits the traffic on the designated external port. Alternatively, the
FMan can be used to process flows internally via the offline port mechanism: traffic is dequeued (from some other element in the
system), processed, then enqueued onto a frame queue processing further within the system.

On ingress traffic, the FMan generates an internal context (IC) data block, which it uses as it performs the PCD function. Optionally,
some or all of this information may be added into the frames as they are passed along for further processing. For egress or offline
processing, the IC data can be passed with each frame to be processed. This data is mostly the result of the PCD actions and
includes the results of the parser, which may be useful for the application software.

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

Traffic Dequeued from FQ's

FMan

Egress flow

F1_P2 F3_P1 F2_P2 F2_P1 F1_P1

Figure 65. FMan Egress Flow

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 377

Traffic Dequeued from FQ's Traffic Enqueued to FQ's

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

FMan

Figure 66. FMan Offline Flow

8.2.1.4 QMan Overview
The QMan links the FQs to producers and consumers (of data traffic) within the SoC. The producers/consumers are either
FMan, acceleration blocks, or CPU cores.

All the producers/consumers have one channel, each of which is referred to as a dedicated channel. Additionally, there are a
number of pool channels available to allow multiple cores (not FMan or accelerators) to service the same channel. Note that there
are channels for each external FMan port, the number of which depends on the SoC, as well as the internal offline ports.

Pool
Channel

Pool
Channel

Pool
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

FMan 1
Port N

FMan 1
Port 2

FMan 1
Port 1

Core 1 Core 2 Core N

SEC PME

Figure 67. DPAA1 Channel Types

Each channel provides for eight levels of priority, each of which has its own work queue (WQ). The two highest level WQs are
strict priority: traffic from WQ0 must be drained before any other traffic flows; then traffic from WQ1 and then traffic from the other
six WQs is allowed to pass. The last six WQs are grouped together in two groups of three, which are configurable in a weighted
round robin fashion. Most applications do not need to use all priority levels. When multiple FQs are assigned to the same WQ,

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
378 NXP Semiconductors

QMan implements a credit-based scheme to determine which FQ is scheduled (providing frames to be processed) and how many
frames (actually the credit is defined by the number of bytes in the frames) it can dequeue before QMan switches the scheduling
to the next FQ on the WQ. If a higher priority WQ becomes active (that is, one of the FQs in the higher priority WQ receives a
frame to become non-empty) then the dequeue from the lower priority FQ is suspended until the higher priority frames are
dequeued. After the higher priority FQ is serviced, when the lower priority FQ restarts servicing, it does so with the remaining
credit it had before being pre-empted by the higher priority FQ.

When the DPAA1 elements of the SoC are initialized, the FQs are associated with WQs, allowing the traffic to be steered to the
desired core (dedicated connect channel), set of cores (pool channel), FMan, or accelerator, using a defined priority.

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

F4_P1

F4_P2

F4_P3

WQ0 Highest

To core, set of
cores, FMan, SEC,
PME...

Weighted Round Robin

Low

Mid

Low

Notes:

- FQ1 (i.e. F1_Px) must be empty before
 any other traffic is enqueued to a
 consumer
- FQ2/3 (i.e. F2_Px and F3_Px) same
 priority, higher than FQ4 because they
 are in the higher priority group

WQ1

WQ2

WQ3

WQ4

WQ5

WQ6

WQ7

Hi

Weighted Round Robin

Mid

Hi

High

F1_P1

Figure 68. Prioritizing Work

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 379

QMan: Portals

A single portal exists for each non-core DPAA1 producer/consumer (FMan, SEC, and PME). This is a data structure internal to
the SoC that passes data directly to/from the consumer’s direct connect channel.

Software portals are associated with the processor cores and are, effectively, data structures that the cores use to pass (enqueue)
packets to or receive (dequeue) packets from the channels associated with that portal (core). Each SoC has at least as many
software portals as there are cores. Software portals are the interface through which DPAA1 provides the data processing workload
for a single thread of execution.

The portal structure consists of the following:

• The Dequeue Response Ring (DQRR) determines the next packet to be processed.

• The Enqueue Command Ring (EQCR) sends packets from the core to the other elements.

• The Message Ring (MR) notifies the core of the action (for example, attempted dequeue rejected, and so on).

• The Management command and response control registers.

Dequeue Interface

CI
(Consumer)

PI
(Producer)

Interrupts

Dequeue
Commands

PI

CI
Message Ring

(MR)

Management
Command/Response

Registers

QMan

Core

CI

PI

Enqueue Interface

Figure 69. Processor Core Portal

On ingress, the DQRR acts as a small buffer of incoming packets to a particular core. When a section of software performs a get
packet type operation, it gets the packet from a pointer provided as an entry in the DQRR for the specific core running that software.
Note that the DQRR consolidates all potential channels that may be feeding frames to a particular core. There are up to 16 entries
in each DQRR. Each DQRR entry contains:

• a pointer to the packet to be processed,

• an identifier of the frame queue from which the packet originated,

• a sequence number (when configured),

• and additional FMan-determined data (when configured).

When configured for push mode, QMan attempts to fill the DQRR from all the potential incoming channels. When configured in
pull mode, QMan only adds one DQRR entry when it is told to by the requesting core. Pull mode may be useful in cases where
the traffic flows must be very tightly controlled; however, push mode is normally considered the preferred mode for most
applications.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
380 NXP Semiconductors

Core 1 Core 2 Core N

DQRR

Dedicated
Channel Pool

Channel

DQRR DQRR

Dedicated
Channel

Pool
Channel

Dedicated
Channel

Figure 70. Ingress Channel to Portal Options

The DQRRs are tightly coupled to a processor core. DPAA1 implements a feature that allows the DQRR mechanism to pre-
allocate, or stash, the L1 and/or L2 cache with data related to the packet to be processed by that core. The intent is to have the
data required for packet processing in the cache before the processor runs the “get packet” routine, thereby reducing the overall
time spent processing a particular packet.

The following is data that may be warmed into the caches:

• The DQRR entry

• The packet or portion of the packet for a single buffer packet

• The scatter gather list for a multi-buffer packet

• Additional data added by FMan

• FQ context (A and B)

The FQ context is a user-defined space in memory that contains data associated with the FQ (per flow) to be processed. The
intent is to place in this data area the state information required when processing a packet for this flow. The FQ context is part of
the FQ definition, which is performed when the FQ is initialized.

The cache warming feature is enabled by configuring the capability and some definition of the FQs and QMan at system
initialization time. This can provide a significant performance boost and requires little to no change in the processing flow. When
defining the system architecture, it is highly recommended that the user enable this feature and consider how to maximize its
impact.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 381

DQRR

Pool
Channel

Dedicated
Channel

Pool
Channel

Other
Cores

Other
Cores

Packet

Frame Context

Main Memory
L2 Cache

Core

L1 Cache

FQ

Figure 71. Cache Warming Options

In addition to getting packet information from the DQRR, the software also manages the DQRR by indicating which DQRR entry
it will consume next. This is how the QMan determines when the DQRR (portal) is ready to process more frames. Two basic
options are provided. In the first option, the software can update the ring pointer after one or several entries have been consumed.
By waiting to indicate the consumption of multiple frames, the performance impact of the write doing this is minimized. The second
option is to use the discrete consumption acknowledgment (DCA) mode. This mode allows the consumption indication to be
directly associated with a frame enqueue operation from the portal (that is, after the frame has been processed and is on the way
to the egress queue). This tracking of the DQRR Ring Pointer CI (Consumer Index) helps implement frame ordering by ensuring
that QMan does not dequeue a frame from the same FQ (or flow) to a different core until the processing is completed.

8.2.1.5 QMan Scheduling
The QMan links the FQs to producers and consumers (of data traffic) within the SoC.

QMan: Queue schedule options

The primary communication path between QMan and the processor cores is the portal memory structure. QMan uses this interface
to schedule the frames to be processed on a per-core basis. For a dedicated channel, the process is straightforward: the QMan

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
382 NXP Semiconductors

places an entry in the DQRR for the portal (processor) of the dedicated channel and dequeues the frame from an FQ to the portal.
To do this, QMan determines, based on the priority scheme (previously described) for the channel, which frame should be
processed next and then adds an entry to the DQRR for the portal associated with the channel.

When configured for push mode, once the portal requests QMan to provide frames for processing, QMan provides frames until
halted. When the DQRR is full and more frames are destined for the portal, QMan waits for an empty slot to become available in
the DQRR and then adds more entries (frames to be processed) as slots become available.

When configured for pull mode, the QMan only adds entries to the DQRR at the direct request of the portal (software request).
The command to the QMan that determines if a push or pull mode is implemented and tells QMan to provide either one or from
one to three (up to three if there are that many frames to be dequeued) frames at a time. This is a tradeoff of smaller granularity
(for one frame only) versus memory access consolidation (if the up to three frames option is selected).

When the system is configured to use pool channels, a portal may get frames from more than one channel and a channel may
provide frames (work) to more than one portal (core). QMan dequeues frames using the same mechanism described above
(updating DQRR) and QMan also provides for some specific scheduling options to account for the pool channel case in which
multiple cores may process the same channel.

QMan: Default Scheduling

The default scheduling is to have an FQ send frames to the same core for as long as that FQ is active. An FQ is active until it
uses up its allocated credit or becomes empty. After an FQ uses its credit, it is rescheduled again, until it is empty. For its schedule
opportunity, the FQ is active and all frames dequeued during the opportunity go to the same core. After the credit is consumed,
QMan reactivates that FQ but may assign the flow processing to a different core. This provides for a sticky affinity during the period
of the schedule opportunity. The schedule opportunity is managed by the amount of credit assigned to the FQ.

A larger credit assigned to an FQ provides for a stickier core affinity, but his makes the processing work granularity

larger and may affect load balancing.

 NOTE

Pool
Channel

Core 1 Core 2 Core 3

''Sticky" affinity FQ2 schedule
opportunity but affinity may change
when FQ2 is rescheduled

Pooled Cores

''Sticky" affinity during FQ1's
schedule opportunity but affinity
may change when FQ1 rescheduled

Default Scheduling

FQ2 FQ1

Figure 72. Default Scheduling

QMan: Hold Active Scheduling

With the hold active option, when the QMan assigns an FQ to a particular core, that Q is affined to that core until it is empty. Even
after the FQ’s credit is consumed, hen it is rescheduled with the next schedule opportunity, the frames go to the same core for
processing. This effectively makes the flow-to-core affinity stickier than the default case, ensuring the same flow is processed by
the same core for as long as there are frames queued up for processing. Because the flow-to-core affinity is not hard-wired as in
the dedicated channel case, the software may still need to account for potential order issues. However, because of flow-to-core

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 383

biasing, the flow state data is more likely to remain in L1 or L2 cache, increasing hit rates and thus improving processing
performance. Because of the specific QMan implementation, only four FQs may be in held active state at a given time.

Pool
Channel

Core 1 Core 2 Core 3

Pooled Cores

HW assigns affinity with 1st frame, FQ1
stays with core 1 until the FQ is emptied

FQ2

FQ1

HW assigns affinity with 1st frame, FQ2
stays with core 3 until the FQ is emptied

Figure 73. Hold Active Scheduling

QMan: Avoid blocking scheduling

Avoid blocking scheduling QMan can also be scheduled in the avoid blocking mode, which is mutually exclusive to hold active. In
this mode, QMan schedules frames for an FQ to any available core in the pool channel. For example, if the credit allows for three
frames to be dequeued, the first frame may go to core 1. But, when that dequeue fills core 1’s DQRR, QMan finds the next available
DQRR entry in any core in the pool. With avoid blocking mode there is no biasing of the flow to core affinity. This mode is useful
if a particular flow either has no specific order requirements or the anticipated processing required for a single flow is expected
to consume more than one core’s worth of processing capability.

Alternatively, software can bypass QMan scheduling and directly control the dequeue of frame descriptors from the FQ. This mode
is implemented by placing the FQ in parked state. This allows software to determine precisely which flow will be processed (by
the core running the software). However, it requires software to manage the scheduling, which can add overhead and impact
performance.

Pool
Channel

Core 1 Core 2 Core 3

Pooled Cores

Frames spread from FQ to all
cores in the pool, QMAN finds

any available DQRR slots

FQ1

Figure 74. Avoid Blocking Scheduling

QMan: Order Definition/ Restoration

The QMan provides a mechanism to strictly enforce ordering. Each FQ may be defined to participate in the process of an order
definition point and/or an order restoration point. On ingress, an order definition point provides for a 14 bit sequence number
assigned to each frame (incremented per frame) in a FQ in the order in which they were received on the interface. The sequence

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
384 NXP Semiconductors

number is placed in the DQRR entry for the frame when it is dequeued to a portal. This allows software to efficiently determine
which packet it is currently processing in the sequence without the need to access a shared (between cores) data structure. On
egress, an order restoration point delays placing a frame onto the FQ until the expected next sequence number is encountered.
From the software standpoint, once it has determined the relative sequence of a packet, it can enqueue it and resume other
processing in a fire-and-forget manner.

The order definition points and order restoration points are not dependent on each other; it is possible to have one

without the other depending on application requirements. To effectively use these mechanisms, the packet software

must be aware of the sequence tagging.

 NOTE

Core 1

Core 2

Core 3

Core 4

FQ configured
as order

definition point

DQRR entries

IN
_F

4

Ingress flow

Egress flow

Hold off SN3/4
enqueue until

SN2 enqueued

Processing
delayed

Order
processed

FQ configured
as order

restoration
point

EG_F4 EG_F3 EG_F2 EG_F1

EG_F4

EG_F3

EG_F2

EG_F1

EG_F4

EG_F3

EG_F2

EG_F1

SN2

SN4

SN3

SN1

IN
_F

3

IN
_F

2

IN
_F

1

IN_F4 IN_F3 IN_F2 IN_F1

SN1

SN2

SN3

IN_F3

IN_F2

IN_F1

SN4

IN_F4

Figure 75. Order Definition/Restoration

As processors enqueue packets for egress, it is possible that they may skip a sequence number because of the nature of the
protocol being processed. To handle this situation, each FQ that participates in the order restoration service maintains its own
Next Expected Sequence Number (NESN). When the difference between the sequence number of the next expected and the
most recently received sequence number exceeds the configurable ORP threshold, QMan gives up on the missing frame(s) and
autonomously advances the NESN to bring the skew within threshold. This causes any deferred enqueus that are currently held
in the ORP link list to become unblocked and immediately enqueue them to their destination FQ. If the “skipped” frame arrives
after this, the ORP can be configured to reject or immediately enqueu the late arriving frame.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 385

8.2.1.6 BMan
The BMan block manages the data buffers in memory. Processing cores, FMan, SEC and PME all may get a buffer directly
from the BMan without additional software intervention. These elements are also responsible for releasing the buffers back to
the pool when the buffer is no longer in use.

Typically, the FMan directly acquires a buffer from the BMan on ingress. When the traffic is terminated in the system, the core
generally releases the buffer. When the traffic is received, processed, and then transmitted, the same buffer may be used
throughout the process. In this case, the FMan may be configured to release the buffer automatically, when the transmit completes.

The BMan also supports single or multi-buffer frames. Single buffer frames generally require the adequately defined (or allocated)
buffer size to contain the largest data frame and minimize system overhead. Multi-buffer frames potentially allow better memory
utilization, but the entity passed between the producers/consumers is a scatter-gather table (that then points to the buffers within
the frame) rather than the pointer to the entire frame, which adds an extra processing requirement to the processing element.

The software defines pools of buffers when the system is initialized. The BMan unit itself manages the pointers to the buffers
provided by the oftware and can be configured to interrupt the software when it reaches a condition where the number of free
buffers is depleted (so that software may provide more buffers as needed).

8.2.1.7 Order Handling
DPAA1 helps address packet order issues that may occur as a result of running an application in a multiple processor
environment. And there are several ways to leverage DPAA1 to handle flow order in a system. The order preservation
technique maps flows such that a specific flow always executes on a specific processor core.

For the case that DPAA1 handles flow order, the individual flow will not have multiple execution threads and the system will run
much like a single core system. This option generally requires less impact to legacy, single-core software but may not effectively
utilize all the processing cores in the system because it requires using a dedicated channel to the processors. The FMan PCD
can be configured to either directly match a flow to a core or to use the hashing to provide traffic spreading that offers a permanent
flow-to-core affinity.

If the application must use pool channels to balance the processing load then the software must be more involved in the ordering.
The software can make use of the order restoration point function in QMan, which requires the software to manage a sequence
number for frames enqueued on egress. Alternatively, the software can be implemented to maintain order by biasing the stickiness
of flow affinity with default or hold active scheduling; lock contention and cache misses can be biased to increase performance.

If there are no order requirements then load balancing can be achieved by associating the non-ordered traffic to a pool of cores.

All of these techniques may be implemented simultaneously on the same SoC; as long as the flow definition is

precise enough to split the traffic types, it is simply a matter of proper defining the FQs and associating them to

the proper channels in the system.

 NOTE

Using the exact match flow definition to preserve order

The simplest technique for preserving order is to route the ingress traffic of an individual flow to a particular core. For the particular
flow in question, the system appears as a legacy, single-core programming model and, therefore, has minimal impact on the
structure of the software. In this case, the flow definition determines the core affinity of a flow.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
386 NXP Semiconductors

FQ2FQ1

Core 1 Core 2 Core 3

Dedicated
Channel

FQ3

FQ4 FQ5 FQ6

Dedicated
Channel

Dedicated
Channel

FMan
Split traffic into "N"

streams based on "N"
known values in packet

FMan

Egress
Traffic

Dedicated
Channel

Assign WQ
Depending on

Priority

Figure 76. Direct Flow-to-Core Mapping (Order Preserved)

This technique is completely deterministic: the DPAA1 forces specific flows to a specific processor, so it may be easier to determine
the performance assuming the ingress flows are completely understood and well defined. Notice that a particular processor core
may become overloaded with traffic while another sits idle for increasingly random flow traffic rates.

To implement this sort of scheme, the FMan must be configured to exactly match fields in the traffic stream. This approach can
only be used for a limited number of total flows before the FMan’s internal resources are consumed.

In general, this sort of hard-wired approach should be reserved for either critical out-of-band traffic or for systems with a small
number of flows that can benefit from the highly deterministic nature of the processing.

Using hashing to distribute flows across cores

The FMan can be configured to extract data from a field or fields within the data frame, build a key from that, and then hash the
resultant key into a smaller number. This is a useful technique to handle a larger number of flows while ensuring that a particular
flow is always associated with a particular core. An example is to define a flow as an IPv4 source + IPv4 destination address.
Both fields together constitute 64 bits, so there are 264 possible combinations for the flow in that definition. The FMan then uses
a hash algorithm to compress this into a manageable number of bits. Note that, because the hash algorithm is consistent, packets
from a particular flow always go to the same FQ. By utilizing this technique, the flows can be spread in a pseudo-random, consistent
(per flow) manner to a smaller number of FQs. For example, hashing the 64 bits down to 2 bits spreads the flows among four
queues. Then these queues can be assigned to four separate cores by using a dedicated channel; effectively, this appears as a
single-core implementation to any specific flow.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 387

This spreading technique works best with a large number of possible flows to allow the hash algorithm to evenly spread the traffic
between the FQs. In the example below, when the system is only expected to have eight flows at a given time, there is a good
chance the hash will not assign exactly two flows per FQ to evenly distribute the flows between the four cores shown. However,
when the number of flows handled is in the hundreds, the odds are good that the hash will evenly spread the flows for processing.

FQ2FQ1

Core 1 Core 2 Core 3

Dedicated
Channel

FQ3

Dedicated
Channel

Dedicated
Channel

Hash 64 Bits to 2 Bits:
4 Possible FQ'sFMan

Egress
Traffic

Dedicated
Channel

Core 4

FQ4

FQ6FQ5 FQ7 FQ8

FMan

2^64 Possible IPv4
Flow Definitions

Dedicated
Channel

Figure 77. Simple flow distribution via hash (order preserved)

To optimize cache warming, the total number of hash buckets can be increased with flow-to-core affinity maintained. When the
number of hash values is larger than the number of expected flows at a given time, it is likely though not guaranteed that each
FQ will contain a single flow. For most applications, the penalty of a hash collision is two or more flows within a single FQ. In the
case of multiple flows within a single FQ, the cache warming and temporary core affinity benefits are reduced unless the flow
order is maintained per flow.

Note that there are 24 bits architected for the FQ ID, so there may be as many as 16 million FQs in the system. Although this total
may be impractical, this does allow for the user to define more FQs than expected flows in order to reduce the likelihood of a hash
collision; it also allows flexibility in assigning FQID’s in some meaningful manner. It is also possible to hash some fields in the
data frame and concatenate other parse results, possibly allowing a defined one-to-one flow to FQ implementation without hash
collisions.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
388 NXP Semiconductors

Core 1 Core 2 Core 3

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Hash 64 Bits to 7 Bits:
128 Possible FQ'sFMan Egress

Traffic

Dedicated
Channel

Core 4

FQ40FQ90 FQ80 FQ60

FMan

2^64 Possible IPv4
Flow Definitions

Dedicated
Channel

FQ2F FQ4F FQ6F FQ8F

FQ10 FQ50 FQ70FQ30

Figure 78. Using hash to assign one flow per FQ (order preserved and cache stashing effective)

8.2.1.8 Pool Channels
A user may employ a pool channel approach where multiple cores may pool together to service a specific set of flows. This
alternative approach allows potentially better processing balance, but increases the likelihood that packets may be processed
out of order allowing egress packets to pass ingress packets.

So far, the techniques discussed in this white paper have involved assigning specific flows to the same core to ensure that the
same core always processes the same flow or set of flows, thereby preserving flow order. However, depending on the nature of
the flows being processed (that is, variable frame sizes, difficulty efficiently spreading due to the nature of the flow contents, and
so on), this may not effectively balance the processing load among the cores. Alternatively, a user may employ a pool channel
approach where multiple cores may pool together to service a specific set of flows. This alternative approach allows potentially
better processing balance, but increases the likelihood that packets may be processed out of order allowing egress packets to
pass ingress packets. When the application does not require flows to be processed in order, the pool channel approach allows
the easiest method for balancing the processing load. When a pool channel is used and order is required, the software must
maintain order. The hardware order preservation may be used by the software to implement order without requiring locked access
to shared state information. When the system uses a software lock to handle order then the default scheduling and hold active
scheduling tends to minimize lock contention.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 389

Core 1 Core 2 Core 3

Hash 64 Bits to 7 Bits:
128 Possible FQ'sFMan Egress

Traffic

Dedicated
Channel

Core 4

FQ40FQ90 FQ80 FQ60

FMan

264 Possible IPv4
Flow Definitions

Pool
Channel

FQ2F FQ4F FQ6F FQ8F

FQ10 FQ50 FQ70FQ30

Figure 79. Using pool channel to balance processing

Order preservation using hold active scheduling and DCA mode

As shown in the examples above, order is preserved as long as two or more cores never process frames from the same flow at
the same time. This can also be accomplished by using hold active scheduling along with discrete consumption acknowledgment
(DCA) mode associated with the DQRR. Although flow affinity may change for an FQ with hold active scheduling when the FQ
is emptied, if the new work (from frames received after the FQ is emptied) is held off until all previous work completes, then the
flow will not be processed by multiple cores simultaneously, thereby preserving order.

When the FQ is emptied, QMan places the FQ in hold suspended state, which means that no further work for that FQ is enqueued
to any core until all previously enqueued work is completed. Because DCA mode effectively holds off the consumption notification
(from the core to QMan) until the resultant processed frame is enqueued for egress, this implies processing is completely finished
for any frames in flight to the core. After all the in-flight frames have been processed, QMan reschedules the FQ to the appropriate
core.

After the FQ is empty and when in hold active mode, the affinity is not likely to change. This is because the indication

of “completeness” from the core currently processing the flow frees up some DQRR slots that could be used by

QMan when it restarts enqueuing work for the flow. The possibility of the flow-to-core affinity changing when the

FQ empties is only discussed as a worst case possibility with regards to order preservation.

 NOTE

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
390 NXP Semiconductors

Pool Channel

Core 1 Core 2 Core 3

Pooled Cores

FQ1 non-empty currently held
active to core1. DQRR indicates
frames dequeued from FQ1 are
stil being processed by core 1
using DCA.

Core 1 Core 2 Core 3

Pooled Cores

Pool Channel

FMAN
Held Active

DQRR EQCR DQRR DQRR

DQRR EQCR DQRR
DQRRFQ1 empties scheduling now

"held suspended" state. DQRR
indicates frames dequeued from
FQ1 are still being precessed by
core 1 using DCA.

FQ1

FQ1

Figure 80. Hold active to held suspended mode

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 391

Pool Channel

Core 1 Core 2 Core 3

Pooled CoresFQ1

FQ1 gets more frames from
FMAN, but core 1 is still working
on packets "in flight". DQRR
consumption notification from
core occurs as frames are
enqueued for egress.

FQ1

Core 1 Core 2 Core 3

Pooled Cores

Pool Channel

FMAN

DQRR EQCR DQRR DQRR

DQRR EQCR DQRR
DQRR

Core1 finishes all processing all
"n flight" frames, notification via
DCA mechanism. QMAN restarts
work scheduling, possibly to
another core, but FQ1 frames are
never processed by more than
one core at a time.

FMAN

EQCR

Held Active

Figure 81. Held suspended to hold active mode

Congestion management

From an overall system perspective, there are multiple potential overflow conditions to consider. The maximum number of frames
active in the system (the number of frames in flight) is determined by the amount of memory allocated to the Packed Frame Queue
Descriptors (PQFD’s). Each PQFD is 64 bytes and can identify up to three frames, so the total number of frames that can be
identified by the PQFDs is equal to the amount of memory allocated for PQFD space divided by 64 bytes (per entry) multiplied
by three (frames per entry).

A pool of buffers may deplete in BMan. This depends on how many buffers have been assigned by software for BMan. BMan may
raise an interrupt to request more buffers when in a depleted state for a given pool; the software can manage the congestion state
of the buffer pools in this manner.

In addition to these high-level system mechanisms, congestion management may also be identified specific to the FQs. A number
of FQs can be grouped together to form a congestion group (up to 256 congestion groups per system for most DPAA1 SoCs).
These FQs need not be on the same channel. The system may be configured to indicate congestion either by consider the
aggregate number of bytes within the FQ’s in the congestion group or by the aggregate number of frames within the congestion
group. The frame count option is useful when attempting to manage the number of buffers in a buffer pool as they are used by a
particular core or group of cores. The byte count is useful to manage the amount of system memory used by a particular core or
group of cores.

When the total number of frames/bytes within the frames in the congestion group exceeds the set threshold, subsequent enqueues
to any of the FQs in the group are rejected; in general, the frame is dropped. For the congestion group mechanism, the decision
to reject is defined by a programmed weighted random early discard (WRED) algorithm programmed when the congestion group
is defined.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
392 NXP Semiconductors

In addition, a specific FQ can be set to a particular maximum allowable depth (in bytes); after the threshold is reached enqueue
attempts will be rejected. This is a maximum threshold: there is no WRED algorithm for this mechanism. Note that, when the FQ
threshold is not set, a specific FQ may fill until some other mechanism (because it’s part of a congestion group or system PQFD
depletion or BMAN depletion) prevents the FQ from getting frames. Typically, FQs within a congestion group are expected to have
a maximum threshold set for each FQ in the group to ensure a single queue does not get stuck and unfairly consume the congestion
group. Note that, when an FQ does not have a queue depth set and/or is not a part of a congestion group, the FQ has no maximum
depth. It would be possible for a single queue to have all the frames in the system, until the PQFD space or the buffer pool is
exhausted.

8.2.1.9 Application Mapping
The first step in application mapping is to determine how much processing capability is required for tasks that may be
partitioned separately.

Processor core assignment

Consider a typical networking application with a set of distinct control and data plane functionality. Assigning two cores to perform
control plane tasks and six cores to perform data plane tasks may be a reasonable partition in an eight-core device. When initially
identifying the SoC required for the application, along with the number of cores and frequencies required, the designer makes
some performance assumptions based on previous designs and/or applicable benchmark data.

Define flows

Next, define what flows will be in the system. Key considerations for flow definition include the following:

• Total number of flows expected at a given time within the system

• Desired flow-to-core affinity, ingress flow destination

• Processor load balancing

• Frame sizes (may be fixed or variable)

• Order preservation requirement

• Traffic priority relative to the flows

• Expected bandwidth requirement of specific flows or class of flows

• Desired congestion handling

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 393

Core 6

Core 5

Core 4

Core 3
Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Psuedo Real
Time Traffic

Work Distribution Function

Port1

Physical Interfaces

Port2 Port3 Port4 Port5

Core 1

Core 2

Figure 82. Example Application with Three Classes

In the figure above, two cores are dedicated to processing control plane traffic, four cores are assigned to process general data
traffic and special time critical traffic is split between two other cores. In this case, assume the traffic characteristics in the following
table. With this system-level definition, the designer can determine which flows are in the system and how to define the FQs
needed.

Table 87. Traffic characteristics

Characteristic Definition

Control plane traffic • Terminated in the system and any particular packet sent has no dependency
on previous or subsequent packets (no order requirement).

• May occur on ports 1, 2 or 3.

• Ingress control plane traffic on port three is higher priority than the other ports.

• Any ICMP packet on ports 1, 2 or 3 is considered control plane traffic.

• Control plane traffic makes up a small portion of the overall port bandwidth.

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
394 NXP Semiconductors

Table 87. Traffic characteristics (continued)

Characteristic Definition

General data plane traffic • May occur on ports 1, 2 or 3 and is expected to comprise the bulk of the traffic
on these ports.

• The function performed is done on flows and egress packets must match the
order of ingress packets.

• A flow is identified by the IP source address.

• The system can expect up to 50 flows at a time.

• All flows have the same priority and a lower priority than any control plane
traffic.

• It is expected that software will not always be able to keep up with this traffic
and the system should drop packets after some amount of packets are within
the system.

Pseudo real-time traffic • A high amount of determinism is required by the function.

• This traffic only occurs on port 4 and port 5 and is identified by a proprietary
field in the header; any traffic on these ports without the proper value in this
field is dropped.

• All valid ingress traffic on port 4 is to be processed by core 7, ingress traffic on
port 5 processed by core 8.

• There are only two flows, one from port 4 to port 5 and one from port 5 to port
4, egress order must match ingress order.

• The traffic on these flows are the highest priority.

Identify ingress and egress frame queues (FQs)

For many applications, because the ingress flow has more implications for processing, it is easier to consider ingress flows first.
In the example above, the control plane and pseudo real-time traffic FQ definitions are fairly straightforward. For the control plane
ingress, one FQ for lower priority traffic on ports 1 and 2 and one for the higher priority traffic would work. Note that two ports can
share the same queue on ingress when it does not matter for which core the traffic is destined. For ingress pseudo real-time traffic,
there is one FQ on port 4 and one FQ on port 5.

The general data plane ingress traffic is more complicated. Multiple options exist which maintain the required ordering for this
traffic. While this traffic would certainly benefit from some of the control features of the QMan (cache warming, and so on), it is
best to have one FQ per flow. Per the example, the flow is identified by the IP source (32-bits), which consists of too many bits to
directly use as the FQID. The hash algorithm can be used to reduce the 32-bits to a smaller number; in this case, six bits would
generate 64 queues, which is more than the anticipated maximum flows at a given time. However, this is not significantly more
than maximum flow expected, so more FQs can be defined to reduce hash collisions. Note that, in this case, a hash collision
implies that two flows are assigned to the same FQ. As the ingress FQs fill directly from the port, the packet order is still maintained
when there is a collision (two flows into one FQ). However, having two flows in the same FQ tends to minimize the impact of cache
warming. There may be other possibilities to refine the definition of flows to ensure a one-to-one mapping of flows to FQs (for
example, concatenating other fields in the frame) but for this example assume that an 8 bit hash (256 FQs) minimizes the likelihood
of two flows in the FQ to an acceptable level.

Consider the case in which, on ingress, there is traffic that does not match any of the intended flow definitions. The design can
handle these by placing unidentifiable packets into a separate garbage FQ or by simply having the FMan discard the packets.

On egress control traffic, because the traffic may go out on three different ports, three FQs are required. For the egress pseudo
real-time traffic, there is one queue for each port as well.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 395

For the egress data plane traffic, there are multiple options. When the flows are pinned to a specific core, it might be possible to
simply have one queue per port. In this case, the cores would effectively be maintaining order. However, for this example, assume
that the system uses the order definition/order restoration mechanism previously described. In this case, the system needs to
define an FQ for each egress flow. Note that, since software is managing this, there is no need for any sort of hash algorithm to
spread the traffic; the cores will enqueue to the FQ associated with the flow. When there are no more than 50 flows in the system
at one time, and number of egress flows per port is unknown, the system could define 50 FQs for each port when DPAA1 is
initialized.

Define PCD configuration for ingress FQs

This step involves defining how the FMan splits the incoming port traffic into the FQs. In general, this is accomplished using the
PCD (Parse, Classify, Distribute) function and results in specific traffic assigned to a specific FQID. Fields in the incoming packet
may be used to identify and split the traffic as required. For this key optimization case, the user must determine the correct field.
The example is as follows:

• For the ingress control traffic, the ICMP protocol identifier is the selector or key. If the traffic is from ports 1 or 2 then that traffic
goes to one FQID. If it is from port 3, the traffic goes to a different FQID because this needs to be separated and given a
higher priority than the other two ports.

• For the ingress data plane traffic, the IP source field is used to determine the FQID. The PCD is then configured to hash the
IP source to 8 bits, which will generate 256 possible FQs. Note that this is the same, regardless of whether the packet came
from ports 1, 2, or 3.

• For the ingress pseudo real-time traffic, the PCD is configured to check for the proprietary identifier. If there is a match then
the traffic goes to an FQID based on the ingress port. If there is no match then the incoming packet is discarded. Also, the
soft parser needs to be configured/programmed to locate the proprietary identifier.

Note that the FQID number itself can be anything (within the 24 bits to define the FQ). To maintain meaning, use a numbering
scheme to help identify the type of traffic. For the example, define the following ingress FQIDs:

• High priority control: FQID 0x100

• Low priority control: FQID 0x200

• General data plane: FQID 0x1000 – 0x10FF

• Pseudo real-time traffic: FQID 0x2000 (port 4), FQID 0x2100 (port 5)

The specifics for configuring the PCDs are described in the DPAA1 Reference Manual and in the Software Developer Kit (SDK)
used to develop the software.

8.2.1.10 FQ/WQ/Channel
For each class of traffic in the system, the FQs must be defined together with both the channel and the WQ to which they are
associated. The channel association affines to a specific processor core while the WQ determines priority.

Consider the following by class of traffic:

• The control traffic goes to a pool of two cores with priority given to traffic on port 3.

• The general data plane traffic goes to a pool of 4 cores.

• The pseudo real-time traffic goes to two separate cores as a dedicated channel.

Note that, when the FQ is defined, in addition to the channel association, other parameters may be configured. In the application
example, the FQs from 1000 to 10FF are all assigned to the same congestion group; this is done when the FQ is initialized. Also,
for these FQs it is desirable to limit the individual FQ length; this would also be configured when the FQ is initialized.

Because the example application is going to use order definition/order restoration mode, this setting needs to be configured for
each FQ in the general data plane traffic (FQID 0x1000-0x10FF). Note that order is not required for the control plane traffic and
that order is preserved in the pseudo real-time traffic because the ingress traffic flows are mapped to specific cores.

QMan configuration considerations include the congestion management and pool channel scheduling. A congestion group must
be defined as part of QMan initialization. (Note that the FQ initialization is where the FQ is bound to a congestion group.) This is

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
396 NXP Semiconductors

where the total number of frames and the discard policy of the congestion group are defined. Also, consider the QMan scheduling
for pool channels. In this case, the default of temporarily attaching an FQ to a core until the FQ is empty will likely work best. This
tends to keep the caches current, especially for the general data plane traffic on cores 3-6.

Core 2

Core 1

Core 6

Core 5

Core 4

Core 3
Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Pseudo Real
Time Traffic

FQ100

Port 1 Port 2 Port 3 Port 4 Port 5

FMan

Hash 3.2 Bits to
8 Bits 256
Possible FQsControl traffic

from port 3

FQ200

FQ1500 FQ2000 FQ2100

Pool Channel Pool Channel Dedicated Channel Dedicated Channel

FQ1000

W
Q

2

W
Q

3

W
Q

4

W
Q

2

W
Q

2

Figure 83. Ingress application map

Define egress FQ/WQ/channel configuration

For egress, the packets still flow through the system using DPAA1, but the considerations are somewhat different. Note that each
external port has its own dedicated channel; therefore, to send traffic out of a specific port, the cores enqueue a frame to an FQ
associated with the dedicated channel for that port. Depending on the priority level required, the FQ is associated with a specific
work queue.

For the example, the egress configuration is as follows:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 397

• For control plane traffic, there needs to be separate queues for each port this traffic may use. These FQs must be assigned
to a WQ that is higher in priority then the WQ used for the data plane traffic. The example shown includes a strict priority
(over the data plane traffic) for ports 1 and 2 with the possibility of WRED with the data plane traffic on port 3.

• Because the example assumes that the order restoration facility in the FQs will be utilized, there must be one egress FQ for
each flow. The initial system assumptions are for up to 50 flows of this type; however, the division by port is unknown, the
FQs can be assigned so that there are at least 50 for each port. Note that FQs can be added when the flow is discovered or
they can be defined at system initialization time.

• For the pseudo real-time traffic, per the initial assumptions, core 7 sends traffic out of port 4 and core 8 sends traffic out of
port 5. As the flows are per core, the order is preserved because of this mapping. These are assigned to WQ2, which allows
definition for even higher priority traffic (to WQ1) or lower priority traffic for future definition on these ports.

As stated before, the FQIDs can be whatever the user desires and should be selected to help keep track of what type of traffic
the FQ’s are associated. For this example:

• Control traffic for ports 1, 2, 3 are FQID 300, 400, 500 respectively.

• Data plane traffic for ports 1, 2, 3 are FQID 3000-303F, 4000-403F, and 5000-503F respectively, this provides for 64 FQ’s per
port on egress.

• The pseudo real-time traffic uses FQID 6000 for port 4 and 7000 for port 5.

Because this application makes use of the order restoration feature, an order restoration point must be defined for each data plane
traffic flow. Also, congestion management on the FQs may be desirable. Consider that the data plane traffic may come in on
multiple ports but may potentially be consolidated such that is egresses out a single port. In this case, more traffic may be attempted
to be enqueued to a port than the port interface rate may allow, which may cause congestion. To manage this possibility, three
congestion groups can be defined each containing all the FQs on each of the three ports that may have the control plus data
plane traffic. As previously discussed, it may be desirable to set the length of the individual FQs to further manage this potential
congestion.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
398 NXP Semiconductors

Core 6

Core 5

Core 4
Core 2

FQ50FFFQ40FFFQ30FF

Core 1
Core 3

Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Psuedo Real
Time Traffic

Port 1 Port 2 Port 3 Port 4 Port 5

FMan

Dedicated Channel Dedicated Channel Dedicated Channel Dedicated Channel Dedicated Channel

FQ3000 FQ400 FQ4000 FQ500 FQ5000

FQ6000 FQ7000

W
Q

2
W

Q
3

W
Q

2
W

Q
3

W
Q

3
W

Q
4

W
Q

2

W
Q

2

FQ300

Figure 84. Egress application map

End of Document

8.2.2 Linux Ethernet

8.2.2.1 Introduction
An overview of the DPAA1-Ethernet network driver, in the more generic context of Linux device drivers.

The primary concepts of the DPAA1-Ethernet driver architecture are presented in the following sections without going into too
much details as code structure. These pages are not a Linux Device Drivers tutorial, but a quick start guide which provides context
for users.

The following sections describe the Linux Ethernet driver running on Datapath Acceleration Architecture (DPAA1) processors.
The driver is shipped with the standard QorIQ Layerscape SDK. The focus is on the theory and operation behind using Ethernet.
It provides a limited discussion of the BMan, QMan, and FMan, describing the layer of software which allows all of these to
interoperate. Enablement, configuration and debugging for the DPAA1 Ethernet Driver is also described.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 399

Purpose

The DPAA1 Ethernet Driver is meant to configure the Datapath hardware for communication via the Ethernet protocol. This
includes assisting in:

• Allocating buffer pools and buffers

• Allocating frame queues

• Assigning frame queues and buffer pools to specified FMan ports

• Transferring packets between frame queues and the Linux stack

• Controlling Link Management features

Overview

Ethernet features are enabled on DPAA1 hardware by interconnecting the BMan, QMan, and FMan. The primary interactions are
between the Linux Kernel and the QMan. Ethernet frames are exchanged between the Ethernet driver and the hardware Frame
Queues via QMan Portals.

Usually, the Frame Queues are connected to an ingress or egress FMan port. Each FMan port has at least two queues assigned
to it: a default queue and an error queue. This assignment can be specified in the device tree, or created dynamically by the driver
on initialization.

Ethernet frames are often stored in buffers acquired from a BMan Buffer Pool. The driver sets up this pool, and either seeds it
with buffers, or maps the buffers which are put into the pool. Depending on the use case, the buffers may be allocated and freed
by the Kernel during network activity, or they may be allocated once and recycled by returning to the pool when not in use by the
DPAA1 hardware.

8.2.2.2 The DPAA1-Ethernet view of the world
This section presents the primary concepts behind the DPAA1-Ethernet driver design.

As a Linux driver, one of DPAA1-Ethernet driver's main goals is proper integration with the Linux kernel ecosystem. As a hardware
device driver, the DPAA1-Ethernet driver integrates functions of several DPAA1 IP blocks, within the scope of the defined/supported
use cases.

8.2.2.2.1 The Linux kernel APIs
The DPAA1-Ethernet drivers interface with the Linux kernel via the latter’s networking stack APIs. This is a strong requirement,
mandated by the integration with the Linux kernel.

Another type of interaction with the kernel code is at boot time, via the Open-Firmware API. That API is used to parse the ARM
platform device tree and discover the hardware modules that need to be configured. In particular, the DPAA1-Ethernet driver uses
the platform device tree to discover:

• What net devices to probe and what type of hardware is underlying those devices;

• Which DPAA1 resources are involved; FQIDs, BPIDs, CGRIDs, FMan port IDs.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
400 NXP Semiconductors

<<drivers>>

DPAA-Ethernet

<<core kernel>>

IP Stack

<<core kernel>>

Device Probing

<<run-time>>
Networking API

<<boot-time>>
Open Firmware API

The DPAA-Ethernet driver uses standard kernel APIs for:
- Device probing
- Interfacing with the IP networking stack.

Figure 85. Platform device tree

Generally, we prefer driver configurations to be dynamic and transparent to the rest of the system. Among the benefits of dynamic
resource allocations, we count:

• Portability of the drivers across multiple QorIQ platforms

• Seamless support of platform changes (For example, via booting with different RCWs)

• Seamless support of multiple partitions under the control of a hypervisor

• Cohabitation with other DPAA1 drivers (For example, a SEC driver) in the Layerscape SDK

8.2.2.2.2 The Driver's building blocks
This section presents the main structures and data entities with which the DPAA1-Ethernet driver operates.

The driver's building blocks are the relating components of the main entities with which it interacts, which are:

• The kernel’s IP stack

• The DPAA1 hardware blocks and their drivers

8.2.2.2.2.1 Net Devices
A net device (struct net_device in C representation) is the fundamental structure of any Linux network device driver.

A net device describes a (physical or virtual) device capable of sending and receiving packets over a (virtual or physical) network.
All incoming and outgoing traffic is accounted and processed on behalf of the net device it comes or goes on.

Each supported type of net device has its own kernel driver. If there are several such devices present in a system, there will be
as many device driver instances.

A net device is accessible to the Linux user via the standard tools, such as ‘ifconfig’ or ‘ethtool’.

Not all net devices have real underlying hardware; tunnel endpoints, for examples, are represented by net devices but are not
directly backed by hardware. Same holds for drivers such as “bonding” or “dummy”.

It is worth emphasizing, however, that every Linux interface is represented by a net device. This is a fundamental design aspect
of all Linux networking drivers, including DPAA1-Ethernet. One can describe the Linux IP stack as being a netdev-centric
construction. Nearly all of the kernel networking APIs receive a struct net_device as a parameter. The net_device structure
is the handle through which the driver and the network stack communicate.

The following diagram illustrates what has just been described:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 401

eth0

kernel

fm2-gb1

user-space

struct
net
device

network
driver

networking
stack API

The kernel networking APIs are generally netdevice-centric.
A network driver interfaces with the IP stack on behalf of a net device

struct
net
device

network
driver

fmX-macY

Figure 86. Every Linux Interface is Represented by a Net Device

8.2.2.2.2.2 Frame Queues
The Frame Queue is one of the fundamental concepts of DPAA1. In the case of DPAA1-Ethernet, it is the main interface
between the network driver and the hardware blocks.

Ingress frames received by the DPAA1-Ethernet driver on one of the Frame Queues it is servicing are sent to the IP stack on
behalf of the net device structure that the driver is associated with. Conversely, outgoing frames coming from the IP stack into the
driver are enqueued to one of the egress Frame Queues.

8.2.2.2.2.3 Buffer Pools
Buffer pool configuration is another fundamental part of the DPAA1-Ethernet driver design.

Unlike the Frame Queue utilization – which is more flexible – the Buffer Pool utilization is conditioned by several design
assumptions:

• The source and ownership of the ingress frame buffers are presumed by the DPAA1-Ethernet driver.

For instance, the driver seeds the Buffer Pools at predefined checkpoints on the Rx path. There are also buffer utilization
counters maintained by the driver, which influence the buffer allocation logic.

• The layout of incoming frames is also presumed by the driver. The actual buffer layout is outside the scope of this document
and should not be assumed upon by driver users.

8.2.2.3 DPAA1 resources initialization
The rationale behind the “what”s, “why”s and “how”s of DPAA1 resource initializations made by the DPAA1-Ethernet driver are
presented. This description does not go into the full detail of driver configuration.

8.2.2.3.1 What, Why and How resources are initialized
Following are the DPAA1 resources initialized by the various configurations of the DPAA1-Ethernet driver.

• FQs and FQIDs (where static config applies)

• BPs and BPIDs (where static config applies)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
402 NXP Semiconductors

• Buffers (not quite “DPAA1” resources, rather “system” resources)

• CGRs (CGRIDs are always dynamic)

• FMan’s online ports (Note that the offline ports are configured by a different driver than DPAA1-Ethernet)

Frame Queues and Buffer Pools have been covered at length in the previous sections. CGRs are of lesser interest from the
initialization viewpoint.

FMan online ports are initially probed by the FMan Driver (FMD) and later in the boot process, they are configured by the DPAA1-
Ethernet driver instances according to the specifications in the .dts.

8.2.2.3.2 Hashing/PCD frame queues
Among the frame queues initialized by the DPAA1-Ethernet driver, there is a predefined set of 128 core-affined Rx FQs,
automatically initialized by the driver. They are there because most performance-enhanced setups must use a PCD configuration;
to that end, the standard Layerscape SDK provides a “hashing PCDs” configuration that can be applied by the user via the FMC
tool. Since FMC does not support dynamic FQID specification in its .xml configuration files, the “hashing PCD” Frame Queues
also have static, hard-coded FQIDs.

Furthermore, apart from the core-affined Rx FQs, there is another set of 128 core-affined Rx FQs, which have a higher priority
than the former. They are named throughout this documentation "Rx PCD High Priority Frame Queues". Likewise, the queues in
this set are also core-affined and have static, hard-coded FQIDs.

For details about the “hashing PCD” Frame Queues and the Rx PCD High Priority Frame Queues, refer to the Core Affined Queues
on page 415 section.

8.2.2.4 The (Simplified) Life of a packet
The following sections present a packet’s lifecycle in the DPAA1-Ethernet driver.

8.2.2.4.1 Private net device: Tx
kernel

ndo_start_xmit

memory allocator

alloc_skb

Network

Stack

(SLAB)

DPAA-Eth driver

FMan port

Tx TxConfirm

recycle_Tx_buffer

BPool

kfree_skb

(free Tx buffer)

Figure 87. Buffers on the egress path

Arrows in the above diagram represent the direction of the buffer/packet flow.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 403

A packet on the egress path is allocated by the network stack using the kernel’s standard memory allocator. The DPAA1-Ethernet
driver enqueues the packet to the FMan port with an indication to recycle the buffer if possible. If recycling is not possible, the
DPAA1-Ethernet driver itself frees the buffer memory back to the kernel’s allocator, when Tx delivery is confirmed by FMan.

8.2.2.4.2 Private net device: Rx
kernel

netif_receive_skb

memory allocator

kfree_skb

Network

Stack

(SLAB)

DPAA-Eth driver

FMan port

Rx

acquire_buffer

BPool

alloc_skb

(free Rx buffer)

seed_pool

Figure 88. Buffers on the ingress path

Buffers on the ingress path are acquired by FMan directly from a Buffer Pool which was seeded by the DPAA1-Ethernet driver.
Buffer layout is important to the driver, which assumes ownership on the BP. Arrows in the above diagram represent the direction
of the buffer/packet flow.

8.2.2.5 Private DPAA1 ethernet driver
The Private DPAA1 ethernet driver manages the network interfaces which are fully owned by the Linux partition who runs them.
Therefore, it is possible to take advantage of the DPAA1 facilities in order to increase the performance in both termination and
forwarding scenarios.

The Private DPAA1 ethernet driver will be further referenced as the private driver.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
404 NXP Semiconductors

8.2.2.5.1 Network driver
The main characteristics of the private driver are:

• The private driver is a multiqueue driver - it uses 1 TX queue per CPU

• All private interfaces use a single BPID - usually dynamically allocated

• The FQIDs for the common types of queues - RX, TX, RX Error, TX Error, TX Confirm - are dynamically allocated

• The Hashing/PCD frame queues are hardcoded in the device tree. The private driver imports the PCD frame queue
configuration from the device tree at startup

• The above resources are allocated and visible only to the private driver

All network traffic takes place between the Linux kernel and the physical FMan port private to that partition.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 405

<<kernel>>
net_device

DPAA-Ethernet driver

Rx (Hashing) PCD

PCD

FM port

Tx

TxConfirm
RxDefault

RxError

replenish

consume

BufferPool

<<hashing PCD>>

/etc/fmc/config/8c-128fq-p/xml<<singleton>>

There is one Buffer Pool used by all driver instances from this Linux partition.

The buffer lifecycle is entirely between the DPA-Ethernet driver and the FMan port

and all buffers in the pool are dynamically allocated by the driver.

The BPID itself can be static, although this is not encouraged.

In the standard configuration, each driver instance dynamically allocates a

private set of default Rx and Tx FQs (in red).

Additionally, there are 128 "hashing PCD FQs" (in blue), statically allocated

for user's convenience. A standard FMC configuration file is shipped with

the SDK enabling the "hashing PCD FQ's".

FMC

Figure 89. Network traffic between the Linux kernel and the physical FMan port

8.2.2.5.2 Configuration
This section presents the configuration options for the Private DPAA1 ethernet driver.

8.2.2.5.2.1 Device tree configuration
The compatible string used to define a private interface in device tree is "fsl,dpa-ethernet". The default structure for the device
tree node that specifies a private interface should be similar to the below snippet of a LS1043ARDB device tree node:

ethernet@0 {
 compatible = "fsl,dpa-ethernet";
 fsl,fman-mac = <&enet0>;
};

“fsl,fman-mac” is the reference to the MAC device connected to this interface. This property is used to determine which RX and
TX ports are connected to this interface.

Buffer pools

A single buffer pool is currently defined and used by all the private interfaces. The buffer pool ID is dynamically allocated and
provided by the buffer manager. The number and size of the buffers in the pool are decided internally by the private driver therefore
no device tree configuration is accepted.

Frame queues

The frame queues are allocated by the private driver with IDs dynamically allocated and provided by the queue manager. The
frame queues can also be statically defined using two additional device tree properties.

ethernet@0 {
 compatible = "fsl,dpa-ethernet";
 fsl,fman-mac = <&enet0>;

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
406 NXP Semiconductors

 fsl,qman-frame-queues-rx = <0x100 1 0x101 1 0x180 128>;
 fsl,qman-frame-queues-tx = <0x200 1 0x201 1 0x300 8>;
};

Within the example above, a value of 0x100 was assigned to the RX error frame queue ID and 0x101 to the RX default frame
queue ID. In addition, 128 PCD frame queues raging between 0x180-0x1ff are defined and assigned to the core-affined portals
in a round-robin fashion.

There is exactly one RX error and one RX default queue hence a value of "1" for the frame count. Optionally, one can specify a
value of "0" for the base to instruct the driver to dynamically allocate the frame queue IDs.

Within the example above, a value of 0x200 was assigned to the TX error queue ID and 0x201 to the TX confirmation queue ID.
The third entry specifies the queues used for transmission.

If the qman-frame-queues-rx and qman-frame-queues-tx are not present in the device tree, the number of dynamically allocated
TX queues is equal to the number of cores available in the partition.

8.2.2.5.2.2 Kconfig options
The private driver has a number of parameters which can be tuned at compile time from menuconfig. These can be found in:

Device Drivers
 +- Network device support
 +- Ethernet driver support
 +- Freescale devices
 +- DPAA Ethernet

FSL_DPAA_ETH_JUMBO_FRAME - "Optimize for jumbo frames"

Optimizes the DPAA1 ethernet driver throughput for large frames termination traffic (For example, 4K and above).

Using this option in combination with small frames increases significantly the driver's memory footprint and may even deplete the
system memory. Also, the skb truesize is altered and messages from the stack that warn against this are bypassed.

On LS1043A, Jumbo frames are split into Scatter/Gather lists on Rx and are not supported on Tx (they will be split into multiple
frames by the stack).

FSL_DPAA_1588 - "IEEE 1588-compliant timestamping"

Enables IEEE1588 support code.

FSL_DPAA_TS - "Linux compliant timestamping"

Enables Linux API compliant timestamping support.

FSL_DPAA_CEETM - "DPAA1 CEETM QoS"

Enables QoS offloading support through the CEETM hardware block.

FSL_DPAA_CEETM_CCS_THRESHOLD_1G - "CEETM egress congestion threshold on 1G ports"

The size in bytes of the CEETM egress Class Congestion State threshold on 1G ports. The threshold needs to be configured
keeping in mind the following factors:

• A threshold too large will buffer frames for a long time in the TX queues, when a small shaping rate is configured. This will
cause buffer pool depletion or out of memory errors. This in turn will cause frame loss on RX.

• A threshold too small will cause unnecessary frame loss by entering congestion too often.

FSL_DPAA_CEETM_CCS_THRESHOLD_10G - "CEETM egress congestion threshold on 10G ports"

The size in bytes of the CEETM egress Class Congestion State threshold on 10G ports.

FSL_DPAA_ETH_USE_NDO_SELECT_QUEUE - "Use driver's Tx queue selection mechanism"

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 407

The DPAA1-Ethernet driver defines a ndo_select_queue() callback for optimal selection of the egress FQ. That will override the
XPS support for this netdevice. If you want to be in control of the egress FQ-to-CPU selection and mapping, or do not want to
use the driver's ndo_select_queue() callback, then unselect this and use the standard XPS support instead.

FSL_DPAA_ETH_MAX_BUF_COUNT - "Maximum number of buffers in private bpool"

Defaults to 128. The maximum number of buffers to be by default allocated in the DPAA1-Ethernet private port's buffer pool. One
need not normally modify this, as it has probably been tuned for performance already. This cannot be lower than
DPAA_ETH_REFILL_THRESHOLD.

FSL_DPAA_ETH_REFILL_THRESHOLD - "Private bpool refill threshold"

Defaults to 128. The maximum number of buffers to be by default allocated in the DPAA1-Ethernet private port's buffer pool. One
need not normally modify this, as it has probably been tuned for performance already. This cannot be lower than
DPAA_ETH_REFILL_THRESHOLD.

FSL_DPAA_CS_THRESHOLD_1G - "Egress congestion threshold on 1G ports"

The size in bytes of the egress Congestion State notification threshold on 1G ports. Ranges from 0x1000 to 0x10000000. Defaults
to 0x06000000. This option can help when:

• The device stays congested for a prolonged time (risking the netdev watchdog to fire - see also the tx_timeout module
param)

• Preventing the Tx cores from tightly-looping (as if the congestion threshold was too low to be effective)

This might also implies some risks:

• Affecting performance of protocols such as TCP, which otherwise behave well under the congestion notification
mechanism

• Running out of memory if the CS threshold is set too high

FSL_DPAA_CS_THRESHOLD_10G - "Egress congestion threshold on 10G ports"

The size in bytes of the egress Congestion State notification threshold on 10G ports. Ranges from 0x1000 to 0x20000000. Defaults
to 0x10000000.

FSL_DPAA_INGRESS_CS_THRESHOLD - "Ingress congestion threshold on FMan ports"

The size in bytes of the ingress tail-drop threshold on FMan ports. Defaults to 0x10000000. Traffic piling up above this value will
be rejected by QMan and discarded by FMan.

FSL_DPAA_ETH_DEBUG - "DPAA1 ethernet debug support"

This option compiles debug code for the DPAA1 Ethernet driver.

8.2.2.5.2.3 Bootargs
The following bootarg parameters are defined for the Frame Manager driver. However, they also influence the behavior of the
Private driver:

• fsl_fm_max_frm

• fsl_fm_rx_extra_headroom

fsl_fm_max_frm

The Frame Manager discards both Rx and Tx frames that are larger than a specific Layer2 MAXFRM value. The DPAA1 Ethernet
driver won't allow one to set an interface’s MTU too high such that it would produce Ethernet frames larger than MAXFRM. The
maximum value one can use as the MTU for any interface is (MAXFRM - 22) bytes, where 22 is the size of an Eth+VLAN header
(18 bytes), plus the Layer2 FCS (4 bytes).

Currently, the value of MAXFRM is set at boot time and cannot be changed without rebooting the system.

The default MAXFRM is 1522, allowing for MTUs up to 1500. If a larger MTU is desired, one would have to reboot and reconfigure
the system as described next. The maximum MAXFRM is 9600.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
408 NXP Semiconductors

The MAXFRM can be set in the following two ways.

• As a Kconfig option (CONFIG_FSL_FM_MAX_FRAME_SIZE):

Device Drivers
+-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> Frame Manager support
 +-> Freescale Frame Manager (datapath) support
 +-> Maximum L2 frame size

• As a bootarg: In the U-Boot environment, add "fsl_fm_max_frm=<your_MAXFRM>" directly to the "bootargs" variable.

Note that any value set directly in the kernel bootargs will override the Kconfig default. If not explicitly set in the bootargs, the
Kconfig value will be used.

Symptoms of misconfigured MAXFRM

MAXFRM directly influences the partitioning of FMan's internal MURAM among the available Ethernet ports, because it
determines the value of an FMan internal parameter called FIFO Size. Depending on the value of MAXFRM and the number of
ports being probed, some of these may not be probed because there is not enough MURAM for all of them. In such cases, one
will see an error message in the boot console.

fsl_fm_rx_extra_headroom

Configure this to communicate the Frame Manager to reserve some extra space at the beginning of a data buffer on the receive
path, before Internal Context fields are copied. This is in addition to the private data area already reserved for driver internal use.
The option does not affect in any way the layout of transmitted buffers. The default value (64 bytes) offers best performance for
the case when forwarded frames are being encapsulated (For example, IPSec).

The RX extra headroom can be set in the following two ways.

• As a Kconfig option (CONFIG_FSL_FM_RX_EXTRA_HEADROOM):

Device Drivers
+-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> Frame Manager support
 +-> Freescale Frame Manager (datapath) support
 +-> Add extra headroom at beginning of data buffers

• As a bootarg: in the U-Boot environment, add "fsl_fm_rx_extra_headroom=< your_rx_extra_headroom>" directly to the
"bootargs" variable.

8.2.2.5.2.4 ethtool options
The private driver implements the following ethtool operations.

-a --show-pause
 Queries the specified Ethernet device for pause parameter information.
-A --pause
 Changes the pause parameters of the specified private devices.
 rx on|off
 Specifies whether RX pause should be enabled.
 tx on|off
 Specifies whether TX pause should be enabled.
-k --show-features
 Lists the offloadable DPAA driver features. Specifies which features can be changed.
-K --features
 Changes a driver feature.
 feature on|off
 Specifies weather a certain feature should be enabled.
-s --change
 msglvl N
 msglvl type on|off ...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 409

 Sets the driver message type flags by name or number. type names the type of message
to enable or disable; N specifies the new flags numerically.
-S --statistics
 Shows driver statistics and counters: interrupt counter, packet counters, error
counters, congestion state, and more.
--show-eee
 Shows the Energy-Efficient Ethernet configurations.
--set-eee
 Configures the EEE behavior.

8.2.2.5.3 Features
This section present the private DPAA1 ethernet driver features.

8.2.2.5.3.1 Congestion management
QMan offers the following three methods of managing congestion.

• WRED

• Congestion State Tail Drop (CSTD)

• FQ Tail Drop (FQTD)

The Private driver implements CSTD both on TX and RX. When the number of bytes residing in a TX FQ congestion group reaches
a congestion threshold (high watermark), the QMan rejects any further incoming frames, until the sum of all the frames contained
in the congestion groups drops under a low watermark, which is 7/8 of the high watermark. The high watermark can be configured
from menuconfig. For more details, see section Kconfig options on page 407.

8.2.2.5.3.2 Scatter/Gather support
On the Rx path, the first S/G entry is used to build the skb linear part and the other entries are used as fragments.

The Private driver can access the egress skbufs allocated in high memory (For example, mapped directly from user-space, as is
the case of the sendfile() system call). This eliminates the kernel need to copy such skbufs into newly-allocated low memory
buffers, allowing zero-copy on the egress path.

On LS1043A, Scatter/Gather frames are not supported on Tx.

 NOTE

8.2.2.5.3.3 Jumbo frames support
Termination traffic with large frames performs better if only linear skbs (and single buffer frames) are used. The driver has the
option to allocate Rx buffers large enough to accommodate the entire frame (of max 9.6K).

This option needs to be used with caution, as the memory footprint can be a real problem when small frames are used.

The option can be enabled from the menuconfig option:

Device Drivers
 +-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> DPAA Ethernet
 +-> Optimize for jumbo frames

In addition to enabling this feature from menuconfig, the user is required to set the L2 maximum frame size to 9600, otherwise
the configuration is not valid. This can be achieved by either setting fsl_fm_max_frm=9600 in the bootargs, or configuring
CONFIG_FSL_FM_MAX_FRAME_SIZE from menuconfig. For more details, see Bootargs on page 408.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
410 NXP Semiconductors

On LS1043A, RX buffers of 2K bytes are used even when Jumbo frames are enabled. Thus, large frames are split

into Scatter/Gather lists. On TX, neither Scatter/Gather nor Jumbo frames can be used.

 NOTE

8.2.2.5.3.4 GRO/GSO Support
Generic Receive Offload (GRO) is tied to NAPI support and works by keeping a list of GRO flows per each NAPI instance. These
flows can then "merge" incoming packets, until some termination condition is met or the current NAPI cycle ends, at which point
the flows are flushed up the protocol stack. Flows merging several packets share the protocol headers and coalesce the payload
(without memcopying it). This results in a CPU load decrease and/or network throughput increase. Packets which don't match
any of the stored flows (in the current NAPI cycle) are sent up the stack via the normal, non-GRO path.

GRO is commonly supported in hardware as a set of "GRO assists", rather than full packet coalescing. The following features
count as GRO assists:

• RX hardware checksum validation

• Receive Traffic Distribution (RTD)

• Multiple RX/TX queues

• Receive Traffic Hashing

• Header prefetching

• Header separation

• Core affinity

• Interrupt affinity

Note: With the exception of header separation, the DPAA1 platforms feature all other hardware assists. Most notably, they are
implicitly achieved through the mechanisms that accompany PCDs.

Generic Segmentation Offload (GSO) is also a well-established feature in the Linux kernel. Normally, a TCP segment is composed
in the Layer 4 of the Linux stack, based on the current MSS (Maximum Segment Size) connection setting. It has been observed,
though, that delaying segmentation is a better approach in terms of CPU load, because fewer headers are processed. Linux has
taken an optimization approach, called GSO, whereby the L4 segments are only composed just before they are handed over to
the L2 driver.

GRO and GSO support are available by default in the Private driver and can be independently switched on and off at runtime, via
ethtool -k.

Note: Older versions of ethtool do not support this. Ethtool version 3.0 does - and possibly others before it, too.

Generic optimizations that enhance the driver's performance in the general case also apply to the GRO/GSO-enabled driver.
PCD support is therefore recommended in this regard. We have found that these optimizations yield the best results on 10 Gbit/
s traffic, and to a lesser extent (if any) on 1 Gbit/s traffic. TCP tests, especially, can benefit from GRO by shedding CPU load and
upping the network throughput. The improvements are the more visible with smaller network MTU - with MTU=1500 and below,
the benefits are higher, while starting from MTU=4k they are no longer observable.

One optimization that boosts GSO performance is the zero-copy egress path. That is available thanks to the sendfile() system
call, which may be used instead of the plain send() syscall, and which certain benchmark applications know about. Netperf for
instance has sendfile support in its TCP_SENDFILE tests.

GRO and GSO are no panacea, one-button-fix-all kind of optimization. While under most circumstances they should be transparent
(this being why GRO is by default enabled in the Linux kernel), there are scenarios and configurations where they may in fact
under-perform. Traffic on 1 Gbit/s ports sees little benefit from GRO/GSO. Also, if the Private Driver detects that PCDs are not in
place, GRO is automatically by-passed.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 411

8.2.2.5.3.5 Transmit packet steering
The Private driver exposes to the Linux networking stack a TX-multiqueue interface. This provides the stack with better control of
the transmission queues and reduces the need for locking. The user may also control the mapping of egress FQs to the CPUs
via a standard Linux feature called Transmit Packet Steering (XPS) and documented here: http://lwn.net/Articles/412062/

The kernel transmission queues are different entities than the Private driver Frame Queues.

 NOTE

The Private driver, however, matches the two realms by mapping the DPAA1 FQs onto kernel's own queue structures. To that
end, the Private driver provides a standard callback (net-device operation, or NDO) called ndo_select_queue(), which the stack
can interrogate to find out the specific queue mapping it needs for transmitting a frame. The existence of that NDO (which is
otherwise optional) overrides the kernel queue selection via XPS. This is why the Private driver provides a compile-time choice
to disable the ndo_select_queue() callback, leaving it to the stack to choose a transmission queue.

To use the Private driver's builtin ndo_select_queue() callback, select the Kconfig option
FSL_DPAA_ETH_USE_NDO_SELECT_QUEUE.

To disable the Private driver's queue selection mechanism and use XPS instead, unselect this Kconfig option. Further on, the
users can configure their own txq-to-cpu mapping, as described in the LWN article above.

8.2.2.5.3.6 TX and RX Hardware Checksum
Introduction

The FMan block supports calculation of the L3 and/or L4 checksum for certain standard protocols.

This can be used, on the TX path, for calculating the checksum of the outgoing frame, and on the RX path, for validating the L3/
L4 checksum of the incoming frame and making classification, or distribution decisions.

TX Checksum Support

On TX, the checksum computation is enabled on a per-frame basis by the Private driver. The TX checksum support for standard
protocols is as follows:

Table 88. TX checksum support

Header IPv4 IPv6 Other

IP header yes not available no

TCP header yes yes no

UDP header yes yes no

IP Header checksum capability also exists in SEC block (see IPSEC).

 NOTE

Ethernet CRC is calculated on a per frame basis during frame transmission.

 NOTE

The main precondition for TX checksum to be enabled in hardware is that IP tunneling must not be present (i.e.,

not GRE, not MinEnc, not IPIP). Other conditions pertain to the validity and integrity of the frame.

 NOTE

RX Checksum Support

This feature is disabled by default. In order to enable RX checksum computation for supported protocols, a PCD scheme must
be applied to the respective RX port. In the current release, L3 and L4 are both enabled if a PCD is applied.

If enabled, L3 and L4 checksum validation is performed for TCP, UDP and IPv4.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
412 NXP Semiconductors

http://lwn.net/Articles/412062/

Controlling this feature via ethtool is not yet supported.

 NOTE

8.2.2.5.3.7 Priority Flow Control
The DPAA1 Ethernet Driver offers experimental support for IEEE standards 802.1Qbb (Priority Flow Control) and 802.1p.

These standards aim to implement lossless Ethernet, in which the highest-priority classes of traffic benefit from maximum
bandwidth and minimum delay. Up to 8 classes of service can be used, but only a minimum of 3 is required.

The terms “Class of Service (CoS)” and “priority” will be used interchangeably in this section.

Enabling PFC Support

To enable PFC support, enable the following options from menuconfig

Device Drivers
+ Network device support
 + Ethernet driver support
 + Freescale devices
 + Frame Manager support
 + Freescale Frame Manager (datapath) support
 + FMan PFC support (EXPERIMENTAL)
 + (3) Number of PFC Classes of Service
 + (65535) The pause quanta for PFC CoS 0
 + (65535) The pause quanta for PFC CoS 1
 + (65535) The pause quanta for PFC CoS 2

The number of Classes of Service can range between 1 and 4. It defines the number of Work Queues used and the number of
priorities that are set when a PFC frame is issued. 3 is the default value. Changing this value also changes the number of WQs
and priorities.

The pause time can be adjusted for each CoS individually.

Enabling and disabling CoS and their pause time is unavailable at runtime. It is only possible at compile time in this release.

Selecting the Class of Service

When PFC support is enabled, the egress traffic flowing on a DPAA1 Private interface is distributed on the first 3 Work Queues
of a TX port, namely WQ0, WQ1 and WQ2.

These function in strict priority. WQ0 has the highest priority and WQ2 the lowest priority. FMan cannot dequeue frames from
WQ1 unless WQ0 is empty and from WQ2 unless WQ1 and WQ0 are empty.

The work queue a frame will be enqueued on is determined from the socket buffer priority. skb_prio is just an internal tag that the
kernel applies to the frames on the egress path and is not visible to the receiver.

The default skb_prio is 0, which means all frames will be distributed to WQ0. skb_prio can be modified using a number of methods,
including traffic control.

To edit a socket buffer’s priority using tc, one needs to enable the following options from menuconfig.

Networking support

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 413

+ Networking options
 + QoS and/or fair queueing
 + Multi Band Priority Queueing (PRIO)
 + Elementary classification (BASIC)
 + Universal 32bit comparisons w/ hashing (U32)
 + Extended Matches
 + U32 key
 + Actions
 + SKB Editing

The following commands assign a skb_prio of 1 to traffic destined to TCP and UDP port 5000 and implicitly direct it on WQ1.

tc qdisc del dev fm1-mac9.0 root
tc qdisc add dev fm1-mac9.0 root handle 1: prio
tc filter add dev fm1-mac9.0 parent 1: protocol ip u32 match ip dport 5000 action skbedit
priority 1

VLAN tagging

In order to be classified by the receiver according to 802.1p the egress traffic must be VLAN tagged, with the Class of Service
contained in the PCP field. The PCP priority is also determined from skb_prio.

create a subinterface of fm1-mac9, with VLAN ID 0
vconfig add fm1-mac9 0
all frames tagged with skb_prio 1, will have PCP priority of 1.
vconfig set_egress_map fm1-mac9.0 1 1

If no mapping is specified the PCP field will be set to 0 by default.

The dependence between skb_prio, work queues and VLAN PCP priority:

Receiving PFC Frames

Unlike ordinary 802.3x PAUSE frames, PFC frames can selectively pause a certain priority/CoS.

WQ0 responds to PFC frames that have priority 0 set. Example: When a PFC frame arrives containing priority 0 and having a
100 pause time for priority 0, WQ0 i.e. all traffic from CoS 0 is ignored for dequeing for 100 bit times, and dequeing is done from
WQ1 and WQ2.

Generating PFC frames

All DPAA1 Private interfaces share a single buffer pool which accounts for the buffers in which the frames are stored upon receiving.

When the Buffer Pool reaches the refill/depletion threshold, PFC frames are sent back to the sender in order to pause frames
transmission and thus avoid frame loss.

FMan sends PFC frames that pause all Classes of Traffic defined. The only difference between the classes is the pause time.

The pause time can be configured from menuconfig. A pause time of 0 disables that Class of Service.

When the common buffer pool depletes, issued PFC frames look like this.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
414 NXP Semiconductors

Enabling and disabling PFC using ethtool

Display PFC settings in use for an interface:

ethtool -a intf_name

Triggering PFC frames ON/OFF

PFC frames can be enabled/disabled on Rx/Tx using ethtool -A, like in the following examples:

ethtool -A intf_name rx on
ethtool -A intf_name tx off
ethtool -A intf_name rx off tx off

Autonegotiation

When autonegotiation is enabled and the user enables/disables PFC frames on Rx/Tx, these will not automatically be triggered
on/off. Instead, the local and the peer PFC symmetric/asymmetric capabilities will be considered. If the peer does not match the
local capabilities, the following commands may have no effect:

ethtool -A intf_name rx on
ethtool -A intf_name rx off
ethtool -A intf_name tx on
ethtool -A intf_name tx ff

When autonegotiation is disabled, ethtool settings override the results of link negotiation.

PFC frame autonegotiation can also be enabled/disabled using ethtool -A:

ethtool -A intf_name autoneg on
ethtool -A intf_name autoneg off

8.2.2.5.3.8 Core Affined Queues
The driver automatically creates 128 core-affined queues, intended to be used as RX PCD frame queues. These frame queues
can be used in PCD configuration files to process certain types of frames on particular CPUs. In order to enhance the PCD files
creation, the /etc/fmc/config/ directory from rootfs contains the default configuration and policy files for each platform.

The driver calculates the frame queue IDs based on the address of the MAC registers corresponding to the port using the following
formula:

((MAC register address) & 0x1fffff) >> 6

Following are the values for various QorIQ DPAA1 platforms:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 415

Table 89. FMan devices core affined queues

Interface FQID base LS1043A LS1046A

fm1-mac1 0x3800 Y

fm1-mac2 0x3880 Y

fm1-mac3 0x3900 Y Y

fm1-mac4 0x3980 Y Y

fm1-mac5 0x3a00 Y Y

fm1-mac6 0x3a80 Y Y

fm1-mac9 0x3c00 Y Y

fm1-mac10 0x3c80 Y

These queues are assigned to cores in a round-robin fashion. For instance, if there are 8 cores, 0x3800 will be serviced by core
0, 0x3801 by core 1, 0x3808 by core 0, etc. Currently, if one specifies extra RX PCD queues in the device tree, these queues will
also be assigned in this round-robin fashion.

High Priority Core Affined Queues

Starting with SDK 2.0, a new set of RX PCD frame queues has been added, to aid in implementing complex traffic management
scenarios. This set of frame queues has a higher priority than the normal RX PCD frame queues, and as such, traffic coming in
on these frame queues has a higher precedence than the traffic coming on on the default RX PCD frame queues. One scenario
where this is useful is the back-to-back IPsec testing scenario, where the encrypted traffic (RX) is desirable to have a higher
priority than the plain text traffic.

The driver calculates the high priority frame queue IDs based on the address of the MAC registers corresponding to the port using
the following formula:

65536 + ((MAC register address) & 0x1fffff) >> 6

Following are the values for various QorIQ DPAA1 platforms:

Table 90. FMan devices high priority core affined queues

Interface FQID base LS1043A LS1046A

fm1-mac1 0x13800 Y

fm1-mac2 0x13880 Y

fm1-mac3 0x13900 Y Y

fm1-mac4 0x13980 Y Y

fm1-mac5 0x13a00 Y Y

fm1-mac6 0x13a80 Y Y

fm1-mac9 0x13c00 Y Y

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
416 NXP Semiconductors

Table 90. FMan devices high priority core affined queues (continued)

Interface FQID base LS1043A LS1046A

fm1-mac10 0x13c80 Y

8.2.2.6 Quality of Service
DPAA1 platforms can offload QoS functions such as policing, shaping, scheduling and prioritization to dedicated hardware blocks.

Traffic policing is achieved on ingress through the FMan. A two rate three color marker algorithm can be configured through the
Frame Manager Configuration (FMC) tool.

Traffic scheduling, shaping, and prioritization is executed on the egress path in the QMan. Multiple algorithms, such as dual rate
shaping and strict prioritization, are implemented and can be configured through queuing disciplines.

8.2.2.6.1 Policing
The FMan's Policer sub block implements a two rate, three color marker (trTCM) traffic policing algorithm. The algorithm has two
configurable flavors: RFC2698 and RFC4115.

The FMC tool, described in detail in Frame Manager Configuration Tool User's Guide, is used to enable the Policer and set up its
parameters.

For more information regarding the FMan Policer and how it can be configured, see the Policer Section on page 571.

8.2.2.6.2 Scheduling and Shaping
8.2.2.6.2.1 Description
Specific DPAA1 platforms offer scheduling, shaping and prioritization capabilities through CEETM (Customer Edge Egress Traffic
Management). The CEETM hardware block is a member of the QMan. Its purpose is to enhance the performances of DPAA1
platforms by moving the egress QoS logic from software to hardware.

This section briefly describes the CEETM block and its capabilities. Furthermore, it presents how it can be configured through
the Linux traffic control tool (tc) by using a custom queuing discipline.

8.2.2.6.2.1.1 The CEETM architecture
CEETM is a sub block of the QMan and is an alternative to the regular frame queue - work queue - channel scheduling mode.
For more information regarding this workflow, or on DCPs and sub-portals, please refer to the QMan Overview section.

A CEETM block, pictured in Figure 90. on page 417, is available for each FMan and it is intended to be used by FMan sub-portals
linked to Ethernet interfaces.

DCP0

LNI 0

LNI 7

CQ
channel 0

CQ
channel n

CQ 0
CQ ... Sub-portal 0

Sub-portal n

CEETM

CQ 15

CQ 0
CQ ...
CQ 15

FMan

Port 0

Port n

Figure 90. CEETM block

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 417

CEETM uses 8 Logical Network Interfaces (LNIs) that can be mapped to the FMan’s DCP sub-portals. Depending on the platform
used, there are 8 or 32 class queue channels (or CQ channels) that can be mapped to the LNIs. Multiple CQ channels can be
mapped to the same LNI.

Each CQ channel contains 16 class queues. 8 CQs are independent while the other 8 can be grouped into 1 class group or 2
class groups of 4 queues each. The first group is called group A and the second is called group B.

8.2.2.6.2.1.2 Features
CEETM implements the following algorithms:

• Strict Priority scheduling

• Weighted Bandwidth Fair Scheduling (WBFS)

• dual-rate shaping with committed and excess rates (CR/ER)

• shaped and unshaped Fair Queueing scheduling (shFQ, uFQ)

These algorithms are used together in specific combinations based on the CEETM’s architecture described previously and
pictured in Figure 91. on page 418 .

Strict Priority

ER
C

R

LNI

Channel Scheduler

D
ual-rate shaper

ER
C

R shFQ
uFQ

CQ channel

Class Scheduler

ER
C

R

D
ual-rate shaper

CQ channel

Class Scheduler

Strict Priority

CQ 0
CQ 1
CQ 2
CQ 3
CQ 4
CQ 5
CQ 6
CQ 7

CQ 8
CQ 9
CQ10
CQ11
CQ12
CQ13
CQ14
CQ15

W
BFS

CQ 0
CQ 1
CQ 2
CQ 3
CQ 4
CQ 5
CQ 6
CQ 7

CQ 8
CQ 9
CQ10
CQ11
CQ12
CQ13
CQ14
CQ15

W
BFS

W
BFS

Strict Priority

G
roup B

G
roup A

G
roup A

Figure 91. CEETM architecture

All the CQs connected to a CQ channel pass through a Strict Priority scheduler. The lower the CQ’s ID, the higher the CQ’s priority
(e.g. CQ#3 has a higher priority than CQ#4, thus, as long as there are frames queued to CQ#3, CQ#4 will not be dequeued).

The priority of the CQ groups is configurable. All frames coming from the grouped CQs pass through the WBFS algorithm. Each
CQ belonging to a group is assigned a weight portion of the bandwidth available to the group. The weight is a value from 1 to 248
in pseudo logarithmic steps of 1.5%. A list of available weights can be found in the platform’s QorIQ DPAA Reference Manual.

The CQ channels can be shaped or unshaped. For CQs leading to a shaped channel, all frames will pass through a dual-rate
shaper before entering the LNI. The independent CQs, as well as the class groups, can be configured to lead their frames through
the CR shaper, the ER shaper, or both.

Each LNI aggregates frames from the CQ channels linked to it. All the unshaped frames from the unshaped CQ channels mapped
to the LNI pass through the uFQ algorithm. The CR/ER frames from the shaped CQ channels pass through the shFQ algorithm
and through another dual-rate shaper. Lastly, all frames pass through the LNI’s Strict Priority module that schedules the unshaped
frame (with high priority), the CR frames (with medium priority) and the ER frames (with low priority).

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
418 NXP Semiconductors

The shFQ algorithm schedules a channel for transmitting if the channel’s shaper is time eligible (the shaper has a positive number
of tokens in its bucket). When a channel finished its tokens, it is added to a waiting queue where it must wait for any other time
eligible channels ahead of it finish transmitting.

The uFQ algorithm is similar to the shFQ. In the uFQ algorithm, all channels are time eligible. After finishing to transmit all their
available data, they are added to the back of the time eligible waiting queue where their bucket is instantly refilled. The token
bucket limit of the unshaped channels is configurable.

For more information regarding the CEETM’s capabilities and detailed descriptions of the mentioned algorithms, take a look at
your platform’s QorIQ DPAA Reference Manual.

8.2.2.6.2.1.3 Integration with queuing disciplines
The CEETM block can be configured through the ceetm queuing discipline. A comparison between the hardware block and the
traffic control’s terminology is drawn in Figure 92. on page 419.

root qdisc

root class
[unshaped]

root class
[shaped]

prio qdisc

prio class [1-8]

wbfs qdisc

wbfs class [4/8]

prio qdisc

prio class [1-8]

wbfs qdisc

wbfs class [4/8]

LNI

uFQ shFQ

CQ channel CQ channel

Strict Priority

CQs [1-8]

WBFS group

CQs [4/8]

Strict Priority

CQs [1-8]

WBFS group

CQs [4/8]

qdisc

class

leaf class

automatic
class

Figure 92. Comparison between CEETM and tc terminology

A LNI can be mapped to a FMan port by adding a root ceetm qdisc to a network interface. The LNI shaper's CR and ER are
configured by setting a rate, and optional ceil and overhead, on the qdisc.

A CQ channel can be linked to a LNI by creating a ceetm root class mapped to the root qdisc. For an unshaped channel, the
uFQ's token bucket limit (tbl) needs to be configured. For a shaped channel, the rate, and optional ceil, set the CR and ER.

Note: Shaped CQ channels can be linked to the LNI only if the LNI's shaper is enabled.

A channel’s independent CQs are configured when a prio qdisc is linked to a root class. Between 1 and 8 prio classes are
generated, each class corresponding to a CQ linked to the channel’s Strict Priority scheduler. The qcount parameter indicates
the number of child classes. If the channel is shaped, all generated classes participate by default in both CR and ER shaping. In
order to disable one or the other, the CQ's corresponding prio class's cr and er parameters can be changed.

CQs linked to a shaped CQ channel can not have both CR and ER shaping disabled.

 NOTE

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 419

In order to configure the CQ groups, a wbfs qdisc is linked to one of the prio classes. Either 4 or 8 wbfs classes are generated,
depending on the number of CQs in the group indicated by the qcount parameter. The group is placed right after its parent in the
channel's Strict Priority list (e.g. if the wbfs qdisc is linked to the prio class #2, the priority list becomes: class #1, class #2, group,
class #3, class #4, etc). The CQ weights are configured through the qweight parameter and can be changed for each CQ
individually. For groups linked to shaped CQ channels, the CR and ER shaping are enabled by the cr and er parameters.

Groups linked to a shaped CQ channel can not have both CR and ER shaping disabled.

 NOTE

For more details on the ceetm qdisc's parameters and configuration, see the Usage on page 420 section.

8.2.2.6.2.2 User guide
8.2.2.6.2.2.1 Supported platforms
The CEETM block is present and configurable through the ceetm qdisc on the LS1043A/LS1046A platforms.

8.2.2.6.2.2.2 Getting started
1. Enable the networking QoS support in the kernel along with any classifiers or other features that might be needed, as

well as the ceetm qdisc.

-> Networking support (NET [=y])
 -> Networking options
 -> QoS and/or fair queueing (NET_SCHED [=y])
 -> Universal 32bit comparisons w/ hashing (u32) (NET_CLS_U32 [=y])

-> Device Drivers
 -> Network device support (NETDEVICES [=y])
 -> Ethernet driver support (ETHERNET [=y])
 -> Freescale devices (NET_VENDOR_FREESCALE [=y])
 -> DPAA Ethernet (FSL_SDK_DPAA_ETH [=y])
 -> DPAA CEETM QoS (FSL_DPAA_CEETM [=y])

2. Modify the Class Congestion State thresholds if necessary. The default values are chosen keeping in mind the following
factors:

• A threshold too large will buffer frames for a long time in the TX queues, when a small shaping rate is configured.
This will cause buffer pool depletion or out of memory errors. This in turn will cause frame loss on RX.

• A threshold too small will cause unnecessary frame loss by entering congestion too often.

-> Device Drivers
 -> Network device support (NETDEVICES [=y])
 -> Ethernet driver support (ETHERNET [=y])
 -> Freescale devices (NET_VENDOR_FREESCALE [=y])
 -> DPAA Ethernet (FSL_SDK_DPAA_ETH [=y])
 -> CEETM egress congestion threshold on 1G ports
 (FSL_DPAA_CEETM_CCS_THRESHOLD_1G [=0x000a0000])
 -> CEETM egress congestion threshold on 10G ports
 (FSL_DPAA_CEETM_CCS_THRESHOLD_10G [=0x00640000])

3. Build the ceetm app with the flexbuilder.

./flex-builder -c ceetm -a arm64

8.2.2.6.2.2.3 Limitations
• CEETM is supported on DPAA1 Private Ethernet interfaces only.

• CEETM isn't supported on top of Linux bonding interfaces.

8.2.2.6.2.2.4 Usage
You can see the ceetm qdisc’s help message by running the following command:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
420 NXP Semiconductors

~# tc qdisc add ceetm help
Usage:
... qdisc add ... ceetm type root [rate R [ceil C] [overhead O]]
... class add ... ceetm type root (tbl T | rate R [ceil C])
... qdisc add ... ceetm type prio qcount Q
... qdisc add ... ceetm type wbfs qcount Q qweight W1 ... Wn [cr CR] [er ER]

Update configurations:
... qdisc change ... ceetm type root [rate R [ceil C] [overhead O]]
... class change ... ceetm type root (tbl T | rate R [ceil C])
... class change ... ceetm type prio [cr CR] [er ER]
... qdisc change ... ceetm type wbfs [cr CR] [er ER]
... class change ... ceetm type wbfs qweight W

Qdisc types:
root - configure a LNI linked to a FMan port
prio - configure a channel's Priority Scheduler with up to eight classes
wbfs - configure a Weighted Bandwidth Fair Scheduler with four or eight classes

Class types:
root - configure a shaped or unshaped channel
prio - configure an independent class queue

Options:
R - the CR of the LNI's or channel's dual-rate shaper (required for shaping scenarios)
C - the ER of the LNI's or channel's dual-rate shaper (optional for shaping scenarios,
defaults to 0)
O - per-packet size overhead used in rate computations (required for shaping scenarios,
recommended value is 24 i.e. 12 bytes IFG + 8 bytes Preamble + 4 bytes FCS)
T - the token bucket limit of an unshaped channel used as fair queuing weight (required for
unshaped channels)
CR/ER - boolean marking if the class group or prio class queue contributes to CR/ER shaping
(1) or not (0) (optional, at least one needs to be enabled for shaping scenarios, both
default to 1 for prio class queues)
Q - the number of class queues connected to the channel (from 1 to 8) or in a class group
(either 4 or 8)
W - the weights of each class in the class group measured in a log scale with values from 1
to 248 (when adding a wbfs qdisc, either four or eight, depending on the size of the class
group; when updating a wbfs class, only one)

Filters need to be added on each qdisc layer in order to allow packets to reach the leaf classes. Likewise, all filters need to be
removed from each qdisc layer when no longer used.

8.2.2.6.2.3 Examples
8.2.2.6.2.3.1 Rate limit two streams

Setup

In the following example a platform with CEETM support (LS1043ARDB - Client) is connected to another board (LS1046ARDB -
Server) through a 1G link. The described setup is pictured in Figure 93. on page 421.

TCP 80

TCP 21

Client
LS1043ARDB

Server
LS1046ARDB

iperf clients

iperf servers

QoS rules 1G link

Figure 93. Rate example setup

The iperf clients run on the Client while the iperf servers run on the Server. The Server listens on 2 TCP ports (21 and 80).

root@ls1046ardb:~# iperf -s -p 21 &
root@ls1046ardb:~# iperf -s -p 80 &

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 421

PCDs are applied on both platforms in advance.

root@ls1046ardb:~# fmc -c /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/
config.xml -p /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/policy_ipv4.xml -a
root@ls1043ardb:~# fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -
p /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a

In order to keep this example minimal, ARP frames aren't filtered and classified. Thus, MAC addresses need to be exchanged
and saved in advance as well.

root@ls1043ardb:~# arp -s <server IP address> <server HW address>
root@ls1046ardb:~# arp -s <client IP address> <client HW address>

After adding the qdiscs, the Client runs the iperf clients.

root@ls1043ardb:~# iperf -c <server IP address> -p 21 &
root@ls1043ardb:~# iperf -c <server IP address> -p 80 &

Execution

This example's corresponding qdisc and class hierarchy is pictured in Figure 94. on page 422.

root qdisc 1:

root class 1:1 root class 1:2

prio qdisc 2: prio qdisc 3:

prio class 2:1 prio class 3:1

TCP 21TCP 80

qdisc

class

leaf class

automatic
class

Figure 94. Rate example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root rate 1000mbit
overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 150mbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root rate
150mbit

Add another shaped channel to the LNI and configure its dual-rate shaper with a CR of 850mbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:2 ceetm type root rate
850mbit

Configure one of the first channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 1

Configure one of the second channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:2 handle 3: ceetm type prio qcount 1

Add filters that will classify all packets with the destination port equal to 80 and lead them through the priority class of the first
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the priority class of the second
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 21 0xffff flowid 1:2

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
422 NXP Semiconductors

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip
dport 21 0xffff flowid 3:1

8.2.2.6.2.3.2 Prioritization of two streams

Setup

The same setup is used as for the rate limit example.

Execution

This example's corresponding qdisc and class hierarchy is pictured in Figure 95. on page 423.

root qdisc 1:

root class 1:1

prio qdisc 2:

qdisc

class

leaf class

prio class 2:2prio class 2:1

TCP 80 TCP 21

automatic
class

Figure 95. Prioritization example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root rate 1000mbit
overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root rate
1000mbit

Configure two of the channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 2

Add filters that will classify all packets with the destination port equal to 80 and lead them through the highest priority class of the
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the second (lowest) priority
class of the channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 8000 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip
dport 8000 0xffff flowid 2:2

8.2.2.6.2.3.3 Assigning weights to two streams

Setup

The same setup is used as for the rate limit example.

Execution

This example's corresponding qdisc and class hierarchy is pictured in Figure 96. on page 424.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 423

root qdisc 1:

root class 1:1

prio qdisc 2:

wbfs qdisc 3:

wbfs class 3:2 wbfs class 3:4

TCP 21

wbfs class 3:1

TCP 80

wbfs class 3:3

prio class 2:1

qdisc

class

leaf class

automatic
class

Figure 96. WBFS example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root rate 1000mbit
overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 1Gbps.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root rate
1000mbit

Configure one of the channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 1

Configure a class group of four classes, place it after the 2:1 class in the priority list, and assign different weights to each class
(10, 50, 120 and 200).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 2:1 handle 3: ceetm type wbfs qcount 4
qweight 10 50 120 200 cr 1 er 1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the class with the highest weight
of the group.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 21 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip
dport 21 0xffff flowid 2:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip
dport 21 0xffff flowid 3:1

Add filters that will classify all packets with the destination port equal to 80 and lead them through another classes of the group.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 2:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 3:3

8.2.2.6.2.3.4 Unshaped Fair Queuing of two streams

Setup

In the following example a platform with CEETM support (LS1043ARDB - Main) is connected to two other boards: a LS1043ARDB
(Client) through a 10G link and a LS1046ARDB (Server) through a 1G link. The described setup is pictured in Figure 97. on page
425.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
424 NXP Semiconductors

TCP 80
TCP 81

Client
LS1043ARDB

Main
LS1043ARDB

Server
LS1046ARDB

iperf clients
10G link

QoS rules
1G link

iperf servers

Figure 97. Unshaped Fair Queuing example setup

The iperf clients run on the Client while the iperf servers run on the Server. The Server listens on two TCP ports (80 and 81).

root@ls1046ardb:~# iperf -s -p 80 &
root@ls1046ardb:~# iperf -s -p 81 &

PCDs are applied on all platforms in advance.

root@ls1043ardb:~# fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -
p /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a
root@ls1046ardb:~# fmc -c /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/
config.xml -p /etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559/policy_ipv4.xml -a

In order to keep this example minimal, ARP frames aren't filtered and classified. Thus, MAC addresses need to be exchanged
and saved in advance as well.

Server:
root@ls1046ardb:~# arp -s <main IP address> <main HW address>
Main:
root@ls1043ardb:~# arp -s <client IP address> <client HW address>
root@ls1043ardb:~# arp -s <server IP address> <server HW address>
Client:
root@ls1043ardb:~# arp -s <main IP address> <main HW address>

IP forwarding is enabled on the Main board. Routes are added on the Server and Client boards as well.

Main:
root@ls1043ardb:~# echo 1 > /proc/sys/net/ipv4/ip_forward
Client:
root@ls1043ardb:~# route add -net <server network address> <server network mask> gw <main IP
address>
Server:
root@ls1046ardb:~# route add -net <client network address> <client network mask> gw <main IP
address>

After adding the qdiscs, the Client runs the iperf clients.

root@ls1043ardb:~# iperf -c <server IP address> -p 80 &
root@ls1043ardb:~# iperf -c <server IP address> -p 81 &

Execution

This example's corresponding qdisc and class hierarchy is pictured in Figure 98. on page 425.

prio qdisc 3:

root qdisc 1:

root class 1:1 root class 1:2

prio qdisc 2:

prio class 2:1 prio class 3:1

TCP 81TCP 80

qdisc

class

leaf class

 automatic
class

Figure 98. Unshaped Fair Queuing example class hierarchy

Add a ceetm qdisc to the interface and don’t configure the LNI’s dual-rate shaper.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 425

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root

Add an unshaped channel to the LNI and configure its CR’s token bucket limit to 1000 bytes.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type root tbl 1000

Add another unshaped channel to the LNI and configure its CR’s token bucket limit to 500 bytes.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:2 ceetm type root tbl 500

Configure one of the first channel’s priority classes.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type prio qcount 1

Configure one of the second channel’s priority classes.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:2 handle 3: ceetm type prio qcount 1

Add filters that will classify all packets with the destination port equal to 80 and lead them through the priority class of the first
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32 match ip
dport 80 0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 81 and lead them through the priority class of the second
channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32 match ip
dport 81 0xffff flowid 1:2
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32 match ip
dport 81 0xffff flowid 3:1

8.2.2.7 Debugging
This section describes the debugging capabilities of the DPAA1 Ethernet driver.

8.2.2.7.1 Ethtool support
Various counters and statistics are exported through ethtool such as the number of interrupts per core, the number of frames per
core, the number of available buffers, congestion detection, etc.

Following is an example of an ethtool output:

root@ls1043ardb:~# ethtool -S fm1-mac1
NIC statistics:
 interrupts [CPU 0]: 1
 interrupts [CPU 1]: 1
 interrupts [CPU 2]: 2
 interrupts [CPU 3]: 2
 interrupts [TOTAL]: 6
 rx packets [CPU 0]: 0
 rx packets [CPU 1]: 0
 rx packets [CPU 2]: 0
 rx packets [CPU 3]: 0
 rx packets [TOTAL]: 0
 tx packets [CPU 0]: 0
 tx packets [CPU 1]: 0
 tx packets [CPU 2]: 6
 tx packets [CPU 3]: 0
 tx packets [TOTAL]: 6
 tx recycled [CPU 0]: 0
 tx recycled [CPU 1]: 0
 tx recycled [CPU 2]: 0
 tx recycled [CPU 3]: 0
 tx recycled [TOTAL]: 0
 tx confirm [CPU 0]: 1
 tx confirm [CPU 1]: 1
 tx confirm [CPU 2]: 2
 tx confirm [CPU 3]: 2

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
426 NXP Semiconductors

 tx confirm [TOTAL]: 6
 tx S/G [CPU 0]: 0
 tx S/G [CPU 1]: 0
 tx S/G [CPU 2]: 0
 tx S/G [CPU 3]: 0
 tx S/G [TOTAL]: 0
 rx S/G [CPU 0]: 0
 rx S/G [CPU 1]: 0
 rx S/G [CPU 2]: 0
 rx S/G [CPU 3]: 0
 rx S/G [TOTAL]: 0
 tx error [CPU 0]: 0
 tx error [CPU 1]: 0
 tx error [CPU 2]: 0
 tx error [CPU 3]: 0
 tx error [TOTAL]: 0
 rx error [CPU 0]: 0
 rx error [CPU 1]: 0
 rx error [CPU 2]: 0
 rx error [CPU 3]: 0
 rx error [TOTAL]: 0
 bp count [CPU 0]: 128
 bp count [CPU 1]: 128
 bp count [CPU 2]: 128
 bp count [CPU 3]: 128
 bp count [TOTAL]: 512
 rx dma error: 0
 rx frame physical error: 0
 rx frame size error: 0
 rx header error: 0
 rx csum error: 0
 qman cg_tdrop: 0
 qman wred: 0
 qman error cond: 0
 qman early window: 0
 qman late window: 0
 qman fq tdrop: 0
 qman fq retired: 0
 qman orp disabled: 0
 congestion time (ms): 0
 entered congestion: 0
 congested (0/1): 0

8.2.2.7.2 Read/Write of FMan Registers
Most of the FMan configuration registers are mapped into the system memory space. Efficient debugging and testing can be done
by making read/write operations on the registers through specialized tools. For example, the number of pause frames received
on a particular MAC device can be computed summing the base relative address of every component:

0x1a00000 (FMan) +
 0xe8000 (MAC 5) +
 0x014 (Maximum frame length register) =

0x1ae8014

A memory print of the 0x1ae8014 address will display the maximum frame length configured for the fifth MAC device from the
FMan on a LS1046A platform.

The entire memory map for all mapped registers of the DPAA1 hardware components ca be found in each platform's Reference
Manual.

8.2.2.7.3 Sysfs support
To enable Sysfs in the Linux kernel one must set the CONFIG_SYSFS option in Kconfig. The DPAA1 Ethernet Driver exports a
series of information in Sysfs such as the buffer pool IDs, the frame queue IDs used by the interface, and MAC registers and
statistics, as shown in the following examples:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 427

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/bpids
32

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/fqids
Rx error: 259
Rx default: 260
Rx PCD: 14592 - 14719
Rx PCD High Priority: 80128 - 80255
Tx confirmation (mq): 261 - 324
Tx error: 325
Tx default confirmation: 326
Tx: 327 - 390

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/
mac_regs

FM MAC - MEMAC - 2 (0xFFFF8000801D6000)
--

0xFFFF8000801D6008: 0x00020840 command_config
0xFFFF8000801D600C: 0x38ca0568 mac_addr0.mac_addr_l
0xFFFF8000801D6010: 0x0000de30 mac_addr0.mac_addr_u
[...]

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/
mac_rx_stats

FM MAC - MEMAC - 2 Rx stats (0xFFFF8000801D6000)
--

0xFFFF8000801D6100: 0x00000000 reoct_l
0xFFFF8000801D6104: 0x00000000 reoct_u
[...]

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/fm1-mac3/
mac_tx_stats

FM MAC - MEMAC - 2 Tx stats (0xFFFF8000801D6000)
--

0xFFFF8000801D6200: 0x00000000 teoct_l
0xFFFF8000801D6204: 0x00000000 teoct_u
[...]

8.2.2.8 Frequently Asked Questions
1. How do I send a frame up the network stack?

The frame-processing network stack only exists in the context of a net device. So, “sending a frame into the stack” is an
inaccurate statement: the frame must first be associated to a net device, and then the respective instance of the Ethernet
driver will deliver the frame to the stack, on behalf of that net device. To achieve that, the frame must arrive via the physical
device that underlies the driver.

2. Can I allocate a buffer and inject it as a frame into a private interface’s ingress queues?

This is probably a mistake. The DPAA1-Ethernet driver makes hard assumptions on buffer ownership, allocation and layout.
In addition, the driver expects FMan Parse Results to be placed in the frame preamble, at an offset which is implementation-
dependent. In short, while a carefully crafted code might work, it would make for very brittle design, and hard to maintain,
too.

3. But can I acquire a buffer directly from a private interface’s Buffer Pool, and inject it as such into the private interface’s Rx
FQs?

It is not an intended use-case for private interfaces.

4. What format must an ingress frame have, from the standpoint of the DPAA1-Ethernet driver and the Linux kernel stack?

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
428 NXP Semiconductors

The DPAA1-Ethernet driver is expected to perform an initial validation of the ingress frame, but does not look at the Layer-2
fields directly. The current kernel networking code does make a check on the MAC addresses of the frame and the protocol
(Ethertype) field. One should not make assumptions on such details of frame processing, because the kernel stack
implementation is not bound by any contract.

5. What channel are the FQs assigned to?

Each interface uses by default one pool channel across all Software Portals and also the dedicated channels of each CPU.
Note that any of these channels may be shared with other DPAA1 Ethernet devices, and even with other DPAA1 drivers
such as SEC. The default and error FQs are assigned to the pool channel. The Tx queues are assigned to the (direct
connect) channel linked to the Tx port associated with the interface. Any other statically-defined queues will be assigned
in a round-robin fashion to the core-affine portals.

6. What work queue are the FQs assigned to?

• Tx Confirmation FQs go to WQ1

• Rx Error and Tx Error FQs go to WQ2

• Rx Default, Tx and PCD FQs go to WQ3

7. How do I use the core-affined queues?

The anticipated way of using the core-affined queues is to use one of the default FMC policy files:

/etc/fmc/config/private/common/policy_ipv4.xml
/etc/fmc/config/private/common/policy_ipv6.xml

Default FMC configuration files are provided for each reference board:

/etc/fmc/config/private/<name of reference board>/<RCW directory>/<name of
configuration file>

Here are two examples showing FMC commands using the default configuration and policy files:

(1) fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /etc/fmc/
config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a

Note that /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml is a soft link to /etc/fmc/config/
private/common/policy_ipv4.xml.

(2) fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /etc/fmc/
config/private/ls1043ardb/RR_FQPP_1455/policy_ipv6.xml -a

Note that /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv6.xml is a soft link to /etc/fmc/config/
private/common/policy_ipv6.xml.

If you create a configuration file instead of using one of the default configuration files, be sure to use the appropriate policies
found in the default policy files:

/etc/fmc/config/private/common/policy_ipv4.xml
/etc/fmc/config/private/common/policy_ipv6.xml

8.2.2.9 Known Issues
• The MTU currently defaults to a maximum of 1522. If you want a higher MTU, it is necessary to pass fsl_fm_max_frm=N

on the kernel bootargs, where "N" is the desired maximum MTU + 22.

• Scatter Gather frames and Jumbo frames are not supported on LS1043A due to the FMan A010022 errata.

8.2.3 Queue Manager (QMan) and Buffer Manager (BMan)

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 429

8.2.3.1 QMan/BMan Drivers Introduction

Description

This document describes Linux and USDPAA drivers for the QMan and BMan hardware blocks underlying the QorIQ data path.
QMan and BMan have independent drivers but their implementation and interfaces are very much analogous due to the similar
CCSR and Corenet programming interfaces for each. As such, we will describe here "the driver", when in fact the description
applies to both the QMan and BMan drivers equally and independently.

The driver targets the Linux and USDPAA environments. The majority of the code is shared between the environments.
Environmental differences are dealt with by including a compatibility layer in the USDPAA code. This code redefines Linux-specific
functionality for use in the other environments (for example irqs and spinlocks).

The driver has two parts to it, "config" and "portal", corresponding to the two complimentary programming interfaces exposed by
the device itself - these are described below. Additionally there is a self-test module for each driver that uses the portal interface
to perform some basic tests provided one or more portals are made available to the OS via its device-tree.

CCSR, or "global config"

The CCSR map and associated registers allows the device to be configured and controlled in a global/un-partitioned manner.
This includes such basic notions as configuring the device's private memory region(s), configuring the hardware interfaces that
are exposed by QMan/BMan to the dependent hardware blocks (CAAM, PME, Fman), managing global device error interrupts,
etc. Only one "control" operating system should map to this CCSR register space in the case that a hypervisor is managing multiple
guests. Other operating systems like secondary Linux instances or USDPAA applications do not have access to CCSR registers.

Functionality

Configuration

The QMan device is configured via device-tree nodes and by some compile-time options controlled via Linux's Kconfig system.
See the “QMan and BMan Kernel Configure Options” section for more info.

API

For the Linux kernel, the C interface of the QMan and BMan drivers provides access to portal-based functionality for arbitrary
higher-layer code, hiding all the mux/demux/locking details required for shared use by multiple driver layers (networking, pattern
matching, encryption, IPC, etc.) The driver makes 1-to-1 associations between cpus and portals to improve cache locality and
reduce locking requirements. The QMan API permits users to work with Frame Queues and callbacks, independently of other
users and associated portal details. The BMan API permits users to work with Buffer Pools in a similar manner.

For USDPAA, the driver associates portals with threads (in the pthreads sense), so the above comments about “shared use by
multiple driver layers” only applies with respect to code executed within the thread owning a portal. To benefit from cache locality,
and particularly from portal stashing, USDPAA-enabled threads are generally expected to be configured to execute on the same
core that the portal is assigned to. Indeed, the USDPAA API for threads to call to initialise a portal takes the core as a function
parameter. Please see the USDPAA User Guide for more information (as well as the “QMan BMan API Reference on page
436”).

DPAA1 allocator

The DPAA1 allocator is a purely software-based range-allocator, but this must be explicitly seeded with a hard-coded range of
values and is not shared between operating systems. The DPAA1 allocator is used to allocate all QMan and BMan resource, i.e
bman-bpid, qman-fqid, qman-pool, qman-cgrid, ceetm-sp, ceetm-lni, ceetm-lfqid, ceetm-ccgrid.

Sysfs Interface

QMan and BMan have a sysfs interface. Refer to the Queue Manager, Buffer Manager API reference Manual for details.

Debugfs Interface

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
430 NXP Semiconductors

Both the QMan and BMan have a debugfs interface available to assist in device debugging. The code can be built either as a
loadable module or statically.

Module Loading

The drivers are statically linked into the kernel. Driver self-tests and the debugfs interface may be built as dynamically loadable
modules.

QMan and BMan Kernel Configure Options

Common Kernel Configure Options Description

CONFIG_STAGING Required in order to make “staging” drivers such as QMan/BMan available.

CONFIG_FSL_DPA Required to build either QMan and/or BMan drivers.

CONFIG_FSL_DPA_CHECKING Compiles in additional sanity-checks, at the expense of minor performance
degradation. Recommended for debugging, but not for benchmarking.

CONFIG_FSL_DPA_CAN_WAIT Compiles in support for interfaces and functionality that allow callers to optionally
be put to “sleep” waiting for temporarily blocked resources to become available
rather than returning errors. Eg. enqueuing when an enqueue ring is full. This is
enabled unconditionally on linux.

CONFIG_FSL_DPA_CAN_WAIT_SYNC Similar to “_CAN_WAIT”, but supports additional API flags for waiting for
asynchronous operatoins to complete. Eg. after starting a volatile dequeue, wait for
all dequeues to complete. This is enabled unconditionally on linux.

CONFIG_FSL_DPA_PIRQ_FAST If set, causes portals to initialise with fast-path interrupt sources enabled.
(Otherwise, polling APIs must be called to perform fast-path processing.) This is
enabled unconditionally on linux.

CONFIG_FSL_DPA_PIRQ_SLOW If set, causes portals to initialise with slow-path interrupt sources enabled.
(Otherwise, polling APIs must be called to perform slow-path processing.) This is
enabled unconditionally on linux.

CONFIG_FSL_DPA_PORTAL_SHARE Compiles in support for sharing one CPU's portal with all online CPUs that do not
have their own. Useful when assigning most portals to USDPAA applications and
leaving only a minimum for kernel requirements, in which case Tx events on all
CPUs can be handled by the network driver. This is enabled by default, as the
microscopic performance overhead of checking this option is not noticable in the
kernel environment.

QMan Kernel Configure Options Description

CONFIG_FSL_QMAN Required to build the QMan driver

CONFIG_FSL_QMAN_CONFIG Handles config/CCSR nodes in the device-tree and initialises the
corresponding devices

CONFIG_FSL_QMAN_TEST Builds a self-test kernel module (static or dynamic) that will, if QMan portal
nodes are available in the device-tree, exercise one of the portals and
panic() the kernel if any errors are detected.

CONFIG_FSL_QMAN_TEST_STASH_POTATO This requires the presence of multiple unused cpu-affine portals, and
performs a "hot potato" style test enqueuing/dequeuing a frame across a
series of FQs scheduled to different portals (and cpus). The intention is to

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 431

Table continued from the previous page...

QMan Kernel Configure Options Description

test stashing. The "potato" will visit each "spoon" (portal/cpu pair) during the
test. Each "potato" frame has a single cacheline of data that is read-modify-
written by each cpu/portal before passing it to the next.

CONFIG_FSL_QMAN_TEST_HIGH This requires the presence of cpu-affine portals, and performs high-level
API testing with them (whichever portal(s) are affine to the cpu(s) the test
executes on).

CONFIG_FSL_QMAN_TEST_ERRATA This requires the presence of cpu-affine portals, and performs testing that
handling for known hardware-errata is correct.

CONFIG_FSL_QMAN_DEBUGFS This option enables files in the debugfs filesystem.

BMan Kernel Configure Options Description

CONFIG_FSL_BMAN Required to build the BMan driver

CONFIG_FSL_BMAN_CONFIG Handles config/CCSR nodes in the device-tree and initialises the corresponding
devices

CONFIG_FSL_BMAN_TEST Builds a self-test kernel module (static or dynamic) that will, if BMan portal nodes
are available in the device-tree, exercise one of the portals and panic() the kernel if
any errors are detected.

CONFIG_FSL_BMAN_TEST_HIGH Performs high-level API testing.

CONFIG_FSL_BMAN_TEST_THRESH Multi-threaded testing of BMan pool depletion handling.

CONFIG_FSL_BMAN_DEBUGFS This option enables files in the debugfs filesystem.

Device-tree nodes

Device tree nodes are used to describe QMan/BMan resources to the driver, some of which are specific to control-plane s/w (i.e.
depending on CCSR access) and some of which relate to portal usage for control and data plane s/w.

CCSR, or "global config"

The "fsl,qman" and "fsl,bman" nodes (i.e. these "compatible" property types) indicate the presence and location of the 4Kb
"Configuration, Control, and Status Register" (CCSR) space, for use by a single control-plane driver instance to initialise and
manage the device. The device-tree usually groups all such CCSR maps as sub-nodes under a parent node that represents the
SoCs entire CCSR map, usually named "soc" or "ccsr". For example;

 soc {
 #address-cells = <1>;
 #size-cells = <1>;
 device_type = "soc";
 compatible = "simple-bus";

 ddr1: memory-controller@8000{
 [...]
 };
 i2c@118000 {
 [...]
 };
 mpic: pic@40000 {
 [...]
 };

 qman: qman@318000 {

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
432 NXP Semiconductors

 compatible = "fsl,qman";
 reg = <0x318000 0x1000>;
 interrupts = <16 2 1 3>;
 /* Commented out, use default allocation */
 /* fsl,qman-fqd = <0x0 0x20000000 0x0 0x01000000>; */
 /* fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>; */
 };
 bman: bman@31a000 {
 compatible = "fsl,bman";
 reg = <0x31a000 0x1000>;
 interrupts = <16 2 1 3>;
 /* Same as fsl,qman-*, use default allocation */
 /* fsl,bman-fbpr = <0x0 0x22000000 0x0 0x01000000>; */
 };
 [...]
 };

Contiguous memory

The fsl,qman-fqd, fsl,qman-pfdr, and fsl,bman-fbpr properties can be used to specify which contiguous sub-regions of
memory should be used for the various memory requirements of QMan/BMan. The properties use 64-bit values, so 4 cells express
the address/size 2-tuple to use. In the above example, if uncommented, the QMan/BMan resources would be allocated in the
range 0x2000000-0x221fffff, with 16MB each for QMan FQD and PFDR memory and BMan FBPR memory. If these properties
are not specified (or they are commented out) in the device tree, then default values hard-coded within the QMan and BMan
drivers are used instead. The linux kernel will reserve these memory ranges early on boot-up. Note that in the case of a hypervisor
scenario, these memory ranges are relative to the partition memory space of the control-plane guest OS.

QMan FQID-range allocation

The "fsl,fqid-range" node (i.e. these "compatible" property types) indicates a range of FQIDs to use for FQID allocation by the
QMan driver. The range within the node is specified using a property of the same name, and whose two cells are the starting
FQID value and the count. Multiple nodes can be provided to seed the allocator with a discontiguous set of FQIDs.

Eg. to specify that the allocator use FQIDs between 256 and 512 inclusive;

 qman-fqids@0 {
 compatible = "fsl,fqid-range";
 fsl,fqid-range = <256 256>;
 };

BMan BPID-range allocation

The "fsl,bpool-range" node (i.e. these "compatible" property types) indicates a range of BPIDs to use for BPID allocation by the
BMan driver. The range within the node is specified using a property of the same name, and whose two cells are the starting
BPID value and the count. Multiple nodes can be provided to seed the allocator with a discontiguous set of BPIDs.

Eg. to specify that the allocator use BPIDs between 32 and 64 inclusive;

 bman-bpids@0 {
 compatible = "fsl,bpid-range";
 fsl,bpid-range = <32 32>;
 };

Compile-time Configuration Options

The "Kernel Configure Options" above describe the compile-time configuration options for the kernel. The device tree entries are
also "compile-time", and are described above.

Source Files

As mentioned earlier, the QMan/BMan drivers support Linux and USDPAA environments. Many of the files have the same contents
between the different environments, though the files are located at different paths to satisfy the different build systems for each.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 433

For DPAA1 QBMan drivers, all the files are located in drivers/soc/fsl/qbman directory

USDPAA

Source Files Description

include/usdpaa/fsl_qman.h The QMan driver APIs

include/usdpaa/fsl_bman.h The BMan driver APIs

include/usdpaa/fsl_usd.h The USDPAA-specific APIs for QMan/BMan (eg. Binding portals to threads, support for UIO-
based interrupt handling, etc.)

include/usdpaa/compat.h The QMan/BMan driver compatibility shims

include/usdpaa/compat_list.h The QMan/BMan driver compatibility shims, linked-list support.

src/qbman/qman_*.* The QMan driver

src/qbman/bman_*.* The BMan driver

src/qbman/dpa_sys.h USDPAA-specific definitions shared by the QMan/BMan drivers.

src/qbman/dpa_alloc.c USDPAA support for dpa allocator.

src/qbman/06-usdpaa-uio.rules Udev rules to create appropriately-named /dev entries when the kernel registers portals as
UIO devices.

Build Procedure

The procedure is a standard SDK build, which includes Linux kernel and USDPAA drivers by default.

Test Procedure

The QMan/BMan drivers are used by all Linux kernel software that communicates with datapath functionality such as CAAM,
PME, and/or Fman. (The exception is that kernel cryptographic acceleration presently bypasses QMan/BMan interfaces by using
the device's own “job queue” interface.) Use of such datapath-based functionality provides test-coverage of user-facing features
of the QMan/BMan drivers in the Linux environment. This complements the QMan/BMan unit tests that are run during development
but are not part of the release. For USDPAA, all applications and tests use QMan and BMan interfaces in a fundamental way, so
all imply a degree of test-coverage.

Additionally, for Linux, the QMan and BMan self-tests target QMan and BMan directly without involving other datapath blocks. If
these are built statically into the kernel and the device-tree makes one or more QMan and/or BMan portals available, then the
self-tests will run during the kernel boots and log output to the boot console. The output of both QMan and BMan tests resembles
the following excerpts;

Detecting the CCSR and portal device-tree nodes;

[...]
Qman ver:0a01,01,02
[...]
Bman ver:0a02,01,00
[...]
BMan err interrupt handler present

BMan portal initialised, cpu 0

BMan portal initialised, cpu 1

BMan portal initialised, cpu 2

BMan portal initialised, cpu 3

BMan portal initialised, cpu 4

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
434 NXP Semiconductors

BMan portal initialised, cpu 5

BMan portal initialised, cpu 6

BMan portal initialised, cpu 7

BMan portals initialised

BMan: BPID allocator includes range 32:32

QMan err interrupt handler present

QMan portal initialised, cpu 0

QMan portal initialised, cpu 1

QMan portal initialised, cpu 2

QMan portal initialised, cpu 3

QMan portal initialised, cpu 4

QMan portal initialised, cpu 5

QMan portal initialised, cpu 6

QMan portal initialised, cpu 7

QMan portals initialised

QMan: FQID allocator includes range 256:256

QMan: FQID allocator includes range 32768:32768

QMan: CGRID allocator includes range 0:256

QMan: pool channel allocator includes range 33:15

[...]

Running the QMan and BMan self-tests;

[...]
BMAN: --- starting high-level test ---
BMAN: --- finished high-level test ---
[...]
qman_test_high starting
VDQCR (till-empty);
VDQCR (4 of 10);
VDQCR (6 of 10);
scheduled dequeue (till-empty)
Retirement message received
qman_test_high finished
[...]

Running the BMan threshold test;

[...]
bman_test_thresh: start
bman_test_thresh: buffers are in
thread 0: starting
thread 1: starting
thread 2: starting
thread 3: starting
thread 4: starting
thread 5: starting
thread 6: starting
thread 7: starting
thread 0: draining...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 435

cb_depletion: bpid=62, depleted=2, cpu=0
cb_depletion: bpid=62, depleted=2, cpu=1
cb_depletion: bpid=62, depleted=2, cpu=2
cb_depletion: bpid=62, depleted=2, cpu=3
cb_depletion: bpid=62, depleted=2, cpu=4
cb_depletion: bpid=62, depleted=2, cpu=5
cb_depletion: bpid=62, depleted=2, cpu=6
cb_depletion: bpid=62, depleted=2, cpu=7
thread 0: draining done.
thread 0: exiting
thread 1: exiting
thread 2: exiting
thread 3: exiting
thread 4: exiting
thread 5: exiting
thread 6: exiting
thread 7: exiting
bman_test_thresh: done
[...]

Running the QMan hot potato test;

[...]
qman_test_hotpotato starting
Creating 2 handlers per cpu...
Number of cpus: 8, total of 16 handlers
Sending first frame
Received final (8th) frame
qman_test_hotpotato finished
[...]

If the self-tests detect any errors, they will panic() the kernel immediately, so if the kernel gets beyond the QMan/BMan self-tests
then the tests passed.

8.2.3.2 QMan BMan API Reference

8.2.3.2.1 Introduction to the Queue Manager and the Buffer Manager
The Queue Manager (QMan) and Buffer Manager (BMan) devices each expose two interfaces to software control. One interface
is the Configuration and Control Status Register map (CCSR), which provides global configuration of the device, registers related
to global device errors, performance, statistics, debugging, etc. The other interface is the CoreNet interface, which provides a
memory map with multiple "portals" located in separable sub-regions for independent/parallel run-time use of the devices.

The software described in this document is targeted to the Linux kernel and Linux user-space (USDPAA) system targets. However,
only Linux supports operating as the controller for the devices, so all interfaces related to CCSR access are Linux-only. Also,
remember platform-specific considerations when working with the interfaces described here. See Operating system specifics on
page 480for more details.

8.2.3.2.2 Buffer Manager
8.2.3.2.2.1 Buffer Manager (BMan) Overview

Function

The QorIQ Buffer Manager (BMan) SoC block manages pools of buffers for use by software and hardware in the “Datapath”
architecture.

In particular;

1. provides an efficient use of buffer resources because the output will only occupy as many buffers as required (whereas
pre-allocation must provide for the worst-case scenario each time if it wishes to avoid truncation and information-loss),

2. software does not need to provision resources for every queued operation nor handle the complications of recycling
unused output buffers, etc.,

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
436 NXP Semiconductors

3. the footprint for buffer resources for a variety of different flows (and even different guest operating systems) can be
"pooled".

With respect to "buffers", BMan really acts as an allocator of any 48-bit tokens the user wishes - BMan does not interpret these
tokens at all, it is only the software and hardware blocks that use BMan that may assume these to be memory addresses. In many
cases, the BMan acquire and release interfaces are likely to be more efficient than software-managed allocators due to the
proximity of BMan's corenet-based interfaces to each CPU and its on-board caching and pre-fetching of pool data. Possible
examples include; a BMan-oriented page-allocator for operating system memory-management, a "frame queue" allocator to
manage unused QMan frame queue descriptors (FQD), etc. In particular, the frame queue example provides a simple mechanism
for sharing a range of frame-queue IDs across different partitions/operating systems in a virtualized environment without needing
inter-partition communications in software.

Interfaces

The BMan block has a CCSR register space and interrupt line associated with the block for global configuration and management,
specifically;

• the private system memory range (invisible to software) needed by BMan,

• software and hardware depletion interrupt thresholds for each pool,

• device error handling uses the global interrupt line and the CCSR register space contains error-capture and error-status
registers.

The BMan block also exposes a Corenet memory space for low-latency interaction by the multiple SoC cores, and this corenet
region is divided into a geometry of "portals" to allow independent access to BMan functionality in a partitioned (and/or virtualized)
environment. Each portal consists of one 16KB cache-enabled and one 4KB cache-inhibited sub-range of the Corenet region, as
well as a per-portal interrupt line. There are a variety of possible reasons for using distinct portals;

• for partitioning between distinct guest operating systems,

• to dedicate a portal for each CPU to reduce locking and improve cache-affinity,

• to make distinct portal configurations available,

• to give certain applications their own portal rather than enforcing a mux/demux layer to share a portal between
applications,

• [etc.]

Each portal presents the following BMan functionality;

• a "release command ring" (RCR), a pipelined mechanism for software to hardware commands that release buffers to
BMan-managed buffer pools,

• a "management command" interface (MC), a low-latency command/response interface for acquiring buffers from buffer
pools, and querying the status of all buffer pools,

• an interrupt line and associated status, disable, enable, and inhibit registers.

These portal interfaces will be described in more detail in their respective sections.

8.2.3.2.2.2 BMan configuration interface
The BMan configuration interface is an encapsulation of the BMan CCSR register space and the global/error interrupt line.
Whereas BMan portals provide independent channels for accessing BMan functionality, the configuration interface represents
the BMan device itself. The BMan configuration interface is presently limited to the device-tree node that represents it, with one
exception: an API exists to set per-buffer-pool depletion thresholds. This API is only available in the linux control-plane - that is,
a kernel compiled with BMan control support that has the BMan CCSR device-tree node present. In a hypervisor scenario, this
implies that only the control-plane linux guest OS can set buffer pool depletion thresholds.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 437

8.2.3.2.2.2.1 BMan Device-Tree Node
The BMan device tree node represents the BMan device and its CCSR configuration space. When a linux kernel has BMan control
support compiled in, it will react to this device tree node by configuring and managing the BMan device. The device-tree node
sits within the CCSR node ("soc") and is of the following form;

 soc@fe000000 {
 [...]
 bman: bman@31a000 {
 compatible = "fsl,bman";
 reg = <0x31a000 0x1000>;
 fsl,liodn = <0x20>;
 };
 [...]
 };

'compatible' and 'reg' are standard ePAPR properties.

8.2.3.2.2.2.1.1 Free Buffer Proxy Records

As previously mentioned, BMan buffer pools needn't be used only for managing memory buffers, but in fact can manage pools of
arbitrary 48-bit token values, whatever those tokens might represent. This is possible because BMan never uses those token
values as memory locations - all management of buffer pools is maintained in memory that is private to the BMan block.
Specifically, BMan uses some internal memory together with a private range of contiguous system memory for backing store. The
internal units of the backing store memory are called "free buffer proxy records" (FBPRs), each of which occupies a 64-byte
cacheline of memory, and can hold 8 tokens.

The current driver implementation allows this memory resource to be specified via the 'fsl,bman-fbpr' device-tree property, or by
resorting to a default allocation of contiguous memory early during kernel boot. The 'fsl,bman-fbpr' property specifies a 2-tuple
of address and size, specifying the physical address range to assign to BMan. The example given configures 16MB for FBPR
memory (262,144 FBPR entries or 2,097,152 buffer tokens). These elements are expressed as 64-bit values, so take two cells
each:

 fsl,fbpr = <0x0 0x20000000 0x0 0x01000000>;

If the hypervisor is in use, this address range is "guest physical". If the given memory range falls within the range used by the
linux control-plane OS, it will attempt to reserve the range against use by the OS.

For all BMan and QMan private memory resources, the alignment of the memory region must match its size.

 NOTE

8.2.3.2.2.2.1.2 Logical I/O Device Number (BMan)

Reads and writes to BMan's FBPR memory are subject to processing by the PAMU IO-MMU configuration of the SoC. In particular,
BMan has an LIODN (Logical I/O Device Number) register setting that will be used by PAMU authorise and possibly translate
memory accesses. The bootloader (u-boot) will program BMan's LIODN register and it will add this value as the "fsl,liodn" property
before passing it along to the booted software.

 fsl,liodn = <0x20>;

This property is only used by the hypervisor, in order to ensure that any translation between guest physical and real physical
memory for the linux guest OS is similarly applied to BMan transactions. If linux is booted natively (no hypervisor), then the PAMU
is either left in bypass mode or it is configured without translation. In any case the LIODN is of little practical importance to the
configuration or use of BMan driver software.

8.2.3.2.2.2.2 Buffer Pool Node
The BMan buffer pool device tree node represents one of a BMan device's buffer pools and its associated configuration. When a
linux kernel has BMan control support compiled in, it will react to this device tree node by configuring and managing the BMan
buffer pool, in particular the pool will be marked as reserved by the driver so that it is not available for dynamic assignment. The
device-tree nodes usually sit within a BMan portals parent node ("bman-portals") and is of the following form;

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
438 NXP Semiconductors

 bman-portals@f4000000 {

 [...]

 buffer-pool@0 {

 compatible = "fsl,bpool";

 fsl,bpid = <0x0>;

 fsl,bpool-cfg = <0x0 0x100 0x0 0x1 0x0 0x100>;

 fsl,bpool-thresholds = <0x8 0x20 0x0 0x0>;

 };

 [...]

 };

8.2.3.2.2.2.2.1 Buffer Pool ID

The BMan device supports hardware managed buffer pools. Specifications and valid ID ranges vary between SoC's. Refer to the
appropriate SoC Reference Manual for more information. The example above configures buffer pool 0, which is used by the QMan
driver as an inter-partition allocator of unused QMan Frame Queue IDs;

 fsl,bpid = <0x0>;

Buffer pool nodes in the device-tree indicate that the corresponding buffer pool IDs are reserved, ie. that they are not to be used
for ad-hoc allocation of unused pools.

8.2.3.2.2.2.2.2 Seeding Buffer Pools

It is also possible to have the control plane linux BMan driver seed the buffer pool with an arbitrary arithmetic sequence of values,
using the "fsl,bpool-cfg" property. This property is a 3-tuple of 64-bit values (each taking 2 cells) defining the arithmetic sequence;
the count, the increment, and the base.

 fsl,bpool-cfg = <0x0 0x100 0x0 0x1 0x0 0x100>;

In this example, the QMan FQ allocator implemented using BMan buffer pool ID 0 is seeded with 256 FQIDs in the range
[256...511].

8.2.3.2.2.2.2.3 Depletion Thresholds

Each of the 64 buffer pools has CCSR registers related to depletion-handling. A pool is considered "depleted" once the number
of buffers in that pool crosses a "depletion-entry" threshold from above, and this ends when the number of buffers subsequently
crosses a "depletion-exit" threshold from below (the depletion-exit threshold should be higher than the depletion-entry threshold).

Each pool maintains two independent depletion states - one for software use and another for hardware blocks. Hardware blocks
(like CAAM, FMan, PME) use the hardware depletion state primarily for the purpose of implementing push back (e.g. by stalling
input-processing, issuing "pause frames", etc). There is a depletion-entry and -exit threshold for each buffer pool related to this
hardware depletion state. The software depletion state serves two possible purposes - one is to allow software to implement push
back too. The other use of software depletion thresholds is to allow software to manage "replenishment" of buffer pools. It is
software that seeds buffer pools with blocks of memory initially and if desired, it can also use this mechanism to selectively provide
additional blocks at run-time during depletion.

 fsl,bpool-thresholds = <0x8 0x20 0x0 0x0>;

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 439

Here, software depletion thresholds have been set for the buffer pool used for the FQ allocator, but hardware depletion thresholds
are disabled (the pool is for software use only). The pool will enter depletion when it drops below 8 "buffers" (in this case, FQIDs),
and exit depletion when it rises above 32.

8.2.3.2.2.2.3 BMan Portal Device-Tree Node
The BMan Corenet portal interface in QorIQ P4080 provides up to 10 distinct memory-mapped interfaces for use by software to
interact efficiently with BMan functionality. Specifically, each portal provides the following sub-interfaces; RCR (Release Command
Ring), MC (Management Command), and ISR (Interrupt Status Register). For non-P4080 specifications, refer to the appropriate
QorIQ SoC Reference Manual.

The BMan driver determines the available corenet portals from the device tree. The portal nodes are at the physical address
scope (unlike the device-tree node for the BMan device itself, which is within the “soc” physical address node that represents
CCSR). These nodes indicate the physical address ranges of the cache-enabled and cache-inhibited sub-regions of the portal
(respectively), and look something like the following;

 bman-portal@0 {
 compatible = "fsl,bman-portal";
 reg = <0xe4000000 0x4000 0xe4100000 0x1000>;
 interrupts = <0x69 2>;
 interrupt-parent = <&mpic>;
 cell-index = <0x0>;
 cpu-handle = <&cpu3>;
 };

The most note-worthy property is "cpu-handle", which is used to express an affinity/association between the given BMan portal
and the CPU represented by the referenced device-tree node.

8.2.3.2.2.2.3.1 Portal Initialization (BMan)

The driver is informed of the BMan portals that are available to it via the device-tree passed to the system from the boot process.
For those portals that aren’t reserved for USDPAA usage via the “fsl,usdpaa-portal” property, it will automatically create TLB
entries to map the BMan portal corenet sub-regions as cpu-addressable and cache-inhibited or cache-enabled as appropriate.

The BMan driver will automatically associate initialised BMan portals with the CPU to which they are configured, only a one-per-
CPU basis (if multiple portals are configured for the same CPU, only one is used). The purpose of this is to provide a canonical
portal that software can use for whichever CPU it is running on, with the advantages of a cpu-affine interface being improved
cache-locality and reduced locking. This requires that each CPU have at least one portal device-tree node dedicated to it using
the “cpu-handle” property.

8.2.3.2.2.2.3.2 Portal sharing

If there are CPUs that have no affine portal associated with them (for example if most portals have been reserved for USDPAA
use), then the driver will select the highest-index portal to be configured for “sharing” with the CPUs that have no affine portal,
otherwise called “slave CPUs” in this document. In this mode of operation, a coarser locking scheme is used for the portal in order
to properly synchronise use by more than one CPU.

One key point to understand with portal sharing is that hardware-instigated portal events will continue to be processed only by
the CPU to which the portal is affine, they are not shared. One consequence of this is that slave CPUs can not use *_irqsource_*()
APIs to alter the interrupt-vs-polling state of the portal, nor can they call *_poll_*() APIs to perform run-to-completion servicing of
the portal. The sharing of the portal is only to allow software-instigated portal functionality to be available to slave CPUs, such as
creating and manipulating objects, performing commands, etc.

8.2.3.2.3 BMan CoreNet portal APIs
The following sections describe interfaces provided by the BMan driver for manipulating portals, as defined in BMan Portal Device-
Tree Node on page 440.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
440 NXP Semiconductors

8.2.3.2.3.1 BMan High-Level Portal Interface
8.2.3.2.3.1.1 Overview (BMan)
The high-level portal interface provides management and encapsulation of a portal hardware interface. The operations performed
on the portal are co-ordinated internally, hiding the user from the I/O semantics, and allowing multiple users/contexts to share
portals without collaboration between them. This interface also provides an object representation for buffer pools, with optional
assists for cases where the user wishes to track depletion entry and exit events.

This interface provides locking and arbitration of portal operations from multiple software contexts and/or threads (ie. the portal
is shared). In cases where a resource is busy, the interface also gives callers the option of blocking/sleeping until the resouce is
available. In any case where sleeping is an option, the caller can also specify whether the sleep should be interruptible.

8.2.3.2.3.1.2 Portal management (BMan)
The portal management API provides bman_affine_cpus(), which returns a mask that indicates which CPUs have auto-initialized
portals associated with them. See BMan Portal Device-Tree Node on page 440. All other BMan API functions must be executed
on CPUs contained within this mask, and any interactions they require with h/w will be performed on the corresponding portals.

/**
 * bman_affine_cpus - return a mask of cpus that have portal access
 */
const cpumask_t *bman_affine_cpus(void);

8.2.3.2.3.1.2.1 Modifying interrupt-driven portal duties (BMan)

Portals have various servicing duties they must perform in reaction to hardware events. The portal management API allows
applications to control which of these duties/events are triggered by interrupt-handling versus those which are performed at the
application’s explicit request via bman_poll(). If portal-sharing is in effect, refer to Portal sharing on page 440. These APIs will
not succeed when called from a slave CPU.

#define BM_PIRQ_RCRI 0x00000002 /* RCR Ring (below threshold) */
#define BM_PIRQ_BSCN 0x00000001 /* Buffer depletion State Change */
/**
 * bman_irqsource_get - return the portal work that is interrupt-driven
 *
 * Returns a bitmask of BM_PIRQ_**I processing sources that are currently
 * enabled for interrupt handling on the current cpu's affine portal. These
 * sources will trigger the portal interrupt and the interrupt handler (or a
 * tasklet/bottom-half it defers to) will perform the corresponding processing
 * work. The bman_poll_***() functions will only process sources that are not in
 * this bitmask. If the current CPU is sharing a portal hosted on another CPU,
 * this always returns zero.
 */
u32 bman_irqsource_get(void);
/**
 * bman_irqsource_add - add processing sources to be interrupt-driven
 * @bits: bitmask of BM_PIRQ_**I processing sources

 * Adds processing sources that should be interrupt-driven, (rather than
* processed via bman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int bman_irqsource_add(u32 bits);
/**
* bman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of BM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via bman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU. */
int bman_irqsource_remove(u32 bits);

8.2.3.2.3.1.2.2 Processing non-interrupt-driven portal duties (BMan)

If portal-sharing is in effect, refer to Portal sharing on page 440. These APIs will not succeed when called from a slave CPU.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 441

/**
 * bman_poll_slow - process anything that isn't interrupt-driven.
 *
 * This function does any portal processing that isn't interrupt-driven. NB,
 * unlike the legacy wrapper bman_poll(), this function will deterministically
 * check for the presence of portal processing work and do it, which implies
 * some latency even if there's nothing to do. The bman_poll() wrapper on the
 * other hand (like the qman_poll() wrapper) attenuates this by checking for
 * (and doing) portal processing infrequently. Ie. such that qman_poll() and
 * bmna_poll() can be called from core-processing loops. Use bman_poll_slow()
 * when you yourself are deciding when to incur the overhead of processing. If
* the current CPU is sharing a portal hosted on another CPU, this function will
* return -EINVAL, otherwise returns zero for success.
*/
int bman_poll_slow(void);
/**
 * bman_poll - process anything that isn't interrupt-driven.
 *
 * Dispatcher logic on a cpu can use this to trigger any maintenance of the
 * affine portal. This function does whatever processing is not triggered by
 * interrupts. This is a legacy wrapper that can be used in core-processing
 * loops but mitigates the performance overhead of portal processing by
 * adaptively bypassing true portal processing most of the time. (Processing is
 * done once every 10 calls if the previous processing revealed that work needed
 * to be done, or once very 1000 calls if the previous processing revealed no
 * work needed doing.) If you wish to control this yourself, call
 * bman_poll_slow() instead, which always checks for portal processing work.
 */
void bman_poll(void);

8.2.3.2.3.1.2.3 Recovery support (BMan)

Note that the following functions require the BMan portal to have been initialized in "recovery mode", which is not possible with
the current release. As such, these functions are for future use only (and documented here only because they're declared in the
API header).

/**
 * bman_recovery_cleanup_bpid - in recovery mode, cleanup a buffer pool
 */
int bman_recovery_cleanup_bpid(u32 bpid);
/**
 * bman_recovery_exit - leave recovery mode
 */
int bman_recovery_exit(void);

8.2.3.2.3.1.2.4 Determining if the release ring is empty

/**
 * bman_rcr_is_empty - Determine if portal's RCR is empty
 *
 * For use in situations where a cpu-affine caller needs to determine when all
 * releases for the local portal have been processed by BMan but can't use the
 * BMAN_RELEASE_FLAG_WAIT_SYNC flag to do this from the final bman_release().
 * The function forces tracking of RCR consumption (which normally doesn't
 * happen until release processing needs to find space to put new release
 * commands), and returns zero if the ring still has unprocessed entries,
 * non-zero if it is empty.
 */
int bman_rcr_is_empty(void);

8.2.3.2.3.1.3 Pool Management
To work with BMan buffer pools, a pool object must be created. As explained in Depletion State on page 445, the pool may be
created with the BMAN_POOL_FLAG_DEPLETION flag and corresponding depletion-entry/exit callbacks if the owner wishes to
be notified of changes in the pool's depletion state. Creation of the pool object can also modify the pool's depletion entry and exit
thresolds with the BMAN_POOL_FLAG_THRESH flag, so long as the BMAN_POOL_FLAG_DYNAMIC_BPID flag is specified

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
442 NXP Semiconductors

(which will allocate an unreserved BPID) and when running in the control-plane (where reserved BPIDs are tracked). Depletion
thresholds for reserved BPIDs can be set in the device-tree within the nodes that reserve them, so support for setting them in the
API is not provided. The pool object can also maintain an internal buffer stockpile to optimize releases and acquires of buffers by
specifying the BMAN_POOL_FLAG_STOCKPILE flag - actual releases to and acquires from h/w will only occur when the stockpile
needs flushing or replenishing, ensuring that the interactions with hardware occur less often and are always optimized to release/
acquire the maximum number of buffers at once. If a pool object is being freed and it has been configured to use stockpiling, a
flush operation must be performed on the pool object. This will ensure that all buffers in the stockpile are flushed to h/w. The pool
object can then be freed. The stockpiling option is recommended wherever possible. One implementation note is that applications
will sometimes want to create multiple pool objects for the same BPID in order to have one for each CPU (for performance reasons)
- this means that each pool object will have its own stockpile. As a consequence, to drain a buffer pool empty would require that
all pool objects for that BPID be drained independently (whereas without stockpiling enabled, only one pool object needs to be
drained).

struct bman_pool;
/* This callback type is used when handling pool depletion entry/exit. The
 * 'cb_ctx' value is the opaque value associated with the pool object in
 * bman_new_pool(). 'depleted' is non-zero on depletion-entry, and zero on
 * depletion-exit. */
typedef void (*bman_cb_depletion)(struct bman_portal *bm,
 struct bman_pool *pool, void *cb_ctx, int depleted);
/* Flags to bman_new_pool() */
#define BMAN_POOL_FLAG_NO_RELEASE 0x00000001 /* can't release to pool */
#define BMAN_POOL_FLAG_ONLY_RELEASE 0x00000002 /* can only release to pool */
#define BMAN_POOL_FLAG_DEPLETION 0x00000004 /* track depletion entry/exit */
#define BMAN_POOL_FLAG_DYNAMIC_BPID 0x00000008 /* (de)allocate bpid */
#define BMAN_POOL_FLAG_THRESH 0x00000010 /* set depletion thresholds */
#define BMAN_POOL_FLAG_STOCKPILE 0x00000020 /* stockpile to reduce hw ops */
/* This struct specifies parameters for a bman_pool object. */
struct bman_pool_params {
 /* index of the buffer pool to encapsulate (0-63), ignored if
 * BMAN_POOL_FLAG_DYNAMIC_BPID is set. */
 u32 bpid;
 /* bit-mask of BMAN_POOL_FLAG_*** options */
 u32 flags;
 /* depletion-entry/exit callback, if BMAN_POOL_FLAG_DEPLETION is set */
 bman_cb_depletion cb;
 /* opaque user value passed as a parameter to 'cb' */
 void *cb_ctx;
 /* depletion-entry/exit thresholds, if BMAN_POOL_FLAG_THRESH is set. NB:
 * this is only allowed if BMAN_POOL_FLAG_DYNAMIC_BPID is used *and*
 * when run in the control plane (which controls BMan CCSR). This array
 * matches the definition of bm_pool_set(). */
 u32 thresholds[4];
};
/**
 * bman_new_pool - Allocates a Buffer Pool object
 * @params: parameters specifying the buffer pool behavior
 *
 * Creates a pool object for the given @params. A portal and the depletion
 * callback field of @params are only used if the BMAN_POOL_FLAG_DEPLETION flag
 * is set. NB, the fields from @params are copied into the new pool object, so
 * the structure provided by the caller can be released or reused after the
 * function returns.
 */
struct bman_pool *bman_new_pool(const struct bman_pool_params *params);
/**
 * bman_free_pool - Deallocates a Buffer Pool object
 * @pool: the pool object to release
 */
void bman_free_pool(struct bman_pool *pool);
/**
 * bman_flush_stockpile - Flush stockpile buffer(s) to the buffer pool
 * @pool: the buffer pool object the stockpile belongs
 * @flags: bit-mask of BMAN_RELEASE_FLAG_*** options
 *
 * Adds stockpile buffers to RCR entries until the stockpile is empty.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 443

 * The return value will be a negative error code if a h/w error occured.
 * If BMAN_RELEASE_FLAG_NOW flag is passed and RCR ring is full,
 * -EAGAIN will be returned.
 */
int bman_flush_stockpile(struct bman_pool *pool, u32 flags);
/**
 * bman_get_params - Returns a pool object's parameters.
 * @pool: the pool object
 *
 * The returned pointer refers to state within the pool object so must not be
 * modified and can no longer be read once the pool object is destroyed.
 */
const struct bman_pool_params *bman_get_params(const struct bman_pool *pool);
/**
 * bman_query_free_buffers - Query how many free buffers are in buffer pool
 * @pool: the buffer pool object to query
 *
 * Return the number of the free buffers
 */
u32 bman_query_free_buffers(struct bman_pool *pool);
/**
 * bman_update_pool_thresholds - Change the buffer pool's depletion thresholds
 * @pool: the buffer pool object to which the thresholds will be set
 * @thresholds: the new thresholds
 */
int bman_update_pool_thresholds(struct bman_pool *pool, const u32 *thresholds);

8.2.3.2.3.1.4 Releasing and Acquiring Buffers
The following API functions allow applications to release buffers to a pool and acquire buffers from a pool. Note that the various
"WAIT" flags for bman_release() are only available on linux.

/* Flags to bman_release() */
#define BMAN_RELEASE_FLAG_WAIT 0x00000001 /* wait if RCR is full */
#define BMAN_RELEASE_FLAG_WAIT_INT 0x00000002 /* if we wait, interruptible? */
#define BMAN_RELEASE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */
/**
 * bman_release - Release buffer(s) to the buffer pool
 * @pool: the buffer pool object to release to
 * @bufs: an array of buffers to release
 * @num: the number of buffers in @bufs (1-8)
 * @flags: bit-mask of BMAN_RELEASE_FLAG_*** options
 *
 * Releases the specified buffers to the buffer pool. If stockpiling is
 * enabled, this may not require a release command to be issued via the RCR
 * ring, otherwise it certainly will. If the RCR ring is full, the function
 * will return -EBUSY unless BMAN_RELEASE_FLAG_WAIT is selected, in which case
 * it will sleep waiting for space to become available in RCR. If
 * BMAN_RELEASE_FLAG_WAIT_SYNC is also specified then it will sleep until
 * hardware has processed the command from the RCR (otherwise the same
 * information can be obtained by polling bman_rcr_is_empty() until it returns
 * TRUE). If the BMAN_RELEASE_FLAG_WAIT_INT is set), then any sleeps will be
 * interruptible. If it is interrupted before producing the release command, it
 * returns -EINTR. Otherwise, it will return zero to indicate the release was
 * successfully issued. (In the case of interruptible sleeps and WAIT_SYNC,
 * check signal_pending() upon return to determine whether the wait was
 * interrupted.)
 */
int bman_release(struct bman_pool *pool, const struct bm_buffer *bufs,
 u8 num, u32 flags);
/**
 * bman_acquire - Acquire buffer(s) from a buffer pool
 * @pool: the buffer pool object to acquire from
 * @bufs: array for storing the acquired buffers
 * @num: the number of buffers desired (@bufs is at least this big)
 *
 * Acquires buffers from the buffer pool. If stockpiling is enabled, this may
 * not require an acquire command to be issed via the MC interface, otherwise

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
444 NXP Semiconductors

 * it certainly will. The return value will be the number of buffers obtained
 * from the pool, or a negative error code if a h/w error or pool starvation
 * was encountered.
 */
int bman_acquire(struct bman_pool *pool, struct bm_buffer *bufs, u8 num,
 u32 flags);

8.2.3.2.3.1.5 Depletion State
It is possible for portals to track depletion state changes to any of the 64 buffer pools supported in BMan. As described in Pool
Management on page 442, a pool object can invoke callbacks to convey depletion-entry and depletion-exit events if created with
the BMAN_POOL_FLAG_DEPLETION flag.

Conversely, software can issue a portal management command to obtain a snapshot of the depletion and availability status of all
BMan 64 pools at once, which is what the following interface does. Here "availability" implies that the pool is not completely empty.
Depletion on the other hand is relative to the pools depletion-entry and exit-thresholds. The state of all 64 buffer pools is
represented by the following structure types, accessor macros, and bman_query_pools() API;

struct bm_pool_state {
 [...]
};
/**
 * bman_query_pools - Query all buffer pool states
 * @state: storage for the queried availability and depletion states
 */
int bman_query_pools(struct bm_pool_state *state);
/* Determine the "availability state" of BPID 'p' from a query result 'r' */
#define BM_MCR_QUERY_AVAILABILITY(r,p) [...]
/* Determine the "depletion state" of BPID 'p' from a query result 'r' */
#define BM_MCR_QUERY_DEPLETION(r,p) [...]

8.2.3.2.4 Queue Manager
8.2.3.2.4.1 QMan Overview
8.2.3.2.4.1.1 Queue Manager's Function
The QorIQ Queue Manager (QMan) SoC block manages the movement of data (“frames”) along uni-directional flows (“frame
queues”) between different software and hardware end-points (“portals”). This allows software instances to communicate with
other software instances and/or datapath hardware blocks (CAAM, PME, FMan) using a hardware-managed queueing
mechanism. QMan provides a variety of features in the way this data movement can be managed, including tail-drop or weighted-
red congestion/flow-control, congestion group depletion notification, order restoration, and order preservation.

It is beyond the scope of this document to fully explain all the QMan-related notions that are essential to using datapath functionality
effectively. But unlike the BMan reference, we will cover at least some of the basic elements here that are fundamental to the
software interface, because QMan is more complicated than BMan and some simplistic definitions can be helpful as a place to
start. For any more information about what QMan does and how it behaves, please consult the appropriate QorIQ SoC Reference
Manual.

8.2.3.2.4.1.2 Frame Descriptors
Frames are represented by "frame descriptors" (or "FD"s) which are 16-byte structures consisting of fields to describe;

• contiguous or scatter-gather data,

• a 32-bit per-frame-descriptor token value (called "cmd/status" because of its common usage in processing data to/from
hardware blocks),

• trace-debugging bits,

• a partition ID, used for virtualizing memory access to frame data by datapath hardware blocks (CAAM, PME, FMan),

• a BMan buffer pool ID, used to identify frames whose buffers are sourced from (or are to be recycled to) a BMan buffer
pool.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 445

A third ("nested") mode of the scatter-gather representation allows a frame-descriptor to reference more than one frame - this is
referred to as a compound frame, and is a mechanism for creating an indissociable binding of more than one data descriptor, eg.
this is used when sending an input descriptor to PME or CAAM and providing an output descriptor to go with it.

Frame descriptors that are under QMan's control reside in QMan-private resources, comprised of dedicated on-board cache as
well as system memory assigned to QMan on initialization. When frames are enqueued to (and dequeued from) frame queues
by QMan on behalf of software portals or hardware blocks, the frame descriptor fields are copied in to (and out of) these QMan-
private resources.

As with BMan not caring whether the 48-bit tokens it manages are real buffer addresses or not, the same is mostly true for QMan
with respect to the frame descriptors it manages. QMan ignores the memory addresses present in the frame descriptor, unless
it is dequeued via a portal configured for data stashing and is dequeued from a frame queue that is configured for frame data (or
annotation) stashing. However QMan always pays attention to the length field of frame descriptors. In general, the only field that
can be safely used as a "pass-through" value without any QMan consequences is the 32-bit cmd/status field.

8.2.3.2.4.1.3 Frame Queue Descriptors (QMan)
Frame queues are uni-directional queues of frames, where frames are enqueued to the tail of the frame queue and dequeued
from the head. A frame queue is represented in QMan by a "frame queue descriptor" (or "FQD"), and these reside in a private
system memory resource configured for QMan on initialization. A frame queue is referred to by a "frame queue identifier" (or
"FQID"), which is literally the index of that FQD within QMan's memory resource. As such, FQIDs form a global name-space,
even in an otherwise virtualized environment, so two entities of software can not simultaneously use the same FQID for different
purposes.

8.2.3.2.4.1.4 Work Queues
Work queues (or "WQ"s) are uni-directional queues of "scheduled" frame queues. We will see shortly what is meant here by a
"scheduled" frame queue, but suffice it to say that QMan supports a fixed collection of work queues, to which QMan appends
frame queues when they are due to be serviced. To summarize, multiple FDs can be linked to a single FQ, and multiple FQs can
be linked to a single WQ.

8.2.3.2.4.1.5 Channels
A channel is a fixed, hardware-defined association of 8 work queues, also thought of as "priority work queues". This grouping is
convenient in that QMan provides sophisticated prioritization support for dequeueing from entire channels rather than specific
work queues. Specifically, the 8 work queues within a channel are divided into 3 tiers according to QMan's "class scheduler" logic
- work queues 0 and 1 form the high-priority tier and are treated with a strict priority semantic, work queues 2, 3, and 4 form the
medium-priority tier and are treated with a weighted interleaved round-robin semantic, and work queues 5, 6, and 7 form the low-
priority tier and are also treated with a weighted interleaved round-robin semantic. Apart from the top-tier, the weighting within
and between the other two tiers is programmable.

8.2.3.2.4.1.6 Portals
A QMan portal is similar in nature to a BMan portal. There are hardware portals (also called "direct connect portals", or "DCP"s)
that allow QMan to be used by other hardware blocks, and there are software portals that allow QMan to be used by logically
separated units of software. A software portal consists of two sub-regions of QMan's corenet region, in precisely the same way
as with BMan.

8.2.3.2.4.1.7 Dedicated Portal Channels
Each software portal has its own dedicated channel (of 8 work queues), that only it may dequeue from. As a shorthand, one
sometimes says that a frame queue is "scheduled to a portal", when what is really meant is that the frame queue is scheduled to
a work queue within that portal's dedicated channel. Hardware portals also have their own dedicated channels, though sometimes
more than one (FMan blocks have multiple dedicated channels).

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
446 NXP Semiconductors

8.2.3.2.4.1.8 Pool Channels
There are also 15 "pool channels" from which any software portal can dequeue - this is typically used for load-balancing or load-
spreading.

8.2.3.2.4.1.9 Portal Sub-Interfaces
Each portal exposes cache-inhibited and cache-enabled registers that can be read and/or written by software to achieve various
ends. With some necessary exceptions, the software interface hides most of these details. However an important conceptual point
regarding portals is that they have essentially four decoupled sub-interfaces;

• EQCR (EnQueue Command Ring), this is an 8-cacheline ring containing commands from software to QMan. These
commands perform enqueues of frame descriptors to frame queues.

• DQRR (DeQueue Response Ring), this is a 16-cacheline ring containing dequeue processing results from QMan to
software. These entries usually contain a frame descriptor (except when the dequeue action produced no valid frame
descriptor) as well as status information about the dequeue action, the frame queue being dequeued from, and other
context for software's use. This ring is unique in that QMan can be configured to stash new ring entries to processor cache,
rather than relying on software to (pre)fetch ring entries into cache explicitly.

• MR (Message Ring), this is an 8-cacheline ring containing messages from QMan to software, most notably for enqueue
rejection messages and asynchronous retirement processing events. Unlike DQRR, this ring does not support stashing.

• Management commands, consisting of a Command Register (CR) and two Response Register locations (RR0 and RR1),
used for issuing a variety of other commands to QMan. EQCR and DQRR (and to a lesser extent, MR) are intended to
provide the communications with QMan that represent the fast-path of data processing logic, and the management
command interface is where "everything else happens".

8.2.3.2.4.1.10 Frame queue dequeuing
Enqueuing a frame to a frame queue is an unambiguous mechanism; an enqueue command in the EQCR specifies a frame
descriptor and a frame queue ID, and the intention is clear. Dequeuing is more subtle, and falls into two general classes
depending on what one is dequeuing from - these are "scheduled" or "unscheduled" dequeues.
8.2.3.2.4.1.10.1 Unscheduled Dequeues

One can dequeue from a specific frame queue, but that frame queue must necessarily be "idle" - or in QMan terminology,
"unscheduled". It is an illegal action to attempt to dequeue directly from a frame queue that is in a "scheduled" state. Specifically,
unscheduled dequeues require the frame queue to be in the "Parked" or "Retired" state (described in Frame Queue States on
page 449).

8.2.3.2.4.1.10.2 Scheduled Dequeues

Conversely, if a frame queue is "scheduled" then, by definition, management of the frame queue is (until further notice) under
QMan's control and may at any point change state according to events within QMan or via actions on other software or hardware
portals. So a "scheduled dequeue" does not target a specific FQ, but either a specific WQ or collection of channels. QMan
processes scheduled dequeue commands within a portal by selecting from among the non-empty WQs, dequeueing a FQ from
that selected WQ, and then dequeuing a FD from that FQ.

QMan portals implement two dequeue command modes, "push" and "pull";

8.2.3.2.4.1.10.3 Pull Mode

The "pull" mode is the less conventional of the two, as it is driven by software writing a dequeue command to a single cache-
inhibited register that will, in response, perform a single instance of that command and publish its result to DQRR. This "pull"
command (PDQCR - Pull DeQueue Command Register) could generate anywhere between 1 and 3 DQRR entries, and software
must ensure that it does not write a new command to PDQCR until it knows at least one of these DQRR entries has been published
(otherwise writing a new command could clobber the previous command before QMan has prepared its execution). The PDQCR
command register can perform scheduled and unscheduled dequeues.

8.2.3.2.4.1.10.4 Push Mode

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 447

The "push" mode is the mode that gives software a familiar "DMA-style" interface, ie. where hardware performs work and fills in
a kind of "Rx ring" autonomously. In the case of the QMan portal's DQRR sub-interface, this push mode is driven by two dequeue
command registers, one for scheduled dequeues (SDQCR - Static DeQueue Command Register), and one for unscheduled
dequeues (VDQCR - Volatile DeQueue Command Register). The reason for the static/volatile terminology (rather than scheduled/
unscheduled), as well as the presence of two command registers instead of one, relates to how QMan schedules execution of
the dequeue commands.

Unlike "pull" mode, QMan is not prodded by a write to the command register each time a dequeue command should occur, it must
autonomously execute commands when appropriate. So it is clear that scheduled dequeues can only be performed when the
targetted work queue or channels have Truly Scheduled frame queues available to dequeue from. Note that this is not an issue
with "pull" mode, as a scheduled dequeue command can be issued when there are no available frame queues and QMan will
simply publish a DQRR entry containing no frame descriptor to mark completion of the command - for "push" mode, this semantic
cannot work. When in "push" mode, the QMan portal has a (possibly NULL) scheduled dequeue command for dequeuing from
a selection of available channels. QMan executes this command only when there is matching scheduled dequeue work available
on one of of the channels - ie. the scheduled dequeue command (for channels) is static. If software writes SDQCR with a command
to dequeue from a specific WQ, the command is executed only once (like the pull command), at which point it reverts to the static
dequeue command for channels.

For unscheduled dequeues, a single Parked or Retired frame queue is identified for dequeuing, and as QMan does not manipulate
the state of such frame queues in reaction to enqueue or dequeue activity (ie. there is no "scheduling"), there is no mechanism
for QMan to "know" when this frame queue becomes non-empty some time in the future. So like "pull" mode, unscheduled
dequeues must be done when explicitly demanded by software, and as such they must also (a) expire after a configurable number
of frame descriptors are dequeued from frame queue or once it is empty, and (b) even if the frame queue is already empty, a
DQRR entry with no frame descriptor should be used to notify software that the unscheduled dequeue command has expired.
Ie. the unscheduled command "goes live" when written and becomes inactive once completed - it is volatile. Unlike "pull" mode
however, the volatile command can perform more than a single dequeue action, and it can even block or flow-control while active,
however it always runs to completion and then stops.

As "push" mode supports two dequeue commands (in fact one of them, SDQCR, encompasses two commands in its own right
- it has a persistent channel-dequeue command, and an optional one-shot workqueue-dequeue command can be issued without
clobbering it), it is worth pointing out that it can service both at once. The VDQCR command register contains a precedence
option that QMan uses to determine whether SDQCR or VDQCR work be favoured in the situation where both are active.

8.2.3.2.4.1.10.5 Stashing to Processor Cache

When dequeueing frame queues and publishing entries in DQRR, QMan provides stashing features that involve prepositioning
data in the processor cache. The main benefit of hardware-instigated stashing is that the data will already be in cache when the
processor needs it, avoiding the need to explicitly prefetch it in advance or stalling the processor to fetch it on-demand. As we will
see, there is another benefit in the specific case of DQRR stashing.

Each portal supports two types of stashing, for which distinct PAMU entries are configured.

DLIODN

The DLIODN setting configures PAMU authorization and/or translation of transactions to stash DQRR ring entries as they are
produced by QMan. The stashing of DQRR entries is not just a performance tweak, it changes the way driver software operates
the portal. Rather than needing to invalidate and prefetch the DQRR cachelines to see (or poll for) new DQRR entries, software
can simply reread the cached version until it "magically changes". The stashing transaction is then the only implied traffic across
the corenet bus (reducing bandwidth) and it is initiated by hardware at the first instant at which a software-initiated prefetch could
have seen anything new (minimum possible latency).

Note that if the driver does not enable DQRR stashing, then it is a requirement to manipulate the processor cache directly, so its
run time mode of operation must match device configuration. Note also that if DQRR stashing is used, software can not trust the
DQRI interrupt source nor read PI index registers to determine that a new DQRR entry is available, as they may race against the
stash transaction. On the other hand, software may use the interrupt source to avoid polling for DQRR production unnecessarily,
but it does not guarantee that the first read would show the new DQRR entry.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
448 NXP Semiconductors

P1023 supports DQRR stashing but since it doesn’t have Corenet and PAMU, the DLIODN is not applicable to

P1023.

 NOTE

FLIODN

QMan can also stash per-frame-descriptor information, specifically;

1. Frame data, pointed to by the frame descriptor

2. Frame annotations, which is anything prior to the data due to a non-zero offset

3. Frame queue context (for the frame queue from which the frame descriptor was dequeued).

In all cases, the FLIODN setting is used by PAMU to authorize/translate these stashing transactions.

8.2.3.2.4.1.11 Frame Queue States
Frame queues are managed by QMan via state-transitions, and some of these states are of interest to software. From software's
perspective, a simplification of the frame queue states is to group them as follows;

• Out of service: the frame queue is not in use and must be initialized. Neither enqueues nor dequeues are permitted.

• Parked: the frame queue is initialized and in an idle state. Enqueues are permitted, as are unscheduled dequeues, neither
of which change the frame queue's state. Scheduled dequeues will not result in dequeues from parked frame queues, as a
parked frame queue is never linked to a work queue.

• Scheduled: the frame queue has been scheduled, implying that hardware will modify its state as/when relevant events
occur. Enqueues are permitted, but unscheduled dequeus are not. This is not a real state, but actually a set of states that a
frame queue moves between - as hardware performs these moves internally, it's useful to treat them as one, because
changes between them are asynchronous to software. The real states are;

— Tentatively Scheduled: the frame queue is not linked to a work queue (yet), the frame queue must therefore be
empty and no retirement or force-eligible command has been issued against the frame queue.

— Truly Scheduled: the frame queue is linked to a work queue, either because it has become non-empty or a force-
eligible command has occured.

— Active: the frame queue has been selected by a portal for scheduled dequeue and so is removed from the work
queue.

— Held Active: the frame queue is still held by the portal after scheduled dequeuing has been performed, it may yet be
dequeued from again, depending on scheduling configuration, priorities, etc.

— Held Suspended: the frame queue is still held by the portal after scheduled dequeuing has been performed but
another frame queue has been selected "active" and so no further dequeuing will occur on this frame queue.

• Retired: the frame queue is being "closed". A frame queue can be put into the retired state as a means of (a) getting it
back under software's control (not under QMan's control nor the control of another hardware block), eg. for closing down
"Tx" frame queues, and (b) blocking further enqueues to the frame queue so that it can be drained to empty in a
deterministic manner. Enqueues are therefore not permitted in this state. Unscheduled dequeues are permitted, and are
the only way to dequeue frames from a frame queue in this state.

See the appropriate QorIQ SoC Reference Manual for more detailed information.

8.2.3.2.4.1.12 Hold active
The QMan portal sub-interfaces are generally decoupled or asynchronous in their operation. For example: The processing of
software-produced enqueue commands in EQCR is asynchronous to the processing of dequeue commands into DQRR, and
both of these are asynchronous to the production of messages into MR and the processing of management commands.

There is however a specific coupling mechanism between EQCR and DQRR to address a certain class of requirements for
datapath processing. Consider first that it is possible for multiple portals to dequeue independently from the same data source,
eg. for the purposes of load-balancing, or perhaps idle-time processing of low-priority work. This could occur because multiple

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 449

portals issue unscheduled dequeue commands from the same Parked (or Retired) frame queue, or because they issue scheduled
dequeue commands that target the same pool channels (or the same specific work queue within a pool channel). So we describe
here the "hold active" mechanisms that help maintain some synchronicity of hardware dequeue processing (and optionally
software post-processing) on multiple portals/CPUs.

The unscheduled dequeue case is not covered by the mechanisms described here - QMan will correctly handle multiple
unscheduled dequues from the same frame queue, but the "hold active" mechanisms have no effect in this case. For scheduled
dequeues however, there are two levels of "hold active" functionality that can be used for software to synchronise multiple portals
dequeuing from the same source.

8.2.3.2.4.1.12.1 Dequeue Atomicity

As described in the previous section ("Frame queue states"), the Active, Held Active, and Held Suspended states are for frame
queues that have been selected by a portal for scheduled dequeuing. These states imply that the frame queue has been detached
from the work queue that it was previously "scheduled" to, but not yet moved to the Parked state nor rescheduled to the Tentatively
Scheduled or Truly Scheduled state after the completion of dequeuing.

Normally, a frame queue is rescheduled by QMan as soon as it is done dequeuing, potentially even before the resulting DQRR
entries are visible to software. However, if the frame queue has been configured for "Held active" behavior, then this will not happen
- the frame queue will remain in the Held Active or Held Suspended state once QMan has finished dequeuing from it. QMan will
only reschedule or park the frame queue once software consumes all DQRR entries that correspond to that frame queue - the
default behavior is to reschedule, but this "held" state of the frame queue allows software an opportunity to request that the final
action for the frame queue be to park it instead.

A consequence of this mechanism is that if a DQRR entry is seen that corresponds to a frame queue configured for "held active"
behavior, software implicitly knows that there can be no other (unconsumed) DQRR entry on any other portal for that same frame
queue. (Proof: if there was, the frame queue would be currently "held" in that portal and not in this one.) For an SMP system where
each core has its own portal, this would obviate the need to (spin)lock software context related to a frame queue when handling
incoming frames - the "lock" is implicitly obtained when the DQRR entry is seen, and it is implicitly released when the DQRR
entries are consumed. This is what is meant by "dequeue atomicity".

8.2.3.2.4.1.12.2 Parking Scheduled FQs

As noted above in Dequeue Atomicity on page 450, if a FQ is currently "held active" in the portal, software can request that it be
move to the Parked state once its final DQRR entry is consumed, rather than rescheduled which is the normal behavior. This is
not necessarily limited to FQs that are configured for "hold active" behavior, but can also be applied to regular FQs by issuing a
Force Eligible command on them.

8.2.3.2.4.1.12.3 Order Preservation & Discrete Consumption Acknowledgement

In addition to the dequeue atomicity feature, it is possible to obtain a stronger property from QMan to aid with datapath situations
that "spread" incoming data over multiple portals. Specifically, if incoming frames are to be forwarded via subsequent enqueues,
then dequeue atomicity does not prevent the forwarded frames from getting out of order. Ie. multiple CPUs (using multiple portals)
may be using dequeue atomicity in order to write enqueue commands to their EQCR rings before consuming the DQRR entries,
and thus ensuring that EQCR entries are published in the same order as the incoming frames. But as there are multiple portals,
this does not ensure that QMan will necessarily process those EQCR entries in the same order. Indeed if the portals' EQCR rings
have significantly varied fill-levels, then there is a reasonable chance that two enqueue commands published in quick succession
via different portals could get processed in the opposite order by QMan.

Instead, software can elect to only consume DQRR entries when no forwarding is to be performed on the corresponding frames
(eg. when dropping a packet), and for the others, it can encode the EQCR enqueue commands to perform an implicit "Discrete
Consumption Acknowledgement" (or "DCA") - the result of which is that QMan will consume the corresponding DQRR entry on
software's behalf once it has finished processing the enqueue command. This provides a cross-portal, order preservation
semantic from end-to-end (from dequeue to enqueue) using hardware assists.

Note, QMan has other functionality called Order Restoration that is completely unrelated to the above - Order Restoration is a
mechanism to restore frames into their intended order once they been allowed to get out of order, using sequence numbers and
"reassembly windows" within QMan, see Order Restoration on page 451. The above "hold active" mechanisms are to prevent
frames from getting out of order in the first place.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
450 NXP Semiconductors

8.2.3.2.4.1.13 Enqueue Rejections
Enqueues may be rejected, immediately or after any delay due to order restoration, and the enqueue mechanisms themselves
do not provide any meaningful way to convey the rejection event to the software portal. For this reason, Enqueue Rejection
Notifications (ERNs) are messages received on a message ring that carry frames that did not successfully enqueue together with
the reason for their rejection.

8.2.3.2.4.1.14 Order Restoration
Frame queue descriptors can serve one or both of two complimentary purposes. A small subset of fields in the FQDs are used
to implement an "Order Restoration Point", which allows an FQD to act as a reassembly window for out-of-sequence enqueues.
FQDs also contain a sequence number field that generates increasing sequence numbers for all frames dequeued from the FQ.
This dequeue activity sequence number is also called an "Order Definition Point". The idea is that frames dequeued from a given
FQ (ODP) may get out-of-sequence during processing before they're enqueued onto an egress FQ, so the enqueue function
allows one to not only specify the desination FQD, but also an ORP that the enqueue command should first pass through - which
might hold up the intended enqueue until other, missing, sequence elements are enqueued. Ie. an ORP-enabled enqueue
command requires 2 FQID parameters, which need not necessarily be the same - indeed in many networking examples, the Rx
FQ serves as both the ODP and the ORP when enqueuing to the Tx FQ. To see why this choice of ORP FQ makes sense, consider
that many Rx flows may need to be order-restored independently, even if all of them are ultimately enqueued to the same
destination Tx FQ. It's also possible to enqueue using software-generated sequence numbers, ie. without any FQ dequeue activity
acting as an ODP. An ODP is any source of sequence numbers starting at zero and wrapping to zero at 0x3fff (214-1).

ORP-enabled enqueue functions provide various features, such as filling in missing sequence numbers (eg. when dropping
frames), advancing the "Next Expected Sequence Number" despite missing frames (that may or may not show up later), etc.
These features are options in the enqueue interfaces, eg. see Enqueue Command (without ORP) on page 461, specifically the
qman_enqueue_orp() API.

There are also numerous options that can be set in ORP-enabled FQDs, and these are achieved via the same functions that allow
you to manipulate FQDs for any other purpose. Eg. see Frame queue management on page 457, specifically the qman_init_fq()
API. Care should be taken when using a FQD as both a FQ and an ORP - in particular, a FQD can not be retired and put out-of-
service while the ORP component of the descriptor is still in use, and vice versa.

8.2.3.2.4.2 QMan configuration interface
The QMan configuration interface is an encapsulation of the QMan CCSR register space and the global/error interrupt source.
Whereas QMan portals provide independent channels for accessing QMan functionality, the configuration interface represents
the QMan device itself. The QMan configuration interface is presently limited to the device-tree node that represents it.

8.2.3.2.4.2.1 QMan device-tree node
The QMan device tree node represents the QMan device and its CCSR configuration space (as distinct from its corenet
portals). When a linux kernel has QMan control support built in, it will react to this device tree node by configuring and
managing the QMan device. The device-tree node sits within the CCSR node ("soc") and is of the following form;

 soc@fe000000 {
 [...]
 qman: qman@318000 {
 compatible = "fsl,qman";
 reg = <0x318000 0x1000>;
 fsl,qman-fqd = <0x0 0x22000000 0x0 0x00200000>;
 fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>;
 fsl,liodn = <0x1f>;
 };
 [...]
 };

'compatible' and 'reg' are standard ePAPR properties.

8.2.3.2.4.2.1.1 Frame Queue Descriptors

This property configures the memory used by QMan for storing frame queue descriptors. Each FQD occupies a 64-byte cacheline
of memory, so as the above example configures 2MB for FQD memory, the valid range of FQIDs is [1...32767];

 fsl,qman-fqd = <0x0 0x22000000 0x0 0x00200000>;

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 451

The treatment and alignment requirements of this property are the same as in Free Buffer Proxy Records on page 438.

8.2.3.2.4.2.1.2 Packed Frame Descriptor Records

This property configures the memory used by QMan for storing Packed Frame Descriptor Records. Each PFDR occupies a 64-
byte cacheline of memory, and can hold 3 Frame Descriptors. QMan maintains an onboard cache for holding recently enqueued
(and/or soon to be dequeued) frames, and in responsive systems that remain within their operating capacity (ie. no spikes) it can
often be unnecessary for frames to ever be stored in system memory at all. However, to handle spikes or buffering, a storage
density of 3 enqueued frames per-cacheline can be used for estimating a suitable allocation of memory to QMan for PFDRs. In
the case of handling ERNs (eg. if congestion controls exist elsewhere than on an ingress network interface), then a storage density
of 1 ERN per-cacheline should be used. The above example configures 16MB for PFDR memory (786,432 enqueued frames, or
262,144 ERNs);

 fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>;

The treatment and alignment requirements of this property are the same as in Free Buffer Proxy Records on page 438.

8.2.3.2.4.2.1.3 Logical I/O Device Number (QMan)

This property is the same as described in Logical I/O Device Number (BMan) on page 438, but for use by QMan when accessing
FQD and PFDR memory (rather than BMan's FBPR memory).

8.2.3.2.4.2.2 QMan pool channel device-tree node
Each QMan software portal has its own dedicated channel of work queues. QMan also provides "pool channels" that all
software portals can optionally dequeue from - this is described in Portals on page 446. The device-tree should declare pool
channels using device-tree nodes as follows;

 qman-pool@1 {
 compatible = "fsl,qman-pool-channel";
 cell-index = <0x1>;
 fsl,qman-channel-id = <0x21>;
 };

8.2.3.2.4.2.2.1 Channel ID

When FQs are initialized for scheduling, the target work queue is identified by the channel id (a hardware-assigned identifier) and
by one of the 8 priority levels within that channel. Channel ids are hardware constants, as conveyed by this device-tree property;

 fsl,qman-channel-id = <0x21>;

8.2.3.2.4.2.3 QMan portal device-tree node
The QMan Corenet portal interface in QorIQ P4080 provides up to 10 distinct memory-mapped interfaces for use by software to
interact efficiently with QMan functionality. These are described in Portals on page 446 and Portal Sub-Interfaces on page 447.
Refer to the appropriate SoC reference manuals for non-P4080 specifications.

The QMan driver determines the available corenet portals from the device tree. The portal nodes are at the physical address
scope (unlike the device-tree node for the BMan device itself, which is within the "soc" physical address node that represents
CCSR). These nodes indicate the physical address ranges of the cache-enabled and cache-inhibited sub-regions of the portal
(respectively), and look something like the following;

 qman-portal@c000 {
 compatible = "fsl,qman-portal";
 reg = <0xf420c000 0x4000 0xf4303000 0x1000>;
 interrupts = <0x6e 2>;
 interrupt-parent = <&mpic>;
 cell-index = <0x3>;
 cpu-handle = <&cpu3>;
 fsl,qman-channel-id = <0x3>;
 fsl,qman-pool-channels = <&qpool1 &qpool2>;
 fsl,liodn = <0x7 0x8>;
 };

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
452 NXP Semiconductors

As with BMan portal nodes, the "cpu-handle" property is used to express an affinity/association between the given QMan portal
and the CPU represented by the referenced device-tree node. Unlike BMan however, the "cpu-handle" property is also used by
PAMU configuration, to determine which CPU's L1 or L2 cache should receive stashing transactions emanating from this portal.
The "fsl,qman-channel-id" property is already documented in Channel ID on page 452, the other QMan-specific portal properties
are described below.

8.2.3.2.4.2.3.1 Portal Access to Pool Channels

In QorIQ P4080, P3041, P5020 hardware, all software portals can dequeue from any/all pool channels. Nonetheless, the portal
device-tree nodes allow the architect to specify this and optionally limit the range of pool channels a given portal can dequeue
from. This can be particularly useful when partitioning multiple guest operating systems, it essentially allows the architect to
partition the use of pool channels as they partition the use of portals. In the above example, the portal is only able to dequeue
from 2 pool channels;

 fsl,qman-pool-channels = <&qpool1 &qpool2>;

8.2.3.2.4.2.3.2 Stashing Logical I/O Device Number

This property, when used in QMan portal nodes, declares two LIODN values for use by QMan when performing dequeue stashing
to processor cache. These are documented in Stashing to Processor Cache on page 448. This property is filled in automatically
by u-boot, and if hypervisor is in use then it will fill in this property for guest device-trees also. PAMU drivers (linux-native or within
the hypervisor) will configure the settings for these LIODNs according to the CPU that stashing should be directed towards, as
per the cpu-handle property;

 fsl,liodn = <0x7 0x8>;
 cpu-handle = <&cpu3>;

8.2.3.2.4.2.3.3 Portal Initialization (QMan)

The driver is informed of the QMan portals that are available to it via the device-tree passed to the system from the boot process.
For those portals that aren’t reserved for USDPAA usage via the “fsl,usdpaa-portal” property, it will automatically create TLB
entries to map the QMan portal corenet sub-regions as cpu-addressable and cache-inhibited or cache-enabled as appropriate.

As with the BMan driver, the QMan driver will automatically associate initialised QMan portals with the CPU to which they are
configured, only one a one-per-CPU basis (if multiple portals are configured for the same CPU, only one is used). Please see
Portal sharing on page 440 for an explanation of this behaviour in the BMan documentation, the QMan behaviour is identical.

8.2.3.2.4.2.3.4 Auto-Initialization

As with the BMan driver, the QMan driver will, by default, automatically initialize QMan portals as they are parsed out of the device-
tree. Please see Portal sharing on page 440 for an explanation of this behavior in the BMan documentation. The QMan behavior
is identical.

8.2.3.2.5 QMan portal APIs
The following sections describe interfaces provided by the QMan driver for manipulating portals. These are defined in QMan
portal device-tree node on page 452, and described in Portals on page 446 and Portal Sub-Interfaces on page 447.

Note, unlike the BMan documentation, we will not include many of the QMan-related data structures within this documentation
as they are significantly more elaborate. It is presumed the reader will consult the corresponding header files for structure data
details that aren't sufficiently described here.

8.2.3.2.5.1 QMan High-Level Portal Interface
8.2.3.2.5.1.1 Overview (QMan)
The high-level portal interface provides management and encapsulation of a portal hardware interface. The operations performed
on the "portal" are coordinated internally, hiding the user from the I/O semantics, and allowing multiple users/contexts to share
portals without collaboration between them. This interface also provides an object representation for congestion group records
(CGRs), with optional assists for cases where the user wishes to track congestion entry and exit events, eg. to apply back-pressure
on the affected frame queues, etc. There is also an object representation for frame queues that internally coordinates FQ

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 453

operations, demuxes incoming dequeued frames and messages to the corresponding owner's callbacks, and interprets hardware-
provided indications of changes to FQ state.

This interface provides locking and arbitration of portal operations from multiple software contexts and/or threads (ie. the portal
is shared). In cases where a resource is busy, the interface also gives callers the option of blocking/sleeping until the resouce is
available (and in the case of volatile dequeue commands, the caller may also optionally sleep until the volatile dequeue command
has finished). In any case where sleeping is an option, the caller can also specify whether the sleep should be interruptible.

Support for blocking/sleeping is limited to Linux, it is not available on run-to-completion systems such as USDPAA.

 NOTE

The demux logic within the portal interface assumes ownership of the "contextB" field of frame queue descriptors (FQDs), so
users of this interface can not modify this field. However, callers provide the cache line of memory to be used within the driver for
each FQ object when calling qman_create_fq(), so they can extend this structure into adjacent cachelines with their own data
and use this instead of contextB for their own purposes. Ie. when callbacks are invoked because of dequeued frames, enqueue
rejections, or retirement notifications, those callbacks will find their custom per-FQ data adjacent to the FQ object pointer they are
passed. Moreover, if context-stashing is enabled for the portal and the FQD is configured to stash 1 or more cachelines of context,
the QMan driver's demux function will be implicitly accelerated because the FQ object will be prefetched into processor cache.
Any adjacent data that is covered by the FQ's stashing configuration could likewise lead to acceleration of the owner's dequeue
callbacks, ie. by reducing or eliminating cache misses in fast-path processing.

8.2.3.2.5.1.2 Frame and Message Handling
When DQRR or MR ring entries are produced by hardware to software, callbacks that have been provided by the API user are
invoked to allow those entries to be handled prior to the driver consuming them. These callbacks are provided in the 'qman_fq_cb'
structure type.

struct qman_fq_cb {
 qman_cb_dqrr dqrr; /* for dequeued frames */
 qman_cb_mr ern; /* for software ERNs */
 qman_cb_mr dc_ern; /* for diverted hardware ERNs */
 qman_cb_mr fqr; /* retirement messages */
};
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
 struct qman_fq *fq, const struct qm_dqrr_entry *dqrr);
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
 const struct qm_mr_entry *msg);
enum qman_cb_dqrr_result {
 /* DQRR entry can be consumed */
 qman_cb_dqrr_consume,
 /* Like _consume, but requests parking - FQ must be held-active */
 qman_cb_dqrr_park,
 /* Does not consume, for DCA mode only. This allows out-of-order
 * consumes by explicit calls to qman_dca() and/or the use of implicit
 * DCA via EQCR entries. */
 qman_cb_dqrr_defer
};

8.2.3.2.5.1.3 Portal management (QMan)
The portal management API provides qman_affine_cpus(), which returns a mask that indicates which CPUs have auto-
initialiazed portals associated with them. See QMan portal device-tree node on page 452. All other QMan API functions must
be executed on CPUs contained within this mask, and any interactions they require with h/w will be performed on the
corresponding portals.

/**
 * qman_affine_cpus - return a mask of cpus that have portal access
 */
const cpumask_t *qman_affine_cpus(void);

8.2.3.2.5.1.3.1 Modifying interrupt-driven portal duties (QMan)

Portals have various servicing duties they must perform in reaction to hardware events. The portal management API allows
applications to control which of these duties/events are triggered by interrupt-handling versus those which are performed at the

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
454 NXP Semiconductors

application's explicit request via qman_poll() (or more specifically, via qman_poll_dqrr() and qman_poll_slow()). If portal-sharing
is in effect (see Portal sharing on page 440), these APIs won’t succeed when called from a slave CPU.

#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
 QM_PIRQ_MRI)
/**
 * qman_irqsource_get - return the portal work that is interrupt-driven
 *
 * Returns a bitmask of QM_PIRQ_**I processing sources that are currently
 * enabled for interrupt handling on the current cpu's affine portal. These
 * sources will trigger the portal interrupt and the interrupt handler (or a
 * tasklet/bottom-half it defers to) will perform the corresponding processing
 * work. The qman_poll_***() functions will only process sources that are not in
 * this bitmask. If the current CPU is sharing a portal hosted on another CPU,
 * this always returns zero.
 */
u32 qman_irqsource_get(void);
/**
 * qman_irqsource_add - add processing sources to be interrupt-driven
 * @bits: bitmask of QM_PIRQ_**I processing sources
 *
 * Adds processing sources that should be interrupt-driven (rather than
* processed via qman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_add(u32 bits);
/**
* qman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via qman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_remove(u32 bits);

8.2.3.2.5.1.3.2 Processing non-interrupt-driven portal duties (QMan)

If portal-sharing is in effect (see Portal sharing on page 440), these APIs won’t succeed when called from a slave CPU.

/**
* qman_poll_dqrr - process DQRR (fast-path) entries
* @limit: the maximum number of DQRR entries to process
*
* Use of this function requires that DQRR processing not be interrupt-driven.
* Ie. the value returned by qman_irqsource_get() should not include
* QM_PIRQ_DQRI. If the current CPU is sharing a portal hosted on another CPU,
* this function will return -EINVAL, otherwise the return value is >=0 and
* represents the number of DQRR entries processed.
*/
int qman_poll_dqrr(unsigned int limit);
/**
QMan Portal APIs
QMan, BMan API RM, Rev. 0.13
6-34 NXP Confidential Proprietary NXP Semiconductors
Preliminary—Subject to Change Without Notice
* qman_poll_slow - process anything (except DQRR) that isn’t interrupt-driven.
*
* This function does any portal processing that isn’t interrupt-driven. If the
* current CPU is sharing a portal hosted on another CPU, this function will
* return -EINVAL, otherwise returns zero for success.
*/
void qman_poll_slow(void);
/**

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 455

 * qman_poll - legacy wrapper for qman_poll_dqrr() and qman_poll_slow()
 *
 * Dispatcher logic on a cpu can use this to trigger any maintenance of the
 * affine portal. There are two classes of portal processing in question;
 * fast-path (which involves demuxing dequeue ring (DQRR) entries and tracking
 * enqueue ring (EQCR) consumption), and slow-path (which involves EQCR
 * thresholds, congestion state changes, etc). This function does whatever
 * processing is not triggered by interrupts.
 *
 * Note, if DQRR and some slow-path processing are poll-driven (rather than
 * interrupt-driven) then this function uses a heuristic to determine how often
 * to run slow-path processing - as slow-path processing introduces at least a
 * minimum latency each time it is run, whereas fast-path (DQRR) processing is
 * close to zero-cost if there is no work to be done. Applications can tune this
 * behavior themselves by using qman_poll_dqrr() and qman_poll_slow() directly
 * rather than going via this wrapper.
 */
void qman_poll(void);

8.2.3.2.5.1.3.3 Recovery support (QMan)

Note that the following functions require the QMan portal to have been initialized in "recovery mode", which is not possible with
the current release. As such, these functions are for future use only (and documented here only because they're declared in the
API header).

/**
 * qman_recovery_cleanup_fq - in recovery mode, cleanup a FQ of unknown state
 */
int qman_recovery_cleanup_fq(u32 fqid);
/**
 * qman_recovery_exit - leave recovery mode
 */
int qman_recovery_exit(void);

8.2.3.2.5.1.3.4 Stopping and restarting dequeues to the portal

/**
 * qman_stop_dequeues - Stop h/w dequeuing to the s/w portal
 *
 * Disables DQRR processing of the portal. This is reference-counted, so
 * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
 * truly re-enable dequeuing.
 */
void qman_stop_dequeues(void);
/**
 * qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal
 *
 * Enables DQRR processing of the portal. This is reference-counted, so
 * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
 * truly re-enable dequeuing.
 */
void qman_start_dequeues(void);

8.2.3.2.5.1.3.5 Manipulating the portal static dequeue command

/**
 * qman_static_dequeue_add - Add pool channels to the portal SDQCR
 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
 *
 * Adds a set of pool channels to the portal's static dequeue command register
 * (SDQCR). The requested pools are limited to those the portal has dequeue
 * access to.
 */
void qman_static_dequeue_add(u32 pools);
/**
 * qman_static_dequeue_del - Remove pool channels from the portal SDQCR
 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
456 NXP Semiconductors

 *
 * Removes a set of pool channels from the portal's static dequeue command
 * register (SDQCR). The requested pools are limited to those the portal has
 * dequeue access to.
 */
void qman_static_dequeue_del(u32 pools);
/**
 * qman_static_dequeue_get - return the portal's current SDQCR
 *
 * Returns the portal's current static dequeue command register (SDQCR). The
 * entire register is returned, so if only the currently-enabled pool channels
 * are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK.
 */
u32 qman_static_dequeue_get(void);

8.2.3.2.5.1.3.6 Determining if the enqueue ring is empty

/**
 * qman_eqcr_is_empty - Determine if portal's EQCR is empty
 *
 * For use in situations where a cpu-affine caller needs to determine when all
 * enqueues for the local portal have been processed by QMan but can't use the
 * QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue().
 * The function forces tracking of EQCR consumption (which normally doesn't
 * happen until enqueue processing needs to find space to put new enqueue
 * commands), and returns zero if the ring still has unprocessed entries,
 * non-zero if it is empty.
 */
int qman_eqcr_is_empty(void);

8.2.3.2.5.1.4 Frame queue management
Frame queue objects are stored in memory provided by the caller, which makes the API for this object representation a little
peculiar at first sight. The motivating factors are memory management and stashing of frame queue context. Another factor is
that frame queue objects are the only objects in the QMan (or BMan) high level interfaces that are essentially arbitrary in
number, so having the caller provide storage relieves the driver of having to know the best allocation scheme for all
applications.

The qman_create_fq() API creates a new frame queue object, using the caller-supplied storage, and in which the caller has already
configured the callback functions to be used for handling hardware-produced data - namely, DQRR entries and MR entries, the
latter divided according to the type of message (software-enqueue rejections, hardware-enqueue rejections, or frame queue state
changes).

#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/FMan */
#define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */
#define QMAN_FQ_FLAG_AS_I 0x00000010 /* query h/w state */
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
struct qman_fq {
 /* Caller of qman_create_fq() provides these demux callbacks */
 struct qman_fq_cb {
 qman_cb_dqrr dqrr; /* for dequeued frames */
 qman_cb_mr ern; /* for s/w ERNs */
 qman_cb_mr dc_ern; /* for diverted h/w ERNs */
 qman_cb_mr fqs; /* frame-queue state changes*/
 } cb;
 /* Internal to the driver, don't touch. */
 [...]
};
/**
 * qman_create_fq - Allocates a FQ
 * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
 * @flags: bit-mask of QMAN_FQ_FLAG_*** options
 * @fq: memory for storing the 'fq', with callbacks filled in
 *
 * Creates a frame queue object for the given @fqid, unless the

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 457

 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
 * dynamically allocated (or the function fails if none are available). Once
 * created, the caller should not touch the memory at 'fq' except as extended to

 * adjacent memory for user-defined fields (see the definition of "struct
 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
 * pre-existing frame-queues that aren't to be otherwise interfered with, it
 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
 * causes the driver to honour any contextB modifications requested in the
 * qm_init_fq() API, as this indicates the frame queue will be consumed by a
 * direct-connect portal (PME, CAAM, or FMan). When frame queues are consumed by

 * software portals, the contextB field is controlled by the driver and can't be

 * modified by the caller. If the AS_SI flag is specified, management commands
 * will be used on portal @p to query state for frame queue @fqid and construct
 * a frame queue object based on that, rather than assuming/requiring that it be
 * Out of Service.
 */
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
#define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */
/**
 * qman_destroy_fq - Deallocates a FQ
 * @fq: the frame queue object to release
 * @flags: bit-mask of QMAN_FQ_DESTROY_*** options
 *
 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
 * not deallocated but the caller regains ownership, to do with as desired. The
 * FQ must be in the 'out-of-service' state unless the QMAN_FQ_DESTROY_PARKED
 * flag is specified, in which case it may also be in the 'parked' state.
 */
void qman_destroy_fq(struct qman_fq *fq, u32 flags);

8.2.3.2.5.1.4.1 Querying a FQ object

The following functions do not interact with h/w, they simply return the state that the QMan driver tracks within the FQ object.

/**
 * qman_fq_fqid - Queries the frame queue ID of a FQ object
 * @fq: the frame queue object to query
 */
u32 qman_fq_fqid(struct qman_fq *fq);
enum qman_fq_state {
 qman_fq_state_oos,
 qman_fq_state_parked,
 qman_fq_state_sched,
 qman_fq_state_retired
};
#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
/**
 * qman_fq_state - Queries the state of a FQ object
 * @fq: the frame queue object to query
 * @state: pointer to state enum to return the FQ scheduling state
 * @flags: pointer to state flags to receive QMAN_FQ_STATE_*** bitmask
 *
 * Queries the state of the FQ object, without performing any h/w commands.
 * This captures the state, as seen by the driver, at the time the function
 * executes.
 */
void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags);

8.2.3.2.5.1.4.2 Initialize a FQ

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
458 NXP Semiconductors

The qman_init_fq() API requires that the caller fill in the details of the Initialize FQ command that they desire, and uses the 'struct
qm_mcc_initfq' structure type to this end. This structure is quite elaborate, please consult the API header file and SDK examples
for more informatoin.

#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
#define QMAN_INITFQ_FLAG_NULL 0x00000002 /* zero 'contextB', no demux */
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
/**
 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
 * @fq: the frame queue object to modify, must be 'parked' or new.
 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
 * @opts: the FQ-modification settings, as defined in the low-level API
 *
 * @opts: the FQ-modification settings
*
* Select QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be
* scheduled rather than parked. Select QMAN_INITFQ_FLAG_NULL in @flags to
* configure a frame queue that will not demux to a ’struct qman_fq’ object when
* dequeued frames or messages arrive at a software portal, but which will
* instead trigger the portal’s ’null_cb’ callbacks (see qman_create_portal()).
* NB, @opts can be NULL.
 *
 * Note that some fields and options within @opts may be ignored or overwritten
 * by the driver;
 * 1. the 'count' and 'fqid' fields are always ignored (this operation only
 * affects one frame queue: @fq).
 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
 * 'fqd' structure's 'context_b' field are sometimes overwritten;
 * - if @flags contains QMAN_INITFQ_FLAG_NULL, then context_b is initialized
 * to zero by the driver,
 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
 * initialized to a value used by the driver for demux.
 * - if context_b is initialized for demux, so is context_a in case stashing
 * is requested (see item 4).
 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
 * objects.)
 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
 * 'dest::channel' field will be overwritten to match the portal used to issue
 * the command. If the WE_DESTWQ write-enable bit had already been set by the
 * caller, the channel workqueue will be left as-is, otherwise the write-enable
 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
 * isn't set, the destination channel/workqueue fields and the write-enable bit
 * are left as-is.
 * 4. if the driver overwrites context_a/b for demux, then if
 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
 * context_a.address fields and will leave the stashing fields provided by the
 * user alone, otherwise it will zero out the context_a.stashing fields.
 */
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);

8.2.3.2.5.1.4.3 Schedule a FQ

/**
 * qman_schedule_fq - Schedules a FQ
 * @fq: the frame queue object to schedule, must be 'parked'
 *
 * Schedules the frame queue, which must be Parked, which takes it to
 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
 */
int qman_schedule_fq(struct qman_fq *fq);

8.2.3.2.5.1.4.4 Retire a FQ

/**
 * qman_retire_fq - Retires a FQ
 * @fq: the frame queue object to retire
 * @flags: FQ flags (as per qman_fq_state) if retirement completes immediately
 *

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 459

 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
 * the retirement was started asynchronously, otherwise it returns negative for
 * failure. When this function returns zero, @flags is set to indicate whether
 * the retired FQ is empty and/or whether it has any ORL fragments (to show up
 * as ERNs). Otherwise the corresponding flags will be known when a subsequent
 * FQRN message shows up on the portal's message ring.
 *
 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
 * Active state), the completion will be via the message ring as a FQRN - but
 * the corresponding callback may occur before this function returns!! Ie. the
 * caller should be prepared to accept the callback as the function is called,
 * not only once it has returned.
 */
int qman_retire_fq(struct qman_fq *fq, u32 *flags);

8.2.3.2.5.1.4.5 Put a FQ out of service

/**
 * qman_oos_fq - Puts a FQ "out of service"
 * @fq: the frame queue object to be put out-of-service, must be 'retired'
 *
 * The frame queue must be retired and empty, and if any order restoration list
 * was released as ERNs at the time of retirement, they must all be consumed.
 */
int qman_oos_fq(struct qman_fq *fq);

8.2.3.2.5.1.4.6 Query a FQD from QMan

The following functions perform query commands via the QMan software portal to obtain information about the FQD corresponding
to the given FQ object. The data structures used by the query are quite elaborate, please consult the API header file and SDK
examples for more information.

/**
 * qman_query_fq - Queries FQD fields (via h/w query command)
 * @fq: the frame queue object to be queried
 * @fqd: storage for the queried FQD fields
 */
int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd);
/**
 * qman_query_fq_np - Queries non-programmable FQD fields
 * @fq: the frame queue object to be queried
 * @np: storage for the queried FQD fields
 */
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);

8.2.3.2.5.1.4.7 Unscheduled (volatile) dequeuing of a FQ

#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
/**
 * qman_volatile_dequeue - Issue a volatile dequeue command
 * @fq: the frame queue object to dequeue from (or NULL)
 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
 *
 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
 * the VDQCR is already in use, otherwise returns non-zero for failure. If
 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
 * the VDQCR command has finished executing (ie. once the callback for the last
 * DQRR entry resulting from the VDQCR command has been called). If @fq is
 * non-NULL, the corresponding FQID will be substituted in to the VDQCR command,
 * otherwise it is assumed that @vdqcr already contains the FQID to dequeue
 * from.
 */
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
460 NXP Semiconductors

8.2.3.2.5.1.4.8 Set FQ flow control state

/**
 * qman_fq_flow_control - Set the XON/XOFF state of a FQ
 * @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos',
 * or 'retired' or 'parked' state
 * @xon: boolean to set fq in XON or XOFF state
 *
 * The frame should be in Tentatively Scheduled state or Truly Schedule sate,
 * otherwise the IFSI interrupt will be asserted.
 */
int qman_fq_flow_control(struct qman_fq *fq, int xon);

8.2.3.2.5.1.5 Enqueue Command (without ORP)
#define QMAN_ENQUEUE_FLAG_WAIT 0x00010000 /* wait if EQCR is full */
#define QMAN_ENQUEUE_FLAG_WAIT_INT 0x00020000 /* if wait, interruptible? */
#define QMAN_ENQUEUE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */
#define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */
#define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */
#define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */
#define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \
 (((u32)(p) << 2) & 0x00000f00)
#define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */
#define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008
#define QMAN_ENQUEUE_FLAG_C_RED 0x00000010
#define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018
/**
 * qman_enqueue - Enqueue a frame to a frame queue
 * @fq: the frame queue object to enqueue to
 * @fd: a descriptor of the frame to be enqueued
 * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
 *
 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
 * field is ignored. The return value is non-zero on error, such as ring full
 * (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR
 * specified), etc. If the ring is full and FLAG_WAIT is specified, this
 * function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal
 * interrupt will assert when QMan consumes the EQCR entry (subject to "status
 * disable", "enable", and "inhibit" registers). If FLAG_DCA is set, QMan will
 * perform an implied "discrete consumption acknowledgement" on the dequeue
 * ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x)
 * macro. (As an alternative to issuing explicit DCA actions on DQRR entries,
 * this implicit DCA can delay the release of a "held active" frame queue
 * corresponding to a DQRR entry until QMan consumes the EQCR entry - providing
 * order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is
 * set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption
 * acknowledgement should "park request" the "held active" frame queue. Ie.
 * when the portal eventually releases that frame queue, it will be left in the
 * Parked state rather than Tentatively Scheduled or Truly Scheduled. If the
 * portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag
 * is requested, and the FQ is a member of a congestion group, then this
 * function returns -EAGAIN if the congestion group is currently congested.
 * Note, this does not eliminate ERNs, as the async interface means we can be
 * sending enqueue commands to an un-congested FQ that becomes congested before
 * the enqueue commands are processed, but it does minimise needless thrashing
 * of an already busy hardware resource by throttling many of the to-be-dropped
 * enqueues "at the source".
 */
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags);

8.2.3.2.5.1.6 Enqueue Command with ORP
/* Same flags as qman_enqueue(), with the following additions;

 * - this flag indicates "Not Last In Sequence", ie. all but the final fragment

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 461

 * of a frame. */
#define QMAN_ENQUEUE_FLAG_NLIS 0x01000000
/* - this flag performs no enqueue but fills in an ORP sequence number that
 * would otherwise block it (eg. if a frame has been dropped). */
#define QMAN_ENQUEUE_FLAG_HOLE 0x02000000
/* - this flag performs no enqueue but advances NESN to the given sequence
 * number. */
#define QMAN_ENQUEUE_FLAG_NESN 0x04000000
/*
 * qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP
 * @fq: the frame queue object to enqueue to
 * @fd: a descriptor of the frame to be enqueued
 * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
 * @orp: the frame queue object used as an order restoration point.
 * @orp_seqnum: the sequence number of this frame in the order restoration path
 *
 * Similar to qman_enqueue(), but with the addition of an Order Restoration
 * Point (@orp) and corresponding sequence number (@orp_seqnum) for this
 * enqueue operation to employ order restoration. Each frame queue object acts
 * as an Order Definition Point (ODP) by providing each frame dequeued from it
 * with an incrementing sequence number, this value is generally ignored unless
 * that sequence of dequeued frames will need order restoration later. Each
 * frame queue object also encapsulates an Order Restoration Point (ORP), which
 * is a re-assembly context for re-ordering frames relative to their sequence
 * numbers as they are enqueued. The ORP does not have to be within the frame
 * queue that receives the enqueued frame, in fact it is usually the frame
 * queue from which the frames were originally dequeued. For the purposes of
 * order restoration, multiple frames (or "fragments") can be enqueued for a
 * single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all
 * enqueues except the final fragment of a given sequence number. Ordering
 * between sequence numbers is guaranteed, even if fragments of different
 * sequence numbers are interlaced with one another. Fragments of the same
 * sequence number will retain the order in which they are enqueued. If no
 * enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given
 * sequence number is to be "skipped" by the ORP logic (eg. if a frame has been
 * dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given
 * sequence number should become the ORP's "Next Expected Sequence Number".
 *
 * Side note: a frame queue object can be used purely as an ORP, without
 * carrying any frames at all. Care should be taken not to deallocate a frame
 * queue object that is being actively used as an ORP, as a future allocation
 * of the frame queue object may start using the internal ORP before the
 * previous use has finished.
 */
int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,

 struct qman_fq *orp, u16 orp_seqnum);

8.2.3.2.5.1.7 DCA Mode
As described in Order Preservation & Discrete Consumption Acknowledgement on page 450, FQs initialized for "hold active"
behavior can have order-preservation behavior if their DQRR entries are consumed either by implicit DCA in the enqueue
command when forwarding, or by explicit DCA if the frame is not going to be forwarded. The implicit DCA via enqueue is described
in Enqueue Command (without ORP) on page 461, this section describes the API for performing an explicit DCA on a DQRR
entry. As with the implicit DCA via enqueue, explicit DCA commands also allow the caller to specify that the FQ be Parked rather
than rescheduled once all its DQRR entries are consumed.

/**
 * qman_dca - Perform a Discrete Consumption Acknowledgement
 * @dq: the DQRR entry to be consumed
 * @park_request: indicates whether the held-active @fq should be parked
 *
 * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
 * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
 * does not take a 'portal' argument but implies the core affine portal from the

 * cpu that is currently executing the function. For reasons of locking, this

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
462 NXP Semiconductors

 * function must be called from the same CPU as that which processed the DQRR
 * entry in the first place.
 */
void qman_dca(struct qm_dqrr_entry *dq, int park_request);

8.2.3.2.5.1.8 Congestion Management Records
QMan supports a fixed number[12] of built-in resources called Congestion Group Records (CGRs), that can be used as containers
for related frame queues that should collectively benefit from congestion management. The precise algorithms used for congestion
management with these records is beyond the scope of the document, please see the Queue Manager section of the appropraite
QorIQ SoC Reference Manual for details.

The CGR kernel structure enables access to the CGR hardware functionality. Each object refers to an underlining hardware record
via the cgrid field. Many CGR object may reference the same cgrid, but care must be taken when this object resides on different
cores as no inter-core protection is provided.

The init frame queue functionality allows the caller to associate a CGR with the associated frame queue. The interface permits
the management and modification of the underlining CGRs and notifies the user of congestion state changed. The current interface
does not provide a mechanism to manage CGR ids. The application software is expected to arbitrate use of CGR ids.

/* Flags to qman_modify_cgr() */
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
/**
 * This is a qman cgr callback function which gets invoked when the
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
 struct qman_cgr *cgr, int congested);
struct qman_cgr {
 /* Set these prior to qman_create_cgr() */
 u32 cgrid; /* 0..255 */
 qman_cb_cgr cb;
 enum qm_channel chan; /* portal channel this object is created on */
 struct list_head node;
};
/* When Weighted Random Early Discard (WRED) is used then the following
 * structure is used to configure the WRED parameters. Refer to the QMan
 * Block Guide for a detailed description of the various parameters.
 */
struct qm_cgr_wr_parm {
 union {
 u32 word;
 struct {
 u32 MA:8;
 u32 Mn:5;
 u32 SA:7; /* must be between 64-127 */
 u32 Sn:6;
 u32 Pn:6;
 } __packed;
 };
} __packed;
/* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
 * management commands, this is padded to a 16-bit structure field, so that's
 * how we represent it here. The congestion state threshold is calculated from
 * these fields as follows;
 * CS threshold = TA * (2 ^ Tn)
 */
struct qm_cgr_cs_thres {
 u16 __reserved:3;
 u16 TA:8;
 u16 Tn:5;
} __packed;
/* This identical structure of CGR fields is present in the "Init/Modify CGR"
 * commands and the "Query CGR" result. It's suctioned out here into its own
 * struct. */
struct __qm_mc_cgr {
 struct qm_cgr_wr_parm wr_parm_g;

[12] 256 for P4080/P5020/P3041

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 463

 struct qm_cgr_wr_parm wr_parm_y;
 struct qm_cgr_wr_parm wr_parm_r;
 u8 wr_en_g; /* boolean, use QM_CGR_EN */
 u8 wr_en_y; /* boolean, use QM_CGR_EN */
 u8 wr_en_r; /* boolean, use QM_CGR_EN */
 u8 cscn_en; /* boolean, use QM_CGR_EN */
 union {
 struct {
 u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
 u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
 };
 u32 cscn_targ; /* use QM_CGR_TARG_* */
 };
 u8 cstd_en; /* boolean, use QM_CGR_EN */
 u8 cs; /* boolean, only used in query response */
 struct qm_cgr_cs_thres cs_thres;
 u8 mode; /* QMAN_CRG_MODE_FRAME not supported in rev1.0 */
} __packed
struct qm_mcc_initcgr {
 u8 __reserved1;
 u16 we_mask; /* Write Enable Mask */
 struct __qm_mc_cgr cgr; /* CGR fields */
 u8 __reserved2[2];
 u8 cgid;
 u8 __reserved4[32];
} __packed;
/**
 * qman_create_cgr - Register a congestion group object
 * @cgr: the 'cgr' object, with fields filled in
 * @flags: QMAN_CGR_FLAG_* values
 * @opts: optional state of CGR settings
 *
 * Registers this object to receiving congestion entry/exit callbacks on the
 * portal affine to the cpu portal on which this API is executed. If opts is
 * NULL then only the callback (cgr->cb) function is registered. If @flags
 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
 * any unspecified parameters) will be used rather than a modify hw hardware
 * (which only modifies the specified parameters).
 */
int qman_create_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts);
/**
 * qman_create_cgr_to_dcp - Register a congestion group object to DCP portal
 * @cgr: the 'cgr' object, with fields filled in
 * @flags: QMAN_CGR_FLAG_* values
 * @dcp_portal: the DCP portal to which the cgr object is registered
 * @opts: optional state of CGR settings
 *
 */
int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
 struct qm_mcc_initcgr *opts);
/**
 * qman_delete_cgr - Deregisters a congestion group object
 * @cgr: the 'cgr' object to deregister
 *
 * "Unplugs" this CGR object from the portal affine to the cpu on which this API
 * is executed. This must be excuted on the same affine portal on which it was
 * created.
 */
int qman_delete_cgr(struct qman_cgr *cgr);
/**
 * qman_modify_cgr - Modify CGR fields
 * @cgr: the 'cgr' object to modify
 * @flags: QMAN_CGR_FLAG_* values
 * @opts: the CGR-modification settings
 *
 * The @opts parameter can be NULL. Note that some fields and options within
* @opts may be ignored or overwritten by the driver, in particular the ’cgrid’
* field is ignored (this operation only affects the given CGR object). If
* @flags contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
464 NXP Semiconductors

* reset any unspecified parameters) will be used rather than a modify hw
* hardware (which only modifies the specified parameters).
 */
int qman_modify_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts);
/**
 * qman_query_cgr - Queries CGR fields
 * @cgr: the 'cgr' object to query
 * @result: storage for the queried congestion group record
 */
int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result);

8.2.3.2.5.1.9 Zero-Configuration Messaging
As described in Overview (QMan) on page 453, the demux logic of the QMan portal driver uses the contextB field of FQDs, as
published in DQRR and MR entries, to determine the corresponding FQ object, and from there the DQRR or MR callback to
invoke. However, "default callbacks" can also be associated with a portal that will be used if a "NULL" FQ is dequeued from, where
NULL refers to a FQD whose contextB entry has been initialized to NULL (this occurs when using the
QMAN_INITFQ_FLAG_NULL flag to the qman_init_fq() API, described in Initialize a FQ on page 458).

The purpose of this mechanism is to allow the user of one portal to enqueue frames on any frame queue that is configured in this
way and schedule it to another portal. For virtualization or AMP scenarios, it is a difficult architectural problem to configure all
guest operating systems to agree, in advance, on run-time parameters. The use of NULL frame queues allows a control plane
guest OS to use any frame queue, configured with a NULL "contextB" field (see the QMAN_INITFQ_FLAG_NULL flag in the
"Frame queue management" section below), to send any and all such configuration to another guest by scheduling that NULL
frame queue to one of the target guest's portals. The target guest will have the portal's "NULL" callbacks invoked rather than
those of any frame queue objects, and as such this provides what could be considered a "zero-configuration" interface - no
agreement is required over what frame queue that configuration information will be arriving on, only that the configuration will
arrive via the portal as a message on a NULL frame queue.

Unless the payload of FDs passed over a zero-config FQ fits entirely within the 32-bit cmd/status field, buffers will

presumably be required and the zero-configuration mechanism described here does not address how the sending

and receiving ends should agree on what memory resources and management to use for this.

 NOTE

/**
 * qman_get_null_cb - get callbacks currently used for "null" frame queues
 *
 * Copies the callbacks used for the affine portal of the current cpu.
 */
void qman_get_null_cb(struct qman_fq_cb *null_cb);
/**
 * qman_set_null_cb - set callbacks to use for "null" frame queues
 *
 * Sets the callbacks to use for the affine portal of the current cpu, whenever
 * a DQRR or MR entry refers to a "null" FQ object. (Eg. zero-conf messaging.)
 */
void qman_set_null_cb(const struct qman_fq_cb *null_cb);

8.2.3.2.5.1.10 FQ allocation
8.2.3.2.5.1.10.1 Ad-hoc FQ allocator

As described in Seeding Buffer Pools on page 439>, BMan buffer pool ID zero is currently reserved for use as an ad-hoc FQ
allocator. As seen in Frame queue management on page 457, this feature can be used implicitly when creating a FQ object by
passing the QMAN_FQ_FLAG_DYNAMIC_FQID flag to qman_init_fq(). The advantage of this mechanism is that it works across
all cpus/portals, independent of any hypervisor or other system partitioning. The disadvantage of this mechanism is that does not
permit the atomic nor contiguous allocation of more than one FQ at a time, and in particular most high-performance uses of FMan
require contiguous ranges of FQIDs that also meet certain alignment requirements (ie. that the FQID range begins on an aligned
FQID value).

8.2.3.2.5.1.10.2 FQ range allocator

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 465

The following APIs allow software to allocate and release arbitrary ranges of FQIDs, but it should be noted that the current version
of the NXP Datapath software implements this without any hardware interaction. As such, multiple (guest) systems running on
the same chip will each have their own allocator and are not aware of each other's (de)allocations. The range allocator's default
state is empty, and it can be seeded by calling qman_release_fqid_range() on initialization with an appropriate FQID range to
manage. The intention is for the control-plane software to initialize this range and to perform all allocations and deallocations on
behalf of any software running on different system instances.

/**
 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
 * @result: is set by the API to the base FQID of the allocated range
 * @count: the number of FQIDs required
 * @align: required alignment of the allocated range
 * @partial: non-zero if the API can return fewer than @count FQIDs
 * Returns the number of frame queues allocated, or a negative error code. If
 * @partial is non zero, the allocation request may return a smaller range of
 * FQs than requested (though alignment will be as requested). If @partial is
 * zero, the return value will either be 'count' or negative.
 */
int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial);
/**
 * qman_release_fqid_range - Release the specified range of frame queue IDs
 * @fqid: the base FQID of the range to deallocate
 * @count: the number of FQIDs in the range
 *
 * This function can also be used to seed the allocator with ranges of FQIDs
 * that it can subsequently use. Returns zero for success.
 */
void qman_release_fqid_range(u32 fqid, unsigned int count);

8.2.3.2.5.1.10.3 Future FQ allocator changes

Please note that a future version of the NXP Datapath software will automatically seed the range allocator with all FQIDs available
to QMan, it will reimplement these APIs over an IPC layer such that all system instances share a common allocator instance, and
the BMan-based FQ allocator will be removed and the corresponding APIs being reimplemented to use this range allocator.

8.2.3.2.5.1.11 Helper functions
In cases where software running on different CPUs communicate using QMan frame queues, there can arise an initialization
problem related to synchronisation. If one side is termed the producer and the other the consumer, then the question becomes
one of when it is safe for the producer to enqueue to that FQ. It is normal for software consumers to take care of initializing and
scheduling FQs, because they must provide initialization and scheduling details in order for dequeue-handling to function correctly.
But on the producer side, any attempt to enqueue to the FQ prior to the FQ being initialized will be rejected (enqueues are not
permitted to OutOfService FQs). The following inline function can be used directly or as an example of how to determine when a
FQ has changed state.

It is safe for the producer to enqueue once the FQ has been initialized but not yet scheduled by the consumer.

 NOTE

/**
 * qman_poll_fq_for_init - Check if an FQ has been initialized from OOS
 * @fqid: the FQID that will be initialized by other s/w
 *
 * In many situations, a FQID is provided for communication between s/w
 * entities, and whilst the consumer is responsible for initialising and
 * scheduling the FQ, the producer(s) generally create a wrapper FQ object using
 * and only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie;
 * qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...);
 * However, data can not be enqueued to the FQ until it is initialized out of
 * the OOS state - this function polls for that condition. It is particularly
 * useful for users of IPC functions - each endpoint's Rx FQ is the other
 * endpoint's Tx FQ, so each side can initialise and schedule their Rx FQ object
 * and then use this API on the (NO_MODIFY) Tx FQ object in order to
 * synchronise. The function returns zero for success, +1 if the FQ is still in
 * the OOS state, or negative if there was an error.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
466 NXP Semiconductors

 */
static inline int qman_poll_fq_for_init(struct qman_fq *fq)
{
 struct qm_mcr_queryfq_np np;
 int err;
 err = qman_query_fq_np(fq, &np);
 if (err)
 return err;
 if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS)
 return 1;
 return 0;
}

8.2.3.2.6 Sysfs and debugfs QMan/BMan interfaces
The following section describes the QMan and BMan interfaces available via sysfs and debugfs.

Check the device-tree of each SoC to determine the interfaces available. For more information, see the Reference

Manual for the SoC, and/or examine the sysfs filesystem at run-time.

 NOTE

8.2.3.2.6.1 QMan sysfs
8.2.3.2.6.1.1 /sys/devices/platform/soc/1880000.qman/
Description:

This directory contains a snapshot of the internal state of the qman device.

8.2.3.2.6.1.2 /sys/devices/ffe000000.soc/ffe318000.qman/error_capture
Description:

This directory contains a snapshot of error related qman attributes.

8.2.3.2.6.1.3 /sys/devices/ffe000000.soc/ffe318000.qman/error_capture/sbec_<0..6>
Description:

Provides a count of the number of single bit ECC errors that have occurred when reading from one of the QMan internal memories.
The range <0..6> represent a QMAN internal memory region defined as follows:

0: FQD cache memory

1: FQD cache tag memory

2: SFDR memory

3: WQ context memory

4: Congestion Group Record memory

5: Internal Order Restoration List memory

6: Software Portal ring memory

This file is read-reset.

8.2.3.2.6.1.4 /sys/devices/ffe000000.soc/ffe318000.qman/sfdr_in_use
Description:

Reports the number of SFDR currently in use. The minimum value is 1.

This file is read-only.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 467

8.2.3.2.6.1.5 /sys/devices/ffe000000.soc/ffe318000.qman/pfdr_fpc
Description:

Total Packed Frame Descriptor Record Free Pool Count in external memory.

This file is read-only

8.2.3.2.6.1.6 /sys/devices/ffe000000.soc/ffe318000.qman/pfdr_cfg
Description:

Used to read the configuration of the dynamic allocation policy for PFDRs. The value is used to account for PFDR that may be
required to complete any currently executing operations in the sequencers.

This file is read-only.

8.2.3.2.6.1.7 /sys/devices/ffe000000.soc/ffe318000.qman/idle_stat
Description:

This file can be used to determine when QMan is both idle and empty. The possible values are:

0: All work queues in QMan are NOT empty and QMan is NOT idle.

1: All work queues in QMan are NOT empty and QMan is idle.

2: All work queues in QMan are empty

3: All work queues in QMan are empty and QMan is idle.

This file is read-only.

8.2.3.2.6.1.8 /sys/devices/ffe000000.soc/ffe318000.qman/err_isr
Description:

QMan contains one dedicated interrupt line for signaling error conditions to software. This file identifies the source of the error
interrupt within QMan. The value is displayed in hexadecimal format. Refer to the appropriate QorIQ SOC Reference Manual for
a description of the QMAN_ERR_ISR register.

This file is read-only.

8.2.3.2.6.1.9 /sys/devices/ffe000000.soc/ffe318000.qman/dcp<0..3>_dlm_avg
Description:

These files contain an EWMA (exponentially weighted moving average) of dequeue latency samples for dequeue commands
received on the sub portal. The range <0..3> refers to each of the direct-connect portals. The display format is as follows:
<avg_interger>.<avg_fraction>

This file can be seeded with a interger value. The input interger is processed in the following manner: <avg_fraction> = lowest 8
bits / 256 , <avg_interger> = next 12 bits

ex: echo 0x201 > dcp0_dlm_avg

cat dcp0_dlm_avg

0.00390625

This file is read-write

8.2.3.2.6.1.10 /sys/devices/ffe000000.soc/ffe318000.qman/ci_rlm_avg
Description:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
468 NXP Semiconductors

This file contains an EWMA (exponentially weighted moving average) of read latency samples for reads on CoreNet initiated by
QMan. The display format is as follows: <avg_interger>.<avg_fraction>

This file can be seeded with a interger value. The input interger is processed in the following manner: <avg_fraction> = lowest 8
bits / 256 , <avg_interger> = next 12 bits

ex: echo 0x201 > ci_rlm_avg

cat ci_rlm_avg

0.00390625

This file is read-write

8.2.3.2.6.2 BMan sysfs
8.2.3.2.6.2.1 /sys/devices/ffe000000.soc/ffe31a000.bman
Description:

This directory contains a snapshot of the internal state of the BMan device.

8.2.3.2.6.2.2 /sys/devices/ffe000000.soc/ffe31a000.bman/error_capture
Description:

This directory contains a snapshot of error related BMan attributes.

8.2.3.2.6.2.3 /sys/devices/ffe000000.soc/ffe31a000.bman/error_capture/sbec_<0..1>
Description:

Provides a count of the number of single bit ECC errors that have occurred when reading from one of the BMan internal memories.
The range <0..1> represent a BMAN internal memory region defined as follows:

0: Stockpile memory 0

1: Software Portal ring memory

This file is read-reset.

8.2.3.2.6.2.4 /sys/devices/ffe000000.soc/ffe31a000.bman/pool_count
Description:

This directory contains a snapshot of the number of free buffers available in any of the buffer pools.

8.2.3.2.6.2.5 /sys/devices/ffe000000.soc/ffe31a000.bman/fbpr_fpc
Description:

This file returns a snapshot of the Free Buffer Proxy Record free pool size. Total Free Buffer Proxy Record Free Pool Count in
external memory.

This file is read-only

8.2.3.2.6.2.6 /sys/devices/ffe000000.soc/ffe31a000.bman/err_isr
Description:

BMan contains one dedicated interrupt line for signaling error conditions to software. This file identifies the source of the error
interrupt within BMan. The value is displayed in hexadecimal format. Refer to the appropriate QorIQ SOC Reference Manual for
a description of the BMAN_ERR_ISR register.

This file is read-only.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 469

8.2.3.2.6.3 QMan debugfs
8.2.3.2.6.3.1 /sys/kernel/debug/qman
Description:

This directory contains various QMan device debugging attributes.

8.2.3.2.6.3.2 /sys/kernel/debug/qman/query_cgr
Description:

Query the entire contents of a Congestion Group Record. The file takes as input the Congestion Group Record ID. The output of
the file returns the various CGR fields.

For example, if we want to query cgr_id 10 we would do the following:

echo 10 > query_cgr

cat query_cgr

Query CGR id 0xa

wr_parm_g MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_y MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_r MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_en_g: 0, wr_en_y: 0, we_en_r: 0

cscn_en: 0

cscn_targ: 0

cstd_en: 0

cs: 0

cs_thresh_TA: 0, cs_thresh_Tn: 0

i_bcnt: 0

a_bcnt: 0

8.2.3.2.6.3.3 /sys/kernel/debug/qman/query_congestion
Description:

Query the state of all 256 Congestion Groups in QMan. This is a read-only file. The output of the file returns the state of all
congestion group records. The state of a congestion group is either "in congestion" or "not in congestion". Since CGR are normally
not in congestion, only CGR which are in congestion are returned. If no CGR are in congestion, then this is indicated.

For example, if we want to perform a query we would do the following:

cat query_congestion

Query Congestion Result

All congestion groups not congested.

8.2.3.2.6.3.4 /sys/kernel/debug/qman/query_fq_fields
Description:

Query the frame queue programmable fields. This file takes as input the frame queue id to be queried on a subsequent read. The
output of this file returns all the frame queue programmable fields. The default frame queue id is 1.

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
470 NXP Semiconductors

For example, if we determine that our application is using frame queue 482 we could use this file in the following manner:

echo 482 > query_fq_fields

cat query_fq_fields

Query FQ Programmable Fields Result fqid 0x1e2

orprws: 0

oa: 0

olws: 0

cgid: 0

fq_ctrl:

Aggressively cache FQ

Don't block active

Context-A stashing

Tail-Drop Enable

dest_channel: 33

dest_wq: 7

ics_cred: 0

td_mant: 128

td_exp: 7

ctx_b: 0x19e

ctx_a: 0x78b59e18

ctx_a_stash_exclusive:

FQ Ctx Stash

Frame Annotation Stash

ctx_a_stash_annotation_cl: 1

ctx_a_stash_data_cl: 2

ctx_a_stash_context_cl: 2

8.2.3.2.6.3.5 /sys/kernel/debug/qman/query_fq_np_fields
Description:

Query the frame queue non programmable fields. This file takes as input the frame queue id to be queried on a subsequent read.
The output of this file returns all the frame queue non programmable fields. The default frame queue id is 1.

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using frame queue 482 we could use this file in the following manner:

echo 482 > query_fq_np_fields

cat query_fq_np_fields

Query FQ Non Programmable Fields Result fqid 0x1e2

force eligible pending: no

retirement pending: no

state: Out of Service

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 471

fq_link: 0x0

odp_seq: 0

orp_nesn: 0

orp_ea_hseq: 0

orp_ea_tseq: 0

orp_ea_hptr: 0x0

orp_ea_tptr: 0x0

pfdr_hptr: 0x0

pfdr_tptr: 0x0

is: ics_surp contains a surplus

ics_surp: 0

byte_cnt: 0

frm_cnt: 0

ra1_sfdr: 0x0

ra2_sfdr: 0x0

od1_sfdr: 0x0

od2_sfdr: 0x0

od3_sfdr: 0x0

8.2.3.2.6.3.6 /sys/kernel/debug/qman/query_cq_fields
Description:

Query all the fileds of in a particular CQD. This file takes input as the DCP id plus the class queue id to be queried on a subsequent
read. The output of this file returns all the class queue fields. The default class queue id is 1 of DCP 0

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using class queue 4 of DCP 1, we could use this file in the following manner:

echo 0x01000004 > query_cq_fields

(The most left 8 bits are used to specify DCP id, and the rest of 24 bits are used to specify the class queue id)

cat query_fq_fields

Query CQ Fields Result cqid 0x4 on DCP 1

ccgid: 4

state: 0

pfdr_hptr: 0

pfdr_tptr: 0

od1_xsfdr: 0

od2_xsfdr: 0

od3_xsfdr: 0

od4_xsfdr: 0

od5_xsfdr: 0

od6_xsfdr: 0

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
472 NXP Semiconductors

ra1_xsfdr: 0

ra2_xsfdr: 0

frame_count: 0

8.2.3.2.6.3.7 /sys/kernel/debug/qman/query_ceetm_ccgr
Description:

Query the configuration and state fields within a CEETM Congestion Group Record that relate to congestion management(CM).
This file takes input as the DCP id(most left 8 bits) and CEETM Congestion Group Record ID(most right 24 bits). The output of
the file returns the various CCGR fields.

For example, if we want to query ccgr_id 7 of DCP 0, we would do the following:

echo 0x00000007 > query_ceetm_ccgr

cat query_ceetm_ccgr

Query CCGID 7

Query CCGR id 7 in DCP 0

wr_parm_g MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_y MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_r MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_en_g: 0,

wr_en_y: 0,

we_en_r: 0

cscn_en: 0

cscn_targ_dcp:

cscn_targ_swp:

td_en: 0

cs_thresh_in_TA: 0,

cs_thresh_in_Tn: 0

cs_thresh_out_TA: 0,

cs_thresh_out_Tn: 0

td_thresh_TA: 0,

td_thresh_Tn: 0

mode: byte count

i_cnt: 0

a_cnt: 0

8.2.3.2.6.3.8 /sys/kernel/debug/qman/query_wq_lengths
Description:

Query the length of the Work Queues in a particular channel. This file takes as input a specified channel id. The output of this
file returns the lengths of the work queues on the specified channel.

For example, if we want to query channel 1 we would do the following:

echo 1 > query_wq_lengths

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 473

cat query_wq_lengths

Query Result For Channel: 0x1

wq0_len : 0

wq1_len : 0

wq2_len : 0

wq3_len : 0

wq4_len : 0

wq5_len : 0

wq6_len : 0

wq7_len : 0

8.2.3.2.6.3.9 /sys/kernel/debug/qman/fqd/avoid_blocking_[enable | disable]
Description:

Query Avoid_Blocking bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which have their Avoid_Blocking bit mask enabled or disabled.

For example, if we want to find all frame queues with Avoid_Blocking enabled, we would do the following:

 # cat avoid_blocking_enable
 List of fq ids with: Avoid Blocking :enabled
 0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
 0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
 ...
 Total FQD with: Avoid Blocking : enabled = 528
 Total FQD with: Avoid Blocking : disabled = 32239

8.2.3.2.6.3.10 /sys/kernel/debug/qman/fqd/prefer_in_cache_[enable | disable]
Description:

Query Prefer_in_Cache bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which have their Prefer_in_Cache bit mask enabled or disabled.

For example, if we want to find all frame queues with Prefer_in_Cache enabled, we would do the following:

 # cat prefer_in_cache_enable
 List of fq ids with: Prefer in cache :enabled
 0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
 0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
 ...
 Total FQD with: Prefer in cache : enabled = 560
 Total FQD with: Prefer in cache : disabled = 32207

8.2.3.2.6.3.11 /sys/kernel/debug/qman/fqd/cge_[enable | disable]
Description:

Query Congestion_Group_Enable bit in all frame queue descriptors. This is a read only file. The output of this file returns all the
frame queue ids, in a comma seperated list, which have their Congestion_Group_Enable bit mask enabled or disabled.

For example, if we want to find all frame queues with Congestion_Group_Enable disabled, we would do the following:

 # cat cge_disable
 List of fq ids with: Congestion Group Enable :disabled
 0x000001,0x000002,0x000003,0x000004,0x000005,0x000006,0x000007,0x000008,
 0x000009,0x00000a,0x00000b,0x00000c,0x00000d,0x00000e,0x00000f,0x000010,

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
474 NXP Semiconductors

 ...
 Total FQD with: Congestion Group Enable : enabled = 0
 Total FQD with: Congestion Group Enable : disabled = 32767

8.2.3.2.6.3.12 /sys/kernel/debug/qman/fqd/cpc_[enable | disable]
Description:

Query CPC_Stash_Enable bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their CPC_Stash_Enable bit mask enabled or disabled.

For example, if we want to find all frame queues with CPC Stash disabled, we would do the following:

cat cpc_disable
List of fq ids with: CPC Stash Enable :disabled
0x000001,0x000002,0x000003,0x000004,0x000005,0x000006,0x000007,0x000008,
0x000009,0x00000a,0x00000b,0x00000c,0x00000d,0x00000e,0x00000f,0x000010,
...
Total FQD with: CPC Stash Enable : enabled = 0
Total FQD with: CPC Stash Enable : disabled = 32767

8.2.3.2.6.3.13 /sys/kernel/debug/qman/fqd/cred
Description:

Query Intra-Class Scheduling bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their Intra-Class Scheduling Credit value greater than 0.

cat cred
List of fq ids with Intra-Class Scheduling Credit > 0
Total FQD with ics_cred > 0 = 0

8.2.3.2.6.3.14 /sys/kernel/debug/qman/fqd/ctx_a_stashing_[enable | disable]
Description:

Query Context_A bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue ids,
in a comma seperated list, which have their Context_A bit mask enabled or disabled.

For example, if we want to find all frame queues with Context_A enabled, we would do the following:

cat ctx_a_stashing_enable
List of fq ids with: Context-A stashing :enabled
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
...
Total FQD with: Context-A stashing : enabled = 528
Total FQD with: Context-A stashing : disabled = 32239

8.2.3.2.6.3.15 /sys/kernel/debug/qman/fqd/hold_active_[enable | disable]
Description:

Query Hold_Active bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which have their Hold_Active bit mask enabled or disabled.

For example, if we want find all frame queues with Hold_Active enabled, we would do the following:

cat hold_active_enable
List of fq ids with: Hold active in portal :enabled
Total FQD with: Hold active in portal : enabled = 0
Total FQD with: Hold active in portal : disabled = 32767

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 475

8.2.3.2.6.3.16 /sys/kernel/debug/qman/fqd/orp_[enable | disable]
Description:

Query ORP bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue ids, in a
comma seperated list, which have their ORP bit mask enabled or disabled.

For example, if we want find all frame queues with ORP enabled, we would do the following:

cat orp_enable
List of fq ids with: ORP Enable :enabled
Total FQD with: ORP Enable : enabled = 0
Total FQD with: ORP Enable : disabled = 32767

8.2.3.2.6.3.17 /sys/kernel/debug/qman/fqd/sfdr_[enable | disable]
Description:

Query Force_SFDR_Allocate bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their Force_SFDR_Allocate bit mask enabled or disabled.

For example, if we want to find all frame queues with Force_SFDR_Allocate enabled, we would do the following:

cat sfdr_enable
List of fq ids with: High-priority SFDRs :enabled(1)
Total FQD with: High-priority SFDRs : enabled = 0
Total FQD with: High-priority SFDRs : disabled = 32767

8.2.3.2.6.3.18 sys/kernel/debug/qman/fqd/state_[active | oos | parked | retired |
tentatively_sched | truly_sched]

Description:

Query Frame Queue State in all frame queue descriptors. This is a read only file. The output of this file returns all the frame queue
ids, in a comma seperated list, which are in the specified state: active, oos, parked, retired, tentatively scheduled or truly scheduled.

For example, the following returns all the frame queues in the Tentatively Scheduled state:

cat state_tentatively_sched
List of fq ids in state: Tentatively Scheduled
0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
...
Out of Service count = 32201
Retired count = 0
Tentatively Scheduled count = 566
Truly Scheduled count = 0
Parked count = 0
Active, Active Held or Held Suspended count = 0

8.2.3.2.6.3.19 /sys/kernel/debug/qman/fqd/tde_[enable | disable]
Description:

Query Tail_Drop_Enable bit in all frame queue descriptors. This is a read only file. The output of this file returns all the frame
queue ids, in a comma seperated list, which have their Tail_Drop_Enable bit mask enabled or disabled.

For example, the following returns all the frame queues with Tail_Drop_Enable bit enabled:

cat tde_enable
List of fq ids with: Tail-Drop Enable :enabled(1)
0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
476 NXP Semiconductors

Total FQD with: Tail-Drop Enable : enabled = 560
Total FQD with: Tail-Drop Enable : disabled = 32207

8.2.3.2.6.3.20 /sys/kernel/debug/qman/fqd/wq
Description:

Query Destination Work Queue in all frame queue descriptors. This file takes as input work queue id combined with channel id
(destination work queue). The output of this file returns all the frame queues with destination work queue number as specified in
the input.

For example, the following returns all the frame queues with their destination work queue number equal to 0x10f:

echo 0x10f > wq
cat wq
List of fq ids with destination work queue id = 0x10f
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
0x0001fa,0x0001fb,0x0001fd,0x0001fe
Summary of all FQD destination work queue values
Channel: 0x0 WQ: 0x0 WQ_ID: 0x0, count = 32199
Channel: 0x0 WQ: 0x0 WQ_ID: 0x4, count = 1
Channel: 0x0 WQ: 0x3 WQ_ID: 0x7, count = 64
Channel: 0x1 WQ: 0x3 WQ_ID: 0xf, count = 64
Channel: 0x2 WQ: 0x3 WQ_ID: 0x17, count = 64
Channel: 0x3 WQ: 0x3 WQ_ID: 0x1f, count = 64
Channel: 0x4 WQ: 0x3 WQ_ID: 0x27, count = 64
Channel: 0x5 WQ: 0x3 WQ_ID: 0x2f, count = 64
Channel: 0x6 WQ: 0x3 WQ_ID: 0x37, count = 64
Channel: 0x7 WQ: 0x3 WQ_ID: 0x3f, count = 64
Channel: 0x21 WQ: 0x3 WQ_ID: 0x10f, count = 20
Channel: 0x42 WQ: 0x3 WQ_ID: 0x217, count = 8
Channel: 0x45 WQ: 0x0 WQ_ID: 0x228, count = 1
Channel: 0x60 WQ: 0x3 WQ_ID: 0x307, count = 8
Channel: 0x61 WQ: 0x3 WQ_ID: 0x30f, count = 8
Sysfs and Debugfs QMan/BMan interfaces
QMan, BMan API RM, Rev. 0.13
NXP Semiconductors NXP Confidential Proprietary 8-67
Preliminary—Subject to Change Without Notice
Channel: 0x62 WQ: 0x3 WQ_ID: 0x317, count = 8
Channel: 0x65 WQ: 0x0 WQ_ID: 0x328, count = 1
Channel: 0xa0 WQ: 0x0 WQ_ID: 0x504, count = 1

8.2.3.2.6.3.21 /sys/kernel/debug/qman/fqd/summary
Description:

Provides a summary of all the fields in all frame queue descriptors. This is a read only file.

cat summary
Out of Service count = 32201
Retired count = 0
Tentatively Scheduled count = 566
Truly Scheduled count = 0
Parked count = 0
Active, Active Held or Held Suspended count = 0

Prefer in cache count = 560
Hold active in portal count = 0
Avoid Blocking count = 528
High-priority SFDRs count = 0
CPC Stash Enable count = 0
Context-A stashing count = 528
ORP Enable count = 0
Tail-Drop Enable count = 560

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 477

8.2.3.2.6.3.22 /sys/kernel/debug/qman/ccsrmempeek
Description:

Provides access to Queue Manager ccsr memory map. This file takes as input an offset from the QMan CCSR base address.
The output of this file returns the 32-bit value of the memory address as specified in the input.

For example, to query the QM IP Block Revision 1 register (which is at offset 0xbf8 from the QMan CCSR base address), we
would do the following:

echo 0xbf8 > ccsrmempeek
cat cccsrmempeek
QMan register offset = 0xbf8
value = 0x0a010101

8.2.3.2.6.3.23 /sys/kernel/debug/qman/query_ceetm_xsfdr_in_use
Description:

Query the number of XSFDRs currently in use by the CEETM logic of the DCP portal. This file takes input as the DCP id. The
output of the file returns the number of XSFDR in use. Please note this feature is only available in T4/B4 rev2 silicon.

For example, if we want to query XSFDR in use number of DCP 0, we would do the following:

echo 0 > query_ceetm_xsfdr_in_use

cat query_ceetm_xsfdr_in_use

DCP0: CEETM_XSFDR_IN_USE number is 0

8.2.3.2.6.4 BMan debugfs
8.2.3.2.6.4.1 /sys/kernel/debug/bman
Description:

This directory contains various BMan device debugging attributes.

8.2.3.2.6.4.2 /sys/kernel/debug/bman/query_bp_state
Description:

This file requests a snapshot of the availability and depletion state of each of BMan's buffer pools. This is a read only file.

For example, if we want to perform a query we could use this file in the following manner:

cat query_bp_state

bp_id free_buffers_avail bp_depleted

0 yes no

1 no no

2 no no

3 no no

4 no no

5 no no

6 no no

7 no no

8 no no

9 no no

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
478 NXP Semiconductors

10 no no

11 no no

12 no no

13 no no

14 no no

15 no no

16 no no

17 no no

18 no no

19 no no

20 no no

21 no no

22 no no

23 no no

24 no no

25 no no

26 no no

27 no no

28 no no

29 no no

30 no no

31 no no

32 no no

33 no no

34 no no

35 no no

36 no no

37 no no

38 no no

39 no no

40 no no

41 no no

42 no no

43 no no

44 no no

45 no no

46 no no

47 no no

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 479

48 no no

49 no no

50 no no

51 no no

52 no no

53 no no

54 no no

55 no no

56 no no

57 no no

58 no no

59 no no

60 no no

61 no no

62 no no

63 yes no

8.2.3.2.7 Error handling and reporting
This chapter describes the QMan and BMan error handling and reporting.

8.2.3.2.7.1 Handling and Reporting
The QMan and BMan error interrupt sevices routines log the occurrence of every error interrupt. Some error interrupts can be
triggered multiple times. To prevent a flood of error logging when this interrupts are raised, they are only logged on their first
occurance at which time they are disabled. The logs are generated via the pr_warning() kernel api. At the end of the interrupt
service routine the ISR register is cleared. These logs are available on the console, dmesg and related log file.

The following QMan error conditions are logged a single time:

QM_EIRQ_PLWI and QM_EIRQ_PEBI.

The following BMan error conditions are logged a single time:

BM_EIRQ_FLWI (low water mark).

8.2.3.2.8 Operating system specifics
This chapter captures O/S-specific issues and distinctions, as the rest of the document essentially describes the interfaces in a
generalized manner.

8.2.3.2.8.1 Portal maintenance
By default, the Linux kernel initializes QMan and BMan portals to perform all processing via interrupt-handling. As such there are
no persistent threads or polling requirements in order to use portals in the Linux kernel.

Whereas for USDPAA (linux user space), the default is for all processing to be driven by polling, and support for the use of interrupts
is disabled. The applications are required to call qman_poll() and bman_poll() within their run-to-completion loops to ensure that
portal processing occurs regularly.

As described in Processing non-interrupt-driven portal duties (BMan) on page 441 (for BMan) and Processing non-interrupt-driven
portal duties (QMan) on page 455 (for QMan), it is also possible to dynamically control at run-time which portal duties are interrupt-
driven versus poll-driven, so the aforementioned defaults for Linux are start-up defaults. However, USDPAA needs to be built with
"CONFIG_FSL_DPA_IRQ_SAFETY" defined in order to allow any duties to be interrupt-driven, whereas it is disabled by default
(in inc/public/conf.h) due to a very slight performance improvement that it yields.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
480 NXP Semiconductors

8.2.3.2.8.2 Callback context
In the Linux kernel, all interrupt-driven portal duties are handled in interrupt context, whereas all other portal duties are invoked
from within the qman_poll() and bman_poll() functions, which are invoked by the application.

In USDPAA, even interrupt-driven portal duties are handled in an application context. Interrupts are handled within the kernel and
locally disabled, and the presence of such interrupt events is available to the application via the USDPAA file-descriptor
representing the portal devices. Interrupt-driven portal duties are thus processed when the application calls the qman_thread_irq()
and bman_thread_irq() functions, and other portal duties are processed when the application calls qman_poll() and bman_poll().

8.2.3.2.8.3 Blocking semantics
Many high-level QMan and BMan API functions provide "WAIT" flags, to allow the API to block as part of its operation.

In the Linux kernel, "WAIT" behavior is implemented by allowing the calling thread to sleep until a given condition is satisfied. The
limitation then to using "WAIT" flags is that the caller can not be in atomic context - i. e. not executing within an interrupt handler,
tasklet, bottom-half, etc, nor with any spinlocks held. One consequence is that "WAIT" flags can not be used within a callback.

On run-to-completion systems such as USDPAA, "WAIT" behavior is unsupported and unavailable.

8.2.4 Configuring DPAA1 Frame Queues

8.2.4.1 Introduction
Describes configurations of Queue Manager (QMan) Frame Queues (FQs) associated with Frame Manager (FMan) network
interfaces for the QorIQ Data Path Acceleration Architecture (DPAA1). The relationship of the FMan and the QMan channels
and work queues are illustrated by examples.

The basic configuration examples for QMan FQs provided yield straightforward and reliable DPAA1 performance. These simple
examples may then be fine tuned for special use cases. For additional information and understanding of advanced system level
features please refer to the DPAA Reference Manual.

DPAA1 provides the networking specific I/Os, accelerator/offload functions, and basic infrastructure to enable efficient data
passing, without locks or semaphores, within the multi-core QorIQ SoC between:

1. The network and I/O interfaces through which that data arrives and leaves

2. The accelerator blocks used by the software to assist in processing that data.

Hardware-managed queues which reside in and are managed by the QMan provide the basic infrastructure elements to enable
efficient data path communication. The data resides in delimited work units of frames/packets between cores, hardware
accelerators and network interfaces. These hardware-managed queues, known as Frame Queues (FQs), are FIFOs of related
frames. These frames comprise buffers that hold a data element, generally a packet. Frames can be single buffers or multiple
buffers (using scatter/gather lists).

FQ assignment to consumers i.e., cores, hardware accelerators, network interfaces, are programmable (not hard coded).
Specifically, FQs are assigned to work queues which in turn are grouped into channels. Channels which represent a grouping of
FQs from which a consumer can dequeue from, are of two types:

• Pool channel: a channel that can be shared between consumers which facilitates load balancing/spreading. (Applicable to
cores only. Does not apply to hardware accelerators or netwok interfaces)

• Dedicated channel: a channel that is dedicated to a single consumer.

Each pool or dedicated channel has eight (8) work queues. There are two high priority work queues that have absolute, strict
priority over the other six (6) work queues which are grouped into medium and low priority tiers. Each tier contains three work
queues which are serviced using a weighted round robin based algorithm. More than one FQ can be assigned to the same work
queue as channels implementing a 2-level hierarchical queuing structure. That is, FQs are enqueued/dequeued onto/from work
queues. Within a work queue a modified deficit round algorithm is used to determine the number of bytes of data that can be
consumed from a FQ at the head of a work queue. The FQ, if not empty, is enqueued back onto the tail of the same work queue
once its consumption allowance has been met.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 481

• The configuration information provided in this document applies to the QorIQ family of SoCs built on DPAA1

technology

• The configuration information provided in this document assumes a top bin platform frequency.

 NOTE

8.2.4.2 FMan Network interface Frame Queue Configuration
Configuring the QMan Frame Queues (FQs) associated with the FMan network interfaces for QorIQ DPAA1.

Each network interface has an ingress and an egress direction. The ingress direction is defined as the direction from the network
interface to the cores. The egress direction is defined as the direction from the cores to the network interfaces.

FQs associated with FMan network interfaces can be either ingress or egress FQs. Ingress FQs are referred to FQs used in the
ingress direction to store packets received from network interfaces to be processed by the cores. Egress FQs are referred to FQs
used in the egress direction to store packets to be transmitted by FMan out of its network interfaces.

8.2.4.3 FMan network interface ingress FQs configuration
Dependencies for configuration of the ingress Frame Queues (FQs) is dependent on the QMan mechanism used to load
balance/spread received packets across the multiple cores in QorIQ DPAA1.

Two mechanisms are offered:

1. Dynamic load balancing

• Load spread the packets (from ingress FQs) to the cores based on actual core availability/readiness.

• Achieved through the use of QMan pool channel (i.e. a channel which can be shared by multiple cores).

• Maintaining packet ordering (e.g. when packets are being forwarded) is achieved through the following two
mechanisms:

a. Order preservation; ensures that related packets (e.g. a sequence of packets moving between two end
points) are processed in order (and typically one at a time).

b. Order restoration; allows packets to be processed out of order and then restores their order later on before
they are transmitted out to the network interfaces.

• Improves core work load balancing over a static distribution based approach scheme but will not maintain core
affinity because a FQ may get processed by multiple cores.

2. Static distribution

• Static association between FQs and cores; FQs are always processed by the same core.

• Achieved through the use of QMan dedicated channel (i.e. a channel which supplies FQs to a specific core).

• Static not dynamic, doesn't react to core load, assigns work to the cores in a static or fixed manner.

• Does not not require any special order preservation/restoration mechanism as packet ordering is implicitly
preserved.

For all of these mechanisms, QMan requires that related packets, which must be processed and/or transmitted in order, be placed
on the same FQ. This does not mean that only related packets are placed on a given FQ; many sets of related packets (“flows”)
can be placed on a single FQ. FMan is responsible for achieving this placement/FQ selection function through its distribution
capabilities. For instance, FMan can be configured to apply a hash function to a set of packet header fields and use the hash
value to select the FQ. This set of packet header fields can be for example, a 5-tuple consisting of:

• source IP address

• destination IP address

• protocol

• source port

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
482 NXP Semiconductors

• destination port

Note that the FMan processing may be out of order, but it has internal mechanism to ensure that packets are enqueued in order
of reception.

These mechanisms can be configured and used simultaneously on an SoC device.

8.2.4.4 Ingress FQs common configuration guidelines
Guidelines and examples for configuring ingress Frame Queues (FQs) in the QorIQ DPAA1 are shown.

Following guidelines apply regardless of the load balancing mechanism(s) configured:

• Maximum number of ingress FQs for all ingress interfaces on the device (including any of the separate FQs that are used
to serve as an order restoration point (ORP)): 1024

• Maximum number of ingress FQs per work queue (FIFO of FQs):

• — 64 if the aggregate bandwidth of the configured network interface(s) on the device is higher than 10 Gbit/s.

— 128 if the aggregate bandwidth of the configured network interface(s) on the device is 10 Gbit/s or lower.

• The aggregate bandwidth of the configured network interface(s) on the device receiving packets into FQs associated to the
same work queue should not exceed 10 Gbit/s. In other words, the recommended maximum incoming rate into a single
work queue is 10 Gbit/s. If the configured network interface(s) on the device is higher than 10 Gbit/s, then multiple work
queues should be used.

• Since the Single Frame Descriptor Record (SFDRs) reservation scheme is recommended for the egress FQs (FMan
network interface egress FQs configuration) and any other FQs assigned to high priority work queues will also use these
reserved SFDRs, careful consideration should be given to the required number of ingress FQs assigned to the high priority
work queues as SFDRs are a scarce QMan resource (there is a total of 2K SFDRs). One needs to leave sufficient SFDRs
for FQs not using the reserved SFDRs (e.g. ingress FQs assigned to medium or low priority work queues).

As an example, if one allocates 1024 ingress FQs and the aggregate bandwidth of the configured network interface(s) on the
device is higher than 10 Gbit/s, then a minimum of 16 work queues would be required based on the above guidelines. Assuming
that all 1024 FQs are to be scheduled at the same priority using a dynamic load balancing scheme, a minimum of 6 pool channels
would need to be used (based on the fact that up to 3 work queues can be used within a medium or low priority tier).

The guideline “maximum of 1024 ingress FQs for all ingress interfaces” results from the size of the internal memory in QMan that
is used to cache Frame Queue Descriptors (FQDs). This internal memory is sized to 2K entries. To achieve high, deterministic
and reliable performance under worst-case packet workload (back-to-back 64-byte packets enqueued to FQs on a rotating basis),
all ingress FQDs must remain in the QMan internal cache. FQD cache misses increase the time required to enqueue packets as
the FQD may need to be read from external memory. This in return could result in received packets being discarded by the MAC
due MAC FIFO overflow condition as a result of the back-pressure applied by the FMan to the MAC as there is little buffering
between the MAC and the point at which incoming packets are enqueued onto the ingress FQs.

Although a device configured with a number of ingress FQs higher than the size of the QMan FQD internal cache would operate
at high performance with no packet discards if the incoming traffic exhibited some level of temporal locality, it is generally
recommended that the device be engineered such that ingress path operates at line rate under worst case packet workload to
avoid unnecessary packets losses and to make effective use of QMan to prioritize and apply appropriate QoS if there is congestion
in a downstream element (e.g. cores). Since all FQs defined on the device shared the QMan 2K internal FQD cache, the
recommended maximum number of ingress and egress FQs is even more constrained so that there is adequate space left for
caching FQDs assigned to accelerators.

With regards to congestion management, the default mechanism for managing ingress FQ lengths is through buffer management.
Input to FQs is limited to the availability of buffers in the buffer pool used to supply buffers to the FQs. Although very efficient and
simple, when a buffer pool is shared by multiple FQs, there is no protection between the FQs sharing the buffer pool and as a
result a FQ could potentially occupy all the buffers.

Queue management mechanisms can be configured (e.g. tail drop/WRED) to improve congestion control however appropriate
software must be in place to handle enqueue rejections as a result of queue congestion.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 483

8.2.4.5 Dynamic load balancing with order preservation - ingress FQs
configuration guidelines

Dynamic load balancing with order preservation provides a very effective workload distribution technique to achieve optimal
utilization of all cores as it distributes packets to the cores based on actual core availability/readiness.

Order preservation allows FQs to be dynamically reassigned from one core to another while preserving per-FQ packet ordering.
It never allows packets from the same FQ to be processed at multiple cores at the same time; a specific FQ is only processed by
one core at any given time. Once the FQ is released by the core, it can be processed by any of the cores. To keep multiple cores
active there must be multiple FQs distributing packets to the cores, each with a set of (potentially) related packets.

In packet-forwarding scenarios, Discrete Consumption Acknowledgement (DCA) embedded in the enqueue commands should
be used to forward packets as this ensures that QMan will release the ingress FQ on software’s behalf once it has finished
processing the enqueue command. This provides order preservation semantic from end-to-end (from dequeue to enqueue). To
support the above, software portals that will be issuing DCA notifications to QMan must be configured with DCA mode enabled.

Following are specific configuration guidelines for ingress FQs used for dynamic load balancing with order preservation:.

• FQ must be associated to a pool channel (i.e. a channel which can be shared by multiple cores).

• Within a pool channel, minimum number of FQs per active portal (core): 4.

• Frame Queue Descriptor (FQD) attributes settings:

— Prefer in cache.

— Hold active set.

— Don’t set avoid blocking.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— FQD CPC stashing enabled.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

— Order Restoration Point (ORP) disabled.

8.2.4.6 Dynamic load balancing with order restoration - ingress FQs
configuration guidelines

Dynamic load balancing with order restoration dispatches packets from the same Frame Queue (FQ) to different processor
cores without attempting to maintain order. QMan provides order restoration with specific configurations shown.

The packet order in the original FQ (e.g. ingress FQ) is restored once the cores complete its processing and return the packets
to QMan for sending to the next destination (e.g. egress FQ for transmission).

Dynamic load balancing with order restoration has the advantage that parallel processing of related traffic is possible; allows to
process without packet drops a flow that exceed the processing rate of a core. However order restoration does make use of more
resources than the other distribution schemes. Its usage must also be balanced with applications need to atomically access shared
data.

Order restoration is achieved through the following two QMan components:

• Order Definition Points (ODPs)

— A point through which packets pass, where their order or sequence relative to each other is defined.

— For convenience each FQ has an ODP for packets dequeued from that FQ.

• Order Restoration Points (ORPs)

— A point through which packets pass, where their order or sequence is restored to that defined at the related ODP.

— If a packet is out of sequence it is held until it is in sequence.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
484 NXP Semiconductors

— ORP data structure is maintained in a FQ; it is recommended that a dedicated/separate FQ be allocated solely for
this purpose.

Following are specific configuration guidelines for ingress FQs used for dynamic load balancing with order restoration:

• FQ must be associated to a pool channel (i.e. a channel which can be shared by multiple cores).

• For each ingress FQ supporting order restoration, a separate FQ should be allocated to serve as the ORP.

• Ingress FQ descriptor attributes settings.

— Prefer in cache

— Don’t set hold active.

— Set avoid blocking.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— FQD CPC stashing enabled.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

— ORP disabled.

Following are specific configuration guidelines for ORP FQs:

• FQs used for ORP don’t need to be associated with a pool or dedicated channel.

• ORP FQ descriptor attributes settings:

— Prefer in cache .

— Don’t set hold active.

— Don’t set avoid blocking.

— Intra-class scheduling credit set to 0.

— Don’t set force SFDR allocate .

— FQD CPC stashing enabled.

— ORP enabled.

— Recommended ORP restoration window size: 128.

8.2.4.7 Static distribution - Ingress FQs Configuration Guidelines
With a static distribution approach, a single FQ is always processed by the same processor core. Specific guidelines for
processor core affinity are presented.

Although not as effective as a dynamic based approach from a resource utilization aspect, static distribution maintains core affinity
meaning that the mapping from the flow to the core is preserved.

Distribution of packets (selection of FQ) can based on hash keys, ensuring that packets from the same traffic flow will always go
to the same cores. The FQ selection function is achieved by FMan.

Following are specific configuration guidelines for ingress FQs used for static distribution:

• FQ must be associated to a dedicated channel (i.e. a channel which supplies FQs to a specific core); multiple FQs can be
associated to a single dedicated channel.

• Within a dedicated channel, minimum number of FQs: 1.

• FQ descriptor attributes settings:

— Prefer in cache .

— Don’t set hold active

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 485

— Don’t set avoid blocking.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— FQD CPC stashing enabled.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

— ORP disabled.

8.2.4.8 FMan network interface egress FQs configuration
Configuration guidelines for egress Frame Queues (FQs) for QorIQ DPAA1

FQ Configurations:

• Maximum number of egress FQs for all network interfaces: 128.

• Minimum number of egress FQs per network interface: 1.

• Maximum number of egress FQs per work queue: 8.

• Egress FQ descriptor attributes settings:

— Prefer in cache.

— Don’t set hold active .

— Don’t set avoid blocking.

— Set force SFDR allocate to ensure that egress queues make use of the reserved SFDRs; the SFDR reservation threshold
field of the QMan SFDR configuration register must also be set accordingly (5 SFDRs per egress FQ + 3 extra SFDRs
as required by QMan).

— Intra-class scheduling set to zero (0) unless a more advanced scheduling scheme is required.

— FQD CPC stashing enabled.

— ORP disabled.

.

8.2.4.9 Accelerator Frame Queue Configuration
Configurations for Frame Queues (FQs) used to communicate with accelerators for QorIQ DPAA1 are shown.

FQ accelerator Guidelines:

• Since the Single Frame Descriptor Record (SFDRs) reservation scheme is recommended for the egress FQs (FMan network
interface egress FQs configuration) and any other FQs assigned to high priority work queues will also use these reserved
SFDRs, careful consideration should be given to the required number of accelerator FQs assigned to the high priority work
queues as SFDRs are a scarce QMan resource (there is a total of 2K SFDRs). One needs to leave sufficient SFDRs for FQs
not using the reserved SFDRs (e.g. accelerator FQs assigned to medium or low priority work queues).

• Accelerator FQ descriptor attributes settings:

— Don’t set prefer in cache.

— Don’t set hold active .

— Don’t set avoid blocking.

— FQD CPC stashing enabled.

— Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.

— Don’t set force SFDR allocate unless FQ needs performance optimization.

— Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
486 NXP Semiconductors

— ORP disabled.

Generally accelerators are used in a request/response manner and in cases where a pair of FQs is needed per session/flow to
communicate with accelerators, one may need to allocate a very large number of FQs (in the order of thousands). At times when
many FQs allocated to an accelerator are active, this situation can result in having significant amount of cache consumed for
storing the corresponding FQ descriptors. This in turn may negatively impact overall system performance.

To ensure optimal resource utilization (e.g. QorIQ caches), maximize throughput and avoid overload, it is recommended that the
number of outstanding requests/responses to an accelerator be regulated. Typically, for a given accelerator, regulating the number
of outstanding requests/responses across all its FQs to a few hundredths should be sufficient to maintain high throughput without
overloading the system. Regulating the number of outstanding requests/responses to an accelerator can be achieved through
various methods.

One method is to keep track in software of the total number of outstanding requests/responses to an accelerator and once this
number exceeds a threshold, software would stop sending requests to that accelerator.

Another method is to make use of the congestion management capabilities of QMan. Specifically, all FQs allocated to an
accelerator can be aggregated into a congestion group. Each congestion group can be configured to track the number of Frames
in all FQs in the congestion group. Once this number exceeds a configured threshold, the congestion group enters congestion.
When a congestion group enters congestion, QMan can be configured to rejects enqueues to any FQs in the congestion group
and/or sent notification indicating that the congestion group has entered congestion. If a Frame (or request) is not going to be
enqueued, it will be returned to the configured destination via an enqueue rejection notification. Congestion state change
notifications are generated when the congestion group either enters congestion or exits congestion. On software portals, the
congestion state change notification is sent via an interrupt.

8.2.4.10 DPAA1 Frame Queue Configuration Guideline Summary
Summary of Configurations for Frame Queue (FQ) communication with accelerators for QorIQ DPAA1

Four tables comprise this summary:

• Global Configuration settings

• Network interface ingress FQ guidelines

• Network interface egress FQ guidelines

• Accelerator FQ guidelines

Table 91. Global Configuration Settings Summary

Parameter or subject Guideline

FQD stashing Recommend QMan explicitly stash FQDs:

• QMan; both the global CPC stash enable bit in the QMan
FQD_AR register and the CPC stash enable bit in the FQD
must be set.

• PAMU; PAACT tables used by PAMU also configured
appropriately .

PFDR stashing Recommend QMan explicitly stash PFDRs:

• QMan; the global CPC stash enable bit in the QMan
PFDR_AR register must be set .

• PAMU; PAACT tables used by PAMU must also be
configured appropriately .

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 487

Table 91. Global Configuration Settings Summary (continued)

Parameter or subject Guideline

SFDR reservation threshold Set SFDR reservation threshold in QMan SFDR configuration
register to:

• Total number of FQs using reserved SFDRs times 5 (5 SFDRs
per FQ) plus 3 extra SFDRs as required by QMan.

Recommend that all egress FQs use reserved SFDRs .

Table 92. Network Interface Ingress FQs Guidelines Summary

Parameter or subject Guideline

Maximum number of ingress FQs for all ingress interfaces
on the device (including any of the separate FQs that are
used to serve as an order restoration point (ORP))

1024 FQs

Maximum number of ingress FQs per work queue. • 64 FQs per work queue if the aggregate bandwidth of the
configured network interface(s) on the device is higher than
10 Gbit/s.

• 128 FQs per work queue if the aggregate bandwidth of the
configured network interface(s) on the device is 10 Gbit/s or
lower.

The maximum aggregate bandwidth of the configured
network interface(s) on the device receiving packets into
FQs associated to the same work queue

10 Gbit/s

Within a pool channel, minimum number of FQs per active
portal (cores).

4 FQs

Within a dedicated channel, minimum number of FQs: 1 FQ

Assignment to high priority work queues. Should be limited enough to leave sufficient SFDRs for FQs not
using the reserved SFDRs (e.g. ingress FQs assigned to medium
or low priority work queues).

Order restoration point (ORP). A separate FQ should be allocated and dedicated to serve as the
ORP for each ingress FQ supporting order restoration.

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
488 NXP Semiconductors

Table 92. Network Interface Ingress FQs Guidelines Summary (continued)

Parameter or subject Guideline

Ingress FQ descriptor load balancing and performance
related settings.

• Prefer_in_Cache: 1

• CPC Stash Enable: 1

• ORP_Enable: 0

• Avoid_Blocking:

— 0 if static distribution or dynamic load balancing with
order preservation.

— 1 if dynamic load balancing with order restoration.

• Hold_Active

— 0 if static distribution or dynamic load balancing with
order restoration .

— 1 if dynamic load balancing with order preservation.

• Force_SFDR_Allocate: 0 unless FQ needs performance
optimization.

• Intra-Class Scheduling Credit: 0 unless a more advanced
scheduling scheme is required.

ORP FQ descriptor order restoration and performance
related settings.

• Prefer_in_Cache: 1

• CPC Stash Enable: 1

• ORP_Enable: 1

• Avoid_Blocking: 0

• Hold_Active: 0

• Force_SFDR_Allocate: 0

• ORP Restoration Window Size: 2 (corresponds to window size
of 128 frames).

• Class Scheduling Credit: 0

Table 93. Network Interface Egress FQs Guidelines Summary

Parameter or subject Guideline

Maximum number of egress FQs for all network
interfaces.

128 FQs

Minimum number of egress FQs per network interface. 1 FQ

Maximum number of egress FQs per work queue. 8 FQs

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 489

Table 93. Network Interface Egress FQs Guidelines Summary (continued)

Parameter or subject Guideline

Egress FQ descriptor performance related settings. • Prefer_in_Cache: 1

• CPC Stash Enable: 1

• ORP_Enable: 0

• Avoid_Blocking: 0

• Hold_Active: 0

• Force_SFDR_Allocate: 1

• Class Scheduling Credit: 0 unless a more advanced
scheduling scheme is required.

Table 94. Accelerator FQs Guidelines Summary

Parameter or subject Guideline

Assignment to high priority work queues. Should be limited enough to leave sufficient SFDRs for FQs not
using the reserved SFDRs (e.g. accelerator FQs assigned to
medium or low priority work queues).

Egress FQ descriptor performance related settings. • Prefer_in_Cache: 0

• CPC Stash Enable: 1

• ORP_Enable: 0

• Avoid_Blocking: 0

• Hold_Active: 0

• Force_SFDR_Allocate: 0 unless FQ needs performance
optimization .

• Class Scheduling Credit: 0 unless a more advanced
scheduling scheme is required .

8.2.5 Frame Manager

8.2.5.1 Frame Manager Linux Driver User Guide

8.2.5.1.1 Introduction
This part is describing the Linux implementation of the driver for the Frame Manager, or FMD.

The Linux FMD implements a set of standard Linux character devices that rely on underlying OS-agnostic FMan drivers to do the
actual communication with the hardware. The figure below describes this best:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
490 NXP Semiconductors

FMan 2

10G

FM-LIB

FMC

open () ; ioctl (); close ();

LINUX APPLICATION
(USERSPACE)

/* socket
interface */

LINUX KERNEL

LINUX FMD
(WRAPPER)

/ dev/ fm0 / dev / fm0_pcd
/ dev/ fm1 / dev / fm1_pcd
/ dev/ fm[0,1]_port_rx [0-4]
/ dev/ fm[0,1]_port_tx [0-4]
/ dev/ fm[0,1]_port_oh [0-6]

DPAA ETHERNET

fm0-gb0
fm0-gb1
fm0-gb2
fm0-gb3
fm0-10g

FM PORT PCD MAC RTC

NC SW LLD
QMan/BMan
DRIVERS

FMan 1

1G

BMan

QMan

fm1-gb0
fm1-gb1
fm1-gb2
fm1-gb3
fm1-10g

1G 1G 1G 10G

Figure 99. FMan-centric view of relationships between DPAA software and hardware blocks in the Linux
environment.

The features of the Linux FMan Driver are the following:

• Performs initialization of the Frame Manager based on platform configuration (device tree), and on probing of the actual
hardware;

• Supports Linux user space applications looking to create FMan PCD configurations;

• Attaches/detaches PCDs to/from FMan ports;

• Reports FMan and port status:

— FMan registers

— FMan statistics

— FMan port and MAC counters

The Linux FMan driver does not handle actual network traffic. Network traffic in Linux is being handled exclusively by Linux network
devices. Network traffic going through FMan can only be handled by the Linux DPAA Ethernet driver. Although the DPAA Ethernet
and the Linux FMan Driver share strong links and interdependencies with the underlaying low-level FMD and with each other,
their feature sets do not overlap. The DPAA1 Ethernet driver is described in the Linux Ethernet on page 399 section.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 491

8.2.5.1.2 The Linux FMD Devices
The Linux interface to the FMD consists in several Linux character devices:

• /dev/fm[0,1], each corresponding to an actual Frame Manager;

• /dev/fm[0,1]-pcd are PCD devices corresponding each to a Frame Manager;

• /dev/fm[0,1]-port-rx[0-4], and /dev/fm[0,1]-port-tx[0-4] corresponding to the physical ports of each
FMan: each rx/tx device in a pair corresponds to the receive and transmit sides of a physical port;

• /dev/fm[0,1]-port-oh[0-6] correspond to the Offline Parsing ports.

These devicesare created and initialized at boot time, based on probing of the physical hardware, as well as on the parsing of the
device tree. Each of the physical ports can thus be disabled from the device tree, but also from the Reset Configuration Word
(RCW). See the SoC's Reference Manual for more details.

The assumption for the remainder of this section is that the device tree and the RCW are immutable.

 NOTE

Depending on the SoC and RCW/.dts configuration, only certain devices are available . The mapping of the devices to the physical
ports is given by the following table:

Table 95. Mapping of Linux devices to low-level port IDs.

Linux Device Low-Level
ID

Identification

/dev/fm0-port-rx0 /dev/
fm0-port-tx0

0 1st FMan's 1st 1GbE Receive, Transmit

/dev/fm0-port-rx1 /dev/
fm0-port-tx1

1 1st FMan's 2nd GbE Receive, Transmit

/dev/fm0-port-rx2 /dev/
fm0-port-tx2

2 1st FMan's 3rd GbE Receive, Transmit

/dev/fm0-port-rx3 /dev/
fm0-port-tx3

3 1st FMan's 4th GbE Receive, Transmit

/dev/fm0-port-rx4 /dev/
fm0-port-tx4

4 1st FMan's 5th GbE Receive, Transmit

/dev/fm0-port-rx5 /dev/
fm0-port-tx5

5 1st FMan's 6th GbE Receive, Transmit

/dev/fm0-port-rx6 /dev/
fm0-port-tx6

6 1st FMan's 1st 10Gb Receive, Transmit

/dev/fm0-port-rx7 /dev/
fm0-port-tx7

7 1st FMan's 2nd 10Gb Receive, Transmit

N/A 0 1st FMan's Host Command

/dev/fm0-port-oh0 1 1st FMan's 1st Offline Parsing

/dev/fm0-port-oh1 2 1st FMan's 2nd Oflline Parsing

/dev/fm0-port-oh2 3 1st FMan's 3rd Offline Parsing

/dev/fm0-port-oh3 4 1st FMan's 4th Offline Parsing

/dev/fm0-port-oh4 5 1st FMan's 5th Offline Parsing

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
492 NXP Semiconductors

Table 95. Mapping of Linux devices to low-level port IDs. (continued)

Linux Device Low-Level
ID

Identification

/dev/fm0-port-oh5 6 1st FMan's 6th Offline Parsing

/dev/fm0-port-oh6 7 1st FMan's 7th Offline Parsing

/dev/fm1-port-rx0 /dev/
fm1-port-tx0

0 2nd FMan's 1st 1GbE Receive, Transmit

/dev/fm1-port-rx1 /dev/
fm1-port-tx1

1 2nd FMan's 2nd 1GbE Receive, Transmit

/dev/fm1-port-rx2 /dev/
fm1-port-tx2

2 2nd FMan's 3rd 1GbE Receive, Transmit

/dev/fm1-port-rx3 /dev/
fm1-port-tx3

3 2nd FMan's 4th 1GbE Receive, Transmit

/dev/fm1-port-rx4 /dev/
fm1-port-tx4

4 2nd FMan's 5th 1GbE Receive, Transmit

/dev/fm1-port-rx5 /dev/
fm1-port-tx5

5 2nd FMan's 10Gb Receive, Transmit

/dev/fm1-port-rx6 /dev/
fm1-port-tx6

6 2nd FMan's 1st 10Gb Receive, Transmit

/dev/fm1-port-rx7 /dev/
fm1-port-tx7

7 2nd FMan's 2nd 10Gb Receive, Transmit

N/A 0 2nd FMan's Host Command

/dev/fm1-port-oh0 1 2nd FMan's 1st Offline Parsing Port

/dev/fm1-port-oh1 2 2nd FMan's 2nd Offline Parsing Port

/dev/fm1-port-oh2 3 2nd FMan's 3rd Offline Parsing Port

/dev/fm1-port-oh3 4 2nd FMan's 4th Offline Parsing Port

/dev/fm1-port-oh4 5 2nd FMan's 5th Offline Parsing Port

/dev/fm1-port-oh5 6 2nd FMan's 6th Offline Parsing Port

/dev/fm1-port-oh6 7 2nd FMan's 7th Offline Parsing Port

The Low Level IDs are the IDs that are used by the Low Level Drivers (upon which the Linux FMan Driver is based) to distinguish
between the physical ports. It is obvious from the above table that the port ID alone does not allow for uniquely identifying a single
port. It has to be combined wiht the following information in order to succeesfully point to the desired port:

• FMan ID: 0 or 1 for FMan1 or FMan2, respectively;

• Port type: 1G, 10G or O/H (Offline Parsing/Host Command).

Although all this may seem confusing at first, the LLD API provides convenient enums/macros to deal with these aspects.
Furthermore, the FMD driver API tries its best to hide these details from the userspace Linux programmer, specifically by using
dedicated /dev entries for each port, etc. However, not all userspace-visible API is free of such port IDs, so this is why we even
mention them here.

The FMD LLD uses no distinct port IDs for Rx and Tx, the distinction between Receive and Transmit being made by calling distinct
Rx/Tx-specific functions, or by specifying the "RX" or "TX" direction as a separate argument.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 493

The Host Command ports are invisible to the Linux application. One needs to be aware, though, of their mere existence at the
least, since the LLD allocates the first physical O/H port of every FMan to this purpose ("O/H" standing for "Offline Parsing/Host
Command"). There are 8 such O/H ports on each FMan that can be used for these purposes; the first of these having been
dedicated by the LLD to Host Commands, while the remaining 7 being available for Offline Parsing. Host Commands are just one
of the vehicles through which the LLD exercises control of the FMan hardware.

Please note that depending on the platform, RCW, and .dts configuration not all the possible combinations of

devices and ports are possible, and most certainly some will be missing from any existing configuration. For details

regarding possible port & device configurations for a specific platform, please consult the Reference Manuals for

that platform, as well as the relevant chapters from the SDK documentation for that platform.

 NOTE

Alongside these character devices, and out of the scope of this writing, are the Linux network devices, labeled using the fm[1,2]-
mac[1-10] (e.g. fm1-mac1, fm2-mac3) scheme, which provides the means for Linux to handle actual network traffic, i.e. "traffic
termination". These network devices are instances of the Linux DPAA Ethernet Driver, which is architected as a separate entity
from the Linux FMan Driver, but which both make use at some point of the same Low-Level Driver FMD API. The feature sets of
the DPAA Ethernet and of the Linux FMan drivers are disjunct, though, which is the main reason for their coexistence.

There is no requirement that these are the only network devices in the system. You may find the well known eth0,

eth1, etc. devices alongside e.g. fm1-mac1, except that these other network devices will correspond to other

vendors' NICs that may be installed in the system and will be serviced by vendor-specific, non-DPAA, Ethernet

drivers.

 NOTE

There are a few constants #defined in the headers that need to be included when working with the Linux FMD (in both kernel and
user spaces) that may come in handy when having to deal with devices and port IDs:

• FM_MAX_NUM_OF_1G_RX_PORTS

• FM_MAX_NUM_OF_10G_RX_PORTS

• FM_MAX_NUM_OF_1G_TX_PORTS

• FM_MAX_NUM_OF_10G_RX_PORTS

• FM_MAX_NUM_OF_RX_PORTS

• FM_MAX_NUM_OF_TX_PORTS

• FM_MAX_NUM_OF_OH_PORTS

• IOC_FM_MAX_NUM_OF_VALID_PORTS

that together with INTG_MAX_NUM_OF_FM can give the programmer the essential tools to get around in a specific configuration (this
list, though, is not exhaustive: please consult the relevant API Reference/header files before attempting to #define your own).

Also, the

$ ls /dev/fm*

Linux shell command can conveniently show all the FMD devices currently available in the target system.

8.2.5.1.3 Linux FMD Programming Model
Given the Linux devices presented earlier, a Linux application looking to use the FMan features can use the general Linux character
device syscall interface:

• open()/close() - this is essential API when working with Linux devices.

• read()/write() - although read() and write() operations are mandatory to be implemented by all Linux devices, there are no
read/write semantics associated with the FMD devices.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
494 NXP Semiconductors

• ioctl() calls are used extensively as the only means to communicate with the hardware. The ioctl API does little more than
delegating the ioctl() syscall to the underlying LLD API (for the actual mapping of IOCTLs to actual LLD APIs, please
consult the tables available in the following sections).

We'll state here once more that the programming model is essentially that of the FMD LLD. The Linux wrapper merely adapts the
LLD to the Linux interface requirements. This part of the SDK documentation focuses only on the Linux specifics. For details
regarding individual API calls, please refer to the Frame Manager Driver API Reference Manual .

As is the case with any Linux device, the general sequence of actions when using the FMD devices is the following:

1. Linux boots: all /dev/fm* devices are being created, FMan resources initialized according to platform/RCW/.dts;

2. User launches FMD-aware application;

3. User app. performs open() on selected /dev/fm* device/s;

4. User app. performs ioctl() call/s on the fd returned by the previous successful open() call;

5. When the user app. decides it has finished working with selected /dev/fm* device, it must call close() on its fd, just
like on any other Linux device.

Not all the LLD functions have a correspondent in the FMD IOCTLs. Only those functions have been selected which makes sense
from an architectural standpoint. The same/other LLD functions are also being called by the Linux wrapper unrestrictedly, as
needed to perform its required actions, and not only in response to ioctl() calls.

The arguments of the ioctl() calls can be quite complex, and may have complex requirements, as they are described in the LLD
API Reference (Frame Manager Driver API Documentation).

The following required low-level initialization APIs: FM_Config(), FM_PCD_Config(), FM_PORT_Config(), and subsequently
FM_Init(), FM_PCD_Init(), FM_PORT_Init() are being called from within the Linux FMD initialization code at boot time. They are
therefore not accessible to the user space application. Any configuration of FMan hardware resources will be performed using
Linux-specific means: device tree, kernel build configuration, etc. Code in the DPAA Ethernet driver also initializes the configured
MACs using FM_MAC_Config(), then FM_MAC_Init(), as required by the Frame Manager Driver API Reference Manual, and as
described in The DPAA Ethernet Driver's User Manual.

The correspondence between FMD Linux devices and DPAA ETH network devices is intuitive: there is a pair of /dev/fmX-
port-(rxY|txY) devices for each fmX-gbY or fmX-10g device in the system. However, due to configuration, it is possible that
at boot time not all FMan ports be probed by the DPAA Ethernet driver, hence not all /dev/fmX-port-(rxY|txY) may have
a corresponding netdev. This is because the FMan port devices and the DPAA Ethernet devices are being configured in different
sections of the device tree. The binding between these devices is also done in the device tree.

While Offline Parsing ports are being fully supported by the FMan Driver, currently it is not possible to inject traffic from user space
to these ports, as there is no netdev being created for them, as the Linux FMD does not handle traffic. There is indeed a way for
kernel space drivers to use them, but that is out of scope here.

It is not to be expected that a FMan port device for which a corresponding DPAA Ethernet netdev has not been configured, to be
fully functional. That is because port functionality is reliant also upon additional DPAA resources (i.e. frame queues, buffer pools)
that are being initialized exclusively by the DPAA Ethernet driver. Therefore, even though /dev/fmX-port-* devices may exist
for such ports, trying to access them may result in an error.

FM_PORT_Enable() and FM_PORT_Disable() are called for specific ports during ifconfig up/down of the corresponding
network device (DPAA Ethernet-specific). They are also available as IOCTLs for the /dev/fmX-port* devices, but while in the
DPAA Ethernet they are called for both ports of the RX/TX pair, the /dev/fmX-port-(rxY|txY) allow for selectively enabling/
disabling of only one of the RX/TX sides, as desired.

The ioctl() API conforms to Linux rules for all FMD devices. However, errors originating within the LLD will invariably be reported
to the user as -EFAULT. All such errors should be considered non-recoverable and should be immediately followed by a close()
on the device for which they were reported. A more descriptive message should be printed on the bootup console only, identifying
the LLD function, and the line in the source file where the error has occurred. One can look at the documentation for enum
e_ErrorType in the LLD API Reference (Frame Manager Driver API Documentation) for details regarding all the possible LLD
error codes and their general meaning.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 495

The following sections will present a brief description of each type of Linux device, as well as their IOCTLs' mapping to the FMD
LLD API.

8.2.5.1.4 Frame Manager Linux Driver API Reference
This document describes the interface (IOCTLs) to the Frame Manager Linux Driver as apparent to user space Linux
applications that need to use any of the Frame Manager's features. It describes the structure, concept, functionality, and high
level API.

8.2.5.1.4.1 The Linux FMan Device
This device corresponds to an individual Frame Manager, and is required for performing FMan-wide actions. The FMan device
merely acts as a portal for the IOCTLs that are listed in the table below:

Table 96. IOCTLs for the FMan Device

IOCTL LLD Mapping Brief

FM_IOC_SET_PORTS_BANDWIDTH FM_SetPortsBandwidth() Sets ports' bandwidths as percentage of
total bandwidth.

FM_IOC_GET_REVISION FM_GetRevision() API to get the FMan's revision.

FM_IOC_GET_COUNTER FM_GetCounter() API to read FMan hardware counters
(also available through sysfs).

FM_IOC_SET_COUNTER FM_ModifyCounter() API to modify/reset FMan's counters.

FM_IOC_FORCE_INTR FM_ForceIntr() Forces an FMan interrupt (or exception).
Dangerous! Use for debugging only!

FM_IOC_GET_API_VERSION FM_GetApiVersion() Reads the FMD IOCTL API version.

FM_IOC_VSP_CONFIG FM_VSP_Config() Creates descriptor for the FM VSP
module.

FM_IOC_VSP_INIT FM_VSP_Init() Initializes the FM VSP module

FM_IOC_VSP_FREE FM_VSP_Free() Frees all resources that were assigned
to FM VSP module.

FM_IOC_VSP_CONFIG_POOL_DEPLETION FM_VSP_ConfigPoolDepletion() Calling this routine enables pause frame
generation depending on the depletion
status of BM pools. It also defines the
conditions to activate this functionality.
By default, this functionality is disabled.

FM_IOC_VSP_CONFIG_BUFFER_PREFIX_C

ONTENT

FM_VSP_ConfigBufferPrefixContent() Defines the structure, size and content
of the application buffer.

FM_IOC_VSP_CONFIG_NO_SG FM_VSP_ConfigNoScatherGather() Returns the pointer to the parse result in
the data buffer. In Rx ports this is
relevant after reception, if parse result is
configured to be part of the data passed
to the application. For non Rx ports it
may be used to get the pointer of the
area in the buffer where parse result
should be initialized - if so configured.
See
FM_VSP_ConfigBufferPrefixContent for
data buffer prefix configuration.

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
496 NXP Semiconductors

Table 96. IOCTLs for the FMan Device (continued)

IOCTL LLD Mapping Brief

FM_IOC_CTRL_MON_START FM_CtrlMonStart() Start monitoring utilization of all
available FM controllers.

FM_IOC_CTRL_MON_STOP FM_CtrlMonStop() Stop monitoring utilization of all
available FM controllers.

FM_IOC_CTRL_MON_GET_COUNTERS FM_CtrlMonGetCounters() Obtain FM controller utilization
parameters.

All the IOCTL-mapped LLD APIs are what the LLD terms as "callable at runtime", i.e. callable after the LLD Init() function for the
corresponding entity has been called. This is so because by the time the user app. gets to invoke ioctl(), all the Init() functions
have already been called by the initialization code of the Linux FMD at boot time.

8.2.5.1.4.2 The Linux PCD Device
There is exactly one PCD device, or /dev/fmX-pcd, for each Frame Manager. The reason for that is that PCDs are FMan-wide
constructs, and are applied simultaneously to traffic being received on possibly more than one port.

"PCD" is a generic term designating a Parse-Classify-Distribute configuration for a group of ports, as described in detail in the
QorIQ Data Path Acceleration Architecture (DPAA) Reference Manual. In short, what a PCD does is to route incoming traffic
from a set of RX ports onto several frame queues managed by the Queue Manager. Such frame queues may be attached to a
DPAA Ethernet network device, in which case the traffic is received by the CPUs (or "terminated"), or they can be connected to
a TX port, in which case the traffic is being forwarded onto that port. Also, frame queues can be further grouped into work queues
& policed, etc. (please read the QMan documentation). However, one thing is not supported in the Linux environment, and that
is: direct access to frame queues from user space (please note that this is not a limitation of the Linux FMD, but one enforced by
design in the Linux driver for the QMan). Not in the classical meaning of "Linux environment", that is.

There's still a lot that can be achieved with the Linux FMD, and the Linux PCD device is there to help. Its role is to manage the
PCDs for its associated FMan. The ioctls for this device are mapped to the similarly-sounding FM_PCD_*() LLD APIs:

Table 97. IOCTL List for the PCD Device

IOCTL LLD Mapping Brief

FM_PCD_IOC_ENABLE FM_PCD_Enable() Should be called after PCD is initialized
for enabling all PCD engines according to
their existing configuration.

FM_PCD_IOC_DISABLE FM_PCD_Disable() Disables an existing PCD.

FM_PCD_IOC_PRS_LOAD_SW[_COMPAT] FM_PCD_PrsLoadSw() This routine may be called only when all
ports in the system are actively using the
classification plan scheme. In such cases
it is recommended in order to save
resources. The driver automatically
saves 8 classification plans for ports that
do NOT use the classification plan
mechanism; to avoid this (in order to save
those entries) this routine may be called.

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 497

Table 97. IOCTL List for the PCD Device (continued)

IOCTL LLD Mapping Brief

FM_PCD_IOC_KG_SET_DFLT_VALUE FM_PCD_KgSetDfltValue() Sets a global default value to be used by
the key generator when the parser does
not recognize a required field/header
(default 0).

FM_PCD_IOC_KG_SET_ADDITIONAL_DATA

_AFTER_PARSING

FM_PCD_KgSetAdditionalDataAfterPars
ing()

Calling this routine allows the keygen to
access data past the parser finishing
point.

FM_PCD_IOC_SET_EXCEPTION FM_PCD_SetException() Enables/disables PCD interrupts.

FM_PCD_IOC_GET_COUNTER N/A Unimplemented, do not use!

FM_PCD_IOC_SET_COUNTER N/A Placeholder, do not use!

FM_PCD_IOC_FORCE_INTR FM_PCD_ForceIntr() Forces a PCD interrupt (exception) of
specified type. Dangerous! Use only for
debugging!

FM_PCD_IOC_NET_ENV_CHARACTERISTIC

S_SET[_COMPAT]

FM_PCD_NetEnvCharacteristicsSet() Establishes a minimal set of networking
protocols ("Network Environment
Characteristics") that can be discovered
by this PCD (please refer to the
Reference Manual for details).

FM_PCD_IOC_NET_ENV_CHARACTERISTIC

S_DELETE[_COMPAT]

FM_PCD_NetEnvCharacteristicsDelete(
)

Deletes a set of "Network Environment
Characteristics".

FM_PCD_IOC_KG_SCHEME_SET[_COMPAT] FM_PCD_KgSchemeSet() Initializes or modifies and enables a
scheme for the KeyGen. This routine
should be called for adding or modifying
a scheme. When a scheme needs
modifying, the API requires that it be
rewritten. In such a case modify should
be TRUE. If the routine is called for a valid
scheme and modify is FALSE, it will
return error.

FM_PCD_IOC_KG_SCHEME_DELETE[_COMP

AT]

FM_PCD_KgSchemeDelete() Deletes an initialized scheme.

FM_PCD_IOC_CC_ROOT_BUILD[_COMPAT] FM_PCD_CcRootBuild() This routine must be called to define a
complete coarse classification tree. This
is the way to define coarse classification
to a certain flow - the KeyGen schemes
may point only to trees defined in this way.

FM_PCD_IOC_CC_ROOT_DELETE[_COMPAT

]

FM_PCD_CcRootDelete() Deletes an existing coarse classification
tree.

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
498 NXP Semiconductors

Table 97. IOCTL List for the PCD Device (continued)

IOCTL LLD Mapping Brief

FM_PCD_IOC_MATCH_TABLE_SET[_COMPA

T]

FM_PCD_MatchTableSet() This routine should be called for each CC
(coarse classification) node. The whole
CC tree should be built bottom up so that
each node points to already defined
nodes. p_node_id returns the node Id to
be used by other nodes.

FM_PCD_IOC_MATCH_TABLE_DELETE[_CO

MPAT]

FM_PCD_MatchTableDelete() Deletes a built node.

FM_PCD_IOC_CC_ROOT_MODIFY_NEXT_EN

GINE[_COMPAT]

FM_PCD_CcRootModifyNextEngine() Modifies the Next Engine Parameters in
the entry of the tree (allowed only after
FM_PCD_CcBuildTree()).

FM_PCD_IOC_MATCH_TABLE_MODIFY_NEX

T_ENGINE[_COMPAT]

FM_PCD_MatchTableModifyNextEngin
e()

Modifies the Next Engine Parameters in
the relevant key entry of the node
(possible only after a call to
FM_PCD_MatchTableSet()).

FM_PCD_IOC_MATCH_TABLE_MODIFY_MIS

S_NEXT_ENGINE[_COMPAT]

FM_PCD_MatchTableModifyMissNextE
ngine()

Modifies the Next Engine Parameters of
the Miss key case of the node (allowed
only after a previous call to
FM_PCD_MatchTableSet()).

FM_PCD_IOC_MATCH_TABLE_REMOVE_KE

Y[_COMPAT]

FM_PCD_MatchTableRemoveKey() Removes the key (including its next
engine parameters) defined by the index
of the relevant node (allowed only after a
previous call to
FM_PCD_MatchTableSet())

FM_PCD_IOC_MATCH_TABLE_ADD_KEY[_C

OMPAT]

FM_PCD_MatchTableAddKey() Adds the key (including next engine
parameters of this key) in the index
defined by key_index (allowed only after
a previous call to
FM_PCD_MatchTableSet())

FM_PCD_IOC_MATCH_TABLE_MODIFY_KEY

_AND_NEXT_ENGINE[_COMPAT]

FM_PCD_MatchTableModifyKeyAndNex
tEngine()

Modifies the key and Next Engine
Parameters of this key in the index
defined by key_index (allowed only after
a previous call to
FM_PCD_MatchTableSet()).

FM_PCD_IOC_MATCH_TABLE_MODIFY_KE

Y[_COMPAT]

FM_PCD_MatchTableModifyKey() Modifies the key at the index defined by
key_index (allowed only after a previous
call to FM_PCD_MatchTableSet()).

FM_PCD_IOC_HASH_TABLE_SET[_COMPAT

]

FM_PCD_HashTableSet() Initializes a hash table structure.

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 499

Table 97. IOCTL List for the PCD Device (continued)

IOCTL LLD Mapping Brief

FM_PCD_IOC_HASH_TABLE_DELETE[_COM

PAT]

FM_PCD_HashTableDelete() Deletes the provided hash table and
released all its allocated resources.

FM_PCD_IOC_HASH_TABLE_ADD_KEY[_CO

MPAT]

FM_PCD_HashTableAddKey() Adds the provided key (including next
engine parameters of this key) to the hash
table. The key is added as the last key of
the bucket that it is mapped to.

FM_PCD_IOC_HASH_TABLE_REMOVE_KEY[

_COMPAT]

FM_PCD_HashTableRemoveKey() Removes the requested key (including its
next engine parameters) from the hash
table.

FM_PCD_IOC_PLCR_PROFILE_SET[_COMP

AT]

FM_PCD_PlcrProfileSet() Sets a profile entry in the policer profile
table, overriding any existing value.

FM_PCD_IOC_PLCR_PROFILE_DELETE[_C

OMPAT]

FM_PCD_PlcrProfileDelete() Deletes a profile entry in the policer profile
table. It sets the entry to invalid.

FM_PCD_IOC_MANIP_NODE_SET[_COMPAT

]

FM_PCD_ManipNodeSet() This routine should be called for defining
a manipulation node. A manipulation
node must be defined before the CC node
that precedes it.

FM_PCD_IOC_MANIP_NODE_REPLACE[_CO

MPAT]

FM_PCD_ManipNodeReplace() Change existing manipulation node to be
according to new requirement.

FM_PCD_IOC_MANIP_NODE_DELETE[_COM

PAT]

FM_PCD_ManipNodeDelete() Deletes an existing manipulation node.

FM_PCD_IOC_SET_ADVANCED_OFFLOAD_S

UPPORT

FM_PCD_SetAdvancedOffloadSupport(
)

This routine must be called in order to
support the following features: IP-
fragmentation, IP-reassembly, IPsec,
header manipulation, frame replicator.

FM_PCD_IOC_FRM_REPLIC_GROUP_SET[_

COMPAT]

FM_PCD_FrmReplicSetGroup() Initialize a Frame Replicator group.

FM_PCD_IOC_FRM_REPLIC_GROUP_DELET

E[_COMPAT]

FM_PCD_FrmReplicDeleteGroup() Delete a Frame Replicator group.

FM_PCD_IOC_FRM_REPLIC_MEMBER_ADD[

_COMPAT]

FM_PCD_FrmReplicAddMember() Add the member in the index defined by
the memberIndex.

FM_PCD_IOC_FRM_REPLIC_MEMBER_REMO

VE[_COMPAT]

FM_PCD_FrmReplicRemoveMember() Remove the member defined by the
index from the relevant group.

FM_PCD_IOC_STATISTICS_SET_NODE[_C

OMPAT]

FM_PCD_StatisticsSetNode() Not implemented in this release. Do not
use!

FM_PCD_IOC_KG_SCHEME_GET_CNTR FM_PCD_KgSchemeGetCounter() Reads scheme packet counter.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
500 NXP Semiconductors

The _COMPAT variants of certain IOCTLs in the above table are required for supporting 32-bit user space apps.

on 64-bit Linux kernels. The specifics of the COMPAT mappings are documented by Linux.

 NOTE

The programming model for defining and managing PCDs for a group of ports is the same as described in the FMD LLD User's
Guide .

What follows is a step-by-step description of an example of ioctl() call mapping to a LLD API call.

The example chosen for this walk-through is that of FM_PCD_IOC_MATCH_TABLE_SET. Here's a reminder of the ioctl() prototype:

extern int ioctl (int __fd, unsigned long int __request, ...) __THROW;

and below is how it appears to kernel space:

struct file_operations {
 [...]
 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
 [...]
};

The ioctl() function is actually a pointer to a driver-supplied function having the specified signature. The glue between the two is
kernel code.

The semantics associated with the second and third function arguments are entirely the driver's business, but usually the unsigned
int argument is used to discriminate between various ioctl commands (actually, it should obey some Linux good-behavior rules,
which we are not going to detail here). In our case, it should be FM_PCD_IOC_MATCH_TABLE_SET.

Linux attaches no predefined semantics to the third argument, the unsigned long one. In some cases it is unused, or its semantics
are those of an unsigned integer number, but in most cases it is treated as a (32-bit, on most platforms) pointer to a driver-defined
structure in user space. The driver defines the format, but the user space allocates and fills in the data prior to invoking ioctl() on
the open device fd. This is also the case with our example.

The format of the third argument of the FM_PCD_IOC_MATCH_TABLE_SET ioctl is (as it actually appears in the header file where it's
defined):

/**//**
 @Description A structure for defining the CC node params
*//***/
typedef struct ioc_fm_pcd_cc_node_params_t {
 ioc_fm_pcd_extract_entry_t extract_cc_params;
 /**< params which defines extraction
 parameters */

 ioc_keys_params_t keys_params; /**< params which defines Keys
 parameters of the extraction defined
 in extract_cc_params */

 void *id; /**< output parameter;
 Returns the CC node Id to be used */
} ioc_fm_pcd_cc_node_params_t;

We'll detail the ioc_* types of the first two members later. The third member of this structure is apparently a pointer to some data
structure being returned back to user space. It is not the case. This actual pointer should be handled as an opaque handle to
some abstract item, in our case the "CC Node" that's being created for us by this ioctl() call if successful. This handle can be later
passed to e.g. the FM_PCD_IOC_MATCH_TABLE_DELETE IOCTL for deletion. It corresponds to an actual t_Handle, as defined by
the LLD.

Failing to cleanup FMan resources that the LLD allocates in this manner can cause serious hardware resource

leaks, which neither the Linux FMD, nor the LLD have the means to detect & cleanup automatically!

 NOTE

The LLD function that this IOCTL maps to has the following prototype:

t_Handle FM_PCD_MatchTableSet(t_Handle, t_FmPcdCcNodeParams *);

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 501

The first argument corresponds to the LLD resource that the Linux PCD device maps to. Most of the LLD resources are managed
within the Linux FMD driver and not exposed to the user, but there are exceptions and the FM_PCD_MatchTableSet() function
here is the best example, as it returns a t_Handle to such a LLD resource. This returned t_Handle is then passed over to the
user space in the opaque id member of ioctl()'s third argument.

The second argument is a pointer to a structure of type t_FmPcdCcNodeParams. This maps to the ioc_fm_pcd_cc_node_params_t
type that ioctl()'s third argument points to.

Passing to ioctl() a pointer to something of a type other than the required one will cause the user application

to segfault, or an error, at best, but may also cause undefined FMan behavior from that point onward, with errors

being possibly reported only later downstream as the worst case. Linux/the FMD can do very little to prevent this

worst case from occurring, so hopefully one can catch such coding errors early during the development cycle.

 NOTE

A side-by-side comparison of the two structures is given in the following table:

Table 98. Side-by-side comparison of IOCTL and LLD types

IOCTL Types LLD Types

typedef struct ioc_fm_pcd_cc_node_params_t {
 ioc_fm_pcd_extract_entry_t extract_cc_params;
 ioc_keys_params_t keys_params;
 void *id;
} ioc_fm_pcd_cc_node_params_t;

typedef struct t_FmPcdCcNodeParams {
 t_FmPcdExtractEntry extractCcParams;
 t_KeysParams keysParams;

} t_FmPcdCcNodeParams;

typedef struct ioc_fm_pcd_extract_entry_t {
 ioc_fm_pcd_extract_type type;
 union {
 struct {
 ioc_net_header_type hdr;
 bool ignore_protocol_validation;
 ioc_fm_pcd_hdr_index hdr_index;
 ioc_fm_pcd_extract_by_hdr_type type;
 union {
 ioc_fm_pcd_from_hdr_t from_hdr;
 ioc_fm_pcd_from_field_t from_field;
 ioc_fm_pcd_fields_u full_field;
 } extract_by_hdr_type;
 } extract_by_hdr;

 struct{
 ioc_fm_pcd_extract_from src;
 ioc_fm_pcd_action action;
 uint16_t ic_indx_mask;
 uint8_t offset;
 uint8_t size;
 } extract_non_hdr;
 } extract_params;
} ioc_fm_pcd_extract_entry_t;

typedef struct t_FmPcdExtractEntry {
 e_FmPcdExtractType type;
 union {
 struct {
 e_NetHeaderType hdr;
 bool ignoreProtocolValidation;
 e_FmPcdHdrIndex hdrIndex;
 e_FmPcdExtractByHdrType type;
 union {
 t_FmPcdFromHdr fromHdr;
 t_FmPcdFromField fromField;
 t_FmPcdFields fullField;
 } extractByHdrType;
 } extractByHdr;

 struct {
 e_FmPcdExtractFrom src;
 e_FmPcdAction action;
 uint16_t icIndxMask;
 uint8_t offset;
 uint8_t size;
 } extractNonHdr;
 };
} t_FmPcdExtractEntry;

typedef struct ioc_keys_params_t {
 uint16_t max_num_of_keys;
 bool mask_support;
 ioc_fm_pcd_cc_stats_mode statistics_mode;
 uint16_t num_of_keys;
 uint8_t key_size;
 ioc_fm_pcd_cc_key_params_t
 key_params[IOC_FM_PCD_MAX_NUM_OF_KEYS];
 ioc_fm_pcd_cc_next_engine_params_t
 cc_next_engine_params_for_miss;
} ioc_keys_params_t;

typedef struct t_KeysParams {
 uint16_t maxNumOfKeys;
 bool maskSupport;
 ioc_fm_pcd_cc_stats_mode statisticsMode;
 uint16_t numOfKeys;
 uint8_t keySize;
 t_FmPcdCcKeyParams
 keyParams[FM_PCD_MAX_NUM_OF_KEYS];
 t_FmPcdCcNextEngineParams
 ccNextEngineParamsForMiss;
} t_KeysParams;

While the structure members have resembling names on both sides, most are not identical. That's because style has prevailed
over the need to port existing LLD applications to the Linux environment, when the Linux FMD was designed. Except for the
occasional *id pointer, there is a 1:1 mapping between the struct members on the two sides, and that is consistent throughout
the FMD.

The constituent structures of the two APIs' argument types given above are for illustration only. Their semantics are documented
in the Frame Manager Driver API Documentation .

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
502 NXP Semiconductors

The existence of two separate definitions for otherwise two identical data structures may appear as an unfortunate

design decision. However, since a memcpy from user space to kernel space is unavoidable, this design decision

has no impact over performance. Moreover, the user space only sees one variant (i.e. the ioc_* one), hence the

even smaller user impact. The larger impact is on code maintenance and on documentation.

 NOTE

8.2.5.1.4.3 The Linux Port Devices
There is a pair of RX/TX Linux character devices for each physical port of every Frame Manager. These devices are created
irrespectively of the DPAA1 Ethernet network devices and they are strictly reflecting the available Frame Manager hardware on
the given platform. The port Linux devices are labeled as follows:

• /dev/fmX-port-rxY for receive, where X=[0,1] represents the FMan number, and Y=[0-7] represents the physical port
ID (0 corresponding to the first 1 Gb port, and 6 to the first 10 Gb port), and

• /dev/fmX-port-txY correspondingly for the transmit side.

Each FMan also has a number of Offline Parsing ports. These are labeled as /dev/fmX-port-ohY, where Y=[0-6].

The port devices are created based on configuration information taken from the relevant Linux device tree section.

For instance, LS1043A has one FMan with 6 x 1Gb ports and one 10Gb port, while LS1046A has one FMan with 6 x 1Gb and 2
x 10Gb ports. A side-by-side comparison of the corresponding port devices is given in the following table:

Table 99. Side-by-side comparison of port devices for LS1043 and LS1046

LS1043A LS1046A

For the Receive side:

/dev/fm0-port-rx0
/dev/fm0-port-rx1
/dev/fm0-port-rx2
/dev/fm0-port-rx4
/dev/fm0-port-rx5
/dev/fm0-port-rx6

For the Receive side:

/dev/fm0-port-rx0
/dev/fm0-port-rx1
/dev/fm0-port-rx2
/dev/fm0-port-rx3
/dev/fm0-port-rx4
/dev/fm0-port-rx5
/dev/fm0-port-rx6
/dev/fm0-port-rx7

For the Transmit side:

/dev/fm0-port-tx0
/dev/fm0-port-tx1
/dev/fm0-port-tx2
/dev/fm0-port-tx3
/dev/fm0-port-tx4
/dev/fm0-port-tx5
/dev/fm0-port-tx6

For the Transmit side:

/dev/fm0-port-tx0
/dev/fm0-port-tx1
/dev/fm0-port-tx2
/dev/fm0-port-tx3
/dev/fm0-port-tx4
/dev/fm0-port-tx5
/dev/fm0-port-tx6
/dev/fm0-port-tx7

For Offline Parsing:

/dev/fm0-port-oh0
/dev/fm0-port-oh1
/dev/fm0-port-oh2
/dev/fm0-port-oh3
/dev/fm0-port-oh4
/dev/fm0-port-oh5

For Offline Parsing:

/dev/fm0-port-oh0
/dev/fm0-port-oh1
/dev/fm0-port-oh2
/dev/fm0-port-oh3
/dev/fm0-port-oh4
/dev/fm0-port-oh5

The table below summarizes the IOCTLs available for the port device.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 503

Table 100. IOCTLs of the Port Device

IOCTLS LLD Mapping Brief

FM_PORT_IOC_DISABLE FM_PORT_Disable() Disables the port: all port settings are
preserved, but all traffic stops.

FM_PORT_IOC_ENABLE FM_PORT_Enable() Enables the port: causes the port to start
processing traffic.

FM_PORT_IOC_SET_RATE_LIMIT FM_PORT_SetRateLimit() (TX & O/H Only) Activates the Rate
Limiting Algorithm for the port.

FM_PORT_IOC_DELETE_RATE_LIMIT FM_PORT_DeleteRateLimit() (TX & O/H Only) Deactivates any Rate
Limiting.

FM_PORT_IOC_SET_ERRORS_ROUTE FM_PORT_SetErrorsRoute() (RX & O/H Only) Instructs the FMD to
enqueue frames w/specific errors onto
the normal port queues, rather than onto
the error queue (i.e. the default).

FM_PORT_IOC_ALLOC_PCD_FQIDS N/A For testing/debugging. Do not use!

FM_PORT_IOC_FREE_PCD_FQIDS N/A For testing/debugging. Do not use!

FM_PORT_IOC_SET_PCD[_COMPAT] FM_PORT_SetPCD() (RX & O/H Only) Defines a PCD
configuration for the port.

FM_PORT_IOC_DELETE_PCD FM_PORT_DeletePCD() (RX & O/H Only) Deletes the port's PCD
configuration.

FM_PORT_IOC_DETACH_PCD FM_PORT_DetachPCD() (RX & O/H Only) Disables the PCD
configuration for the port (only allowed
after FM_PORT_SetPCD() has been
called for the port).

FM_PORT_IOC_ATTACH_PCD FM_PORT_AttachPCD() (RX & O/H Only) Re-enables the PCD
configuration for the port (only valid after
a call to FM_PORT_DetachPCD()).

FM_PORT_IOC_PCD_PLCR_ALLOC_PROFIL

ES

FM_PORT_PcdPlcrAllocProfiles() (RX & O/H Only) Allocates private policer
profiles for the port (only allowed before a
a call to FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_PLCR_FREE_PROFILE

S

FM_PORT_PcdPlcrFreeProfiles() (RX & O/H Only) Frees any private policer
profiles allocated for the port (callable
only before FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_KG_MODIFY_INITIAL

_SCHEME[_COMPAT]

FM_PORT_PcdKgModifyInitialScheme() (RX & O/H Only) Modifies key generation
scheme following frame parsing (callable
only after FM_PORT_SetPCD()).

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
504 NXP Semiconductors

Table 100. IOCTLs of the Port Device (continued)

IOCTLS LLD Mapping Brief

FM_PORT_IOC_PCD_PLCR_MODIFY_INITI

AL_PROFILE[_COMPAT]

FM_PORT_PcdPlcrModifyInitialProfile() (RX & O/H Only) Changes the initial
policer profile for the port (callable only
after FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_CC_MODIFY_TREE[_C

OMPAT]

FM_PORT_PcdCcModifyTree() (RX & O/H Only) Replaces the coarse
classification tree if one is used for the
port (callable only after
FM_PORT_DetachPCD() and before
FM_PORT_AttachPCD()).

FM_PORT_IOC_PCD_KG_BIND_SCHEMES[_

COMPAT]

FM_PORT_PcdKgBindSchemes() (RX & O/H Only) Adds more KeyGen
schemes for the port to be bound to
(callable only after
FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_KG_UNBIND_SCHEME

S[_COMPAT]

FM_PORT_PcdKgUnbindSchemes() (RX & O/H Only) Prevents the port from
using the specified KG schemes (callable
only after FM_PORT_SetPCD())

FM_PORT_IOC_PCD_PRS_MODIFY_START_

OFFSET

FM_PORT_PcdPrsModifyStartOffset() (RX & O/H Only) Changes the frame
offset at which parsing starts (callable
only after FM_PORT_DetachPCD() and
before FM_PORT_AttachPCD()).

FM_PORT_IOC_ADD_CONGESTION_GRPS FM_PORT_AddCongestionGrps() (RX & O/H Only) Should be called in order
to enable pause frame transmission in
case of congestion in one or more of the
congestion groups relevant to this port.
Each call to this routine may add one or
more congestion groups to be considered
relevant to this port.

FM_PORT_IOC_REMOVE_CONGESTION_GRP

S

FM_PORT_RemoveCongestionGrps() (RX & O/H Only) Should be called when
congestion groups were defined for this
port and are no longer relevant, or pause
frames transmitting is not required on
their behalf. Each call to this routine may
remove one or more congestion groups to
be considered relevant to this port.

FM_PORT_IOC_ADD_RX_HASH_MAC_ADDR FM_MAC_AddHashMacAddr() Add an Address to the hash table. This is
for filter purpose only.

FM_PORT_IOC_REMOVE_RX_HASH_MAC_AD

DR

FM_MAC_RemoveHashMacAddr() Delete an Address to the hash table. This
is for filter purpose only.

FM_PORT_IOC_SET_TX_PAUSE_FRAMES FM_MAC_SetTxPauseFrames() Enable/Disable transmission of Pause-
Frames. The routine changes the default
configuration: pause-time - [0xf000],
threshold-time - [0]

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 505

Table 100. IOCTLs of the Port Device (continued)

IOCTLS LLD Mapping Brief

FM_PORT_IOC_GET_MAC_STATISTICS FM_MAC_GetStatistics() Get all MAC statistics counters.

FM_PORT_IOC_CONFIG_BUFFER_PREFIX_

CONTENT

FM_PORT_ConfigBufferPrefixContent() Defines the structure, size and content of
the application buffer.

FM_PORT_IOC_VSP_ALLOC[_COMPAT] FM_PORT_VSPAlloc() This routine allocated VSPs per port and
forces the port to work in VSP mode. Note
that the port is initialized by default with
the physical-storage-profile only.

The COMPAT variants of certain IOCTLs in the above table are required for supporting 32-bit user space apps. on

64-bit Linux kernels. The specifics of the COMPAT mappings are documented by Linux.

 NOTE

The programming model for managing the FMan's ports is the same as described in the Frame Manager Driver API
Reference. A few notable mentions though:

Although all the above IOCTLs are implemented by the Linux FMD, due to the asymmetry between RX and TX, not all are available
for any port type. E.g. FM_PORT_IOC_SET_PCD will generate an error if called on a TX port device. Similarly,
FM_PORT_IOC_SET_RATE_LIMIT will fail for an RX port. That is because the checking of the port type is being done late, inside
the LLD, and not in the Linux FMD (i.e. the ioctl() calls for all port devices delegate to the same function inside the Linux kernel)!

The Offline Parsing ports have the best of both worlds. That is because conceptually, an O/H port is no different from a "regular"
FMan port that has the TX side looped back internally to its RX side.

8.2.5.2 Frame Manager Driver User's Guide

8.2.5.2.1 Introduction
The Frame Manager is a hardware accelerator responsible for preprocessing and moving packets into and out of the datapath. It
supports in-line/off-line packet parsing and initial classification to enable policing and flow/QoS based packet distribution to the
CPUs for further processing of the packets.

The Frame Manager consists of a number of packet processing elements (also referred to as engines) and supports a flexible
pipeline. Usually, the main Rx flow (simplified) follows these steps: packets are received from one of the Ethernet MACs, are
temporarily stored in the FMan internal memory, then delivered to SoC memory via the FMan DMA. The packet header (max size
256 bytes) is stored and the modules common database structure is allocated. Then the packet is parsed by the parser or by the
FMan controller. According to parsing results a key may be extracted by KeyGen, a destination frame-queue-id may be set, the
packet may be classified by the FMan controller. in that stage, some offloads may be done like re-assembly, fragmentation, header-
manipulation and frame-replication. At the end of the classification and manipulations stage, the packet may be colored by policer.
At the end of this process, packets are delivered to SoC memory via the FMan DMA and then are enqueued to a frame queue or
dropped. The processing order is Parse-Classify-Distribute (PCD) flow dependant, based on user configurations. Each step is
dependant on previous state results. This structure enables flexibility, which efficiently supports many flows.

On Tx the frames are transmitted via the desired MAC with optional checksum generation.

8.2.5.2.2 Frame Manager Features
The FMan driver aims to support the majority of the hardware features. It also includes exclusive software features designed to
provides facilitation through abstraction.

Following are the features of the FMan driver:

• Simple initialization and configuration API for the following FMan blocks: DMA, FPM, IRAM, QMI, BMI, and RTC.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
506 NXP Semiconductors

• Simple initialization and configuration for the following FMan PCD blocks: Parser, Keygen, Custom-Classifier (CC),
Manipulations (e.g. Header-manipulations, IP-reassembly, IP-fragmentation, etc.) and Policer.

• FMan memory (MURAM) management.

• FMan-controller code loading.

• Software-Parser loading.

• Supported all FMan port types-Rx, Tx, Offline-Parsing, and Host-Command (internal use of the driver only)

• Common MAC API for dTSEC, 10G-MAC and mEMAC.

• Provides API for accessing the MII management interface.

• FMan Rx and Tx ports can run in one of the following modes:

— Independent-Mode

— Simple BMI-to-BMI (regular) mode

— Advance PCD mode (using FMan PCD blocks such as parser, Keygen, CC, and Policer).

• FMan Offline ports can run in one of the following modes:

— Simple BMI-to-BMI (regular) mode

— Advance PCD mode (using FMan PCD blocks such as parser, Keygen, CC, and Policer)

• Internal (optional) Host-Command port initialization, based on user's parameters.

• FMan IRQ handling - events and exceptions.

• Supports both SMP and AMP operation modes.

8.2.5.2.3 Frame Manager Driver Components
The FMan driver contains following low-level modules, as shown in this figure.

Figure 100. FMan Driver Modules (from a partition point of view)

The modules are as follows:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 507

• Frame Manager (common)-The FMan module is a singleton module within its partition. It is responsible for the common
hardware modules: FPM, DMA, common QMI, common BMI, FMan controller's initialization, and runtime control routines.
This module must always be initialized when working with any FMan module. The module will mainly be used internally by
the other FMan modules except for its initialization by the user.

This module has an instance for each partition. However, only the driver that is on the master-partition has access to the
hardware registers.

• Frame Manager Parser-Classifier-Distributor (FMan-PCD)-The FMan PCD module is a singleton module within its partition.
It is responsible of all common parts of the PCD, such as the hardware parser, software parser, Keygen, policer, and custom-
classifier blocks. It is responsible for building the PCD graphs.

This module has an instance for each partition. However, only the driver on the master-partition has access to the hardware
registers.

• Frame Manager Memory (FMan-MURAM)-This module is responsible for the specific memory partition of the FMan Memory.
Each partition may have its own FMan Memory partition that is managed by the FMan Memory driver. For example, an FMan
Memory instance will be created for each partition that has its own FMan ports.

This module has an instance for each partition.

• Frame Manager Real-Time-Clock (FMan-RTC)-This module is responsible for the FMan RTC module.

This module is a "singleton" and should be created once only for the master-partition.

• Frame Manger Port (FMan-Port)-This module is responsible for all FMan port-related register space, such as all registers
related to a port in QMI or BMI.

This module can be run by each core or partition independently.

• Frame Manager MAC (FMan-MAC)-This module is responsible for the mEMAC dTSEC and the 10G MAC controllers.

This module can be run by each core or partition independently.

• Frame Manager Virtual-Storage-Profile (FMan-VSP)-This module is responsible for allocating and managing virtual storage
profiles that may used for virtualization purposes. More of the VSP is described in FMan VSP Driver on page 546.

This module can be run by each core or partition independently.

8.2.5.2.4 Driver Modules in the System
The FMan driver is designed to support single or multi partition environment. In addition, the FMan driver is designed to support
environment with multicore that are running in SMP mode.

The following figure shows a typical single-partition (maybe SMP or not) environment and its FMan driver building blocks.

In this environment:

• All FMan driver modules are available and should be initialized by the user (unless if it is unnecessary for the

user operation; for example, if PCD is not needed so it may not be called).

• The FMan driver modules have the full functionality of the hardware.

• Each module has full access to its hardware registers (i.e. each module will access its registers directly).

 NOTE

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
508 NXP Semiconductors

Applications

Application
(Control, FWD, Bridge, etc.)

FMC Tool

Kernel-Drivers Network stack

FM

FM RTC

FM PCD

FM
Common

FM Port

FM NURAM FM MAC

FM FM Port FM MAC

Hardware

FM VSP

Figure 101. Single-Partition FM Building Blocks

8.2.5.2.4.1 Multicore Approach
The driver supports the Symmetric Multi-Processing (SMP) opperation method.

8.2.5.2.4.1.1 SMP
As a rule, driver routines are not SMP safe. It is user's responsibility to lock all routines that might be in risk in his environment,
for example, if FM_PORT_Enable/FM_PORT_Disable may be used by several cores, it is user's responsibility to protect the routine
call using a spinlock.

An exception to this rule is the set of PCD routines. Due to the complexity of this module, and in order to support SMP and maintain
coherency, PCD routines are protected using two mechanisms, spinlocks and flags.

Each PCD resource (i.e. software module such as scheme, CC Node, NetEnv, etc.) may have one or more spinlocks which are
used to protect short code sections where specific resources such as hardware registers or software structures are accessed. In
some cases, a spinlock of a higher level is used (i.e. CC locks the whole PCD).

The second mechanism is defined globally. The PCD global module provides a PcdLock mechanism, which is a list of lock objects
containing a flag and a spinlock rotating that flag. On initialization of each PCD resource (i.e. software module such as scheme,
CC Node, NetEnv, etc.), a PcdLock is allocated for this module. Critical sections that may not be protected by spinlocks (due to
reasons of sections length, Host Commands and other lengthy operations) are protected by these flags. Note that this is a try-
lock mechanism and the calling routine returns with E_BUSY error on failure. The try-locks are used by all PCD resources
modification routines, in which case the application is expected to recall the routine until it is not busy.

In Addition, PCD and FM Port inter-module complex sections may be protected by try-locking all the initialized PcdLock modules
in the global PCD, thus providing a safe PCD environment where influence and connections between modules may take effect.

On top of PCD routines, all FM Port PCD related routines are also protected by Port try-lock, meaning no two cores can access
the same port to run a PCD routine. As in the PCD routines, these routines may return E_BUSY on failure and should then be
recalled.

The driver SMP protection mechanism assumes the following:

• Only one core may initialize and delete a specific PCD software module (i.e. scheme x may not be initialized by two cores).

• A core should not attempt to delete a PCD software module when there is a risk of another core operating on that specific
module.

8.2.5.2.5 FMan Driver Calling Sequence
Initialization of the FMan driver is carried out by the application according to the following sequence:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 509

1. MURAM configuration & Initialization

2. FMan (common) configuration & Initialization

3. [Optional] FMan RTC configuration & Initialization

4. For each MAC required by the user:

a. MAC Configuration & Initialization

b. PHY Initialization

5. For each FMan Port required by the user:

a. FMan Port Configuration & Initialization

b. [optional] If the FMan Port required to be virtualized, a set of VSPs need to be allocated and one of them should
be set as the default.

c. [optional] If VSPs were allocated in previous step, the default VSP need to be configured & initialized

d. in that stage, user should configure and intialize everything that is needed for the operation of a port outside the
fman; e.g. buffer-pools, frame-queues, etc.

e. Port Enablement

f. MAC Enablement

g. Calling 'AdjustLink' MAC API routine with the relevant link parameters

Now, the FMan is operational. The ports operate in independent mode or BMI-to-BMI mode. From that point, all

the following steps are optional.

 NOTE

6. FMan PCD Configuration & Initialization

7. If a physical port is being "vitualized" into several software entities (using some classification to ditribute the traffic), user
should configure and initialize the relevant buffer-pools and frame-queues.

8. If VSP is enabled, in that stage, user should configure and initialize the relevant profile.

9. FMan PCD Graph initialization:

a. Calling restricted runtime routines (that may be called only when PCD is disabled)

b. Calling the PCD enable routine

c. Initialization of a all PCD Graph objects (i.e. KG-schemes, Match-Tables, etc)

10. FMan port-PCD related initialization; calling the run-time control routines to set the PCD related parameters

In case the PCD is "set" to a FMan OP port, it should be disabled first (i.e. before calling 'FM_PORT_SetPCD'

routine).

 NOTE

11. FMan runtime routines

12. FMan Free sequence - in reverse order from initialization

8.2.5.2.6 Global FMan Driver
The Global FMan driver refers to the common FMan features - i.e. functionality that is not defined per-port and does not belong
to a spany of the specific modules such as PCD, RTC, MURAM, MAC etc.

8.2.5.2.6.1 FMan Hardware Overview
The following Frame Manager processing elements are considered general FMan components and are controlled by the FMan
common driver:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
510 NXP Semiconductors

• The Frame Processor Manager (FPM) schedules frames for processing by the different elements to create the appropriate
pipeline.

• The BMI is intended to transfer data between network and internal FMan memory, generate frame descriptor (FD),
initialize the internal context (IC), manage the internal buffers, allocate/deallocate external buffers with the help of BMan
and activate the DMA to transfer data between internal and external RAMs

• The DMA is responsible for frames data transfer from and to external memory

• The queue manager interface (QMI) is responsible for transferring packet-based work assignments between the queue
manager (QMan) and the frame manager (FMan). It provides an interface to the QMan for enqueuing and dequeuing new
frames to/from the multicore system.

8.2.5.2.6.1.1 Global FMan Driver Software Abstraction
The FMan global driver covers all the logically common FMan functionality, i.e functionality which is not port related. The different
hardware modules within the FMan (i.e. BMI, DMA, etc.) are encapsulated within the FMan module. The terms "BMI", "DMA" are
used for resources identification such as exceptions, counters and some configuration parameters, but logically, the only module
used for functional operations is the FMan.

8.2.5.2.6.2 How to use the Global FMan Driver?
The following sections provide practical information for using the software drivers.

8.2.5.2.6.2.1 Global FMan Driver Scope
This module represents the common parts of the FMan. It includes:

• FMan hardware structures configuration and enablement

• Resource allocation and management

• Interrupt handling

• Statistics support

• ECC support for the FMan RAM's

• Load balancing between ports

8.2.5.2.6.2.2 Global FMan Driver Sequence
• FMan config routine

• [Optional] FMan advance configuration routines

• FMan Init routine

• FMan runtime routines

• FMan free routine

8.2.5.2.6.2.3 Global FMan Driver Functional Description
The following sections describe main driver functionalities and their usage.

8.2.5.2.6.2.3.1 FMan Configuration and Initialization

On FMan driver initialization, the software configures all FMan registers and relevant memory. It supplies default values where
no other values are specified, it allocates MURAM, it loads FMan controller code. It defines IRQ's and sets IRQ handles. It enables
hardware mechanisms and initializes software data structures for software management.

By the time initialization is done, FMan is ready to be used and any of the FMan sub-modules (FMan-Ports, MACs, etc.) may be
initialized.

8.2.5.2.6.2.3.2 Resource Management & Tuning

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 511

The FMan provides resources used by its sub-modules. Generally, the driver selects default resource allocation, but when
initializing the global FMan module, the user may specify a different allocation for some or all of the resources.

The resources relevant for this discussion are resources used by the BMI only. These resources should be further distributed
between the different ports, but the initial allocation is for the BMI in opposed to some internal use of the FMan controller. The
main and most important resources of the FMan are TNUMs (i.e. the FMan "tasks"), DMAs, FIFOs and "pipeline-depth".

The total available resources may vary based on SoC. The recommended default values are designed to fit most applications but
as the resource allocation depends on system configuration, it therefore may vary between applications. I.e. the default value that
are being set by the driver will be sufficient in use-cases were the user utilizing most of the FMan bandwidth and the user
application is mostly using the FMan. In other cases such as if user uses some advance PCD settings and/or overloads the SoC
(e.g. PCI is being massively used), the resources may need some special treatment and tuning by user as the default may not
be sufficient enough.

Most MURAM is used as a temporary location for data transaction. This part's size is referred to as "FIFO size". The rest of the
MURAM may be used for other utilizations such as Custom Classifier and its size is effected by the use of these features, i.e. if
Custom Classifier is not used, "FIFO size" may be enlarged. The user may call FM_ConfigTotalFifoSize in order to modify the
default value of the MURAM. However, one should bear in mind that when FIFO size is enlarged - Custom Classifier space is
decreased.

8.2.5.2.6.2.3.3 Load Balancing

The FMan provides a mechanism to optimize the internal arbitration of different ports over the shared resources of the hardware.

The driver supports this feature by providing an API for dividing the bandwidth between the different ports
(FM_SetPortsBandwidth). The API is given in terms of percentage - i.e. for each port, the user should specify its percentage
relative to the other ports. This API is optional and may be modified at runtime. If not used, or if all ports get the same bandwidth
(whether its {50,50} or (25,25,25,25}), then no one port will have priority over other ports. If ports get different values, for example
3 ports used and get {25,50,25}, than the first and third ports will get the same access to shared resources but the second one
will get twice as much. i.e. The numerical values given to each port are not important, but only the relation between the ports.

8.2.5.2.6.2.3.4 Statistics

The FMan API provides access to all the statistics gathered by the FMan hardware. The API routine FM_GetCounter may be
called at any time after initialization to retrieve any of the FMan counters.

8.2.5.2.7 FMan Parse-Classify-Distribute Driver
The Parse-Classify-Distribute (PCD) driver module refers to the parts of the drivers handling the different PCD engines and
services such as Parser, Keygen, Custom Classifier, Policer, Header Manipulation, Reassembly, Fragmentation and Frame
Replication. It deals both with the common configuration and runtime features and the specific PCD resources such as Keygen
Schemes, Custom Classifier graphs, etc.

8.2.5.2.7.1 FMan PCD Hardware Overview
• Parser-The parser performs protocol header parsing and validation for a wide range of frame formats with varying

protocols and encapsulation. A hard-coded parser function is used for the known and stable protocols. The hardware
parser capabilities can be expanded by software parser functions to support protocols not supported by the hardware
parser including proprietary protocols and shim headers. The parser parses the frame according to a per-port
configuration. It reads the frame header from the FMan Memory and writes the frame parse results to the Internal Context
of the frame. The Lineup Confirmation Vector is a part of the parser result. It represents a list of all the protocols
recognized by the hardware parser, and may be extended to contain information added by the software parser.

• Keygen-The Keygen is located on the FMan receive path, and enables high performance implementation of pre-
classification. It holds a SoC dependent number of key generation schemes in internal memory. Each scheme can
generate different frame queue ID (FQID), a Storage-Profile ID (SPID) and policer profile (PP). One main function of the
Keygen module is to separate network data into different flows, each requiring different processing. Another function of the
Keygen, is the Classification Plan. This is a mechanism provided in order to mask LCV bits according to per-port definition.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
512 NXP Semiconductors

The Classification Plan is implemented as a table of SoC dependent number of entries, logically divided or shared
between the FMan Ports.

• Custom Classifier-The Frame Manager (FMan) Custom Classifier module performs a look-up using a specific key from the
received frame or internal frame context according to Parser results. The FMan Custom Classifier logically occurs after the
Keygen processing has completed and can be operational in both the MAC receive flow and the offline parsing flow. The
look-up produces an action descriptor which contains the necessary information for the continuation of the frame
processing in the next module or the next look-up table.

• Policer-The Policer supports implementation of differentiated services at line speed on the Frame Manager (FMan) receive
or offline parsing paths. It holds a SoC dependent number of traffic profiles in internal memory, each profile implementing
RFC-2698 or RFC-4115 or Pass-Through mode. Each mode can work in either color-blind or color aware mode, and pass
or drop packets according to their resulting color.

8.2.5.2.7.1.1 FMan PCD Software Abstraction
The FMan PCD driver aims to provide a high-level, abstract, network oriented, logical interface. It is designed to allow a glue logic
between the different PCD engines and the PCD "user" - the FMan port, and to define an interface to these features to be used
by the application. In this process, new non-hardware modules may be created - such as "Network Environment", while existing
hardware modules - such as "Classification Plan" - may be hidden from the user. The following sections makes an attempt to
describe the driver design decisions in abstracting the engines' hardware and the gap between the hardware programming model
and the drivers API.

8.2.5.2.7.1.1.1 FMan PCD Flow

The FMan opens the FPM scheduling capabilities to the application, which allows significant flexibility in defining the packet flow.
At various points in the flow, the FMan user must configure the next engine to handle the packet and the next operation it will
perform. The driver minimizes this flexibility by assuming a basic flow for each port. The driver can expand this flow to include all
FMan PCD capabilities, but in a limited manner that will be described below.

The basic flow reflects the expected use of the FMan PCD. When a port is initialized, the default setup that received packets are
passed to the port's default Rx frame queue, as configured by the user. When the PCD is linked to the port, the user chooses
one of the provided PCD support options which selects which PCD engines (parser, Keygen, FMan-Controller, and Policer) are
included in the frames. The selected PCD support option adds the selected engine or engines to the flow according to the following
PCD organization.

• When parser is used, it is always the first PCD engine working on the received frames.

• If parser is not activated, Keygen, and FMan-Controller may not be activated.

• Keygen's first use follows the parser, but it may be used again following the Fman-Controller or the policer.

• If FMan-Controller is used, it will follow the Keygen. It may not be activated if Keygen is not used.

• Policer may be activated by itself or follow any of the engines.

In all cases, the frame returns to the buffer manager interface (BMI) for enqueueing. The application may not change the main
flow at runtime.

The following figure shows the default ports flows (in terms of next invoked action (NIA) registers' initialization):

BMI

BMI QMI

QMI BMI

BMIQMIEND

Frame for
Parsing
(QM)

PCD

Figure 102. Default Rx Flow

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 513

Figure 103. Default Offline Parsing Flow

In independent mode, both Tx and Rx BMI NIA are FMan Controller. Other NIAs are not applicable.

 NOTE

After basic initialization, the default Rx flow, as shown in Figure 102. on page 513, is the configured flow. A PCD flow is initially
defined by FMan Port level, although it is effected both by the port configuration and the PCD resources configuration. Following
figure shows the PCD flows supported by the driver.

BMI release internal buffers

END

NL=0

NIA=BMI Release

QMI

NIA=QMI_ENQ

BMI prepare to enqueue frame

Rx Frame

BMI (Rx)

NIA=BMI prepare to Enqueue NIA=Policer

NIA=Policer

NIA=Parser

NIA=BMI prepare to Enqueue

NIA=BMI prepare to Enqueue

Parser

NIA=KeyGen

KeyGen

NIA=BMI prepare to Enqueue

NIA=DMI DROP Frame

NIA=BMI prepare to Enqueue

NIA=BMI prepare to Enqueue NIA=Policer

Policer

NIA=Policer

KeyGen

NIA=KeyGen

Policer

NIA=KeyGen

NIA=Policer

FMan Controller Custom classifier.

NIA=Custom classifier.

NIA=Policer

FMan Controller continuous mode processing
not supported in P1023,P4080,P3041,
P5020,P5040 and P2041

 NIA=continuous mode
processing

&NI=1

Figure 104. Available flows

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
514 NXP Semiconductors

8.2.5.2.7.1.1.2 Global FMan PCD Module

The FMan PCD driver deals with the configuration initialization and runtime setting of the PCD resources. The actual use of these
resources is in fact activated only when an FMan-Port is enabled and is bound to the initialized PCD resources. In this chapter
we will only deal with the initialization and organization of those resources.

The PCD driver is constructed by a global FMan-PCD module that must be initialized first, and a set of optional PCD resources
that can be initialized at run-time. The FMan-PCD module is responsible for enabling the different engines, loading SW parser if
required, registering PCD interrupts and other general configuration.

8.2.5.2.7.1.1.3 Global FMan-PCD Resources

PCD driver's resources are NOT identical to PCD hardware resources and provide an abstraction layer to the hardware resources.
PCD is viewed as a graph of PCD resources where FMan RX & OP Ports may be bound to subsets of the PCD graph. Refer to
Port-PCD Binding on page 541.

The following are the driver's PCD resources:

• Network Environment Characteristics

• Software Parser

• Keygen Schemes

• Custom Classifier Roots

• Custom Classifier Match-Tables

• Custom Classifier Hahs-Tables

• Custom Classifier Manipulations

• Policer Profiles

The Network Environment (NetEnv) Characteristics are a pure SW resource. It is used in creating multiple HW PCD resources.
Logically, it represents the NetEnv of a port or a number of port and supplies the glue between the parser, the Keygen, the Custom
Classifier and the port. It ensures they all "speak the same language". Physically, it defines the LCV for all the participating
protocols for each FMan Port.

Keygen Schemes and Policer Profiles are closely bound to their hardware programming model

Custom Classifier process is represented by a software graph. Each node in the graph represents a logical action. The driver
defines different types of Custom Classifier nodes. One type of node is one of an Exact-Match which is a software representation
of an Action-Descriptor (AD) that performs a lookup according to the key defined. Another type of node is one of Indexed-Lookup
which is again a software representation of an Action-Descriptor of that type. A higher level of abstraction is performed on Hash-
Table nodes, where the driver manages a hash table. Each node, may also contain a handle to a Manipulation action - which is
the software abstraction for one or more AD's used for manipulating the frame by inserting and/or removing data. Generally, any
Custom Classifier software node may be translated to one or more HW action descriptors.

The driver defines a notion of a Custom Classifier graph. The CC graph is the total set of lookups and manipulations performed
by the Custom Classifier. The user builds the graph only after defining the CC Nodes. The finalization of the graph is done by
building the root nodes and defining their grouping. This refers to the 16 entries array that functions as the entry point of the CC.
Generally, the indexing into this array is performed by using 4 bits out of the LCV. This driver supports a division of this array into
2-16 unrelated groups to increase the flexibility of the programming and allow usage of more LCV bits.

8.2.5.2.7.1.1.4 How to Associate PCD Resources

The NetEnv is the link between the port and all the PCD resources it is using.

• Parser-The driver configures the LCV (lineup confirmation vector) in the parser configuration for every FMan Port
according to the specific NetEnv it is bound to. When using SW parser, a private shim header should be added as a
NetEnv unit, and may be used later as a regular unit.

• Keygen-Classification plan: The driver hides this resource from the user and configures classification plan entries to
support and expand the HW parser capabilities according to the user definition of its NetEnv Characteristics

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 515

• Keygen-Schemes: The user describes the scheme in terms of NetEnv units, and the match vector is configured by the
driver.

• Custom Classifier: The user describes the entry point of a CC root in terms of NetEnv units. The driver internally passes
this information to the Keygen that uses it in selecting the entry point in the CC root when passing a frame from the
Keygen to the Custom Classifier.

After defining PCD resources, the user may bind any FM Port to the initialized resources. A port must be bound to a single NetEnv,
and may be bound to a Custom Classifier root and KeyGen schemes.

The set of figures below demonstrate a single example of the use of the driver's resources and their interaction with the hardware
structures.

The following table demonstrates a NetEnv of 7 units. Unit 0, for example, is a simple unit recognizing ethernet frame, while unit
2 recognizes IP frames of either version.

Unit 0 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Ethernet Ethernet
[Broadcast]

IPv4 IPv4 UDP MPLS [stacked] IPv4 [Multicast]

IPv6 TCP

When a port is bound to a NetEnv, the driver translates its units into the parser's hardware Line-up Confirmation Vector (LCV).
The table below shows the LCV configured for a port that has the NetEnv above.

LCV[0] LCV[1] LCV[2] LCV[3] LCV[4] LCV[5] LCV[6] LCV[7-31]

Ethernet 1 1 0 0 0 0 0 0...0

IPv4 0 0 1 1 0 0 1 0...0

IPv6 0 0 1 0 0 0 0 0...0

UDP 0 0 0 0 1 0 0 0...0

TCP 0 0 0 0 1 0 0 0...0

MPLS 0 0 0 0 0 1 0 0...0

Based on the NetEnv, the driver also defines a set of Classification Plan entries to be used by each port using that NetEnv.

Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bits[7-31] Comment
s

0 1 0 1 1 1 0 0 1...1 No
classificati
on plan

1 1 1 1 1 1 0 0 1...1 Ethernet
Broadcast

2 1 0 1 1 1 1 0 1...1 MPLS
Stacked

3 1 1 1 1 1 1 0 1...1 1+2

4 1 0 1 1 1 0 1 1...1 IPv4 MC

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
516 NXP Semiconductors

Table continued from the previous page...

5 1 1 1 1 1 0 1 1...1 1+4

6 1 0 1 1 1 1 1 1...1 2+4

7 1 1 1 1 1 1 1 1...1 1+2+4

When a frame is received its LCV is masked by one of the vectors in the Classification Plan. The FMan selects the entry based
on the parser output and the port parameters.

To support this operation, the driver initializes the HXS plan offset field for each relevant header in the port parser parameters.
The table below, is the driver's translation of the Network environment above into the port classification plan parameters. When
a frame is being parsed, the classification plan offset for each header found is accumulated to construct the offset of the result
classification plan. For example, a hypothetic frame of Ethernet BC/Stacked MPLS/IPv4 unicast frame, will have an
LCV=0xF6000000 and a classification plan id of 2^(1-1)+ 2^(2-1) = 3, so its classification plan vector is 0xFDFFFFFF, and QLCV
= 0xF4000000.

Ethernet Broadcast 1 2^(1-1)=1

MPLS Stacked 2 2^(2-1)=2

IPv6 0 0

UDP - -

TCP - -

IPv4 Multicast 3 2^(3-1)=4

Given the driver's automatic initialization of the LCV and classification plan based on only the NetEnv, the user may now initialize
Keygen schemes by passing as match criteria only the NetEnv unit id's. As in the other cases, the driver will translate the unit id's
to the schemes' match vectors as can be seen in the figure below.

Scheme Match Criteria

0
1

2
3

Ethernet broadcast

IPV4 MC+MPLS stacked

IPV4 MC

IPV4 (TCP or UDP)

match on IPv4 or
IPv6 frames
Ethernet

Direct scheme

4

5

6

Units Match vector

1

5+6

6
3+4

2

0

0x40000000
0x06000000

0x02000000

0x18000000

0x20000000

0x80000000

0xffffffff

Id

--

+

Figure 105. Keygen schemes example

Finally, the driver will also take care of initializing the Keygen-to-Custom Classifier configuration registers. When initializing a
Custom Classifier root, the user may create groups based on NetEnv units (in opposed to a simple group of a single entry; for
more information refer to Custom Classifier Root on page 523).

When initializing a scheme, the user should only pass the handle to the Custom Classifier root. The driver will translate the group
LCV dependent parameters into the scheme required register.

For example, Group 0 is a simple group that is not dependent on the NetEnv. Group 1 is based on a single unit - so a frame may
be forwarded to 1 of 2 root nodes, and group 2 is based on 3 units - so a frame may be forwarded to 1 of 8 root nodes.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 517

Figure 106. Keygen scheme configuration for CC next engine

The Policer Profiles are the one resource that does not rely on the Parser Results or the NetEnv. It is therefore managed
independent of the other PCD resources.

8.2.5.2.7.1.1.5 FMan Header Manipulation

The FMan controller defines a set of header manipulation commands, and supports listing of these commands. The FMan driver
allows limited listing by a single Manipulation node, limited to a single use of each command and to a defined order (e.g. remove
+ insert may be defined in a single node, but insert + remove or remove + remove may not). Alternatively, full listing and ordering
is supported by chaining more than one Manipulation nodes. In such a case, the driver will unify HMCT's to optimize performance
and MURAM usage unless parsing is required in between the different commands.

The following list maps each FMan controller command to the driver parameters in the Header Manipulation structure:

1. Generic removal-Set 'rmv' and use the corresponding parameters structure. Select generic enum and parameters.

2. Generic insertion-Set 'insrt' and use the corresponding parameters structure. Select generic enum and parameters.

3. Generic replace-Set 'insrt' and use the corresponding parameters structure. Select generic enum and parameters and
set 'replace'.

4. Protocol specific removal-Set 'rmv' and use the corresponding parameters structure. Select byHdr enum and
parameters.

5. Protocol specific insert-Set 'insrt' and use the corresponding parameters structure. Select byHdr enum and parameters.

6. Vlan priority update-Set 'fieldUpdate' and use the corresponding parameters structure. Select vlan enum and
parameters.

7. IPv4 update-Set 'fieldUpdate' and use the corresponding parameters structure. Select IPv4 enum and parameters.

8. IPv6 update-Set 'fieldUpdate' and use the corresponding parameters structure. Select IPv6 enum and parameters.

9. TCP/UDP update-Set 'fieldUpdate' and use the corresponding parameters structure. Select TCP/UDP enum and
parameters.

10. TCP/UDP checksum calculation-Set 'fieldUpdate' and use the corresponding parameters structure. Select TCP/UDP
enum and parameters.

11. IP replace-Set 'custom' and use the corresponding parameters structure. Select TCP/UDP enum and parameters.

8.2.5.2.7.1.1.6 Custom Classifier Hash-Table Node

The driver provides a high level Hash-Table mechanism implemented over the FMan controller Custom Classifier structures. The
driver implements the Hash-Table by using a Match-Table node of type Indexed-Hash, where each entry points to a hash bucket
implemented by a Match-Table node of type Exact-Match (For more information on these nodes, refer to Custom Classifier Root

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
518 NXP Semiconductors

on page 523). The driver uses the Keygen key and hash result as a key for the lookup. A selected part of the hash result is used
to select the entry in the Indexed-Hash table (i.e. the bucket), and the full key possible values are used as the Match-Table keys
in the selected bucket.

Internal Context

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

of
 S

et
s

=
 4

Number Of Ways = Max number of keys/Number of Sets = 12

64 bits hash

12 Bits Mask (starting at byte 2 of the hash) = 0x0030 (2 bits 4 entries table)

Hash bits = 00

Hash bits = 01

Hash bits = 10

Hash bits = 11

Keygen Key 0

Keygen Key 3

Keygen Key 7

Keygen Key 2

Keygen Key 5

Keygen Key 6

Keygen Key 1

Keygen Key 4

Keygen Key 10

Keygen Key 8

Keygen Key 9

Keygen Key 11

MISS

MISS

MISS

MISS

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

QM Fquid 0x400

QM Fquid 0x401

QM Fquid 0x402

QM Fquid 0x403

QM Fquid 0x404

FM Keygen Scheme 9

FM Keygen Scheme 6

FM Keygen Scheme 10

FM Keygen Scheme 7

FM Keygen Scheme 10

QM Keep KG Result

QM Keep KG Result

QM Keep KG Result

QM Keep KG Result

FM CC Node 1

FM CC Node 2

Figure 107. Hash_Table node example

8.2.5.2.7.2 How to use the FMan PCD Driver?
The following sections provide practical information for using the software drivers.

8.2.5.2.7.2.1 FMan PCD Driver Scope
• FMan Parser, Keygen, Custom Classifier & Policer configuration and initialization

• PCD Enable/Disable

• Resources allocation and management

• Interrupt handling

• Statistics support

• Support for FMan PCD operations

8.2.5.2.7.2.2 FMan PCD Driver Sequence
• FMan PCD Config routine

• [Optional] FMan PCD advance configuration routines

• FMan PCD Init routine

• Specific one-time pre-enable routines (e.g. load SW parser)

• FMan PCD Enable routine

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 519

• FMan PCD runtime routines

• FMan PCD specific resources runtime routines (for defining, modifying and deleting Keygen schemes, Custom Classifier
nodes, etc.)

• FMan PCD Free routine

8.2.5.2.7.2.3 FMan PCD Driver Functional Description
The following sections describe main driver functionalities and their usage.

8.2.5.2.7.2.3.1 Global PCD Initialization

PCD initialization is divided into two parts. During the first part of the initialization, FM_PCD_Config, advance config routines, and
FM_PCD_Init are called to configure and set all basic PCD capabilities, including pre-defining which engines are supported and
may be used later. This stage is done in the kernel, and PCD is not yet enabled. During the second part of the initialization, PCD
is enabled by a runtime routine (FM_PCD_Enable).

This division creates a gap during which some functionality may be added. The most important is the loading of the SW parser
code. Note that this functionality is allowed only when PCD is disabled (i.e. between init and enable) or, with some restriction, in
runtime after disable.

Once PCD basic initialization is complete (FM_PCD_Init and FM_PCD_Enable are called and returned), the PCD capabilities of
the frame manager are reflected by the driver as a set of API runtime routines designed to define the PCD environment for a
specific partition. PCD resources are defined per partition and may be used by all ports within a specific partition. The different
PCD resources are first initialized and only later may be used by the FMan ports.

The order of PCD resources initialization is strict and relies on the PCD graph being initialized bottom up, which means that no
resource may be initialized before its next engine is initialized. However, the use of port relative profiles is an exception to this
rule. A scheme's next engine may be a port relative profile. In such a case, the scheme is initialized but not yet bound to a port,
i.e. the actual policer profile is not yet specified. Therefore, its validity may not be verified. It is the user's responsibility to ensure
that when a port using that scheme is activated (for using the PCD), its relative policer profile must be validated.

The PCD graph is partition based i.e. may be shared by ports on the same partition. Refer to Port-PCD Binding on page 541
for more details on port-PCD binding.

8.2.5.2.7.2.3.2 PCD Resources

The following subsections describe each of the driver's PCD resources in detail. In a single-partition environment, most resources
are available and do not need explicit allocation. The port policer profiles are an exception. They must be allocated by the user,
using the FMan Port API. In multipartition, some of the resources, specifically resources limited by hardware, must be first allocated
by a partition and only then used by the partition's ports. The following sections specify the requirements for each of the PCD
resources:

8.2.5.2.7.2.3.3 Network Environment Characteristics

The Network Environment (NetEnv) is a software entity that lists the network protocols used by the FM-PCD for classification and
distribution. The total number of NetEnvs defined depends on the system configuration. A NetEnv may be defined per port or
shared among some or all ports. The definition of a NetEnv must be done with care while considering the use of the FM-PCD
module. The NetEnv is, in fact, the key for frames parsing, distribution, and classification.

The NetEnv is a list of distinction units. Each distinction unit consists of at least one or more headers. A header may either be
one header from the list of supported headers or one of the supported headers plus an option (For more details on list and options
available, refer to Supported Network Protocols on page 550).

The hardware parser implements header recognition. If the software parser is used, a distinction unit may also be one of the shim
headers. The driver saves a number of units (that may be redefined in fm_pcd_ext.h) for private use. The user may than use
this unit ID to recognize the private header by the Keygen or CC.

The following figure shows an example of a NetEnv. It has four units, two of which consist of a single header. One of the headers
has an option. The final two units consist of two interchangeable headers. This example will be used throughout the following
sections

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
520 NXP Semiconductors

.

Figure 108. Network Environment Example

The distinction units list should reflect what the user wants to do with the PCD mechanisms to parse-classify-distribute incoming
frames. Specifying a distinction unit means that the user wants to use that specification to either activate the parser on the specified
headers or distinguish between frames with the Keygen or the Custom Classifier. Using interchangeable headers to define a unit
means that the user is indifferent to which of the interchangeable headers is present in the frame, but instead wants the distinction
to be based on the presence of either one of them. For example, if it is required that a selection of scheme is based on having
L3 header of either IPv4 OR IPv6, but it is of no importance which of the two is present, than a unit should be defined with 2
interchangeable headers: IPv4, IPv6.

The initialization routine retunes a NetEnv handle to be used later to specify that Network Environment.

Depending on context, there are limitations to the use of NetEnvs. A port using the PCD functionality is bound to a NetEnv. Some,
or even all, ports may share a NetEnv, but it is also possible to have one NetEnv per port. When initializing a scheme, a Custom
Classifier root, or when binding a port to the PCD, one of the required parameters is the handle of an initialized NetEnv. The driver
uses the definitions of that NetEnv to initialize that scheme or Custom Classifier root. When a port is bound to a Keygen scheme
or a Custom Classifier root, it must be bound to the same NetEnv.

For the flow's definition, the different PCD modules may only rely on distinction units as defined by their environment. When
initializing a scheme for example, a PCD module may not choose to select IPv4 as a match for recognizing flows unless IPv4 was
defined in the relating environment. In fact, to guide the user through the configuration of the PCD, each module's characterization
in terms of flows is not done using protocol names, but rather environment indices.

In terms of hardware implementation, the list of distinction units sets the Lineup Confirmation Vectors (LCVs) and are later used
for match vector and CC indexing. The shim header LCVs are conventionally assigned from LSB up, so the first shim header is
0x0000_0001. For more details on the implementation, refer to Global FMan-PCD Resources on page 515.

Runtime Modifications: A Network Environment may not be changed at runtime. New NetEnvs may be set, and unused NetEnvs
may be deleted anytime.

Available API:

• FM_PCD_NetEnvCharacteristicsSet

• FM_PCD_NetEnvCharacteristicsDelete

8.2.5.2.7.2.3.4 Software Parser

The PCD allows the extension of the hardware parser by loading the software parser code for further manipulation. When this is
required, the user passes the image of the software parser code and a table of labels to the driver. This represents the entry-
points in the software parser code. If more than one code piece is required for a specific protocol (for example, to be used by
different ports) an index is added to the labels table. Later, when configuring a port that uses one or more software parsing
attachments, each protocol header may be bound to one of the previously declared labels. This is done by setting the software
parser enable indication for one or more protocols headers, and indicating the software parser index (relative to that protocol
header). The software parser code will run for that port after the hardware parser recognizes that header. In other words, the
specified protocol header is in fact the trigger for the software parser to be activated. It is typical for the software parser to parse
a private header that was previously defined as a NetEnv unit and then mark its existence for classification and distribution.

The software parser loading routine must be called only when the PCD is disabled and no ports in the system are using the parser.
On initialization this means that the routine, if needed, must be called after FM_PCD_Init and before FM_PCD_Enable.

Runtime Modifications: Software parser may not be changed at runtime.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 521

Available API:

• FM_PCD_PrsLoadSw

8.2.5.2.7.2.3.5 Keygen Schemes

The scheme entity relies on the hardware entity. There are 32 Keygen schemes in a frame manager. When a PCD is defined in
a single partition environment, it is the owner of all 32 schemes. When a PCD is defined in a multipartition environment, the user
must specify how many schemes are required for this partition. Once schemes are allocated for a specific partition, it may be
used only by ports on that partition.

Within a partition, the schemes order is relevant. When initializing a scheme, the user must specify the following:

• Relative index, relative to the partition's schemes.

• Network environment handle.

• Match criteria, or which frames should be processed by the scheme.

• Keygen action (such as hash, FQID mask, and manipulation).

• Distribution FQIDs.

The match criteria (if used), is based on the NetEnv characteristics units. Schemes that are to be used directly should be configured
as such, by specifying a scheme ID rather than using match criteria or specifying distinction units. Upon initialization, the driver
returns a handle to the initialized scheme. This handle can be used later to specify the scheme.

Keygen schemes are dependant on parser results. They may be used immediately after the parser by direct mode or by using
the match criteria. Schemes may also be used after the Custom Classifier or the policer. This flow is typically used for flow control
redistribution. In this case, to avoid infinite loops the scheme is reached only in direct manner and not by match criteria.

The keygen action consists of the construction of the key and the definition of the distribution. The key is constructed by a set of
extract actions arranged in the driver as an array of extractions. Extractions may be done from data, from Parse Result, from
default values, but most commonly - from the header. When extraction is taken from the header it may be described generically
by size and offset, or it may be an extraction of the full field. For a full list of supported headers and fields, see Supported Network
Protocols on page 550.

When a scheme is initialized, the user must specify the next engine to which the frame should pass after it is processed. The next
specified engine must be initialized and valid at this point. Frames may pass to the Custom Classifier or the policer, or they may
be directly enqueued to an FQID.

Once schemes are defined, ports may be bound to them. A port may be bound to as many schemes as needed, as long as they
are from the same partition and the same NetEnv.

Following figure shows an example of scheme setting and connection to the NetEnv, as shown in Network Environment
Characteristics on page 520.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
522 NXP Semiconductors

Schemeld: Scheme
match criteria

Keygen
schemes

Scheme action

0; Ethernet Broadcast frames

1; match on IP
frames

(Netenv unit0)

(NetEnv unit 1)

2; Control frames - (no
match criteria)

Enqueue to
FQIQ 0x20

Distributes on FQID's 0x10 -
0x17 according to hash on
IP SRC.

Go to coarse classification
Tree x group y

Go to policer, Port relative
profile 0

Partition x
schemes

Figure 109. Schemes Example

Runtime Modifications: Valid schemes may be modified at runtime by calling the scheme initialization routine for an existing
scheme with the following differences:

1. Passing the scheme handle as retuned by the original initialization routine (instead of the scheme's relative ID).

2. Setting 'modify' to be 'TRUE'.

New schemes may be set and unused schemes may be deleted anytime.

Available API:

• FM_PCD_KgSchemeSet

• FM_PCD_KgSchemeDelete

8.2.5.2.7.2.3.6 Custom Classifier Root

A Custom Classifier root (or actually the entire CC graph) may be defined per FMan Port or shared by ports on the same partition.
It is a set of lookups defined to classify, route and perform manipulation on a flow of frames. The CC graph is built bottom up by
connecting CC Nodes. When a node (which is not a leaf in the graph) is set, it points to other nodes. These other nodes must
already be initialized.

A CC root is defined by a set of entries that construct the root of the graph, and Custom Classifier Nodes of different types.

Once all nodes in the graph are ready and connected, the root is built by calling the FM_PCD_CcRootBuild routine. The root of the
graph is in fact an array of up to 16 root entry nodes. The entry point for a frame is one of the CC root entries, depending on the
engine that precedes the CC which is the Keygen.

According to the parser results (which is defined by the NetEnv setting) and Keygen configuration, a frame is directed to one of
the entries in the CC root array.

When building the CC root, the user must specify its NetEnv id. Up to four distinction units may define the selection of one node
(out of the 16), in a simple bit selection method. The following table shows the CC Root nodes selection (0 = unrecognized by
parser, 1 = recognized by parser).

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 523

Table 101. CC Root Nodes Selection

Unit0 Unit1 Unit2 Unit3 Selected Node

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

To allow more than 4 units to be involved in the selection, the 16 entries may be divided into groups. The table above demonstrates
an organization of one group of 16 nodes, but other organizations are possible:

2 groups of 8 -> each group selected by 3 units (to select nodes 0-7 relative to this group's base)

4 groups of 4 -> each group selected by 2 units (to select nodes 0-3 relative to this group's base)

8 groups of 2 -> each group selected by 1 units (to select nodes 0-1 relative to this group's base)

16 groups of 1 -> indifferent to units (single node group always selected)

2-8 groups of varied sizes (8-1)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
524 NXP Semiconductors

Figure 110. CC Root - 5 groups example

When building the CC Root, the user must specify the number and size of groups. Then, for each group, an array of per-root-node
parameters is passed. The array is ordered according to the table above.

A simplified way of using the CC, is to define up to 16 different groups of one root-node each. In this way, all traffic from a specific
Keygen scheme is going to the same group, which is a single node, and no NetEnv unit are selected. Groups 3 and 4 in figure
above are an example of a single root group.

The following figure shows a combined use of the NetEnv units in Keygen and Custom Classifier, based on the previous NetEnv
and Keygen scheme examples.

Keygen schemes

Schemeld, Scheme
match criteria

0; Ethemet Broadcast frames
(Netenv unit0)

1; match on IP
frames

(NetEnv Unit 1)

2; Control frames (no
match criteria)

Scheme action

Enqueue to
FQIQ 0x20

Distributes on FQID's 0X10-
0x17 according to hash on
IP SRC

Go to coarse classification
Tree x groupy

Go to policer, Port relative
profile 0

Coarse Classification Tree x root

Unit not
present(
IPv6)

Unit of
present(
IPv4

Match an
IPv6 field

Group y based
on Netenv unit
2 (IP v4)

Match an
IPV4 field

Figure 111. Keygen -> Custom Classifier Example

When a CC root or node is initialized, the driver returns a handle to the root or node respectively. This handle may be used later
for specifying the root or node. For example, to build a root, the nodes are specified by passing their handles, and a root handle

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 525

must be passed when defining a port that uses the Custom Classifier. A port may be bound only to one root, from the same
partition and NetEnv as the port.

Runtime Modifications: Custom Classifier nodes may be modified by using one of the routines listed in the "Available API" below.

Custom Classifier Roots may not be changed at runtime. New nodes and roots may be defined and unused ones may be deleted
anytime.

Available API:

• FM_PCD_MatchTableSet

• FM_PCD_MatchTableDelete

• FM_PCD_HashTableSet

• FM_PCD_HashTableDelete

• FM_PCD_CcRootBuild

• FM_PCD_CcRootDelete

Specific runtime API:

• FM_PCD_CcRootModifyNextEngine

• FM_PCD_MatchTableModifyNextEngine

• FM_PCD_MatchTableModifyMissNextEngine

• FM_PCD_MatchTableRemoveKey

• FM_PCD_MatchTableAddKey

• FM_PCD_MatchTableModifyKey

• FM_PCD_MatchTableModifyKeyAndNextEngine

• FM_PCD_MatchTableFindNModifyNextEngine

• FM_PCD_MatchTableFindNRemoveKey

• FM_PCD_MatchTableFindNModifyKeyAndNextEngine

• FM_PCD_MatchTableFindNModifyKey

• FM_PCD_HashTableAddKey

• FM_PCD_HashTableRemoveKey

• FM_PCD_HashTableModifyNextEngine

• FM_PCD_HashTableModifyMissNextEngine

8.2.5.2.7.2.3.7 Match-Table Nodes

The driver defines two types of Match-Table nodes - Exact-Match nodes and Indexed-Lookup nodes. On both types of nodes a
table of entries is defined where each entry leads to a selected next-engine with a selected action. The next-engines may be
another CC Node, a Keygen scheme, a Policer profile or an enqueue action to a QM queue. In the last case, the queue may be
either an Fqid (frame queue id) that was previously defined - typically by the Keygen, or an explicitly specified new Fqid that
overrides any previous Fqid selection.

The difference between the two types of nodes is in the way an entry is selected in the node's table.

On an exact-match node, the user defines an extraction of data taken from the frame or the Internal-Context. The table of entries
represent different possible values (keys) for this extraction, so that for each key a next-action is selected. An extra 'MISS' entry
is also specified.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
526 NXP Semiconductors

Figure 112. Exact-Match Node Example

On an Indexed-lookup node, up to 2^12 may be defined. The user selects 12 bits out of the Internal Context as an index to an
entry in the table. The 12 bits may be masked to select less bits and a smaller table.

Figure 113. Indexed-Lookup node example

Two methods for CC node allocation are available: dynamic and static. Static mode was created in order to prevent runtime alloc/
free of FMan memory (MURAM), which may cause fragmentation; in this mode, the driver automatically allocates the memory
according to maximal number of keys, as received from the user. The driver calculates the maximal memory size that may be
used for this CC node, taking into consideration whether key masks are required and node's statistics mode.

In dynamic mode, maximal number of keys is not provided (equals zero). At initialization, all required structures are allocated
according to current number of keys. During runtime modification, these structures are re-allocated according to the updated
number of keys.

8.2.5.2.7.2.3.8 Hash-Table Nodes

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 527

The Hash-Table node is a driver managed Hash table. It is defined as a next engine and may follow other CC nodes. The Hash-
Table module uses driver lower level CC structures and provides an abstraction layer API consisting of AddKey/RemoveKey
routines. By using this module, the user may easily use a hash table based on Keygen key extraction and hash calculation. When
initializing this node, the user should define parameters regarding the basic key used for hashing and the structure and size of
the hash table (sets/ways).

8.2.5.2.7.2.3.9 Manipulations

On the structural aspect, Manipulation nodes are not graph nodes in the way that they do not effect the flow of a frame, and they
are not in fact a graph junctions. Manipulations nodes are defined as extensions to existing CC nodes of all types. Any key on
any CC node may have a manipulation characterization on top of the next engine definition. This is realized by CC node parameter
h_Manip which is a handle to a previously initialized Manipulation node (according to the bottom-up principle). The Manipulation
node itself does not have a next engine definition and the frame's flow is determined by the last CC node.

Figure 114. CC Node With Manipulation

Available API:

• FM_PCD_ManipNodeSet

• FM_PCD_ManipNodeDelete

Specific runtime API:

• FM_PCD_ManipNodeReplace (only available for Header-manipulation)

• FM_PCD_ManipGetStatistics

• For all manipulation types below, the user must call 'FM_PCD_SetAdvancedOffloadSupport' before calling

'FM_PCD_Enable'.

• For each RX/OP-Ports that will work with the above FM-PCD, the user should have at least 16 tnums (num

of tasks). in order to set the tnums the user should call 'FM_PORT_ConfigNumOfTasks'.

• It is also required to set the DMA transactions to be per port by calling 'FM_ConfigDmaAidOverride' with

'FALSE' and calling 'FM_ConfigDmaAidMode' with 'e_FM_DMA_AID_OUT_PORT_ID'

 NOTE

8.2.5.2.7.2.3.9.1 Header Manipulation

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
528 NXP Semiconductors

The header manipulation is implemented by the FMan controller block, and is designed to change the incoming frame header for
termination or interworking flow requirements. Header modification can be configured on a per-flow basis or for a user-determined
group of flows.

The firmware defines some header manipulation structures which hold parameters for the definition of header manipulation action.
It defines a basic table descriptor (Header Manipulation Table Descriptor HMTD) and a table of commands (HMCT), allowing a
sequence of manipulations to be performed. The commands table may reside in either internal or external memory. The
manipulation may be performed at any stage of the Custom Classifier process. As the manipulation changes the frame, the
process allows an additional parsing of the processed frame once the manipulation process had ended.

The Header Manipulation (HM) mechanism is viewed by the driver as an extension to other Custom Classifier Nodes. It may take
place at the beginning, the middle or the end of a CC graph, but it may not have an effect on the flow, i.e. the selection of the next
action.

C C Tree CC Node

Manip node

CC Node

CC Node

CC Node

CC Node

CC Node

CC Node

CC Node

Manip node
Manip node

Manip node

Figure 115. Header Manipulation CC Perspective

The HM action is represented by the driver's Manip node which is a driver sub-module (i.e. initialized by the user, its initialization
routine returns an HM handle).

A Header Manipulation node is an independent unit that has no external information regarding other modules in the PCD graph,
its users, its location in the flow, or the next engine it will be followed by.

A CC key or a CC root node may lead to a Header Manipulation node. The CC key/root node will define the next engine that
should follow the manipulation. The next engine may be Keygen, Policer, another CC node, or PCD termination (enqueue).

In order to use the HM, the user should first create a Manip node, and than use its handle when defining the CC Node that points
to this manipulation action.

A Header Manipulation action may be defined as one of the following manipulations:

• Remove

• Insert

• Fields Update

• Custom

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 529

More than one manipulation is allowed only if they are to be performed in the order above and only one manipulation of each
type.

Other orders or a list of manipulations of the same type may be achieved by chaining some manipulation nodes by using the
h_NextManip handle of the Manipulation parameters structure.

HM nodes may be shared, so that the same HM handle can be passed to more than one CC key.

By default, each frame goes back to the parser to be re-parsed after the manipulation. However this behavior may be disabled
and may have an effect on performance as will be explained in the restrictions note below. It is controlled by the Header
Manipulation node parameters.

The parsing option applies to whatever the user initialize as a Manip node - i.e. if the node contains a number of commands, the
parsing can be done after all the commands and not between them. However, if the set of commands is initialized as a number
of nodes that are chained together, the parser may be run after each node.

The driver aims to optimize performance and MURAM utilization. It does so by internally creating a single command table for
chained nodes. Note that this optimization is NOT possible if parsing is required between manipulations and in this case the manip
nodes are cascaded.

Note that when manipulations are chained, some restrictions apply:

1. Sharing of chained nodes is only possible on the head of the manipulation and not on inner nodes, i.e. all the
manipulation is shared and not parts of it.

2. When parsing is required between manip nodes, the optimization described above is NOT possible and in this case the
manip nodes are cascaded.

3. When parsing is required between manip nodes, the next engine of the last CC node may NOT be another CC node; i.e.
chained nodes with parsing between them may only exist at the end (and not in the middle) of the CC graph.

8.2.5.2.7.2.3.9.2 IP Reassembly

The FM supports IP reassembly for both IPv4 and IPv6. The FMan accumulates IP fragments until enough have arrived to
completely reconstitute the original datagram. IP Reassembly supports a maximum of 16 fragments per frame. Each fragment
must reside in a single buffer (not in a Scatter/Gather frame).

The IP Reassembly driver utilizes the FMan Controller and FMan PCD resources in order to provide a full IP Reassembly solution.

The driver's interface is not identical to the hardware resources and provide an abstraction layer to the hardware resources. All
IP Reassembly hardware data structures used for IP reassembly manipulation are represented by the software Custom Classifier
Manipulation node. On top of the CC Manipulation, the driver internally defines the other resources needed for the full flow.

IP Reassembly flow

Fragments arriving on an Rx (or offline parsing) FMan Port that was configured to support IP Reassembly are recognized and
marked by the software parser extension. These frames are steered to direct schemes the Keygen and caught by dedicated
schemes that pass them to the Custom Classifier. The CC Root object is configured so that the IP fragments will reach a dedicated
root entry node that contains a CC manipulation node. At this point, the IP Reassembly is performed. When a full frame is gathered,
it is passed by the FMan controller back to the parser as a full reassembled frame. It is then passed to the Keygen and may be
distributed and classified as any other frame.

What should the user do?

The following sequence describes the steps the user must take in order for the flow above to work.

• Initialize general DPAA (BM, BM Portal, BM Pools, QM, QM Portal, FMan and FMan PCD)

• Initialize the Rx/Offline FMan Port on which reassembly should run

• Define PCD as follows:

— Set a Network Environment with one of the following options:

◦ HEADER_TYPE_IPV4 unit with IPV4_FRAG_1 option for IPv4 reassembly manipulation.

◦ HEADER_TYPE_IPV6 unit with IPV6_FRAG_1 option for IPv6 reassembly manipulation.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
530 NXP Semiconductors

Note that if the user needs IPv4 or IPv6 units for other use, the fragmentation units may not be shared and dedicated
units must be defined.

— Allocate the first one or two schemes - one if only IPv4 is used, 2 if IPv6 is also used. The user should not configure
those schemes, just save these schemes from other usage. The driver will use the first scheme for IPv4, and if
needed, it will use the second for IPv6.

— Create reassembly manipulation using FM_PCD_ManipNodeSet routine. Pass the relative id's of the schemes allocated
above (A single manipulation module should be created for both IPv4 and IPv6 fragmented frames, passing all
relevant parameters).

— If CC is used, it is user's responsibility to leave two unused entries when building the CC root nodes (i.e. the total
number of entries between all groups should not exceed 14).

— Set at least one scheme to catch regular/reassembled frames.

• When binding the Rx/Offline FMan Port to the PCD properties (i.e. calling FM_PCD_SetPCD), pass a handle to the created
Reassembly Manipulation node.

Note that in order to perform distribution or classification on IPv4/IPv6 frames (unrelated to reassembly of IPv4/IPv6 fragments),
independent IPv4/IPv6 units with no option must be explicitly defined.

What does the driver do?

In order to provide the required support for IP Reassembly, the driver performs some internal actions triggered by the user
configuration. The following information describes the actions the driver internally performs and has no functional relevance to
the user:

• When reassembly is required, the driver internally enables parser recognition of IPv4/IPv6 and shim2 - which is the IP
Reassembly extension. This is triggered by the user defining NetEnv units with options: IPV4_FRAG_1/IPV6_FRAG_1.

• The driver loads the software parser that identifies IP fragments and enables its operation for the required FMan Port.

• The driver defines one or two (one for each IP version) Keygen schemes that recognize IP fragments and are programmed
to generate an IP Reassembly key. When a frame is recognized as an IP fragment (by the Parser), it is steered to these
Keygen schemes. The user should allocate the first one or two (for IPv4 and/or IPv6) schemes and pass their relative id's
to the driver. The driver will internally initialize the relevant reassembly schemes when required.

• Each of the schemes above is programmed by the driver to point to a group in the Custom Classifier Root. If the user did
not create a CC Root, the driver internally creates a new one. In both cases, the driver creates the needed group/s in the
CC Root. It always uses the last two groups. It is user's responsibility to have at least two empty entries (one for a single
IP version, two for both).

• The driver attaches the Manipulation sequence (created by the user) to the appropriate root entry node in the CC Root,
causing the reassembly of IP fragments.

The software parser code required to support reassembly may not coexist with user software parser code. If the

user supplies IPv4 or IPv6 software parser code, it must include the code for handling IPv4/IPv6 reassembly

according to the FMan controller spec.

 NOTE

Suggestions of how to use IPR in a system

The PCD with the IPR should identify frames up to L3; i.e. if the frame is IP or not.

In case it isn't an IP frame it should pass the desire PCD. IP frames should pass the reassembly process and than be directed to
OP-Port to be classified according to their L3 and above.

8.2.5.2.7.2.3.9.3 IP Fragmentation

The FMan supports IP fragmentation for both IPv4 and IPv6. The fragmentation mechanism is implemented by the PCD,
specifically by the Custom Classifier. IP fragmentation may be performed using an Offline Parsing FMan Port with a specific PCD
configuration that will be described in this section.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 531

The software driver provides API for initializing the IP fragmentation mechanism. driver's interface is not identical to the hardware
resources and provide an abstraction layer to the hardware resources. Both of the AD (action descriptor) tables that used for IP
fragmentation manipulation represented by the software Custom Classifier nodes using CC Manipulation. IP Fragmentation
manipulation is used for fragmentation of IPv4 and IPv6 frames according to a specific MTU. This manipulation can be used on
Offline Parsing ports only and as a part of the port's PCD definition. CC Nodes should have an IP fragmentation manipulation
characterization in order to trigger this manipulation. This means that in order to create and initialize the IP fragmentation hardware,
the user should create a Custom Classifier Node with Manipulation (refer to Custom Classifier Root on page 523). All relevant
parameters such as MTU are defined during this module creation.

Following is the sequence that should be followed:

• Initialize general DPAA (BM, BM Portal, BM Pools, QM, QM Portal, FMan and FMan PCD)

• Initialize FMan Port of type Offline Parsing

• Define fragmentation PCD as follows:

— Initialize an empty Network Environment (without any units)

— Create fragmentation manipulation using FM_PCD_ManipNodeSet routine.

— Create CC Node by calling FM_PCD_MatchTableSet/FM_PCD_HashTableSet and attached the fragmentation
manipulation previously created to the desired key.

— Build a CC Root with 1 group that points to the previously defined CC Node .

• Bind the Offline Parsing FMan Port to the PCD properties by calling FM_PORT_SetPCD

Manipulation parameters

• MTU of the fragmentation manipulation.

• Scratch Buffer Pool ID is a buffer pool that is required by the fragmentation process in order to ensure correct release
operation of the frames and fragments. All IP Fragmentation Table Descriptors should use the same Scratch Buffer Pool
ID. This pool must not be used by any other process or engine in the system.

• Don't Fragment Action - by setting this parameter the user can determine the action to be taken in case the IP packet is
larger than the defined MTU and the 'Don't Fragment' (DF) bit of the frame is set.

The software parser code required to support fragmentation may not coexist with user software parser code. If the

user supplies IPv6 software parser code, it must include the code for handling IPv6 fragmentation according to the

FMan controller spec.

 NOTE

Restrictions:

1. Tx confirmation is not supported.

2. Only Bman buffers shall be used for frames to be fragmented.

3. IP-Fragmentation will not work on OP-Port with VSP enabled.

4. fragmentation of IP-fragments is not supported

5. IPv4 packets containing header option field are fragments by copying all option fields to each fragment, regardless of the
copy bit value.

6. Maximum number of fragments per frame is 16.

Suggestions of how to use IPF in a system:

In case one of the #1-#2 3 restrictions above is critical than it is suggested not to use IPF on OP-Ports that receive frames from
the GPP and to do it on the GPP itself. We also suggest to put the IPF on a OP-Port just before the TX-Port.

8.2.5.2.7.2.3.9.4 IPSec Manipulation

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
532 NXP Semiconductors

The IPSec Manipulation is a specific instantiation of the special offload manipulation. It is designed to handle IPSec traffic in order
to support the following actions:

• Support of variable outer header size

The user should initialize a Manipulation node of this type passing the relevant parameters

• Support for both ipv4/ipv6 IP version within SA

The user should initialize a Manipulation node of this type passing the relevant parameters.

• ECN/DSCP copying from inner/outer IP header to outer/inner.

In order to use this functionality the user must follow the following steps:

— Define a Manipulation node of this type passing the relevant parameters

— For the relevant Rx/OP port, define a buffer prefix that includes at least the Keygen hash result.

— Use SEC parameters to support this operation

8.2.5.2.7.2.3.10 Frame Replicator

The Frame Replicator (FR) is designed to duplicate incoming packets and route them to separate destinations. It is defined as a
next engine and may follow other CC nodes, i.e. Match-table key, Hash-Table key or a CC-Root entry.

A Frame Replicator is realized by a group of members, where each member defines a replication of the incoming frame and a
route to continue.

The next engine after FR is restricted to one of the following:

• Enqueue (PCD Termination)

• Policer

• Keygen (Direct scheme that leads to either Policer or PCD Termination)

When initializing an FR node, the user must define the maximum number of members this node may contain. The actual number
of members may be modified on runtime by adding and removing FR group members.

Runtime modifications of add/remove members to/from the group can be done at any point in the system and in any location of
the members group (first, middle or last). Note that runtime-modifications require the use of Host Command.

The order of the members in the group is of significance as the implementation of the replication is serial.

Manipulation may be applied to:

1. The whole group. The manipulation node should be placed before the replication group. That means that the FR is the
next-engine of the Manip node. The Manip node is the next-engine of a key in a Match-table or Hash-table.

2. The last member of a FR group. That means that the manip node is the next-engine of the last member of the FR group.

No support of Manip node after the "non-last" members.

 NOTE

The driver supports sharing of FR nodes means that FR group may be shared by more than one source.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 533

Figure 116. Frame Replicator Following a CC Node

Available API:

• FM_PCD_FrmReplicSetGroup

• FM_PCD_FrmReplicDeleteGroup

Specific runtime API:

• FM_PCD_FrmReplicAddMember

• FM_PCD_FrmReplicRemoveMember

• For all manipulation types below, the user must call 'FM_PCD_SetAdvancedOffloadSupport' before

calling 'FM_PCD_Enable'.

• For each RX/OP-Ports that will work with the above FM-PCD, the user should have at least 16 tnums (num

of tasks). In order to set the tnums, the user should call 'FM_PORT_ConfigNumOfTasks'.

• It is also required to set the DMA transactions to be per port by calling 'FM_ConfigDmaAidOverride' with

'FALSE' and calling 'FM_ConfigDmaAidMode' with 'e_FM_DMA_AID_OUT_PORT_ID'

 NOTE

8.2.5.2.7.2.3.11 Policer Profiles

The policer profile entity relies on the hardware entity. It defines rules for policing for a certain flow. There are 256 different profiles
in a frame manager that may be organized in per port windows. Some profiles may be shared between ports on the same PCD.
By default, the number of shared profiles is set by the driver, but the user can also configure it to a different value. Shared profiles
are typically used for aggregation.

When a PCD is defined in a single partition environment, it is the owner of all 256 profiles. When a PCD is defined in a multipartition
environment, it is the owner of its shared profiles along with all the profiles that will be allocated per port for ports on this partition.
The user must explicitly allocate per-port profiles for each port (if required), after PCD is initialized and prior to the profile
initialization. Note that per-port profiles are the only PCD resource that is explicitly allocated and initialized for a specific port.

After profiles are mapped, the user may initialize each of the profiles by stating the following:

• Type

— Shared

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
534 NXP Semiconductors

— Per-port

• Offset relative to the port or to the shared group of profiles

• Characteristics

Once initialized, a handle is assigned to the profile for later use.

The Policer may be used after the Parser, Keygen or Custom Classifier, or solely - without activating any of the other PCD engines.
It is not dependant on any previous output such as parser result. The policer may be used more than once in a frame flow. The
next action after a police profile is either to pass the frame to a direct Keygen scheme for a new distribution (typically for control
frames coming from the Custom Classifier), to pass the frame to another profile (always a shared profile, typically an aggregators),
or to enqueue the frame to an FQID.

When other engines select a policer profile as the next engine, its handle must be passed. An exception is when a per-port profile
is specified as the next engine of a scheme or of a "overrideParams" CC key. In these cases a port-relative index is required
instead. The reason for this is that the required Policer Profile may not be initialized at this stage and hence have no handle. This
irregular behavior is because CC Roots and KG schemes may be shared by ports, and at the time of scheme/root initialization,
they are not yet bound to specific ports. In this context, the profile selected may in fact be uninitialized and therefore can't be
verified by the driver. It is therefor user's responsibility to make sure it is set prior to port- PCD binding.

Runtime Modifications: Valid profiles may be modified at runtime by calling the profile initialization routine for an existing profile,
passing the profile handle as retuned by the original initialization routine, and specifying modify (instead of the profile's relative
id). New profiles may be set and unused profiles may be deleted anytime.

Available API:

• FM_PCD_PlcrProfileSet

• FM_PCD_DeleteProfilePlcr

8.2.5.2.7.2.3.12 PCD Organization

By initializing PCD resources, the user creates a directed graph in which the parser is the source of the graph and the FQIDs are
its endpoints. Following figure shows a generalized example of a basic PCD graph.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 535

Figure 117. PCD Organization

8.2.5.2.7.2.3.13 PCD Definition Sequence

When a PCD graph is defined, its resources must be initialized bottom up when there's a dependency between them. Following
figure shows the order of initialization (starting at the top of the figure) in a specific sequence.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
536 NXP Semiconductors

Order

Next engine

Maybe done up
to this time
point

Set port
profile 0

Set port
profile 1

Alloc port
profiles

Set
Direct
Scheme
3

Set Network
environment

Build
Tree

Port-PCD Bind

Set
Direct
Scheme
4

Set
Direct
Scheme
5

Set port
profile 2

Set port
profile 3

Set port
profile 4

Set
node
0

Set
node
1

Set
node
2

Set
Scheme
0

Set
Scheme
1

Set
Scheme
2

Set shared
profile 0

Figure 118. Definition Sequence

8.2.5.2.7.2.3.14 Host Command

Some PCD functionalities may be managed by either memory-mapped registers or by the host command mechanism to allow
independent programming in a multipartition environment. In a single partition environment in the FMan driver, the host command
mechanism is optionally used, but in a multipartition environment, wherever available, only the host command is used to prevent
a risk of racing. The host command driver is a part of the PCD driver and is initialized internally by the driver, using user parameters.

When PCD is first initialized in a single-partition environment, the user must specify whether the host command should be used,
and if so, host command parameters are required. In a multipartition environment, the use of the host command is forced and all
host command parameters are required. When PCD initialization routine is called by the master/single partition driver, the user
parameters include host command port parameters (such as port id, virtual address, and default queues) and the FMan Port for
the host command is internally initialized.

8.2.5.2.7.2.3.15 PCD Statistics

The FMan PCD API provides access to all the statistics gathered by the FMan PCD engines hardware. Statistics is enabled by
default but may be disabled/enabled at runtime using the dedicated API.

The following API routines may be called at any time after initialization to retrieve any of the following FMan PCD counters:

• FM_PCD_GetCounter

• FM_PCD_KgSchemeGetCounter

• FM_PCD_PlcrProfileGetCounter

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 537

8.2.5.2.7.2.3.15.1 Custom Classifier Statistics

A CC node supports statistics gathering on per-key basis. In order to enable statistics gathering by a CC node (Match table or
Hash table), statistics mode must be provided upon initialization of that node and this will determine the statistics mode for all
keys of the CC node.

Next, statistics should be enabled per-key, meaning statistics should be enabled for every key that the user wishes to monitor.

After these steps, the following API routines may be called to retrieve the statistics:

• FM_PCD_MatchTableGetKeyCounter

• FM_PCD_MatchTableGetKeyStatistics

• FM_PCD_MatchTableFindNGetKeyStatistics

• FM_PCD_HashTableFindNGetKeyStatistics

8.2.5.2.8 FMan Port Driver
The FMan Port driver module refers to the per-port features of the FMan, including port configuration and initialization, runtime
functionalities and PCD binding.

8.2.5.2.8.1 FMan Port Hardware Overview
The FMan hardware supports a SoC dependent number of inline and offline FMan Ports of the following types:

• 1G Rx Ports

• 1G Tx Ports

• 10G Rx Ports (may be eliminated on some SoCs)

• 10G Tx Ports

• Offline/Host-command ports

Port configuration is controlled through a set of per-port, type-dependent memory mapped registers. I.e. Each port has its own
memory map area. In addition, some FMan common registers also effect port behavior - for example, global resources such as
tasks number are declared in the common registers are.

8.2.5.2.8.1.1 FMan Port Driver Software Abstraction
The FMan Port module is an independent module. On port configuration, the user selects the type and the mode of each port
(Tx/Rx, 1G/10G, online/offline/Host command, regular/independent), and specifies the port index relative to its type. This index
is not related to the hardware port id as described in the hardware spec.

The driver provides abstraction to the common/private division of registers location in the memory map. i.e. all registers that are
logically relevant to the port are handled by the FMan Port driver, even if they physically belong to the common FMan memory
map.

8.2.5.2.8.2 How to use the FMan Port Driver?
The following sections provide practical information for using the software drivers.

8.2.5.2.8.2.1 FMan Port Driver Scope
• FMan Port hardware structures configuration and enablement

• Resource allocation and management

• FMan port types support

• Offline-Parsing ports

• Independent-Mode

• Simple BMI-to-BMI (regular) mode

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
538 NXP Semiconductors

• PCD Binding

• Rate limiting

• Interrupt handling

• Statistics support

8.2.5.2.8.2.2 FMan Port Driver Sequence
• FMan Port Config routine

• [Optional] FMan Port advance configuration routines

• FMan Port Init routine

• FMan Port runtime routines

• FMan Port Free routine

8.2.5.2.8.2.3 FMan Port Driver Functional Description
The following sections describe main driver functionalities and their usage.

8.2.5.2.8.2.3.1 FMan Port Configuration and Initialization

On FMan Port driver initialization, the software configures all FMan Port registers. It supplies default values where no other values
are specified, it enables hardware mechanisms and initializes software data structures for software management.

By the time initialization is done, FMan is ready to be used and any of the FMan sub-modules (FMan-Ports, MAC's etc.) may be
initialized.

8.2.5.2.8.2.3.2 FMan Port Types

The driver provides API for the initialization of the following port types/modes:

• Tx 1G port

• Tx 1G port - independent mode

• Rx 1G port

• Rx 1G port - independent mode

• Tx 10G port

• Tx 10G port - independent mode

• Rx 10G port

• Rx 10G port - independent mode

• Offline Parsing Port

The driver also holds a single host-command port internally when mandatory (multi-partition environments) or when user explicitly
requires it.

8.2.5.2.8.2.3.3 Independent-Mode

A port may be configured to operate in independent-mode. In such case no PCD may be defined. A slightly different set of
parameters is required as the FMan functions differently.

8.2.5.2.8.2.3.4 Resource Management

FMan Port related resources (TNUMs, DMAs, FIFOs, etc.)- These resources are used by the BMI. The driver selects default
values for these resources but they may be need some tuning depending on the specific application, based on the total number
of ports used and the performance requirements of the system. The driver provides an API routine

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 539

FM_PORT_AnalyzePerformanceParams that uses performance monitoring mechanism in order to see the resources utilization at
runtime.

The FMan Port driver allocates its resources by calling the FMan "front-end" driver. The FMan "front-end" allocates the resources
by calling the "back-end" through IPC if its in guest-mode or through direct call if its not in master-mode. The port driver does not
access those resources at run-time; the resources are being used only by the hardware of a port.

PCD related resources (Keygen-schemes, policer-profiles, etc.)-During the initialization of the FMan-PCD driver on each partition,
the driver allocates all the required resources (configurable by the user) through IPC call to the "back-end" driver. From that point,
all the resources are being handled locally on the partition. Note, that all access to these resources are still done through host-
command and that assures proper synchronization between different partitions (i.e. one can access these resources by mistake
from a different partition in the system).

PCD Custom-Classifier tables-The CC tables are being allocated on the MURAM memory. This means that upon initialization of
this partition, piece of MURAM should be allocated to the partition (according to how much the partition requires). From that point,
the local PCD driver will manage the MURAM allocation by itself.

8.2.5.2.8.2.3.5 Virtual Storage Profiles Support

An FMan Port may use the legacy Physical Storage Profile or the Virtual Storage Profiles (VSP). This section will discuss the
usage of VSP by an FMan port, while more information about the VSP mechanism which is implemented by the driver as separate
entity FM_VSP, can be found in FMan VSP Driver on page 546.

When a user wants to set an Rx or OP port to work in virtualization mode using VSP's rather than the physical SP, user should
call the function which allocates a storage profile window (range of VSPs allocated in continuously manner) to a port. The user
should also define which profile in this range should be used as default SP; note that the default profile should be a relative index
within the allocated window. Upon calling the window allocation routine, the driver enables virtual mode (i.e. using VSPs) for this
port, allocates its profiles and defines default SP. In order to redirect a packet into a certain VSP, user may set the 'relative-VSP-
id' within the PCD graph nodes (e.g. in the match-table entries). The value in the PCD graph nodes is port relative so if two ports
are sharing the same PCD graph node (e.g. a match-table), the actual VSP will be selected by the 'relative-VSP-id' plus the port's
base VSP as shown in the figure below.

Frame Queues

Port 1 Port N

PCD Graph

1 2 1 2 1 2

Per-Port Profiles VSPs
Ports 1 Ports 2 Ports n

i kj

Figure 119. FMan PCD graph and the VSP selection

Rules and restrictions regarding the use of VSP:

• When called for Rx ports, the allocation routine expects also the handle of coupled Tx port as a parameter; the driver sets
automatically the Tx port to work in VSP mode also and use the same default profile for this port.

• Storage Profiles windows may not overlap; i.e. sharing of VSPs between FM ports is not allowed by the driver.

• A call to the allocation routine requires that the FM port will be disabled. In the case of Rx port, coupled Tx port should
also be disabled. When an FM Port (that has VSP mechanism enabled) is enabled, at least the default profile must be
initialized.

• A call to the allocation routine may not be reverted, i.e. it's impossible to disable virtualization mode.

• Number of profiles to be allocated must be a power-of-2. In addition, the "base-profile" that will be allocated by the driver
will be aligned to the number-of-profiles provided by the user.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
540 NXP Semiconductors

• For FM-Port that works with VSP, its classification should also use VSP; i.e. classification (e.g. KG scheme or CC-node)
should NOT try to revert from VSP to the FM-Port "physical" SP.

• When user frees all resources of FM port, the driver frees automatically VSP window which have been allocated for this
port.

Initialization Sequence:

• Initialize FM Tx Port

• Initialize FM Rx Port

• Allocate VSP for FM Rx Port (thus enabling virtualization mode)

• Initialize default VSP (See FMan VSP Driver on page 546)

• Enable FM Ports

Free Sequence

• Disable Ports

• Free the default VSP

• Free FM Tx Port

• Free FM Rx Port

8.2.5.2.8.2.3.6 Rate Limiting

The driver supports the hardware mechanism of rate limiting for Tx ports. The runtime API consists of a number of parameters
including a definition of the required rate (in KB/sec for Tx ports, in frame/sec for offline parsing ports) and refers to data rate
rather than line-rate.

8.2.5.2.8.2.3.7 Simple BMI-to-BMI (regular) mode

This is the default FMan Rx/Offline Parsing Port mode. After Port initialization and prior to Port-PCD binding, all traffic will be
received on the default Rx queue. This mode is called "BMI-To-BMI" as no PCD is involved in the data reception.

This mode is useful for the early state of a port as well as when major runtime PCD modification takes place. In such a case,
sometimes the whole PCD functionality needs to be manipulated and the user should temporarily detach the Port from the PCD,
receive all frames on the default Rx queue and only re-attach it to the PCD after the modifications have completed.

8.2.5.2.8.2.3.8 Port LIODN

An FMan Port LIODN is constructed out of a base and offset.

Upon FMan Port configuration, the user must specify the port's base LIODN.

For Rx ports, the user must also specify the LIODN offset for each port. No such configuration is required for Tx and Offline Parsing
ports since on transmission, the offset LIODN is taken from the frames' FD. The FD is set according to the source of the frame -
if transmitted by CPU, it is dynamically set by the QM SW portal. Another scenario is frames forwarded by other engines, in such
a case their FD must contain the correct LIODN offset.

8.2.5.2.8.2.3.9 Port-PCD Binding

Ports may be linked to the PCD graph according to their PCD binding specifications and considering partition and Network
Environment restrictions.

Following figure shows a schematic demonstration of possible port > PCD binding.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 541

Figure 120. Port-To-PCD binding example

Once a set of PCD resources is set and organized as described above, a port may be bound to all or some of the resources by
calling the FM_PORT_SetPCD routine. This routine, is referred to as the Port-PCD bind routine. It accepts a set of parameters that
specify the PCD resources used by the port, configures PCD related parameters in the port, and bounds PCD resources to the
port. The FM_PORT_DeletePCD should be called when the port no longer needs the configured PCD functionality. This action is
referred to as Port-PCD unbinding.

Another possible action that affects the Port-PCD relationship is calling FM_PORT_DettachPCD for a port that is bound to PCD.
This causes the port to stop using the PCD functionalities, which results in all frames being passed to the default FQID. Note that
calling FM_PORT_DeletePCD unbinds the port from the PCD functionalities by removing the connections, while

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
542 NXP Semiconductors

FM_PORT_DetachPCD does not remove them but only causes the port to stop using them. To return to using the PCD,
FM_PORT_AttachPCD should be called.

Certain runtime modifications may not be done directly, but require either the unbinding of PCD functionalities or PCD detaching.
This should be done by calling the required delete/detach routines, making the desired changes, and calling set or attach to return
to using the PCD. These actions will be referred to as resetting/detaching the Port-PCD. In the time between the calls of the two
routines, the port continues to work, but its PCD functionalities are disabled. In both cases, all frames arriving at this time are
enqueued to the default receive queue.

In the sections below, the relationship between the port and each of the PCD resources will be explained in terms of initialization
and runtime modifications.

General

The port-PCD binding affects the flow of received frames on that port in terms of PCD functionality. The user must first define the
general PCD for the port, using the following enumeration types, which define the superset of engines that may be used.

• e_FM_PORT_PCD_SUPPORT_PRS_ONLY (Use only Parser)

• e_FM_PORT_PCD_SUPPORT_PLCR_ONLY (Use only Policer)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_PLCR (Use Parser and Policer)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG (Use Parser and Keygen)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_CC (Use Parser, Keygen and Custom Classifier)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_CC_AND_PLCR (Use all PCD engines)

• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_PLCR (Use Parser, Keygen and Policer)

Runtime Modifications: The engines set may be changed at runtime only by resetting the Port-PCD.

Available General Port API:

• FM_PORT_SetPCD

• FM_PORT_DeletePCD

Network Environment

When calling the Port-PCD binding routine, the user must specify a single NetEnv by passing its handle. This setting is used for
the port parser and affects the PCD behavior.

Runtime Modifications: The NetEnv may not be modified at runtime. If the port requires a change of its NetEnv, it must first
reset its Port-PCD connection, than use the PCD routines to do the required changes, and than re-connect to the PCD.

Parser

The hardware parser port configuration is taken directly from the NetEnv specified for the port. Other parsing configurations are
explicitly defined by the user at the parameter's structure.

The software parser may be used on a per-port-per-header basis. When PCD is set per port, there is an option in the parser
parameters to choose additional parameters per header. One of the optional per-header additional parameters is to enable the
software parser for that header. When set, an index should be declared to select the software parser code. The header and index
must be specified in the labels' table of the software parser code that was loaded on PCD initialization. Software parser enablement
may be done for as many headers as required.

Runtime Modifications: Only the starting point of the parser may be changed on the fly. Any other changes require PCD resetting.

Available Port API:

• FM_PORT_PcdPrsModifyStartOffset

Keygen Schemes

In order for a port to use Keygen schemes, the port must be bound to those resources. The port may be bound to any number of
schemes. At the port bind routine, the user passes a list of scheme handles, as returned by the server at scheme setting, for
binding to the port. At least one scheme must be specified. All specified schemes must be valid at that time. If the initial scheme

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 543

after the parser is used directly without using the match criteria, its id should be passed as one of the parameters to the Port-PCD
binding routine.

Runtime Modifications: During runtime, new schemes may be set and then bound to an existing enabled port or existing
schemes may be modified. Schemes that are not required by the port may be unbound. Note that when modifying existing
schemes, all ports bound to those schemes are affected. If specific schemes are not required anymore, they must first be unbound
from the port. If no other port is using them, they may be deleted. The selection of the initial scheme after parser (from direct to
indirect and vice versa) may be also changed at runtime.

Available Port API:

• FM_PORT_PcdKgBindScheme

• FM_PORT_PcdKgUnbindScheme

• FM_PORT_PcdKgModifyInitialScheme

Custom Classifier graphs

If a port is using the Custom Classifier graph, an initialized Custom Classifier Root handle (as returned by the RootBuild routine)
must be passed when calling the port bind routine.

Runtime Modifications: The CC graph (as well as the CC Root) itself may be modified at runtime, but ports binding to a CC
Root may be changed only by detaching and than re-attaching the Port-PCD.

• FM_PORT_PcdCcModifyTree

Policer Profiles

Before any port profile is set, the profile allocation routine must be called to bind the port to the policer profile. This is required as
the port's binding to the policer profile is not done using the port bind routine. It is only then that per-port profiles may be set, and
the port bind routine is subsequently called. If Keygen or parser are not used (i.e. policer is reached directly after parser or from
BMI), the port bind routine parameters must specify which policer profile is used (otherwise, no policer parameters are required).

Runtime Modifications: The initial profile selection may be changed during runtime. All profiles allocated to a port are in fact
bound to this port, so no runtime binding/unbinding is possible. Uninitialized port profiles (profiles that were allocated for this port
but not used) may also be set during runtime, or existing profiles may be modified. If specific profiles are not required anymore,
they may be deleted. If a change in port profile allocation is required, follow the steps given below to reset the Port-PCD:

1. Port-PCD deleted

2. Profiles deleted and freed

3. New profiles allocated and set

4. Port-PCD set

Available Port API:

• FM_PORT_PcdPlcrModifyInitialProfile

• FM_PORT_PcdPlcrFreeProfiles

• FM_PORT_PcdPlcrAllocProfiles

8.2.5.2.8.2.3.10 Port-PCD Binding Changes

There are three levels of Port-PCD binding changes:

• Basic Runtime Modifications-May be invoked while PCD is active and on enabled ports using PCD.

— Port routines responsible for binding/unbinding to/from the modified resources.

◦ FM_PORT_PcdKgBindScheme

◦ FM_PORT_PcdKgUnbindScheme

— Port routines responsible for PCD change of behavior.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
544 NXP Semiconductors

◦ FM_PORT_PcdKgModifyInitialScheme

◦ FM_PORT_PcdPlcrModifyInitialProfile

◦ FM_PORT_PcdPrsModifyStartOfset

• Port-PCD Detach Runtime Modifications-For changes that require detaching the Port-PCD connection:

— FM_PORT_PcdCcModifyTree

For these modifications, take the following steps:

◦ Detach the port from its PCD resources by calling the Detach PCD routine (FM_PORT_DettachPCD). After this
action, the port continues to work enqueueing all frames to the default receive FQID.

◦ Call one of the two routines above.

◦ Re-attach port to PCD resources by recalling the set PCD routine (FM_PORT_AttachPCD).

• Port-PCD Reset Runtime Modifications-For changes that require resetting of the port-PCD binding.

The following steps should be taken for any modification that is not listed under the last two items:

— Unbind port from its PCD resources by calling the delete PCD routine (FM_PORT_DeletePCD). After this action the port
will continue to work, enqueueing all frames to the default receive FQID.

— Modify PCD resources-optional. The change may be only in the binding of the port and not on the resources. Note
that the freeing and deleting of resources, and then allocating and setting resources, must be orderly, in the same
manner as for initial PCD setting and final PCD deleting.

— Bind port to PCD resources by recalling the set PCD routine (FM_PORT_DeletePCD)

All PCD routines listed above may be used for deleting and setting PCD resources. The following two routines below are used if
a change of port profiles window is required (Other PORT routines are not needed as binding is done using SetPCD routine.):

• FM_PORT_PcdPlcrFreeProfiles

• FM_PORT_PcdPlcrAllocProfiles

8.2.5.2.9 FMan MAC Driver
The FMan MAC driver module refers to the FMan MAC controller functionalities including configuration and initialization as well
as runtime and control.

8.2.5.2.9.1 FMan MAC Hardware Overview
The FMan hardware supports one or two kinds of MAC controllers - depending on SoC. All SoCs support three-speed Ethernet
controller (dTSEC) interfaces to 10 Mbps, 100 Mbps, and 1 Gbps Ethernet/IEEE 802.3 networks which interfaces the media
through external phy or SerDes device. Some SoCs also support 10 Gigabit Ethernet media access controller (10GEC) which
interfaces to 10 Gbps Ethernet/IEEE 802.3ae networks via XAUI using the high-speed SerDes interface.

8.2.5.2.9.1.1 FMan MAC Software Abstraction
The driver provides a unique API serving both interfaces. If user tries to configure features that are supported only by one of the
interfaces, an "unsupported" message will be displayed.

8.2.5.2.9.2 How To Use The FMan MAC Driver?
The following sections provide practical information for using the software drivers.

8.2.5.2.9.2.1 FMan MAC Driver Scope
This module represents the FMan MAC. It includes:

• FMan MAC hardware structures configuration and enablement

• FMan MAC controller runtime support

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 545

• PTP IEEE 1588 support

• MAC hash addressing

• Interrupt handling

• Statistics support

8.2.5.2.9.2.2 FMan MAC Driver Sequence
• FMan MAC Config routine

• [Optional] FMan MAC advance configuration routines

• FMan MAC Init routine

• FMan MAC runtime routines

• FMan MAC Free routine

8.2.5.2.9.2.3 FMan MAC Driver Functional Description
The following sections describe main driver functionalities and their usage.

8.2.5.2.9.2.3.1 FMan MAC Configuration and Initialization

On FMan MAC driver initialization, the software configures all FMan MAC registers. If required, MAC may be reset at that time.
The driver supplies default values where no other values are specified, it defines IRQ's and sets IRQ handles. It enables hardware
mechanisms and initializes software data structures for software management.

By the time initialization is done, FMan MAC is ready to be used and the relative FMan Ports may be initialized.

8.2.5.2.9.2.3.2 FMan MAC Addressing

On MAC initialization, the user must define a single MAC address. During runtime, the driver provides API for modifying this
address and adding other addresses (depending on the specific MAC hardware support).

In addition, the driver supports the addition and removal of addresses to the MAC hash mechanism.

8.2.5.2.9.2.3.3 IEEE1588 Support

The driver provides the API to support the hardware IEEE1588 time-stamping. In order to use this feature, the user must first
initialize the FM-RTC module. IEEE1588 functionality is always enabled on FM-MAC. Thus, no additional settings are required
for the MAC. and the FM-MAC and only then they can enable this feature by calling FM_MAC_Enable1588TimeStamp routine. Once
enabled, the user may also set the exception for receiving 1588 relevant interrupts on the MAC.

8.2.5.2.9.2.3.4 MAC Statistics

The driver provides statistics gathering support for all the standard (MIB) counters. For some controllers, it is necessary to use
an interrupt driven mechanism for accounting for counters overflow and in order to keep track on the accurate counters. This
mechanism may have some influence on performance, and therefor the driver supports statistics gathering in 3 levels:

• Full statistics-provides all standard counters but may reduce performance.

• Partial statistics-provides only special event counters (errors etc.). If selected, regular counters (such as byte/packet) will
be invalid and will return -1.

• No statistics gathering.

8.2.5.2.10 FMan VSP Driver
The FMan VSP driver module refers to the software support provided for the Virtual Storage Profile mechanism.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
546 NXP Semiconductors

8.2.5.2.10.1 FMan VSP Hardware Overview
VSPs may be used by user for virtualization. If a user is running with a multi-partitioned (or with a multiple software entities)
system where a single MAC may be used by several software partitions/entities simultaneously, except for using a different FQID
(that is already available in DPAA1.0), user may use a different VSP for each SW partition/entity; that way, the buffer may be
private (rather than being shared as in DPAA1.0). It allows the virtualization of the buffer pool selection for frame storage (and
other parameters related to storage in external memory) from the physical hardware ports. Using this mechanism, different packets
received on the same physical port may be stored in different BM pools based on the frame header, in a similar way to FQID
selection. VSPs are replacing the legacy, "physical", per-port BM Pool selection. A backward compatible mode exists and it is
possible to use the original BM Pool selection, now referred to as "Physical SP".

Figure 121. Virtualization Using VSPs

The global FMan module is in charge of the Virtual Storage Profiles entries management. On FMan initialization, the first VSP
index dedicated to this partition must be defined (it should be an absolute index), and so is the total number of VSP's for this
partition. Later, for each port using VSP's, a window of entries should be defined. VSPs may not be shared among FMan ports.

Each port has a default VSP. On each PCD classification, a VSP may be selected. Received packets will be written into the
destination buffer according to the VSP parameters, while the VSP is selected according to the frame headers and the PCD
configuration.

The VSP is implemented by the driver as separate entity, however, other modules of the FM driver are aware of this entity and
interact with it. An FM VSP module represents a single storage profile.

The global FMan module is in charge of the Virtual Storage Profiles entries management. On FMan port initialization, if using
VSP mode, it should allocate and bind to a range of VSP's. On the PCD, A decision is being taken by user on every node of the
PCD graph whether to continue to work with previously defined VSP or to override with a new profile.

8.2.5.2.10.2 How To Use The FMan VSP Driver?
The VSP is implemented by the driver as separate entity, however, other modules of the FM driver are aware of this entity and
interact with it. An FM VSP module represents a single storage profile.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 547

The global FMan module is in charge of the Virtual Storage Profiles entries management. On FMan port initialization, if using
VSP mode, it should allocate and bind to a range of VSP's. On the PCD, A decision is being taken by user on every node of the
PCD graph whether to continue to work with previously defined VSP or to override with a new profile.

8.2.5.2.10.2.1 FMan VSP Driver Scope
This module represents the FMan VSP driver. It includes:

• FMan VSP hardware structures configuration and enablement

• Parsing of the buffer

• Statistics

8.2.5.2.10.2.2 FMan VSP Driver Sequence
This sequence includes other modules required for the VSP

• Definition of general VSP parameters on global FMan initialization

• FM Port initialization

• FM Port VSP window allocation

• FM Port enablement

• FMan VSP Config routine (for specific VSP's)

• [Optional] FMan VSP advance configuration routines (for specific VSP's)

• FMan VSP Init routine (for specific VSP's)

8.2.5.2.10.2.3 FMan VSP Driver Functional Description
The following sections describe main driver functionalities and their usage.

8.2.5.2.10.2.3.1 Virtual Storage Profile Initialization

The VSP's must be initialized prior to their usage. It is user's responsibility to initialize at least the default VSP for each port before
enabling it. Similarly, it is their responsibility to initialize all other VSPs before a classification that may use some VSP is enabled.

Initializing a VSP defines the destination BM Pool buffer for a specific type of packets. It also defines the structure of the buffer -
i.e. the data offset, the prefix content, etc.

8.2.5.2.10.2.3.2 Virtual Storage Profile Parsing

On VSP initialization, the user defines the buffer prefix content. Based on these requirements, the driver then defines the buffer
prefix structure, i.e. data offset, whether certain information such as parse result should be copied to the external buffer and where
it will be located. On buffer reception, the user may call VSP routines in order to get the data, as well as the buffer prefix sections
such as parse result, time stamp, or Keygen output.

8.2.5.2.11 FMan RTC (IEEE 1588) Driver
The FMan RTC driver module refers to the software support provided for the IEEE 1588 hardware of the FMan.

8.2.5.2.11.1 FMan RTC Hardware Overview
The 1588 timer module interfaces to up to four 10/100/1000 or one 10G Ethernet MACs, providing current time, 2 alarms, and 2
fiper periodic pulse generators.

8.2.5.2.11.2 How To Use The RTC Driver?
The following sections provide practical information for using the software drivers.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
548 NXP Semiconductors

8.2.5.2.11.2.1 RTC Driver Scope
This module represents the FMan 1588 driver. It includes:

• IEEE 1588 hardware configuration and enablement

• Support for alarm mechanism

• Support for periodic pulse

• Support for external trigger

• Runtime compensation tuning

• Interrupt handling

8.2.5.2.11.2.2 RTC Driver Sequence
• FMan RTC Config routine

• [Optional] FMan RTC advance configuration routines

• FMan RTC Init routine

• FMan RTC Enable routine

• FMan RTC runtime routines

• FMan RTC Free routine

8.2.5.2.11.2.3 RTC Driver Functional Description
The following sections describe main driver functionalities and their usage.

8.2.5.2.11.2.3.1 FMan RTC 1588 module utilization

The driver API provides interface to the 1588 hardware module. It initializes its registers to define the clock period and it supports
the definition of the alarms and periodic pulses. Note that When setting periodic pulse, the RTC module must be disabled.

8.2.5.2.11.2.3.2 Utilizing IEEE1588 for MAC frames time stamping

Several FMan driver modules are involved in having the 1588 time stamping functionality activated: FMan-RTC, FMan-MAC,
FMan-Port and FMan-PCD.

The initialization sequence is as described below:

After the Frame Manager is initialized, the FMan-RTC needs to be initialized by calling (with the appropriate parameters):

• FM_RTC_Config

• FM_RTC_Init

Next, the following routine should be called, only after MAC is initialized.

• FM_MAC_Enable1588TimeStamp

From this point and on all the Ethernet frames on this MAC are time-stamped. In order to obtain the timestamp, during the FMan
Port configuration, the user must call the advance config routine:

• FM_PORT_ConfigBufferPrefixContent (with 'passTimeStamp' parameter set).

At run-time, for each received/confirmed frame, the user should call the following routine, passing it the frame's data pointer:

• FM_PORT_GetBufferTimeStamp

The routine will return the pointer to the time stamp.

8.2.5.2.11.2.3.3 Utilizing IEEE1588 for PTP

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 549

The sequence described in the previous section causes all the frames that are being received or transmitted by FMan to be time-
stamped. However, if the user wants to distinguish PTP frames from other frames on a specific port, PCD rules need to be applied
on the PCD graph for this port; i.e using the parser to recognize the PTP frame and then using an appropriate scheme to distinguish
PTP frames and route them to the desired destination queues.

8.2.5.2.12 FMan MURAM Driver
The FMan MURAM driver module refers to the memory management of the FMan Multi User RAM.

8.2.5.2.12.1 FMan MURAM Hardware Overview
The MURAM is the internal memory of the FMan.

8.2.5.2.12.1.1 FMan MURAM Driver Software Abstraction
The FMan MURAM driver is a memory manager that allows partitioning of the MURAM. Upon initialization the user receives a
handle that may be used by other modules in order to allocate and de-allocate memory blocks out of that MURAM partition.

8.2.5.2.12.2 How To Use The FMan MURAM Driver?
The following sections provide practical information for using the software drivers.

8.2.5.2.12.2.1 FMan MURAM Driver Scope
This module manages the FMan MURAM. It includes MURAM allocation and de-allocation of different sizes of required memory
blocks.

8.2.5.2.12.2.2 FMan MURAM Driver Sequence
• FMan MURAM config and init routine

• FMan MURAM allot and free runtime routines

• FMan MURAM free routine

8.2.5.2.12.2.3 FMan MURAM Driver Functional Description
The FMan MURAM drivers supports MURAM memory blocks allocation and de-allocation. After initializing an MURAM partition,
the user is normally required to pass its handle to other FMan driver modules. In this way, these modules may allocate and de-
allocate memory blocks from this partition.

8.2.5.2.13 Supported Network Protocols
The following sections show the protocols that may be selected when defining NetEnv characteristics.

8.2.5.2.13.1 L2 Protocols
The following list shows the L2 protocols:

• HEADER_TYPE_ETH, with the following two options

— ETH_BROADCAST

— ETH_MULTICAST

• HEADER_TYPE_VLAN, with the following option

— VLAN_STACKED

• HEADER_TYPE_MPLS, with the following option

— MPLS_STACKED

• HEADER_TYPE_PPPoE

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
550 NXP Semiconductors

• HEADER_TYPE_LLC_SNAP

8.2.5.2.13.2 L3 Protocols
The following list shows the L3 protocols:

• HEADER_TYPE_IPV4, with the following options

— IPV4_BROADCAST_1

— IPV4_MULTICAST_1

— IPV4_UNICAST_2

— IPV4_MULTICAST_BROADCAST_2

— IPV4_FRAG_1

• HEADER_TYPE_IPV6, with the following options

— IPV6_MULTICAST_1

— IPV6_UNICAST_2

— IPV6_MULTICAST_2

— IPV6_FRAG_1

• HEADER_TYPE_GRE

• HEADER_TYPE_MINENCAP

• HEADER_TYPE_USER_DEFINED_L3

8.2.5.2.13.3 L4 Protocols
The following list shows the L4 protocols:

• HEADER_TYPE_TCP

• HEADER_TYPE_UDP

• HEADER_TYPE_SCTP

• HEADER_TYPE_DCCP

• HEADER_TYPE_IPSEC_AH

• HEADER_TYPE_IPSEC_ESP

• HEADER_TYPE_USER_DEFINED_L4

8.2.5.2.13.4 Private Headers
• HEADER_TYPE_USER_DEFINED_SHIM1

• HEADER_TYPE_USER_DEFINED_SHIM2

8.2.5.2.13.5 Fields Supported By Driver for Keygen Extraction
Fields supported as "full fields":

• HEADER_TYPE_ETH

— NET_HEADER_FIELD_ETH_DA

— NET_HEADER_FIELD_ETH_SA

— NET_HEADER_FIELD_ETH_TYPE

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 551

• HEADER_TYPE_LLC_SNAP

— NET_HEADER_FIELD_LLC_SNAP_TYPE

• HEADER_TYPE_VLAN

— NET_HEADER_FIELD_VLAN_TCI

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_MPLS

— NET_HEADER_FIELD_MPLS_LABEL_STACK

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2,

◦ e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv4

— NET_HEADER_FIELD_IPv4_SRC_IP

— NET_HEADER_FIELD_IPv4_DST_IP

— NET_HEADER_FIELD_IPv4_PROTO

— NET_HEADER_FIELD_IPv4_TOS

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv6

— NET_HEADER_FIELD_IPv6_SRC_IP

— NET_HEADER_FIELD_IPv6_DST_IP

— NET_HEADER_FIELD_IPv6_NEXT_HDR

— NET_HEADER_FIELD_IPv6_VER | NET_HEADER_FIELD_IPv6_FL | NET_HEADER_FIELD_IPv6_TC (must come
together!)

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

NET_HEADER_FIELD_IPv6_NEXT_HDR with e_FM_PCD_HDR_INDEX_LAST indication, applies to the very last

next header indication, meaning the next L4, which may be present at the Ipv6 last extension. On earlier revisions

this field applies to the Next-Header field of the main IPv6 header)

 NOTE

• HEADER_TYPE_IP

— NET_HEADER_FIELD_IP_PROTO

(index may apply:

◦ e_FM_PCD_HDR_INDEX_LAST)

— NET_HEADER_FIELD_IP_DCSP

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
552 NXP Semiconductors

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1)

• HEADER_TYPE_GRE

— NET_HEADER_FIELD_GRE_TYPE

• HEADER_TYPE_ETH

— NET_HEADER_FIELD_ETH_DA

— NET_HEADER_FIELD_ETH_SA

— NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_MINENCAP

— NET_HEADER_FIELD_MINENCAP_SRC_IP

— NET_HEADER_FIELD_MINENCAP_DST_IP

— NET_HEADER_FIELD_MINENCAP_TYPE

• HEADER_TYPE_TCP

— NET_HEADER_FIELD_TCP_PORT_SRC

— NET_HEADER_FIELD_TCP_PORT_DST

— NET_HEADER_FIELD_TCP_FLAGS

• HEADER_TYPE_UDP

— NET_HEADER_FIELD_UDP_PORT_SRC

— NET_HEADER_FIELD_UDP_PORT_DST

• HEADER_TYPE_UDP_LITE (relevant only if FM_CAPWAP_SUPPORT define)

— NET_HEADER_FIELD_UDP_LITE_PORT_SRC

— NET_HEADER_FIELD_UDP_LITE_PORT_DST

• HEADER_TYPE_IPSEC_AH

— NET_HEADER_FIELD_IPSEC_AH_SPI

— NET_HEADER_FIELD_IPSEC_AH_NH

• HEADER_TYPE_IPSEC_ESP

— NET_HEADER_FIELD_IPSEC_ESP_SPI

• HEADER_TYPE_SCTP

— NET_HEADER_FIELD_SCTP_PORT_SRC

— NET_HEADER_FIELD_SCTP_PORT_DST

• HEADER_TYPE_DCCP

— NET_HEADER_FIELD_DCCP_PORT_SRC

— NET_HEADER_FIELD_DCCP_PORT_DST

• HEADER_TYPE_PPPoE

— NET_HEADER_FIELD_PPPoE_PID

— NET_HEADER_FIELD_PPPoE_SID

Fields supported as "from fields":

• HEADER_TYPE_ETH (with or without validation):

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 553

— NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_VLAN (with or without validation):

— NET_HEADER_FIELD_VLAN_TCI

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv4 (without validation):

— NET_HEADER_FIELD_IPv4_PROTO

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv6 (without validation):

— NET_HEADER_FIELD_IPv6_NEXT_HDR

(index may apply:

◦ e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,

◦ e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

8.2.6 Frame Manager Configuration Tool User's Guide

8.2.6.1 Introduction
The Frame Manager (FMan) is part of NXP's Data Path Acceleration Architecture (DPAA), a set of logical blocks that lets multiple
processors (cores) interact with multiple network interfaces and accelerators with low software overhead.

The Frame Manager Configuration Tool (FMC Tool) is a command-line program that converts Parse-Classify-Police-Distribute
(PCD) descriptions of network packet flows into hardware configuration code for the FMan's KeyGen, Controller, and Policer
functions.

The tool provides an abstraction layer: You define your application's PCD requirements in a high-level, XML markup language
(NetPDL with NXP extensions). The tool translates these definitions into code that initializes the FMan's registers and data
structures. This abstraction makes learning low-level hardware details unnecessary, allows new users to be productive more
quickly, and simplifies the programming task for everyone.

8.2.6.2 FMC Tool Features
The FMC Tool can analyze input NetPDL and NetPCD XML files that define the parse, classify, police, and distribute behavior
your application requires. The tool can then:

• Passes this information directly to the FMan by calling the appropriate FMan driver API functions. (See FMC Tool -
Runtime Environment Mode on page 555.)

• Generate C source files containing this information that you can include in your application. (See FMC Tool - Host Mode
on page 556.)

In more detail, the FMC Tool can perform the tasks listed below. The particular actions taken depend upon your application's
requirements.

• Define the protocol stack

• Define a soft header examination sequence

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
554 NXP Semiconductors

• Configure the Policer sub block

• Configure frame distribution by defining how frames are assigned to particular frame queues

• Call hardware drivers to execute the current configuration

• Directly configure the FMan by executing on a target running embedded Linux (See FMC Tool - Runtime Environment
Mode on page 555.)

• Indirectly configure the FMan by executing on a Linux or Windows host by generating C source code that configures the
FMan. You include this code in your application. (See FMC Tool - Host Mode on page 556.)

8.2.6.3 FMC Tool Components and Packaging
The FMC Tool package contains these files:

• Host version of FMC Tool for desktop versions of Linux and Windows

• FMC Tool application for embedded Linux

• NetPDL file containing a description of each standard network protocol that the FMan's Hard Parser supports. This file is
named hxs_pdl_v3.xml and is in the directory /etc/fmc/config/.

For detailed information on NetPDL, go to http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/

NetPDLCore.htm.

For documentation of NXP's customized version of NetPDL, see NXP NetPDL Reference on page 573.

 NOTE

8.2.6.4 FMC Tool - Runtime Environment Mode
In runtime environment mode, you run the FMC Tool on a target board from the Linux command line, passing several configuration
files as arguments. The tool then calls the FMan Driver API functions required to configure the FMan block as specified in the
supplied files.

When used in this way, the FMC Tool directly configures the FMan. In more detail, the FMC Tool passes the configuration it finds
in its input files (along with compiled Soft Parser firmware) to the FMan driver which, in turn, modifies the FMan's configuration.

Note: The FMC Tool does not support dynamic FMan configuration; you can use the tool to configure the FMan just once, typically
at application initialization.

As Figure 122. on page 556shows, you pass these files to the FMC Tool as command-line arguments:

• Standard Protocol file - Optional; included in LSDK; see Standard Protocol File on page 559 for more information.

• Custom Protocol file - Optional; user written; see Custom Protocol File on page 560 for more information.

• Policy file - Required; user written; see Policy file on page 560 for more information.

• Configuration file - Required; user written; see Configuration File on page 573 for more information.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 555

http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm
http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm

FMC policy (PCD)
definition
source file
(required)

FMC
configuration

source file
(required)

FMC custom
protocol definition

source file
(optional)

FMC standard
protocol definition

source file
(included in SDK)

(optional)

FMC Tool

User space API

FM high level driver (Linux)

FM Low level driver FM PCD FM Common

FM MURAM FM MAC FM Port

Kernel

User
IOCTL Calls

Figure 122. FMC Tool, Runtime Environment - Input XML Files / FMan Driver API Calls

See FMC Tool Command-Line Arguments on page 558 for documentation of each of the tool's command-line arguments.

Note: You should configure the FMan before you enable your Rx/Tx ports to send/receive traffic. If you do not, the FMan uses
the default Rx and default Tx frame queues.

8.2.6.5 FMC Tool - Host Mode
In addition to running on a target board, the FMC Tool can execute on a host computer running Linux or Windows. When run on
a host, the FMC Tool accepts the same input files as in runtime environment mode.

However, in host mode, the FMC Tool generates C source code files. This code calls the FMan driver functions required to
implement the rules defined in the supplied input files. You can compile and link these files to produce a standalone executable
that you can run by itself, or you can add them to your application.

Note: The FMC Tool does not support dynamic FMan configuration; you can use the tool to configure the FMan just once, typically
at application initialization.

As Figure 123. on page 557 shows, in host mode, the FMC Tool generates C source code files from the input files listed below.
(See Host Mode Output - C Source Code Files on page 557 for more information.)

• Standard Protocol File - Optional; included in LSDK; see Standard Protocol File on page 559 for more information.

• Custom Protocol File - Optional; user written; see Custom Protocol File on page 560 for more information.

• Policy File - Required; user written; see Policy file on page 560 for more information.

• Configuration File - Required; user written; see Configuration File on page 573 for more information.

You pass these files to the FMC Tool as command-line arguments.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
556 NXP Semiconductors

FMC policy (PCD)
definition
source file
(required)

FMC
configuration

source file
(required)

FMC custom
protocol definition

source file
(optional)

FMC standard
protocol definition

source file
(included in SDK)

(optional)

FMC Tool

fmc_config_data.c softparse.h

Figure 123. FMC Tool, Host Mode - Input XML Files / Generated C Source Code Files

See FMC Tool Command-Line Arguments on page 558 for documentation of each of the tool's command-line arguments.

8.2.6.5.1 Host Mode Output - C Source Code Files
When run in host mode, the FMC Tool generates C language source code files that make calls to FMan Driver API functions.
These calls implement the behavior defined in the Configuration file, Policy file, and (optionally) Custom Protocol file passed to
the tool from the command line. Typically, you include these source files in your project, so they are compiled and linked into your
application binary. As a result, when you run your application, it automatically sets up the FMan to behave as required.

In more detail:

• When you supply a Policy file and a Configuration file, the tool generates a single source code file named "fmc_config_data.c".

• When you supply a Policy file, a Configuration file, and a Custom Protocol file, the tool generates two source code files:
"fmc_config_data.c" and "softparse.h".

Contents of fmc_config_data.c

• #include software parser configuration "softparse.h" at the top of the file

• Initialization of FMC model structure 'fmc_model_t' with configuration data - This structure represents the data model for
FMan hardware configuration according to input files

Using fmc_config_data.c

• FMC model structure must be used together with FMC model definition and FMC executer: 'fmc.h' and 'fmc_exec.c' files -
These file are available in FMC source files location

• FMC model definition contains 'fmc_model' structure definition - This structure represents the FMC configuration model

• FMC executer contains 'fmc_execute' routine - This function configures the FMan hardware to behave as specified in the
input files

Usage options:

• Compile and link these files together ('fmc_config_data.c', 'fmc.h', 'fmc_exec.c') and generate a standalone binary and run
this binary to configure the FMan - In this case you must add a main() function that calls fmc_execute()

• Have your application call fmc_execute() - In this case you don't need to add a main() function

Contents of softparse.h

• Contains compiled firmware that controls the FMan sub blocks involved in parsing a custom protocol header

• Defines parameters such as code size, protocol to attach, and download base address

Using softparse.h - Automatically included in fmc_config.c if you pass the FMC Tool a Custom Protocol file

Note: You should configure the FMan before you enable your Rx/Tx ports to send/receive traffic. If you do not, the FMan uses
the default Rx and default Tx frame queues.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 557

8.2.6.6 FMC Tool Command-Line Arguments
The table below lists and describes the FMC Tool's command-line arguments.

Table 102. FMC Tool Command-Line Arguments

Command-Line Argument Syntax

(Both the verbose and abbreviated
command forms are shown)

Description

-d <pdl_file>, --pdl <pdl_file> Path to and name of the Standard Protocol file.

(Optional)

You can use a full path or a relative path.

See Standard Protocol File on page 559 for more information.

-p <pcd_file>, --pcd <pcd_file> Path to and name of a Policy file.

(Required unless '--sp_only' is used)

You can use a full path or a relative path.

See Policy file on page 560 for more information.

-c <data_file>, --config <data_file> Path to and name of the Configuration file.

(Required unless '--sp_only' is used)

You can use a full path or a relative path.

See Configuration File on page 573 for more information.

-s <custom_protocol_file>, --custom_protocol
<custom_protocol_file>

Path to and name of the Custom Protocol file.

(Optional unless the '--sp_only' flag is used, in which case, this Custom Protocol
file name is required.)

You can use a full path or a relative path.

See Custom Protocol File on page 560 for more information.

-a, --apply Apply the supplied configuration to the FMan rather than generating C source
code.

(Optional; valid only when FMC Tool is executed in runtime environment)

--sp_only Perform Soft Parser processing only.

When this argument is supplied, the FMC Tool compiles just the Custom Protocol
file, generates the file softparse.h, and exits. The file softparse.h contains C
source code and custom protocol offsets.

The tool creates softparse.h in the path from which the FMC Tool was executed.

(Optional)

-w Do not report warnings.

(Optional)

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
558 NXP Semiconductors

Table 102. FMC Tool Command-Line Arguments (continued)

Command-Line Argument Syntax

(Both the verbose and abbreviated
command forms are shown)

Description

--version Display version information, then exit.

(Optional)

-h, --help Display usage information, then exit.

(Optional)

8.2.6.7 The NetPDL and NetPCD XML Markup Languages
The Network Protocol Description Language (NetPDL) is an XML dialect that defines elements for describing protocols from OSI
layer 2 to OSI layer 7. (For more information on NetPDL, see http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/
dissectors/NetPDLCore.htm).

NXP uses NetPDL to define the standard protocols that are parsed by the FMan's Hard Parser. You cannot change these protocol
descriptions. However, the SDK includes a Standard Protocol file that you can use as a reference.

In addition, you can use NetPDL (with slight semantic and syntactic differences) to define custom protocols that are parsed by
the FMan's Soft Parser. This feature allows the FMan to handle any protocol that exists or that you define yourself.

Finally, NXP has extended NetPDL to create a language called NetPCD. You use the elements and attributes of NetPCD to define
FMan parse, classify, police, and distribute behavior. The processing thus defined determines how frames move from block to
block of the FMan.

The FMC Tool accepts files in NetPCD and NetPDL format as input.

8.2.6.8 Protocol files
For a protocol to be recognized by the FMC Tool, the protocol must be defined in one of two ways:

1. As a standard protocol within the Standard Protocol file (included in the SDK)

2. As a custom protocol within the Custom Protocol file.

Each file type is described in the sections that follow.

8.2.6.8.1 Standard Protocol File
The LSDK includes a file called the Standard Protocol file. This file contains NetPDL (Network Protocol Description Language)
markup that defines the fields in each standard protocol header that the FMan's Hard Parser can handle. In addition, for each
standard protocol, the file includes NetPDL statements that define actions for the Hard Parser to take upon encountering an
inbound instance of this protocol.

The Standard Protocol file is for the FMan's internal use only; you must therefore not change it. However, to write a Custom Protocol
file and/or a Policy file, you sometimes need information the Standard Protocol file contains, such as the names of fields in a
protocol's header.

For this reason, the SDK includes a copy of the Standard Protocol file in this directory: /etc/fmc/config/hxs_pdl_v3.xml.

The general structure of an FMC Standard Protocol XML file is shown below.

<netpdl>
 <protocol> <!-- one or more -->

 <format> <!-- only one -->
 <fields> <!-- only one -->
 <field/> <!-- one or more -->

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 559

http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm
http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm

 </fields>
 </format>

 <execute-code>
 </execute-code>

 <encapsulation>
 </encapsulation>

 <visualization>
 </visualization>

 </protocol>
</netpdl>

See the Standard Protocol File - Excerpt on page 622 topic to see a larger portion of the Standard Protocol file.

8.2.6.8.2 Custom Protocol File
The FMan's Hard Parser has built-in capability to handle a set of widely used, standard protocols, such as IPv4. The FMan also
has a Soft Parser, which has the ability to process custom protocols.

Of course, for the Soft Parser to recognize a custom protocol, you must first provide a definition of this protocol. To do this, you
create a Custom Protocol file, which consists of NetPDL markup that defines the fields in a custom protocol's header along with
the actions you want the Soft Parser to take upon these fields. You then pass this file to the FMC Tool, which compiles it and
passes the result to the FMan.

Note: Some elements in the NetPDL language are relevant only if used with a protocol analysis tool. The FMC Tool does not
support these elements; instead, the tool supports only those elements that are applicable to the FMan block. Further, although
it is based on NetPDL, the markup for a custom protocol does not strictly follow NetPDL rules. As a result, it is highly recommended
that the you become familiar with the NXP NetPDL Reference on page 573 topic, which fully documents the custom version of
NetPDL used in custom protocol definitions.

See Custom Protocol File - GTP Protocol Example on page 628, for an example of a custom protocol definition file containing
XML that defines the GPRS Tunneling Protocol (GTP).

Note: If your application does not use a custom protocol, you do not have to create a Custom Protocol file. Further, if your
application uses multiple custom protocols, you can (and must) define them in a single Custom Protocol file; you can pass just
one Custom Protocol file to the FMC Tool.

The general structure of a Custom Protocol file is shown below.

<netpdl> <!-- only one instance -->
 <protocol> <!-- one or more instances -->

 <format> <!-- only one instance -->
 <fields> <!-- only one instance -->
 <field/> <!-- one or more instances -->
 </fields>
 </format>

 <execute-code> <!-- zero or one instance -->
 <before> <!-- zero or one instance -->
 </before>

 <after> <!-- zero or one instance -->
 </after>
 </execute-code>

 </protocol>
</netpdl>

8.2.6.9 Policy file
The policy file defines how each inbound frame is parsed, classified, policed, and distributed by the various FMan sub blocks.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
560 NXP Semiconductors

A policy file consists of NetPCD markup, where NetPCD is NXP's extension to NetPDL, an XML markup language for describing
networking protocols. The elements and attributes of NetPCD let you define the parse, classification, policing, and distribution
behavior your application requires. See NetPCD Reference on page 594 for documentation of each NetPCD element and its
attributes.

A Policy file can have these sections:

• Distribution (required) - Contains one or more distribution definitions, each of which:

— Specifies the protocol(s) a frame must contain to match the distribution

— Defines how to handle matching frames

• Policy - (required) - Contains one or more policy definitions, each of which:

— Is associated with an FMan port

— Contains a prioritized list of distributions

• Classification (optional) - Contains one or more classification blocks, each of which:

— Defines key/value/action tuples, which the FMan's Controller sub block stores in a lookup table

— Compares the specified fields in the current frame header to each value in this table and, upon a match, takes the
specified action

• Policer (optional) - Contains up to 256 policer profiles, each of which can be used to:

— Take action upon frames without regard to traffic flow rate

— Take action upon frames based on the RFC-2698 two-rate, three-color policing scheme

— Take action upon frames based on the RFC-4115 two-rate, three-color, differentiated services scheme

Note: When you run the FMC Tool, you must pass it a Policy file or the '--sp_only' flag. Otherwise, the program will exit and print
an error message.

Figure 124. High-level Structure of a Policy File

<netpcd> <!-- only one instance -->
 <distribution> <!-- one or more instances -->
 </distribution>

 <policy> <!-- one or more instances -->
 <dist_order> <!-- one instance -->
 <distributionref/> <!-- one or more instances -->
 </dist_order>
 </policy>

 <classification> <!-- optional, may have more than one instance -->
 </classification>

 <policer> <!-- optional, may have more than one instance -->
 </policer>
</netpcd>

8.2.6.9.1 Distribution Section
The Distribution section of the Policy file contains one or more 'distribution' elements. While 'distribution' elements can appear
anywhere in the Policy file, they often appear at the top of the file.

Typically a 'distribution' contains child elements that define:

• Frame match rules

— These rules define the conditions an inbound frame must meet to match (and therefore be handled by) this distribution

— Use the 'protocols' element and/or the 'key' element to define match rules

• Frame handling rules

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 561

— These rules determine what a distribution does with matching frames

— Use the 'queue' and 'key' elements to hash frames, so they are evenly spread over a range of frame queues

— Use the 'action' element to pass the frame to another element in the Policy file for further processing

Figure 125. Example Distribution Elements

<!-- distribution that matches all frames containing an IPv4 header -->
<!-- hashes these frames, so they are spread evenly over 32 frame queues -->
<distribution name="hash_ipv4_src_dst_dist0">
 <!-- frame match rule -->
 <key>
 <fieldref name="ipv4.src"/>
 <fieldref name="ipv4.dst"/>
 </key>

 <!-- frame handling rule -->
 <queue count="32" base="0x400"/>
</distribution>

<!-- distribution that matches frames containing Eth/VLAN/IPv4/UDP/GTP headers -->
<!-- passes all matching frames to the "dl_vlan_clasifif" classification element -->
<distribution name="dl_eth_vlan_ipv4_udp_gtp_dist">
 <!-- frame match rule -->
 <protocols>
 <protocolref name="ethernet"/>
 <protocolref name="vlan"/>
 <protocolref name="ipv4"/>
 <protocolref name="udp"/>
 <!--shim1 is custom protocol defined for GTP -->
 <protocolref name="shim1"/>
 </protocols>

 <!-- frame handling rule
 <action type="classification" name="dl_vlan_classif"/>
</distribution>

See The distribution element on page 597 for complete documentation of this element.

Evenly Distributing Frames over a Range of Frame Queues

One frequent use of the 'distribution' element is to distribute frames evenly over a range of frame queues. If each available core
is configured to pull from the same number of queues in the range, this even spreading balances the work each core must perform.

In this scenario, the FMan's KeyGen sub block uses values in the frame's header and in the child elements of the distribution as
inputs to a hash algorithm that generates a 24-bit FQID within a range of FQIDs. The KeyGen sub block then places the frame
on the frame queue identified by this FQID.

Here is the KeyGen's algorithm for generating a FQID:

1. Extract and concatenate the protocol header fields specified by the 'key' child element

2. Hash the resulting string to a 64-bit CRC

3. Shift the CRC right by the number of bits specified in the 'shift' attribute of the 'key' element to move the desired bits to the
24 least significant bit positions

4. Zero-extend the bit mask specified by the 'queue' child element ('count' attribute – 1) to 24 bits

5. Bitwise AND the result with the shifted CRC

6. Bitwise OR the result with the value specified by the 'combine' child element - repeat for each 'combine' element

7. Bitwise OR the result to the base FQID specified by the 'base' attribute of the 'queue' child element

Figure 126. on page 563 shows the algorithm the KeyGen sub block uses to calculate a FQID.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
562 NXP Semiconductors

Build
key

<= 56 Bytes

Hash
key

64-bit CRC

Shift right*
hash result

64-bit value

Bitwise AND
hash result

with bit mask

24-bit
FQID

Bitwise OR
with

combine

Add
base FQID

24-bit
FQID

24-bit
FQID

Figure 126. KeyGen Algorithm for FQID Calculation

* The 'key' element has an optional 'shift' attribute whose value defines the number of bits by which the hash result is right shifted.
The default value for the shift attribute is zero.

Example KeyGen FQID Calculation

The series of figures that follow shows which child elements and attributes of a distribution block the KeyGen sub block uses in
its FQID calculation.

Figure 127. on page 563 shows where in the KeyGen sub block gets the inputs for the hash, shift right, bitwise AND, and "add
base" parts of its FQID calculation.

Figure 127. FQID Calculation - Elements/Attributes Used for Key, Bit Mask, and Base FQID

Figure 128. on page 564shows a 'combine' element that includes a 'portid' attribute that is set to "true". In addition, the element's
'offset' attribute is "10", and its 'mask' is "0xFF". This markup instructs the KeyGen sub block to perform the "bitwise OR" part of
the FQID calculation. In more detail, for this markup, the KeyGen does these things:

• Bitwise ANDs the 8-bit logical port ID (defined in the Configuration file) of the port on which the current frame arrived with
the 8-bit mask in the 'combine' element.

• Bitwise ORs (inserts) the 8-bit result at the specified offset (10 bits) within the 24-bit FQID (where offset 0 signifies the FQID's
most significant bit).

Note: Each FMan port can be assigned an 8-bit logical port ID by adding markup to the Configuration file. To do this, assign an
8-bit value to the 'portid' attribute of each 'port' element to which you want to assign a logical port ID. The Hard Parser puts this
value (if defined) in the parse results array, where the a KeyGen sub block can get it.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 563

Figure 128. FQID Calculation - A 'combine' Element that Uses the 'portid' Attribute

Figure 129. on page 564 shows a 'combine' element that includes a 'frame' attribute. This markup instructs the KeyGen sub
block to:

• Get the 8 bits at offset 112 in the current frame header.

• Bitwise AND this value with the 8-bit mask (0xFF) specified in the 'combine' element

• Bitwise OR (insert) the 8-bit result at the specified offset within the 24-bit FQID (where offset 0 signifies the FQID's most
significant bit).

Note: The value of the 'frame' attribute is an offset (in bits) from beginning of the current frame. The KeyGen sub block gets the
byte at this offset for its FQID calculation. The value of 'frame' must be divisible by 8, so the bit it references is on a byte boundary.

Figure 129. FQID Calculation - A 'combine' Element that Uses the 'frame' Attribute

Finally, Figure 130. on page 565 shows where the KeyGen sub block plugs the values from each of the combine elements into
the bitwise OR part of the FQID calculation.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
564 NXP Semiconductors

Figure 130. FQID Calculation - combine Elements Used in Bitwise OR

FQID Formula

FQID[0:23] = (Shifted Hash Key[0:23] & Hash Mask) |
 Data0[0:23] | Data1[0:23] | … | Data7[0:23] |
 FQID Base Address

In sum, use the child elements/attributes of the 'distribution' element to provide the values on the right side of the FQID equation.

8.2.6.9.2 Policy Section
The Policy section of the Policy file consists of one or more 'policy' elements. While 'policy' elements can appear anywhere in the
Policy file, they typically follow the last 'distribution' element in the file.

Each 'policy' element defines a set of candidate distributions that the FMan can apply to inbound frames. The particular distribution
the FMan applies to a given frame depends on these factors:

• The position of each distribution in the 'policy' element's distribution order list

• The definition of each of these distributions

Candidate distributions are listed in priority order. As a result, if two or more distributions in the list match the current inbound
frame, the FMan applies the first matching distribution because this distribution has higher priority.

How does the FMan know which policy (that is, which prioritized list of distributions) to apply to the traffic received on a particular
Ethernet port? The Configuration file provides the connection.

In a Configuration file, you must enter one 'port' element for each FMan port your application uses. Further, the port element has
a required attribute - the 'policy' attribute - whose value must match the name of one of the policy elements in the Policy file,
thereby defining the policy (that is, the ordered list of distributions) that the FMan will apply to all traffic received on a port. In sum,
the value of a port element's policy attribute in the Configuration file ties the port identified by this element to a policy element in
the Policy file.

In a Configuration file:

• A port can be assigned a single policy

• Multiple ports can be assigned the same policy

• A port can have just one active policy at a time

Typically, you assign one policy to each port your application uses.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 565

Example 1 - Simple Use of the Policy Element

Configuration File

<!-- The port element assigns the dl_policy policy to the 10 Gbps port of FMan 0 -->
<!-- Policy dl_policy is defined in the Policy file - see next code snippet -->
<cfgdata>
 <config>
 <engine name="fm0">
 <port type="MAC" number="9" policy="dl_policy"/>
 </engine>
 </config>
</cfgdata>

Policy File

<!-- A policy element that defines how to apply two distributions -->
<!-- These distributions are defined elsewhere in the Policy file -->
<!-- This policy is assigned to an Ethernet port by the Configuration file above -->
<policy name="dl_policy">
 <dist_order>
 <distributionref name="dl_eth_vlan_ipv4_udp_gtp_dist"/>
 <distributionref name="garbage_dist"/>
 </dist_order>
</policy>

In the example above, the Configuration file assigns the policy named 'dl_policy' to the 10 Gbps port of a LS1043A chip's first
FMan (fm0). As a result, the FMan first tries to match each frame that arrives on this port to the 'dl_eth_vlan_ipv4_udp_gtp_dist'
distribution since it appears first in the 'policy' element's distribution order list. Whether the frame matches depends on the
definition of the 'dl_eth_vlan_ipv4_udp_gtp_dist' distribution, which is not shown. If the frame matches, it is handled according to
the rules this distribution defines. If the frame does not match, the FMan next compares it to the 'garbage_dist' distribution since
it appears second in the distribution order list. Because of this distribution's definition (also not shown), it matches all frames,
thereby guaranteeing that every frame is handled in one way or the other.

See The policy element on page 595 for complete documentation of this element.

Example 2 - More Complex Use of the Policy Element

Figure 131. on page 567 shows the Policy file from the pktwire application. This application requires a more complex use of
policies and distributions than shown in the previous example.

This Policy file defines ten 'policy' elements - pktwr_policy_0, pktwr_policy_1, … pktwr_policy_9 - some of which are shown in
the figure.

A Configuration file (not shown) assigns each of these policies to one of an SoC's ten FMan ports - five on the first FMan (fm0)
and five on the second FMan (fm1).

Note: Not all QorIQ devices have two FMans. Nor does every FMan have five Ethernet ports. See the reference manual for your
QorIQ device to determine the number of FMans and FMan ports this device supports.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
566 NXP Semiconductors

Figure 131. More Complex Policy File - 1

The Policy file also defines ten distributions - pktwr_dist_0, pktwr_dist_1, … pktwr_dist_9 - some of which are shown in Figure
132. on page 568.

As mentioned above, each of these distributions is assigned to a policy which, in turn, is assigned to a port. A frame "matches"
the distribution assigned to the port on which the frame arrived if its header contains both the ipv4.src and ipv4.dst fields.

For each frame that matches, the KeyGen sub block computes a hash result using the concatenation of the ipv4.src and ipv4.dist
fields as the hash key. The KeyGen sub block then uses the hash result to compute a FQID. (See the Distribution Section on page
561 topic for detailed coverage of the KeyGen's FQID calculation algorithm.)

The resulting FQID is in the range specified by the 'queue' element. For example, for distribution “pktwr_dist_0”, the resulting FQID
will be in range 0x2800 – 0x281F.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 567

Figure 132. More Complex Policy File - 2

The Policy file also defines ten distributions - garbage_dist_0, garbage_dist_1, … garbage_dist_9 - some of which are shown in
Figure 133. on page 569.

Note that these distributions do not have a 'key' element. As a result, all frames “match” these distributions. For 'garbage_dist_0',
the resulting FQID is always 0xb1 since the queue element specifies just one frame queue and the base FQID value is 0xb1.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
568 NXP Semiconductors

Figure 133. More Complex Policy File - 3

Let’s say that an FMan port is tied to policy 'pktwr_policy_1' - highlighted in Figure 134. on page 570.

This policy instructs the FMan to first attempt to distribute frames arriving on this port using the 'pktwr_dist_1' distribution. If the
current frame does not include the ipv4.src and ipv4.dst fields, the policy instructs the FMan to try the next distribution in the
policy's distribution order list.

In this example, the next distribution is “garbage_dist_1” which, due to the absence of a 'key' element, matches all frames and
enqueues them to the single frame queue defined by the 'count' and 'base' attributes of its queue element.

Note: It is common for the last distribution in a distribution order list to be a "catch all", like the default case in a C switch statement;
however, this is not a requirement.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 569

Figure 134. More Complex Policy File - 4

8.2.6.9.3 Classification Section
The Classification section of the Policy file is optional. Use it to specify exact match frame classification.

A classification specifies the action to perform on a frame when the values of the specified fields in a frame's protocol header
match a predefined value. You can specify as many predefined value/action pairs as desired, as well as a default action.

A classification starts with a 'classification' element, which is a container for these child elements:

• A 'key' element that defines the header fields (in protocol.field form) to use in the exact match operation

• One or more 'entry' elements, each of which defines a value to which the specified fields are compared and a 'queue'
and/or 'action' element that defines what to do with the frame upon a match

• An optional 'action' element that defines the default action to take if none of the exact match conditions is met

The FMC Tool uses the information in these child elements to populate the FMan Controller's rules table. At runtime, the Controller
uses this information to extract the specified fields from the specified protocol header, compare these fields to the specified values
and, upon a match, take the specified action.

See The classification element on page 605 for complete documentation of this element.

Example

The example below shows a Policy file containing a 'classification' element.

The 'policy' element named 'policy_0' lists two distributions to try, 'udp_dist' and 'non_udp_dist'.

Note: For a classification block to be applied to a frame, the frame must first match a distribution that transfers control to this
classification via an 'action' element. In other words, the "source engine" of the Classifier is always a 'distribution' element.

The 'udp_classif' classification element specifies an exact-match lookup on the ipv4.dst field. If this field's value is:

• 0xC0A81402, the frame is placed on the queue whose FQID is 0x200

• 0xC0A81404, the frame is placed on the queue whose FQID is 0x400

• 0xC0A81406, the frame is placed on the queue whose FQID is 0x600

• 0xC0A81408, the frame is placed on the queue whose FQID is 0x800

Otherwise, the 'action' element passes the frame to the 'unknown_dist' distribution for handling.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
570 NXP Semiconductors

description="Course Classification configuration">
<policy name="policy_0">
 <dist_order>
 <distributionref name="udp_dist"/>
 <distributionref name="non_udp_dist"/>
 </dist_order>
</policy>

<distribution name="udp_dist">
 <protocols>
 <protocolref name="udp"/>
 </protocols>
 <action type="classified" name="udp_classif"/>
</distribution>

<classification name="udp_classif">
 <key>
 <fieldref name="ipv4.dst">
 </key>
 <entry>
 <data>0xC0A81402</data>
 <queue base="0x200"/>
 </entry>
 <entry>
 <data>0xC0A81404</data>
 <queue base="0x400"/>
 </entry>
 <entry>
 <data>0xC0A81406</data>
 <queue base="0x600"/>
 </entry>
 <entry>
 <data>0xC0A81408</data>
 <queue base="0x800"/>
 </entry>
 <action type="distribution" condition="on-miss" name="unknown_dist"/>
<classification>
"cc_policy.xml" 108 lines --61%--

8.2.6.9.4 Policer Section
The Policer section of the Policy file is optional.

If used, the section consists of up to 256 policer profiles. Each profile starts with a 'policer' element, which is a container for various
child elements with which you implement a particular policing behavior.

Each profile works in one of these modes:

• Pass-through – Policer performs no traffic metering

• RFC-2698 - Policer employs a two-rate, three-color marker scheme

• RFC-4115 - Policer employs a differentiated service, two-rate, three-color marker scheme that efficiently handles in-profile
traffic

Each of these modes can be configured to be color-aware or color-blind.

For RFC-2698 and RFC-4115 modes, you must specify these values:

• unit, the unit to be used for the following numeric parameters. Valid values for unit are "packet" and "byte."

• CIR, Committed Information Rate[13]

• CBS, Committed Burst Size[14]

[13] If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/
second

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 571

• PIR, Peak Information Rate[15]

• PBS, Peak Burst Size[16]

In all three modes, you can specify the next invoked action (NIA) for each color result (drop the frame, proceed to the specified
distribution, etc.)

Example 1 - Policer Markup for RFC2698 Mode

<policer name="policer2">
 <algorithm>rfc2698</algorithm>

 <color_mode>color_aware</color_mode>

 <CIR>12000</CIR>
 <EIR>34000</EIR>
 <CBS>56000</CBS>
 <EBS>78000</EBS>

 <unit>byte</unit>

 <action condition="on-green" type="distribution" name="green_dist"/>
 <action condition="on-yellow" type="distribution" name="yellow_dist"/>
 <action condition="on-red" type="drop"/>
</policer>

Example 2 - Policer Markup for Pass-through Mode

<policer name=“vlan_congestion_control_green">
 <algorithm>pass_through</algorithm>

 <color_mode>color_blind</color_mode>

 <default_color>green</default_color>

 <action condition="on-green" type="distribution name="default_dist"/>
</policer>

<policer name=“vlan_congestion_control_yellow">
 <algorithm>pass_through</algorithm>

 <color_mode>color_blind</color_mode>

 <default_color>yellow</default_color>

 <action condition="on-yellow" type=“drop"/>
</policer>

<policer name=“vlan_congestion_control_red">
 <algorithm>pass_through</algorithm>

 <color_mode>color_blind</color_mode>

 <default_color>red</default_color>

 <action condition="on-red" type=“drop"/>
</policer>

[14] If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.
[15] If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/

second
[16] If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
572 NXP Semiconductors

8.2.6.10 Configuration File
The Configuration file contains markup that defines the FMan instances (for devices with more than one FMan) and ports that
are being used.

In addition, the Configuration file "connects" each port to the parse, classification, policing, and distribution rules defined in the
Policy file. How? Each 'port' element in the Configuration file has a 'policy' attribute whose value must be the name of one of the
'policy' elements in the Policy file. This information tells the FMan which distributions to compare to each frame received on a
given port.

Figure 135. on page 573 shows the Configuration file's elements, attributes, and element hierarchy.

Note these element and attribute requirements:

• Valid engine names are "fm0" or "fm1"

• Valid values for the port type attribute are:

— "MAC" (1/10 Gbps Ethernet port)

• Port numbering corresponds to hardware port number (as in dts) for each port.

• The value of the 'policy' attribute of a 'port' element must match the name of a 'policy' element in the Policy file.

• portid attribute (optional) - One byte numeric value that is attached to the port and that can be used in the 'distribution' and
'combine' elements of the Policy file.

The Configuration file's general structure is shown below.

Figure 135. on page 573 shows an example configuration file. It uses the optional 'portid' attribute for the 1 Gbps ports.

Figure 135. Example Configuration File

<cfgdata>
 <config>
 <engine name="fm0">
 <port type="MAC" number="1" policy="ipv4_policy"/>
 <port type="MAC" number="2" policy="ipv4_policy" portid="0x96"/>
 <port type="MAC" number="3" policy="ipv4_policy" portid="0x97"/>
 <port type="MAC" number="4" policy="ipv4_policy" portid="0x97"/>
 </engine>
 </config>
</cfgdata>

8.2.6.11 NXP NetPDL Reference
The FMan's Soft Parser can process non-standard, custom protocols that you define. To define a custom protocol, you enter
NetPDL (Network Protocol Description Language) markup into a file called the Custom Protocol file. This markup defines each
field in the custom protocol's header, as well as actions for the Soft Parser to take both before and after the custom header is
loaded into the frame window.

Note: Although the markup used to define a custom protocol is based on NetPDL, this markup does not follow NetPDL rules
strictly. As a result, you cannot rely on non-NXP documentation of NetPDL as you write your Custom Protocol file. Only the
information in this appendix accurately explains how to write the NetPDL that goes in a Custom Protocol file.

You pass the name of the Custom Protocol file to the FMC Tool from the command line. The tool, in turn, passes the information
in this file (directly or indirectly) to the FMan's Soft Parser.

8.2.6.11.1 Basic XML Rules
The Custom Protocol XML file follows standard XML rules.

The file is composed of several elements. Each element begins with a start tag and can contain attributes and/or child elements.
If the element contains child elements, it must have a matching end tag. An element without child elements or text must end with
a forward slash (/).

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 573

Note that element and attribute names are case sensitive. In the Custom Protocol file, all element and attribute names use only
lower case alphabetics.

Comments always begin with "<!--" and end with "-->"

Example

<one-element attribute1="value"> <!-- this is a comment -->
 <child-element myattribute="4"/>
</one-element>
<another-element attribute2="value2"/>

8.2.6.11.2 The netpdl Element
The Custom Protocol file always begins with the <netpdl> root element. As a result, the end netpdl tag must appear at the end of
the file.

Attributes: No required attributes

Child Elements: protocol

Example

<netpdl>
...
</netpdl>

8.2.6.11.3 The protocol element
Use the 'protocol' element to bracket the definition of each custom protocol in the Custom Protocol file. The 'protocol' element is
a container for all the other elements required to define a custom protocol.

Attributes

name - (required) alphanumeric string; defines the unique name of the custom protocol.

longname - (optional) alphanumeric string; provides a user-friendly name for the protocol.

prevproto - (required) alphanumeric string. This attribute defines the previous protocol, that is, the protocol whose header precedes
the custom protocol's header.

Table 103. Valid values for the prevproto attribute on page 574 lists the values that you can assign to the 'prevproto' attribute.

Table 103. Valid values for the prevproto attribute

Protocol Layer

ethernet 2

llc_snap 2

vlan 2

pppoe 2

mpls 2

ipv4 3

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
574 NXP Semiconductors

Table 103. Valid values for the prevproto attribute (continued)

Protocol Layer

ipv6 3

gre 3

minencap 3

otherl3

The Custom Protocol file's NetPDL XML has a

somewhat different structure and behavior if either

'otherl3' or 'otherl4' is the previous protocol. See Effect

of Setting prevproto Attribute to otherl3 or otherl4 on

page 576.

 NOTE

3

tcp 4

udp 4

ipsec_ah 4

ipsec_esp 4

sctp 4

dccp 4

otherl4 1 4

Each time the frame window contains a header for a protocol specified in the 'prevproto' attribute of one of the 'protocol' elements
in the Custom Protocol file, the Hard Parser transfers control to the Soft Parser.

The Soft Parser then executes the 'before' element code of the 'protocol' element whose prevproto attribute matches the current
protocol. As long as the 'before' element code is executing, the previous protocol's header remains in the frame window. As a
result, the 'before' element code can reference the fields in the previous protocol header.

Typically, the 'before' element includes code that determines whether the next protocol header is an instance of the custom protocol
defined by this protocol element. If it is not, the 'before' code instructs the Soft Parser to return to the Hard Parser; if it is, the Soft
Parser continues to execute the 'before' code.

When the Soft Parser finishes executing the 'before' code (and if it does not return control to the Hard Parser), the Soft Parser
advances the frame window to the custom protocol header and starts executing the 'after' element code (if any has been defined).
Therefore, the code in the 'after' element can reference the fields in the custom protocol header.

Child Elements: format, execute-code

Example

<protocol name="gtpu" longname="GTP-U" prevproto="udp">
 ...
</protocol>

<protocol name="tcpExt" longname="tcp extension" prevproto="cp">
 ...
</protocol>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 575

8.2.6.11.3.1 Effect of Setting prevproto Attribute to otherl3 or otherl4
When the 'prevproto' attribute of the 'protocol' element is set to otherl3 (for other layer 3 protocol) or otherl4 (for other layer 4
protocol), the first byte of the previous protocol header and the first byte of the custom protocol header are at the position in the
frame window. Because they are not real protocols, neither otherl3 nor otherl4 has a real protocol header with a defined size and
defined fields; these "protocols" are used just to provide the Soft Parser with an entry point (or a termination point) within the frame
window. In effect, the size of the otherl3 and otherl4 "headers" is zero. Consequently, these "headers" have the same start offset
in the frame window as does the custom protocol's header.

Note: Because the otherl3 and otherl4 protocols do not have real headers, they provide nothing for the Soft Parser to parse. As
a result, you cannot use the 'before' element when either of these protocols is assigned to the 'prevproto' attribute. You can only
use the 'after' element in these cases.

8.2.6.11.4 The format element
Use the 'format' element to bracket the definition of the structure of a custom protocol header. The 'format' element is a
container for the 'fields' element which, in turn, is a container for the 'field' element. The 'field' element lets you define each field
in a custom protocol's header.

Attributes: none

Child Elements: fields

8.2.6.11.4.1 The fields Element
Use the 'fields' element to define the structure of a custom protocol's header. This element is a container for the 'field' element,
which lets you define each field in a custom protocol header.

Attributes: none

Child Elements: field

8.2.6.11.4.2 The field Element
Use the 'field' element to define one of the fields in a custom protocol header.

Attributes

type - (required) string; Defines the field size as either "fixed" for a byte-length field or "bit" for a bit-length field.

size - (required) integer; Defines the size of the field in bytes.

name - (required) string; Defines the unique name for the field.

longname - (optional) string; Defines the name of the field for display purposes.

mask - (required only for bit field) integer; Defines the specific bits in the current bytes which belong to this field.

The field elements appear one after the other to define a custom protocol's header frame. The first field begins in the first byte of
the custom protocol's frame header and its size is determined by the size attribute. The following fields conform to the following
rules:

• A fixed field or a field following a fixed field begins in the next byte, which is the previous field's offset + the previous field's
size.

• A bit field following a bit field begins in the next byte only if the last bit in the previous field's mask is 1.

• If two fields share the same offset (which is possible only when both fields are bit fields and the mask of the first field does
not end with 1), they should have the same value for their size attributes.

Example

<format>
 <fields>
 <field type="bit" name="flags" mask="0xE0" size="1"/>
 <field type="bit" name="pt" mask="0x80" size="1"/>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
576 NXP Semiconductors

 <field type="bit" name="version" mask="0x07" size="1"/>
 <field type="fixed" name="mtype" size="1"/>
 <field type="fixed" name="length" size="2"/>
 </fields>
</format>

<format>
 <fields>
 <field type="bit" name="version" mask="0xE0" size="1"/>
 <field type="bit" name="pt" mask="0x10" size="1"/>
 <field type="bit" name="flags" mask="0x07" size="1"/>
 <field type="bit" name="flags1" mask="0x01" size="1"/>
 <field type="bit" name="flags2" mask="0x10" size="1"/>
 <field type="bit" name="flags3" mask="0x02" size="1"/>
 <field type="fixed" name="mtype" size="1" longname="message type"/>
 <field type="fixed" name="length" size="2"/>
 </fields>
</format>

The fields will, thus, be stored in the following bit offsets in the custom protocol header:

version: 0-2 pt: 3-3 flags: 5-7 flags1: 15-15 flags2: 19-19 flags3: 22-22 mtype: 24-31 length: 32-47

8.2.6.11.5 The execute-code element
Use the 'execute-code' element to define all code that should be executed for a custom protocol once the parser reaches the
specified previous protocol header.

This element contains two child elements, 'before' and 'after'. At least one of these child elements must be defined. If both are
defined, the 'before' element must appear before the 'after' element.

Attributes: none

Child Elements: before, after

Example

<execute-code>
 <before>
 ...
 </before>

 <after headersize="8">
 </after>
</execute-code>

8.2.6.11.5.1 The before Element
The Soft Parser executes the code in the 'before' element before it moves the frame window from the previous protocol header to
the custom protocol header. Therefore, use the 'before' element to specify logic that requires access to fields in the previous
protocol header. This code is often used to determine whether the next protocol header is an instance of the custom protocol this
protocol block defines. If it is not, the 'before' block instructs the Soft Parser to return control to the Hard Parser; if it is, the Soft
Parser continues processing.

While the code in the 'before' element is analyzed, the frame window points to the previous protocol header. Therefore, the frame
window variable ($FW) references the fields in the previous protocol header and the header size variable ($headerSize) variable
returns the size of the previous protocol's header.

Once the it reaches the end of the 'before' element, the Soft Parser moves the frame window to the custom protocol header. If no
'after' element has been defined, the Soft Parser then returns to the Hard Parser.

The 'before' element can only appear once in the 'execute-code' element and, if an 'after' element has been defined, the 'before'
element must appear before the 'after' element.

Attributes

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 577

confirm - (optional) string; Valid values are "yes" and "no". The default value is "no" if an 'after' element has been defined.
Otherwise, the default value is "yes". If confirm="yes", the Soft Parser confirms the presence of the 'prevproto' header by bitwise
OR'ing the previous protocol's line-up enable confirmation mask with the current line-up confirmation vector (LCV) value.

confirmcustom - (optional) string; Valid values are "shim1", "shim2", and "no". The default value is "no". If 'confirmcustom' is set
(!="no"), the Soft Parser confirms the presence of the custom protocol header by bitwise OR'ing the custom protocol's mask with
the current line-up confirmation vector (LCV) value. The custom protocol can set one of the last two bits in the LCV. If "shim1" is
selected, the least significant bit is set; if "shim2" is selected, the second least significant bit is set.

Child Elements: if, switch, assign, action

Note: When the previous protocol is 'otherl3' or 'otherl4', the previous protocol and the custom protocol are treated as if they are
the same and each begins at the same offset within the frame window. Therefore, the 'before' element cannot be used when the
'prevproto' attribute is 'otherl3' or 'otherl4'; only an 'after' element be used when the the 'prevproto' attribute is 'otherl3' or 'otherl4'.
See Effect of Setting prevproto Attribute to otherl3 or otherl4 on page 576 for more information.

8.2.6.11.5.2 The after Element
The 'after' element contains code which should be executed when a frame from the current custom protocol has been encountered.
In contrast to the 'before' element, in the 'after' section, it is possible to access fields from the current protocol but not from the
previous protocol. In the 'after' element the frame window variable ($FW) manipulates the current custom protocol header and
the header size variable ($headerSize) returns the size of the current custom protocol header.

At the end of the 'after' element, the frame window jumps to the end of the custom protocol's header and control returns to the
Hard Parser.

The 'after' element can appear only once in an 'execute-code' element and if a 'before' element has been defined, it must appear
before the 'after' element.

Attributes

confirm - (optional) string; Valid values are "yes" and "no". The default value is "yes". If confirm ="yes", the Soft Parser confirms
the existence of the previous protocol header by bitwise OR'ing the previous protocol's line-up enable confirmation mask with the
current line-up confirmation vector (LCV) value.

confirmcustom - (optional) string; Valid values are "shim1", "shim2", and "no". The default value is "no". If 'confirmcustom' is set
(!="no"), the Soft Parser confirms the presence of the custom protocol header by bitwise OR'ing the custom protocol's mask with
the current line-up confirmation vector (LCV) value. The custom protocol can set one of the two last bits in the LCV. If "shim1" is
selected, the least significant bit is set; if "shim2" is selected, the second least significant bit is set.

headerSize - (optional) integer; Possible values: arithmetic expression. (See Arithmetic Expressions on page 593) The default
value is calculated using the fields contained by the 'format' element. You can specify the custom protocol's header size with this
attribute. This information is needed so the parser returns to the right position following the custom protocol header. If header size
is not specified, the FMC Tool assumes that the fields defined inside the 'format' element are the only fields in the custom protocol
header and calculates the header size using these fields. The $headerSize variable in the 'after' element returns the value defined
in this attribute (or the value calculated by default if the header attribute is not defined).

Child Elements: if, switch, assign, action

Example

<protocol name="gtp" prevproto="udp">
 <format>
 <fields>
 <field type="bit" name="version" mask="0xE0" size="1"/>
 </fields>
 </format>

 <execute-code>
 <before confirm="no">
 <assign-variable name="$GPR1" value="udp.dport"/>
 <!-- Note that this is ILLEGAL: <assign-variable name="GPR1" value="version" -->
 <assign-variable name="$shimr" value="$headerSize"/>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
578 NXP Semiconductors

 <!-- shimresult now holds udp's header size -->
 </before>

 <after headersize="4" confirmcustom="shim1">
 <!-- Note that this is ILLEGAL: <assign-variable name="$GPR1" value="udp.dport"> -->
 <assign-variable name="$GPR1" value="version"/>
 <assign-variable name="$shimr" value="$headerSize"/>
 <!-- shimresult now equals 4 -->
 </after>
 </execute-code>
</protocol>

8.2.6.11.5.3 Child Elements of the before and after Elements
8.2.6.11.5.3.1 The assign-variable Element
The 'assign-variable' element assigns an expression to a variable.

Attributes

name - (required) string; The name of the variable to which a value will be assigned. Valid values: Variables contained in the result
array.

value - (required) integer; The expression assigned to the variable. Valid values: arithmetic expressions.

Child Elements: none

Example

<assign-variable name="$shimoffset_2" value="$shimoffset_1+12"/>

8.2.6.11.5.3.2 The if Element
This element tests the specified condition. If the condition is true, control transfers to the 'if-true' element; if the condition is false,
control transfers to the 'if-false' element (if one is defined).

Attributes

expr - (required) string; Defines the condition to be checked before selecting the code block to execute. Valid values: logical
expressions. (See Logical Expressions on page 592 for more information.)

Child Elements: if-true (required), if-false

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>
 <if-false>
 ...
 </if-false>
</if>

8.2.6.11.5.3.2.1 The if-true Element

This element defines code to execute if the expression defined in the parent 'if' element is true.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 579

 <if-false>
 ...
 </if-false>
</if>

8.2.6.11.5.3.2.2 The if-false Element

This element defines the code to execute if the expression defined in the parent 'if' element is false.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>
 <if-false>
 ...
 </if-false>
</if>

8.2.6.11.5.3.3 The switch Element
This element defines an expression and a set of cases. Each case consists of a value (or set of values) and code to be executed
if the value equals the switch expression. Each 'switch' element must have at least one 'case' child element.

Note: Only the code of the first case that matches the swith expression is executed. Any following cases are skipped. In C language
terms, a break is automatically added after the code of each case.

Attributes

expr - (required) string; Defines the value being checked. Valid values: arithmetic expressions.

Child Elements: case, default

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>

 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>

 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

8.2.6.11.5.3.3.1 The case Element

This element matches a value or range of values against the switch expression.

Attributes

value - (required) integer; If the value equals the switch expression and no earlier case has been matched, the code in the 'case'
element is executed.

maxvalue - (optional) integer; If the switch expression is greater than or equal to the 'value' attribute and the expression is less
than or equal to the 'maxvalue' attribute (and no earlier case has been matched), the code in the 'case' element is executed.

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
580 NXP Semiconductors

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>

 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>

 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

8.2.6.11.5.3.3.2 The default Element

The 'default' element contains code that is executed if the expression in the 'switch' element is not matched by any of the candidate
cases.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>

 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>

 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

8.2.6.11.5.3.4 The action Element (for use in a Custom Protocol file)
Use the 'action' element in a 'before' or 'after' block to terminate soft parsing, jump to the specified next protocol header, and
continue hard parsing.

Note: This topic defines the 'action' element used in a Custom Protocol file. See The action element (for use in a policy file) on
page 603 for the definition of the 'action' element used in a Policy file.

Attributes

• type - (required) string; "exit" is the only valid value for the type attribute.

• advance - (optional) string; The 'advance' attribute controls whether the Soft Parser moves the frame window to the next frame
header. This attribute has different meanings in the 'before' and 'after' elements. In the 'before' element, the Soft Parser moves
the frame window from the previous protocol header to the custom protocol header. In the 'after' element, the Soft Parser
moves the frame window from the custom protocol header to the specified next protocol header. The frame window is
advanced according to the header size. The value of 'advance' must be 'yes' or 'no'. The default is 'yes' unless 'nextproto' is
set to 'end_parse', 'return', or not set at all. In these cases, the default value is 'no'.

• confirm - (optional) string; If confirm="yes", the Soft Parser bitwise OR's the previous protocol's line-up enable confirmation
mask with the current line-up confirmation vector (LCV) value. Valid values are "yes" and "no"; the default value is "yes".

• confirmcustom - (optional) string; Valid values are "shim1", "shim2", or "no". The default value is "no". If confirmcustom is set
to a value other than "no", the Soft Parser bitwise ORs the custom protocol's mask with the current line-up confirmation vector

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 581

(LCV) value. The custom protocol can set one of the two last bits in the LCV. If shim1 is specified, the least significant bit is
set; if shim2 is specified, the second least significant bit is set.

• nextproto - (optional); If used, this attribute must be one of the values from the table below:. The default value is 'return'.

Table 104. Parse Action for each Value of the nextproto Attribute

If nextproto is ... The parse action is ...

ethernet Jump to the Ethernet header and continue hard parsing

llc_snap Jump to the LLC_SNAP header and continue hard parsing

vlan Jump to the VLAN header and continue hard parsing

pppoe Jump to the PPPoE header and continue hard parsing

mpls Jump to the MPLS header and continue hard parsing

ipv4 Jump to the IPv4 header and continue hard parsing

ipv6 Jump to the IPV6 header and continue hard parsing

gre Jump to the GRE header and continue hard parsing

minencap Jump to the MinEncap header and continue hard parsing

otherl3 Jump to the otherl3 header and continue hard parsing

tcp Jump to the TCP header and continue hard parsing

udp Jump to the UDP header and continue hard parsing

ipsec_ah Jump to the IPsec_ah header and continue hard parsing

ipsec_esp Jump to the IPsec_esp header and continue hard parsing

sctp Jump to the SCTP header and continue hard parsing

dccp Jump to the DCCP header and continue hard parsing

otherl4 Jump to the otherl4 header and continue hard parsing

after_ethernet Jump to the protocol that should follow the Ethernet header. The next protocol is determined
from the value of the $nxtHdr variable. See Table 105. Next Protocol for each $nxtHdr Value
if nextproto is 'after_ethernet' on page 583to find the next protocol for each possible value
of $nxtHdr.

Note:The 'advance' attribute must be set to 'yes' if 'nextproto' is set to 'after_ethernet'.

after_ip Jump to the protocol that should follow the IP header. The next protocol is determined from
the value of the $nxtHdr variable. See table: Next Protocol for each $nxtHdr Value if
nextproto is 'after_ethernet' to find the next protocol for each possible value of $nxtHdr.

Note:The 'advance' attribute must be set to 'yes' if 'nextproto' is set to 'after_ip'.

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
582 NXP Semiconductors

Table 104. Parse Action for each Value of the nextproto Attribute (continued)

If nextproto is ... The parse action is ...

return (default value) Return to the Hard Parser without advancing the frame window. In this case, the Hard Parser
starts parsing the frame header at the same position at which the Soft Parser began. The
'advance' attribute cannot be 'yes' when 'nextproto is set to return.

none/end_parse Finish parsing the frame header; do not return to the Hard Parser.

Table 105. Next Protocol for each $nxtHdr Value if nextproto is 'after_ethernet'

If $nxtHdr is ... The next protocol is ...

0x05DC or less llc_snap

0x0800 ipv4

0x86DD ipv6

0x8847, 0x8848 mpls

0x8100, 0x88A8, ConfigTPID1, ConfigTPID2 vlan

0x8864 pppoe

other value otherl3

Table 106. Next Protocol for each $nxtHdr Value if nextproto is 'after_ip'

If $nxtHdr is ... The next protocol is ...

4 ipv4

6 tcp

17 udp

33 dccp

41 ipv6

50, 51 ipsec

47 gre

55 minencap

132 sctp

other value otherl4

Notes

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 583

• The frame window must be advanced when parsing jumps to the 'after_ethernet' or 'after_ip' protocols. Therefore, the
'advance' attribute cannot be set to 'no' in these cases.

• The frame window must not be advanced before a 'return' to the Hard Parser. Therefore, the 'advance' attribute cannot be
set to 'yes' if nextproto is set to 'return' or not set at all (since 'return' is the default 'nextproto' value).

Child Elements: none

Example

<action type="exit"
 advance="yes"
 confirmcustom="shim2"
 confirm="no"
 nextproto="udp"/>

8.2.6.11.6 Expressions
Expressions are constructed of operands and operators. The simplest expression can contain just one operand. Most
operators are dyadic and separate two operands (such as +, -) and some operators are monadic and operate on just the
operand that follows them (such as 'not').

8.2.6.11.6.1 Operands
These are the supported types of operands: numbers, variables, fields, and expressions.

Note: The maximum size of an operand is 64 bits (8 bytes).

8.2.6.11.6.1.1 Numbers
Numbers can appear in decimal (no prefix), binary (prefixed by '0b'), or hexadecimal (prefixed by '0x') format.

All numbers are 64-bit unsigned integers. However, some operators only use the 32 LSB of a number.

Note: Immediate, primitive negative numbers are not supported. For example, the number -2 cannot appear in an expression.
However, artificial negative values can be created using arithmetic expressions such as 1-3 (which returns 0xfffffffe).

8.2.6.11.6.1.2 Fields
Fields are defined with the 'format' element in a custom protocol header definition. There are two ways to access a field, by typing
their name directly or by typing the name of the protocol header containing the field, followed by a period, followed by the name
of the field.

In the 'before' element, it is only possible to access fields in the previous protocol header; in the 'after' element, it is only possible
to access fields in the current custom protocol header.

Note: Fields longer than 8 bytes cannot be accessed individually. You can work around this limit by accessing the frame directly
using the frame window ($FW) variable or by splitting the field into several shorter fields.

Example

<protocol name="gptu" prevproto="#ethernet">
 <format>
 <fields>
 <field type="fixed" name="example" size="2"/>
 </fields>
 </format>

 <execute-code>
 <before>
 <assign-variable name="$l2r" value="ethernet.type"/>
 </before>

 <after>
 <assign-variable name="$shimoffset_2" value="example"/>
 </after>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
584 NXP Semiconductors

 </execute-code>
</protocol>

8.2.6.11.6.1.3 Variables
All variable names begin with the $ prefix and are case-sensitive. These variables are supported: frame window, header size,
prevprotoOffset, parameter array, and result array variables.

8.2.6.11.6.1.3.1 Result Array Variables

Result array variables return values contained in the parse results array.

Syntax for accessing result array variables:

• $variableName - returns the entire variable

• $variableName[byteOffset:byteNumber] - Returns the byteNumber number of bytes in the variable starting from byteOffset.
This access method is useful for accessing a subset of the bytes in the variable. In bytesNumber equals zero, the entire
variable is returned, starting from byteOffset.

Example: The variable $actiondescriptor returns result array bytes 64-71. The expression $actiondescriptor[2:4] returns result
array bytes 66-69 since 66 is at offset 2 of the actiondescriptor variable and the requested size is 4. The expression
$actiondescriptor[3:0] returns result array bytes 67-71 since 67 is at offset 3 of the actiondescriptor variable and the requested
size is 0, which means return the entire variable starting at the specified offset (3).

Other usage: In addition to expressions, result array variables can be used in the left side of 'assign-variable' elements to modify
result array values.

Table 107. Result Array Variables on page 585shows the available result array variables .

Table 107. Result Array Variables

Variable Name Result Array Bytes Referenced

gpr1 0-7

gpr2 8-15

logicalportid 16-16

shimr 17-17

l2r 18-19

l3r 20-21

l4r 22-22

classificationplanid 23-23

nxthdr 24-25

runningsum 26-27

flags 28-28

fragoffset 28-29

routtype 30-30

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 585

Table 107. Result Array Variables (continued)

Variable Name Result Array Bytes Referenced

rhp 31-31

ipvalid 31-31

shimoffset_1 32-32

shimoffset_2 33-33

ip_pidoffset 34-34

ethoffset 35-35

llcs_napoffset 36-36

vlantcioffset_1 37-37

vlantcioffset_n 38-38

lastetypeoffset 39-39

pppoeoffset 40-40

mplsoffset_1 41-41

mplsoffset_n 42-42

ipoffset_1 43-43

ipoffset_n 44-44

minencapo 44-44

minencapoffset 44-44

greoffset 45-45

l4offset 46-46

nxthdroffset 47-47

framedescriptor1 48-55

framedescriptor2 56-63

actiondescriptor 64-71

ccbase 72-75

ks 76-76

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
586 NXP Semiconductors

Table 107. Result Array Variables (continued)

Variable Name Result Array Bytes Referenced

hpnia 77-79

sperc 80-80

ipver 85-85

iplength 86-87

icp 90-91

attr 92-92

nia 93-95

ipv4sa 96-99

ipv4da 100-103

ipv6sa1 96-103

ipv6sa2 104-111

ipv6da1 112-119

ipv6da2 120-127

Note: The $GPR2 variable is used internally by the FMC Tool to calculate complex expressions, including checksum calculations.
Using $GPR2 for other purposes is possible, but is not supported or recommended.

8.2.6.11.6.1.3.2 Parameter Array Variable

This variable returns data from the parameter array. Because the parameter array is more than 8 bytes long, you must specify
the particular bytes needed.

Accessing parameter array variables: $PA[byteOffset:byteNumber] - returns the byteNumber number of bytes in the parameter
array starting at byteOffset.

Example: The expression "$PA[4:2]" accesses the fifth and sixth bytes (indexed at PA[4] and PA[5]) of the parameter array.

8.2.6.11.6.1.3.3 Header Size Variables

Header size variables return the header size or default header size of a protocol header.

Accessing header size variables: $headerSize or $defaultHeaderSize

• In the 'before' element, the $headerSize of the previous protocol header is returned. Accessing $defaultHeaderSize is not
allowed.

• In the 'after' element, the $defaultHeaderSize variable returns the number of bytes in the custom protocol's format fields.
The $headerSize variable returns the headerSize as defined by the 'headersize' attribute of the 'after' element. If the user
has not specified a value for the 'headersize' attribute, $headerSize returns the same value as $defaultHeaderSize.

8.2.6.11.6.1.3.4 Frame Window Variable

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 587

The frame window variable ($FW) returns data from the frame array. In the 'before' element, the frame window variable returns
data from the previous protocol's header. In the 'after' element, the frame window variable returns data from the custom protocol
header.

Using the frame window variable: $variableName[bitOffset:bitNumber] - Returns the bitNumber number of bits in the frame header
starting from bitOffset.

Note: The frame window uses similar syntax to the parameter array and result array variables; however, the frame window variable
accesses bits instead of bytes.

Examples

To access the tenth and eleventh bits in the frame array (indexed at FW[9], FW[10]), use "$FW[9:2]".

To access the entire third byte of the frame array, use "$FW[16:8]".

The conditions in the example below are always true because the same bits can be accessed using either the $FW variable or
header field names.

<format>
 <fields>
 <field type="bit" name="first" size="1" mask="0xE0"/>
 <field type="bit" name="second" size="1" mask="0x1"/>
 <field type="bit" name="third" size="1" mask="0xF"/>
 <field type="fixed" name="fourth" size="2"/>
 </fields>
</format>
...
<after>
 <if expr="first==$FW[0:3]"> ... </if>
 <if expr="second==$FW[7:1]"> ... </if>
 <if expr="third==$FW[8:4]"> ... </if>
 <if expr="fourth==$FW[16:16]"> ... </if>
</after>

8.2.6.11.6.1.3.5 The prevprotoOffset Variable

This variable returns the offset of the previous protocol's frame header. This variable has the same value in the 'before' and 'after'
sections and always refers to the protocol defined in the 'prevproto' attribute of the protocol element.

In the 'before' element, the frame window's current location is equal to prevprotoOffset. In the 'after' element. the frame window's
current location is equal to prevprotoOffset+headerSize.

Note: This variable is actually a "shortcut" to the result array and returns or modifies values taken directly from this array.

Table 108. Previous Protocol RA Return Values

If the previous protocol is ... The value returned from result array is ...

ethernet $ethoffset

gre $greoffset

ipv4, ipv6 $Ipoffset_n

llc_snap $llcsnapoffset

minencap $minencapoffset

mpls $mplsoffset_n

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
588 NXP Semiconductors

Table 108. Previous Protocol RA Return Values (continued)

If the previous protocol is ... The value returned from result array is ...

pppoe $pppoeoffset

tcp, udp, sctp, dccp, ipsec_ah, ipsec_esp $l4offset

vlan $vlanoffset_n

otherl3, otherl4 $NxtHdrOffset - When the previous protocol is otherl3 or other l4, the
custom protocol and the previous protocol have the same offset. See
Effect of Setting prevproto Attribute to otherl3 or otherl4 on page 576.

8.2.6.11.6.2 Operators
The parser supports many operators. These operators can receive arithmetic or logical operands and return an arithmetic or
logical value. An arithmetic value is a number, while a logical value is true or false. (See Arithmetic Expressions on page 593
and Logical Expressions on page 592 for more information.)

Table 109. Supported Operators and their Properties on page 589describes all operators and their associated properties. All
dyadic operators (operators which receive two parameters) appear between two operands. All monadic operators appear before
an operand.

Table 109. Supported Operators and their Properties

Name Parameters Description Symbol

Greater than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is greater
than the second

gt

Greater equal Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is equal to
or greater than the second

ge

Less than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is less than
the second

lt

Less equal Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is equal to
or less than the second

le

Equal Logical (Arithmetic, Arithmetic) Checks if the two expressions are equal ==

Not equal Logical (Arithmetic, Arithmetic) Checks if the two expressions are not equal !=

Logical AND Logical (Logical, Logical) Checks if both expressions are true and

Logical OR Logical (Logical, Logical) Checks if either one of the expressions is true or

Logical NOT Logical (Logical) Returns true if the expression is false; returns false
otherwise

not

Add 32-bit Arithmetic (32-bit Arithmetic,
32-bit arithmetic)

Return the sum of the expressions +

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 589

Table 109. Supported Operators and their Properties (continued)

Name Parameters Description Symbol

Subtract 32-bit arithmetic (32-bit Arithmetic,
32-bit arithmetic)

Return the difference between the two expressions
(result of subtraction)

-

Add carry 16-bit arithmetic (16-bit arithmetic,
16-bit arithmetic)

Return the sum of the two expressions summed with
the carry after 32bit

addc

Bitwise OR Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise OR operation on the
two expressions

bitwor

Bitwise XOR Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise XOR operation on the
two expressions

bitwxor

Bitwise AND Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise AND operation on the
two expressions

bitwand

Bitwise NOT Arithmetic (Arithmetic) Returns the result of a bitwise NOT operation on the
expression

bitwnot

Shift left Arithmetic (Arithmetic, Integer -
value up to 64 bits)

Return the left expression shifted left by the right
expression

shl

Shift right Arithmetic (Arithmetic, Integer -
value up to 64 bits)

Return the left expression shifted right by the right
expression

shr

Concat Arithmetic (Arithmetic, Variable or
Integer)

Special operator

See The concat Operator on page 590 for full
documentation

concat

Checksum Arithmetic (Arithmetic - value up to
0xffff, Arithmetic - value up to 256,
Arithmetic - value up to 256)

Special operator

See The checksum Operator on page 591 for full
documentation

checksum

8.2.6.11.6.2.1 The concat Operator
The concat operator shifts its first argument left and inserts its second argument to its right. The concat operation can be executed
on variables or integers. If the second argument is a variable, the first argument is shifted left according to the known size of the
variable. Result array variables have constant sizes and the size of the frame header's fields are set in the Custom Protocol file
or the Standard Protocol file.

If the user accesses only specific bits in the second argument, the first argument is shifted left only by the number of bits specified.

If the second argument is an integer, the first argument is shifted left by the smallest word size into which the integer fits: 16, 32,
48, or 64.

Note: The second argument of a concat operation cannot be an expression because the FMC Tool does not know the size of an
expression and therefore cannot shift the first argument properly. However, for expressions, you can replace the concat operation
with a shift operation (as long as you know the number of bits to shift) and a bitwise OR operation.

Note: You should use concat instead of shift/bitwise OR when working with variables and integers in order to reduce code size.

For example, the following IF expression is true:

<assign-variable name="$shimr" value="2"/>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
590 NXP Semiconductors

<assign-variable name="$GPR1[6:2]" value="3"/>
<if expr="1 concat $shimr concat $GPR1[6:2] concat 0x40000 == 0x102000300040000">

8.2.6.11.6.2.2 The checksum Operator
The checksum operator is a special operator with unique behavior and syntax. It appears before three operands that have
parentheses around them. As a result, the concat operator looks like a function call - checksum(expression, integer, integer).

The first operand defines the initial checksum value. The second operand defines the frame window offset at which to start the
checksum (relative to the current frame window location). The third operand defines the length of the data in bytes on which the
checksum operation should be calculated.

Using these values, the checksum executes the add carry (addc) operation on 2-byte sized words in the frame window range
specified. If the range specified contains an odd number of bytes to be checksummed, the last byte is padded on the right with
zeros to form a 16-bit word for checksum purposes. The total sum is added to the initial checksum value using another addc
operation. Therefore, the first argument that defined the initial sum value must be smaller than 0xffff. The result of the final addc
operation is returned.

Note: Since it is only possible to access 256 bytes in the frame window, the last two arguments to the checksum operator must
be less than or equal to 256.

Example

Suppose we have the following frame and the custom protocol header begins at offset 0xE (where 4500 appears):

FFFF FFFF FFFF 0CCB CC0D DDDD 0800 4500 002E 0000 4000 402F
2AA2 1000 0000 FFFE 0001 0308 0900 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 DA95 36D6 6F15 778C

The following IF conditions will always be true:

<after>
 <if expr="checksum(0x30A2,2,7+2)==0xDAFF">
 ...
 </if>

 <if expr="checksum(0,0,20)==0xFFFF">
 ...
 </if>
</after>

The first checksum operation above performs the following calculation:

0x30A2 + (0x002E add 0x0000 addc 0x4000 addc 0x402F addc 0x2A00)

The second checksum operation performs the following calculation:

0x0000 + (0x4500 addc 0x002E addc 0x0000 addc 0x4000 addc 0x402F addc 0x2AA2
 addc 0x1000 addc 0x0000 addc 0xFFFE addc 0x0001)

8.2.6.11.6.2.3 Expression Priorities
Expressions containing multiple operators perform the operation according to the following rules, in the order shown:

1. Operations in parentheses are performed

2. Operations that have a higher priority are performed

3. Multiple operations with the same priority are then executed from left to right

Note: Parentheses are recommended when several operators appear in the same expression to ensure correct calculation.

8.2.6.11.6.2.4 Operator Precendence
If several operators appear in the same expression (without separating parentheses), they are performed in the following order:

1. NOT, bitwise NOT, checksum

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 591

2. add, subtract, add carry

3. bitwise AND, bitwise OR, bitwise XOR

4. shift right, shift left, concat

5. greater than, greater equal, less than, less equal, equal, not equal

6. AND, OR

8.2.6.11.6.2.5 Variable Size
In most operations, expression size is limited to 64 bits. However, there are a few exceptions:

• When shifting variables, the shift value must be less than or equal to 64 bits since there are only 64 bits in an expression.

• The add carry operation can only be performed on 16-bit variables and always returns a 16-bit variable. The Soft Parser
reports an error if an add carry operation is performed on a constant larger than 16 bits, but does not recognize a complex
expression larger than 16 bits. Therefore, it is the responsibility of the user to perform the operation on 16-bit variables
only.

• The subtract and add operators can only be performed on 32-bit variables and they always return a 32-bit result. If two 32-
bit expressions are added and their result is larger than 32 bits, only the carry is returned, such that the returned value is a
32-bit variable. The Soft Parser reports a warning if an add carry operation is performed on a constant larger than 32 bits,
but does not recognize a complex expression larger than 32 bits. Therefore, it is the responsibility of the user to perform
the operation on 32-bit variables only.

For example, the following IF expressions are always true:

• <if expr="0xFFFFFFFF+2==0x1">

• <if expr="0x123456781+3==0x123456784">

The following IF expression is false (and should not be used):

• <if expr="3+0x123456781==0x123456784">

8.2.6.11.6.3 Expression Types
There are two main types of expressions: Logical expressions, which return "true" or "false", and arithmetic expressions, which
return a numeric result.

8.2.6.11.6.3.1 Logical Expressions
Logical expressions appear in the 'expr' attribute of the 'if' element.

These expressions always return "true" or "false" and, therefore, must use at least one logical operator that separates arithmetic
and logical operators.

Examples

The following expressions are logical expressions:

• (4+1==$shimoffset_1 or 5!=$shimoffset_2)

• not($shimoffset_2 ge $shimoffset_1 or $shimoffset_1 lt $shimoffset_2)

The following expressions are NOT logical expressions:

• (7 gt 3 and 2+7)

• (5 lt 8 or 7)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
592 NXP Semiconductors

8.2.6.11.6.3.2 Arithmetic Expressions
Arithmetic expressions always have a numeric result. They can hold a single operand (a number, variable, or arithmetic
expression) or more than one operand separated by arithmetic operators. Logical operators are not allowed in arithmetic
expressions.

Arithmetic expressions can appear in the following places:

• The value attribute of the assign element

• The headersize attribute of the after element

• The expr attribute of the switch element

Examples

The following are arithmetic expressions:

• ($FW[0:16]+4)

• ($shimoffset_1 concat 3)

• (3+7+8+$shimoffset_2)

• 4

The following is NOT an arithmetic expression:

• 4==$shimoffset_2

8.2.6.11.7 Tips and Recommendations
8.2.6.11.7.1 Result Array Fields that Must be Manually Updated
The FMC Tool lets you define custom protocol headers, and the Soft Parser parses these headers. However, the Soft Parser does
not update header fields for you (other than advancing the frame window and updating the line-up confirm vector (LCV) with the
previous protocol). (See The before Element on page 577, The after Element on page 578, and The action Element (for use in a
Custom Protocol file) on page 581 topics for more information.)

Therefore, some result array fields are left empty unless you manually update them. These fields might be needed in later stages
in order for the Soft Parser to correctly interpret the custom protocol header. A list of result array fields that should be updated
appears in the Frame Manager Parser section of the QorIQ Data Path Acceleration Architecture (DPAA) Reference Manual.
These fields include $Classificationplanid, $nxtHdr, $Runningsum, HXS offsets, Last E Type Offset, and $nxtHdrOffset. Note that
the HXS offsets, $nxtHdr, and $nxtHdrOffset fields are also used internally by the Soft Parser; therefore, these fields should be
modified carefully.

The $nxtHdr fields should be modified only if the custom protocol does not jump to 'after_ip' or 'after_ethernet', or if you want to
change the next protocol when jumping to 'after_ip' or 'after_ethernet'. You should only modify the HXS offsets and next header
offsets in the 'after' element or in the 'before' element if the parser exits without advancing the frame window.

Finally, the LCV should be manually updated when a custom protocol is being parsed. This can be done using the 'confirmcustom'
attribute, which is available in the 'before', 'after', and 'action' elements.

8.2.6.11.7.2 Result Array Fields that Should Not be Modified
Some fields in the result array are for the Soft Parser's exclusive use and therefore should not be modified by the user. These
fields are:

• $GPR1 is used to store temporary values in complex operations; therefore, you should not modify it.

• $nxtHdr is used to calculate the position of the next protocol header when the 'protocol' element's 'nextproto' attribute is set
to 'next_ethernet' or 'next_ip'. Therefore, this variable should not be modified when 'nextproto' equals one of these values.

• $prevprotoOffset is used to advance the frame window between the 'before' and 'after' elements or when using the 'action'
element with the 'advance' attribute in the 'before' element. Therefore, this variable should not be modified in the 'before'
element unless the Soft Parser exits this element without advancing the frame window. In addition, $prevprotoOffset can

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 593

equal these result array variables: $ethoffset, $greoffset, $ipoffset_n, $llcsnapoffset, minencapoffset, mplsoffset_n,
pppoeoffset, l4offset, vlanoffset_n, and $nxtHdrOffset. As a result, these variable should also not be modified by code in
the 'before' element.

• $nxtHdrOffset is used to advance the frame window between the 'before' and 'after' elements or when using the 'action'
element with the 'advance' attribute in the 'before' element. Therefore, this variable should not be modified in the 'before'
element unless the Soft Parser exits this element without advancing the frame window.

8.2.6.11.7.3 Setting the Next Protocol
The Soft Parser can be used to add code for an existing protocol or to define an entirely new protocol. When it is used as an
extension for an existing protocol and no new frame headers are being parsed, the 'nextproto' attribute of the 'action' element
should be set to 'return'. In this case, the nextproto attribute can also be left empty since 'return' is the default value. If 'return' is
set, the Soft Parser will execute its code and then the Hard Parser will continue parsing at the same position in the frame header
at which it stopped.

When the Soft Parser is used for a custom protocol with its own header, the Hard Parser must skip this header (since it does not
know how to parse it) and, therefore, the next protocol must be set to a specific protocol. If the next protocol is unknown, the
'nextproto' attribute in the 'action' element can be set to 'after_ip' or 'after_ethernet'. In these cases, the next protocol header is
determined using the value of the $nxtHdr field.

Example

1. If we want to execute the Soft Parser because when we parse the Ethernet protocol, our code will likely include an action
similar to the action below, which will appear in the 'before' element.

<action type="exit" advance="no" next="return">

2. If we want to add a custom protocol after Ethernet and then jump to IPv6, our code will likely include an action similar to
the action below, which will appear in the 'after' element...

<action type="exit" advance="yes" next="ipv6">

3. If we want to add a custom protocol after the Ethernet header, and we do not know where to jump next, our code will
likely include an action similar to the action shown below, which will appear in the 'after' element. In this case when
"after_ethernet" is used as next protocol, $nxtHdr variable but be dynamically assigned accordingly from custom protocol
header by using next protocol and field names as value.

<assign-variable name="$nxtHdr" value="protocol.field"/>
<action type="exit" advance="yes" next="after_ethernet">

8.2.6.11.8 Limitations
This section discusses limitations you should consider when working with the FMC Tool's Soft Parser functionality.

8.2.6.11.8.1 Complex Expressions
Some expressions contain so many operations and parentheses that they are too complicated for the Soft Parser. If you receive
an error stating that an expression is too complex, it may be necessary to simplify the expression by splitting it into multiple, smaller
expressions, using parentheses, or storing temporary values in the result array variables.

Note: $GPR1 is recommended for storing temporary variables. Do not use $GPR2 for temporary variables because it is used
internally by the tool).

Note that the checksum operation expressions can easily become too complex and must be simplified.

8.2.6.12 NetPCD Reference

8.2.6.12.1 The netpcd element
The 'netpcd' element is the root element of a NetPCD document (also known as a policy file). As a result, the 'netpcd' element
must appear before any other NetPCD element.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
594 NXP Semiconductors

8.2.6.12.1.1 netpcd Attribute Definitions

Table 110. netpcd Attribute Definitions

Attribute Requirement Description

name optional Free text. Use to describe the name and the purpose of the Policy file.

version="1.0" optional Version of the NetPCD DTD or XML schema.

Currently there is only one version - "1.0," which is the default.

creator optional Author's name

date optional Date the document was created

8.2.6.12.1.2 netpcd Example

<?xml version="1.0"?>
<netpcd version="1.0" name="Example" creator="Serge Lamikhov">
 <!-- Other NetPCD elements like 'policy', 'distribution', etc -->
 <policy name="ipv4">
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
 </policy>
</netpcd>

8.2.6.12.2 The policy element
The 'policy' element defines a prioritized list of distributions.

A policy element is assigned (via its name attribute) to a port or ports using markup in the Configuration file. Thus, the 'policy'
element is the means by which specific PCD rules defined in the Policy file are applied to traffic arriving on particular FMan ports.

Upon receipt of a frame on given port, the Hard Parser tries to match this frame to the distribution listed first in the policy assigned
to this port. If the frame matches, this distribution handles the frame. If the frame does not match, the Hard Parser next tries to
match the frame to the second distribution in the policy list. This process continues until a distribution in the list matches or no
more distributions are left in the policy element's list, in which case, the frame is placed on the FMan's default receive queue.

8.2.6.12.2.1 policy Attribute Definitions

Table 111. policy Attribute Definitions

Attribute Requirement Description

name required Name of the policy.

A port definition in the Configuration file references this name, thereby applying this
policy to all frames arriving on this port.

8.2.6.12.2.2 policy Example
Policy File

<policy name="ipv4"> <!-- policy name is ipv4 -->
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 595

</policy>

Configuration File

<cfgdata>
 <config>
 <engine="fm0">
 <port type="MAC" number="1" policy="ipv4"/> <!-- policy name ipv4 goes here -->
 </engine>
 </config>
</cfgdata>

8.2.6.12.3 The dist_order element
The 'dist_order' element is a container for a list of distribution references.

The Hard Parser chooses a particular distribution in this list at the moment when the protocol set made from the protocols
participating in a distribution is a subset of the protocols found in the current network packet.

The distribution reference list contained within 'dist_order' element is processing sequentially, and the first conforming distribution
is the distribution that is used. Thus, the order of distribution references is important.

8.2.6.12.3.1 dist_order Attribute Definitions

Table 112. dist_order Attribute Definitions

Attribute Requirement Description

none n/a n/a

8.2.6.12.3.2 dist_order Example

<policy name="ipv4">
 <dist_order>
 <distributionref name="tcp_dist"/>
 <distributionref name="udp_dist"/>
 <distributionref name="ethernet_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>

Note: In this example, putting "ethernet_dist" (which is supposed to process network traffic other than TCP and UDP) above
"tcp_dist" will lead to all traffic be distributed according to "ethernet_dist" rule and no packets will reach "tcp_dist" or "udp_dist"
rules. This is because the Ethernet protocol is a part of TCP and UDP frames as well.

8.2.6.12.4 The distributionref element
The 'distributionref' element references a 'distribution' element by its name.

The 'dist_order' element contains one or more 'distributionref' elements, thereby defining a prioritized list of distributions.

8.2.6.12.4.1 distributionref Attribute Definitions

Table 113. distributionref Attribute Definitions

Attribute Requirement Description

name required Name of the referenced 'distribution' element

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
596 NXP Semiconductors

8.2.6.12.4.2 distributionref Example

<policy name="ipv4">
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>

8.2.6.12.5 The distribution element
The 'distribution' element is a container for child elements that define frame match rules and frame handling rules.

Frame match rules determine whether the current frame matches (and is therefore handled by) this distribution. Frame handling
rules define what action is performed on matching frames.

Use the 'protocols' element and/or the 'key' element to define frame match rules.

Use the 'action', 'key', 'queue', and 'combine' elements to define frame handling rules.

An 'action' element within a the distribution passes the frame to the specified Policy file element for further processing

The 'key', 'queue' and (optional) 'combine' elements within a distribution together provide inputs to a hash algorithm that distributes
frames evenly over a range of frame queues. The 'key' element defines the protocol header fields to use as the hash key, the
'queue' element defines the base value and number of FQIDs in the frame queue range, and the optional 'combine' elements
give you fine control over the exact FQIDs that the algorithm generates.

Note: You can use an 'action' element in the hash scenario described above to pass the frame to a policer profile, which may
abort the enqueue operation and drop the frame if traffic conditions warrant. In the absence of an 'action' element, frame
processing concludes (and the frame leaves the FMan) at the end of the 'distribution' element.

A distribution's frame queue ID calculation is performed as follows:

• A hash key is formed by extracting and concatenating the protocol header fields specified by the 'key' element.

• The result value is hashed to a 64-bit CRC.

• The number of least significant bits is taken based on the 'count' attribute of the 'queue' element.

• The resulting value is ORed with the data retrieved according to the 'combine' elements.

• The resulting value is ORed with the 'base' attribute value of the 'queue' element.

All child elements are optional. Appropriate hardware dependent default values are used in cases where a child element does
not exist in the 'distribution' definition.

8.2.6.12.5.1 distribution Attribute Definitions

Table 114. distribution Attribute Definitions

Attribute Requirement Description

name required Name of the distribution. Any references to a distribution are made using to this name.

description optional Free text describing the element purpose.

comment optional Free text providing any other information.

8.2.6.12.5.2 distribution Example

<distribution name="eth_dist" description="Ethernet protocol based distribution">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 597

 <fieldref name="ethernet.dst"/>
 </key>
 <combine portid="true" offset="10" mask="0xFF"/>
 <combine frame="112" offset="2" size="16" mask="0xFF"/>
 <action type="classification" name="eth_dest_clsf"/>
</distribution>

8.2.6.12.5.3 Default Groups
XML 'defaults' element is a container for parameters necessary for configuration of the default groups and private default registers.
The element, if it exists, can be used as a child of element 'distribution'. This element contains a list of ‘default’ elements.

Table 115. 'default' Elements Attributes:

Attribute Requirement Description

private0 optional The scheme default register 0.

private1 optional The scheme default register 1.

Element 'default' attributes. This element can appear as a child to the element 'defaults':

Table 116. 'default' Element Attributes:

Attribute Requirement Description

type required Default type select. Possible values are:

1. "from_data” – any data extraction that is not one of the full fields
that can be used as type.

2. "from_data_no_v” – any data extraction without validation.

3. "not_from_data” – extraction from parser result or direct use of
default value.

4. "mac_addr” – MAC Address.

5. "tci” – TCI field.

6. "enet_type” – ENET Type.

7. "ppp_session_id” – PPP Session id.

8. "ppp_protocol_id” – PPP Protocol id.

9. "mpls_label” – MPLS Label.

10. "ip_addr” – IP Addr.

11. "protocol_type” – Protocol type.

12. "ip_tos_tc” – TOC or TC.

13. "ipv6_flow_label” – IPV6 flow label.

14. "ipsec_spi” – IPSEC SPI.

15. "l4_port” – L4 Port.

16. "tcp_flag” – TCP Flag

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
598 NXP Semiconductors

Table 116. 'default' Element Attributes: (continued)

Attribute Requirement Description

select required Default register select. Possible values are:

1. "gbl0” – Default selection is KG register 0.

2. "gbl1” – Default selection is KG register 1.

3. "private0” – Default selection is a per scheme register 0.

4. "private1” – Default selection is a per scheme register 1

Here is an example of possible default groups and nonheader definition:

<distribution name="Distribution1">
 <queue base="1" count="8"/>
 <key>
 <fieldref name="ipv4.src"/>
 <fieldref name="ipv4.dst"/>
 <fieldref name="ipv4.nextp"/>
 <nonheader source="default" offset="0" size="4"/>
 </key>
 <defaults private0="0xAAAAAAAA">
 <default type="from_data" select="private0"/>
 <default type="from_data_no_v" select="private0"/>
 <default type="not_from_data" select="private0"/>
 </defaults>
 <action type="drop"/>
</distribution>

8.2.6.12.6 The key element
The 'key' element contains a list of 'fieldref' elements. The 'filedref' elements define the protocol header fields whose values are
concatenated to form a hash key. The Key Gen sub block hashes this key and uses a portion of the result in its frame queue ID
(FQID) calculation.

8.2.6.12.6.1 key Attribute Definitions

Table 117. key Attribute Definitions

Attribute Requirement Description

shift optional Defines the amount by which the concatenation of the fields in the 'key' element are
right shifted. The default value is zero.

Note: The 'shift' attribute is ignored if the 'key' elements appears within a 'classification'
element.

symmetric optional Generate the same hash for frames with swapped source and destination fields on all
layers. If source is selected, destination must also be selected, and vice versa.

8.2.6.12.6.2 key Example

<key shift="16">
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
</key>

8.2.6.12.7 The fieldref element
The 'fieldref' element refers to a protocol header field by its name.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 599

The Standard Protocol file contains the names of the available protocols and their fields. This file is named hxs_pdl_v3.xml and
is in the directory /etc/fmc/config/.

8.2.6.12.7.1 fieldref Attribute Definitions

Table 118. fieldref Attribute Definitions

Attribute Requirement Description

name required The referenced field name.

The field's name should be provided in the form of "protocolname.fieldname".

8.2.6.12.7.2 fieldref Example

<key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
</key>

8.2.6.12.8 The queue element
The 'queue' element defines the number of queues (default is one) and the base value for the FQIDs for these queues.

When used within a 'distribution' element, the 'queue' element defines a range of queues over which to evenly distribute frames.

When used within other elements, such as a 'classification' element, the 'queue' element defines the single queue on which to
place a frame.

8.2.6.12.8.1 queue Attribute Definitions

Table 119. queue Attribute Definitions

Attribute Requirement Description

base required The base frame queue ID value.

count optional This attribute is only relevant only when a 'queue' element appears within a 'distribution'
element. In this case, the 'count' attribute defines the number of frame queues over
which to distribute frames.

Valid values for 'count' are powers of 2. The default value is 1.

8.2.6.12.8.2 queue Example

<distribution name="eth_dist">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
</distribution>

8.2.6.12.9 The protocols and protocolref elements
The 'protocols' and 'protocolref' elements are used together to extend a 'distribution' element's frame match conditions.

As explained in the 'dist_order' description, a distribution is chosen based on the set of protocols specified in its 'key' element.
The 'protocols' and 'protocolref' elements let you extend this set of protocols beyond those listed in the 'key' element.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
600 NXP Semiconductors

8.2.6.12.9.1 protocols and protocolref Attribute Definitions

Table 120. protocols and protocolref Attribute Definitions

Attribute Requirement Description

name required The name of the protocol.

opt optional Applicable only for protocolref attribute

Use it in a scheme for detecting protocols with the chosen options (e.g. to detect
ETHERNET with BROADCAST or MULTICAST option)

Table 2 contains all possible values. The values are grouped, each group being
separated by a blank row. Values from different groups can be ORed

Table 121. Protocol options. Groups are separated by empty rows.

Value Description

0x800000
00

Ethernet Broadcast

0x400000
00

Ethernet Multicast

0x200000
00

Stacked VLAN

0x100000
00

Stacked MPLS

0x080000
00

IPv4 Broadcast

0x040000
00

IPv4 Multicast

0x020000
00

Tunneled IPv4 - Unicast

0x0100000
0

Tunneled IPv4 - Broadcast/Multicast

0x000000
08

IPV4 reassembly option. When using this option, the IPV4 Reassembly manipulation requires network environment
with IPV4 header

0x008000
00

IPv6 Multicast

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 601

Table 121. Protocol options. Groups are separated by empty rows. (continued)

Value Description

0x004000
00

Tunneled IPv6 - Unicast

0x002000
00

Tunneled IPv6 - Multicast

0x000000
04

IPV6 reassembly option. When using this option, the IPV6 Reassembly manipulation requires network environment
with IPV6 header.In case where fragment found, the fragment-extension offset may be found at 'shim2' (in parser-
result).

0x000000
08

CAPWAP reassembly option. When using this option, the CAPWAP Reassembly manipulation requires network
environment with CAPWAP header. In case where fragment found, the fragment-extension offset may be found at
'shim2' (in parser-result).

8.2.6.12.9.2 protocols and protocolref Example

<!-- The example demonstrates the case in which -->
<!-- frame queue ID calculation is done using Ethernet header fields, -->
<!-- but the condition for matching a frame to this distribution is -->
<!-- extended by also requiring the presence of a UDP protocol header -->
<distribution name="eth_dist">
 <protocols>
 <protocolref name="udp" opt="0x00000008"/>
 </protocols>

 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
</distribution>

8.2.6.12.10 The combine element
The 'combine' element (like the 'key' element) is used in a 'distribution' element's frame queue ID calculation. The value built by
the 'key' element is hashed, but the value of the 'combine' element is directly bitwised OR'd with the previous 24-bit FQID
result.

A single 'combine' element identifies just one byte to retrieve and OR. To work around this limitation, you can have multiple
'combine' elements in a 'distribution' element.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
602 NXP Semiconductors

8.2.6.12.10.1 combine Attribute Definitions

Table 122. combine Attribute Definitions

Attribute Requirement Description

portid required (in
absence of
frame attribute)

Valid values: true or false

If true, this attribute indicates that the logical port ID byte specified in the Configuration
file should be retrieved and used in the bitwise OR part of a distribution's FQID
calculation.

Note that portid and frame are mutually exclusive attributes.

frame required (in
absence of
portid attribute)

Valid values: numeric string

This attribute identifies the byte with the frame header to extract and use in the bitwise
OR part of the FQID calculation. The attribute's value indicates the bit offset from the
beginning of the frame. The specified value must be divisible by 8, so it references the
first bit of a byte.

Note that portid and frame are mutually exclusive attributes.

offset optional This attribute controls the placement of the extracted data in the result Frame Queue
ID. The offset starts at the FQID's most significant bit.

mask optional This attribute defines valid bits in the retrieved value. The extracted value is bitwise
ANDed with the mask prior to being ORed with the previous Frame Queue ID value.

8.2.6.12.10.2 combine Example

<distribution name="eth_dist">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
 <combine portid="true" offset="10" mask="0xFF"/>
 <combine frame="64" offset="2" mask="0xFF"/>
 <action type="classification" name="eth_dest_clsf"/>
</distribution>

8.2.6.12.11 The action element (for use in a policy file)
The 'action' element permits you to establish a topological parse, classify, police, distribute configuration by defining the next
processing element within a distribution, classification, or policer profile.

If there is no 'action' element within a distribution, classification, or policer profile, the default behavior is the completion of PCD
frame processing, allowing the frame to leave the Frame Manager. Some hardware restrictions apply in the choice of the next
processing element.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 603

8.2.6.12.11.1 action Attribute Definitions

Table 123. action Attribute Definitions

Attribute Requirement Description

type required The type of the 'action' element defines the next processing element.

Valid values are:

• "distribution"

• "classification"

• "policer"

• "drop" (Permitted only when the 'action' element is inside a 'policer' element.)

name required The name of the element of the type defined in the 'type' attribute. This attribute is
not relevant if type is "drop".

condition required (when used
within a 'policer' element)
optional (when used
within a 'distribution' or
'classification' element)

This attribute defines the condition under which the 'action' is to be taken. This
attribute is only relevant when used inside a 'policer' or a 'classification' element.

Valid values are:

• "on-green"

• "on-yellow"

• "on-red"

• "on-miss"

8.2.6.12.11.2 Statistics
Attribute 'statistics' for action element of the classification and classification entries. This tells if statistics are made on that entry
or on the on-miss.

Table 124. 'statistics' Element Attributes:

Attribute Requirement Description

statistics optional Enable statistics for a particular action. Possible values
are:

• enable/yes/true – to enable it.

• disable

8.2.6.12.11.3 action Example

<distribution name="special_dist">
 <queue count="1" base="0xABCD"/>
 <action type="policer" name="policer2"/>
</distribution>

<policer name="policer2">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>1000000</CIR>
 <EIR>1400000</EIR>
 <CBS>1000000</CBS>
 <EBS>1400000</EBS>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
604 NXP Semiconductors

 <unit>packet</unit>
 <action condition="on-green" type="distribution" name="special2_dist"/>
 <action condition="on-yellow" type="drop"/>
 <action condition="on-red" type="drop"/>
</policer>

8.2.6.12.12 The classification element
The 'classification' element allows exact match frame processing.

A classification starts with a 'classification' element, which is a container for these child elements:

• A 'key' element that defines the header fields (in protocol.field form) to use in the exact match operation

• One or more 'entry' elements, each of which defines a value to which the specified fields are compared and a 'queue'
and/or 'action' element that defines what to do with the frame upon a match

• An optional 'action' element that defines the default action to take if none of the exact match conditions is met

8.2.6.12.12.1 classification Attribute Definitions

Table 125. classification Attribute Definitions

Attribute Requirement Description

name required The name of the classification

8.2.6.12.12.2 classification Statistics
The statistics are enabled on the Classification element. The parameters to setup the statistics are: - the attribute statistics of
the element classification, the attribute statistics of the actions on entries/on-miss and the element framelength with attributes
index and value.

Attribute ‘statistics’ for classification – this specifies the type of statistic used in the entire classification

Table 126. 'statistics' Element Attributes:

Attribute Requirement Description

statistics optional Choose statistic mode for the particular entry. Possible
values are:

• none

• frame

• byteframe

• rmon

8.2.6.12.12.3 classification Example

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>

 <entry>
 <data>0x1234567890AB1234567890AB</data>
 <queue base="0x550000"/>
 </entry>

 <entry>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 605

 <data>0xFFFFFFFFFFFFFFFFFFFFFFFF</data>
 <action type="classification" name="eth_dest_2_clsf"/>
 </entry>

 <action condition="on-miss" type="distribution" name="default_dist"/>
</classification>

8.2.6.12.12.4 Frame Replicators
The element replicator is implemented in FMC as a standalone entity.

This element can follow a Classification in the flow, as a target for one of the actions of the entries or on the on-miss. It is similar
to Classification but it has no data/mask in entries, on-miss action and key element.

Table 127. 'fragmentation' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the
frame replicator.

max optional The maximum number of entries the frame replicator
can have (default and minimum is 2). If the value
entered is smaller than 2 or the attribute is not set, the
value is set to 2.

The element entry has the same syntax as the element classification, but the data and mask are not needed and thus are
ignored. The action targets of the entry are restricted to:

• policer

• enqueue

• direct distribution

replicator example:

 <replicator name="frep_1" max="32">
 <entry>
 <action type="policer" name="policer_1"/>
 </entry>
 <entry>
 <queue base="0x0"/>
 <action type="distribution" name="dist_1"/>
 </entry>
 <entry>
 <queue base="0x220"/>
 <vsp name=”vsp01”>
 </entry>
 <entry>
 <queue base="0x240"/>
 <vsp base=”2”>
 </entry>
 </replicator>

Using the frame replicator in an action:

 <classification name="class_1" max="0" masks="yes">
 <key>
 <fieldref name="ethernet.type"/>
 </key>
 <entry>
 <data>0x8870</data>
 <queue base="0x01"/>
 <action type="replicator" name="frep_1"/>
 </entry>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
606 NXP Semiconductors

 <action condition="on-miss" type="replicator" name="frep_1"/>
 </classification>

8.2.6.12.12.5 framelength Statistics
Element framelength attributes (there can be up to 10 values set, in ascending order and last one must be 0xFFFF). The element
framelength is valid only for RMON statistics.

Table 128. 'framelength' Element Attributes:

Attribute Requirement Description

statistics required The index for the frame length value specified. Possible
values are from 0 to 9.

value required The value to be added at the specified index. Maximum
value is 0xFFFF and must be added at index 9. (FMC
sets it initially by default).

8.2.6.12.12.6 Statistics Example
Statistics Example

<!-- Coarse classification -->
 <classification name="classif_1" max="32" masks="yes" statistics="rmon">
 <!-- Key value to be extracted from the packet -->
 <key>
 <fieldref name="ipv4.dst"/>
 </key>

 <framelength index="0" value="0x1100"/>
 <framelength index="1" value="0x1200"/>
 <framelength index="2" value="0x1300"/>
 <framelength index="3" value="0x1400"/>
 <framelength index="4" value="0x1500"/>
 <framelength index="5" value="0x1600"/>
 <framelength index="6" value="0x1700"/>
 <framelength index="7" value="0x1800"/>
 <framelength index="8" value="0x1900"/>
 <framelength index="9" value="0xFFFF"/>

 <!-- Entries in the lookup table -->
 <entry>
 <!-- 192.168.10.10 -->
 <data>0xC0A80A0A</data>
 <queue base="0x1010"/>
 <action statistics="enable"/>
 </entry>
 </classification>

8.2.6.12.12.7 Coarse Classification Resource Reservation
FMD API changes allow pre-allocation of MURAM memory for classification tables. This will be reflected in NetPCD XML syntax
extension by introducing attibutes max and masks of the element classification as shown in the example below. In addition, to
allow proper order of PCD elements initialization, and for the condition that not all entry elements are known at initialization time,
the XML element may-use is introduced:

 <!-- Coarse classification -->
 <classification name="classif_1" max="32" masks="yes" statistics="mode">
 <!-- Key value to be extracted from the packet -->
 <key>
 <fieldref name="ipv4.dst"/>
 </key>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 607

 <may-use>
 <action type="classification" name="fman_test_classif_1"/>
 <action type="distribution" name="default_dist"/>
 </may-use>

 <!-- Entries in the lookup table -->
 <entry>
 <!-- 192.168.10.10 -->
 <data>0xC0A80A0A</data>
 <queue base="0x1010"/>
 </entry>
 </classification>

Resource Allocation Attributes:

Table 129. Resource Reservation Attributes:

Attribute Requirement Description

max optional If it exists, this parameter defines the maximum number of coarse
classification entries allocated for this PCD element.

The element classification may still contain pre-

initialized entries, or, alternatively, be empty.

 NOTE

For the case of empty or partially initialized element

classification, usage of the element may-use might

be required .

 NOTE

masks optional If provided, indicates that MURAM allocation should be done with the
assumption that additional memory is required for an elements’ masks.
Possible values are:

• no – don’t allocate memory for masks (default)

• yes – allocate memory for masks.

'may-use Element Description:

Table 130. 'may-use' Element Attributes:

Attribute Requirement Description

may-use optional Contains list of ‘action’ elements that may appear in the ‘classification’
entries or, be applied dynamically after partial initial configuration.

Attention: the use of this element is required if initial

‘classification’ is empty and dynamic entries, added

through FMD API, use those PCD entities

 NOTE

8.2.6.12.13 The entry element
The 'entry' element defines:

• the value to use in an exact match comparison with the fields specified by the 'key' element in a classification

• the action to be taken upon a match

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
608 NXP Semiconductors

An 'entry' element contains a 'data' element which, in turn, contains a numeric value written in hexadecimal form (that is, with a
"0x" prefix). The data length of this value is determined by length of the set of 'key' fields.

In addition to the 'data' element, each 'entry' element may also contain these elements:

• queue - causes the frame to be placed on the specified queue

• action - passes the frame to the specified element within the Policy file for further processing.

• mask - a value in hexadecimal format that is applied to the data element

8.2.6.12.13.1 entry Attribute Definitions

Table 131. entry Attribute Definitions

Attribute Requirement Description

none n/a n/a

8.2.6.12.13.2 entry Example

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>

 <entry>
 <data>0x1234567890AB1234567890AB</data>
 <queue base="0x550000"/>
 </entry>
</classification>

8.2.6.12.14 The policer element
The 'policer' element is a container whose child elements define a policer profile that performs network bandwidth
management.

8.2.6.12.14.1 policer Attribute Definitions

Table 132. policer Attribute Definitions

Attribute Requirement Description

name required Name of the policer profile.

algorithm required Algorithm used for policing. Valid values: "rfc2698", "rfc4115", pass_through".

color_mode required Color mode used for policing. Valid values: "color_aware", "color_blind".

default_color optional Use when algorithm is "pass_through" and color_mode is "color_blind". In this mode,
the policer re-colors incoming packets with the specified default color.

Valid values: "red", "yellow", "green", or "override".

If the value is override, the next invoked action is that specified for "green".

The default value is "green".

unit required The unit to be used for numeric parameters. Valid values: "packet", "byte".

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 609

Table 132. policer Attribute Definitions (continued)

Attribute Requirement Description

CIR required Committed information rate1

PIR required Peak (or excess) information rate1

CBS required Committed burst size2

PBS required Peak (or excess) burst size2

1. If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/
second.

2. If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.

8.2.6.12.14.2 policer Example

<policer name="policer2">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>1000000</CIR>
 <EIR>1400000</EIR>
 <CBS>1000000</CBS>
 <EBS>1400000</EBS>
 <unit>packet</unit>
 <action condition="on-green" type="distribution" name="default_dist"/>
 <action condition="on-yellow" type="distribution" name="special2_dist"/>
 <action condition="on-red" type="drop"/>
</policer>

8.2.6.12.15 The nonheader element
Use the 'nonheader' element within a 'key' element to select a non-header extraction source.

Note: The 'nonheader' element can appear within a 'classification' element only. Further, the 'nonheader' element cannot be used
at the same time as the 'fieldref' element.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
610 NXP Semiconductors

8.2.6.12.15.1 nonheader Attribute Definitions

Table 133. nonheader Attribute Definitions

Attribute Requirement Description

source required Non-header extraction source

Valid values are:

• "frame_start" - Extract from beginning of frame.

• "key" - Extract from key value built by ‘distribution’ at preceding step (CC only).

• "hash" - Extract from hash value built by ‘distribution’ at preceding step (CC only).

• "parser" - Extract from parse result array.

• "fqid" - Use enqueue FQID as the key value.

• "flowid" - Use dequeue FQID as the key value (CC only)

• "default" - Extract from a default value (distribution only).

• "endofparse" - Extract from the point where parsing had finished (distribution
only).

action Required if
source is "hash",
"flowid" or "key".
In other cases,
this attribute
must not be
used.

The type of action for the extraction

Valid values are:

• "indexed_lookup" (permitted only for "hash" and "flowid" sources). The extracted
value is interpreted as an entry index of classification table

• "exact_match" (permitted only for "key" and "hash" sources). The extracted value
is compared with ‘key’ value of the entry.

offset required Byte offset. Offset of key from start of frame, internal frame context or parse result array.
Refer “Table 8-398. Table Descriptor (Type = 01)” of DPAA Reference Manual for full
description and possible values

size required Size of the key in bytes.

ic_index_mask Optional

(Valid only if
action is
"indexed_lookup
")

Internal context index mask. For the full description and possible values, refer “Table
8-399. Operation Code Description” of DPAA Reference Manual

If the action is “indexed_lookup” and the source is “hash” special checks are done in the drivers on the configured entries and
maximum nuber of entries according to the internal context index mask specified. FMC is adjusting automatically the configured
entries if they don’t match the provided mask: if the entry must be initialized but the user didn’t supplied it a default one is created
and if the entry must be uninitialized it’s deleted by FMC. Also FMC ajdusts the maxim number of entries if it’s not configured as
0.

8.2.6.12.15.2 nonheader Example

<classification name="ptp_condition_class">
 <key>
 <nonheader source="hash" action="indexed_lookup" offset="2" size="2"
ic_index_mask="0x01b0">

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 611

 </key>

 <entry>
 <data>0x13F</data>
 <queue base="0x01"/>
 </entry>
</classification>

8.2.6.12.16 Hash Tables
The element 'hashtable' can be specified inside an element 'key' of a 'classification'. The element 'hashtable' cannot appear in
the same time with either elements 'fieldref' or 'nonheader' in the same 'key'. If the element 'hashtable' is used, the 'classification'
may have no entries as these are supposed to be filled at runtime.

Table 134. 'fragmentation' Element Attributes:

Attribute Requirement Description

mask required Mask that will be used on the hash-result; The number-of-sets for this
hash will be calculated as (2^(number of bits set in 'mask ')); The 4 lower
bits must be cleared.

hashshift optional Byte offset from the beginning of the KeyGen hash result to the 2-bytes to
be used as hash index.(Default 0)

keysize required Size of the exact match keys held by the hash buckets.

Hash table example:

<classification name="classif_1" max="2" statistics="none">
 <key>
 <hashtable mask="0x30" hashshift="0" keysize="24"/>
 </key>
</classification>

8.2.6.12.17 Virtual Storage Profiles Element
The element 'vsp' (Virtual Storage Profile) is implemented in FMC as a standalone entity or can be defined directly in the element
that uses it. The element 'vsp'can be used inside distributions, classification and entries (both classification and replicator). When
used directly in the ‘classification’ element (not in ‘entry’) it counts for the on-miss action. If the 'action' of the 'entry' or on-miss
goes to another 'classification' or 'replicator' the 'vsp' is ignored.

8.2.6.12.17.1 vsp Attributes

Table 135. 'vsp' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the virtual storage
profile inside the elements that are using it.

type optional The type of the VSP. Values:

• direct – (default) the relative profile ID is selected directly by the
‘base’ attribute.

• indirect – the relative profile ID is selected base on the attributes
fqshift, vspoffset, and vspcount can be used only in
distribution.

base required for direct. --

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
612 NXP Semiconductors

Table 135. 'vsp' Element Attributes: (continued)

Attribute Requirement Description

fqshift required for indirect. Shift of KeyGen results without the FQID base.

vspoffset optional for indirect OR of KeyGen results without the FQID base; should indicate the
storage profile offset within the port's storage profiles window.

vspcount optional for indirect Range of profiles starting at base.

8.2.6.12.17.2 vsp Examples
VSP examples (standalone, defined in element, direct/indirect): The action targets of the entry are restricted to:

<vsp name = "storage01" base = "6"/>
<vsp name = "storage02" type = "indirect" fqshift="2" vspoffset="3" vspcount="8"/>
<vsp name = "storage03" type = "direct" base = "7"/>

Usage:

...

<entry>
 <queue base="0x220"/>
 <vsp name=”storage01”>
</entry>

...

<distribution name="dist1">
 ...
 <queue count="8" base="0x230"/>
 <vsp type=”indirect” fqshift=”2” vspoffset=”0” vspcount=”4”/>
 ...
</distribution>

...

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>
...
 <vsp name=”storage03”>
 <action condition="on-miss" type="distribution" name="garbage"/>
</classification>

8.2.6.12.18 Manipulation Parameters
Frame Manager accelerator (FMan) attaches manipulation actions as an extension to ethernet port and coarse classification ‘next
engine’ dispatch activity.

To reflect the frame data processing and manipulation capabilities of the hardware, which are propagated through Frame Manager
Driver (FMD) API, Frame Manager Configuration (FMC) Tool extends the syntax of the NetPCD configuration language by
introducing XML entities described in this document.

Manipulation entities are diverse in their purpose and configuration parameters sets. The same manipulation entity can be referred,
or attached, from/to several port or classification actions. That is why they are separated from their usage into a separate group
called manipulations. At the moment of use, an action refers to the corresponding manipulation entity. For example:

<netpcd>
 <manipulations>
 <reassembly name=”name1”>

 </reassembly>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 613

 <reassembly name=”name2”>

 </reassembly>
 <fragmentation name=”defrag1”>

 </fragmentation>
 </manipulations>

 <classification name=”clsf1”>

 <!-- 192.168.30.30 -->
 <data>0xC0A81E1E</data>
 <fragmentation name=”defrag1”/>

 </classification>

</netpcd>

Formal Definition:

XML element manipulation is a container for all types of manipulation algorithms. Configuration for each algorithm has its own
XML element name.

Currently three manipulations algorithms are available:

1. IP reassembly

2. IP fragmentation

3. header manipulation

Parameters for these entities are described next.

8.2.6.12.18.1 IP Fragmentation
XML element fragmentation is a container for parameters necessary for configuration of the corresponding action modification.
The element, if exists, can be used as a child of element classification.

Attention: If element fragmentation is present together with other ‘action’ of ‘classification’ element, the element fragmentation
is ignored. This is a subject of FMan firmware capabilities and may change in future.

Table 136. 'fragmentation' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the manipulation
algorithm.

Table 137. 'fragmentation' Child Elements:

Attribute Requirement Description

size required IP fragmentation will be executed for frames with length greater than this
value.

dontFragAction optional If an IP packet is larger than MTU and its DF bit is set, then this field will
determine the action to be taken. Possible values are:

• discard - the packet (default action)

• fragment – fragment the packet and continue normal processing

• continue - continue normal processing without fragmenting the
packet

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
614 NXP Semiconductors

Table 137. 'fragmentation' Child Elements: (continued)

Attribute Requirement Description

scratchBpid required for existing HW
platforms, but not for
9164

Absolute buffer pool id according to BM configuration (DPAA 1.0 only)

sgBpid optional Scatter/Gather buffer pool id. If used sgBpidEn will be set to TRUE.

optionsCounterEn optional Enables the counter if the value is set to ‘yes’, ‘true’ or ‘enable’. Disabled
for other values. Default is disabled.

Here is an example of possible IP fragmentation definition:

<manipulations>
 <fragmentation name=”frag1”>
 <size>256</size>
 <dontFragAction>continue</dontFragAction>
 </fragmentation>
</manipulations>

<classification name=”clsf1”>

 <!-- 192.168.30.30 -->
 <data>0xC0A81E1E</data>
 <fragmentation name=”frag1”/>

</classification>

8.2.6.12.18.2 IP Reassembly
XML element reassembly is a container for parameters necessary for configuration of the corresponding action modification.
The element, if it exists, can be used as a child of the element policy.

Attention: Up to 2 additional KeyGen schemes will be constructed when using this manipulation action. Custom protocol shim2
is reserved when element reassembly participates in a configuration.

Table 138. 'reassembly' Element Attributes:

Attribute Requirement Description

Name required Name of the element. The name is used to refer the manipulation
algorithm

Table 139. 'reassembly' Child Elements:

Attribute Requirement Description

sgBpid required Absolute buffer pool id according to BM configuration for scatter-gather
(DPAA 1.0 only)

maxInProcess required Number of frames which can be processed by reassembly at the same
time. It has to be power of 2

dataLiodnOffset optional Offset of LIODN. Default value is 0

dataMemId optional Memory partition ID for data buffers

ipv4minFragSize required Minimum fragmentation size for IPv4

Table continues on the next page...

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 615

Table 139. 'reassembly' Child Elements: (continued)

Attribute Requirement Description

ipv6minFragSize required EMinimum fragmentation size for IPv6. The value must be equal or
higher than 256

timeOutMode optional Expiration delay initialized by Reassembly process. Possible values are:

• frame - limits the time of the reassembly process from the first
fragment to the last (default)

• fragment - limits the time of receiving the fragment

fqidForTimeOutFrames required FQID to assign for frames enqueued during Time Out Process.

numOfFramesPerHash
Entry
(numOfFramesPerHash
Entry1)

required Number of frames per hash entry needed for reassembly process – for
ipv4. Possible values are: numeric values from 1 to 8.

numOfFramesPerHash
Entry2

optional Number of frames per hash entry needed for reassembly process – for
ipv6. Possible values are: numeric values from 1 to 6.

timeoutThreshold required Represents the time interval in microseconds which defines if opened
frame (at least one fragment was processed but not all the fragments)is
found as too old

nonConsistentSpFqid optional Handles the case when other fragments of the frame corresponds to a
different storage profile than the opening fragment. (DPAA >= 1.1 only).
Default is 0

Here is an example of possible IP reassembly definition:

<manipulations>
 <reassembly name=”reasm1”>
 <sgBpid>2</sgBpid>
 <maxInProcess>1024</maxInProcess>
 <timeOutMode>fragment</timeOutMode>
 <fqidForTimeOutFrames>1024</fqidForTimeOutFrames>
 <numOfFramesPerHashEntry>8</numOfFramesPerHashEntry>
 <timeoutThreshold>1000000</timeoutThreshold>
 <ipv4minFragSize>0</ipv4minFragSize>
 <ipv6minFragSize>256</ipv6minFragSize>
 </reassembly>
</manipulations>

<policy name="udp_port">
 <dist_order>
 <distributionref name="custom_dist"/>
 <distributionref name="udp_port_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>

 <reassembly name=”reasm1”/>
</policy>

8.2.6.12.18.3 Header Manipulation
XML element header is a container for parameters necessary for configuration of the corresponding action modification. The
element, if it exists, can be used as parameter to the distribution action going to a classification or inside a classification element
entry.

The XML element header may contain:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
616 NXP Semiconductors

• insert

• remove

• insert_header

• remove_header

• update

• custom

Certain combinations between them are possible, for example you can have a remove and an insert_header in the same
manipulation.

The header manipulation can be used inside the PCD by inserting an element header in the classification entry that specifies
the name of the header manipulation defined in the section manipulations. This makes sense in a entry that goes to a policer,
distribution or PCD done:

 <entry>
 <data>0x9100</data>
 <queue base="0x01"/>
 <action type="policer" name="plcr_01"/>
 <header name="upd_hdr"/>
 </entry>

Table 140. 'header' Element Attributes:

Attribute Requirement Description

name required Name of the element. The name is used to refer the manipulation
algorithm

parse optional Activate the parser a second time after completing the manipulation of
the frame (if ‘yes’)

duplicate optional Will duplicate the header manipulation with the same setting a the
specified number of times. The names of the nodes will have “_x” added
at the end where x is the index of the node. For example <header
name=”upd_ipv4” duplicate=”3”> will create the nodes: upd_ipv4_1,
upd_ipv4_2 and upd_ipv4_3. This is only a simple tool to duplicate a
header manipulation, it does not allow defining chaining between the
elements created by duplication.

8.2.6.12.18.3.1 Header Manipulation - Insert
XML element insert is a container for parameters necessary to configure a header insert manipulation operation. The element,
if it exists, can be used as a child of element header. There can be only one element insert in a header manipulation.

Table 141. 'insert' Child Elements:

Element Requirement Description

size required Size of inserted section

offset required Offset from beginning of header to the start location of the insertion.

replace optional If provided, specifies to override (replace) existing data at 'offset' (if ‘yes’),
‘no’ to insert. Possible values:

• no - insert (default)

• yes - replace

data required Data to insert

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 617

8.2.6.12.18.3.2 Header Manipulation - Remove
XML element remove is a container for parameters necessary to configure a header remove manipulation operation. The element,
if it exists can be used as a child of element header. There can only be one element remove in a header manipulation.

Table 142. 'remove' Child Elements:

Element Requirement Description

size required Size of removed section

offset required Offset from beginning of header to the start location of the removal.

8.2.6.12.18.3.3 Header Manipulation - Insert-Header
XML element insert_header is a container for parameters necessary to configure a header insert manipulation operation of an
entire header (different than generic element insert). The element insert_header ,if it exists, can be used as a child of element
header. With some restrictions, there can be more than one element insert_header in one header manipulation

Table 143. 'insert_header' Element Attributes

Element Requirement Description

type required The type of the header inserted. Only ‘mpls’ is valid at this time.

header_index optional The header index of the header has possible values "1" and "2". The
restrictions on this attribute are:

• if the value is ‘2’ an ‘insert_header’ with ‘header_index’ 1 must be
present in the header manipulation.

• a value of header_index can be used only once per header
manipulation

Table 144. 'insert_header' Child Elements

Element Requirement Description

data optional The data of the header to be inserted.

replace optional If provided, specifies to override (replace) existing data (if ‘yes’), ‘no’ to
insert.

insert_header example:

<header name="insert_2_l2">
 <insert_header type="mpls" header_index="1">
 <data>0x00000048</data>
 </insert_header>
 <insert_header type="mpls" header_index="2">
 <data>0x00000048</data>
 </insert_header>
</header>

8.2.6.12.18.3.4 Header Manipulation - Remove_Header
XML element remove_header is a container for parameters necessary to configure a header remove manipulation operation of
an entire header (different then element remove that is a generic one). The element, if it exists, can be used as a child of element
header'. There can be only one instance of element remove_header in a manipulation and it cannot appear in the same time
with the generic remove.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
618 NXP Semiconductors

Table 145. 'remove_header' Child Elements

Element Requirement Description

type required The type of the header remove. Possible values:

• "qtags"

• "mpls"

• "ethmpls (or "ethernet_mpls")

• "eth" (or "ethernet")

remove_header example:

<header name="remove_l2">
 <remove_header type="qtags/>
</header>

8.2.6.12.18.3.5 Header Manipulation - Update
XML element update is a container for parameters necessary to configure a header update manipulation. The element if exists
can be used as a child of element header. There can be only one update in a header manipulation.

update Element Attributes:

Table 146. 'remove_header' Child Elements

Element Requirement Description

type required The type of the update. Possible values:

• "vlan"

• "ipv4"

• "ipv6"

• "tcpudp"

update Child Elements:

Table 147. 'remove_header' Child Elements

Element Requirement Description

field required Specifies the field to be updated. There must be atleast one inside an
update. For some types of updates the field element can appear multiple
times.

Field Element Attributes:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 619

Table 148. 'remove_header' Child Elements

Element Requirement Description

type required The type of the header remove. Possible values:

• for 'vlan'

— dscp - DSCP to VLAN priority bits translation.

— vpri - Replace VPri of outer most VLAN tag .

• for 'ipv4'

— tos - update TOS with the given value.

— id - update IP ID with the new 16 bit given value.

— ttl - Decrement TTL by 1.

— src - update IP source address with the given value.

— dst - update IP destination address with the given value.

• for 'ipv6'

— tc - update Traffic Class address with the given value.

— hl - Decrement Hop Limit by 1.

— src - update IP source address with the given value.

— dst - update IP destination address with the given value.

• for 'tcpudp'

— checksum - update TCP/UDP checksum.

— src - update TCP/UDP source address with the given value.

— dst - update TCP/UDP destination address with the given value.

value optional The value used for the update. It is not valid for:

• hl

• ttl

• checksum

fill optional Only valid for dscp - fills the entire array with the given value. The fill is
performed before the other dscp operations.

index optional Only valid for dscp. Speciefies the index in the array where that value is
set. The index starts from 0.

'update' Example:

<header name="upd_checksum">
 <update type = "tcpudp">
 <field type="checksum"/>
 </update>
</header>

<header name="upd_ipv4src">
 <update type = "ipv4">
 <field type="src" value="0xC0A80101"/>
 </update>
</header>

<header name="upd_vpri">

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
620 NXP Semiconductors

 <update type = "vlan">
 <field type="dscp" fill="yes" value="4"/>
 <field type="dscp" index="20" value="2"/>
 <!--...-->
 <field type="dscp" index="30" value="2"/>
 </update>
</header>

8.2.6.12.18.3.6 Header Manipulation - Custom
XML element custom is a container for parameters necessary to configure custom header manipulation. The custom header
manipulation supported by the drivers is now custom IP replace, and allows changing between ipv4 and ipv6.

'custom' Element Attributes

Table 149. 'custom' Element Attributes:

Element Requirement Description

type required The type of the custom header manipulation. Possible values are:

• “ipv4byipv6” (or just “ipv4”) – Replaces ipv4 by ipv6.

• -“ipv6byipv4” (or just “ipv6”) – Replaces ipv6 by ipv4.

'custom' Child Elements

Table 150. nextmanip Element Attributes:

Element Requirement Description

size required Size of the header to be inserted. (max is 256)

data required The header data to be inserted.

decttl optional Decrement TTL by 1 (ipv4). Possible values:

• "yes"

• "no"

dechl optional Decrement Hop Limit by 1 (ipv6). Possible values:

• "yes"

• "no"

ip (or 'ipid') optional 16 bit New IP ID (ipv4)

'custom' Example:

<header name="custom_ex">
 <custom type="ipv6byipv4">
 <decttl>yes</decttl>
 <id>1</id>
 <size>0x20</size>
 <data>0x4500000012340000000100001011121314151617</data>
 </custom>
</header>

8.2.6.12.18.3.7 Header Manipulation - Nextmanip
XML element nextmanip Can be used to setup cascading header manipulations. It relates to the header manipulation element
and not sub-elements (insert, remove and update).

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 621

Table 151. Nextmanip element attributes

Element Requirement Description

name required The name of the next header manipulation

8.2.6.12.18.3.8 Header Manipulation - Example
Here is a general example of possible header manipulation definition:

<manipulations>
 <header name=”ins_rmv” parse=”yes”>
 <insert>
 <size>14</size>
 <offset>0</offset>
 <data>0x0102030405061112131415168100</data>
 </insert>
 <remove>
 <size>14</size>
 <offset>0</offset>
 </remove>
 </header>

 <header name="vpri_update">
 <update type="vlan">
 <field type="vpri" fill="yes" value="0"/>
 </update>
 </header>

 <header name=”ins_vlan” parse=”no”>
 <insert>
 <size>4</size>
 <offset>12</offset>
 <data>0x81004416</data>
 </insert>
 <nextmanip name="vpri_update"/>
 </header>
</manipulations>

<classification name="clsf_1" max="0" masks="yes" statistics="none">
 <key>
 <fieldref name="ethernet.type”/>
 </key>
 <entry>
 <data>0x8847</data>
 <queue base="0x01"/>
 <action type="policer" name="plcr_1"/>
 <header name="ins_vlan"/>
 </entry>
 <entry>
 <data>0x8848</data>
 <queue base="0x02"/>
 <header name="ins_rmv"/>
 </entry>
</classification>

8.2.6.13 Standard Protocol File - Excerpt
The SDK includes a file called the Standard Protocol file. This file uses the NetPDL (Network Protocol Description Language)
XML dialect to define the fields in each standard protocol header that the FMan can parse with its Hard Parser. In addition, for
each protocol, the NetPDL statement define the actions the Hard Parser should take upon encountering this protocol header in
the frame window.

For this reason, the SDK includes a copy of the Standard Protocol file here: /etc/fmc/config/hxs_pdl_v3.xml. In addition, to give
you an idea what the file is like, a small portion is shown below.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
622 NXP Semiconductors

<?xml version="1.0" encoding="utf-8"?>
<netpdl name="nbee.org NetPDL Database"
 version="0.2" creator="nbee.org" date="28-05-2008">
<!-- This file is for reference only. -->
<!-- It describes the protocols and fields supported by the FMan's Hard Parser-->

<!--
NetPDL description of the Ethernet Protocol
-->
<protocol name="ethernet" longname="Ethernet 802.3"
 comment="Ethernet DIX has been included in 802.3" showsumtemplate="ethernet">

 <execute-code>
 <!-- If we're on Ethernet IEEE 802.3, update the packet length -->
 <after when="buf2int(type) le 1500">
 <assign-variable name="$packetlength" value="buf2int(type) + 14"/>
 <!-- 14 is the size of the ethernet header -->
 </after>
 </execute-code>

 <format>
 <fields>
 <field type="fixed" name="dst" longname="MAC Destination" size="6"
 showtemplate="MACaddressEth"/>
 <field type="fixed" name="src" longname="MAC Source" size="6"
 showtemplate="MACaddressEth"/>
 <field type="fixed" name="type" longname="Ethertype - Length" size="2"
 </fields>
 </format>

 <encapsulation>
 <!-- We have four possible encapsulations for IPX:
 - Ethernet version II
 ==> type= 0x8137
 - Novell-specific framing (raw 802.3)
 ==> directly in Ethernet; check that IPX checksum is == 0xFFFF
 - Ethernet 802.3/802.2 without SNAP
 ==> directly in SNAP; check that IPX checksum is == 0xFFFF (after SNAP hdr)
 - Ethernet 802.3/802.2 with SNAP
 ==> type= 0x8137 (in SNAP)
 See the "IPX Ethernet and FDDI Encapsulation Methods" Cisco doc, at:
 http://www.cisco.com/en/US/tech/tk389/tk224/
 technologies_q_and_a_item09186a0080093d2e.shtml
 -->
 <if expr="buf2int($packet[$currentoffset:2]) == 0xFFFF">
 <if-true>
 <nextproto proto="#ipx"/>
 </if-true>
 </if>
 <switch expr="buf2int(type)">
 <case value="0" maxvalue="1500"> <nextproto proto="#llc"/> </case>
 <case value="0x800"> <nextproto proto="#ip"/> </case>
 <case value="0x806"> <nextproto proto="#arp"/> </case>
 <case value="0x8863"> <nextproto proto="#pppoed"/> </case>
 <case value="0x8864"> <nextproto proto="#pppoe"/> </case>
 <case value="0x86DD"> <nextproto proto="#ipv6"/> </case>
 <case value="0x8100"> <nextproto proto="#vlan"/> </case>
 <case value="0x8137"> <nextproto proto="#ipx"/> </case>
 <case value="0x81FD"> <nextproto proto="#ismp"/> </case>
 <case value="0x8847" comment="mpls-unicast">
 <nextproto proto="#mpls"/>
 </case>
 <case value="0x8848" comment="mpls-multicast">
 <nextproto proto="#mpls"/>
 </case>
 </switch>
 </encapsulation>

 <visualization>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 623

 <showsumtemplate name="ethernet">
 <section name="next"/>
 <text value="Eth: "/>
 <protofield name="src" showdata="showvalue"/>
 <text value=" => "/>
 <protofield name="dst" showdata="showvalue"/>
 </showsumtemplate>
 </visualization>

</protocol> <!-- End Ethernet protocol definition -->

<!--
NetPDL description of the VLAN Protocol
-->
<protocol name="vlan" longname="Virtual LAN (802.3ac)" showsumtemplate="vlan">
 <format>
 <fields>
 <block name="vlan" size="2" longname="Tag Control Information">
 <field type="bit" name="pri" longname="User Priority"
 mask="0xE000" size="2" showtemplate="FieldHex"/>
 <field type="bit" name="cfi" longname="CFI"
 mask="0x1000" size="2" showtemplate="FieldDec"/>
 <field type="bit" name="vlanid" longname="VLAN ID"
 mask="0x0FFF" size="2" showtemplate="FieldDec"/>
 </block>
 <field type="fixed" name="type" longname="Ethertype - Length"
 size="2" showtemplate="eth.typelength"/>
 </fields>
 </format>

 <encapsulation>
 <switch expr="buf2int(type)">
 <case value="0" maxvalue="1500"> <nextproto proto="#llc"/> </case>
 <case value="0x800"> <nextproto proto="#ip"/> </case>
 <case value="0x806"> <nextproto proto="#arp"/> </case>
 <case value="0x8863"> <nextproto proto="#pppoed"/> </case>
 <case value="0x8864"> <nextproto proto="#pppoe"/> </case>
 <case value="0x86DD"> <nextproto proto="#ipv6"/> </case>
 </switch>
 </encapsulation>

 <visualization>
 <showsumtemplate name="vlan">
 <text value=" (VLAN-ID "/>
 <protofield name="vlanid" showdata="showvalue"/>
 <text value=")"/>
 </showsumtemplate>
 </visualization>

</protocol> <!-- End VLAN protocol definition -->

<!- snip - code removed ... -->

<!--
NetPDL description of the IPv6 Protocol
-->
<protocol name="ipv6" longname="IPv6 (Internet Protocol version 6)
 showsumtemplate="ipv6">
 <!-- We should check that 'version' is equal to '6' -->
 <execute-code>
 <after>
 <!-- Store ipsrc and ipdst in a couple of variables for the sake of speed -->
 <!-- Hids differences between IPv4 and IPv6 for session tracking -->
 <assign-variable name="$ipsrc" value="src"/>
 <assign-variable name="$ipdst" value="dst"/>
 <if expr="$ipsrc lt $ipdst" >
 <if-true>
 <assign-variable name="$firstip" value="src"/>
 <assign-variable name="$secondip" value="dst"/>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
624 NXP Semiconductors

 </if-true>
 <if-false>
 <assign-variable name="$firstip" value="dst"/>
 <assign-variable name="$secondip" value="src"/>
 </if-false>
 </if>
 </after>
 </execute-code>

 <format>
 <fields>
 <field type="bit" name="ver" longname="Version"
 mask="0xF0000000" size="4" showtemplate="FieldDec"/>
 <field type="bit" name="tos" longname="Type of service"
 mask="0x0F000000" size="4" showtemplate="FieldHex"/>
 <field type="bit" name="flabel" longname="Flow label"
 mask="0x00FFFFFF" size="4" showtemplate="FieldHex"/>
 <field type="fixed" name="plen" longname="Payload Length"
 size="2" showtemplate="FieldDec"/>
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="hop" longname="Hop limit"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="src" longname="Source address"
 size="16" showtemplate="ip6addr"/>
 <field type="fixed" name="dst" longname="Destination address"
 size="16" showtemplate="ip6addr"/>

 <loop type="while" expr="1">
 <!-- Loop until we find a 'break' -->
 <switch expr="buf2int(nexthdr)">
 <case value="0">
 <includeblk name="HBH"/>
 </case>
 <case value="43">
 <includeblk name="RH"/>
 </case>
 <case value="44">
 <includeblk name="FH"/>
 </case>
 <case value="51">
 <includeblk name="AH"/>
 </case>
 <case value="60">
 <includeblk name="DOH"/>
 </case>
 <default>
 <loopctrl type="break"/>
 </default>
 </switch>
 </loop>
 </fields>

 <block name="HBH" longname="Hop By Hop Option">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="helen"
 longname="Length (multiple of 8 bytes, not including first 8)"
 size="1" showtemplate="ipv6.hbhlen"/>
 <loop type="size" expr="(buf2int(helen) * 8) + 6">
 <!-- '6' because the first two bytes are nexthdr and helen -->
 <includeblk name="Option"/>
 </loop>
 </block>

 <block name="FH" longname="Fragment Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="reserved"

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 625

 longname="Reserved (multiple of 8 bytes)"
 comment="This is in multiple of 8 bytes"
 size="1" showtemplate="FieldDec"/>
 <field type="bit" name="fragment offset" longname="Fragment Offset"
 mask="0xFFF0" size="2" showtemplate="FieldDec"/>
 <field type="bit" name="res" longname="Res"
 mask="0x0004" size="2" showtemplate="FieldHex"/>
 <field type="bit" name="m" longname="M"
 mask="0x0001" size="2" showtemplate="FieldBin"/>
 <field type="fixed" name="identification"
 longname="Identification" size="4" showtemplate="FieldDec"/>
 </block>

 <block name="AH" longname="Authentication Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="payload len" longname="Payload Len"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="reserved" longname="Reserved"
 size="2" showtemplate="FieldDec"/>
 <field type="fixed" name="spi" longname="Security Parameters Index"
 size="4" showtemplate="FieldDec"/>
 <field type="fixed" name="snf" longname="Sequence Number Field"
 size="4" showtemplate="FieldDec"/>
 </block>

 <block name="DOH" longname="Destination Option Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="helen"
 longname="Length (multiple of 8 bytes, not including first 8)"
 size="1" showtemplate="ipv6.hbhlen"/>
 <loop type="size" expr="(buf2int(helen) * 8)+6">
 <!-- '6' because the first two bytes are nexthdr and helen -->
 <includeblk name="Option"/>
 </loop>
 </block>

 <block name="RH" longname="Routing Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="hlen"
 longname="Length (multiple of 8 bytes)"
 comment="This is in multiple of 8 bytes"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="rtype" longname="Routing Type"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="segment left" longname="Segment Left"
 size="1" showtemplate="FieldDec"/>
 <field type="variable" name="tsd" longname="Type Specific Data"
 expr="buf2int(hlen)" showtemplate="Field4BytesHex"/>
 </block>

 <block name="Option" longname="Option">
 <field type="fixed" name="opttype" longname="Option Type"
 size="1" showtemplate="ipv6.opttype">
 <field type="bit" name="act"
 longname="Action (action if Option Type is unrecognized)" mask="0xC0"
 size="1" showtemplate="ipv6.optact"/>
 <field type="bit" name="chg"
 longname="Change(whether or not option data can change while packet en-route)"
 mask="0x20" size="1" showtemplate="ipv6.optchg"/>
 <field type="bit" name="res" longname="Option Code" mask="0x1F"
 size="1" showtemplate="FieldDec"/>
 </field>

 <switch expr="buf2int(opttype)">
 <case value="0">
 <!-- No fields are present if the option is not 'Pad1'-->

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
626 NXP Semiconductors

 </case>
 <case value="5"><!-- Router Alert -->
 <field type="fixed" name="optlen" longname="Option Length"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="value" size="2" longname="Option Value"
 showtemplate="ipv6.optroutalert"/>
 </case>
 <default>
 <field type="fixed" name="optlen" longname="Option Length"
 size="1" showtemplate="FieldDec"/>
 <field type="variable" name="optval" longname="Option Value"
 expr="buf2int(optlen)" showtemplate="Field4BytesHex"/>
 </default>
 </switch>
 </block>
 </format>

 <encapsulation>
 <switch expr="buf2int(nexthdr)">
 <case value="4"> <nextproto proto="#ip"/> </case>
 <case value="6"> <nextproto proto="#tcp"/> </case>
 <case value="17"> <nextproto proto="#udp"/> </case>
 <!-- <case value="29"> <nextproto proto="#TP4"/> </case> -->
 <!-- <case value="45"> <nextproto proto="#IDRP"/> </case> -->
 <case value="50"> <nextproto proto="#ipsec_esp"/> </case>
 <case value="51"> <nextproto proto="#ipsec_ah"/> </case>
 <case value="58"> <nextproto proto="#icmp6"/> </case>
 <case value="89"> <nextproto proto="#ospf6"/> </case>
 <case value="103"> <nextproto proto="#pim6"/> </case>
 </switch>
 </encapsulation>

 <visualization>
 <showtemplate name="ipv6.nexthdr" showtype="dec">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" how="Hop By Hop Option Header"/>
 <case value="43" show="Fragment Header"/>
 <case value="44" show="Authentication Header"/>
 <case value="51" show="Destination Option Header"/>
 <case value="60" show="Routing Header"/>
 <case value="50" show="Encapsulating Security Payload"/>
 <case value="58" show="Internet Control Message Protocol (ICMPv6)"/>
 <case value="59" show="No next Header"/>
 <default show="Upper Layer Header"/>
 </switch>
 </showmap>
 </showtemplate>

 <showtemplate name="ipv6.opttype" showtype="hex">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Pad1 Option"/>
 <case value="1" show="PadN Option"/>
 <case value="5" show="Router Alert Option"/>
 <default show="Error in IPv6 Option Type lookup"/>
 </switch>
 </showmap>
 </showtemplate>

 <showtemplate name="ipv6.optact" showtype="bin">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Skip over option"/>
 <case value="1" show="Discard packet silently"/>
 <case value="2" show="Discard packet-send ICMP"/>
 <case value="3" show="Discard packet-send ICMP if packet was unicast"/>
 <default show="Error in IPv6 Option Action lookup"/>
 </switch>

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 627

 </showmap>
 </showtemplate>

 <showtemplate name="ipv6.optchg" showtype="bin">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Option data does not change en-route"/>
 <case value="1" show="Option data may change en-route"/>
 <default show="Error in IPv6 Option Change lookup"/>
 </switch>
 </showmap>
 </showtemplate>

 <showtemplate name="ipv6.optroutalert" showtype="dec">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Datagram contains Multicast Listener Disc msg"/>
 <case value="1" show="Datagram contains RSVP message"/>
 <case value="2" show="Datagram contains an Active Networks msg"/>
 <default show="Error in IPv6 Router Alert Option lookup"/>
 </switch>
 </showmap>
 </showtemplate>

 <!-- Length of the hop by hop option header -->
 <showtemplate name="ipv6.hbhlen" showtype="dec">
 <showdtl>
 <text expr="(buf2int(this) * 8) + 8"/>
 <text value=" (field value = "/>
 <protofield showdata="showvalue"/>
 <text value=")"/>
 </showdtl>
 </showtemplate>

 <showsumtemplate name="ipv6">
 <if expr="($prevproto == #ip) or ($prevproto == #ipv6) or
 ($prevproto == #ppp) or ($prevproto == #pppoe) or
 ($prevproto == #gre)">
 <if-true>
 <text value=" - "/>
 </if-true>
 <if-false>
 <section name="next"/>
 </if-false>
 </if>

 <text value="IPv6: "/>
 <protofield name="src" showdata="showvalue"/>
 <text value=" => "/>
 <protofield name="dst" showdata="showvalue"/>
 <text value=" (Len " expr="buf2int(plen) + 40"/>
 <text value=")"/>
 </showsumtemplate>
 </visualization>
</protocol> <!-- End IPv6 definition -->

<!- snip - code removed ... -->

</netpdl>
<!-- End of Standard Protocol file -->

8.2.6.14 Custom Protocol File - GTP Protocol Example
The following "GTP_example.xml" file describes the custom GTP protocol.

<?xml version="1.0" encoding="utf-8"?>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
628 NXP Semiconductors

<netpdl name="GTP" description="GTP-U Example">
 <!-- Gtpu program is an extension to the udp hard shell -->
 <protocol name="gtpu" longname="GTP-U" prevproto="udp">
 <!-- fields in GTP header used for validation and calculating length -->
 <format>
 <fields>
 <field type="bit" name="flags" mask="0xE0" size="1" />
 <field type="bit" name="pt" mask="0x80" size="1" />
 <field type="bit" name="version" mask="0x07" size="1" />
 <field type="fixed" name="mtype" size="1" longname="message type"/>
 <field type="fixed" name="length" size="2" />
 <field type="fixed" name="teid" size="4" />
 <field type="fixed" name="snum " size="2" longname="sequence number"/>
 <field type="fixed" name="npdunum" size="1" longname="N-PDU number"/>
 <field type="fixed" name="next" size="1" longname="Next ext header type"/>
 </fields>
 </format>

 <execute-code>
 <!-- Check that UDP port is 2152 -->
 <before confirm="yes">
 <if expr="udp.dport == 2152">
 <if-true>
 </if-true>
 <if-false>
 <!-- Confirms UDP layer and exits-->
 <action type="exit" confirm="yes" advance="no" nextproto="return"/>
 </if-false>
 </if>
 </before>

 <!-- Done after UDP layer is confirmed-->
 <!--Check version and calculate length-->
 <after confirm="no">
 <if expr="version == 1">
 <if-true>
 <assign-variable name="$shimoffset_1" value="$NxtHdrOffset"/>
 </if-true>
 <if-false>
 <assign-variable name="$ShimR" value="0x23"/>
 <action type="exit" confirm="no" confirmcustom="no" nextproto="none"/>
 </if-false>
 </if>

 <if expr="flags != 0">
 <if-true>
 <assign-variable name="$NxtHdrOffset" value="$shimoffset_1+12"/>
 </if-true>
 <if-false>
 <assign-variable name="$NxtHdrOffset" value="$shimoffset_1+8"/>
 </if-false>
 </if>
 <action type="exit" confirm="no" confirmcustom="shim1" nextproto="none"/>
 </after>
 </execute-code>
 </protocol>
</netpdl>

8.2.7 Security Engine (SEC)
SEC Device Driver for DPAA1

Introduction

Current chapter is focused on DPAA1-specific SEC details - Queue Interface (QI) backend and frontend drivers. More information
is provided in chapter Security Engine (SEC) on page 325, including:

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 629

• JRI - the common Job Ring Interface (on which QI is currently dependent)

• crypto algorithms supported by each backend (RI, JRI, QI, DPSECI)

• kernel configuration - how to build backend and frontend drivers

• how to make sure the algorithms registered successfully

• how to check that crypto requests are being offloaded on SEC engine

On SoCs with DPAA v1.x, QI backend can be used to submit crypto API service requests from the frontend drivers. The
corresponding frontend compatible with QI backend is caamalg_qi, which supports symmetric encryption and AEAD
algorithms-based crypto API service requests.

The Linux driver automatically sets the enable bit for the SEC hardware's Queue Interface (QI), depending on QI feature availability
in the hardware. This enables the hardware to also operate as a DPAA component for use by e.g., USDPAA apps. This behaviour
does not conflict with normal in-kernel job ring operation, other than the potential performance-observable effects of internal SEC
hardware resource contention, and vice-versa.

Device Tree binding

There is no device tree node corresponding to SEC DPAA1. A platform device is created dynamically at runtime, as a child of the
crypto node.

Module loading

Both QI backend and frontend drivers can be compiled either built-in or as modules. If compiled as modules, QI backend driver
is (part of) the caam module, while the corresponding frontend driver is the caamalg_qi module.

Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is doing the crypto
by looking for driver messages in dmesg.

The driver emits console message at initialization time:

platform caam_qi: algorithms registered in /proc/crypto

If the message is not present in the logs, either the driver is not configured in the kernel, or no SEC compatible device tree node
is present in the device tree.

Another option is to examine the hardware statistics registers in debugfs.

Incrementing IRQs in /proc/interrupts
Given a time period when crypto requests are being made, the SEC hardware will fire completion notification interrupts on the
corresponding QMan (Queue Manager) portal IRQ:

$ cat /proc/interrupts | grep QMan
 CPU0 CPU1 CPU2 CPU3
[...]
 21: 0 0 0 22 GICv2 214 Level QMan portal 3
 22: 0 0 61 0 GICv2 216 Level QMan portal 2
 23: 0 29 0 0 GICv2 218 Level QMan portal 1
 24: 273 0 0 0 GICv2 220 Level QMan portal 0

If the number of interrupts fired increment, then the hardware is being used to do the crypto.

If the numbers do not increment, then first check the algorithm being exercised is supported by the driver. If the algorithm is
supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and the hardware statistics in debugfs
(inbound / outbound bytes encrypted / protected - see below) should be monitored.

Note: CAAM driver might be sharing the QMan portal with other drivers in the system; meaning that the interrupt counters shown
in /proc/interrupts are for all drivers sharing the portal.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
630 NXP Semiconductors

Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the kernel crypto API:

name : cbc(aes)
driver : cbc-aes-caam-qi
module : kernel
priority : 2000
refcnt : 1
selftest : passed
internal : no
type : givcipher
async : yes
blocksize : 16
min keysize : 16
max keysize : 32
ivsize : 16
geniv : <built-in>

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will emit messages
saying which algorithms weren't tested, and mark them as 'passed' anyway:

[...]
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-aes-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-cbc-aes-
caam-qi)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam-qi)
[...]
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-hmac-sha384-cbc-
des-caam-qi)
alg :No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-hmac-sha512-cbc-
des-caam-qi)
[...]

Supporting Documentation

General SEC information, Job Ring Interface (JRI):Security Engine (SEC) on page 325

DPAA2-specific SEC details - Data Path SEC Interface (DPSECI):Security Engine (SEC)

8.2.8 Decompression Compression Engine (DCE)

Description

The following section describes the DCE software running on the DCE hardware block that is part of the QorIQ family of SoCs.

Linux

The DCE driver software includes a Linux kernel driver. The driver provides a set of kernel level APIs.

The driver includes the following functionality:

DCE Kernel Driver Interface

The DCE kernel driver APIs provide a callback based interface to the DCE. The driver provides APIs to perform either stateless
(chunk) based (de)compression or stateful (stream) based (de)compression. The driver internally co-ordinates commands to the
DCE and corresponding results from the DCE. The chunk interface is meant for inline (de)compression where each DCE operation
is on a complete and independent piece of information. The stream interface is is designed to (de)compress many related pieces
of information (e.g. a file).

DCE FLIB interface

The DCE FLIB interface provides a consistent interface to the CCSR registers, the memory defined DMA structures and to the
dce_flow software object.

DPAA1-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 631

DCE Configuration interface

The DCE configuration interface is an encapsulation of the DCE CCSR register space and the global/error interrupt source. This
is expected to be managed only by (and visible to) a control-plane operating system,

DCE User-space Interface

There is a debugfs interface available for device debugging. No other userspace interface is available. Debugfs provides easy
access to DCE memory map registers space. See the DPAA Reference Manual for the “DCE Individual Register Memory Map”.
e.g.

0x000 DCE_CFG — DCE configuration
0x03C DCE_IDLE— DCE Idle status Register
0x3F8 DCE_IP_REV_1 — DCE IP Block Revision 1 register

Mount debugfs to explore DCE status:

mount -t debugfs none /sys/kernel/debug
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_addr
DCE register offset = 0x0
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_rw
DCE register offset = 0x0
value = 0x00000003 <-DCE configuration, x03= Enable. Block is operational, Frame Queues
are consumed.
root@t4240qds:/dev/shm# echo 0x03c > /sys/kernel/debug/dce/ccsrmem_addr
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_rw
DCE register offset = 0x3c
value = 0x00000001 <- DCE Idle status Register, 1 = idle
root@t4240qds:/dev/shm# echo 0x3f8 > /sys/kernel/debug/dce/ccsrmem_addr
root@t4240qds:/dev/shm# cat /sys/kernel/debug/dce/ccsrmem_rw
DCE register offset = 0x3f8
value = 0x0af00101 <-match default value of “0x0AF0_0101”

Functionality

Configuration

The DCE device is configured via device-tree nodes and by some compile-time options controlled via Linux's Kconfig system.
See the “DCE Kernel Configure Options” section for more info.

Debugfs Interface

The DCE has a debugfs interface available to assist in device debugging. The code can be built either as a loadable module or
statically.

Module Loading

The driver can be statically built or as a dynamically loadable module.

DCE Kernel Configure Options

Common Kernel Configure Options Description

CONFIG_STAGING Required in order to make “staging” drivers such as DCE available.

CONFIG_FSL_DCE Required to build DCE support.

CONFIG_FSL_DCE_CONFIG Compiles in dce device driver support.

CONFIG_FSL_DCE_DEBUGFS Compiles in support for debugfs interface for the DCE.

CONFIG_FSL_DCE_TESTS Compiles DCE test code.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
632 NXP Semiconductors

Compile-time Configuration Options

The "Kernel Configure Options" above describe the compile-time configuration options for the kernel.

Source Files

Linux

Source Files Description

drivers/staging/fsl_dce/fsl_dce_chunk.h The DCE driver APIs for chunk based (de)compression

drivers/staging/fsl_dce/fsl_dce_stream.h The DCE driver APIs for stream based (de)compression

drivers/staging/fsl_dce/flib/*.* The DCE flib interface

drivers/staging/fsl_dce/flib/dce_regs.h The DCE CCSR register macros. Used in conjunction with bitfield_macros.h
macros.

drivers/staging/fsl_dce/flib/dce_defs.h The DCE dma defined memory structures.

drivers/staging/fsl_dce/flib/dce_flow.h Object which defines the transport mechanism with the DCE engine. This
object encompasses the QMan frame queues required to communicate with
the DCE. The chunk and stream object use the flow object as a base.

drivers/staging/fsl_dce/dce_debugfs.* The DCE debugfs interface

drivers/staging/fsl_dce/tests/
performance_simple/*.*

Test which demontrates the DCE throughput performance using single input
files. Refer to local README file for more details.

Build Procedure

The procedure is a standard SDK build.

Test Procedure

Refer to drivers/staging/fsl_dce/tests/performance_simple/README for detailed descriptions of sample DCE throughput
performance test.

Known Bugs, Limitations, or Technical Issues

• The APIs have been tested in the context of the performance test applications.

• It is possible that in future releases additions and or modification to APIs may occur.

8.3 DPAA2-specific Software

8.3.1 DPAA2 Software Overview

8.3.1.1 Introduction
The following section provides an overview of the software and tools for the DPAA2 networking hardware that is provided on NXP
SoCs such as LS2088A and LS1088A. These SoCs are called "DPAA2 SoCs" because they contain the hardware that is required
to support the DPAA2 networking architecture. This hardware includes Queue Manager/Buffer Manager (QBMan), the Wire Rate
I/O Processor (WRIOP), and the Management Complex (MC).

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 633

DPAA2 is an architecture in which some facilities (and thus the hardware that supports them) are optional. For this reason, this
document may describe features that are not available on all DPAA2 SoCs.

DPAA2 in the NXP Layerscape SDK

NXP provides a Linux-based software development kit (SDK) for SoCs. The core of the SDK is an embedded-oriented Linux
distribution containing components such as:

• U-Boot boot loader

• Linux kernel with networking support

• GNU tool chain for ARMv8™

• Large set of standard Linux user space packages including shells, initialization scripts, servers, etc.

• Yocto-based package management in an embedded-style source-based Linux distribution

NXP supports and builds upon standard Linux with drivers and additional packages and capabilities including support for the
DPAA2 networking hardware such as:

• Management complex firmware for the DPAA2 architecture. DPAA2 is a networking peripheral subsystem architecture and
will be discussed at length in later sections.

• Restool: a DPAA2 object management tool

• A DPAA2 Linux Ethernet driver

• Linux kernel support for treating DPAA2 containers as plug-and-play buses with VFIO support

• Integrated kernel-based control of DPAA2 L2 switch objects

• Kernel support for DPAA2 acceleration objects including cryptographic offload

• And more

8.3.1.2 DPAA2 Hardware

8.3.1.2.1 Introduction
This section introduces the DPAA2 hardware components and explains their relationship to the DPAA hardware found on previous
NXP SoCs. Finally, it shows the DPAA2 hardware blocks in the context of a specific SoC, the LS2088Athe LS1088A.

Note that the DPAA2 hardware is configured via DPAA2 objects as will be described below. This section on hardware provides
background information to give context to the discussion of the DPAA2 objects. Most developers will deal with the DPAA2 objects
and not directly with all aspects of the DPAA2 hardware blocks.

8.3.1.2.2 DPAA2 hardware
The DPAA2 hardware provides network interfaces, hardware-based queuing, layer 2 switching, more general switching,
networking-related accelerators, and also memory dedicated to packet processing.

PEB

AIOP

SEC

DCE

PMEMAC

WRIOP

Queue/Buffer Man

MACMAC

Mgmt
Complex

Figure 136. DPAA2 hardware components

The DPAA2 hardware contains the following components:

Management Complex (MC)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
634 NXP Semiconductors

The DPAA2 hardware is abstracted by DPAA2 objects with the help of the Management Complex. This means that users need
not study the details of the DPAA2 hardware blocks in order to develop drivers for or use DPAA2 capabilities. This software and
solution oriented focus is one of the key differences between the first DPAA and DPAA2.

Queue and Buffer Manager (QBMan)

QBMan provides hardware-based buffer and queue management.

WRIOP

WRIOP provides hardware that serves as the basis for network interfaces. It includes Ethernet MACs, packet header key
generators, parsers, table look up units, and an interface to the buffer and queue managers.

Accelerators (optional)

Accelerators that interface to QBMan are a key part of DPAA2. They include a cryptographic and security accelerator (SEC), a
pattern matching accelerator (PME), a data compression/decompression accelerator (DCE), and a generic DMA engine. The set
of accelerators may vary from SoC to SoC and new types of accelerators may be added.

PEB (optional)

PEB is a memory devoted to high-performance packet processing. It can be used to store in-flight packets and other items.

AIOP (optional)

AIOP is a fully programmable multicore engine with tightly coupled hardware accelerators that is specialized for efficient packet
processing. It uses techniques somewhat similar to hardware multithreading to provide multiple "tasks" per core. The hardware
supports efficient task switching to hide latencies associated with using accelerators and other hardware. The AIOP supports C
language programming. It is optional in the DPAA2 architecture and thus is not available on all DPAA2 SoCs.

DPAA2 versus DPAA

DPAA2 is the latest generation of the Datapath Acceleration Architecture (DPAA) hardware. It is an evolution of the DPAA present
in previous SoCs.

DPAA2 changes relative to DPAA include:

• DPAA2 contains a hardware block called the Management Complex. It facilitates and simplifies hardware resource
allocation and hardware configuration.

• The hardware buffer and queue managers (QMan and BMan) are integrated into a single hardware block called QBMan.

• DPAA2 session context can be maintained per frame, rather than per frame queue, which allows multiple accelerator
sessions to share a single frame queue pair. This single frame queue pair then reduces the number of frame queues
needed, making session establishment more efficient because frame queues do not need to be initialized per session.

• Software portals are enhanced to make it easier and more efficient for General Purpose Processing (GPP) core software to
share them.

• WRIOP in DPAA2 replaces FMan as the hardware block that provides Ethernet interfaces. WRIOP is designed to be more
partitionable, in that it allows GPP software to more independently manage separate network interfaces.

• WRIOP and QBMan contain new features that support autonomous L2 switching functionality:

— WRIOP: L2 address learning and forwarding unit.

— QBMan: packet replication facility.

• WRIOP does not contain a generic programmable engine like the one present in FMan, and instead DPAA2 has a new
hardware block called AIOP that is specifically designed to perform this function.

8.3.1.2.3 LS2088A block diagram
The LS2088A is an ARMv8-A 64-bit SoC. It contains eight ARM Cortex-A57 cores and numerous peripherals. The LS2088A is
an example of a DPAA2 SoC because it contains the required DPAA2 hardware blocks: WRIOP, QBMan, and MC.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 635

aabitria
Highlight

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

64-bit DDR4

Cache Coherent Interconnect

SA
TA

 3
.0

System Control

Internal BootROM

Security Fuses

Security Monitor

Power Management

Core Complex

Basic Peripherals and Interconnect

Accelerators and Memory Control

Networking Elements

SA
TA

 3
.0

8-lane 10 GHz SerDes 8-lane 10 GHz SerDes

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

512 KB Coherent L2 Cache

32 KB
D-Cache

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

1 MB Coherent L2 Cache

ARM® A72 Core ARM® A72 Core

1 MB
Platform
Cache

32-bit DDR4
Memory

Controller

Memory
Controller

64-bit DDR4
Memory

Controller

P
C

Ie

P
C

Ie

PC
Ie

 (S
R

-IO
V)

P
C

Ie

SMMU SMMU SMMU

System Interfaces
IFC Flash

QuadSPI Flash

1x SDXC / eMMC

2x DUART

4x I2C

4x FlexTimer

2x USB 3.0 + PHY

 SPI

Service Processor

DCE Security
Engine

4 MB PEB
memory

WRIOP

Queue /
Buffer

Manager

PME

Advanced
IO

Processor
(AIOP)

Management

Complex

DPAA2 Hardware

Layer 2
Switch Assist

8x 1/10G + 8x 1G

9x WDOG

4x GPIO

QDMA

Figure 137. LS2088A SoC

The LS2088A contains standard-ARM components in addition to the cores, such as:

• ARM generic timer

• GIC-500 interrupt controller

• MMU-500 System Memory Management Unit (I/O MMU)

It also contains conventional hardware blocks including:

• DDR controllers

• Flash controller

• SDxC/eMMC controller

• USB controller

• PCIe controller

• SATA controller

• Other blocks visible in the diagram.

Finally, the following DPAA2 components are highlighted in the figure:

• QMan/BMan: hardware queue and buffer management

• WRIOP: Ethernet interfaces

• Management complex: DPAA2 objects and their management

• Accelerators: SEC, PME, and DCE

8.3.1.3 DPAA2 Linux Software

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
636 NXP Semiconductors

8.3.1.3.1 Introduction
This section provides a high-level summary of the most important DPAA2 software associated with the Linux operating system.

8.3.1.3.2 Linux and DPAA2
This section summarizes major Linux DPAA2 software. See Linux DPAA2 software which shows the software in relation to some
standard Linux software.

Switch Integration

user

kernel
Net Stack Crypto API

Eth Driver SEC Driver

DPIO Services

hardware DPAA2 Objects

restool
User Space

Drivers
Virtual

Machine

VFIO
Key

hardware

DPAA2 SW

std SW

PEB

AIOP
(optional)

SEC

DCE

PMEMAC

WRIOP

Queue/Buffer Man

MACMAC

Mgmt
Complex

MC firmware

MC Bus

aiop_tool

Figure 138. Linux DPAA2 software

Ethernet Driver

DPAA2 software includes a conventional Ethernet driver for use by the Linux network stack. This driver is controlled via standard
Linux means such as the "ifconfig" or "ip" commands and also "ethtool". It operates in a manner that will be familiar to Linux users.
Drivers in DPAA2 manage DPAA2 "objects" as will be described below. These objects are best regarded as hardware. They are
formed from hardware resources.

DPIO Services

DPAA2 drivers such as the Ethernet driver in the Linux kernel use the DPIO services Linux component to do I/O. The DPIO
services layer manages the kernel's DPIO objects. DPIO objects contain DPAA2 software portals (which are hardware
components). The software portals can be shared by multiple higher-level drivers.

DPAA2 Objects and Management Complex (MC) Firmware

The DPAA2 hardware is presented to software in terms of DPAA2 objects that are realized by means of firmware running on the
Management Complex. This will be explained in depth in DPAA2 Networking Subsystem Deeper Dive on page 639 and also
immediately below.

MC Bus and Restool

The DPAA2 objects appear as devices on a special software-defined bus called the MC bus. Linux has a driver for this bus (and
interactions with VFIO). This software is analogous to PCIe bus software. Like PCIe, the MC bus supports plug and play.

The "restool" utility is a Linux user space command that allows DPAA2 objects to be managed: created, destroyed, queried for
status, etc.

SEC Driver

The SEC driver provides the standard Linux kernel cryptographic API but implemented by the SEC hardware by means of a
special DPAA2 object. Other accelerators can be handled in the same way, but Linux tends to not provide standard (hardware-
independent) kernel-level APIs for them so they are not discussed here.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 637

Switch Integration

Finally, DPAA2 objects exist that perform L2 and more general network switching. These hardware elements can be configured
using standard Linux mechanisms such as "bridge". As will be discussed later, there are two types of switch-related DPAA2
objects: DPSW and DPDMUX. There is kernel-based management support for both.

AIOP Tool

AIOP Tool (aiop_tool) is a user space command line utility that allows programs (images) to be loaded onto the AIOP and started.
It also supports stopping and resetting the AIOP. Of course, aiop_tool is used only on DPAA2 SoCs that have an AIOP.

It is also possible for user space programs to manage these aspects of AIOP via programmatic means. The aiop_tool utility is
most useful during development of AIOP software and for AIOP applications that happen not to be tightly integrated with control
software running in user space on the GPP cores.

From the point of view of software running on the GPP cores, AIOP programs may be thought of as firmware that defines the
functionality that the AIOP will provide to an overall system.

.

8.3.1.3.3 DPAA2, Management Complex, and drivers
DPAA2 is the architecture that describes network interfaces and other networking services for an SoC with DPAA2 hardware. It
is discussed in depth in DPAA2 Networking Subsystem Deeper Dive on page 639. For now, think of DPAA2 as hardware for
networking that is presented in terms of DPAA2 objects. The objects provide specific high-level features or services such as
network interfaces or L2 switches.

The objects are managed by means of firmware running on a hardware block called the Management Complex. Software on
general purpose cores must load firmware onto the Management Complex before networking can be done using DPAA2 hardware.

Normally, the MC firmware is loaded early in the boot process so that boot loaders can make use of DPAA2 objects and peform
networking operations such as network-based booting.

Since the objects represent hardware, they require driver software on general purpose cores. NXP provides drivers for U-Boot
and standard Linux and thus both support Ethernet networking out of the box. For example, one can use Linux networking without
delving into the details of DPAA2 and its objects just as one can use Linux networking via a PCIe Ethernet card (whose
manufacturer provides a driver) without delving into the design of the card.

DPAA2 and its objects are fully documented so it is possible to write drivers for other operating systems, applications, or boot
loaders, e.g. ODP, DPDK, UEFI firmware, etc. Many of these drivers exist or are roadmap items.

8.3.1.3.4 DPAA2 and plug-and-play
There is another analogy between DPAA2 objects and PCIe devices. PCIe devices appear to operating systems as plug-and-
play devices on a bus. The operating system can scan the bus to discover and identify the devices on it. It can then use the device
identities to associate drivers with devices and bring them into service.

DPAA2 objects work in a similar way. They are placed into datapath containers (DPRC) that can be scanned in an analogous
manner. Then objects are associated with drivers and placed into service.

The Linux kernel is provided with a container with its DPAA2 objects. Containers can also be provided to other software including
virtual machines and even arbitrary user space processes. This is how the hardware that objects encapsulate can be directly
assigned to virtual machines and user space processes. This allows them highly efficient access to hardware but in a secure
fashion due to the involvement of the SoC IO-MMU.

This, also, is analogous to PCIe devices in standard Linux; DPAA2 objects can be directly assigned to virtual machines and user
space processes using a standard Linux architecture called VFIO which allows devices to be mapped into the address space of
user space processes and also enables IO-MMU configuration to constrain the memory to which devices can read and write data
via their DMA engines.

Like PCIe devices, DPAA2 objects are also mapped using VFIO. NXP supplies the extensions to VFIO in Linux that makes this
possible.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
638 NXP Semiconductors

aabitria
Highlight

aabitria
Highlight

aabitria
Highlight

8.3.1.3.5 Datapath layout files and restool
As mentioned elsewhere, DPAA2 containers are like PCIe busses in that they can be scanned for objects/devices. But containers
and PCIe busses are populated very differently. PCIe busses are populated physically, e.g. by plugging a card into a slot.

Objects are encapsulations of DPAA2 hardware resources that must be created via management complex firmware and then
assigned to a container. There are several ways to do this:

1. the datapath layout file

2. restool

3. Management Complex commands

Datapath layout (DPL) file

Containers and objects can be defined statically in a file called a datapath layout file (DPL) that is passed to the management
complex when it is initially booted. The DPL can specify containers, objects, and connections between objects. When an OS such
as Linux boots, it will discover the populated containers.

restool

The utility called “restool” is a NXP-created Linux user space command that allows inspection and dynamic management of
containers and objects. With it, one can

• Display the current set of containers and objects

• Create and destroy containers

• Create and destroy objects

• Assign objects to containers

• Create links among objects

One can use a sequence of restool command invocations to create the same container and object state that a DPL might specify.
The difference is that restool is dynamic.

Management Complex commands

Finally, objects and containers can be manipulated by software running on general purpose cores by sending commands to the
Management Complex. This is, in fact, what restool does. Command line arguments to restool define an operation. The restool
utility simply forms a command and passes it to the Management Complex. Other drives can also do this.

8.3.1.4 DPAA2 Networking Subsystem Deeper Dive
This section provides additional detail on the DPAA2 architecture and the DPAA2 object services paradigm.

This paradigm simplifies using the DPAA2 hardware IP blocks through abstraction and encapsulation. DPAA2 objects are objects
in the sense that they:

• Encapsulate specific abstract functionality, e.g. L2 switching.

• Are composed of allocated hardware sub-components of the DPAA2 hardware peripherals, and then mostly abstract their
functionality .

• Present functionality in terms of specific attributes and methods, meaning operations on the objects.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 639

DPAA2 objects are not associated with object-oriented programming languages, instead they are collections of

hardware resources allocated for a specific purpose. General purpose processing (GPP) core software can

configure objects by sending them commands expressed in terms of hardware-level descriptors. GPP software

can also include C language functions that prepare and interpret the descriptors. No use of object-oriented

programming languages is required. For the most part, Linux drivers are written in C as usual

 NOTE

This section:

• Presents the DPAA2 object model at a concept level and describes how objects are created, destroyed, conveyed, configured,
and used

• Lists the objects types and their purposes

• Outlines how the Management Complex implements and provides the objects

• Explains what software components use the various DPAA2 object types, and how they use them. The users are often
application software running on general purpose processors (cores) or on the optional AIOP.

Driver-level software on GPPs works with the abstracted objects, rather than directly with the hardware. For example, the GPP
software deals with L2 switch and network interface objects rather than WRIOPs .

DPAA2 objects express and abstract the DPAA2 hardware into software-managed objects that are:

• Application-oriented in terminology and use, rather than hardware-oriented

• Based on concepts that are generally familiar to programmers and system architects

• Simpler than direct management of the hardware

• Indicate the architectural intent of the hardware blocks

DPAA2 object services are provided by software that runs as firmware on a DPAA2 hardware block called the Management
Complex. Users do not need to program the Management Complex in order to use the Network Object Services; they simply use
the NXP-supplied firmware. This firmware runs on the Management Complex instead of a general purpose core in order to simplify
the integration of the NXP software with customer software. DPAA2 object concept below shows at a concept level how the
Management Complex provides objects that perform specific services; the objects have attributes and interfaces that appear as
hardware.

Management
Complex

Hardware and
Firmware

Objects
 • Attributes
 • Methods (APIs)
 • Interfaces

Provides

Figure 139. DPAA2 object concept

8.3.1.4.1 DPAA2 hardware abstraction example
This section introduces the DPAA2 objects and the abstractions they provide by means of an example. Example scenario shows
a system constructed using the DPAA2 hardware on a DPAA2 SoC such as the LS2088A. The goal is to run two KVM virtual
machines (VMs) on the SoC. The two virtual machines each have a hardware network interface that they can directly access (i.e.
a dedicated interface) connected to a DPAA2 L2 switch. These VMs can communicate with each other via the L2 switch, and they
can communicate externally via the MAC on the L2 switch. So, the L2 switch has three ports, one for an off-SoC connection
(connected to a MAC), and two for the VMs.

In addition, there are two network interfaces with MAC addresses for off-SoC communication that are used by the host Linux. The
host Linux instance and the virtual machines all run on the Cortex-A72 cores on the LS2088A. In this example, each network
interface is associated with an Ethernet driver working with Linux.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
640 NXP Semiconductors

Cortex-A57 Cores

Net
Interface

MAC MAC

Net
Interface

MAC

Net
Interface

KVM VM

L2 Switch

Net
Interface

KVM VMHost Linux

SoC Boundary

Figure 140. Example scenario

DPAA2 hardware shows the DPAA2 hardware blocks. This figure bears little resemblance to Example scenario. It provides little
guidance to how the example scenario could be realized because the hardware blocks are conceptually distant from a natural
statement of what is desired in the example. The DPAA2 objects are much closer, as will be seen below.

GPP

SEC

DCE

PME

WRIOP
Eth

QBMan
queues
buffers

Infrastructure

Etc

Programmable Devices
use DPAA2 peripherals

Bridges

DPAA2 Peripherals

Management Complex

AIOP

GPP

GPP

AIOP

GPP

General
Purpose
Processor
Cores

Packet
Processing
Engines (optional)

Accelerators

Figure 141. DPAA2 hardware

Example scenario based on DPAA2 objects shows how the example can be realized using the DPAA2 object abstractions of the
DPAA2 hardware; this figure is much closer to the goal expressed in Example scenario and its components are described below:

• The host Linux is shown in more detail on the left. The network stack and two instances of the Ethernet drivers appear in the
figure above the hardware boundary. Also, the figure shows the stacks and drivers for the two virtual machines.

• The DPAA2 objects appear below the hardware boundary

• The DPNI (Datapath Network Interface) objects correspond directly to the network interfaces in Example scenario. The DPSW
(Datapath Switch) object corresponds to the L2 switch.

• The DPMAC (Datapath MAC) objects represent Ethernet MACs within WRIOP. These are hardware components that connect
to PHY hardware, and provide Ethernet physical layer termination, i.e. Ethernet connections to the SoC.

• The DPIO (Datapath I/O) objects include QBMan software portals, and they allow GPP core software to read and write packets
from the DPNIs. DPIOs are described in more detail later in this document.

See Object summary on page 644 for a summary of the DPAA2 objects.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 641

OS Network Stack

Eth Driver 2

Hardware

Kernel

Eth Driver 1

Switch
Mgmt

DPIO Services

OS Net Stack

Eth Driver 3

DPIO Services

DPIO Services

OS Net Stack

Eth Driver 4

Boundary

VM 2

User
space

Data flow

Configuration
ownership

Data availability
notification

VM 1

DPIODPIO

DPMAC

DPNI

DPIO

DPSW

DPNI
DPNI

DPMAC DPMAC

DPNI

DPIO

Figure 142. Example scenario based on DPAA2 objects

Objects are partitioned among software owners

Software management of DPAA2 objects is distributed. Software components that use a particular set of objects independently
manage the objects in their set. The green boxes on the object icons in Example scenario based on DPAA2 objects represent
management interfaces, and the green dashed lines show what software component owns the management of each object. For
example, the DPSW is shown as managed by switch management software running on the general purpose processing cores.

Objects can be directly assigned

The virtual machines directly access and manage the objects their software uses, and they do this with minimal host kernel
involvement; this enhances efficiency while preserving access isolation. In the figure, the virtual machines have directly assigned
hardware-based network interfaces.

DPNI objects provide network interfaces

DPNI objects interact with drivers to allow software to send and receive network frames, usually Ethernet frames. DPNIs are
central to DPAA2’s concept of network interfaces, but they do not act alone. In general, network drivers manage several objects
as part of managing network interfaces. DPNI ingress shows a high-level outline of DPNI ingress frame processing, and the
following steps give insight into how objects work together.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
642 NXP Semiconductors

Queues for different traffic classes
with the same destination

Network frames
from somewhere,
DPMAC or other

object
Parse

Headers

Select
Traffic
Class

Select FQ
for

distribution

DPNI Ingress

Sets of queues for different destinations Data availability
notification

Read

DPIO

DPIO

DPIO

Figure 143. DPNI ingress

1. A frame arrives at DPNI from another object, a MAC (DPMAC), a switch (DPSW) or other object.

2. DPNI parses the packet to locate the header from which lookup keys can be generated.

3. A lookup selects a traffic class (priority) for the frame; this priority causes a specific set of queues (implemented as
QMan frame queues) to be selected.

4. DPNI must select a destination for the frame, using either another lookup or an RSS-style hashing operation; this lookup
causes a specific queue within the previously selected set to be selected.

5. The frame is enqueued onto the queue, and the queue represents the destination indirectly. At this point, DPIO objects
enter the process.

6. Every queue is configured to deliver data availability notifications to a specific DPIO, and these notifications tell the
driver software using the DPIO that one or more frames are available to read from a specific queue.

7. Driver software responds by using a DPIO (actually any of its DPIOs) to read a burst of one or more frames from the
queue.

Egress is simpler. The driver software uses a DPIO to enqueue a frame to a specific egress queue within DPNI; the queue is
selected based on the desired traffic class.

Multiple DPIOs provide parallelism

It is common to assign queues in network interfaces to specific cores, and then to distribute the traffic between them using
techniques like RSS or explicit flow steering. DPAA2 supports this process by using multiple DPIOs. See DPIO parallelism for an
example involving a single network interface and two cores.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 643

Core 0 Core 1

OS Network Stack

Eth Driver

DPIO Services

Hardware

Software

Data availability
notification

Configuration
ownership

Data flow

DPNI

DPMAC

DPIO DPIO

Figure 144. DPIO parallelism

The DPNI is configured so that each of its egress queues send its data availability notifications to one DPIO or another in a
balanced way. A core receives an interrupt from its DPIO telling it to read a data availability notification, and then it then uses its
DPIO to read a burst of one or more frames. In Linux terms, it starts a NAPI burst.

DPIO services

Notice in Example scenario based on DPAA2 objects that the host operating system on the left has two network interfaces. It has
two DPIOs also, but either DPIO can be used for I/O to either of the interfaces. DPIOs are designed to be shared across network
interfaces that belong to the same software component, such as the Linux kernel. For this reason, the Linux kernel contains a
software layer called DPIO Services that facilitates driver instances performing I/O from a resource that might be shared across
a network interface, and also might be shared across cores or software threads. Giving more DPIOs to the DPIO Services layer
can increase performance, and using the same DPIO on a core for more than one network interface need not decrease
performance because each core is physically able to do only one thing at a time.

8.3.1.4.1.1 Object summary
This section summaries the DPAA2 objects and shows a standard icon for each used in the illustrations that follow. See DPAA2
object summary and icons.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
644 NXP Semiconductors

Queues (ingress distribution width + 1 egress) per traffic class (1 to 8).
Configuration interface.
Uplink interface (exactly 1 allowed).

Connection point.
Configuration interface.

Interfaces (2 or more).
Configuration interface.

Internal interfaces (2 or more).
Configuration interface.
Uplink interface (exactly 1 allowed).

Bonded interface (exactly 1 allowed).
Configuration interface.
Slave interface connections (2 or more).

Channel from which DPIO can dequeue.
Configuration interface.
Priorities (2 or 8) to which DPIO queues can be attached.

Notification channel (0 or 1)
Configuration interface.
GPP interface (1 QBMan software portal).

AIOP-side interface
Configuration interface.
GPP-side interface

1 MC command portal (boot strap)
Configuration interface.

Configuration interface.DPAIOP

DPNI

DPMAC

DPCON

DPIO

DPCI

DPRC

DPSW

DPDMUX

DPLAG

Figure 145. DPAA2 object summary and icons

DPNI

A DPNI object is the key to network interfaces. On ingress, it receives frames from a DPMAC or another object such as a DPSW,
parses headers, determines the frame’s traffic class, and enqueues the frame onto a frame queue selected based on the traffic
class and other header values. This supports both hash-based distribution of frames to multiple cores, and also direct flow steering
of frames to specific cores.

DPNI can generate a per-queue data availability notification when a frame is enqueued. On egress, the DPNI dequeues frames
from frame queues and transmits them to an external port using a DPMAC, or to another DPAA2 object such as a DPSW.

DPMAC

The DPMAC object represents an Ethernet MAC, a hardware device that connects to a PHY and allows physical transmission
and reception of Ethernet frames.

DPSW

The DPSW object provides the functionality of a general layer 2 switch. It receives packets on one port and sends them on another.
It can also send packets out on multiple ports for the purposes of broadcast, multi-cast, or mirroring.

DPDMUX

The DPDMUX is another type of switch. It differs from a DPSW in several ways. A DPDMUX may have only a single uplink port.
Also, it can be programmed to direct packets based on header values above layer 2.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 645

DPLAG

The DPLAG object provides link aggregation. It combines two or more uplinks into a single downlink.

DPCON

The DPCON object allows multiple DPNIs to be aggregated into a single device that appears to a GPP core or AIOP software as
single interface that carries frames from multiple DPNIs; it combines two or more network interfaces into one. It provides a
hardware-based scheduling off load because the hardware selects the order based on the priority in which frames from the multiple
DPNIs are provided to software on GPP cores or AIOP.

DPCON is also useful for software that polls for input frames; it allows a single interface to be polled instead of multiple interfaces.

DPCON objects are also used by Linux Ethernet drivers for priority-based frame delivery.

DPIO

General purpose processing core software uses a DPIO object to perform hardware queuing operations, such as enqueue and
dequeue, and hardware buffer management operations, such as acquire and release. It also allows data availability notifications
to be received. DPIOs can generate interrupts. The DPIO object is unusual in that GPP core software is expected to directly
access portions of the DPIO’s hardware (QBMan software portals) for run time operations, in addition to supporting configuration
operations from the management complex.

Note that AIOP software does not rely on DPIO objects; they are used only by software on the general purpose processing cores.

DPBP

The Datapath Buffer Pool object represents a QBMan buffer pool. It is used mainly as a resource by network drivers, but it is an
active entity because it can send buffer pool depletion notifications to GPP core software.

DPCI

The Datapath Communication Interface provides general purpose processing core software with a transport mechanism typically
for control and configuration command interfaces to AIOP applications. The AIOP service layer implements the AIOP-side of the
transport, but the commands are application-specific. Note that AIOP is optional in DPAA2 and is not present on some SoCs.

DPRC

The DPRC object allows the Management Complex to track sets of objects in use by the same software component. The objects
in the set are said to be in the same container. It also facilitates the assignment of sets of objects to specific software components,
such as a virtual machine or a user space application using user space drivers. The software component can query containers
in order to discover objects at run time, and this enables plug-and-play drivers that interface to objects.

Some objects include DMA-capable hardware. All objects in the same DPRC share a common ICID, and a common set of IO-
MMU mappings. A number of key features of DPRCs include:

• Direct access. All the objects and resources in a container are private to the container, and software components get direct
access to the registers (as abstracted by the Management Complex) of the hardware objects.

• Dynamic discovery. A software context that is given a DPRC can dynamically discover the objects and resources placed in
the container using MC commands.

• Hot plug/unplug. Objects can be dynamically plugged and unplugged into DPRCs.

• Security. A software context can only see the objects in its DPRC, and cannot affect other containers or the proper operation
of other software contexts. DMA transactions from MC objects are isolated using the system IOM-MU.

DPMCP

The DPMCP object represents a Management Complex command portal and is used by drivers to send commands to manage
objects.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
646 NXP Semiconductors

DPAIOP

DPAIOP is a configuration object that aids in loading programs onto the AIOP, running the AIOP, resetting the AIOP, and receiving
status, error, and log information from AIOP programs. Note that the AIOP is optional in DPAA2 and is not present on some SoCs.

Objects for accelerators

There are also objects associated with accelerators such as SEC, PME, and DCE. These objects provide software with interfaces
to the accelerator hardware. For this reason, the accelerator interface objects end in "I".

• DPSECI - SEC (security/cryptographic coprocessor) interface.

• DPDCEI - DCE (data compression engine) interface.

• DPDMAI - DMA engine interface.

Software uses queues associated with an object to send a buffer to an accelerator for processing and to receive the result.

New types of objects

NXP will create new types of objects over time to address new needs and use cases as they arise.

8.3.1.4.2 Management Complex: How DPAA2 objects are created and
managed

This section outlines how the Management Complex creates and manages DPAA2 objects.

The best way to think of DPAA2 hardware, in particular WRIOP and QBMan, is that it provides many low-level resources ranging
from Ethernet MACs to look up tables to frame queues and so on. Software's mission is to assemble the right set of these low-
level resources, and configure them collectively to achieve a goal.

Mgmt
ComplexDPAA2 HW

QBMan

WRIOP

AIOP

SEC

PME

DCE

HW to
Objects

DPMAC

DPMAC
DPSW

DPNIDPMAC

Configuration

I/O

GPP

GPP

AIOP

DPIO

DPIO

DPNI

DPNI

Figure 146. Management Complex creates objects from hardware sub-components

Think of the low-level resources as “atom resources” because they are always allocated as a unit. DPAA2 objects are then
“composite resources,” or collections of atom resources that are then configured to achieve a common goal, like being an L2
switch as shown in Realizing an L2 switch.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 647

WRIOP

IFP port

TLUMAC Addr Learn

L2 Sw Assist

L2 Switch example

QMan BMan

Bpool Cong Note
WQFQ

shaperchannel

SW portal

Mgmt Complex composes
complex “atom” resources
into easier objects that
abstract underlying HW.L2 Switch

Figure 147. Realizing an L2 switch

The creation method for a DPAA2 object involves allocating the necessary atom resources and configuring them enough to place
the object in an initial idle state. Object methods and other interfaces then allow it to be further configured and used. For example,
forming an L2 switch from DPAA2 atom resources is quite complex. The NXP firmware running on the Management Complex
implements the methods necessary, and hides this complexity from GPP (and AIOP) developers.

Continuing the example, an L2 switch object can also be shutdown and disassembled by its methods. Its atom-resources are then
placed back into the pools of atom resources that the Management Complex firmware manages.

Hardware directly visible to software

Clearly, DPAA2 provides abstractions. The objects are best thought of as being hardware, and most actually are collections or
encapsulations of hardware resources that are allocated and configured to achieve a higher-level and more abstract purpose than
would be clear from a direct view of the hardware resources. An example of an abstract purpose is “be an L2 switch” (DPSW).

It can be helpful to focus on exactly what is visible to driver-level software running on the general purpose cores and AIOP,
especially since what is visible is a mixture of direct access to hardware and indirect access to hardware via abstractions. This
discussion will be biased towards the view of objects from drivers running on general purpose processing cores (such as in U-
Boot and Linux).

Also the discussion will avoid details of individual objects since this is an overview with the purpose of clarifying objects in general.

DPAA2 visibility boundary describes in one diagram what is directly visible to the driver layer software.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
648 NXP Semiconductors

NXP or customer’s application or stack

NXP or customer’s drivers

AIOP

Service layer includes Etc Cypto

Obj-specific desc
intint

QBMan

WRIOP

AIOP

QBMan
SW

Portals

Init/configure

Legend

int

GPP software
above DPAA2

DPAA2 GPP
software (thin)

DPAA2 hardware
visible to GPP

DPAA2 hardware not
directly visible to GPP

DPAA2 software not
directly visible to GPP

Im
plem

entation

SEC

QBMan DC portals

DPAA2 visibility

boundary

GPP
(Customer SW)

Enqueue
dequeue
Acquire
release

(Customer or NXP SW)

NXP or customer’s application

int
NXP app

Other
Acel

C
C

S
R

Management
Complex

Firmware

MC cmd portalsQBMan SW portals

DPIO runtime Object config Object runtimeObject config

Figure 148. DPAA2 visibility boundary (AIOP not present on all DPAA2 SoCs)

There is quite a lot in the figure above, so it is best to break it down. What driver level software can see and do is dictated by its
function.

This begins with the Management Complex (MC) itself. The discussion below will focus on the services that the MC provides to
other software in the system. There will be no discussion of MC firmware's internal design.

See Management complex visibility in DPAA2. The first step is that general purpose processing core software (usually a boot
loader) must load the opaque firmware image onto the Management Complex and then start it running. This involves direct access
to portions of the Management Complex hardware: registers defining the location of the Management Complex’s portion of DDR,
image location, address translation, and run state control.

Cmd Portals
Firmware
load/run Status

Interrupts (global errors,
status indications)

Cmd Portals

Management Complex Hardware

Figure 149. Management Complex visibility in DPAA2

The driver software also requires visibility to global status, particularly to status for global errors. Changes in the state of this status
can be signaled by interrupts to the general purpose processing cores so the Management Complex can produce these interrupts.

Finally, the Management Complex exists to serve its masters, the general purpose processor core (and AIOP when present)
software that “owns” objects, i.e. has been allocated access rights to them via container ownership and hierarchy. The service is

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 649

provided by responding to commands so driver software needs a way to deliver commands to the Management Complex. In
addition, this process must be secure in that the Management Complex must know, in a way that cannot be spoofed, an ID of the
software sending the command. This is to allow the Management Complex to enforce object access rights.

Driver software delivers commands to the Management Complex via hardware called Management Complex command portals.
SoC hardware provides significant numbers (at least 10s) of these portals because:

• They can be directly assigned to multiple different drivers, all of which independently use the Management Complex’s services.
If they each have their own command portal, they do not have to coordinate with each other.

• Each independent driver instance has its own ID (ICID) that is securely associated with the command portal to prevent
spoofing. This prevents a driver from being able to access for configuration an object that it does not "own".

To send a command to the Management Complex, driver software creates a descriptor and enqueues a pointer to it to the
command portal.

Next consider objects. See DPAA2 objects.

Interrupts (global errors,
status indications)Cmds

Objects (general)

Figure 150. DPAA2 objects

Objects are created either via the DPL file or driver software sending a command to the Management Complex instructing it to
create an object (as in restool). The Management Complex supplies a globally unique ID for the new object.

Object command interfaces are abstractions. There is no hardware that directly represents object command portals. Objects are
usually hardware, but in most cases that hardware does not directly expose a hardware-level programming model to driver
software. Instead, driver software configures objects via an indirect mechanism; it sends a command to the Management Complex.
The command is a descriptor that includes the ID of the object as well as the definition of the operation to be performed.

The Management Complex automatically gets the ID of the requestor when it reads the command. The command portal securely
adds it. The Management Complex then checks that the requestor is authorized to configure the object and, if so, performs the
configuration on behalf of the requestor.

So, object configuration is a visible part of DPAA2, but the configuration of the individual hardware subcomponents that make up
an object is not.

The fundamental programming model for object configuration is the commands that can be sent to the Management Complex to
configure the object. Each object type has a different purpose so each object type’s configuration programming model is defined
by the descriptor set that describes the commands to configure the particular type of object.

NXP also provides C callable APIs that basically allocate and populate descriptors and pass them as commands to the
Management Complex. The APIs bear a close relationship to the more fundamental descriptors.

Many object types have nothing but a configuration space, but this is not always true. Some objects also provide I/O interfaces.
The DPIO object is a prime example. See DPIO object and I/O interfaces.

Interrupts (global
errors, status
indications)

Interrupts data
availability

Cmds SW Portal

DPIO Object

Figure 151. DPIO object and I/O interfaces

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
650 NXP Semiconductors

As has been stated before, DPAA2 objects are usually opaque bundles of hardware sub-resources allocated and configured to
achieve a more abstract purpose. A DPIO object includes a hardware sub-resource called a QBMan software portal but this
hardware is not opaque to the driver software running on the general purpose processing cores. The reason is performance.
Software portals are the hardware mechanism for actually doing I/O with DPAA2 peripherals so driver software must directly
access them. There are also data availability interrupts associated with DPIOs. These indicate availability of data to read using
the software portals.

Software portals actually support more than I/O (enqueue onto queues and dequeue from them). They also support

commands. The simplest examples are buffer acquires and releases. Without going into full detail, software portals

actually support commands that require privilege (example: initialize a frame queue) and commands that do not

(example: acquire a buffer). Driver software on general purpose processing cores (and AIOP) uses only the

unprivileged commands. The privileged commands are not part of the visible architecture. They are used only by

Management Complex firmware.

 NOTE

In summary, the visible architecture includes both hardware and abstractions as follows:

• Management Complex hardware associated with loading and running images

• Management Complex hardware associated with accessing global status

• Management Complex global interrupt

• Management Complex hardware command portals

• Objects themselves (abstraction):

— Object configuration interface and command set as defined by descriptors (abstraction)

— Object error interrupts

— Some objects (like DPIO) also have additional interfaces that are hardware directly accessed by driver software. DPIO’s
QBMan software portals are an example. They can produce interrupts.

8.3.1.4.2.1 Object creation, the datapath layout file, and restool
DPAA2 objects can be created in multiple ways. First, they can be specified in a Datapath Layout (DPL) file that the Management
Complex reads and applies before Linux boots. This file contains the specific list of objects that are to be automatically created
as the system initializes.

DPAA2 objects also can be created and destroyed dynamically by sending commands to the Management Complex through its
command portals via a kernel driver. For Linux, a user space command line tool called “restool” uses this interface to allow
interactive and dynamic creation of objects. It also allows destruction and some additional configurations to be done.

Restool also shows information about objects and what they are connected to.

8.3.1.4.2.2 DPRC objects, plug and play, and the fsl-mc Linux “bus”
As mentioned previously, it is common for a GPP software component to manage multiple objects. The DPIO parallelism diagram
shows a simple example of the Linux kernel managing a set of objects to provide a pair of network interfaces. The DPRC (Datapath
Resource Container) is a special object that serves to organize other objects, and also the hardware sub-components from which
objects can be dynamically created; the hardware sub-components include frame queues, channels, buffer pools, etc. Containers
can be created and filled with objects and resources and then passed to the software component, such as a virtual machine, that
will use them.

The software that was assigned a DPRC can enumerate the objects inside it; this is a form of dynamic hardware discovery that
relates to plug-and-play. For example, an operating system can scan a DPRC and associate all DPNI objects found within with
an Ethernet driver that will use them to form network interfaces. The Ethernet driver then uses a dynamic allocator within the
kernel to aquire other objects such as DPBPs that it needs to operate.

The device discovery analogy is strong enough that Linux exposes DPRCs assigned to it as a bus in sysfs-- much like physical
buses like PCI. The same sysfs mechanism that allow a physical PCI device to be assigned (bound) to virtual machines are also

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 651

used to assign containers to virtual machines. Objects can even be dynamically added and removed from DPRCs. This is
analogous to hot plug and unplug on a bus.

Many DPAA2 objects are DMA-capable so that they can autonomously read and write memory. SoCs like the LS2088A contain
an IO-MMU, so objects must express an identifier (that they cannot control) when they perform DMA operations. This identifier
is called an ICID in DPAA2, and it serves as a key for the IO-MMU to associate I/O virtual addresses with I/O physical addresses.
In DPAA2, ICIDs are attributes of DPRCs, and all objects in a DPRC express the same ICID value.

A GPP software context (a virtual machine or application) will typically be assigned a single DPRC that contains all the fsl-mc
resources that the software context can access or use. As mentioned elsewhere, there are two general types of resources that
can be in a container:

• Resources: Resources are primitive resources that can't be further decomposed, and are uninitialized and unpurposed.
Some examples are MC portals, QBman portals, frame queues, buffer pools, etc. Generally primitives are “fungible,” in that
there is nothing distinctive among the same kind of primitives. However, some primitives may be non-fungible, such as an
external port or MAC.

• Objects: Objects are created and configured with a purpose, typically constructed of multiple resources. Some examples of
objects are network interfaces, an L2 switch, or a crypto instance. A DPRC is itself an fsl-mc object.

See documentation of the Linux restool facility for more information related to this topic.

 NOTE

Management Complex (MC) initialization and boot

The MC is normally enabled and initialized by system boot firmware such as U-Boot. The boot firmware is responsible for reserving
a region of memory (DDR) for the fsl-mc, and then loading the MC firmware into memory, loading a datapath layout file (see below
for DPL overview info), and writing a bit to enable/start the MC. See Management Complex initialization and boot.

U-Boot

GPP
Core

Interconnect

PCIe USB MC

GPP
Core

MC
Microcode

DPL

MC’s
Memory

Memory/DDR

Figure 152. Management Complex initialization and boot

Management Complex datapath layout file (DPL)

As mentioned above, a datapath layout file (DPL) must be supplied to the Management Complex when it is booted. The DPL
contains the definitions of initial objects and containers/DPRCs to create.

A DPL is defined in a text file in device tree syntax (DTS) format and then compiled into a standardized DTB binary format (used
by ePAPR compliant device trees).

See the DPAA2 User Manual for more information and examples on the datapath layout file.

Boot loader use of the MC

In typical usage, the boot loader loads the MC firmware image and starts the MC running. At this time, it supplies a data path
control (DPC) file that supplies the MC image with basic configuration information that allows it to operate.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
652 NXP Semiconductors

aabitria
Highlight

The boot loader can now use the services of the MC in order to access network devices. It is a good approach to have the boot
loader dynamically create the objects it needs and destroy them (releasing resources) before starting the operating system. This
way, the operating system is not forced to operate with the constraints of objects and DPRCs established by the boot loader. The
OS can see a "green field".

Optionally, the boot loader can apply the data path layout (DPL) file mentioned above just before starting this OS. This approach
allows the DPL to be written only to serve the operating system's needs and not the boot loader's, which tend to be much simpler.

DPRCs are hierarchical

The MC manages DPRCs in a hierarchical relationship. There is a single root DPRC at the root of the hierarchy. That DPRC can
have child DPRCs, children can have grandchildren, and so on. The root DPRC belongs to the root software context of the system,
usually an OS or hypervisor. The root DPRC can further allocate its resources to its child DPRCs and assign them to other entities
such as user space applications or virtual machines.

In this example there are 3 DPRCs/containers managed by the Management Complex: a root container “root” with 2 children “foo”
and “bar”. The DPRCs all contain 3 objects, a DPNI, DPBP, and DPIO. There are 3 software contexts: the host Linux, a user space
application, and Linux in a KVM virtual machine. Each software context is assigned a DPRC that it can use and manage; see
DPRC hierarchy for a figure that illustrates this example.

User
space
app

KVM VM

Linux

Linux

GPP
core

GPP
core

GPP
core

interconnect

PCI USB FSL-MC

root

dpni dpio

dpbp

foo

dpni

dpbp

dpio dpni dpio

bar

dpbp

dprcdprc

dprc

Figure 153. DPRC hierarchy

The container hierarchy allows the parent to manage the resources of the children. If the OS in the KVM VM crashes, the parent
(Linux) can reset and clean up the VM's DPRC. If the user space application terminates, the parent (Linux) has the option of
destroying the container.

8.3.1.4.3 Objects and topology
As mentioned elsewhere, objects have a topological relationship with each other. See Object topology example for an example.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 653

OS Network Stack

Eth Driver Eth Driver

User space

Kernel

Hardware
Boundary

DPAA2 objects

DPIO Services

Switch
MgmtDPIO Services

User Space App

User space Eth Driver

DPIO

DPNIDPNIDPNI

DPSW

DPMACDPMAC

DPIO

Figure 154. Object topology example

• There are three network interfaces managed by the DPAA2 Linux Ethernet driver. Each of the network interfaces uses a
DPNI object.

• All of the Ethernet drivers happen to have a distribution width of one (an example), so they cannot load balance to multiple
cores or threads; this was done to simplify the diagram and discussion. If a network interface has a distribution width
greater than one, then many times it is connected to more than one DPIO but this is not required.

• Two of the network interfaces are connected to a switch; two DPNIs are connected to a DPSW. This allows both network
interfaces to communicate outside of the SoC using the DPMAC that is also connected to the DPSW, and they can also
communicate with each other using the DPSW.

• One of the network interfaces is directly assigned to a user space process, and has a user space Ethernet driver. This
network interface could also be directly assigned to a KVM virtual machine under Linux.

• Two of the DPNIs have Linux network stack drivers; they interface to the Linux network stack. One of them has its own
DPMAC, and a traditional type of controller represented by its DPNI being directly connected to a DPMAC.

• The two DPNIs connected to the Linux network stack share a single DPIO; this is possible when they can cooperatively
use a layer of GPP software that provides DPIO services. The hardware that makes up a DPIO is a QBMan software
portal and, optionally, a QMan channel for data availability notifications. QBMan software portals are a relatively scarce
hardware resource, so they are designed to be sharable, in particular for NAPI-compliant Linux Ethernet drivers.

• It is a key assumption of DPAA2 that objects are managed (or “owned”) by a single software entity. Independent software
entities can independently manage the objects they own, and this allows software to be decoupled from other entities.

• The management relationship between objects and software entities is not defined or imposed by DPAA2; DPAA2 defines
the objects and what they do, and not what software uses them. Customer GPP core software is allowed to determine the
management relationship; a single monolithic software entity that manages all of the objects can be created.

• The Linux DPAA2 Ethernet driver design defines the set of objects needed to provide a network interface. The green lines
show the management relationships for Linux network interfaces and switches. Note that switches are managed
independently from the network interfaces that connect to it.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
654 NXP Semiconductors

The DPAA2 User Manual provides a complete description of the rules that govern object topology.

8.3.1.4.4 AIOP in DPAA2
This section describes AIOP in the DPAA2 architecture and how it uses DPAA2 objects. The figure below shows an example in
which the Linux kernel network stack has a single Ethernet interface, a user space application has a single directly assigned
Ethernet interface, and AIOP has two Ethernet interfaces.

OS Network Stack

Eth Driver

User space

Kernel

Hardware
Boundary

DPAA2 objects

DPIO Services

AIOP

DPIO Services

User Space App

User space Eth Driver

DPIO

DPNI

DPNI

DPNI

DPMAC

DPMAC

DPIO

DPNI

(and AIOP)

Figure 155. AIOP in DPAA2

AIOP runs software and uses objects in a manner that is similar to general purpose processing cores. In this example configuration,
the AIOP's software has access to two Ethernet interfaces. One is connected to a MAC for an external connection to outside the
SoC. The other is connected point-to-point to the general purpose processing core user space application's Ethernet interface.

So, there are two Ethernet interfaces involved on the path between the AIOP and the user space application. This is logical
because there is software running in both places. Thus, each software component should see and control its own Ethernet
Interface. Both software components do Ethernet I/O without being coupled to what their Ethernet interface is connected to.

One difference is that AIOP software is focused on packet processing. It does not actively manage or configure its own Ethernet
interfaces. Usually, a control application on the general purpose processing cores takes that role. Also, the AIOP does not use
DPIO objects.

Note that AIOP itself is not a DPAA2 object. It is an active entitiy that uses other DPAA2 objects. However, there is a DPAIOP
object that general purpose processing core software can use to manage the AIOP, e.g. start it, stop it, load images onto it, get
error status from it, etc.

In addition, there are DPAA2 objects (not shown) that facilitate passing commands (rather than packets) between general purpose
processing core software and AIOP software.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 655

AIOP Service Layer

NXP provides an AIOP software library called the "AIOP Service Layer". This library's main purpose is to provide very lightweight
drivers for hardware components that AIOP software must access. These include components such as Ethernet intefaces, the
QBMan buffer manager, timers, table lookup units, etc.

8.3.2 DPAA2 Standard Linux Documentation

Following is a summary of relevant documentation from standard Linux sources and formats. It provides links to these documents,
provides a snapshot of the document, or both.

8.3.2.1 Kernel Documentation Directory
The Linux kernel source code contains a documentation directory, and there is some information there that is relevant to DPAA2.
It is possible to see the upstream versions of these documents by going to https://www.kernel.org/ and browsing the Linux source
code trees.

• Kernel Management Complex (MC) bus driver: This document is in-flight to kernel.org so a copy is provided below rather
than a link to kernel.org.

Copyright (C) 2016 Freescale Semiconductor Inc.

DPAA2 (Data Path Acceleration Architecture Gen2)
--

This document provides an overview of the Freescale DPAA2 architecture
and how it is integrated into the Linux kernel.

Contents summary
 -DPAA2 overview
 -Overview of DPAA2 objects
 -DPAA2 Linux driver architecture overview
 -bus driver
 -dprc driver
 -allocator
 -dpio driver
 -Ethernet
 -mac

DPAA2 Overview

DPAA2 is a hardware architecture designed for high-speeed network
packet processing. DPAA2 consists of sophisticated mechanisms for
processing Ethernet packets, queue management, buffer management,
autonomous L2 switching, virtual Ethernet bridging, and accelerator
(e.g. crypto) sharing.

A DPAA2 hardware component called the Management Complex (or MC) manages the
DPAA2 hardware resources. The MC provides an object-based abstraction for
software drivers to use the DPAA2 hardware.

The MC uses DPAA2 hardware resources such as queues, buffer pools, and
network ports to create functional objects/devices such as network
interfaces, an L2 switch, or accelerator instances.

The MC provides memory-mapped I/O command interfaces (MC portals)
which DPAA2 software drivers use to operate on DPAA2 objects:

 +--------------------------------------+
 | OS |
 | DPAA2 drivers |
 | | |

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
656 NXP Semiconductors

https://www.kernel.org/

 +-----------------------------|--------+
 |
 | (create,discover,connect
 | config,use,destroy)
 |
 DPAA2 |
 +------------------------| mc portal |-+
 | | |
 | +- - - - - - - - - - - - -V- - -+ |
 | | | |
 | | Management Complex (MC) | |
 | | | |
 | +- - - - - - - - - - - - - - - -+ |
 | |
 | Hardware Hardware |
 | Resources Objects |
 | --------- ------- |
 | -queues -DPRC |
 | -buffer pools -DPMCP |
 | -Eth MACs/ports -DPIO |
 | -network interface -DPNI |
 | profiles -DPMAC |
 | -queue portals -DPBP |
 | -MC portals ... |
 | ... |
 | |
 +--------------------------------------+

The MC mediates operations such as create, discover,
connect, configuration, and destroy. Fast-path operations
on data, such as packet transmit/receive, are not mediated by
the MC and are done directly using memory mapped regions in
DPIO objects.

Overview of DPAA2 Objects

The section provides a brief overview of some key objects
in the DPAA2 hardware. A simple scenario is described illustrating
the objects involved in creating a network interfaces.

-DPRC (Datapath Resource Container)

 A DPRC is an container object that holds all the other
 types of DPAA2 objects. In the example diagram below there
 are 8 objects of 5 types (DPMCP, DPIO, DPBP, DPNI, and DPMAC)
 in the container.

 +---+
 | DPRC |
 | |
 | +-------+ +-------+ +-------+ +-------+ +-------+ |
 | | DPMCP | | DPIO | | DPBP | | DPNI | | DPMAC | |
 | +-------+ +-------+ +-------+ +---+---+ +---+---+ |
 | | DPMCP | | DPIO | |
 | +-------+ +-------+ |
 | | DPMCP | |
 | +-------+ |
 | |
 +---+

 From the point of view of an OS, a DPRC is bus-like. Like
 a plug-and-play bus, such as PCI, DPRC commands can be used to
 enumerate the contents of the DPRC, discover the hardware
 objects present (including mappable regions and interrupts).

 dprc.1 (bus)
 |
 +--+--------+-------+-------+-------+
 | | | | |

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 657

 dpmcp.1 dpio.1 dpbp.1 dpni.1 dpmac.1
 dpmcp.2 dpio.2
 dpmcp.3

 Hardware objects can be created and destroyed dynamically, providing
 the ability to hot plug/unplug objects in and out of the DPRC.

 A DPRC has a mappable mmio region (an MC portal) that can be used
 to send MC commands. It has an interrupt for status events (like
 hotplug).

 All objects in a container share the same hardware "isolation context".
 This means that with respect to an IOMMU the isolation granularity
 is at the DPRC (container) level, not at the individual object
 level.

 DPRCs can be defined statically and populated with objects
 via a config file passed to the MC when firmware starts
 it. There is also a Linux user space tool called "restool"
 that can be used to create/destroy containers and objects
 dynamically.

-DPAA2 Objects for an Ethernet Network Interface

 A typical Ethernet NIC is monolithic-- the NIC device contains TX/RX
 queuing mechanisms, configuration mechanisms, buffer management,
 physical ports, and interrupts. DPAA2 uses a more granular approach
 utilizing multiple hardware objects. Each object has specialized
 functions, and are used together by software to provide Ethernet network
 interface functionality. This approach provides efficient use of finite
 hardware resources, flexibility, and performance advantages.

 The diagram below shows the objects needed for a simple
 network interface configuration on a system with 2 CPUs.

 +---+---+ +---+---+
 CPU0 CPU1
 +---+---+ +---+---+
 | |
 +---+---+ +---+---+
 DPIO DPIO
 +---+---+ +---+---+
 \ /
 \ /
 \ /
 +---+---+
 DPNI --- DPBP,DPMCP
 +---+---+
 |
 |
 +---+---+
 DPMAC
 +---+---+
 |
 port/PHY

 Below the objects are described. For each object a brief description
 is provided along with a summary of the kinds of operations the object
 supports and a summary of key resources of the object (mmio regions
 and irqs).

 -DPMAC (Datapath Ethernet MAC): represents an Ethernet MAC, a
 hardware device that connects to an Ethernet PHY and allows
 physical transmission and reception of Ethernet frames.
 -mmio regions: none
 -irqs: dpni link change
 -commands: set link up/down, link config, get stats,

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
658 NXP Semiconductors

 irq config, enable, reset

 -DPNI (Datapath Network Interface): contains TX/RX queues,
 network interface configuration, and rx buffer pool configuration
 mechanisms.
 -mmio regions: none
 -irqs: link state
 -commands: port config, offload config, queue config,
 parse/classify config, irq config, enable, reset

 -DPIO (Datapath I/O): provides interfaces to enqueue and dequeue
 packets and do hardware buffer pool management operations. For
 optimum performance there is typically one DPIO per CPU. This allows
 each CPU to perform simultaneous enqueue/dequeue operations.
 -mmio regions: queue operations, buffer mgmt
 -irqs: data availability, congestion notification, buffer
 pool depletion
 -commands: irq config, enable, reset

 -DPBP (Datapath Buffer Pool): represents a hardware buffer
 pool.
 -mmio regions: none
 -irqs: none
 -commands: enable, reset

 -DPMCP (Datapath MC Portal): provides an MC command portal.
 Used by drivers to send commands to the MC to manage
 objects.
 -mmio regions: MC command portal
 -irqs: command completion
 -commands: irq config, enable, reset

 Object Connections

 Some objects have explicit relationships that must
 be configured:

 -DPNI <--> DPMAC
 -DPNI <--> DPNI
 -DPNI <--> L2-switch-port
 A DPNI must be connected to something such as a DPMAC,
 another DPNI, or L2 switch port. The DPNI connection
 is made via a DPRC command.

 +-------+ +-------+
 | DPNI | | DPMAC |
 +---+---+ +---+---+
 | |
 +==========+

 -DPNI <--> DPBP
 A network interface requires a 'buffer pool' (DPBP
 object) which provides a list of pointers to memory
 where received Ethernet data is to be copied. The
 Ethernet driver configures the DPBPs associated with
 the network interface.

 Interrupts

 All interrupts generated by DPAA2 objects are message
 interrupts. At the hardware level message interrupts
 generated by devices will normally have 3 components--
 1) a non-spoofable 'device-id' expressed on the hardware
 bus, 2) an address, 3) a data value.

 In the case of DPAA2 devices/objects, all objects in the
 same container/DPRC share the same 'device-id'.
 For ARM-based SoC this is the same as the stream ID.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 659

DPAA2 Linux Driver Overview

This section provides an overview of the Linux kernel drivers for
DPAA2-- 1) the bus driver and associated "DPAA2 infrastructure"
drivers and 2) functional object drivers (such as Ethernet).

As described previously, a DPRC is a container that holds the other
types of DPAA2 objects. It is functionally similar to a plug-and-play
bus controller.

Each object in the DPRC is a Linux "device" and is bound to a driver.
The diagram below shows the Linux drivers involved in a networking
scenario and the objects bound to each driver. A brief description
of each driver follows.

 +------------+
 | OS Network |
 | Stack |
 +------------+ +------------+
 | Allocator |. | Ethernet |
 |(dpmcp,dpbp)| | (dpni) |
 +-.----------+ +---+---+----+
 . . ^ |
 . . <data avail, | |<enqueue,
 . . tx confirm> | | dequeue>
 +-------------+ . | |
 | DPRC driver | . +---+---V----+ +---------+
 | (dprc) | | DPIO driver| | MAC |
 +----------+--+ | (dpio) | | (dpmac) |
 | +------+-----+ +-----+---+
 |<dev add/remove> | |
 | | |
 +----+--------------+ | +--+---+
 | mc-bus driver | | | PHY |
 | | | |driver|
 | /fsl-mc@80c000000 | | +--+---+
 +-------------------+ | |
 | |
 ================================ HARDWARE =========|=================|======
 DPIO |
 | |
 DPNI---DPBP |
 | |
 DPMAC |
 | |
 PHY ---------------+
 ===|========================

A brief description of each driver is provided below.

 mc-bus driver

 The mc-bus driver is a platform driver and is probed from an
 "/fsl-mc@xxxx" node in the device tree passed in by boot firmware.
 It is responsible for bootstrapping the DPAA2 kernel infrastructure.
 Key functions include:
 -registering a new bus type named "fsl-mc" with the kernel,
 and implementing bus call-backs (e.g. match/uevent/dev_groups)
 -implemeting APIs for DPAA2 driver registration and for device
 add/remove
 -creates an MSI irq domain
 -do a device add of the 'root' DPRC device, which is needed
 to bootstrap things

 DPRC driver

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
660 NXP Semiconductors

 The dprc-driver is bound to DPRC objects and does runtime management
 of a bus instance. It performs the initial bus scan of the DPRC
 and handles interrupts for container events such as hot plug.

 Allocator

 Certain objects such as DPMCP and DPBP are generic and fungible,
 and are intended to be used by other drivers. For example,
 the DPAA2 Ethernet driver needs:
 -DPMCPs to send MC commands, to configure network interfaces
 -DPBPs for network buffer pools

 The allocator driver registers for these allocatable object types
 and those objects are bound to the allocator when the bus is probed.
 The allocator maintains a pool of objects that are available for
 allocation by other DPAA2 drivers.

 DPIO driver

 The DPIO driver is bound to DPIO objects and provides services that allow
 other drivers such as the Ethernet driver to receive and transmit data.
 Key services include:
 -data availability notifications
 -hardware queuing operations (enqueue and dequeue of data)
 -hardware buffer pool management

 There is typically one DPIO object per physical CPU for optimum
 performance, allowing each CPU to simultaneously enqueue
 and dequeue data.

 The DPIO driver operates on behalf of all DPAA2 drivers
 active in the kernel-- Ethernet, crypto, compression,
 etc.

 Ethernet

 The Ethernet driver is bound to a DPNI and implements the kernel
 interfaces needed to connect the DPAA2 network interface to
 the network stack.

 Each DPNI corresponds to a Linux network interface.

 MAC driver

 An Ethernet PHY is an off-chip, board specific component and is managed
 by the appropriate PHY driver via an mdio bus. The MAC driver
 plays a role of being a proxy between the PHY driver and the
 MC. It does this proxy via the MC commands to a DPMAC object.

8.3.2.2 DPAA2 Resource Management Tool (restool) User Manual
Restool is a Linux user space program that allows DPAA2 objects to be created, destroyed, and manipulated. Its primary
documentation is in the style of a Linux man page.

The Management Complex architecture uses a hardware object called a “container” (or DPRC) to hold I/O resources and hardware
objects for use by GPP software contexts.

DPRCs can be created and populated in two different ways:

• at MC initialization during system boot in a configuration file called a “DPL file”

• dynamically at runtime

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 661

This document describes how restool can be used to do dynamic management of MC resources in the context of Linux. Key
resource management operations include:

• listing containers and their contents

• creating/destroying containers

• creating/destroying new MC objects

• move object between parent container and child container

• establishing connections between MC objects

The version of restool -restool v1.4 - included in this release is compatible will all MC firmware versions and will export different
options based on the firmware found on the board. In the following pages it will be described the available options found running
MC10.x on the board.

8.3.2.2.1 DPRC commands
8.3.2.2.1.1 list command
The list command lists all containers in the system.

SYNTAX:

restool dprc list

ARGUMENTS:

none

EXAMPLE:

List all the containers in the system

 $ restool dprc list
 dprc.1
 dprc.2
 dprc.3

The container hierarchy (parent-child relationships) is shown by indentation.

8.3.2.2.1.2 show command
The show command displays the contents (objects and resources) of a DPRC/container.

SYNTAX:

restool dprc show <container>

restool dprc show <container> --resources

restool dprc show <container> --resource-type=<resource-type>

ARGUMENTS:

<container>

A string specifying the target dprc—e.g. “dprc.2”.

The container argument value “mc.global” is special and refers to the global

container of resource pools inside the Management Complex.

--resources

Display a container’s resource count for each resource (instead of displaying

objects/resources)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
662 NXP Semiconductors

--resource-type <resource-type>

Specifies the type of resource to list. The resource-type argument is a string specifying

the resource name—e.g. “mcp”.

EXAMPLE :

Show all objects in dprc 2:

 $ restool dprc show dprc.2
 dprc.2 contains 6 objects:
 object label plugged state
 dpni.7 xyz plugged
 dpni.8 abc plugged
 dpio.2 plugged
 dpio.3 unplugged
 dpcon.9 plugged
 dpbp.1 plugged

Show all resources in dprc 2:

 $ restool dprc show dprc.2 --resources
 bpid: 16
 fqid: 100
 channel: 4
 qpr: 2
 cgid: 2

Show dprc with no objects in it:

 $ restool dprc show dprc.4
 (empty)

Show all buffer pool IDs in dprc 2:

 $ restool dprc show dprc.2 --resource-type=bp
 bp.35 – bp.36
 bp.50
 bp.52 - bp.63

Show all MC portal IDs in the global MC container:

 $ restool dprc show mc.global --resource-type=mcp
 mcp.30 – mcp.250

8.3.2.2.1.3 info command
The info command displays detailed information about a specific container.

SYNTAX:

restool dprc info <dprc-object> [--verbose]

ARGUMENTS :

<dprc-object>

Specifies which container to show detailed info for. The object argument is a string

specifying the container name—e.g. “dprc.2”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dprc info dprc.2
 container id: 2
 icid: 2
 portal id: 5

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 663

 version: 0.0
 dprc options: 0x3
 DPRC_CFG_OPT_SPAWN_ALLOWED
 DPRC_CFG_OPT_ALLOC_ALLOWED
 object label: nadk’s dprc

 $ restool dprc info dprc.2 --verbose
 container id: 2
 icid: 2
 portal id: 5
 version: 0.0
 dprc options: 0x3
 DPRC_CFG_OPT_SPAWN_ALLOWED
 DPRC_CFG_OPT_ALLOC_ALLOWED
 object label: nadk-usage-dprc
 number of mappable regions: 1
 number of interrupts: 1
 interrupt 0's mask: 0
 interrupt 0's status: 0x1

8.3.2.2.1.4 create command
The create command creates a new child DPRC under the specified parent. The name/id of the

object created is displayed to stdout.

SYNTAX:

restool dprc create <parent-container> [--options=<options-mask>] [--label=<object’s-label>]

OPTIONS :

<parent-container>

--options=<options-mask>

Where <options-mask> is a comma separated list of DPRC options:

 DPRC_CFG_OPT_SPAWN_ALLOWED
 DPRC_CFG_OPT_ALLOC_ALLOWED
 DPRC_CFG_OPT_OBJ_CREATE_ALLOWED
 DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED
 DPRC_CFG_OPT_IOMMU_BYPASS
 DPRC_CFG_OPT_AIOP
 DPRC_CFG_OPT_IRQ_CFG_ALLOWED

--label=<object’s-label>

Specify a label for the newly created object. It is kind of an alias for that object.

Length of the string is 15 characters maximum.

Say --label=”nadk’s dprc”

EXAMPLE:

Create a child DPRC under parent dprc.1 with default options:

 $ restool dprc create dprc.1
 dprc.9 is created under dprc.1

Create a child DPRC under parent dprc.1 with default options, with label “nadk’s dprc”:

 $ restool dprc create dprc.1 --label=”nadk’s dprc”
 dprc.11 is created under dprc.1

8.3.2.2.1.5 create command
The create command creates a new child DPRC under the specified parent. The name/id of the

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
664 NXP Semiconductors

object created is displayed to stdout.

SYNTAX:

restool dprc create <parent-container> [--options=<options-mask>] [--label=<object’s-label>]

OPTIONS :

<parent-container>

--options=<options-mask>

Where <options-mask> is a comma separated list of DPRC options:

 DPRC_CFG_OPT_SPAWN_ALLOWED
 DPRC_CFG_OPT_ALLOC_ALLOWED
 DPRC_CFG_OPT_OBJ_CREATE_ALLOWED
 DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED
 DPRC_CFG_OPT_IOMMU_BYPASS
 DPRC_CFG_OPT_AIOP
 DPRC_CFG_OPT_IRQ_CFG_ALLOWED

--label=<object’s-label>

Specify a label for the newly created object. It is kind of an alias for that object.

Length of the string is 15 characters maximum.

Say --label=”nadk’s dprc”

EXAMPLE:

Create a child DPRC under parent dprc.1 with default options:

 $ restool dprc create dprc.1
 dprc.9 is created under dprc.1

Create a child DPRC under parent dprc.1 with default options, with label “nadk’s dprc”:

 $ restool dprc create dprc.1 --label=”nadk’s dprc”
 dprc.11 is created under dprc.1

8.3.2.2.1.6 destroy command
The destroy command destroys the specified DPRC.

SYNTAX:

restool dprc destroy <container> --help

OPTIONS:

<container>

--help

Displays help for the command.

EXAMPLE:

Destroy a specified DPRC, say dprc.2:

 $ restool dprc destroy dprc.2
 dprc.2 is destroyed

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 665

8.3.2.2.1.7 assign command
The assign command moves an object or resource from a parent container to a child container. Object (dpni, dpbp, etc)
assignment is always explicit and the exact object id to be assigned must be specified. Resources (e.g. mcp, bp, fq, etc) are
assigned by type and count.

SYNTAX:

restool dprc assign <parent-container> [--child=<child-container>] --object=<object> --plugged=<state>

This syntax changes the plugged state. The child-container must be the same as parent-container, or omit --target option. It is
not possible to change the plugged state of a dprc.

restool dprc assign <parent-container> [--child=<child-container>] --object=<object>

This syntax moves one object from parent-container to another, so the target-container must be different from the parent-container.
Limitation: cannot move dprc from one container to another.

restool dprc assign <parent-container> [--child=<child-container>] --resource-type=<type> -- count=<number>

This syntax moves a resource from parent-container to a child-container. If the childcontainer is the same as the parent-container,
the resource will be taken from the parent of parent-container and will be assigned to the parent-container.

ARGUMENTS :

<container>

Specifies the parent container from which the object will be moved.

--object=<object>

Specifies the object to assign— value is a string specifying object name and ID
(e.g. dpni.5)

--child=<child-container>

Specifies the destination container for the operation. Valid values are any child
container. (The target container may be the same as the parent container,
allowing “assign to self”)

--plugged=<state>

Specifies the plugged state of the object (valid values are 0 or 1)

--resource-type=<type>

String specifying the resource type to assign (e.g “mcp”, “fq”, “cg”, etc). To see
valid resources that may be assigned use the “dprc show <container> --resources”
command.

--count=<number>

Number of resources to assign.

EXAMPLE:

Set the plugged state of dpni.5. Note source and destination containers are the same.

 $ restool dprc assign dprc.1 --object=dpni.5 --child=dprc.1
 --plugged=1
 $ restool dprc assign dprc.1 --object=dpni.5 --plugged=1

Unset the plugged state of dpni.5. Note source and destination containers are the same.

 $ restool dprc assign dprc.1 --object=dpni.5 --child=dprc.1
 --plugged=0
 $ restool dprc assign dprc.1 --object=dpni.5 --plugged=0

Move dpni.5 from dprc.1 (parent) to dprc.3 (child):

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
666 NXP Semiconductors

 $ restool dprc assign dprc.1 --object=dpni.5 --child=dprc.3

Move 3 mcp resources from dprc.1 (parent) to dprc.2 (child):

 $ restool dprc assign dprc.1 --resource-type=mcp --count=3
 --child=dprc.2

8.3.2.2.1.8 unassign command
The unassign command moves an object or resource from a child container to a parent container

SYNTAX:

restool dprc unassign <container> --object=<object> [--child=<child-container>]

restool dprc unassign <container> --resource-type=<type> --count <number> [--child=<child-container>]

ARGUMENTS :

<container>

Specifies the container to which the object will be moved.

--object=<object>

Specifies the object to unassign— value is a string specifying object name and ID (e.g.

dpni.5)

--child=<child-container>

Specifies the container from which the object/resource will be moved from.

--plugged=<plugged-state>

Specifies the plugged state of the object (valid values are 0 or 1)

--resource-type=<type>

String specifying the resource type to assign (e.g “mcp”, “fq”, “cg”, etc)

--count=<number>

Number of resources to unassign.

EXAMPLE:

Unassign 3 mcp resources from dprc.2 (child) to dprc.1 (parent):

 $ restool dprc unassign dprc.1 --resource-type=mcp --count=3
 --child=dprc.2

Unassign dpni.5 from dprc.3 (child) to dprc.1 (parent):

 $ restool dprc unassign dprc.1 --object=dpni.5 --child=dprc.3

8.3.2.2.1.9 set-quota command
The set-quota command sets quota policies for a child container, specifying the number of

resources a child may take from its parent container. But remember a parent can assign any

number of resource to its child if it wants to, and if it has enough resources to assign. So the quota

is effective only when the child dprc does have enough resource and it wants to borrow resource

from its parent. It could only “borrow” the quota number of resources from its parent.

SYNTAX:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 667

restool dprc set-quota <parent-container> --resource-type=<type> --count=<number>

--child-container=<container>

ARGUMENTS :

<parent-container>

Specifies the parent container.

--resource-type=<type>

String specifying the resource type to set the quota for (e.g “mcp”, “fq”, “cg”, etc)

--count=<number>

Max number of resources the child is able to allocate.

--child-container=<container>

EXAMPLE:

Set a quota of 10 mcp resource that child container dprc.5 may take from parent dprc.1:

 $ restool dprc set-quota dprc.1 --resource-type=mcp --count=10
 --child-container=dprc.5

8.3.2.2.1.10 set-label command
The set-label command sets label for any objects excluding dprc.1

SYNTAX:

restool dprc set-label <object> --label=<label>

ARGUMENTS :

<object>

Specifies the object to be set.

--label=<label>

String specifying the label, maximum length is 15 characters.

EXAMPLE:

Set label of dprc.4 to “mountain view”:

 $ restool dprc set-label dprc.4 --label=”mountain view”

8.3.2.2.1.11 connect command
The connect command connects 2 objects, creating a link between them.

SYNTAX:

restool dprc connect <container> --endpoint1=<object> --endpoint2=<object>

ARGUMENTS :

<container>

A string specifying the target dprc—e.g. “dprc.2”.

--endpoint1=<object>

Specifies the first endpoint object.

--endpoint2=<object>

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
668 NXP Semiconductors

Specifies the second endpoint object.

EXAMPLE:

The connect command connects a network object such as a DPNI to a peer object such as a DPMAC or DPSW port.

Connect dpni.2 to dpmac.5:

 $ restool dprc connect dprc.2 --endpoint1=dpni.2 --endpoint2=dpmac.5

Connect dpni.2 to dpsw.1 interface 7:

 $ restool dprc connect dprc.2 --endpoint1=dpni.2 --endpoint2=dpsw.1.7

8.3.2.2.1.12 disconnect command
The disconnect command removes the link between two objects. Either endpoint can be

specified as the target of the operation.

SYNTAX:

restool dprc disconnect <container> --endpoint=<object>

ARGUMENTS:

<container>

A string specifying the target dprc—e.g. “dprc.2”.

--endpoint=<object>

Specifies the first endpoint object.

EXAMPLE:

Remove the link between dpni.2 and dpmac.5

 $ restool dprc disconnect dprc.2 –endpoint=dpni.2

8.3.2.2.1.13 generate-dpl command
The generate-dpl command prints to the standard output a DPL syntax file describing the specified container

SYNTAX:

restool dprc generate-dpl <container>

ARGUMENTS:

<container>

A string specifying the target dprc—e.g. “dprc.2”.

EXAMPLE:

Generate a DPL for dprc.1

 $ restool dprc generate-dpl dprc.1

8.3.2.2.2 DPNI Commands
8.3.2.2.2.1 help command
The help command displays usage information for the DPNI object

SYNTAX:

restool dpni help

ARGUMENTS:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 669

none

EXAMPLE:

 $ restool dpni help
 usage: restool dpni <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPNI object.
 create - creates a child DPNI under the root DPRC
 destroy - destroys a child DPNI under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.2.2 info command
The info command displays detailed information about a specific dpni object.

SYNTAX:

restool dpni info <dpni-object> [--verbose]

ARGUMENTS :

<dpni-object>

Specifies which dpni object to show detailed info for. The dpni-object argument is a

string specifying the object name—e.g. “dpni.7”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpni info dpni.7
 dpni version: 5.0
 dpni id: 7
 plugged state: plugged
 endpoint: dpmac.2, link is down
 link status: 0 - down
 mac address: 00:00:00:00:00:07
 dpni_attr.options value is: 0x190
 DPNI_OPT_DIST_HASH
 DPNI_OPT_UNICAST_FILTER
 DPNI_OPT_MULTICAST_FILTER
 max senders: 8
 max traffic classes: 1
 max distribution's size per RX traffic class:
 class 0's size: 15
 max unicast filters: 16
 max multicast filters: 64
 max vlan filters: 0
 max QoS entries: 0
 max QoS key size: 0
 max distribution key size: 4

 $ restool dpni info dpni.7 --verbose
 dpni version: 5.0
 dpni id: 7
 plugged state: plugged
 endpoint: dpmac.2, link is down
 link status: 0 - down
 mac address: 00:00:00:00:00:07
 dpni_attr.options value is: 0x190
 DPNI_OPT_DIST_HASH
 DPNI_OPT_UNICAST_FILTER
 DPNI_OPT_MULTICAST_FILTER
 max senders: 8

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
670 NXP Semiconductors

 max traffic classes: 1
 max distribution's size per RX traffic class:
 class 0's size: 15
 max unicast filters: 16
 max multicast filters: 64
 max vlan filters: 0
 max QoS entries: 0
 max QoS key size: 0
 max distribution key size: 4
 number of mappable regions: 0
 number of interrupts: 1
 interrupt 0's mask: 0
 interrupt 0's status: 0

8.3.2.2.2.3 create command
The create command creates a new DPNI. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpni create --mac-addr=<addr> [OPTIONS]

ARGUMENTS :

--mac-addr=<addr>

String specifying primary MAC address (e.g., 00:00:05:00:00:05)

OPTIONS :

--max-senders=<number>

maximum number of different senders; will be used as the number of dedicated TX flows;

In case it isn't power-of-2 it will be ceiling to the next power-of-2 as HW demand it; 0 will

be treated as 1

--options=<options-mask>

Where <options-mask> is a comma separated list of DPNI options:

 DPNI_OPT_ALLOW_DIST_KEY_PER_TC
 DPNI_OPT_TX_CONF_DISABLED
 DPNI_OPT_PRIVATE_TX_CONF_ERR_DISABLED
 DPNI_OPT_DIST_HASH
 DPNI_OPT_DIST_FS
 DPNI_OPT_UNICAST_FILTER
 DPNI_OPT_MULTICAST_FILTER
 DPNI_OPT_VLAN_FILTER
 DPNI_OPT_IPR
 DPNI_OPT_IPF
 DPNI_OPT_VLAN_MANIPULATION
 DPNI_OPT_QOS_MASK_SUPPORT
 DPNI_OPT_FS_MASK_SUPPORT

--max-tcs=<number>

Specifies the maximum number of traffic-classes

--max-dist-per-tc=<dist-size>,<dist-size>,…

Comma separated list of counts specifying the maximum distribution's size per RX traffic-

class

--max-unicast-filters=<number>

maximum number of unicast filters; 0 will be treated as 16

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 671

--max-multicast-filters=<number>

maximum number of multicast filters; 0 will be treated as 64

--max-vlan-filters=<number>

maximum number of vlan filters; '0' will be treated as '16'

--max-qos-entries=<number>

if max_tcs > 1, declares the maximum entries for the QoS table; '0' will be treated as '64'

--max-qos-key-size=<number>

maximum key size for the QoS look-up; '0' will be treated as '24' which enough for IPv4 5-tuple

--max-dist-key-size=<number>

maximum key size for the distribution; '0' will be treated as '24' which enough for IPv4 5-tuple

EXAMPLE:

Create a DPNI, specifying MAC address, with all default options:

 $ restool dpni create --mac-addr=00:00:05:00:00:05
 dpni.9 is crated under dprc.1

Create a DPNI, specifying MAC address, and some options:

 $ restool dpni create --mac-addr=00:00:05:00:00:05
 --options=DPNI_OPT_MULTICAST_FILTER,DPNI_OPT_UNICAST_FILTER
 dpni.11 is created under dprc.1

8.3.2.2.2.4 create command
The create command creates a new DPNI. The name/id of the object created is displayed to stdout.

In the following part are presented the options when creating a DPNI using MC10.x firmware version. Also, restool is compatible
with older MC firmware versions and will export another set of options in these other cases.

SYNTAX:

restool dpni create [OPTIONS]

OPTIONS :

--options=<options-mask>

Where <options-mask> is a comma separated list of DPNI options:

 DPNI_OPT_TX_FRM_RELEASE
 DPNI_OPT_NO_MAC_FILTER
 DPNI_OPT_HAS_POLICING
 DPNI_OPT_SHARED_CONGESTION
 DPNI_OPT_HAS_KEY_MASKING
 DPNI_OPT_NO_FS

--num-queues=<number>

Number of TX/RX queues use for traffic distribution. Used to distribute traffic to multiple GPP cores.
Defaults to one queue. Maximim supported value is 8

--num-tcs=<number>

Number of traffic classes (TCs), reserved for the DPNI. Defaults to one TC. Maximum supported value is 8

--num-entries=<number>
Number of entries in the MAC address filtering table. Allows both unicast and multicast entries.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
672 NXP Semiconductors

By default, there are 80 entries.Maximum supported value is 80.

--vlan-entries=<number>
Number of entries in the VLAN address filtering table. By default, VLAN filtering is disabled. Maximum values is 16.

--qos-entries=<number>
Number of entries in the QoS classification table. Ignored if DPNI has a single TC. By default, set to 64.

--fs-entries=<number>
Number of entries in the flow steering table. Defaults to 64. Maximum value is 1024.

--container=<container-name>
Specifies the parent container name. e.g. dprc.2, dprc.3 etc.

EXAMPLE:

Create a DPNI with all default options:

 $ restool dpni create
 dpni.9 is created under dprc.1

Create a DPNI with some specific options as a child object of dprc.2 (dprc already created):

 $ restool dpni create --options=DPNI_OPT_TX_FRM_RELEASE,DPNI_OPT_NO_FS --container=dprc.2
 dpni.11 is created under dprc.2

8.3.2.2.2.5 destroy command
The destroy command destroys a DPNI.

SYNTAX:

restool dpni destroy <dpni-object>

ARGUMENTS :

<dpni-object>

Specifies which DPNI to destroy.

EXAMPLE:

 $ restool dpni destroy dpni.9
 dpni.9 is destroyed

8.3.2.2.3 DPIO Commands
8.3.2.2.3.1 help command
The help command displays usage information for the DPIO object

SYNTAX:

restool dpio help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpio help
 usage: restool dpio <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPIO object.
 create - creates a DPIO under the root DPRC
 destroy - destroys a DPIO under the root DPRC

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 673

 For command-specific help, use the --help option available for each command.

8.3.2.2.3.2 info command
The info command displays detailed information about a specific dpio object.

SYNTAX:

restool dpio info <dpio-object> [--verbose]

ARGUMENTS :

<dpio-object>

Specifies which dpio object to show detailed info for. The dpio-object argument is a

string specifying the object name—e.g. “dpio.7”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

restool dpio info dpio.1
 dpio version: 3.0
 dpio id: 1
 plugged state: plugged
 offset of qbman software portal cache-enabled area: 0x20000
 offset of qbman software portal cache-inhibited area: 0x4020000
 qbman software portal id: 0x2
 dpio channel mode is: DPIO_LOCAL_CHANNEL
 number of priorities is: 0x8
 # restool dpio info dpio.1 --verbose
 dpio version: 3.0
 dpio id: 1
 plugged state: plugged
 offset of qbman software portal cache-enabled area: 0x20000
 offset of qbman software portal cache-inhibited area: 0x4020000
 qbman software portal id: 0x2
 dpio channel mode is: DPIO_LOCAL_CHANNEL
 number of priorities is: 0x8
 number of mappable regions: 2
 number of interrupts: 1
 interrupt 0's mask: 0
 interrupt 0's status: 0x8

8.3.2.2.3.3 create command
The create command creates a new DPIO. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpio create [OPTIONS]

OPTIONS :

--channel-mode=<mode>

Where <mode> is one of:

 DPIO_LOCAL_CHANNEL
 DPIO_NO_CHANNEL

Default value is DPIO_LOCAL_CHANNEL .

--num-priorities=<number>

Valid values for <number> are 1-8. Default value is 8.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
674 NXP Semiconductors

EXAMPLE:

Create a DPIO with all default options:

$ restool dpio create

dpio.10 is created under dprc.1

Create a DPIO, specifying number of priorities:

 $ restool dpni create –num-priorities=4
 dpio.2 is created under dprc.1

8.3.2.2.3.4 create command
The create command creates a new DPIO. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpio create [OPTIONS]

OPTIONS :

--channel-mode=<mode>

Where <mode> is one of:

 DPIO_LOCAL_CHANNEL
 DPIO_NO_CHANNEL

Default value is DPIO_LOCAL_CHANNEL .

--num-priorities=<number>

Valid values for <number> are 1-8. Default value is 8.

--container=<container_name>

Specifies the parent container name. e.g. dprc.2, dprc.3 etc.

If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPIO with all default options:

 $ restool dpio create
 dpio.8 is created under dprc.1

Create a DPIO, specifying number of priorities:

 $ restool dpni create –num-priorities=4
 dpio.2 is created under dprc.1

8.3.2.2.3.5 destroy command
The destroy command destroys a DPIO.

SYNTAX:

restool dpio destroy <dpio-object>

ARGUMENTS :

<dpio-object>

Specifies which DPIO to destroy.

EXAMPLE:

 $ restool dpio destroy dpio.9
 dpio.9 is destroyed

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 675

8.3.2.2.4 DPSW Commands
text

8.3.2.2.4.1 help command
The help command displays usage information for the DPSW object

SYNTAX:

restool dpsw help

ARGUMENTS:

none

EXAMPLE:

$ restool dpsw help
 usage: restool dpsw <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPSW object.
 create - creates a DPSW under the root DPRC
 destroy - destroys a DPSW under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.4.2 info command
The info command displays detailed information about a specific dpsw object.

SYNTAX:

restool dpsw info <dpsw-object> [--verbose]

ARGUMENTS :

<dpsw-object>

Specifies which object to show detailed info for. The dpsw-object argument is a string

specifying the object name—e.g. “dpsw.2”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpsw info dpsw.1
dpsw version: 6.0
dpsw id: 1
plugged state: unplugged
endpoints:
endpoint state: -1
 interface 0: No object associated
endpoint state: -1
 interface 1: No object associated
endpoint state: -1
 interface 2: No object associated
endpoint state: -1
 interface 3: No object associated
dpsw_attr.options value is: 0x1
 DPSW_OPT_FLOODING_DIS
max VLANs: 8
max FDBs: 8
DPSW frame storage memory size: 0
number of interfaces: 4

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
676 NXP Semiconductors

current number of VLANs: 1
current number of FDBs: 1

8.3.2.2.4.3 create command
The create command creates a new DPSW. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpsw create --num-ifs=<number> [OPTIONS]

ARGUMENTS :

--num-ifs=<number>

Number of external and internal interfaces.

OPTIONS :

--options=<options-mask>

Where <options-mask> is a comma separated list of DPSW options:

 DPSW_OPT_FLOODING_DIS

 DPSW_OPT_MULTICAST_DIS

 DPSW_OPT_CTRL_IF_DIS

 DPSW_OPT_FLOODING_METERING_DIS

 DPSW_OPT_METERING_EN

--max-vlans=<number>

Maximum Number of VLAN's. Default is 16.

--max-fdbs=<number>

Maximum Number of FDB's. Default is 16.

--num-fdb-entries=<number>

Number of FDB entries. Default is 1024.

--fdb-aging-time=<number>

Default FDB aging time in seconds. Default is 300 seconds.

--max-fdb-mc-groups=<number>

Number of multicast groups in each FDB table. Default is 32.

EXAMPLE:

Create a 4-port switch with all default options:

 $ restool dpsw create --num-ifs=4
 dpsw.8 is created under dprc.1

Create a 4-port switch with options:

 $ restool dpsw create –num-ifs=4 –max-vlans=8 –max-fdb-mc-groups=300
 --options=DPSW_OPT_TC_DIS,DPSW_OPT_FLOODING_DIS
 dpsw.2 is created under dprc.1

8.3.2.2.4.4 create command
The create command creates a new DPSW. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpsw create --num-ifs=<number> [OPTIONS]

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 677

ARGUMENTS :

--num-ifs=<number>

Number of external and internal interfaces.

OPTIONS :

--options=<options-mask>

Where <options-mask> is a comma separated list of DPSW options:

 DPSW_OPT_FLOODING_DIS

 DPSW_OPT_MULTICAST_DIS

 DPSW_OPT_CTRL_IF_DIS

 DPSW_OPT_FLOODING_METERING_DIS

 DPSW_OPT_METERING_EN

--max-vlans=<number>

Maximum Number of VLAN's. Default is 16.

--max-fdbs=<number>

Maximum Number of FDB's. Default is 16.

--num-fdb-entries=<number>

Number of FDB entries. Default is 1024.

--fdb-aging-time=<number>

Default FDB aging time in seconds. Default is 300 seconds.

--max-fdb-mc-groups=<number>

Number of multicast groups in each FDB table. Default is 32.

--container=<container_name>

Specifies the parent container name. e.g. dprc.2, dprc.3 etc.

If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a 4-port switch with all default options under dprc.2:

 $ restool dpsw create --num-ifs=4 --container=dprc.2
 dpsw.8 is created under dprc.2

Create a 4-port switch with options:

 $ restool dpsw create –num-ifs=4 –max-vlans=8 –max-fdb-mc-groups=300
 --options=DPSW_OPT_TC_DIS,DPSW_OPT_FLOODING_DIS
 dpsw.2 is created under dprc.1

8.3.2.2.4.5 destroy command
The destroy command destroys a DPSW.

SYNTAX:

restool dpsw destroy <dpsw-object>

ARGUMENTS :

<dpsw-object>

Specifies which DPSW to destroy.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
678 NXP Semiconductors

EXAMPLE:

 $ restool dpsw destroy dpsw.8
 dpsw.8 is destroyed

8.3.2.2.5 DPBP Commands
8.3.2.2.5.1 help command
The help command displays usage information for the DPBP object

SYNTAX:

restool dpbp help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpbp help
 usage: restool dpbp <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPBP object.
 create - creates a DPBP under the root DPRC
 destroy - destroys a DPBP under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.5.2 info command
The info command displays detailed information about a specific dpbp object.

SYNTAX:

restool dpbp info <dpbp-object> [--verbose]

ARGUMENTS :

<dpbp-object>

Specifies which dpbp object to show detailed info for. The dpbp-object argument is a

string specifying the object name—e.g. “dpbp.3”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpbp info dpbp.1
 dpbp version: 2.0
 dpbp id: 1
 plugged state: plugged
 buffer pool id: 0

8.3.2.2.5.3 create command
The create command creates a new DPBP. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpbp create [OPTIONS]

OPTIONS:

--container=<container_name>

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 679

Specifies the parent container name. e.g. dprc.2, dprc.3 etc.

If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPBP:

 $ restool dpbp create
 dpbp.2 is created under dprc.1

8.3.2.2.5.4 create command
The create command creates a new DPBP. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpbp create [OPTIONS]

OPTIONS:

--container=<container_name>

Specifies the parent container name. e.g. dprc.2, dprc.3 etc.

If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPBP under container dprc.3:

 $ restool dpbp create --container=dprc.3
 dpbp.2 is created under dprc.3

8.3.2.2.5.5 destroy command
The destroy command destroys a DPBP.

SYNTAX:

restool dpbp destroy <dpbp-object>

ARGUMENTS :

<dpbp-object>

Specifies which DPBP to destroy.

EXAMPLE:

 $ restool dpbp destroy dpbp.2
 dpbp.2 is destroyed

8.3.2.2.6 DPCON Commands
text

8.3.2.2.6.1 help command
The help command displays usage information for the DPCON object.

SYNTAX:

restool dpcon help

ARGUMENTS:

none

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
680 NXP Semiconductors

EXAMPLE:

 $ restool dpcon help
 usage: restool dpcon <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPCON object.
 create - creates a DPCON under the root DPRC
 destroy - destroys a DPCON under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.6.2 info command
The info command displays detailed information about a specific dpcon object.

SYNTAX:

restool dpcon info <dpcon-object> [--verbose]

ARGUMENTS :

<dpcon-object>

Specifies which dpcon object to show detailed info for. The dpcon-object argument is

a string specifying the object name—e.g. “dpcon.8”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpcon info dpcon.1
 dpcon version: 2.0
 dpcon id: 1
 plugged state: plugged
 qbman channel id to be used by dequeue operation: 40
 number of priorities for the DPCON channel: 8

8.3.2.2.6.3 create command
The create command creates a new DPCON. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpcon create [OPTIONS]

OPTIONS :

--num-priorities=<number>

Specifies the number of priorities, valid values are 1-8. Default is 1.

EXAMPLE:

Create a DPCON with 4 priorities:

 $ restool dpcon create --num-priorites=4
 dpcon.8 is created under dprc.1

8.3.2.2.6.4 create command
The create command creates a new DPCON. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpcon create [OPTIONS]

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 681

OPTIONS :

--num-priorities=<number>

Specifies the number of priorities, valid values are 1-8. Default is 1.

--container=<container_name>

Specifies the parent container name. e.g. dprc.2, dprc.3 etc.

If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPCON with 4 priorities:

 $ restool dpcon create --num-priorites=4
 dpcon.8 is created under dprc.1

8.3.2.2.6.5 destroy command
The destroy command destroys a DPCON.

SYNTAX:

restool dpcon destroy <dpcon-object>

ARGUMENTS :

<dpcon-object>

Specifies which DPCON to destroy.

EXAMPLE:

 $ restool dpcon destroy dpcon.9

dpcon.9 is destroyed

8.3.2.2.7 DPCI Commands
8.3.2.2.7.1 help command
The help command displays usage information for the DPCI object.

SYNTAX:

restool dpci help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpci help
 usage: restool dpci <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPCI object.
 create - creates a DPCI under the root DPRC
 destroy - destroys a DPCI under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.7.2 info command
The info command displays detailed information about a specific dpci object.

SYNTAX:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
682 NXP Semiconductors

restool dpci info <dpci-object> [--verbose]

ARGUMENTS :

<dpci-object>

Specifies which dpci object to show detailed info for. The dpci-object argument is a

string specifying the object name—e.g. “dpci.8”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpci info dpci.1
 dpci version: 2.0
 dpci id: 1
 plugged state: plugged
 num_of_priorities: 2
 connected peer: dpci.4
 peer's num_of_priorities: 2
 link status: 0 – down

8.3.2.2.7.3 create command
The create command creates a new DPCI. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpci create [OPTIONS]

OPTIONS :

--num-priorities=<number>

Specifies the number of priorities, valid values are 1 or 2. Default is 1.

EXAMPLE:

Create a DPCI with 4 priorities:

 $ restool dpci create --num-priorites=2
 dpci.8 is created under dprc.1

8.3.2.2.7.4 create command
The create command creates a new DPCI. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpci create [OPTIONS]

OPTIONS :

--num-priorities=<number>

Specifies the number of priorities, valid values are 1 or 2. Default is 1.

--container=<container_name>

Specifies the parent container name. e.g. dprc.2, dprc.3 etc.

If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPCI with 4 priorities:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 683

 $ restool dpci create --num-priorites=2
 dpci.8 is created under dprc.1

8.3.2.2.7.5 destroy command
The destroy command destroys a DPCI.

SYNTAX:

restool dpci destroy <dpci-object>

ARGUMENTS :

<dpci-object>

Specifies which DPCI to destroy.

EXAMPLE:

 $ restool dpci destroy dpci.9

dpci.9 is destroyed

8.3.2.2.8 DPSECI Commands
8.3.2.2.8.1 help command
The help command displays usage information for the DPSECI object.

SYNTAX:

restool dpseci help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpseci help
 usage: restool dpseci <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPSECI object.
 create - creates a DPSECI under the root DPRC
 destroy - destroys a DPSECI under the root DPRC
 For command-specific help, use the --help option available for each command.

8.3.2.2.8.2 info command
The info command displays detailed information about a specific dpseci object.

SYNTAX:

restool dpseci info <dpseci-object> [--verbose]

ARGUMENTS :

<dpseci-object>

Specifies which dpseci object to show detailed info for. The dpseci-object argument is

a string specifying the object name—e.g. “dpseci.8”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
684 NXP Semiconductors

 $ restool dpseci info dpseci.1
 dpseci version: 2.0
 dpseci id: 1
 plugged state: plugged
 number of priorities: 1
 dpci id: 1

8.3.2.2.8.3 create command
The create command creates a new DPSECI. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpseci create [OPTIONS]

OPTIONS :

--priorities=<priority1,priority2>

DPSEC support 2 priorities that can be individually set. Valid values for <priority1> and <priority2> are
1-8. Default is 1.

EXAMPLE:

Create a DPSECI with 4 priorities:

 $ restool dpseci create --priorites=2,4
 dpseci.9 is created under dprc.1

8.3.2.2.8.4 create command
The create command creates a new DPSECI. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpseci create [OPTIONS]

OPTIONS :

--priorities=<priority1,priority2>

DPSEC support 2 priorities that can be individually set. Valid values for <priority1> and <priority2> are
1-8. Default is 1.

--container=<container_name>
Specifies the parent container name. e.g. dprc.2, dprc.3 etc.
If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPSECI with 4 priorities:

 $ restool dpseci create --priorites=2,4
 dpseci.9 is created under dprc.1

8.3.2.2.8.5 destroy command
The destroy command destroys a DPSECI.

SYNTAX:

restool dpseci destroy <dpseci-object>

ARGUMENTS :

<dpseci-object>

Specifies which DPSECI to destroy.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 685

EXAMPLE:

 $ restool dpseci destroy dpseci.9

dpseci.9 is destroyed

8.3.2.2.9 DPDMUX Commands
8.3.2.2.9.1 help command
The help command displays usage information for the DPDMUX object.

SYNTAX:

restool dpdmux help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpdmux help
 usage: restool dpdmux <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPDMUX object.
 create - creates a DPDMUX under the root DPRC
 destroy - destroys a DPDMUX under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.9.2 info command
The info command displays detailed information about a specific dpdmux object.

SYNTAX:

restool dpdmux info <dpdmux-object> [--verbose]

ARGUMENTS :

<dpdmux-object>

Specifies which dpdmux object to show detailed info for. The dpdmux-object

argument is a string specifying the object name—e.g. “dpdmux.2”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

$ restool dpdmux info dpdmux.0
dpdmux version: 4.1
dpdmux id: 0
plugged state: plugged
endpoints:
endpoint state: 0
 interface 0: dpmac.1, link is down
endpoint state: 0
 interface 1: dpni.0, link is down
endpoint state: 0
 interface 2: dpni.1, link is down
dpdmux_attr.options value is: 0x2
 DPDMUX_OPT_BRIDGE_EN
DPDMUX address table method: DPDMUX_METHOD_MAC
DPDMUX manipulation type: DPDMUX_MANIP_NONE
number of interfaces (excluding the uplink interface): 3

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
686 NXP Semiconductors

DPDMUX frame storage memory size: 0
control interface ID: 0

8.3.2.2.9.3 create command
The create command creates a new DPDMUX. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpdmux create --num-ifs=<number> [OPTIONS]

ARGUMENTS :

--num-ifs=<number>

Number of virtual interfaces (excluding the uplink interface).

OPTIONS :

--method=<dmat_method>

Where <dmat_method> defines the method of the DPDMUX address table. A valid value is one of the following:

 DPDMUX_METHOD_NONE
 DPDMUX_METHOD_C_VLAN_MAC
 DPDMUX_METHOD_MAC
 DPDMUX_METHOD_C_VLAN
 DPDMUX_METHOD_S_VLAN

Default is DPDMUX_METHOD_C_VLAN_MAC

--manip=<manip>

Where <manip> defines the DPDMUX required manipulation operation. A valid value is one of the following:

 DPDMUX_MANIP_NONE

 DPDMUX_MANIP_ADD_REMOVE_S_VLAN

Default is DPDMUX_MANIP_NONE

--options=<options-mask>

 DPDMUX_OPT_BRIDGE_EN

Default is 0 (don’t set any options)

--max-dmat-entries=<number>

max entries in DPDMUX address table. Default is 64.

--max-mc-groups=<number>

Number of multicast groups in DPDMUX table. Default is 32 groups.

EXAMPLE:

Create a DPDMUX with all default options:

$ restool dpdmux create --num-ifs=4
 dpdmux.11 is created under dprc.1

8.3.2.2.9.4 create command
The create command creates a new DPDMUX. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpdmux create --num-ifs=<number> [OPTIONS]

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 687

ARGUMENTS :

--num-ifs=<number>

Number of virtual interfaces (excluding the uplink interface).

OPTIONS :

--method=<dmat_method>

Where <dmat_method> defines the method of the DPDMUX address table. A valid value is one of the following:

 DPDMUX_METHOD_NONE
 DPDMUX_METHOD_C_VLAN_MAC
 DPDMUX_METHOD_MAC
 DPDMUX_METHOD_C_VLAN
 DPDMUX_METHOD_S_VLAN

Default is DPDMUX_METHOD_C_VLAN_MAC

--manip=<manip>

Where <manip> defines the DPDMUX required manipulation operation. A valid value is one of the following:

 DPDMUX_MANIP_NONE

 DPDMUX_MANIP_ADD_REMOVE_S_VLAN

Default is DPDMUX_MANIP_NONE

--options=<options-mask>

 DPDMUX_OPT_BRIDGE_EN

Default is 0 (don’t set any options)

--max-dmat-entries=<number>

max entries in DPDMUX address table. Default is 64.

--max-mc-groups=<number>

Number of multicast groups in DPDMUX table. Default is 32 groups.

--container=<container_name>
Specifies the parent container name. e.g. dprc.2, dprc.3 etc.
If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPDMUX with all default options under dprc.2:

$ restool dpdmux create --num-ifs=4 --container=dprc.2
 dpdmux.11 is created under dprc.2

8.3.2.2.9.5 destroy command
The destroy command destroys a DPDMUX.

SYNTAX:

restool dpdmux destroy <dpdmux-object>

ARGUMENTS :

<dpdmux-object>

Specifies which DPDMUX to destroy.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
688 NXP Semiconductors

EXAMPLE:

 $ restool dpdmux destr

8.3.2.2.10 DPMCP Commands
8.3.2.2.10.1 help command
The help command displays usage information for the DPMCP object.

SYNTAX:

restool dpmcp help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpmcp help
 usage: restool dpmcp <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPMCP object.
 create - creates a DPMCP under the root DPRC
 destroy - destroys a DPMCP under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.10.2 info command
The info command displays detailed information about a specific dpmcp object.

SYNTAX:

restool dpmcp info <dpmcp-object> [--verbose]

ARGUMENTS :

<dpmcp-object>

Specifies which dpmcp object to show detailed info for. The dpmcp-object argument

is a string specifying the object name—e.g. “dpmcp.8”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpmcp info dpmcp.5
 dpmcp version: 1.0
 dpmcp object id/portal id: 5
 plugged state: plugged

8.3.2.2.10.3 create command
The create command creates a new DPMCP. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpmcp create

EXAMPLE:

Create a DPMCP:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 689

 $ restool dpmcp create
 dpmcp.15 is created under dprc.1
 $ restool dpmcp create
 MC error: No resource (status 0x8)
 // when you see this error, it usually means no free portal available at this time.

8.3.2.2.10.4 create command
The create command creates a new DPMCP. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpmcp create [OPTIONS]

--container=<container_name>
Specifies the parent container name. e.g. dprc.2, dprc.3 etc.
If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPMCP:

 $ restool dpmcp create
 dpmcp.15 is created under dprc.1
 $ restool dpmcp create
 MC error: No resource (status 0x8)
 // when you see this error, it usually means no free portal available at this time.

8.3.2.2.10.5 destroy command
The destroy command destroys a DPMCP.

SYNTAX:

restool dpmcp destroy <dpmcp-object>

ARGUMENTS :

<dpmcp-object>

Specifies which DPMCP to destroy.

EXAMPLE:

 $ restool dpmcp destroy dpmcp.9
 dpmcp.9 is destroyed

8.3.2.2.11 DPMAC Commands
8.3.2.2.11.1 help command
The help command displays usage information for the DPMAC object.

SYNTAX:

restool dpmac help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpmac help
 usage: restool dpmac <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPMAC object.
 create - creates a DPMAC under the root DPRC
 destroy - destroys a DPMAC under the root DPRC

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
690 NXP Semiconductors

 For command-specific help, use the --help option available for each command.

8.3.2.2.11.2 info command
The info command displays detailed information about a specific dpmac object.

SYNTAX:

restool dpmac info <dpmac-object> [--verbose]

ARGUMENTS:

<dpmac-object>

Specifies which dpmac object to show detailed info for. The dpmac-object argument

is a string specifying the object name—e.g. “dpmac.8”.

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpmac info dpmac.5
 dpmcp version: 2.0
 dpmac object id/phy id: 5
 plugged state: plugged

8.3.2.2.11.3 create command
The create command creates a new DPMAC. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpmac create --mac-id=<number>

--mac-id=<number>

Specifies the mac id.

EXAMPLE:

Create a DPMAC with valid portal id:

 $ restool dpmac create -–mac-id=15
 dpmac.15 is created under dprc.1

8.3.2.2.11.4 create command
The create command creates a new DPMAC. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpmac create --mac-id=<number> [OPTIONS]

--mac-id=<number>

Specifies the mac id.

OPTIONS:
--container=<container_name>
Specifies the parent container name. e.g. dprc.2, dprc.3 etc.
If it is not specified, the new object will be created under the default dprc.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 691

EXAMPLE:

Create a DPMAC with valid portal id:

 $ restool dpmac create -–mac-id=6
 dpmac.6 is created under dprc.1

8.3.2.2.11.5 destroy command
The destroy command destroys a DPMAC.

SYNTAX:

restool dpmac destroy <dpmac-object>

ARGUMENTS :

<dpmac-object>

Specifies which DPMAC to destroy.

EXAMPLE:

 $ restool dpmac destroy dpmac.9
 dpmac.9 is destroyed

8.3.2.2.12 DPDCEI Commands
8.3.2.2.12.1 help command
The help command displays usage information for the DPDCEI object.

SYNTAX:

restool dpdcei help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpdcei help
 usage: restool dpdcei <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPDCEI object.
 create - creates a DPDCEI under the root DPRC
 destroy - destroys a DPDCEI under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.12.2 info command
The info command displays detailed information about a specific dpdcei object.

SYNTAX:

restool dpdcei info <dpdcei-object> [--verbose]

ARGUMENTS :

<dpdcei-object>

Specifies which dpdcei object to show detailed info for. The dpdcei-object argument

is a string specifying the object name, e.g. “dpdcei.2”.

--verbose

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
692 NXP Semiconductors

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpdcei info dpdcei.5
 dpdcei version: 0.0
 dpdcei id: 5
 plugged state: plugged
 DPDCEI engine: DPDCEI_ENGINE_COMPRESSION

8.3.2.2.12.3 create command
The create command creates a new DPDCEI. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpdcei create --engine=<engine> --priority=<number>

--engine=<engine>

Compression or decompression engine to be selected.

A valid value is one of the following:

 DPDCEI_ENGINE_COMPRESSION

 DPDCEI_ENGINE_DECOMPRESSION

--priority=<number>

Priority for DCE hardware processing (valid values 1-8)

EXAMPLE:

Create a DPDCEI:

 $ restool dpdcei create --engine=DPDCEI_ENGINE_COMPRESSION --priority=2
 dpdcei.0 is created under dprc.1
 $ restool dpdcei create --engine=DPDCEI_ENGINE_COMPRESSION --priority=3
 dpdcei.1 is created under dprc.1

8.3.2.2.12.4 create command
The create command creates a new DPDCEI. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpdcei create --engine=<engine> --priority=<number> [OPTIONS]

--engine=<engine>

Compression or decompression engine to be selected.

A valid value is one of the following:

 DPDCEI_ENGINE_COMPRESSION

 DPDCEI_ENGINE_DECOMPRESSION

--priority=<number>

Priority for DCE hardware processing (valid values 1-8)

OPTIONS:
--container=<container_name>
Specifies the parent container name. e.g. dprc.2, dprc.3 etc.
If it is not specified, the new object will be created under the default dprc.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 693

EXAMPLE:

Create a DPDCEI:

 $ restool dpdcei create --engine=DPDCEI_ENGINE_COMPRESSION --priority=2
 dpdcei.0 is created under dprc.1
 $ restool dpdcei create --engine=DPDCEI_ENGINE_COMPRESSION --priority=3
 dpdcei.1 is created under dprc.1

8.3.2.2.12.5 destroy command
The destroy command destroys a DPDCEI.

SYNTAX:

restool dpdcei destroy <dpdcei-object>

ARGUMENTS :

<dpdcei-object>

Specifies which DPDCEI to destroy.

EXAMPLE:

 $ restool dpdcei destroy dpdcei.9
 dpdcei.9 is destroyed

8.3.2.2.13 DPAIOP Commands
8.3.2.2.13.1 help command
The help command displays usage information for the DPAIOP object.

SYNTAX:

restool dpaiop help

ARGUMENTS:

none

EXAMPLE:

 $ restool dpaiop help
 usage: restool dpaiop <command> [--help][ARGS…]
 Where <command> can be:
 info - displays detailed information about a DPAIOP object.
 create - creates a DPAIOP under the root DPRC
 destroy - destroys a DPAIOP under the root DPRC

 For command-specific help, use the --help option available for each command.

8.3.2.2.13.2 info command
The info command displays detailed information about a specific dpaiop object.

SYNTAX:

restool dpaiop info <dpaiop-object> [--verbose]

ARGUMENTS :

<dpaiop-object>

Specifies which dpaiop object to show detailed info for. The dpaiop-object argument

is a string specifying the object name—e.g. “dpaiop.8”.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
694 NXP Semiconductors

--verbose

Shows extended/verbose information about the object

EXAMPLE:

 $ restool dpaiop info dpaiop.5

dpmcp version: 1.0

dpmcp id: 5

plugged state: plugged

dpaiop server layer version: 2.1.3

DPAIOP state: DPAIOP_STATE_RUNNING

8.3.2.2.13.3 create command
The create command creates a new DPAIOP. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpaiop create --aiop-id=<number> --aiop-container=<container-name>

ARGUMENTS :

--aiop-container=<container-name>

Specifies the AIOP container name, e.g. dprc.3, dprc.4, etc.

OPTIONS :

--aiop-id=<number>

Specifies the AIOP ID. Currently aiop container could only hold one dpaiop. Valid

number is 0. Default number is 0.

EXAMPLE:

Create a DPAIOP:

 $ restool dpaiop create –-aiop-id=0 --aiop-container=dprc.3
 dpaiop.0 is created under dprc.3

 $ restool dpaiop create --aiop-container=dprc.3
 dpaiop.0 is created under dprc.3

8.3.2.2.13.4 create command
The create command creates a new DPAIOP. The name/id of the object created is displayed to stdout.

SYNTAX:

restool dpaiop create --aiop-container=<container-name> [OPTIONS]

ARGUMENTS :

--aiop-container=<container-name>

Specifies the AIOP container name, e.g. dprc.3, dprc.4, etc.

OPTIONS :

--container=<container-name>

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 695

Specifies the parent container name. e.g. dprc.2, dprc.3 etc.
If it is not specified, the new object will be created under the default dprc.

EXAMPLE:

Create a DPAIOP:

 $ restool dpaiop create --aiop-container=dprc.3
 dpaiop.0 is created under dprc.1

Create a DPAIOP as a child object of dprc.2:

 $ restool dpaiop create --aiop-container=dprc.3 --container=dprc.2
 dpaiop.0 is created under dprc.2

8.3.2.2.13.5 destroy command
The destroy command destroys a DPAIOP.

SYNTAX:

restool dpaiop destroy <dpaiop-object>

ARGUMENTS :

<dpaiop-object>

Specifies which DPAIOP to destroy.

EXAMPLE:

 $ restool dpio destroy dpaiop.9
 dpaiop.9 is destroyed

8.3.3 DPAA2 User Manual
DPAA2 is a hardware-level networking architecture found on some NXP SoCs. This section provides technical information on this
architecture mainly for software developers.

Click here to access the DPAA2 User Manual PDF.

8.3.4 DPAA2 API Reference Manual
Click here to access the DPAA2 API Reference Manual PDF.

8.3.5 Backplane Support on Layerscape

8.3.5.1 Overview
This section describes how to enable backplane support for Layerscape devices with embedded support for this type of
connection.

Ethernet operation over electrical backplanes, also referred to as “Backplane Ethernet,” combines the IEEE 802.3 Media Access
Control (MAC) and MAC Control sublayers with a family of Physical Layers defined to support operation over a modular chassis
backplane. Usually, there is no external PHY involved and the connection is made at the SoC’s PCS (Physical Coding Sublayer)
level. Based on the link quality, a signal equalization is required. In cases where the link is realized based on passive direct attach
cables, the link may need to be established with only the default (recommended) parameters for equalization. The standard states
that a start-up algorithm should be in place in order to get the link up.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
696 NXP Semiconductors

8.3.5.1.1 10GBase-KR Support on Layerscape Platforms
Layerscape devices come with embedded support for backplane connections at different baud rates. 10G is present in all LS2XXX
and in some LS1XXX devices.

The enablement of backplane support is done in two parts. One refers to support from the device tree while the other is contained
in the Linux kernel driver.

In the device tree, the following value is valid backplane-mode:

• 10gbase-kr

In the Linux kernel driver, the implementation is different depending on each of the four different cases. However, the following
changes are common for all:

• Advertise the link partner with the correct working mode.

• Put the lane in the correct mode (10GBase-KR).

• Use the recommended (if it is the case) parameters for pre- and post-tap coefficients in the lane initialization phase. This
affects the starting point of the algorithm.

• Optionally, update the constraint relation between tap coefficients if this is needed.

8.3.5.1.2 Physical Layer Signaling System
The Backplane Ethernet extends the family of 10GBASE-R Physical Layer signaling systems to include the 10GBASE-KR. This
embodiment specifies 10 Gb/s operation over two differential, controlled impedance pairs of traces (one pair for transmit, one pair
for receive). This system employs the 10GBASE-R PCS, the serial PMA, and the 10GBASE-KR PMD sublayers.

The 10GBASE-KR PMD’s control function implements the 10GBASE-KR start-up protocol. This protocol facilitates timing recovery
and equalization while also providing a mechanism through which the receiver can tune the transmit equalizer to optimize
performance over the backplane interconnect. The 10GBASE-KR PHY may optionally include 10GBASE-R Forward Error
Correction (FEC).

Details about the aforementioned layers can be found in Clause 49, 51 and 74 of the IEEE Std 802.3.

8.3.5.1.3 Auto-negotiation
Auto-negotiation allows the devices at both ends of a link segment to advertise abilities, acknowledge receipt, and discover the
common modes of operation that both devices share. It also rejects the use of operational modes not shared by both devices.
Auto-negotiation does not test link segment characteristics.

8.3.5.1.4 Link Training
Link Training occurs after auto-negotiation has determined the link to be a 10GBase-KR, but before auto-negotiation is done. It
continuously exchanges messages (training frames) between the local and the remote device as part of the start-up phase. Link
training also tunes the analog parameters of the remote and local SerDes transmitter to improve the link quality. Both LP (link
partner/remote device) and LD (local device) perform link training in parallel. Link training stops when both sides decide that the
link is passable. Then the link is considered up.

8.3.5.2 Enable Backplane Support on Layerscape

8.3.5.2.1 Setup

Hardware Setup

• Two LS2088AQDS boards with no XFI retimers

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 697

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4213276

• Passive direct attach cable (l <= 1M)

Software Setup

• Linux kernel with backplane support enabled

• Device tree for LS2088AQDS with backplane PHY devices

An LS2088AQDS was used for this implementation/demonstration. You may use any custom board that enables

access to the Backplane Ethernet feature.

 NOTE

8.3.5.2.2 Enable Backplane Connection from MC
This step is required only for devices based on DPAA2 architecture.

Use MAC_LINK_TYPE_BACKPLANE for all ports that will be used for backplane connections. In order to do that in the MC data path
configuration file, add an entry like below for all ports used:

board_info {
 ports {
 …
 mac@1 {
 link_type = "MAC_LINK_TYPE_BACKPLANE";
 };
 …
 };
 };
 };

Deploy this configuration file on the target board as per Data Path Configuration chapter from DPAA2 User Manual.

NOTE: This is a very important step and omitting it can lead to an unreliable backplane connection. Random link-down or link-up
events can be experienced. This is due to a concurrent access to MDIO bus between MC core (MC firmware) and GPP core
(Linux kernel).

8.3.5.2.3 Enable Backplane Support in Linux Kernel

8.3.5.2.3.1 Enable Backplane PHY Driver
Enable backplane support from:

Device Drivers->Network device support->PHY device support and infrastructure->FSL_BACKPLANE

.

8.3.5.2.3.2 Add Backplane PHY Devices in Device Tree

8.3.5.2.3.2.1 SerDes Device and Internal MDIO Buses
Normally the SerDes device and all internal MDIO buses should be listed in the SoC’s common device tree source file:

<linux_kernel_repo>/arch/arm64/boot/dts/freescale/fsl-<device>xa.dtsi file.

To see if the SerDes module is listed, examine a block like the one below:

serdes1: serdes@1ea0000 {
 reg = <0x0 0x1ea0000 0 0x00002000>;
};

If the SerDes module is listed then it means that the serdes1 (label for SerDes node) is registered and can be used. The only
client of this node is the kernel backplane PHY driver which uses the node's unit address as a base address. The base address
is mapped in the SOC's memory space to further access specific MDIO registers used to control the backplane connection.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
698 NXP Semiconductors

In the DTS, there must be a serdes1 node like the one represented above. If the node is not present, then it must be added. The
device base address is listed in SoC’s CCSR memory map. One thing that should be considered is endianness of SerDes module,
which can be different than that of the GPP. In this case, the module's registers must be accessed using the GPP's ednianness.
Currently, the Linux kernel backplane PHY driver does not support access dependent on target endianness. One way to do this
will be to use the endianness attribute in the device tree. This way the driver can be used on different targets without changes.

Next look after internal MDIO buses listed in the device tree. See the block below as an example:

pcs_mdio1: mdio@0x8c07000 {
 compatibile = “fsl, fman-memac-mdio”;
 reg = <0x0 0x8c07000 0x0 0x1000>;
 device_type = “mdio”;
 little-endian;
};

The block above shows that pcs_mdio1 is listed in the device tree. The unit address of this node (0x8c7000) is the WRIOP internal
physical port 1 base address as it is mapped in the SoC memory space. The address 0x8c0000 is the WRIOP port block base
address as it is listed in SoC reference manual. The address 0x7000 is the physical port offset in the WRIOP internal memory
map. All pcs_mdio ports have an offset of 0x4000 between them, so the next port will be located at 0xb000 and so on. The attribute
fsl, fman-memac-mdio means that the FSL MDIO driver will be used to access this MDIO bus. It is required to use a dedicated
MDIO bus driver to access internal MDIO buses, because it uses proprietary MDIO control registers block and offset. See the
DPAA2 User Manual for details about MDIO registers block.

The kernel MDIO driver used is:

<linux_kernel_repo>/drivers/net/Ethernet/freescale/xgmac_mdio.c

Internal MDIO buses should be listed for all PCS ports that support backplane connection, either KR or KX, in the device tree.
This is because for every port used, the management registers are accessed through the MDIO bus. See DPAA2 architecture for
details on how internal MDIO registers block is mapped for every physical port and MDIO registers subchapter of SerDes chapter
from SoC reference manual.

If no internal MDIO bus is listed then add one internal MDIO bus for every PCS port target that will be used in a backplane
connection.

8.3.5.2.3.2.2 Backplane PHY Devices
PCS ports are specific to each board. Backplane PHY devices should be added in board-specific device trees:

<linux_kernel_repo>/arch/arm64/boot/dts/freescale/fsl-<device>-<qds, rdb>.dts.

A backplane PHY device is registered on an internal MDIO bus. The block below is an example:

&pcs_mdio1 {
 pcs_phys1: ethernet-phy@0 {
 backplane-mode = “10gbase-kr”;
 compatible = “ethernet-phy-ieee802.3-c45”;
 reg = <0x0>;
 fsl, lane-handle = *lt;&serdes1>;
 fsl, lane-reg = <0x9c0 0x40>; /* lane H */
};

Pcs-phys1 is listed on the MDIO bus and should be discovered when this bus is probed. The kernel backplane PHY driver should
also register a PHY driver using PHY hardware ID (read via MDIO bus).

The backplane-mode attribute tells the kernel backplane PHY driver how to configure a specific SerDes lane. Currently, a SerDes
lane can be configured in two ways: 10gbase-kr and 1000base-kx.

The fsl, lane-handle attribute is used to identify which SerDes lane the PCS port belongs to. In this case “serdes1” is used.

The fsl, lane-reg attribute is used to identify the SerDes lane used to send and receive data. 0x9c0 is the lane H offset in the
SerDes1 internal memory map. See each platform's SoC Reference Manual for details and to find the other lane’s offsets.

For LS2088a-QDS boards backplane PHY devices are added already for use with lane from H to E. Note that for SerDes 1 lane
are numbered in the reversed order compared to WRIO physical ports and MACs.

If the backplane PHY device is not registered on internal MDIO buses for a specific board, then it can be added in the DTS.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 699

8.3.5.2.3.2.3 Connect with Backplane PHY Device Handle
Because the kernel PHY driver is instantiated by the kernel MAC driver, there should be a specified connection between the MAC
and a specific PHY in the device tree. In the following example, the backplane PHY from SerDes lane H is used:

&dpmac1 {
 phy-handle = <&pcs_phy1>;
};

8.3.5.2.4 SerDes Setup
• Enable XFI protocol on SerDes lane - reset configuration word.

• Initialize the SerDes lane registers for the mode:

- Ethernet 10GBASE-KR

• Check the link capabilities with AN - software.

• Train the link - software.

8.3.5.2.5 Board Configuration

HW Adjustments

XFI retimers soldered on boards must be removed and PCS output signals should be routed directly to SFP+ cages pins. This is
a very important operation and should be carried out carefully.

On SerDes1 module, XFI/10GBase-KR protocol will be activated on all eight lanes using 0x2a for protocol selection bits.

Connection Cables

Connect with passive direct attach cable.

Two LS2088A QDS boards will be connected back to back with a passive direct attach copper cable, with a maximum length of
1m (for ex SFP-H10GB-CU1M).

8.3.5.3 Use Cases

ping

In order to run a backplane ping use case, two boards must be connected back to back with a passive direct attach copper cable.
Start MC with specified DPC file. Apply DPL using fsl_mc apply dpl command from U-boot and then boot Linux on both boards.
After booting Linux, the interfaces must be configured properly for the two ports connected together using two IP addresses from
the same IP class.

For example, use:

• On first board: ifconfig ni0 1.1.1.1

• On second board: ifconfig ni0 1.1.1.2

Once the interfaces are configured, traffic can be sent between the two the boards through the backplane link:

• On first board: ping 1.1.1.2

• On second board: ping 1.1.1.1

netperf

the backplane netperf use case is similar to the ping usecase described above, and it is used for backplane performance
benchmark. The board configuration must be done identically as described above. The difference is how traffic is sent between
the two boards.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
700 NXP Semiconductors

For example using UDP streams:

• On first board: netperf -H 1.1.1.2 -l 60 -t UDP_STREAM -N &

• On second board: netperf -H 1.1.1.1 -l 60 -t UDP_STREAM -N &

8.3.6 AIOP

8.3.6.1 AIOP Sample Applications
The Advanced I/O Processor (AIOP) hardware, an optional component of the DPAA2 architecture, is a C-programmable engine
that enables power efficient packet-oriented processing. This section provides sample applications that can be used to exercise
functionality of offloading packet processing in AIOP.

8.3.6.1.1 Creating AIOP Containers
This section describes how to dynamically create Data Path Resource Containers owned by AIOP and how to load AIOP ELF by
using AIOP Tool.

cd /usr/aiop/scripts

In this folder there are two scripts based on restool available:

• dynamic_aiop_only.sh - script used by reference applications only with AIOP side, not interacting with other components

• dynamic_aiop_root.sh - script used by reference applications that interact with Linux Kernel running on GPPS

Scripts do not require any command line argument as input. Sample execution flow is shown below:

./dynamic_aiop_only.sh
Creating AIOP Container
Assigned dpbp.1 to dprc.2
Assigned dpbp.2 to dprc.2
Assigned dpbp.3 to dprc.2
Assigned dpni.1 to dprc.2
Connecting dpni.1<------->dpmac.1
Assigned dpni.2 to dprc.2
Connecting dpni.2<------->dpmac.2
AIOP Container dprc.2 created
----- Contents of AIOP Container: dprc.2 -----
dprc.2 contains 5 objects:
object label plugged-state
dpni.2 plugged
dpni.1 plugged
dpbp.3 plugged
dpbp.2 plugged
dpbp.1 plugged

==
Creating AIOP Tool Container
Assigned dpaiop.0 to dprc.3
Assigned dpmcp.22 to dprc.3
AIOP Tool Container dprc.3 created
----- Contents of AIOP Tool Container: dprc.3 -----
dprc.3 contains 2 objects:
object label plugged-state
dpaiop.0 plugged
dpmcp.22 plugged

==
Performing VFIO mapping for AIOP Tool Container (dprc.3)
Performing vfio mapping for dprc.3
[796.531485] vfio-fsl-mc dprc.3: Binding with vfio-fsl_mc driver
[796.540756] vfio-fsl-mc dpaiop.0: Binding with vfio-fsl_mc driver
[796.547364] vfio-fsl-mc dpmcp.22: Binding with vfio-fsl_mc driver
========== Summary =================================

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 701

 AIOP Container: dprc.2
 AIOP Tool Container: dprc.3
==

To load the AIOP binary by using AIOP Tool, the AIOP Tool Container is necessary. In the above case is dprc.3. The following
command should be executed:

aiop_tool load -g dprc.3 -f /usr/aiop/bin/aiop_reflector.elf &
AIOP Image (aiop_reflector.elf) loaded successfully.

To ensure that AIOP image is indeed loaded and running, the AIOP console can be checked by executing one of the following
commands:

restool dpaiop info dpaiop.0
dpaiop id: 0
dpaiop version: 2.3
plugged state: plugged
dpaiop server layer version: 7.2.0
DPAIOP state: DPAIOP_STATE_RUNNING

root@ls2085ardb:~# cat /dev/fsl_aiop_console
 . . .

8.3.6.1.2 AIOP Packet Reflector Application
8.3.6.1.2.1 AIOP Packet Reflector Overview
This section demonstrates a simple application data path on the AIOP.

The application performs the following functions:

• Configure the fields used for the initial order scope hash generation. The fields are: the source address, the destination
address, the protocol type fields from the IP header and the source port and the destination port from the L4 header. For
every packet received by WRIOP a hashed Initial Ordering Scope (IOS) will be generated based on these values.

• Set Concurrent Execution (XC) as the initial packets processing mode. In the initial stage of processing, the packets are
processed concurrently by many cores in their ordering scope.

• Drop non IPv4 packets.

• Switch the source and destination MAC and IP addresses of the received packets.

• Transition into Exclusive execution (XX) in order to restore packet order. This is optional and can be deactivated through
define EXCLUSIVE_MODE

• Reflect back the packet on the same interface from which it was received.

IP SRC <-> IPDST

AIOP

MAC SRC <-> MAC DST Optional:transition to
Exclusive Execution

(xx)

Reflect packets
Drop FrameNI

DPMAC

WRIOP

Hash Generation 5-tuple:
IP SRC, IP DST, PTYPE, PORT SRC, PORT DST

Non-IPv4

Packet

DPNI

Figure 156. AIOP Packet Reflector overview

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
702 NXP Semiconductors

8.3.6.1.2.2 Running the Reflector Application
The ELF for AIOP reflector is /usr/aiop/bin/aiop_reflector.elf. This can be loaded via AIOP Tool as section Creating AIOP
Containers describes. For this application the script dynamic_aiop_only.sh must be executed before loading the image:

./dynamic_aiop_only.sh

To load the AIOP Reflector Application, execute the following command:

aiop_tool load -g dprc.3 -f /usr/aiop/bin/aiop_reflector.elf &

To check if the AIOP Reflector Application loaded successfully, execute the following command in the Linux command shell:

cat /dev/fsl_aiop_console | grep REFLECTOR

The command output should display information about the Network Interfaces (NIs) that were successfully configured: NI instance
(e.g. NI 0) together with the associated MAC address.

REFLECTOR : Successfully configured ni0 (dpni.2)
REFLECTOR : dpni.2 <---connected---> dpmac.2 (MAC addr: 00:00:00:00:00:07)
REFLECTOR : Successfully configured ni1 (dpni.1)
REFLECTOR : dpni.1 <---connected---> dpmac.1 (MAC addr: 00:00:00:00:00:06)

Although the AIOP container contains multiple three DPNIs (DPNI6, DPNI7 and DPNI10), the AIOP Reflector will

use only the DPNIs that have a DPMAC as endpoint (on which it can succesfully configure the order scope). The

others will be skipped in application initialization.

 NOTE

During frame processing, the AIOP Logger will print the following brief information about every reflected packet:

• AIOP Core number on which the frame was processed

• Received MAC source and destination addresses

• Received IP source and destination addresses

busybox tail –f /dev/fsl_aiop_console

RX on NI 0 | CORE:15
 MAC_SA: 00-10-94-00-00-02 MAC_DA: 00-00-00-00-00-06
 IP_SRC: 192.85.1.1 IP_DST: 192.0.0.1

RX on NI 0 | CORE:14
 MAC_SA: 00-10-94-00-00-02 MAC_DA: 00-00-00-00-00-06
 IP_SRC: 192.85.1.2 IP_DST: 192.0.0.1

 . . .

RX on NI 0 | CORE:9
 MAC_SA: 00-10-94-00-00-02 MAC_DA: 00-00-00-00-00-06
 IP_SRC: 192.85.1.3 IP_DST: 192.0.0.1

8.3.6.1.2.3 Generating Traffic to Test AIOP Reflector Application
An external traffic source is needed to pass traffic to the reflector application. This could be another RDB or some other traffic
generator. Two optical 10G ports need to be connected to MAC1 and MAC2 of RDB-1.

The following graphic illustrates how traffic moves from a packet generator to RDB-1 board

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 703

Figure 157. Generating traffic for AIOP Packet Reflector

When using a Packet Generator to inject traffic, connect one port of the packet generator to MAC1 of RDB-1 and a second port
to MAC2 of RDB-1.

On RDB-1 ensure that both AIOP network interfaces are in link up state:

$ cat /dev/fsl_aiop_console | grep REFLECTOR
REFLECTOR : ni0 link is UP
REFLECTOR : ni1 link is UP

Generate an IPv4 frames for each of the two ports:

 MAC source: ANY
 MAC destination: 00:00:00:00:00:06 for MAC1
 00:00:00:00:00:07 for MAC2
 IP source: ANY
 IP destination: ANY

On RDB-1, the AIOP Logger will print a brief information about every frame that is being reflected.

8.3.6.1.3 AIOP Packet Classifier Application
8.3.6.1.3.1 AIOP Packet Classifier Overview
The purpose of this sample application is to demonstrate how to perform a simple Classification on the AIOP. The application will
apply a Classification criteria for every IPv4 frame and will reflect back only accepted frames.

There are three execution modes listed below:

• Exclusive execution (XX): This mode forces atomic processing of packets. Each packet is processed in order of its arrival
before the next packet is processed.

• Concurrent execution (XC): This mode processes packets within a flow concurrently on the AIOP. Packets may become
misordered as part of this parallel processing. To restore packet order, the data path transitions to exclusive execution
mode before transmitting the forwarded packets.

• Unordered. In this mode, packet ordering is not considered and concurrent packet processing takes place.

The application performs the following functions:

• Put network interfaces in promiscuous mode in order to allow packet reception regardless of its MAC destination address.

• Configure the fields used for the initial order scope hash generation. The fields are: the source address, the destination
address, the protocol type fields from the IP header and the source port and the destination port from the L4 header. For
every packet received by WRIOP a hashed Initial Ordering Scope (IOS) will be generated based on these values.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
704 NXP Semiconductors

— Set Concurrent Execution (XC) as the initial packets processing mode. In the initial stage of processing, the packets
are processed concurrently by many cores in their ordering scope.

— Classify the packets to enable different processing modes to be run based on the type of traffic. Classification is
based on the following fields: IPv4 source and destination addresses, Protocol number, Source and Destination Layer
4 ports. The packets processing mode is selected as a result of the classification as follows:

— TCP packets are processed in exclusive execution mode (XX)

— UDP packets are processed in concurrent execution mode (XC). In order to keep the UDP packets in order, the
application must transition to exclusive execution mode before sending packets to the destination port.

— SCTP packets are processed with no respect regarding their arrival order (Unordered).

— The packets not matching the classification criteria are dropped.

In order to determine the processing mode in which a packet should be processed, when a lookup hit is obtained, the lookup
result will return the new processing mode to which the application should transition

• Switch the source and destination MAC and IP addresses of the received packets.

Reflect back the accepted packets on the same interface from which they were received

AIOP

Classification

5-tuple
IP SRC
IP DST
PTYPE

PORT SRC
PORT DST

NI

DPNI

Drop frame

Transition to XX

Transition to
Unordered

LU Miss

DPMAC

Packet

WRIOP

Hash Generation 5-tuple:
IP SRC, IP DST, PTYPE, PORT SRC, PORT DST

MAC SRC <-> MAC DST

TCP Hit

SCTP Hit

UDP Hit

IP SRC <-> IP DST

Reflect
packets

Figure 158. AIOP Packet Classifier overview

The Exact Match table in AIOP that will be used for table lookup will be populated with the following entries:

IP Source Address IP Destination
Address

Protocol Type Source Port Destination Port

198.20.1.1 198.19.1.0 6 (TCP) 1024 1025

198.20.1.1 198.19.1.64 17 (UDP) 1024 1025

198.20.1.1 198.19.1.128 132 (SCTP) 1024 1025

For each entry in the table a mask with value 0xE0 is applied on the last byte of the IP Destination address, allowing a number
of 32 IP Destination Address to be received. The following traffic flows will generate a HIT in the Classification table:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 705

IP Source Address IP Destination
Address

Protocol Type Source Port Destination Port

198.20.1.1 198.19.1.0

..

198.19.1.31

6 (TCP)
1024 1025

198.20.1.1 198.19.1.64

..

198.19.1.95

17 (UDP)
1024 1025

198.20.1.1 198.19.1.128

..

198.19.1.159

132 (SCTP)
1024 1025

8.3.6.1.3.2 Running the Classifier Application
The classifier application should be run on the RDB-1 system.

The ELF for AIOP Classifier is /usr/aiop/bin/aiop_classifier.elf. This can be loaded via AIOP tool as section Creating
AIOP Containers describes. For this application the script dynamic_aiop_only.sh must be executed before loading the image:

./dynamic_aiop_only.sh

To load the AIOP Classifier Application, execute the following command:

aiop_tool load -g dprc.3 -f /usr/aiop/bin/aiop_classifier.elf &

To check if the AIOP Classifier Application loaded successfully, execute the following command in the Linux command shell:

cat /dev/fsl_aiop_console | grep CLASSIFIER

The command output should display information about the Network Interfaces (NIs) that were successfully configured: NI instance
(e.g NI 0) together with the associated MAC address.

CLASSIFIER : Successfully configured exact table match
CLASSIFIER : Successfully configured ni0 (dpni.2)
CLASSIFIER : dpni.2 <---connected---> dpmac.2 (MAC addr: 00:00:00:00:00:07)
CLASSIFIER : Successfully configured ni1 (dpni.1)
CLASSIFIER : dpni.1 <---connected---> dpmac.1 (MAC addr: 00:00:00:00:00:06)

Although the AIOP container contains multiple NIs the AIOP Reflector will use only the NIs that have a DPMAC

as endpoint (on which it can succesfully configure the order scope).

 NOTE

During frame processing, the AIOP Logger will print the following brief information about every reflected packet:

• AIOP Core number on which the frame was processed

• Received MAC source and destination addresses

• Received IP source and destination addresses

busybox tail –f /dev/fsl_aiop_console

RX on NI 0 | CORE:15
 MAC_SA: 00-10-94-00-00-02 MAC_DA: 00-00-00-00-00-06
 IP_SRC: 198.20.1.1 IP_DST: 198.19.1.0

RX on NI 0 | CORE:14
 MAC_SA: 00-10-94-00-00-02 MAC_DA: 00-00-00-00-00-06

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
706 NXP Semiconductors

 IP_SRC: 198.20.1.1 IP_DST: 198.19.1.64

. . .

RX on NI 1 | CORE:9
 MAC_SA: 00-10-94-00-00-02 MAC_DA: 00-00-00-00-00-07
 IP_SRC: 198.20.1.1 IP_DST: 198.19.1.128

8.3.6.1.3.3 Generating Traffic to Test AIOP Classifier Application
An external traffic source is needed to pass traffic to the classifier application. This could be another RDB or some other traffic
generator. Two optical 10G ports need to be connected to MAC1 and MAC2 of RDB-1.

The following graphic illustrates how traffic moves from a packet generator to RDB-1 board.

IF0

IF1

Packet
Generator

AIOP

Classifier

NI 0

LS2085 RDB-1

NI 1

MAC1 -
00:00:00:00:00:06

MAC2 -
00:00:00:00:00:07

Figure 159. Generating traffic for AIOP Classifier

When using a Packet Generator to inject traffic, connect one port of the packet generator to MAC1 of RDB-1 and a second port
to MAC2 of RDB-1.

On RDB-1 ensure that both AIOP network interfaces are in link up state:

$ cat /dev/fsl_aiop_console | grep CLASSIFIER
...
CLASSIFIER : ni0 link is UP
CLASSIFIER : ni1 link is UP

Generate IPv4 frames for each of the two ports:

• MAC source: ANY

• MAC destination: ANY

• For IP & Layer 4, the accepted values are show in the following table:

IP Source Address IP Destination
Address

Protocol Type Source Port Destination Port

198.20.1.1 198.19.1.0

..

198.19.1.31

6 (TCP)
1024 1025

Table continues on the next page...

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 707

Table continued from the previous page...

IP Source Address IP Destination
Address

Protocol Type Source Port Destination Port

198.20.1.1 198.19.1.64

..

198.19.1.95

17 (UDP)
1024 1025

198.20.1.1 198.19.1.128

..

198.19.1.159

132 (SCTP)
1024 1025

The AIOP Logger will print a brief information about every frame that passed the Classification criteria.

Traffic can be generated using frames available in the provided classifier.pcap file. The traffic available is shown in

the table below.

 NOTE

IP Source Address IP Destination
Address

Protocol Type Source Port Destination Port

198.20.1.1 198.19.1.0

..

198.19.1.63

6 (TCP)
1024 1025

198.20.1.1 198.19.1.64

..

198.19.1.127

17 (UDP)
1024 1025

198.20.1.1 198.19.1.128

..

198.19.1.191

132 (SCTP)
1024 1025

This file can be used to generate the traffic from a traffic generator (e.g.: a packet generator or another RDB board). Location on
board for this file, after bringup, is in /usr/aiop/traffic_files/classifier.pcap. On RDB-1, the AIOP Reflector Classifier
Application will drop half of the frames in each range as a result of classification look-up miss.

8.3.6.1.4 AIOP Control Flow Application
8.3.6.1.4.1 AIOP Control Flow Overview
The purpose of this sample application is to demonstrate a simple AIOP-GPP communication using a DPNI-DPNI connection.
The application filters ICMP and ARP request frames and sends them to GPP where Linux Kernel replies with ICMP Echo Reply
and ARP Response.

Application has the following required connections:

• DPNI to DPNI connection: a network interface from AIOP that provides connection to another network interface on GPP

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
708 NXP Semiconductors

• DPNI to DPMAC connection: a network interface from AIOP connected to external traffic (physical wired connection, e.g.
XFI or SGMII as links)

The application performs the following functions:

Initialization:

All network interfaces are in promiscuous mode.

Depending on a network interface’s’ connected endpoint object type, there are two different frame processing callbacks.

Failures in performing the above actions lead to dropping the packets received on that network interface or in no

link between AIOP and GPP.

 NOTE

Runtime

For every packet received on AIOP network interface connected to external traffic:

• Drop non IPv4 packets and non ARP packets

• Detect, using Parser, if packets received are either ICMP Echo Request or ARP Request. In this case send packets to
Linux Kernel using GPP connection

• For ARP or IPv4 packets other than ICMP Echo Request and ARP Request: switch the source and destination MAC and
IP addresses of the received packets and reflect back the packet on the same interface from which it was received.

For every packet received from GPP:

• Drop all packets that are not ICMP Echo Reply and not ARP response

• Print brief information about the accepted packets

• Forward ICMP Echo Reply and ARP response packets to the NI havingconnected to traffic generatorDPMAC as endpoint
and callback config and callback configured.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 709

Linux Kernel

DPNI (ni4)

Send ICMP Echo Reply

Send ARP Response

DPNI (NI 2)AIOP Application

ICMP REQ
ARP REQ

MAC SRC <_> MAC DST
IP SRC <_> IP DST

IPv4

Non-IPv4, Non-ARP
Parse frame

Drop frame

DPNI (NI 0)

WRIOP

ICMP Reply
ARP Response

DPNI

DPMAC@1

Packet

Figure 160. AIOP Control Flow overview

8.3.6.1.4.2 Running the Control Flow Application
The ELF for AIOP Classifier is /usr/aiop/bin/aiop_control_flow.elf. This can be loaded via AIOP tool as section Creating
AIOP Containers describes. For this application the script dynamic_aiop_root.sh must be executed before loading the image:

./dynamic_aiop_root.sh

To load the AIOP Classifier Application, execute the following command:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
710 NXP Semiconductors

aiop_tool load -g dprc.3 -f /usr/aiop/bin/aiop_control_flow.elf &

To check if AIOP Control Flow Application loaded successfully execute the following command in the Linux command shell:

$ cat /dev/fsl_aiop_console | grep CONTROL_FLOW

The command output should display the number of NIs that were successfully configured together with the specific MAC addresses
that are provided to the AIOP Control Flow Application:

CONTROL_FLOW : Successfully configured ni0 (dpni.2)
CONTROL_FLOW : dpni.2 <---connected---> dpni.0
CONTROL_FLOW : Successfully configured ni1 (dpni.1)
CONTROL_FLOW : dpni.1 <---connected---> dpmac.1 (MAC addr: 00:00:00:00:00:06)

On RDB board, to enable AIOP-GPP communication via DPNI-DPNI, it is required to configure the Linux network interface:

ip link set dev ni0 down
ip addr flush dev ni0
ip addr add 6.6.6.1/8 dev ni0
ip link set dev ni0 up

After executing the commands for configuring Linux network interface, in AIOP console will be displayed a message for the NI 0
(DPNI 2) link up due to a DPNI link event:

CONTROL_FLOW : ni0 link is UP

It is also required to create a static entry in the ARP table, so that Linux responds directly to AIOP:

arp -s 6.6.6.10 <MAC_address_of_traffic_generator>
arp -n
Address HWtype HWaddress Flags Mask Iface
6.6.6.10 ether <MAC_address_of_traffic_generator> CM ni4

During frame processing, the AIOP Logger will print the following brief information about every received packet on all interfaces:

• Received MAC source and destination addresses

• Received IP source and destination addresses

• Traffic generator IP address is 6.6.6.10

• For ARP Frames AIOP Logger will print: operation code (OPCODE), Sender and Target Protocol Address.

• For ICMP Frames AIOP Logger will print: ICMP Type and ICMP Code.

RX on NI 0
 MAC_SA: 00-00-00-00-00-02 MAC_DA: 02-00-c0-a8-48-01
 IP_SRC: 6.6.6.10 IP_DST: 6.6.6.1
 ICMP_TYPE: 8 ICMP_CODE: 0

RX on NI 0
 MAC_SA: 00-00-00-00-00-02 MAC_DA: 02-00-c0-a8-48-01
 ARP_OPCODE: 1 S_ADDR: 6.6.6.10 T_ADDR: 6.6.6.1

RX on NI 0
 MAC_SA: 00-00-00-00-00-06 MAC_DA: 00-10-94-00-00-10
 IP_SRC: 192.0.0.1 IP_DST: 192.85.1.2

. . .

Assign an IP address to the Linux interface for SSH connections to RDB-1 board, for example using the following command:

ip addr add 192.168.1.20/24 dev eth0
ip link set dev eth0 up

Alternatively, if the DHCP server is active on the network, run following command to get an IP address automatically, for example
using the following command:

udhcpc -i eth0

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 711

8.3.6.1.4.3 Generating Traffic to Test AIOP Control Flow Application
An external traffic source is needed to pass traffic to the control flow application. This could be another RDB or some other traffic
generator. The following graphic illustrates traffic flow between Packet Generator and RDB board.

IF0
Packet

Generator

ni4

LS2085 RDB-1

NI 2

MAC -
02:00:c0:a8:48:04

MAC -
00:00:00:00:00:0A

ni4GPP

AIOP

Control Flow

Figure 161. Generating traffic for AIOP Control Flow

When using a Packet Generator to inject traffic, connect one port of the packet generator to MAC1 of RDB-1.

Generate IPv4 frames for each of the two ports:

• MAC source: 00:00:00:00:00:02 (MAC address of the traffic generator)

• MAC destination: 02:00:C0:A8:48:00 (MAC of ni0 in Linux)

• For ARP and ICMP, the values that are sent to Linux GPP are:

IP Source Address IP Destination
Address

Protocol Type ICMP Type ICMP Code

6.6.6.10 6.6.6.1 01 (ICMP) 08 (Echo Request) 00

For other ICMP fields use any value:

Protocol Type Sender Hardware
Address

Sender Protocol
Address

Target Hardware
Address

Target Protocol
Address

00 01 (ARP Request) <<MAC Address of
Traffic Generator>>

6.6.6.10 00:00:00:00:00:00 6.6.6.1

• For TCP or UDP use any data in IP source/destination and header specific.

Traffic can be injected in board only after the network interface connected to trafficgenerator (external traffic) is up due to internal
event in AIOP:

CONTROL_FLOW : ni0 link is UP

Open two AIOP consoles (using SSH). On one of them show the AIOP Logger using command described below. When injecting
traffic, on RDB-1, the AIOP Logger will print a brief information about every frame that is being processed.

$ busybox tail –f /dev/fsl_aiop_console

On the other console start packet capture, using the following command, to sniff communication between AIOP and GPP:

$ tcpdump -i ni1 –w aiop_control_flow.pcap

8.3.6.1.5 AIOP Header Manipulation Application

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
712 NXP Semiconductors

8.3.6.1.5.1 AIOP Header Manipulation Overview
The purpose of this application is to demonstrate how to perform a simple GRE tunneling using header manipulation operations
available in AIOP. Application offers support only for IPv4 packets and requires one DPNI interface, acting as tunnel interface.
The packet header content is used to determine the type of operation to be performed on the packet: encapsulation or
decapsulation

AIOP

Parse
frame

NI 0

DPNI 1

Drop frame

Decapsulate

Encapsulate

DPMAC@1

Packet

WRIOP

MAC SRC <-> MAC DST

Other Frame

GRE

IP SRC <-> IP DST

Reflect
packets

IPV4

Figure 162. AIOP Header Manipulation overview

The application performs the following operations:

• For regular IPv4 packets without inner IP header: creates a basic IP header, computes outer IP checksum, creates a basic
GRE header (all flags 0, GRE version 0, encapsulated protocol: IPv4), inserts these headers between ETH and IP headers
and switches the source and destination MAC addresses

• For packets having an inner IP and GRE headers: deletes the outer IP and GRE headers, switches the source and destination
MAC and IP addresses

• Discards non-IPv4 and non-GRE packets

• Re-runs parser and prints the packet after header manipulation occurred. This is optional and can be deactivated by defining
the macro RERUN_PARSER

• Sends back packets on same network interface they were received from.

8.3.6.1.5.2 Running the Header Manipulation application
The ELF for AIOP Classifier is /usr/aiop/bin/aiop_header_manip.elf. This can be loaded via AIOP tool as described in
Creating AIOP Containers on page 701. For this application the script dynamic_aiop_only.sh must be executed before loading
the image:

./dynamic_aiop_only.sh

To load the AIOP Classifier Application, execute the following command:

aiop_tool load -g dprc.3 -f /usr/aiop/bin/aiop_header_manip.elf &

To check if the AIOP Classifier Application loaded successfully, execute the following command in the Linux command shell:

cat /dev/fsl_aiop_console | grep HEADER_MANIP

The command output should display information about the Network Interfaces (NIs) that were successfully configured: NI instance
(e.g ni0) together with the associated MAC address.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 713

HEADER_MANIP : Successfully configured ni0 (dpni.6)
HEADER_MANIP : dpni.6 <---connected---> dpmac.1 (MAC addr: 00:00:00:00:00:06)

Although the AIOP container contains multiple NIs the AIOP Reflector will use only the NIs that have a DPMAC

as endpoint (on which it can succesfully configure the order scope).

 NOTE

During packet processing, the AIOP Logger prints the following brief information about every received packet on all interfaces:

• Received IP source and destination addresses (for the inner header and for the outer IP header in case packet is
encapsulated)

• GRE Flags, version and encapsulated protocol, in case the packet is encapsulated.

If parser re-running was enabled the information above is printed, in order to show the result of encapsulation/decapsulation
header manipulation operations performed.

busybox tail –f /dev/fsl_aiop_console

Decapsulated Frame | FD Len 124 | SEG Len 124
 OUTER IP HEADER
 PROTO: 1 IP_SRC: 192.168.1.10, IP_DST: 10.171.77.121, TOTAL LEN: 110, IHL: 20

Encapsulated Frame | FD Len 148 | SEG Len 124
 OUTER IP HEADER
 PROTO: 47 IP_SRC: 122.122.122.122, IP_DST: 138.138.138.138, TOTAL LEN: 134, IHL: 20
 Generic Routing Encapsulation
 FLAGS: 0x00000, VERSION: 0x000, PTYPTE: 0x0800
 INNER IP HEADER
 PROTO: 1 IP_SRC: 192.168.1.10, IP_DST: 10.171.77.121, TOTAL LEN: 110, IHL: 20

Encapsulated Frame | FD Len 148 | SEG Len 128
 OUTER IP HEADER
 PROTO: 47 IP_SRC: 10.8.8.8, IP_DST: 10.7.7.7, TOTAL LEN: 134, IHL: 20
 Generic Routing Encapsulation
 FLAGS: 0x00000, VERSION: 0x000, PTYPTE: 0x0800
 INNER IP HEADER
 PROTO: 6 IP_SRC: 198.168.2.21, IP_DST: 10.18.1.1, TOTAL LEN: 106, IHL: 20

Decapsulated Frame | FD Len 120 | SEG Len 120
 OUTER IP HEADER
 PROTO: 6 IP_SRC: 10.18.1.1, IP_DST: 198.168.2.21, TOTAL LEN: 106, IHL: 20

8.3.6.1.5.3 Generating Traffic to Test AIOP Header Manipulation Application
An external traffic source is needed to pass traffic to the classifier application. This could be another RDB or some other traffic
generator. One optical 10G ports need to be connected to MAC1 or MAC2 of RDB-1.

The following diagram illustrates how traffic moves from a packet generator to RDB-1 board.

NI 0

MAC1-

Packet
Generator AIOP

Header
Manipulation

00:00:00:00:00:06
IFO

Figure 163. Generating traffic for AIOP Header Manipulation

When using a Packet Generator to inject traffic, connect one port of the packet generator to MAC1 of RDB-1.

On RDB-1 ensure that both AIOP network interface is in link up state:

$ cat /dev/fsl_aiop_console | grep HEADER_MANIP
HEADER_MANIP: NI 0 link is UP

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
714 NXP Semiconductors

Generate IPv4 packets:

• Common values:

— MAC destination: 00:00:00:00:00:06 (address of MAC1)

— MAC source: ANY

— Outer IP source: ANY

— Outer IP destination: ANY

• For GRE encapsulated packets:

— Version: 0

— GRE Flags and version: 0x0000

— GRE Encapsulated Protocol: 0x0800 (IP)

— Inner IP source: ANY

— Inner IP destination: ANY

On RDB-1, the AIOP Logger prints brief information about every packet that is being encapsulated/decapsulated and if parser
re-running is enabled the AIOP Logger prints brief information about the packet after the GRE encapsulation/decapsulation header
manipulations occurred.

The encapsulated packets using GRE by AIOP application have the following pre-defined values:

• Outer IP Version: 4

• Outer IP source: 122.122.122.122

• Outer IP destination: 138.138.138.138

• GRE Version: 0

• GRE Flags and version: 0x0000

• GRE Protocol Type: 0x0800 (IP)

• Inner IP source: IP source from original packet

• Inner IP destination: IP destination from original packet

The packets that were decapsulated by AIOP will have the inner IP source and destination addresses and MAC addresses
swapped.

8.3.6.1.6 AIOP Statistics Application
8.3.6.1.6.1 AIOP Statistics Overview
The purpose of this application is to demonstrate the usage of the AIOP atomic operations in order to update software
definedstatistics counters. There are two types of statistics counters:

• Global: total number of the received packets, total number of the received bytes , total number of the accepted packets,
total number of the rejected packets

• Per-flow: total number of the recived packets and total number of the received bytes, for each packet matching the applied
classification criteria

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 715

LU Miss
Increase

droped stats

IP SRC <-> IP DST
Increase
per-flow

stats

Increase
global
stats1-tuple

AIOP

xxx

TCP hit

UDP hit

SCTP hit

Classiffication MAC SRC <-> MAC DCT

Drop frame Reflect
accepted
PacketsTimer: Show stats

PTYPE

NI

DPNI

DPMAC

Packet

WRIOP

Figure 164. AIOP Statistics overview

The application performs the following operations:

• Classifies the packets to enable different counters update. Classification is based only on the Protocol Number field. Only
the TCP, UDP and SCTP protocols are accepted. The packets not matching the classification criteria are dropped and
number of dropped packets is increased. [GI1]

• Increases the global statistics and the statistics for each packet matching the classification criteria (per-flow statistics).

• Swap the MAC and IP addresses

• Sends back packets on same network interface they were received from.

• By default, the global and per flow statistics are displayed at every 60 seconds. In order achieve this, a timer is used. The
timer time interval, measured in seconds, can be changed by setting the value of the macro definition
APP_TMAN_TIMER_DURATION, at compile time.

Note: Both global and per-flow statistics are stored in the DP-DDR (Data Path DDR) memory partition. For the global statistics,
a contiguous block of memory is obtained and for each flow a buffer from DP-DDR is obtained by using pool-based allocation.

8.3.6.1.6.2 Running the AIOP Statistics Application
The statistics application should be run on the RDB-1 system.

The ELF for AIOP reflector is /usr/aiop/bin/aiop_statistics.elf. This can be loaded via AIOP tool as section Creating AIOP
Containers describes. For this application the script dynamic_aiop_only.sh must be executed before loading the image:

./dynamic_aiop_only.sh

To load the AIOP Statistics Application, execute the following command:

aiop_tool load -g dprc.3 -f /usr/aiop/bin/aiop_statistics.elf &

To check if the AIOP Statistics Application loaded successfully, execute the following command in the Linux command shell:

cat /dev/fsl_aiop_console | grep STATISTICS

The command output should display information about the Network Interfaces (NIs) that were successfully configured: NI instance
(e.g ni0) together with the associated MAC address.

STATISTICS : Created TMI id=0x2
STATISTICS : Created timer for showing statistics, handle=0x102
STATISTICS : Application initialized successfully
STATISTICS : Successfully configured ni0 (dpni.2)
STATISTICS : dpni.2 <---connected---> dpmac.2 (MAC addr: 00:00:00:00:00:07)
STATISTICS : Successfully configured ni1 (dpni.1)

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
716 NXP Semiconductors

STATISTICS : dpni.1 <---connected---> dpmac.1 (MAC addr: 00:00:00:00:00:06)
STATISTICS : ni1 link is UP

Once the application started, at every 60 seconds (or at the time interval defined by APP_TMAN_TIMER_DURATION macro) the
AIOP Logger prints all statistics counters values. Default value should be 0 for all counters.

AIOP received 47753801 packets (5921471324 bytes)
 12585359 dropped packets, 35168442 accepted packets, 35168442 transmitted packets
 * PROTO=0x6: received: 12601479 packets (1562583396 bytes)
 * PROTO=0x11: received: 12608080 packets (1563401920 bytes)
 * PROTO=0x84: received: 9958883 packets (1234901492 bytes)

8.3.6.1.6.3 Generating Traffic to Test AIOP Statistics Application
An external traffic source is needed to inject packets into the application. This could be another RDB-1 or some other traffic
generator. One optical 10G port needs to be connected to MAC1 or MAC2 port of the RDB

The following diagram illustrates how traffic moves from a packet generator to RDB-1 board.

NI 0

MAC1-

Packet
Generator AIOP

Header
Manipulation

00:00:00:00:00:06
IFO

Figure 165. Generating traffic for AIOP Statistics

When using a Packet Generator to inject traffic, connect one port of the packet generator to MAC1 of RDB-1 and a second port
to MAC2 of RDB-1.

On RDB-1 ensure that both AIOP network interfaces are in link up state:

$ cat /dev/fsl_aiop_console | grep STATISTICS
STATISTICS : NI 0 link is UP

Generate IPv4 frames for each of the two ports:

• MAC source: ANY

• MAC destination: 00:00:00:00:00:06 (address of MAC1)

• For IP & Layer 4, the accepted values are show in the following table:

IP Source Address IP Destination
Address

Protocol Type Source Port Destination Port

ANY ANY 6 (TCP) ANY ANY

ANY ANY 17 (UDP) ANY ANY

ANY ANY 132 (SCTP) ANY ANY

On RDB-1, the AIOP Logger prints at every 60 seconds (or at the time interval configured with the
APP_TMAN_TIMER_DURATION macro) the global statistics and the per-flow statistics for each matched protocol (TCP, UDP
and SCTP).

8.3.6.1.7 AIOP QoS_demo Application

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 717

8.3.6.1.7.1 AIOP QoS_demo Overview
The purpose of this sample application is to demonstrate how to use the QoS features on the AIOP. The application is a basic
reflector: a received frame is sent back unchanged on the same dpni.

The application performs the following functions:

• For dpni0, it doesn’t enable QoS features

• Configures QoS features on dpni1 for ingress (classification, prioritization, policing) and egress (traffic shaping)

• Traffic is classified in 4 classes: TCP is TC0, UDP is TC1, SCTP is TC2, all the rest of traffic goes to TC7

• The priorities of the traffic classes are set as follows: TC0 has high priority 0, TC1 has high priority 1, TC2 has medium priority,
TC7 has lowest priority

• The policer is configured to discard TC2 traffic

• The tx rate limit is set to 100 Mbps

• Prints information about the received frame (interface id, traffic class, protocols)

• Reflects back the frame on the same interface from which it was received

Prints frame info
(NI id, TC, headers)

NI

DPNI

DPMAC

Packet

WROP

QoS settings for ingress/egress

AIOP

Figure 166. AIOP qos_demo Overview

8.3.6.1.7.2 Running the QoS_demo Application
The qos_demo should be run on the RDB-1 system.

The ELF for AIOP QoS_demo is /usr/aiop/bin/ aiop_qos_demo.elf. This can be loaded via AIOP tool as section Creating
AIOP Containers describes. For this application, the script dynamic_aiop_only.sh must be executed before loading the image:

./dynamic_aiop_only.sh

To load the AIOP QoS_demo, execute the following command:

aiop_tool load -g dprc.3 -f /usr/aiop/bin/ aiop_qos_demo.elf &

To check if the AIOP QoS_demo Application loaded successfully, execute the following command in the LS2088 Linux command
shell:

cat /dev/fsl_aiop_console | grep QoS_demo

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
718 NXP Semiconductors

The command output should display information about the Network Interfaces (NIs) that were successfully configured: NI instance
(e.g NI 0) together with the associated MAC address.

QoS_demo : Successfully configured exact table match
QoS_demo : Successfully configured ni0 (dpni.2)
QoS_demo : dpni.2 <---connected---> dpmac.2 (MAC addr: 00:00:00:00:00:07)
QoS_demo : Successfully configured ni1 (dpni.1)
QoS_demo : dpni.1 <---connected---> dpmac.1 (MAC addr: 00:00:00:00:00:06)

During frame processing, the AIOP Logger will print the following brief information about every reflected packet:

• NI id on which the frame was processed

• AIOP Core number on which the task executes

• Traffic class for the incoming frame

• Header information

busybox tail –f /dev/fsl_aiop_console

QoS_demo: RX on NI 1 | CORE:0 | TC = 7 | ARP | unknown

QoS_demo: RX on NI 1 | CORE:0 | TC = 7 | IPv4 | ICMP

QoS_demo: RX on NI 1 | CORE:0 | TC = 0 | IPv4 | TCP

QoS_demo: RX on NI 1 | CORE:0 | TC = 1 | IPv4 | UDP

QoS_demo: RX on NI 0 | CORE:0 | TC = 0 | ARP | unknown

QoS_demo: RX on NI 0 | CORE:0 | TC = 0 | IPv4 | ICMP

QoS_demo: RX on NI 0 | CORE:0 | TC = 0 | IPv4 | TCP

QoS_demo: RX on NI 0 | CORE:0 | TC = 0 | IPv4 | UDP

QoS_demo: RX on NI 0 | CORE:0 | TC = 0 | IPv4 | SCTP

8.3.6.1.7.3 Generating traffic to test AIOP QoS_demo Application
An external traffic source is needed to pass traffic to the qos_demo application. This could be another RDB or some other traffic
generator. Two optical 10G ports need to be connected to MAC1 and MAC2 of RDB-1.The following graphic illustrates how traffic
moves from a packet generator to RDB-1 board.

IF0

IF1

Packet
Generator

AIOP

Reflector

NI 0

NI 1

MAC1 -
00:00:00:00:00:06

MAC2 -
00:00:00:00:00:07

Figure 167. Generating Traffic for AIOP qos_demo

When using a Packet Generator to inject traffic, connect one port of the packet generator to MAC1 of RDB-1 and a second port
to MAC2 of RDB-1.

On RDB-1 ensure that both AIOP network interfaces are in link up state:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 719

$ cat /dev/fsl_aiop_console | grep QoS_demo
QoS_demo : ni0 link is UP
QoS_demo : ni1 link is UP

Generate different type of traffic for each of the two ports: ARP, ICMP, IP, TCP, UDP, SCTP. On RDB-1, the AIOP Logger will print
a brief information about every frame that is received. On ni1, the policer discards TC2 traffic (SCTP) so there are no SCTP
packets received by AIOP on ni1.

8.3.6.2 AIOP Tool User's Guide

8.3.6.2.1 Introduction
The following section contains information on compilation and execution steps for the AIOP Tool application. This section is a part
of the series intended to help developers use DPAA2 software on NXP’s LS family of network processors. This section intended
to get users up and running quickly.

8.3.6.2.2 DPAA2 Software
For information about the DPAA2 software, see the DPAA2 Software Overview on page 633 section. For users that are unfamiliar
with DPAA2 software, it is recommended to read that content before proceeding.

8.3.6.2.3 Product Description
8.3.6.2.3.1 Overview
What is AIOP?

AIOP or Advanced I/O Processor is an optional component of the DPAA2 architecture. It is a C-programmable engine that is
optimized for packet processing and can be used on a SoC in conjunction with the general purpose cores and the other elements
of the DPAA2 architecture. AIOP executes a software image containing the packet processing logic.

What is AIOP Tool?

AIOP Tool is a Linux user space application which performs the following operations on an AIOP:

1. Loading an image on an AIOP

2. Starting (running) the image on an AIOP after it has been loaded

3. Extracting state information for an AIOP

4. Getting and setting time of day on an AIOP

8.3.6.2.3.2 Product features
AIOP Tool provides following broad functions:

• Provides a command line interface for executing a set of operations

— Command line will accept an operation from user, along with the appropriate corresponding arguments.

— The DPRC to work on is also accepted as an argument on the command line.

• Operation for Loading AIOP Image to an AIOP

— Command line will accept an AIOP image file.

— Whether a reset of the AIOP should be done before loading or not can be controlled using a toggle argument passed
on command line. For performing reset of AIOP before load operation, an optional toggle argument can be passed to
the load operation.

◦ Current hardware revision (rev1) doesn’t support reset and it is expected to work in subsequent releases. Thus,
in future, the same tool can be used without any modifications.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
720 NXP Semiconductors

— Result of load API call will be provided to the caller.

• Operation for Resetting the AIOP

— On execution, this would put the AIOP in Reset state for loading another image.

◦ In the current hardware revision (rev1), this is not supported and would result in error. In subsequent versions of
LS family hardware, this is expected to be operational. Once that is done, with the combination of load and run
operations, multiple images can be loaded on AIOP (serially) without a hardware reset.

— Response value of API execution will be provided to caller.

• Operation for getting and setting time of day on AIOP

— Once an AIOP is running, 2 operations for getting and setting the time of day on AIOP are available.

— Success or failure of the API calls would be provided to caller in case of time setting. In case of time getting
operation, time since epoch would be shown.

• Operation for printing AIOP status

— On execution of this operation, status of the AIOP is provided to the caller. This includes the current state and version
information.

• Help menu will be printed by command line for displaying usage of above operations and their corresponding arguments.

8.3.6.2.4 System Requirements
This chapter describes the environment requirements for executing the AIOP Tool.

8.3.6.2.4.1 Environment required
1. MC Firmware version 9.0.x for LS2085A (RDB and QDS) EAR-6.0

2. Uboot and Linux compatible with LS2085A (RDB and QDS) EAR-6.0

3. AIOP image (ELF) is required as input to the tool

8.3.6.2.5 AIOP Tool Usage
8.3.6.2.5.1 Run time pre-requisites
Besides the environment pre-requisites listed in Environment required on page 721, the following execution time pre-requisites
exist:

1. AIOP Tool requires a DPRC which has an AIOP included in it. It should be a non-root DPRC containing at least a dpmcp
and dpaiop object.

• This DPRC can be statically defined (static DPL) or dynamically created (using restool).

• Please refer Steps For Dynamic DPRC Suitable For AIOP Tool Using restool on page 727 below for steps for
dynamically creating a suitable DPRC using restool.

• Also, refer dynamic_AIOP_dpl.sh script delivered as part of the ODP LSDK 1709 release. This is a script version of
dynamic DPRC creation steps mentioned in Steps For Dynamic DPRC Suitable For AIOP Tool Using restool on
page 727.

2. VFIO support in Linux kernel

• AIOP is a hardware device which AIOP Tool attempts to access from Linux userspace. For exchanging information
between AIOP Tool and AIOP, a secure memory area is required which can be accessed by both. Linux VFIO or
Virtual Function I/O, provides a framework for securely exposing certain memory area which is equally accessible by
AIOP Tool and AIOP hardware. VFIO would map the addressing understood by AIOP hardware to that of addressing
managed by user-space application.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 721

• This application assumes that the dpaiop device would be mapped into VFIO driver so as to use DMA mapping
between AIOP Tool and AIOP hardware and for pushing SMMU addresses for AIOP hardware’s access to user-
space memory

• Refer Sample VFIO Binding Script on page 726 for a sample script to perform binding of a DP object with VFIO.

3. Valid AIOP image for loading

• For sample, refer to cmdif_integ_dbg.elf image provided along with ‘aiopsl’ repo. This can be verified using
GPP application odp_cmdif_demo in ODP.

8.3.6.2.5.2 Environment setting
For executing the AIOP Tool, a valid DPRC is required. There are three ways to define a DPRC:

1. Provide DPRC through ‘-g’ command line tool. For e.g., aiop_tool <sub-command> -g dprc.4.

2. If not provided through command line, the binary expects the environment variable DPRC defined.

3. If neither an argument nor environment variable is provided, binary assumes a default value of DPRC as dprc.5.
(Current hard-coded in the code)

8.3.6.2.5.3 Command line arguments
All variants of the execution follow a standard pattern:

aiop_tool <sub-command> <Arguments>

<Sub-command> includes help, load, gettod, settod, status and reset.

<Arguments> are either mandatory (for e.g., image file path), or optional (for e.g., DPRC name).

All variants assume that the VFIO binding has already been performed on the command line for the DPRC on which command
would be executed. Further, following samples/snippets assume that DPRC would be passed on command line, though all three
methods mentioned in Environment setting on page 722 are valid.

Following table describes all the variants of the AIOP Tool execution.

Argument/command pattern Description

aiop_tool help Displays help including various sub-commands and their output.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
722 NXP Semiconductors

Table continued from the previous page...

Argument/command pattern Description

aiop_tool load Loading a valid ELF image onto the AIOP and starting it.

Valid arguments are:

-g <DPRC name> Name of the DPRC containing the AIOP Object. This is a non-root DPRC which is dedicated to the AIOP Tool.

Optionally, use --container=.

-f <AIOP image file> [Mandatory] Name, with path, of the AIOP image file to be loaded on the AIOP.

Optionally, use --file=.

-a <AIOP argument file> [Mandatory] A file containing arguments to be passed to AIOP image during bootup.

Optionally, use --args-file=.

-c <Threads per AIOP Core> [Optional] Threads per AIOP Core to execute. Default value, if not provided, is 0.

Optionally, use --threadpercore=.

-r [Optional] Reset toggle; If provided, AIOP Tool will perform reset of AIOP before attempting load. By default, this would not be
done.

Optionally, use --reset.

-v Verbose Output (More informative with INFO level messages).

Optionally, use --verbose.

-d Debug Output (DEBUG level messages).

Optionally, use --debug.

Following is the expected output of the command:

• In case of incorrect parameters (incorrect DPRC, wrong file path, or incorrect
parameter), failure would be reported along with help usage.

• Success of failure, as reported by MC’s API; the AIOP Tool would convert the error
into a readable string.

Table continues on the next page...

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 723

Table continued from the previous page...

Argument/command pattern Description

aiop_tool gettod Obtaining the Time of day on the AIOP.

Valid arguments are:

-g <DPRC name> Name of the DPRC containing the AIOP Object. This is a non-root DPRC which is dedicated to the AIOP Tool.

-v Verbose Output (More informative with INFO level messages)

-d Debug Output (DEBUG level messages)

Following is the expected output of the command:

• In case of incorrect parameters (incorrect DPRC), failure would be reported along
with usage help.

• Time of day (64Bit value) as returned by MC’s API in case of success.

Time of day: 184082

• Failure, as reported by MC’s API; the AIOP Tool would convert the error into a
readable string.

aiop_tool settod Set time on the AIOP.

Valid arguments are:

-g <DPRC name> Name of the DPRC containing the AIOP Object. This is a non-root DPRC which is dedicated to the AIOP Tool.

-t sec_since_epoch [Mandatory] Time, in milli-seconds, since epoch.

-v Verbose Output (More informative with INFO level messages)

-d Debug Output (DEBUG level messages)

Following is the expected output of the command:

• In case of incorrect parameters (incorrect DPRC, non-integer time), failure would
be reported along with usage help.

• Success of failure as reported by MC’s API; the AIOP Tool would convert the error
into readable string.

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
724 NXP Semiconductors

Table continued from the previous page...

Argument/command pattern Description

aiop_tool status Valid arguments are:

-g <DPRC name> Name of the DPRC containing the AIOP Object. This is a non-root DPRC which is dedicated to the AIOP Tool.

-v Verbose Output (More informative with INFO level messages)

-d Debug Output (DEBUG level messages)

Following is the expected output of the command:

• In case of incorrect parameters (incorrect DPRC), failure would be reported along
with usage help.

• Status, including current state, SL version.

AIOP running status:
 Major Version: 2, Minor Version: 1
 Service Layer:- Major Version: 0,
Minor Version: 7, Revision: 0
 State: DPAIOP_STATE_RUNNING

• Success of failure as reported by MC’s API; the AIOP Tool would convert the error
into readable string.

aiop_tool reset Reset the AIOP. This is current feature support, dependent on support by hardware.

Valid arguments are:

-g <DPRC name> Name of the DPRC containing the AIOP Object. This is a non-root DPRC which is dedicated to the AIOP Tool.

-v Verbose Output (More informative with INFO level messages)

-d Debug Output (DEBUG level messages)

Following is the expected output of the command:

• In case of incorrect parameters (incorrect DPRC), failure would be reported along
with usage help.

• Success of failure as reported by MC’s API; the AIOP Tool would convert the error
into readable string.

8.3.6.2.5.4 Command execution samples
1. Obtaining status of AIOP

$ aiop_tool status –g dprc.4
AIOP running status:
 Major Version: 0, Minor Version: 0
 Service Layer:- Major Version: 0, Minor Version: 0, Revision: 0
 State: DPAIOP_STATE_RESET_DONE

Before loading the image, for this version where hardware Reset operation is not supported, the state
DPAIOP_STATE_RESET_DONE can be verified using above example.

2. Loading an ELF image on AIOP

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 725

$ aiop_tool load –g dprc.4 –f cmdif_integ_dbg.elf
AIOP Image (cmdif_integ_dbg.elf) loaded successfully.

The load sub-command loads as well as runs an AIOP. Once the image has been loaded, after a few seconds, the status
output would look similar to:

$ aiop_tool status –g dprc.4
AIOP running Status:
 Major Version: 2, Minor Version: 1
 Service Layer:- Major Version: 0, Minor Version: 7, Revision: 0
 State: DPAIOP_STATE_RUNNING

3. Get time of day from AIOP

$ aiop_tool gettod –g dprc.4
Time of day: 184082

4. Set time of day on AIOP

$ aiop_tool gettod –g dprc.4 –t 100010
<No output, if successful>

8.3.6.2.6 Known Limitations
1. It assumed that the DPRC passed to AIOP Tool has a single AIOP (dpaiop) and MC portal (dpmcp). This application

would parse the contents of DPRC and stop on first found instances of dpaiop and dpmcp – even if multiple instances
have been defined. The order of finding would be dependent on how objects are parsed from the sysfs directory.

2. Due to a limitation of the MC API, AIOP Tool instance doesn't automatically exit once executed (not a run-to-completion
model). As soon as the AIOP image is successfully loaded, the AIOP Tool application will keep looping without relieving
the foreground shell. Following are some consequences of this limitations:

a. Once executed, the AIOP Tool application sits in foreground without releasing the Linux Shell it ran on. To obtain
the Linux shell on which AIOP Tool was executed, AIOP Tool application should be pushed into background (or
started in background) through Linux shell semantics.

b. Once executed and backgrounded, another instance of the AIOP Tool over same DPRC cannot be executed. This
also implies that status requests for the AIOP cannot be done, either through same instance or through another
instance of the application. To obtain the AIOP status, use other available methods, like restool.

8.3.6.2.7 Sample VFIO Binding Script
#/*
* Sample bind script for VFIO.
*/

DPRC_4=/sys/bus/fsl-mc/devices/dprc.4

if [-e /sys/module/vfio_iommu_type1];
then
 echo "#1) Enabling interrupts"
 echo 1 > /sys/module/vfio_iommu_type1/parameters/allow_unsafe_interrupts
else
 echo "No VFIO support available."
 exit
fi

if [-e $DPRC_4];
then
 echo "#1.1) dprc container driver override"
 echo vfio-fsl-mc > /sys/bus/fsl-mc/devices/dprc.4/driver_override
 echo "#1.2) Bind dprc.4 to VFIO driver"
 echo dprc.4 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind
fi

if [-e /dev/vfio];
then

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
726 NXP Semiconductors

 ls /dev/vfio/
else
 echo "No VFIO support available."
fi

8.3.6.2.8 Steps For Dynamic DPRC Suitable For AIOP Tool Using restool
Assuming that a DPL is available which has AIOP container defined in it, this section provides information and sample commands
for creating a DPRC which is suitable for use with the AIOP Tool.

AIOP Tool expects a DPRC which contains at least one dpmcp and a dpaiop object. Further, the DPRC should be a non-root
DPRC – so that user-space application (AIOP Tool) can access its content.

All the commands would be performed using restool compatible with the MC version for which AIOP Tool is targeted. The sample
steps below assume that there are enough resources to create a MC portal (dpmcp) and the AIOP object (dpaiop).

1. Creating a new DPRC which is child object of root DPRC, dprc.1.

$ restool dprc create dprc.1 --
options=DPRC_CFG_OPT_SPAWN_ALLOWED,DPRC_CFG_OPT_ALLOC_ALLOWED,DPRC
_CFG_OPT_IRQ_CFG_ALLOWED

The output would be similar to:

dprc.2 is created under dprc.1

Note the new DPRC name, dprc.2, in the above output sample. Steps hereafter assume that new DPRC is dprc.2;
please replace DPRC name in subsequent steps where required.

State of newly created DPRC can be confirmed using following command:

$ restool dprc info dprc.2

Output would be similar to:

container id: 2
icid: 26
portal id: 3
version: 5.1
dprc options: 0x43
DPRC_CFG_OPT_SPAWN_ALLOWED
DPRC_CFG_OPT_ALLOC_ALLOWED
DPRC_CFG_OPT_IRQ_CFG_ALLOWED

2. In case dpaiop object already exists in any DPRC, skip to Step 3 below. The steps below are for creating a dpaiop
object in the dprc.1. This requires information about the AIOP container (dprc.3 has been assumed below).

$ restool dpaiop create --aiop-id=0 --aiop-container=dprc.3

In the above command, it is assumed that the AIOP container is dprc.3. The output would be similar to:

dpaiop.0 is created under dprc.3

The dpaiop.0 object would be available in the dprc.1 after this command.

3. Assuming that a dpaiop object, dpaiop.0, is available in the root dprc.1; Unplug the dpaiop.0 in the dprc.1 so that it
can be assigned to a new DPRC.

$ restool dprc assign dprc.1 --child=dprc.1 --object=dpaiop.0 --
plugged=0

Check the status of dpaiop.0 object using

restool dprc show dprc.1

to confirm if it has been put in ‘unplugged’ state. If dpaiop object is already part of another DPRC, it has to be assigned
to unplugged and assigned to dprc.1 before it can be assigned to a targeted container. Steps for that would be similar
to:

Unplugging the dpaiop object state

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 727

$ restool dprc assign <dprc.X> --object=dpaiop.0 --plugged=0

Above command sample assumes dpaiop.0 is present in dprc.X Thereafter, move the dpaiop.0 object to dprc.1

$ restool dprc unassign dprc.1 --child=dprc.X --object=dpaiop.0

Hereafter, dpaiop.0 is available in dprc.1 to be moved to a target DPRC – as described in steps below.

4. Assign the dpaiop.0 object to dprc.2 and toggle state to plugged. This would work only if dpaiop.0 is already
unplugged in root DPRC.

$ restool dprc assign dprc.1 --child=dprc.2 --object=dpaiop.0 --
plugged=1

Check the status of dpaiop.0 object using

restool dprc show dprc.2

to confirm if it has been put in ‘plugged’ state.

5. Create a new MC portal object

$ restool dpmcp create

This result in an output similar to:

dpmcp.4 is created under dprc.1

New MC portal dpmcp.4 has been created under root DPRC. This needs to be moved to dprc.2 – as shown in next
step.

Note: It is possible to re-use an existing MC portal using steps similar to those shown below. It is possible that

dpmcp object is already bound to certain driver (for e.g. VFIO driver), in which case, it needs to be unbound before

being moved out.

 NOTE

6. Move dpmcp.4 from dprc.1 to dprc.2 and move to ‘plugged’ state.

$ restool dprc assign dprc.1 --child=dprc.2 --object=dpmcp.4 --
plugged=1

Check the status of dpmcp.4 object using

restool dprc show dprc.2

to confirm if it has been moved into dprc.2 and put into ‘plugged’ state.

7. Confirm that both the objects, dpmcp.4 and dpaiop.0, are part of dprc.2

$ restool dprc show dprc.2

Output would be similar to:

dprc.2 contains 2 objects:
object label plugged-state
dpaiop.0 plugged
dpmcp.4 plugged

Hereafter, the DPRC dprc.2 is ready to be used with AIOP Tool once VFIO binding is done. See Sample VFIO Binding
Script on page 726 above for information on VFIO binding.

8.3.6.3 AIOP User Manual
Click here to access the AIOP User Manual PDF.

8.3.6.4 AIOP Program Profiling

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
728 NXP Semiconductors

8.3.6.4.1 Overview
This document describes techniques for performance enhancements for software developed for AIOP. The reader should
understand basic AIOP architecture and service layer API.

The structure of this document is the following:

• Explain the performance capabilities and limits of different processing elements of AIOP that should be taken into account
at design time and in optimization time.

• Specific methods for identifying bottlenecks for different processing elements and memory subsystem

Readers should also have access to the CodeWarrior Development Studio for Advanced Packet Processing product inside a
larger software suite called CodeWarrior Development Suites for Networked Applications (CW4NET), which includes the AIOP
Analysis Tool and Scenarios tool.

AIOP Analysis Tool trace examples are used throughout this document. Users should be familiar with this tool since it is regularly
used to debug and profile AIOP. Meanwhile, the Scenarios Tool is crucial when measuring memory bandwidth.

8.3.6.4.2 AIOP Program Design: Budgets Per Processing Elements
AIOP developers must consider the available capacity for each hardware element and design their programs accordingly.

For example, the LS2085A AIOP has 16 cores running at 800 MHz. This means that 800 x 16 = 12,800 million core cycles per
second are available.

If instructions per cycle (IPC) is about 0.75 for each core, cores can execute about 10,000 million instructions per second. In order
to handle 10 million frames per second, a budget of 1,000 instructions per each frame is available.

In order to achieve 17 million packets per second (MPPS) (which is approximately line rate for 2 x 10GE for 128-byte packet),
maximum 588 instructions can be used to process a packet.

The Performance Capacity per Resource table below shows performance budgets for some AIOP operations.

Table 152. Performance Capacity per Resource

Use case and other Information Performance

capacity – Rev1

Cores 16 x 800 MHz

MCPS (million cycles per second) x 0.75
IPC = 9600 Instraction per second

16x800Mhz

OSM (Ordering Scope Manager) Enter/exit pair, transitions 80 MOPS (million operations per
second)

TMan (Timers Manager) Timer commands per second (assuming
10M timers)

1 M [Timer fires/sec]

Timer tasks initiated per second
(assuming 10M timers)

1 M [commands/sec]

STE (Stats Engine) Number of STE commands per second 68 M [commands/sec]

CDMA/FDMA (Context/Frame DMA) 17 MPPS packet presentations/
enqueues with 3 CDMA operation
combined

Tables Exact Match (EM) key size up to 124 B; 51 MOPS

Table continues on the next page...

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 729

Table 152. Performance Capacity per Resource (continued)

LPM key sizes, 4 byte EM + 4 byte LPM
(IPv4) or 4byte EM + 16 byte LPM (IPv6)

17 MOPS

Management commands on a 10 K
rules balanced tree on PEB

500 K [commands/sec]

Total 5 lookups at 17 MPPS: 3 Exact
Match + 1 LPM + 1 MFLU

17 MOPS. ACL key size up to 56 B 17 MOPS

Parser Max parser performance capacity 34 MOPS

Max accesses to CTLU at 17 Mpps,
including parser

6

Typical use case at 17 Mpps 5 lookups + 1 parser

8.3.6.4.3 AIOP Program Profiling and Performance Tuning
AIOP programs have tight performance requirements and developers need to profile their applications in order to improve their
performance characteristics.

There are two stages in profiling AIOP applications:

1. Finding bottlenecks in the application

2. Fixing bottlenecks found for each specific application

An AIOP task is a sequence of jobs executing on different processing elements. The performance of the overall task is dictated
by the performance of the weakest element, which makes the weakest element a bottleneck of the application.

Take for example a task that involves receiving a frame, doing a look up, and sending the frame to another interface.

This task uses the core, FDMA, CDMA and TLU processing elements. Assuming that the core is going to run for 1000 cycles per
task and that the task has 2 FDMA jobs, 2 CDMA jobs and one LPM CTLU job, how many tasks per second can the AIOP handle?

To answer this question, calculate the number of jobs each processing element can handle. Use the following assumptions to
solve the example above:

• 16 cores running at 800 MHz

• Based on table for rev1, we can see that AIOP can perform 17 million of operations of 3 FDMAs + 2 CDMAs per second

• CTLU can perform 17 million LPM lookups per second

Because there are 16 x 800 MHz = 12,800 million cycles per second, 12,800/1,000 = 12.8 million tasks per second can be
processed.

FDMA/CDMA: 17 millions per second = throughput of 17 million tasks

CTLU: 17/1 = throughput of 17 million tasks

Based on this analysis, the estimated maximum performance boundary for this application will be 12.8 tasks per second and its
bottleneck is core performance. We do not take into account other possible artifacts, such as synchronization constrains etc. just
for simplification of initial analysis.

The analysis above is very useful for initial estimation during the design and implementation stages as it allows the programmer
to design the program with specific performance goals in mind. For more information on performance characteristics of different
processing elements see AIOP Program Design: Budgets Per Processing Elements on page 729.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
730 NXP Semiconductors

Installing the AIOP Analysis Tool

In order to find bottlenecks within applications, AIOP tools are used; one in particular is the AIOP Analysis Tool.

The AIOP Analysis Tool is a component of CodeWarrior Development Studio for Advanced Packet Processing product inside a
larger software suite called CodeWarrior Development Suites for Networked Applications (CW4NET). The AIOP Analysis Tool is
available for download on the NXP Semiconductors website.

To download the AIOP Analysis Tool, click on the "Downloads" tab and under "CodeWarrior Development Studio for Advanced
Packet Processing", select "Latest Version". Click on "CodeWarrior for Advanced Packet Processing Evaluation / Updates" and
download the installer. After the download is complete, run the installer:

Figure 168. CodeWarrior for Networked Applications Installer

After running the installer, follow the Setup Wizard and Click "Next":

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 731

http://www.nxp.com/products/software-and-tools/software-development-tools/codewarrior-development-tools/suite-for-networked-applications/codewarrior-development-studio-for-advanced-packet-processing:CW-SW-APP

Figure 169. CodeWarrior for Networked Applictions Setup Wizard

The AIOP Analysis Tool has to be selected within the components to install. After confirming the selection, the installer will
download the tools automatically according to the selection:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
732 NXP Semiconductors

Figure 170. CodeWarrior for Networked Applictions Tool Selection

For more information, please refer to the CodeWarrior Development Studio for Advanced Packet Processing.

Bottleneck analysis of existing application

This section explains in detail how to find bottlenecks within applications using the AIOP Analysis Tool. This tool captures the
scheduler trace, presents it in graphical way and provides some statistics based on this trace.

The figure below shows a code snippet and its associated trace for a simple reflector program:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 733

https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=CodeWarrior_APP_Knowledge_Center&lang=en-US

Figure 171. Trace of Reflector Application

The trace measures the length of each job in the task and shows the utilization of resources. (hover the mouse to highlight a
specific job):

Figure 172. Task Information

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
734 NXP Semiconductors

What is the bottleneck of this application? In the following sections, we will show how you can find bottlenck based on this trace

8.3.6.4.4 FDMA/CDMA
The implementation of the CDMA/FDMA module is the following:

• FDMA and CDMA are actually one hardware block sharing the same resources.

• Thread = an FDMA/CDMA context which executes job on behalf of a task. 64 are present in rev1.

• Foreground slot = a HW execution resource that is loaded with a thread (and its context) in order to perform work on the
thread (execute its command). 16 are present in rev1.

• Background slot = a HW resource that holds a suspended thread. This is a thread that is assigned (from a software point
of view), but is blocked waiting for a high latency action to complete.

• Thread switching = moving FDMA threads between foreground (execution) and background (suspended) slots.

In the trace window we can see the number of assigned threads. This number is not precise due to how we measure it, but it can
provide a good estimate.

Table 153. FDMA/CDMA Jobs

Core 13 63.12% Utilization

Core 14 63.97% Utilization

Core 15 63.23% Utilization

PC-CTLU 1.43 job average

TL-CTLU 11.86 job average

P.FDMA 3.65 job average

CDMA 20.91 job average

O.FDMA 10.49 job average

Total tasks 167

Tasks created 9,060,691.863 tasks/sec

Tasks finished 8,666,748.738 tasks/sec

We see here that the following number of threads are utilized:

1.43 + 11.86 + 3.65 + 20.91 + 10.49 = 48.34

48 is smaller than 64 so we are not running short of number of FDMA/CDMA threads.

Example of overall task analysis

Here we look at task trace of a reflector application and and analyzing it trying to find a bottlneck.

First, determine how many tasks are executing in parallel with the AIOP by looking at the following trace:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 735

Figure 173. Trace Analysis

For simplicity we show only snapshot of tasks with higher numbers. Task scheduler begins scheduling with those tasks as well.
Trace tool only shows tasks that were active at some point.

On core 15, only 6 tasks (Task 250 to Task 255) are executing, instead of 16 tasks. There are two possible reasons for this:

• The AIOP is underutilized; not enough traffic is sent to it.

• The FDMA/CDMA is a bottleneck as only FDMA/CDMA can push back to the work scheduler.

If enough traffic is sent to saturate the AIOP, but not all AIOP tasks are utilized, then the FDMA/CDMA is the bottleneck of your
application.

Bottlenecks caused by CDMA/FDMA:

• Run out of Foreground slots. This may happen when memory becomes very congested and the CDMA waits for
transactions for a long time. This bottleneck can be identified by looking at the average number of CDMA/FDMA jobs. If
this number is close to the number of threads, then the bottleneck is within the CDMA/FDMA.

• Runs out of Threads. This happens when all CDMA/FDMA foreground slots are busy executing. This condition rarely
happens as the previous condition happens first.

Strategies for reducing FDMA/CDMA bottlenecks

• Reduce the size of the initial presentation. The FDMA block is sensitive to presentation size; reducing presentation size from
128 to 64 Bytes may significantly reduce the pressure on the FDMA. For example, the figure below shows that task creation
job (which is using FDMA) for 64 Byte presentation takes 233 cycles, while a 128-Byte presentation can take over 500 cycles.
For IPv6 frames (or for any bigger header frames), initially present a bigger area or re-represent more data after determining
that one is dealing with an IPv6 frame.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
736 NXP Semiconductors

Figure 174. Task Creation Job Using FDMA

• Reduce the number of CDMA calls. Look for opportunities to combine one or more reads or writes. This will reduce pressure
on the CDMA block and memory. For example, when reading two integers, a and c, in struct such as:

struct {
int a;
int b;
int c;}

It is better to read both integers in one read, even if that means also reading c.

• Mutex – Mutex on rev1 can be called 12 million times per second when multiple Mutex IDs are used and about 5 million times
per second if a single ID is used.

• Try to align and pack all CDMA accesses. For example, when reading 64 bytes of data per packet, place it in DDR memory
with a 64-byte alignment. In any case, try not to cross 64-byte boundaries when possible, as it will cause two accesses instead
of one.

• Allow sufficient headroom for frame changes (inserts). There is an API that can override some parameters in the default
storage profile, which should be called during the early initialization stage dpni_drv_register_rx_buffer_layout_requirements().

• Call once for multiple changes. For example multiple changes in a frame header can be made using a single FDMA call.

• Do not represent segments (for example frame data segments) when possible.

• While a frame is open for the AIOP task, it may be edited with FDMA commands, but the changes may not be visible to
consumers outside the AIOP. There is no need to do an FDMA store command unless those updates must be visible to
consumers outside the AIOP (e.g. an external memory).

• Some FDMA commands have options to encapsulate other commands, creating compound commands. Use compound
commands when appropriate. See the table below.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 737

Table 154. FDMA Compound Commands

Command Combined Options

Present (open) Frame Present frame data segment

Enqueue Frame Terminate task

Discard frame (when enqueue fails)

Relinquish OSM exclusivity in current scope right after the enqueue to QMan is
issued

Replace Segment Data Represent Segment Data

Close segment

Concatenate Frames Close concatenated frame

Split Frame Close new frame

Present new frame data segment

Replicate Frame Enqueue new frame, optionally Relinquish OSM exclusivity

Discard source frame

8.3.6.4.5 Core Profiling

Strategies for reducing core bottlenecks

Core bottlenecks are easily identified by examining the core load in the trace tool. If the core load gets close to 100% percent, it
means that the bottleneck is core cycles. Generally, it is a good problem to have after the final optimization stage as the core is
the most valuable resource. If the application has a bottleneck with the core, that means the core is being used to its maximum.
This table is an example of usage of trace tool for core profiling:

Table 155. Core Utilization

Range Time 1118954.00 cycles

Core 0 99.60% Utilization

Core 1 83.13% Utilization

Core 2 93.11% Utilization

Core 3 99.61% Utilization

Core 4 99.62% Utilization

Core 5 86.42% Utilization

Core 6 83.14% Utilization

Core 7 89.74% Utilization

Core 8 86.37% Utilization

Core 9 86.43% Utilization

Core 10 83.15% Utilization

Table continues on the next page...

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
738 NXP Semiconductors

Table 155. Core Utilization (continued)

Core 11 89.72% Utilization

Core 12 86.43% Utilization

Core 13 89.68% Utilization

Core 14 89.83% Utilization

Core 15 99.92% Utilization

Example task analysis for core utilization

What can be done to resolve this problem?

First, look at the trace, identify all core jobs and check that job lengths are reasonable and expected. If you find something not
expected, examine code that is executed for this job and try to find ShRAM accesses, make sure code is running from iRAM (for
performance sensitive code), no accesses to PEB, DDR or regicters are made in your code. Access to DDR can take up to 200
cycles and should be avoided.

It is a good idea to measure IPC of your program so that you know that it is in a reasonable range. We use scenario tool to measure
it on AIOP. In order to measure IPC directly in a running program, open the following scenario:
aiop_throughput_IPC_ssram_access (warning: you must disable run-time stack check in AIOP by undefining
STACK_OVERFLOW_DETECTION as this feature is utilizing the same resources as this scenario)

The IPC for each core is measured based on the following formula:

INSTR_COMPLETED / (PLATFORM_CLK - CTS_NO_TASK_CYCLES)

Based on the formula, divide the number of instructions completed by each specific core by the number of cycles that core was
executing tasks (was not idle).

After measurement, the result is similar to the figure below:

Figure 175. Example IPC for Each Core

Generally, if the IPC is lower than 0.70, we need to investigate why. One of the most common reasons for low IPC would be
accessing ShRAM (Shared SRAM) in the program. However if the resulting IPC is a really low number, then the code must not
be running from IRAM.

Here is how one can calculate the approximate IPC based on number of ShRAM accesses and accelerator calls. In the previous
scenario, we can look at following data:

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 739

Figure 176. Packet Information: ShRAM Accesses and Accelerator Calls

The formula below was used to approximate the number of cycles spent by the core as a function of the number of ShRAM
accesses, accelerator calls, and instructions executed.

N_Core_Cycles = (N_Instr * CPI) + (N_ShRAM * 12) + N_Accel_Calls * 4

In our case we get:

N_Core_Cycles = 198 * 1 + 10 *12 + 4*4 = 332

IPC ~ 198/332 = 0.596

For the example above, this low IPC is due to a high number of ShRAM accesses.

Improving core performance

• Inline the code where possible, especially for functions that are part of a “hot path”. Most of SL APIs are already in-lined.

• Reduce the number of accesses to shared memory. Shared memory has 12 cycles latency and 10 accesses will incur at
least 120 cycles.

• Place all per-packet code in IRAM. For that, qualify such code with __HOT_CODE. For example:

Figure 177. Example of __HOT_CODE

• Never place any performance sensitive code in DDR.

• Avoid floating-point operations and operands. The e200 core emulates floating-point operations/operands, which causes
performance to be very low. Use fixed-point operations instead, when required.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
740 NXP Semiconductors

• Use all available cores and maximize possible tasks per core. Typically, it will not be an issue to use all the cores, but using
all tasks could be challenging sometimes because of stack size. If the stack requires more than ~1500 available entries to
maximize the number of tasks, do the following:

1. Run the stack static analysis tool and check where you use most of the stack

2. Restructure your code, so that:

a() -> b() ->c() chain that will require a lot of stack

is replaced with the following:

a();
b();
c();

8.3.6.4.6 Memory profiling
AIOP programs may use different types of memories:

• external (DDR, PEB)

• internal (ShRAM, Workspace)

DP-DDR (DDR3 controller)

DDR memories are the first suspect to be oversubscribed. During the design stage of the system, developers should keep DDR
bandwidth in mind.

The bandwidth of DP-DDR is 4 Bytes x 1.6 GHz = 6.4 GB/s

In a perfect situation where everything is aligned, accesses are all 32 bytes in length. However, this is not usually the case, but
this number can provide a good starting point.

Example task analysis for DDR usage

So, let’s assume we have context data in DP-DDR. It has 32 byte size and it accesses each frame with 17 MFPS.

We will get 32 x 17 MFPS = 544 MB/s, which is 544 MB/s / 6.4 GB/s = 8.5% of bandwidth

What happens when tables are placed into this memory?

The following is how look-up hardware accesses memories:

• LPM IPv4 takes 4*(1+alpha/2) memory accesses

• LPM IPv6 takes 6*(1+alpha/2) memory accesses

• EM takes (1+alpha/2) memory accesses

Alpha is the fill factor which goes from 0 to 1. The worst case condition is when alpha is 1. This means the tables fully utilize the
CTLU memory.

Each access is 64 bytes.

Assume that the EM table has been placed in DP-DDR. Calculate the load on DP-DDR when running at 17 MFPS load.

The load will be:

1 x 64 x 17 MFPS / 6.4 GB/s = 0.17 = 17%

DP-DDR can safely be loaded up to 60%. However at 60% load, expect a spike in latency of DP-DDR. For example, it is impossible
to place the LPM table there at 17 MFPS:

4 x 64 x 17 MFPS / 6.4 GB/s = 0.61 = 61%

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 741

Improving memory bottlenecks

Recommendations for table placement

The decision for each table placement should be made based on the following parameters:

1. Frequency—how often the table is accessed.

2. Size of the table—big tables will not fit in PEB.

3. Availability of bandwidth or place in specific memory.

Some guidelines:

• If DP-DDR is populated, it should be utilized as much as possible up to 60% of bandwidth, in order to reduce pressure on
system DDR

For small tables that are used relatively frequently PEB could be the best candidate.

For System DDR, the L3 cache must be enabled in rev1.

For example:

Small (several hundred entries) ACL tables that are accessed per packet at a very high rate (millions times per second) should
go to PEB memory.

Big LPM tables that are accessed infrequently should be placed in DP-DDR. The same table that is accessed higher than 60%
DP-DDR utilization should be placed in System-DDR.

As a practical approach, we suggest not to use DP-DDR at the first stage of development and leave this optimization for later
stages of development.

Recommendations for data placement

Data can be placed in several types of memory:

• System DDR

— Direct access by core (not recommended) is ~200 cycles

• DP-DDR

— Direct access by core (not recommnded) is ~200 cycles

• Shared RAM

— ~10-15 cycles access

• PEB

— ~40 cycles access by core (not recommnded)

When deciding about placement of different types of data, first consider how this data scales:

• Data scaling with number of flows

— As number of flows is typically high (more than thousands), it should be placed in DDR

• Frequently accessed data that is scaling as number of interfaces or application instances

— Such data should be placed in ShRAM (as statically defined data). Exceptions could be made for data that is
accessed in bulk. In that case, place the data in PEB, so that it could be brought from DMA to local memory as a
whole structure and then several data fields can be accessed with zero latency

8.3.6.4.7 CTLU - Parser
The CTLU or parser becomes a bottleneck of the application when tasks wait for the CTLU or parser for a long time. For example,
the trace below shows this situation:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
742 NXP Semiconductors

Figure 178. CTLU - Parser Bottleneck Example

Based on the trace above, it is evident that the wait time for the parser (PCCTLU - "Parse Classify CTLU") is very significant. The
following are reasons for the long wait time:

• Too many calls to the parser/TLU

• The memory that the TLU works with experiences high load, which results in high latency. For memory issues, refer to the
Memory profiling on page 741 section.

Example task analysis for CTLU usage

Improving CTLU bottlenecks

Listed below are some ideas on how to alleviate load on the parser:

• One of the features of DPNI is to calculate gross running checksum for ingress frames. So, when frame is received form by
AIOP, it has associated valid gross running checksum. It is a checksum of the entire frame. Once we change frame data,
the checksum becomes invalid unless we update it. If the parser is called with validation flags enabled, and the gross
running sum was set to 0, it will first recalculate the gross running sum of the entire frame. When appropriate, do not
invalidate (set to 0) the gross running sum field if the parser will later be called with the validation flags enabled.

• In case a VLAN header was added or removed, it is possible to call the software functions parser_push_vlan_update()
or parser_pop_vlan_update() to update the workspace parse results instead of calling the hardware parser routines.
This method should be used when the ratio of calls to the hardware parser routine is beyond the performance capacity.
See the AIOP Program Design: Budgets Per Processing Elements on page 729 section.

8.3.6.4.8 OSM
It is assumed the reader is already familiar with the details of OSM operation and use. Here we are only concerned with refining
the use of OSM to enable best performance. It is also assumed the reader has a basic familiarity with the AIOP analysis tool to
view what is going on with task/job scheduling within the AIOP.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 743

OSM is used to add order constraints on the scheduling of jobs of a task within the AIOP based on network ordering requirements
of the packet being processed. Therefore the goal in optimizing performance when using OSM is to minimize how often the task
scheduler will block a task’s progress based on order constraints. In other words OSM inhibits jobs of a task from being scheduled
and optimization minimizes the time it does so.

The image below demonstrates using the AIOP analysis tool to show how contention in an ordering scope looks like. The mouse
when hovered over the pink bar in Task 251 shows additional information about this phase of a task execution. It shows in this
example that the task was blocked for 1412 cycles because it needs exclusive phase of a particular ordering scope but it is blocked
because other tasks are ahead of it.

Figure 179. Task Waiting on Ordering

The obvious optimization here is to reduce the number of tasks in the same ordering scope at a given time and to minimize the
time each of these tasks keeps the exclusive phase of any ordering scope. An optimized software design will do both as much
as possible while remaining correct. Also in a perfect optimization, all tasks would be in different ordering scopes or all tasks would
use zero cycles in the exclusive phases of an ordering scope but this is never possible. The AIOP analysis tool will help the
software designer to gain experience in the practical use of ordering scopes.

Example task analysis for OSM

Consider a simple example of a task. This task extracts the destination IP address as a key and does a TLU lookup based on
that key. The lookup result is a reference to system memory that contains an ARP table entry. The entry is copied from system
memory to local workspace. A hit counter in the entry is incremented and the system copy updated to reflect that. The entry also
contains a MAC address which is used to replace the destination MAC address in the packet received and then forwarded.

key.dst = _presentation_with_vlan.ipv4hdr.dst_addr;
key_desc.em_key = (void*)&key;
table_lookup_by_key(TABLE_ACCEL_ID_CTLU, tid_arp, key_desc, sizeof(struct simple_key),
&lookup_result);
cdma_read((void*)&arp_entry, lookup_result.opaque0_or_reference, 16);
arp_entry.hits++;
cdma_write(lookup_result.opaque0_or_reference + offsetof(struct arp_entry, hits),
(void*)&arp_entry.hits, 8);
memcpy(&_initial_presentation.ethhdr.da, &arp_entry.mac, 6);
fdma_modify_default_segment_full_data();
fdma_store_and_enqueue_default_frame_fqid(DESTINATION_FQ, FDMA_EN_TC_TERM_BITS);

This is a made up example which does no error checking. Assume from this simple example that forwarded frame is required to
be in the same order as the frame arrived on a network interface for any flow. This is not a very realistic example but it will suit
the purpose of observing the performance when OSM operations are included.

The simple method to meet the order requirement in this application is to run all packets as if they are in a single flow (single
common initial scope ID) and in exclusive mode for the duration.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
744 NXP Semiconductors

Figure 180. Tasks Executing Sequentially

A snapshot from the AIOP analysis tool shows the result of running all packets as if they are from a single flow in the exclusive
phase of a common ordering scope. In this image, blue bars are hardware jobs, green are software jobs, and red is blocked. It is
immediately obvious each packet is processed one at a time until done before a subsequent packet starts processing. This is the
baseline to improve upon.

Spread based on flow

AIOP tasks will run in parallel more effectively if tasks of different flows begin in different initial scope IDs. In this way they, by
definition, do not compete. To demonstrate this, the example of the previous section is repeated, all tasks start as exclusive, but
now the packets come from 32 different flows and each flow defines an initial scope ID.

Figure 181. Tasks in Different Flows Running Parallel

As seen from the AIOP analysis tool trace, many operations are occurring in parallel. Both hardware jobs (blue) and software jobs
(green) are happening in parallel. In this snippet only one task is observed as blocked. This is the most simple and effective way
to improve parallel operation in the AIOP. However, it is never possible to know that ingress traffic will be in a large number of
flows at any instant in time.

The DPNI may or may not allow sufficient distribution (spread) of flows. However for every application there is a unique key
comprised of header fields to uniquely identify a flow. This unique key is reduced to a hash and used as a new scope ID when
classification must be refined within the AIOP. This would be step one of a task and it can be performed in concurrent mode of
the initial scope ID to maintain parallel operation.

Either way, if DPNI does or does not provide sufficient spread of flow, it is the application responsibility to pick what header fields
uniquely identifies a flow. Use dpni_drv_set_order_scope() to specify initial order scope construction from header fields so that
tasks are created with the best possible initial order scope ID. This is the preferred and best performing method. If that is not
possible then the user may create a key composition ID (KeyID) from the header fields required during application initialization
and use that KeyID to generate a hash suitable for order scope ID after tasks are launched. See key_composition_rule_create().

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 745

Run concurrent where possible

In general an AIOP task begins execution in the concurrent phase of the initial ordering scope and delays transition to a subsequent
scope in the exclusive phase as long as it is practical. In our example task it is possible to run concurrently up to the point where
the ARP table is read and updated. Consider a single flow where our example application runs concurrently and then moves to
exclusive after the TLU lookup.

osm_scope_transition_to_exclusive_with_increment_scope_id();

Figure 182. Tasks in a Flow Blocking for Exclusivity

The TLU will perform lookup operations in an atomic fashion. Take advantage of this characteristic of the AIOP accelerators by
using them from a concurrent phase of an ordering scope where ever possible. As can be seen in the AIOP analysis tool snippet,
the first hardware job, in this case a TLU lookup, is performed in parallel with other tasks. The remainder of the task is run
exclusively and parallel operation ceases.

Relinquish exclusivity quickly

In our example application the read-modify-write of the ARP table entry must be done exclusively. However the MAC address
update does not because the data and frame are private to the task. A relinquish exclusivity is inserted following the ARP update
and another transition to exclusive is inserted prior to forwarding to remain ordered.

Figure 183. Tasks of a Flow Relinquishing Exclusivity Affect

Consider alternatives

Our example takes advantage of OSM to create an exclusive phase to perform a critical operation, namely to read-modify-write
the ARP table entry. Note this is an ordered excusive operation. That is tasks will update their ARP entry in the order of packet
arrival. In this example the update is just a hit counter and does not require update in order.

It is possible to take advantage of two properties of the hardware accelerators here. First, the sequential update of the ARP entry
hit counter can be performed by the STE (statistics engine). Second, the atomic operation of CDMA commands can assure
consistent values regardless of other readers or writers. Our example can take advantage of these properties to rewrite our ARP
entry handling.

The atomic operation of CDMA read and write operations is a specific enhancement over the first revision of the

silicon. This atomic behavior allows a reader to be certain a writer will not corrupt an entry; the value read will be

valid but not ordered with respect to the writer.

 NOTE

Rewriting this section will look like the following:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
746 NXP Semiconductors

cdma_read((void*)&arp_entry, lookup_result.opaque0_or_reference, 16);
ste_inc_counter((lookup_result.opaque0_or_reference + offsetof(struct arp_entry,
hits)),STE_MODE_64_BIT_CNTR_SIZE);

Figure 184. Tasks of a Flow Making Use of Atomic Accelerator Operations

In our alternative method of using STE, all hardware accelerations with the exception of forwarding can now operate in parallel
even though all packets are of a single flow. Cycle count for the first four packets forwarding is down to about 3,000 cycles.

OSM Capacity

OSM itself is a resource of limited capacity. To maintain maximum task throughput the number of transitions and enter/exit scope
pairs should be limited to a total of about five. Beyond that the maximum task rate will start to decline. It is rare that a task of a
complexity to require more than five OSM operations will be limited by OSM before it is limited by other hardware accelerator
throughput. However the AIOP analysis tool will be the designer’s main insight into where bottlenecks are occurring within the
AIOP.

Use osm_scope_enter_to_exclusive_with_new_scope_id() and
osm_scope_enter_to_exclusive_with_increment_scope_id() instead which pick the best hardware options by default
and have little software overhead

Additional Guidelines

Experience with insight provided by using the AIOP analysis tool will guide the user to best practices for improving parallel
operation and relieving bottlenecks.

• Primarily use transition increment forms of OSM commands as they are the best performers and naturally partition an
application’s overall design into steps from ingress to egress.

• Reduce cycles in exclusive phases as much as possible.

• Use accelerators in concurrent phases as much as possible.

• Create new scope IDs to refine (distribute) flows.

• Take advantage of atomic accelerator characteristics in concurrent phases.

• Avoid using the osm_scope_enter() function as its many options and overhead take many cycles.

— Use osm_scope_enter_to_exclusive_with_new_scope_id() and
osm_scope_enter_to_exclusive_with_increment_scope_id() instead which pick the best hardware options by default
and have little software overhead

• Consider splitting a long operation requiring the exclusive phase into multiple exclusive phases.

These are only guidelines to consider while experience will guide the designer. The AIOP analysis tool gives insight into the
behavior of tasks. Often times the interaction between decisions is not obvious and some trial and error is required for best results.

8.3.6.4.9 Statistics Engine
The statistics engine will stall the core when it is overloaded. It is relatively easy to see this scenario on trace – core jobs will
become much longer around statistics engine (STE) calls and the IPC will go down. In order to isolate an STE bottleneck, remove
some STE calls and measure the IPC of the application. If the IPC grows significantly, then an STE bottleneck is being experienced.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 747

Below are important rules that developers need to be aware of when implementing statistics counters on AIOP during the design
stage of an application. The most important factor that these rules address is DDR bandwidth limitation.

1. Though seemingly simple, it is important to use as few counters as possible. Reduce counters if possible, and make
counters optional where possible.

2. Frequently used counters should not be placed in DDR but rather in internal memory (PEB or ShRAM in some cases).

3. If the context is not “read-only” and a lock of some sort (mutex or OSM based) is taken, it is good practice to put
counters in that context and update them by the core without using STE (statistics engine). Similarly, if the number of
counters is big, it is good practice to update them using the CDMA engine.

4. Use compound STE operations, which allows two counters to be updated in one operation.

There are restrictions on alignments of counters that the STE API has to follow. It can be found at STE section of AIOP Service
Layer API Reference Manual.

8.3.6.4.10 IP Fragmentation (IPF)
For best performance it is recommended to work concurrently, and move to Exclusive Mode (XX) ordering only before enqueuing
the last fragment. From this point (moving to exclusive before enqueue of the last fragment) transition to concurrent is not allowed.
This way fragments of different frames will be interleaved but ordering will be kept between the last fragments of different frames.

8.3.6.4.11 IP Reassembly (IPR)
• Ordering scope

— Call the IPR in Concurrent mode (XC)

— Do a per-frame flow distribution, according to the IP identification field

— Have at least two available OSM scope levels when calling IPR

• Place the lookup tables on the PEB memory

• The input frame (fragment) should be stored in a single buffer

• The frame buffer size should be larger or equal to (16 * <max number of fragments>) + any offset, headroom and
annotation

• API configuration parameters

— Do not enable external statistics

— Use timeout mode to be per reassembled frame

• Send in-order fragments (relevant to the sender side, usually in closed systems)

Table 156. IPR configuration options for best performance

Flags and options Best Performance

IPR_MODE_TABLE_LOCATION_PEB Set

IPR_MODE_EXTENDED_STATS_EN Cleared

IPR_MODE_IPV4_TO_TYPE Set

IPR_MODE_IPV6_TO_TYPE Set

8.3.6.4.12 IPSec
IPSec module supports IPSec encaspulation and decapsulation as a part of service layer. There are several ideas on how to
achive the best performance for IPSec:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
748 NXP Semiconductors

• Use tunnel mode.

• Use IPv4 frames and outer header.

• Do not enable transport mode pad check.

• Do not use the DSCP set option for tunnel mode.

• Use the system DDR as the IPsec FM context memory (currently not programmable).

• Do not enable UDP encapsulation in transport mode

• Enable reuse buffer mode

The following table describes the IPsec functional module configuration parameters value for achieving the best performance.

Table 157. IPsec Configuration Options for Best Performance

Flags & options Best performance

IPSEC_FLG_TUNNEL_MODE Set

IPSEC_FLG_TRANSPORT_PAD_CHECK Cleared

IPSEC_FLG_BUFFER_REUSE Set

IPSEC_ENC_OPTS_NAT_EN Cleared

IPSEC_ENC_OPTS_NUC_EN Cleared

IPSEC_FLG_ENC_DSCP_SET Cleared

IPSEC_FLG_LIFETIME_KB_CNTR_EN Cleared

IPSEC_FLG_LIFETIME_PKT_CNTR_EN Cleared

IPSEC_FLG_LIFETIME_SEC_CNTR_EN Cleared

IPSEC_OPTS_ESP_ESN Cleared

IPSEC_OPTS_ESP_IPVSN Cleared

IPSEC_DEC_OPTS_ARSNONE Set

IPSEC_DEC_OPTS_ARS32 Cleared

IPSEC_DEC_OPTS_ARS128 Cleared

IPSEC_DEC_OPTS_ARS64 Cleared

8.3.6.4.13 Appendix A

DDR bandwidth measurement

The Scenarios Tools allows a real time measurement of DDR bandwidth for all the controllers. Use this tool as a help guide for
the configuration procedure.

As an example, in the LS2085A, there are three DDR controllers. In Scenarios Tools those are called DDRC1, DDRC2 and
DDRC3.

DDRC1 and DDRC2 are for system memory and DDRC3 is for DP-DDR.

Add the utilization measurement as shown below, then press the green “Launch” button in the toolbar.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 749

Figure 185. Utilization Measurement in Scenarios Tool

The measurement will complete in a few seconds, and the table of results will be displayed, as shown below.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
750 NXP Semiconductors

Figure 186. Utilization Measurement Table of Results

The initial table display will show all measured events and metrics. Use the Measurement Chooser dialog to select the
measurements of interest, in this case the utilization metrics.

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 751

Figure 187. Measurement Chooser Dialog

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
752 NXP Semiconductors

Figure 188. Selecting Utilization Metrics

DPAA2-specific Software

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 753

Figure 189. Example of DDR Utilization

In last figure, observe that DDR1 and DDR2 are only 5% utilized. Generally, utilization of lower than 65% is considered to be low
and not affecting latency.

8.3.6.5 AIOP Service Layer API Reference Manual
Click here to access the AIOP Service Layer API Reference Manual PDF.

8.3.6.6 AIOP SDK Applications Debug
Click here to access the AIOP SDK Applications Debug PDF.

8.4 Packet Forward Engine (PFE) Network Driver

8.4.1 Introduction

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
754 NXP Semiconductors

8.4.1.1 Overview
This section describes the Linux driver which enables support for Ethernet on Packet Forward Engine (PFE) hardware. EMACs
are part of PFE IP, to receive/transmit packets through EMAC interface it should be accessed through PFE interface by programing
it.

8.4.1.2 Purpose
The purpose of this section is to provide a user guide and configuration details for the PFE driver, and a high-level view of the
driver’s structure, as well as to describe its major functionalities with a focus on the features provided by the PFE IP.

8.4.1.3 Features
This section provides an overview of the major PFE features:

• MAC Layer.

• MAC Address Filter.

• Interrupt for Tx/Rx packets.

• Scatter/Gather support.

• Interrupt coalescing.

• TCP/UDP checksum verification and generation.

8.4.2 High level decomposition and data flow
A system level block view, from a network device perspective, may be depicted as follows:

HIF/Ethernet client driver

Eth1

HIF driver layer

PFE

Eth0

Linux network stack

H

PHY PHY

MAC MAC
HW

Kernel

Network protocol handler/ioctl interface

User
application

ethtool
package

iproute2
package

Figure 190. High level decomposition and data flow block level view

Packet Forward Engine (PFE) Network Driver

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 755

The PFE, MAC and PHY are the hardware blocks, the kernel networking stack along with the network driver are running in the
Kernel space, and finally ethtool and iproute2 are examples of user space tools used for configuring the network devices.

The PFE hardware supports one HIF RX and TX descriptor queues to send and receive packets through PFE. Both network
interface traffic is multiplexed and send over Host Interface (HIF) queue.

User space packages like ethtool and iproute are used to configure the network device parameters. The ethtool interface is
extended to provide support for filer programming. The kernel space module for the network driver is the most important block
as it communicates with both the user space and the H/W IP to control the processing of packets.

The basic functionality of any Ethernet driver is to handle the reception of packets from an ingress port (might include checksum
calculation, header verification, etc), as well as the transmission of packets on the egress port (might include checksum re-
calculation, header manipulation, etc). There are also the device configuration and control functionalities, and device status
reporting. When the Ethernet driver is actually implementing these functionalities, it needs to interact with the core (Kernel) as
well as the hardware IP (the Ethernet controller).

The PFE Linux kernel module has following two main parts:

• HIF driver layer:This part of the driver talks with HIF hardware interface and send and receive the packets from it. It receives
packets from HIF interface and identifies from which MAC interface it received and send the packet to corresponding client
driver queue. Similarly, if there is any pending packet from client queue to transmit packet it takes and inserts the HIF header
and put it into the HIF queue. It uses the NAPI to receive packets and send it to corresponding client queues and triggers
client to process packets from the queue.

• HIF/Ethernet client driver: Ethernet client driver is a hardware independent driver and registers with the HIF driver to transmit
and receive packet through HIF interface. For each interface one instance of client driver should be register with the HIF driver
layer, other side it registers with Linux kernel stack as network interface. Each client driver will have software queues to
communicate with HIF driver layer. Each client driver registers with NAPI and indicate packets to the stack through the NAPI
poll.

8.4.3 NAPI support
PFE HIF driver layer uses NAPI handling for Rx path processing, the Linux polling mechanism being triggered by frame receive
interrupts. The driver registers irqs for receive and the NAPI (polling) handlers are provided to the Kernel. Similarly, HIF Ethernet
client driver also uses NAPI handling to processes software queues and pass them to the Kernel Network stack.

On the receive path:

• When the receive interrupt gets triggered, a softirq for the polling function on Rx is scheduled.

• The RX_SOFTIRQ thread is raised by the Kernel, and the HIF Rx queues will be processed by the driver's polling function
and the incoming packets are being passed to client Rx queues and triggers the client NAPI handling.

• HIF/Ethernet client NAPI poll receives packets from client Rx queues and passes to the Network stack.

8.4.4 Interrupt coalescing
On a high speed network interface the rate of packet reception and transmission can be as high as the CPUs would be spending
most of the time servicing these interrupts. With the interrupt coalescing feature, packets are collected and one single interrupt
is generated for multiple packets to avoid flooding the system with interrupts from the Ethernet device.

PFE hardware supports hardware coalescing for receive interrupts, complemented by timer-based thresholds. PFE driver provides
basic support for setting the coalescing parameters via ethtool -C by implementing the “rx-usec” option.

8.4.5 Checksum offloading
For large frames, offload of checksum verification saves a significant fraction of the CPU cycles that would otherwise be spent by
the TCP/IP stack. IP packet fragmentation and re-assembly, and TCP stream establishment and tear-down are not performed in
hardware.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
756 NXP Semiconductors

On Tx side, PFE hardware provides IPv4/IPv6 and TCP/UDP header checksum generation. On the Rx side, PFE driver lets the
Kernel know that checksum verification is not required if valid IP headers or TCP/UDP headers were found and valid sums were
verified, by setting the CHECKSUM_UNNECESSARY flag. On Tx side, the checksum is generated (offloaded) for TCP/UDP
packets over IPv4 based on the pseudo-header checksum (phcs) provided by the Linux networking stack. PFE Linux driver
instructs the stack about its ability to provide partial checksumming, based on the phcs for TCP/UDP packets, by setting the
NETIF_F_IP_CSUM device capability flag. PFE hardware doesn’t support per packet based checksum calculation control, it
should be enabled or disabled for all packets.

8.4.6 Scatter gather support
Scatter-Gather I/O is a method by which a single procedure call sequentially writes data from multiple buffers to a single data
stream or reads data from a data stream to multiple buffers. The buffers are given in a vector of buffers. Scatter/gather refers to
the process of gathering data from, or scattering data into, the given set of buffers. The I/O can be performed synchronously or
asynchronously to this procedure.

On the Tx side, PFE HIF interface supports "gathering" big packets from multiple buffers. This ability is signaled by the driver to
the Linux network stack by setting the NETIF_F_SG device hardware feature flag. The driver takes into account the number of
fragments composing the packet that is going to be transmitted, and places each fragment into consecutive BD ring buffers before
issuing the command to start sending the frame.

On the Rx side, the PFE HIF interface is capable of "scattering" big packets into multiple fixed size buffers having consecutive
buffer descriptors (BDs).

8.4.7 Ethtool support
Non-exhaustive list of the most notable ethtool commands implemented by PFE Linux driver:

-C | --coalesce DEVNAME [rx-usecs N]

Sets Rx interrupt coalescing in microsecs(‘usecs’).

-K | --offload DEVNAME

Sets UDP/TCP checksum offloading enabled or disabled.

• rx on|off - Specifies whether RX checksum is enabled or disabled.

• tx on|off - Specifies whether TX checksum is enabled or disabled.

-S | --statistics DEVNAME

Queries the specified network device for NIC- and driver-specific statistics.

-s DEVNAME

Allows changing some or all settings of the specified network device. All following options only apply if -s was specified.

• wol g - Sets Wake-on-LAN options. The argument to this option is a string of characters specifying which options to enable.

-A|--pause devname

[tx on|off] Specifies whether TX pause should be enabled.

8.5 Linux Ethernet Driver for eTSEC

8.5.1 Linux Ethernet Driver for eTSEC

Linux Ethernet Driver for eTSEC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 757

8.5.1.1 Introduction

8.5.1.1.1 Overview
Gianfar is the Linux driver that enables Ethernet support for the SoCs featuring eTSEC (Enhanced Three-Speed Ethernet
Controllers). Though the driver is designed to support the latest eTSEC2.0 features present on the low-power QorIQ platforms,
it also maintains backward compatibility with older IPs from the same family, like eTSEC (eTSEC 1.x) and TSEC (present on the
PowerQUICC III platforms) and FEC (Fast Ethernet Controller).

8.5.1.1.2 Purpose
The purpose of this document is to provide a user guide and configuration details for the Gianfar driver, and a high-level view of
the driver’s structure, as well as to describe its major functionalities with a focus on the features provided by the eTSEC2.0 IP.

8.5.1.1.3 Features
This section provides an overview of the major eTSEC2.0 (“virtualized” eTSEC) features:

• o MAC Layer

• o Interrupt grouping mechanism

• o Virtualized register space

• o Rx Subsystem:

— MAC Address Filter

— L2/L3/L4 Parser

— Filer Engine

— Hash or RR Distribution

— Multiple Rx Interrupt

• o Tx Subsystem:

— Tx Scheduler

— L3/L4 Offload

— Multiple Tx Interrupt

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
758 NXP Semiconductors

Figure 191. “Virtualized” eTSEC Block Diagram

• o Interrupt virtualization:

— Each ring maps to one of two separate groups for interrupt and BD management; each group associated by software
with a CPU.

— Separate address spaces per group and for MDIO.

— Interrupt coalescing controls per ring in multi-group mode, packet-count based and timer based thresholds, for both Rx
and Tx.

• o TCP/IP Offload Engine (TOE):

— IP v4 and IP v6 header recognition on receive

— IP v4 header checksum verification and generation

— TCP and UDP checksum verification and generation

— Per-packet configurable offload

— Recognition of VLAN, stacked-VLAN, 802.2, PPPoE session, MPLS stacks, and ESP/AH IP-Security headers

• o Quality of service (QoS) support:

— Transmission from up to eight queues: priority-based queue selection or modified weighted round-robin (MWRR) queue
selection with fair bandwidth allocation

— Reception to up to eight physical queues:

- Table-oriented queue filing strategy based on 16 header fields or flags

- Frame rejection support for filtering applications

- Filing based on Ethernet, IP, and TCP/UDP properties, including VLAN fields, Ether-type, IP protocol type, IP
TOS or differentiated services, IP source and destination addresses, TCP/UDP port number

Linux Ethernet Driver for eTSEC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 759

8.5.1.1.4 Notes on high level decomposition and data flow
A system level block view, from a network device perspective, may be depicted as follows:

Figure 192. Gianfar High level decomposition

The eTSEC2.0 and PHY are the hardware blocks, the kernel networking stack along with the network driver are running in the
Kernel space, and finally ethtool and iproute2 are examples of user space tools used for configuring the network devices.

The eTSEC2.0 includes some additional support compared with the previous versions:

• it has support for interrupt virtualization

• on the TX side, it can distribute packets to the multiple queues based on simple hashing or round robin mechanisms

The eTSEC2.0 has support for multiple RX and TX queues. On the receive side, an incoming packet will be filed to one of the
queues based on the rules programmed into the filer. By default, all the packets will be filed to queue 0. On the transmit side,
either a simple hash based implementation or a round robin algorithm distributes the packets to the available number of queues.
User space packages like ethtool and iproute are used to configure the network device parameters. The ethtool interface is
extended to provide support for filer programming.

The kernel space module for the network driver is the most important block as it communicates with both the user space and the
H/W IP to control the processing of packets. The eTSEC network device driver will be referred to as Gianfar in the rest of the
document.

The Gianfar driver may be divided into sub-blocks based on the number of independent threads that Linux will run in order to
completely transfer a packet from ingress to egress side. The basic functionality of any Ethernet driver is to handle the reception
of packets from an ingress port (might include checksum calculation, header verification, etc), as well as the transmission of
packets on the egress port (might include checksum re-calculation, header manipulation, etc). There are also the device

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
760 NXP Semiconductors

configuration and control functionalities, and device status reporting. When the Ethernet driver is actually implementing these
functionalities, it needs to interact with the core (Kernel) as well as the hardware IP (the Ethernet controller).

Figure 193. Gianfar Packet Flow

In the above Figure it can be noted that the receive side includes parsing/ filing before a packet is "put" into a buffer descriptor.
The transmit side includes a H/W queue scheduler for transmission of packets.

As already mentioned, eTSEC2.0 has support for multiple hardware queues for Rx and Tx in hardware. These queues are basically
divided into two groups; let’s say all odd numbered queues correspond to one group and even numbered queues correspond to
other group. In a multi core environment (e.g. a dual core system), each group of queues can be programmed to be handled by
one of the two cores, which will result in an increased performance.

For simplicity, we always assume that:

• All the even numbered queues are mapped to Group 0 and odd numbered queues are mapped to Group1.

• Group 0 interrupts can be assigned to be processed by Core 0 and Group 1 interrupts to be processed by Core 1 (except for
error the interrupts, which are always destined to Core 0, which is the master core).

From the above figure, it can be noticed that there will be a receive, and a transmit thread running on each core, for processing
the packets corresponding to the group assigned to that core. The receive thread processes the received packets - handles the
RX buffer descriptor (BD) rings, and passes the received packets to the networking stack for further processing; the transmit
thread schedules the packets passed down by the stack to be transmitted out of the device. There's also a transmission cleanup
thread, triggered by the TX confirmation interrupts, to handle the TX BD rings and congestion.

Gianfar may be broadly decomposed into the following sub-blocks:

1. Initialization block

2. Receive block

3. Transmit block

4. Control block

So, the Receive and Transmit blocks handle processing of ingress and egress packets.

Linux Ethernet Driver for eTSEC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 761

Before processing packets the driver needs to perform some initialization steps like:

• extracting the device tree parameters

• initialization of the multiple queues

• registering the driver with the kernel

• allocating buffer descriptors

• registering the interrupts (etc.)

All these functionalities are implemented by the Initialization block.

Each of these sub-modules implements various functionalities, as detailed in the coming section.

8.5.1.2 Functionality

8.5.1.2.1 Multi-Queue support
eTSEC features multiple physical queues or BD rings. The multi-queue support (MQ) in the driver is enabled by default for
eTSEC2.0 IPs.

Hardware queue events are mapped to one of the two available CPUs via eTSEC Interrupt Groups. For eTSEC2.0, each Rx/Tx
hardware queue or BD ring is mapped to one of the two available Interrupt Groups, and each group in turn has its Rx/Tx interrupt
lines assigned to a given CPU. By default, the driver enables 1 Rx and 1 Tx queue per Interrupt Group.

eTSEC2.0 supports 2 Interrupt Groups, this is also known as the Multi-Group (MG) mode in Gianfar. Each group has its own Rx,
Tx and Err interrupt lines which can be individually affined to any of the 2 CPUs, as a measure to balance the processing load.
Also, each interrupt group has its own block of registers, most notably ievent, imask, tstat, and rstat, so queue events are
handled at the interrupt group level. Having more than 1 Rx and 1 Tx queue assigned to a single interrupt group would thus incur
a software processing overhead that would not be justifiable for the majority of use cases. This is why the driver enables by default
only 1 set of Rx and Tx queues per Interrupt Group.

eTSEC1.x and other older eTSEC IPs support only one interrupt group (g0), meaning that they are working in Single Group (SG)
mode.

The mapping Rx/Tx queues to interrupt groups is by default: Rx Q0 and Tx Q0 assigned to Group0 (g0), and Rx Q1 and Tx Q1
assigned to Group1 (g1).

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
762 NXP Semiconductors

CPU0 CPU1

Interrupt Controller

rx/tx/err_g0_int rx/tx/err_g1_int

Rx Q0 Tx Q0 Rx Q1Tx Q1

Interrupt Group 0 Interrupt Group 1

/proc/irq affinity
settings

Figure 194. Multi-Queue Multi-Group

Supporting more than one Rx/Tx queue per interrupt group has been obsoleted (see above). As a result, the

following device tree properties are obsolete: fsl,num-rx-queues, fsl,num-tx-queues, fsl,rx-bit-

map, and fsl,tx-bit-map.

 NOTE

8.5.1.2.2 Receive Side Scaling support
eTSEC supports multiple Rx and Tx descriptor queues (see multi-queue support). On reception, eTSEC can send different
packets to different queues to distribute processing among CPUs. This mechanism is generally known as “Receive-side Scaling”
(RSS).

In Gianfar, packets are distributed by applying "n-tuple" filters configured from ethtool -N (--config-ntuple option). These
filters are converted by Gianfar to eTSEC Filer H/W rules. Based on these programmable filters, each packet is assigned to one
of a small number of logical flows. Packets for each flow are steered to separate receive queues, which in turn can be processed
by separate CPUs.

Linux Ethernet Driver for eTSEC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 763

Rx Q0

Rx Traffic

CPU0 CPU1

Rx Filer Engine

rx_g0_int rx_g1_int

Rx FIFO

eTSEC

Flow 1 Flow 2

Rx Q1

ethtool --config-ntuple
commands

/proc/irq affinity
settings

Figure 195. eTSEC RSS support

In Gianfar, Rx flows may be classified either by hashing various protocol header fields, see ethtool -N rx-flow-hash option,
or by specifying flow type classification rules, see ethtool -N flow-type option. Refer to ethtool Linux man-pages for ethtool
-N option details. A simple usage example is shown below.

root@ls1021aqds:~# ethtool -N eth0 flow-type udp4 src-ip 172.16.1.4 dst-port 5000 action 0
fsl-gianfar ethernet.4 eth0: Receive Queue Filtering enabled
Added rule with ID 254
root@ls1021aqds:~# ethtool -N eth0 flow-type udp4 src-ip 172.16.1.4 dst-port 5001 action 1
Added rule with ID 253
root@ls1021aqds:~# ethtool -n eth0
2 RX rings available
Total 2 rules

Filter: 253
 Rule Type: UDP over IPv4
 Src IP addr: 172.16.1.4 mask: 0.0.0.0
 Dest IP addr: 0.0.0.0 mask: 255.255.255.255
 TOS: 0x0 mask: 0xff
 Src port: 0 mask: 0xffff
 Dest port: 5001 mask: 0x0
 Action: Direct to queue 1

Filter: 254
 Rule Type: UDP over IPv4

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
764 NXP Semiconductors

 Src IP addr: 172.16.1.4 mask: 0.0.0.0
 Dest IP addr: 0.0.0.0 mask: 255.255.255.255
 TOS: 0x0 mask: 0xff
 Src port: 0 mask: 0xffff
 Dest port: 5000 mask: 0x0
 Action: Direct to queue 0

root@ls1021aqds:~# iperf -s -u -p 5000 &
[1] 1017
--
Server listening on UDP port 5000
Receiving 1470 byte datagrams
UDP buffer size: 160 KByte (default)
--
root@ls1021aqds:~# iperf -s -u -p 5001 &
[2] 1020
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 160 KByte (default)
--
root@ls1021aqds:~# cat /proc/interrupts | grep eth
176: 7 0 GIC 176 eth0_g0_tx
177: 6 0 GIC 177 eth0_g0_rx
178: 0 0 GIC 178 eth0_g0_er
179: 0 0 GIC 179 eth0_g1_tx
180: 0 0 GIC 180 eth0_g1_rx
181: 0 0 GIC 181 eth0_g1_er

[3] local 172.16.1.100 port 5000 connected with 172.16.1.4 port 52163
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.003 ms 0/ 893 (0%)

root@ls1021aqds:~# cat /proc/interrupts | grep eth
176: 9 0 GIC 176 eth0_g0_tx
177: 902 0 GIC 177 eth0_g0_rx
178: 0 0 GIC 178 eth0_g0_er
179: 1 0 GIC 179 eth0_g1_tx
180: 0 0 GIC 180 eth0_g1_rx
181: 0 0 GIC 181 eth0_g1_er

[3] local 172.16.1.100 port 5001 connected with 172.16.1.4 port 46257
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.004 ms 0/ 893 (0%)

root@ls1021aqds:~# cat /proc/interrupts | grep eth
176: 10 0 GIC 176 eth0_g0_tx
177: 902 0 GIC 177 eth0_g0_rx
178: 0 0 GIC 178 eth0_g0_er
179: 1 0 GIC 179 eth0_g1_tx
180: 894 0 GIC 180 eth0_g1_rx
181: 0 0 GIC 181 eth0_g1_er
root@ls1021aqds:~# echo 1 > /proc/irq/177/smp_affinity
root@ls1021aqds:~# echo 2 > /proc/irq/180/smp_affinity
root@ls1021aqds:~# iperf -s -u -p 1000 &
[3] 1031
--
Server listening on UDP port 1000
Receiving 1470 byte datagrams
UDP buffer size: 160 KByte (default)
--
[3] local 172.16.1.100 port 1000 connected with 172.16.1.4 port 58669
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.002 ms 0/ 893 (0%)

root@ls1021aqds:~# cat /proc/interrupts | grep eth
176: 13 0 GIC 176 eth0_g0_tx
177: 1798 0 GIC 177 eth0_g0_rx
178: 0 0 GIC 178 eth0_g0_er

Linux Ethernet Driver for eTSEC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 765

179: 1 0 GIC 179 eth0_g1_tx
180: 894 0 GIC 180 eth0_g1_rx
181: 0 0 GIC 181 eth0_g1_er

[4] local 172.16.1.100 port 5001 connected with 172.16.1.4 port 58876
[4] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.004 ms 0/ 893 (0%)

root@ls1021aqds:~# cat /proc/interrupts | grep eth
176: 16 0 GIC 176 eth0_g0_tx
177: 1800 0 GIC 177 eth0_g0_rx
178: 0 0 GIC 178 eth0_g0_er
179: 1 0 GIC 179 eth0_g1_tx
180: 894 894 GIC 180 eth0_g1_rx
181: 0 0 GIC 181 eth0_g1_er

root@ls1021aqds:~# ethtool -n eth0
2 RX rings available
Total 2 rules

Filter: 253
 Rule Type: UDP over IPv4
 Src IP addr: 172.16.1.4 mask: 0.0.0.0
 Dest IP addr: 0.0.0.0 mask: 255.255.255.255
 TOS: 0x0 mask: 0xff
 Src port: 0 mask: 0xffff
 Dest port: 5001 mask: 0x0
 Action: Direct to queue 1

Filter: 254
 Rule Type: UDP over IPv4
 Src IP addr: 172.16.1.4 mask: 0.0.0.0
 Dest IP addr: 0.0.0.0 mask: 255.255.255.255
 TOS: 0x0 mask: 0xff
 Src port: 0 mask: 0xffff
 Dest port: 5000 mask: 0x0
 Action: Direct to queue 0

root@ls1021aqds:~# ethtool -N eth0 delete 254
root@ls1021aqds:~# ethtool -N eth0 delete 253
root@ls1021aqds:~# ethtool -n eth0
2 RX rings available
Total 0 rules

root@ls1021aqds:~#

8.5.1.2.3 NAPI support
Gianfar uses NAPI handling on both Rx and Tx paths, the Linux polling mechanism being triggered by frame receive interrupts
and, respectively, frame transmit confirmation interrupts. The driver registers irqs for both Rx and Tx, and the NAPI (polling)
handlers are provided to the Kernel.

On the receive path:

• When the receive interrupt gets triggered on a given CPU, a softirq for the polling function on Rx is scheduled.

• The RX_SOFTIRQ thread is raised by the Kernel, on the CPU on which it was triggered (and scheduled), and the Rx queues
mapped to the corresponding interrupt group will be processed by the driver's polling function and the incoming packets are
being passed to the networking stack.

Similarly on the transmit part:

• A frame transmit confirmation interrupt triggers the scheduling of a softirq under whose context the driver's polling routine for
cleaning the Tx rings is invoked.

• The Tx polling routine is also associated with a given interrupt group and it will handle only the transmit queues that are
affiliated to that interrupt group.

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
766 NXP Semiconductors

For packet forwarding, for instance, by mapping the per flow Rx and Tx queues to interrupt groups that are associated to the same
CPU, makes it possible to maintain per CPU buffer pools used for reclaiming buffers on a per flow basis, improving cache locality
at the same time.

8.5.1.2.4 Interrupt Coalescing
On a high speed network interface the rate of packet reception and transmission can be as high as the CPUs would be spending
most of the time servicing these interrupts. With the interrupt coalescing feature, packets are collected and one single interrupt
is generated for multiple packets to avoid flooding the system with interrupts from the Ethernet device.

eTSEC supports hardware coalescing of interrupts for both receive and transmit, using packet-count-based thresholds,
complemented by timer-based thresholds. Gianfar provides basic support for setting the coalescing parameters via ethtool -
C, for each device instance, by implementing the following "set coalesce" options:

Table 158. ethtool –C options:

rx-frames

rx-usecs

tx-frames

tx-usesc

packet count threshold for receive (Rx)

time threshold in microseconds, for receive (Rx)

packet count threshold for transmit confirmation (Tx)

time threshold in microseconds, for transmit confirmation (Tx)

8.5.1.2.5 Header Recognition and Csum Offload
Header recognition on receive (feature provided by eTSEC), combined with parsing functions and/or hashing of extracted property
fields (in case of eTSEC2.0), is used to implement advanced TCP/IP offloading functionality and QoS provisions by programming
queue filing strategies into hardware.

Gianfar provides an API to program eTSEC's filer hardware block with packet filtering rules.

On Rx, the TCP/IP Offload Engine (TOE):

• can parse frames:

— at layer 2 of the stack only (Ethernet headers and switching headers)

— layers 2 to 3 (including IPv4 or IPv6)

— layers 2 to 4 (including TCP and UDP)

• provides protocol header recognition

• provides header verification (IPv4 header checksum verification)

• provides TCP/UDP payload checksum verification including verification of associated pseudo-header checksums

For large frames, offload of checksum verification saves a significant fraction of the CPU cycles that would otherwise be spent by
the TCP/IP stack. IP packet fragmentation and re-assembly, and TCP stream establishment and tear-down are not performed in
hardware.

On Tx side, TOE provides IPv4 and TCP/UDP header checksum generation. The eTSEC does not checksum transmitted packets
with IPv6 routing headers or calculate TCP/UDP checksums from IP fragments. If a transmitted TCP segment requires checksum
generation but IPv6 extension headers would prevent eTSEC from calculating the pseudoheader checksum, software can
calculate just the pseudoheader checksum in advance and supply it to the eTSEC as part of per-frame TOE configuration.

On the Rx side, Gianfar lets the Kernel know that checksum verification is not required if valid IP headers or TCP/UDP headers
were found and valid sums were verified, by setting the CHECKSUM_UNNECESSARY flag. On Tx side, the checksum is generated
(offloaded) for TCP/UDP packets over IPv4 based on the pseudo-header checksum (phcs) provided by the Linux networking
stack. Gianfar instructs the stack about its ability to provide partial checksumming, based on the phcs for TCP/UDP packets, by
setting the NETIF_F_IP_CSUM device capability flag.

Linux Ethernet Driver for eTSEC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 767

The Frame Control Blocks (FCBs) are 8-byte blocks of TOE control and/or status data that are passed between the driver and
each eTSEC. A FCB always precedes the frame it applies to, and is present only when TOE functions are being used.

The first BD of each frame points to the initial data buffer and the FCB. Custom or received Ethernet preamble sequences also
follow the FCB if preambles are visible.

Figure 196. Location of Frame Control Blocks for TOE Parameters

For Tx, FCBs are inserted by Gianfar and TOE acceleration may be applied on a frame-by-frame basis. In the case of RxBD rings,
the FCBs are inserted by eTSEC and TOE acceleration is enabled for receive for all frames in this case.

8.5.1.2.6 Scatter Gather Support
Scatter-Gather I/O is a method by which a single procedure call sequentially writes data from multiple buffers to a single data
stream or reads data from a data stream to multiple buffers. The buffers are given in a vector of buffers. Scatter/gather refers to
the process of gathering data from, or scattering data into, the given set of buffers. The I/O can be performed synchronously or
asynchronously to this procedure.

On the Tx side, Gianfar supports "gathering" big packets from multiple buffers. This ability is signaled by the driver to the Linux
network stack by setting the NETIF_F_SG device hardware feature flag. The driver takes into account the number of fragments
composing the packet that is going to be transmitted, and places each fragment into consecutive BD ring buffers before issuing
the command to start sending the frame.

On the Rx side, the eTSEC controller is capable of "scattering" big packets into multiple fixed size buffers having consecutive
buffer descriptors (BDs). Gianfar supports this feature by implementing paged allocation, so that jumbo frames exceeding a fixed
buffer size of 2048 bytes can be automatically received into multiple such buffers. Instead of pre-allocating huge memory buffers
to be able to support jumbo frame reception, the paged allocation scheme implemented in Gianfar uses multiple half-page sized
buffers thus reducing memory allocation pressure. The driver is also managing a local cache of memory pages, re-using free
pages from the cache for future receptions, further improving Rx allocation overhead.

8.5.1.3 Configuration & Control

8.5.1.3.1 Device Tree initialization
Gianfar complies with the device tree (DTS) based open firmware support requirements, and supports multiple Ethernet device
instances. The default configuration parameters that are passed via DTS for an Ethernet device instance (node) include:

1. compatible and model fields defining the driver compatibility across multiple controller H/W IP generations:

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
768 NXP Semiconductors

Table 159. Gianfar compatibility

Device type (IP): .compatible .model

eTSEC2.0 (veTSEC) “fsl,etsec2” "eTSEC”

eTSEC (eTSEC1.x) “gianfar” “eTSEC”

TSEC “gianfar” “TSEC”

FEC “gianfar” “FEC”

2. Interrupt grouping of multiple queues, for eTSEC2.0: queue-group subnode, including:

• Interrupt numbers assignment for the Rx, Tx and Error lines, interrupts property;

• Interrupt group register block address and size, reg property;

3. Power management capability properties:

• fsl,magic-packet: If present, indicates that the hardware supports waking up via magic packet;

• fsl,wake-on-filer: If present, indicates that the hardware supports waking up by Filer General Purpose Interrupt
(FGPI) asserted on the Rx int line. This is an advanced power management capability allowing certain packet types
(user) defined by filer rules to wake up the system.

4. For older DTs, number of supported TX and RX queues: fsl,num-rx-queues and fsl,num-tx-queues; [obsolete]

5. Various link management properties.

Typical eTSEC2.0 device tree node (LS1021a example):

enet0: ethernet@2d10000 {
 compatible = "fsl,etsec2";
 device_type = "network";
 #address-cells = <2>;
 #size-cells = <2>;
 interrupt-parent = <&gic>;
 model = "eTSEC";
 fsl,magic-packet;
 fsl,wake-on-filer;

 queue-group@2d10000 {
 #address-cells = <2>;
 #size-cells = <2>;
 reg = <0x0 0x2d10000 0x0 0x1000>;
 interrupts = <GIC_SPI 144 IRQ_TYPE_LEVEL_HIGH>,
 <GIC_SPI 145 IRQ_TYPE_LEVEL_HIGH>,
 <GIC_SPI 146 IRQ_TYPE_LEVEL_HIGH>;
 };

 queue-group@2d14000 {
 #address-cells = <2>;
 #size-cells = <2>;
 reg = <0x0 0x2d14000 0x0 0x1000>;
 interrupts = <GIC_SPI 147 IRQ_TYPE_LEVEL_HIGH>,
 <GIC_SPI 148 IRQ_TYPE_LEVEL_HIGH>,
 <GIC_SPI 149 IRQ_TYPE_LEVEL_HIGH>;
 };
};

8.5.1.3.2 Ethtool support

Table 160. Non-exhaustive list of the most notable ethtool commands implemented by Gianfar:

Commands Description

Table continues on the next page...

Linux Ethernet Driver for eTSEC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 769

Table 160. Non-exhaustive list of the most notable ethtool commands implemented by Gianfar: (continued)

ethtool -C rx-usecs N rx-frames N tx-
usecs N tx-frames N

Set interrupt coalescing for a given device, packet count (‘frames’) and
time in microsecs (‘usecs’) thresholds, for Rx and resp. Tx.

ethtool -G rx N tx N Set RxBD ring, resp. TxBD ring sizes for a given device.

ethtool -K rxvlan on|off txvlan on|
off

Turn on/off H/W VLAN tag extraction(rx) / insertion(tx).

ethtool -S Show interface statistics, Linux specific counters and various eTSEC H/
W counters supporting RMON MIB group 1, group 2 (ifTable counters),
group 3, group 9, RMON MIB 2, and the 802.3 Ethernet MIB statistics.

ethtool -N rx-flow-hash tcp4|udp4|
tcp6|udp6 v|t|s|d|f|n

Configure Rx network flow classification options. The classified flows
may be tcp/udp over ipv4/v6, and the hashing may be performed on
various header fields, according to the 3rd parameter:

• s,d: src/dest IP addresses;

• v: VLAN id;

• t: L3 PROTO field,

• f,n: source and dest TCP/UDP ports.

ethtool -N flow-type ether|ip4|tcp4|
udp4|sctp4

Inserts or updates a classification rule for the specified flow type. Most
IPv4 flow types are supported: raw IPv4, TCP, UDP, SCTP, as well as L2
flow specifications (ether). For a detailed description of the command
sub-options refer to ethtool Linux man-pages.

For detailed description of ethtool command options refer to ethtool Linux man-pages.

 NOTE

QorIQ networking technologies

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
770 NXP Semiconductors

Chapter 9
Linux user space

9.1 Libraries

9.1.1 OpenSSL

9.1.1.1 Overview
The Secure Socket Layer (SSL) protocol is the most widely deployed application protocol to protect data during transmission by
encrypting the data using popular cipher algorithms such as AES, DES and 3DES.

Apart from encryption it also provides message authentication services using popular hash/digest algorithms such as SHA1 and
MD5. SSL is widely used in application web servers (HTTP) and other applications such as SMTP POP3, IMAP, Proxy servers
etc., where protection of data in transit is essential.

There are various version of SSL protocol such as SSLv3, TLSv1.0, TLSv1.1, TLSv1.2, TLSv1.3 and DTLS (Datagram TLS). Of
all the SSL protocol versions, TLSv1.0 and SSLv3 are in commonly in use, with other versions seeing more adoption as well.

This document introduces NXP SSL acceleration solution on QorIQ platforms using OpenSSL.

OpenSSL Software architecture

The OpenSSL library has several sub-components such as:

1. SSL protocol library

2. Crypto library (Symmetric and Asymmetric cipher support, digest support etc.)

3. Certificate Management

The following figure presents the general interconnect architecture for OpenSSL and the interfaces with hardware acceleration
drivers:

Libraries

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 771

Figure 197. OpenSSL interface with Linux kernel

OpenSSL’s ENGINE Interface

OpenSSL Crypto library provides Symmetric and Asymmetric (PKI) cipher support that is used in a variety of applications such
as OpenSSH, OpenVPN, PGP, IKE, XML-SEC etc. The OpenSSL Crypto library provides software support for:

1. Cipher algorithms

2. Digest algorithms

3. Random number generation

4. Public Key Infrastructure

Apart from the software support, OpenSSL can offload these functions to hardware accelerators via the ENGINE interface. The
ENGINE interface provides callback hooks that integrate hardware accelerators with the crypto library. The callback hooks provide
the glue logic to interface with the hardware accelerators. Generic offloading of cipher and digests algorithms through Linux kernel
is possible with cryptodev engine.

NXP solution for OpenSSL hardware offloading

The following layers can be observed in NXP's solution for OpenSSL hardware offloading:

• OpenSSL (user space) - implements the SSL protocol

• cryptodev-engine (user space) - implements the OpenSSL ENGINE interface; talks to cryptodev-linux (/dev/crypto) via ioctls,
offloading cryptographic operations in kernel

• cryptodev-linux (kernel space) - Linux module that translates ioctl requests from cryptodev-engine into calls to Linux Crypto
API

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
772 NXP Semiconductors

• Linux Crypto API (kernel space) - Linux kernel crypto abstraction layer

• CAAM driver (kernel space) - Linux device driver for the CAAM (Cryptographic Acceleration and Assurance Module) crypto
engine

The following can be offloaded in hardware in current SDK (not a complete list):

• SSL: TLS v1.0 with one-shot cipher modes (a single ioctl for both encryption and authentication):

— AES128-SHA

— AES256-SHA

• Crypto algorithms:

— AES-CBC

— 3DES

• Digest algorithms:

— MD5

— SHA1

— SHA256

• Public key algorithms:

— RSA

9.1.1.2 Manual Build of OpenSSL with Cryptodev Engine Support
This chapter is optional since the root filesystem can be configured to include both OpenSSL and cryptodev automatically.

$ cd flexbuild
$ source setup.env

Build cryptodev-linux:
$ flex-builder -c cryptodev-linux -a arm64 # automatically setup cross-toolchain and fetch
cryptodev-linux repository to build

Build OpenSSL:
$ flex-builder -c openssl -a arm64

Merge OpenSSL and cryptodev-linux components into target rootfs:
$ flex-builder -i merge-component -a arm64

Generate bootpartition tarball:
$ flex-builder -i mkbootpartition -a arm64

Follow flexbuild documentation to finalize the building of the root filesystem and kernel on the host system.

Manual build

Manual build or rebuild may be necessary for a number of reasons. This section describes how to build and install OpenSSL
natively on the target system. Cross-build procedure requires appropriate toolchains and is not described.

Both OpenSSL and cryptodev must be installed since they depend on each-other:

$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/openssl
$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/cryptodev-linux

Build cryptodev and optionally run self tests:

$ cd cryptodev-linux
$ make
$ sudo make install

$ sudo modprobe cryptodev
$ make check

Libraries

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 773

Build openssl with cryptodev support:

$ cd openssl
$./Configure -DHAVE_CRYPTODEV --prefix=/usr/local/ --openssldir=/usr/local/openssl linux-
aarch64 shared
$ make
$ sudo make install

After installation verify that the binary is linking with the correct share library from /usr/local/lib:

$ ldd /usr/local/bin/openssl

If the binary is linking with the original library from /usr/lib then it may be necessary to adjust the linker paths. Put /usr/local/lib in
a line before /usr/lib inside /etc/ld.so.conf and then update the linker cache:

File: /etc/ld.so.conf

...
/usr/local/lib
...
/usr/lib
...

$ sudo ldconfig
$ ldd /usr/local/bin/openssl

9.1.1.3 Hardware Offloading with OpenSSL

Overview

OpenSSL can delegate execution of crypto operations to a variety of hardware devices through the engine interface. On top of
this interface is implemented the engine cryptodev which is used to offload crypto operations to hardware devices under the control
of the operating system kernel. Cryptodev engine was originally developed for OpenBSD and later the same API was ported to
GNU/Linux operating system by several drivers like OCF and cryptodev-linux.

Cryptodev-linux is a Linux kernel driver that exposes the internal crypto API to user-space via the device file /dev/crypto. User-
space applications use ioctl system calls to ask the Linux kernel to perform crypto operations on their behalf. The Linux kernel
supports a multitude of crypto algorithms with software implementations running on CPU. Drivers for hardware accelerators are
installed with higher priority and override software implementations with no further configuration.

From the point of view of any application, the fastest implementation of an algorithm is used transparently. This behavior is
transferred also to cryptodev interface which is oblivious to the fact that an algorithm may run on CPU or on a hardware accelerator.
For this reason, it is the job of the operator of the application to ensure that hardware kernel drivers are available before running
the application.

This translates simply to running modprobe if the NXP SEC driver is not built-in the kernel. In our case:

modprobe caamalg
modprobe caamhash
modprobe caam_pkc

NXP platforms have several SEC frontends exposed with different device drivers: JRI (job ring), QI (queue interface), DPSECI.
Refer to your platform and SEC guide for available Linux kernel drivers. Usually, at least the JR driver should be available for any
platform

For QI frontend the symmetric cyphers has a kernel module called caamalg_qi. This driver installs algorithms with lower priority
than caamalg so they will be shadowed by the latter. To use the QI frontend load this driver instead of caamalg:

modprobe caamalg_qi

DPSECI frontend has yet another driver caamalg_qi2 which currently is always built-in the kernel.

Verify setup

There are a few simple steps to confirm if crypto hardware drivers are available. Running these steps contribute to a smooth
experience and easier debugging if things go wrong.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
774 NXP Semiconductors

Linux kernel can check and report ciphers availability with the help of tcrypt module. After probing tcrypt, crypto algorithms will
be listed in /proc/crypto. Tcrypt module is not always available in default kernels but it is a simple way to run tests and list all
available crypto algorithms:

$ modprobe tcrypt
$ grep aes /proc/crypto
<...>

Load CAAM device drivers if they are not built-in and check their interrupt count:

modprobe caamalg (or caamalg_qi)
modprobe caamhash
modprobe caam_pkc
<...>
grep tls /proc/crypto
name : tls10(hmac(sha1),cbc(aes))
driver : tls10-hmac-sha1-cbc-aes-caam-qi
grep rsa /proc/crypto
<...>

Hardware operations can be monitored with the interrupt counters for CAAM JR and QI (DPAA and DPAA2) interfaces:

cat /proc/interrupts | grep jr
 88: 0 0 0 0 26 0 0 0 OpenPIC 88 Level ffe301000.jr
 89: 0 0 0 0 0 1117204 0 0 OpenPIC 89 Level ffe302000.jr
 90: 0 0 0 0 0 0 24 0 OpenPIC 90 Level ffe303000.jr
 91: 0 0 0 0 0 0 0 24 OpenPIC 91 Level ffe304000.jr

cat /proc/interrupts | grep -i qman
108: 0 0 0 0 0 0 0 7508 OpenPIC 108 Level QMan portal 7
110: 0 0 0 0 0 0 7524 0 OpenPIC 110 Level QMan portal 6
112: 0 0 0 0 0 7542 0 0 OpenPIC 112 Level QMan portal 5
114: 0 0 0 0 7565 0 0 0 OpenPIC 114 Level QMan portal 4
116: 0 0 0 7576 0 0 0 0 OpenPIC 116 Level QMan portal 3
118: 0 0 7524 0 0 0 0 0 OpenPIC 118 Level QMan portal 2
120: 0 7535 0 0 0 0 0 0 OpenPIC 120 Level QMan portal 1
122: 7521 0 0 0 0 0 0 0 OpenPIC 122 Level QMan portal 0
470: 0 0 0 0 0 0 0 0 OpenPIC 2006 Edge qman-err

cat /proc/interrupts | grep DPIO
<...>

The interrupt counters may also be incremented during networking operations unrelated to crypto. Further analysis is required to
understand the source of their modification.

Load cryptodev driver and check if OpenSSL communicates with it. If cryptodev driver is not loaded, openssl will report only
dynamic engine support and all operations will be done in software by OpenSSL itself.

openssl engine
(dynamic) Dynamic engine loading support

modprobe cryptodev
ls /dev/crypto
<...>
openssl engine
(cryptodev) BSD cryptodev engine
(dynamic) Dynamic engine loading support

Offloading Symmetric and Public Key Algorithms

With cryptodev and SEC drivers loaded there is no other configuration necessary for OpenSSL to run crypto operations through
hardware accelerator. OpenSSL will automatically use cryptodev engine if available. Some applications that link with OpenSSL
like OpenSSH will authomatically use the available accelerator. Others, like nginx web server may need explicit activation in their
configuration file.

modprobe cryptodev
openssl speed -evp AES128-SHA -elapsed
<...>
openssl speed rsa1024
<...>

Libraries

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 775

TLS 1.0 Offloading in Nginx Server

Nginx does not use any openssl engines by default. If an engine is to be used, including cryptodev, it must be explicitely listed in
nginx configuration file. Here is a fragment of nginx configuration file that activates cryptodev and allows hardware offloading of
TLS1.0 record layer protocol:

/etc/nginx/nginx.conf:

ssl_engine cryptodev;
worker_processes 4;
worker_cpu_affinity 0001 0010 0100 1000; #for 4 Core CPU; For 2 Core CPU worker_cpu_affinity
01 10;
...
 # HTTPS server
 #
 server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 ssl_session_timeout 5m;
 ssl_protocols TLSv1;
 ssl_ciphers AES128-SHA:AES256-SHA;
 ssl_prefer_server_ciphers on;

 location / {
 root /var/www/localhost/html;
 index index.html index.htm;
 }
 }
...

Worker processes and affinity should be set according to the number of CPU cores available on the platform. Refer to nginx
documentation for more details.

TLS1.0 Record Layer Testing

We will use only OpenSSL functionality to verify the offloading of TLS record layer.

First create the RSA public and private keys to be used by the server:

$ openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365 -nodes

Start https webserver:

modprobe cryptodev
$ openssl s_server -key key.pem -cert cert.pem -accept 44330 -www -cipher AES128-SHA -tls1

And connect to it with the client from another console:

$ openssl s_client -connect localhost:44330
(or)
$ echo "GET /" | openssl s_client -connect localhost:44330 -quiet

Just like with other tests, hardware offloading can be verified by listing the interrupt counters of the SEC driver.

9.1.1.4 TLS Ciphersuites and TLS Protocol Versions
Please refer to the official RFC documents for an up-to-date list of supported algorithms:

Transport Layer Security (TLS) Parameters

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
776 NXP Semiconductors

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Table 161. OpenSSL CipherSuite Compatibility

CipherSuite TLS Protocol
Version

SSL_RSA_WITH_NULL_MD5 SSL3.0

SSL_RSA_WITH_NULL_SHA SSL3.0

SSL_RSA_EXPORT_WITH_RC4_40_MD5 SSL3.0

SSL_RSA_WITH_RC4_128_MD5 SSL3.0

SSL_RSA_WITH_RC4_128_SHA SSL3.0

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 SSL3.0

SSL_RSA_WITH_IDEA_CBC_SHA SSL3.0

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA SSL3.0

SSL_RSA_WITH_DES_CBC_SHA SSL3.0

SSL_RSA_WITH_3DES_EDE_CBC_SHA SSL3.0

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA SSL3.0

SSL_DH_DSS_WITH_DES_CBC_SHA SSL3.0

SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA SSL3.0

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA SSL3.0

SSL_DH_RSA_WITH_DES_CBC_SHA SSL3.0

SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA SSL3.0

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA SSL3.0

SSL_DHE_DSS_WITH_DES_CBC_SHA SSL3.0

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA SSL3.0

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA SSL3.0

SSL_DHE_RSA_WITH_DES_CBC_SHA SSL3.0

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA SSL3.0

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 SSL3.0

SSL_DH_anon_WITH_RC4_128_MD5 SSL3.0

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA SSL3.0

SSL_DH_anon_WITH_DES_CBC_SHA SSL3.0

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA SSL3.0

SSL_FORTEZZA_KEA_WITH_NULL_SHA SSL3.0

SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA SSL3.0

SSL_FORTEZZA_KEA_WITH_RC4_128_SHA SSL3.0

TLS_RSA_WITH_NULL_MD5 TLS1.0

TLS_RSA_WITH_NULL_SHA TLS1.0

Table continues on the next page...

Libraries

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 777

Table 161. OpenSSL CipherSuite Compatibility (continued)

CipherSuite TLS Protocol
Version

TLS_RSA_EXPORT_WITH_RC4_40_MD5 TLS1.0

TLS_RSA_WITH_RC4_128_MD5 TLS1.0

TLS_RSA_WITH_RC4_128_SHA TLS1.0

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 TLS1.0

TLS_RSA_WITH_IDEA_CBC_SHA TLS1.0

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA TLS1.0

TLS_RSA_WITH_DES_CBC_SHA TLS1.0

TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA TLS1.0

TLS_DH_DSS_WITH_DES_CBC_SHA TLS1.0

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA TLS1.0

TLS_DH_RSA_WITH_DES_CBC_SHA TLS1.0

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA TLS1.0

TLS_DHE_DSS_WITH_DES_CBC_SHA TLS1.0

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA TLS1.0

TLS_DHE_RSA_WITH_DES_CBC_SHA TLS1.0

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 TLS1.0

TLS_DH_anon_WITH_RC4_128_MD5 TLS1.0

TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA TLS1.0

TLS_DH_anon_WITH_DES_CBC_SHA TLS1.0

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_RSA_WITH_AES_128_CBC_SHA TLS1.0

TLS_RSA_WITH_AES_256_CBC_SHA TLS1.0

TLS_DH_DSS_WITH_AES_128_CBC_SHA TLS1.0

TLS_DH_DSS_WITH_AES_256_CBC_SHA TLS1.0

TLS_DH_RSA_WITH_AES_128_CBC_SHA TLS1.0

TLS_DH_RSA_WITH_AES_256_CBC_SHA TLS1.0

TLS_DHE_DSS_WITH_AES_128_CBC_SHA TLS1.0

Table continues on the next page...

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
778 NXP Semiconductors

Table 161. OpenSSL CipherSuite Compatibility (continued)

CipherSuite TLS Protocol
Version

TLS_DHE_DSS_WITH_AES_256_CBC_SHA TLS1.0

TLS_DHE_RSA_WITH_AES_128_CBC_SHA TLS1.0

TLS_DHE_RSA_WITH_AES_256_CBC_SHA TLS1.0

TLS_DH_anon_WITH_AES_128_CBC_SHA TLS1.0

TLS_DH_anon_WITH_AES_256_CBC_SHA TLS1.0

TLS_RSA_WITH_CAMELLIA_128_CBC_SHA TLS1.0

TLS_RSA_WITH_CAMELLIA_256_CBC_SHA TLS1.0

TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA TLS1.0

TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA TLS1.0

TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA TLS1.0

TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA TLS1.0

TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA TLS1.0

TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA TLS1.0

TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA TLS1.0

TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA TLS1.0

TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA TLS1.0

TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA TLS1.0

TLS_RSA_WITH_SEED_CBC_SHA TLS1.0

TLS_DH_DSS_WITH_SEED_CBC_SHA TLS1.0

TLS_DH_RSA_WITH_SEED_CBC_SHA TLS1.0

TLS_DHE_DSS_WITH_SEED_CBC_SHA TLS1.0

TLS_DHE_RSA_WITH_SEED_CBC_SHA TLS1.0

TLS_DH_anon_WITH_SEED_CBC_SHA TLS1.0

TLS_ECDH_RSA_WITH_NULL_SHA TLS1.0

TLS_ECDH_RSA_WITH_RC4_128_SHA TLS1.0

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA TLS1.0

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA TLS1.0

TLS_ECDH_ECDSA_WITH_NULL_SHA TLS1.0

TLS_ECDH_ECDSA_WITH_RC4_128_SHA TLS1.0

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA TLS1.0

Table continues on the next page...

Libraries

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 779

Table 161. OpenSSL CipherSuite Compatibility (continued)

CipherSuite TLS Protocol
Version

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA TLS1.0

TLS_ECDHE_RSA_WITH_NULL_SHA TLS1.0

TLS_ECDHE_RSA_WITH_RC4_128_SHA TLS1.0

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS1.0

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS1.0

TLS_ECDHE_ECDSA_WITH_NULL_SHA TLS1.0

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA TLS1.0

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS1.0

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS1.0

TLS_ECDH_anon_WITH_NULL_SHA TLS1.0

TLS_ECDH_anon_WITH_RC4_128_SHA TLS1.0

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA TLS1.0

TLS_ECDH_anon_WITH_AES_128_CBC_SHA TLS1.0

TLS_ECDH_anon_WITH_AES_256_CBC_SHA TLS1.0

TLS_RSA_WITH_NULL_SHA256 TLS1.2

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_RSA_WITH_AES_256_CBC_SHA256 TLS1.2

TLS_RSA_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_RSA_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 TLS1.2

TLS_DH_RSA_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_DH_RSA_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 TLS1.2

TLS_DH_DSS_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_DH_DSS_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 TLS1.2

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 TLS1.2

Table continues on the next page...

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
780 NXP Semiconductors

Table 161. OpenSSL CipherSuite Compatibility (continued)

CipherSuite TLS Protocol
Version

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 TLS1.2

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 TLS1.2

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 TLS1.2

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS1.2

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS1.2

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS1.2

TLS_DH_anon_WITH_AES_128_CBC_SHA256 TLS1.2

TLS_DH_anon_WITH_AES_256_CBC_SHA256 TLS1.2

TLS_DH_anon_WITH_AES_128_GCM_SHA256 TLS1.2

TLS_DH_anon_WITH_AES_256_GCM_SHA384 TLS1.2

9.1.2 Runtime Assembler Library Reference
Use the Runtime Assembler Library to write SEC descriptors.

9.1.2.1 Runtime Assembler Library Reference
Use the Runtime Assembler Library to write SEC descriptors. This reference describes the structure, concept, functionality,
and high level API.

Click here to access the Writing descriptors for NXP CAAM using RTA library PDF.

Libraries

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 781

9.2 Data Plane Development Kit (DPDK)

9.2.1 Introduction
DPDK is an user space packet processing framework.

This guide contains instructions for installing and configuring the user space Data Plane Development Kit (DPDK) v17.11 software.
Besides highlighting the applicable platforms, this guide describes steps for compiling and executing sample DPDK applications
in a Linux application (linuxapp) environment over Layerscape boards.

OVS-DPDK is a popular software switching package which uses DPDK as the underlying platform. The guide also detail methods
to execute ovs-dpdk in conjuction with DPDK over Layerscape boards.

9.2.1.1 Supported Platforms and Platform-specific Details
DPDK supports LS1043A, LS1046A, LS1088A and LS2088A family of SoCs. This section details the architectural and port layout
of their Reference Design Boards. Port layout information is especially relevant while executing DPDK applications - to map DPDK
port number to physical ports.

9.2.1.1.1 LS1043A Reference Design Board (RDB)
LS1043A is a DPAA-based platform. For more information on LS1043ARDB, see www.nxp.com/LS1043ARDB

Hardware Specification of LS1043ARDB

Figure 198. QorIQ LS1043A Reference Design

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
782 NXP Semiconductors

http://www.nxp.com/LS1043ARDB

LS1043ARDB Port Layout

Figure 199. LS1043A Port Layout

Label on Case FMAN Port Names Userspace Ports Comment

QSGMII.P0 FM0-MAC1 0 1G Port

QSGMII.P1 FM0-MAC2 1 1G Port

QSGMII.P2 FM0-MAC4 4 1G Port

QSGMII.P3 FM0-MAC5 5 1G Port

RGMII1 FM0-MAC2 2 1G Port

RGMII2 FM0-MAC3 3 1G Port

10G FM0-MAC9 6 10G - Copper Port

Information provided in the "Userspace Ports" column above is conditional to default Device tree (DTB) provided

as part of Board Support Package. The ordering can change for a custom DTB.

 NOTE

9.2.1.1.2 LS1046A Reference Design Board (RDB)
LS1046A is a DPAA based platform. For more information on QorIQ LS1046A, see www.nxp.com/LS1046ARDB.

Hardware Specification of LS1046ARDB

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 783

http://www.nxp.com/LS1046ARDB

Figure 200. QorIQ LS1046A Reference Design

LS1046ARDB Port Layout

Figure 201. LS1046ARDB Port Layout

Label on Case FMAN Port Names Userspace Ports Comment

RGMII1 FM0-MAC3 0 1G Port

RGMII2 FM0-MAC4 1 1G Port

SGMII1 FM0-MAC5 2 1G Port

SGMII2 FM0-MAC6 3 1G Port

10G-Copper FM0-MAC9 4 10G – Copper Port

10G-SFP+ FM0-MAC10 5 10G – SFP+ Optical Port

Information provided in the "Userspace Ports" column above is conditional to default Device tree (DTB) provided

as part of Board Support Package. The ordering can change for a custom DTB.

 NOTE

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
784 NXP Semiconductors

9.2.1.1.3 LS1088A Reference Design Board (RDB)
LS1088A is a DPAA2 based platform. For more information on QorIQ LS1088A, see www.nxp.com/LS1088ARDB.

Hardware Specifications of LS1088ARDB

Figure 202. QorIQ LS1088A Architecture

LS1088ARDB Port Layout

Figure 203. LS1088ARDB Port Layout

Label on Case Physical Ports Comment

ETH0 DPMAC.1 10G - Copper port

ETH1 DPMAC.2 10G – SFP+ (Optical port)

ETH2 DPMAC.7 QSGMII port (1G)

ETH3 DPMAC.8 QSGMII port (1G)

ETH4 DPMAC.9 QSGMII port (1G)

ETH5 DPMAC.10 QSGMII port (1G)

ETH6 DPMAC.3 QSGMII port (1G)

ETH7 DPMAC.4 QSGMII port (1G)

Table continues on the next page...

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 785

http://www.nxp.com/LS1088ARDB

Table continued from the previous page...

ETH8 DPMAC.5 QSGMII port (1G)

ETH9 DPMAC.6 QSGMII port (1G)

9.2.1.1.4 LS2088A Reference Design Board (RDB)
LS2088A is a DPAA2 based platform. For more information on QorIQ LS2088A, see www.nxp.com/LS2088ARDB.

Hardware specifications

LS2088A Reference Design Board

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

64-bit DDR4

Cache Coherent Interconnect

SA
TA

 3
.0

System Control

Internal BootROM

Security Fuses

Security Monitor

Power Management

Core Complex

Basic Peripherals and Interconnect

Accelerators and Memory Control

Networking Elements

SA
TA

 3
.0

8-lane 10 GHz SerDes 8-lane 10 GHz SerDes

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

512 KB Coherent L2 Cache

32 KB
D-Cache

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

1 MB Coherent L2 Cache

ARM® A72 Core ARM® A72 Core

1 MB
Platform
Cache

32-bit DDR4
Memory

Controller

Memory
Controller

64-bit DDR4
Memory

Controller

P
C

Ie

P
C

Ie

PC
Ie

 (S
R

-IO
V)

P
C

Ie

SMMU SMMU SMMU

System Interfaces
IFC Flash

QuadSPI Flash

1x SDXC / eMMC

2x DUART

4x I2C

4x FlexTimer

2x USB 3.0 + PHY

 SPI

Service Processor

DCE Security
Engine

4 MB PEB
memory

WRIOP

Queue /
Buffer

Manager

PME

Advanced
IO

Processor
(AIOP)

Management

Complex

DPAA2 Hardware

Layer 2
Switch Assist

8x 1/10G + 8x 1G

9x WDOG

4x GPIO

QDMA

Figure 204. QorIQ LS2088A Architecture

LS1088ARDB Port Layout

Figure 205. LS2088ARDB Port Layout

Label on Case Physical Ports Comment

ETH0 DPMAC.5 10G - Copper port

Table continues on the next page...

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
786 NXP Semiconductors

http://www.nxp.com/LS2088ARDB

Table continued from the previous page...

ETH1 DPMAC.6 10G - Copper port

ETH2 DPMAC.7 10G - Copper port

ETH3 DPMAC.8 10G - Copper port

ETH4 DPMAC.1 10G – SFP+ (Optical port)

ETH5 DPMAC.2 10G – SFP+ (Optical port)

ETH6 DPMAC.3 10G – SFP+ (Optical port)

ETH7 DPMAC.4 10G – SFP+ (Optical port)

9.2.1.2 References
Table 162. NXP Board References

Document Link

LS1043ARDB LS1043A-RDB: QorIQ LS1043A Reference Design Board

LS1046ARDB LS1046A-RDB: QorIQ LS1046A Reference Design Board

LS2088ARDB LS2088A-RDB: QorIQ LS2088A Reference Design Board

LS1088ARDB LS1088A-RDB: QorIQ LS1088A Reference Design Board

Table 163. DPDK Application References

Sample Applications DPDK Web Manual Link Description

Layer-2 Forwarding (l2fwd) l2fwd usage Layer 2 Forwarding sample application
setup and usage guide.

Layer-2 Forwarding with Crypto (l2fwd-
crypto)

l2fwd-crypto Layer 2 Forwarding with Crypto sample
application setup and usage guide.

Layer-3 Forwarding (l3fwd) l3fwd usage Layer 3 Forwarding sample application
setup and usage guide.

IPSec Gateway (ipsec-secgw) ipsec-secgw usage IPSec Security Gateway sample
application setup and usage guide.

PMD Test Application (testpmd) testpmd usage Guide for test application which can be
used to test all PMD supported features.

DPDK Web Guide DPDK Documentation Link to DPDK Web Manual containing
information about all supported PMD and
Applications.

Packetgenerator(pktgen) pktgen usage pktgen sample application setup and
usage guide.

Table 164. Release References

Component Release Version

Table continues on the next page...

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 787

HTTP://WWW.NXP.COM/LS1043ARDB
HTTP://WWW.NXP.COM/LS10436RDB
HTTP://WWW.NXP.COM/LS2088ARDB
HTTP://WWW.NXP.COM/LS2088ARDB
http://dpdk.org/doc/guides-17.05/sample_app_ug/l2_forward_real_virtual.html
http://dpdk.org/doc/guides-17.05/sample_app_ug/l2_forward_crypto.html
http://dpdk.org/doc/guides-17.05/sample_app_ug/l3_forward.html
http://dpdk.org/doc/guides-17.05/sample_app_ug/ipsec_secgw.html
http://dpdk.org/doc/guides-17.05/testpmd_app_ug/index.html
http://dpdk.org/doc/guides-17.05/
http://pktgen-dpdk.readthedocs.io/en/latest/running.html

Table 164. Release References (continued)

DPDK 17.11

OVS 2.8.90

pktgen 3.4.0

9.2.2 DPDK Overview
Key goal of the DPDK is to provide a simple, complete framework for fast packet processing in data plane applications. Using the
APIs provided as part of the framework, applications can leverage the capabilities of underlying network infrastructure.

The framework creates a set of libraries for target environments, layered through an Environment Abstraction Layer (EAL) which
hides all the device glue logic beneath a set of consistent APIs. These environments are created through the use of configuration
files. Once the EAL library is created, the user may link with the library to create their own applications. Various other libraries,
outside of EAL, including the Hash, Longest Prefix Match (LPM) and rings libraries are also available for performing specific
operations. Sample applications are also provided to help understand various features and uses of DPDK framework.

DPDK implements a run-to-completion model for packet processing where all resources must be allocated prior to calling data
plane applications, running as execution units on logical processing cores. In addition, a pipeline model may also be used by
passing packets or messages between cores via rings. This allows work to be performed in stages, resulting in more efficient use
of code on cores.

More information on general working of DPDK can be found through DPDK website.

9.2.2.1 DPDK DPAA Platform Support
The NXP Data Path Acceleration Architecture comprises a set of hardware components which are integrated via a hardware
queue manager and use a common hardware buffer manager. Software accesses the DPAA via hardware components called
"Software Portals". These directly provide queue and buffer manager operations such as enqueues, dequeues, buffer allocations,
and buffer releases and indirectly provide access to all of the other DPAA hardware components via the queue manager.

Figure 206. DPDK Architecture with NXP DPAA Components

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
788 NXP Semiconductors

http://dpdk.org/doc

NXP DPAA architecture based PMD (Poll Mode Drivers) has been added to DPDK infrastructure to support seamless working
on NXP platform. With the addition of these drivers, DPDK framework on NXP platforms permits Linux user space applications
to be build using standard DPDK APIs in a portable fashion. The drivers directly access the DPAA queue and buffer manager
software portals in a high performance manner and the internal details remains hidden from higher level DPDK framework. Besides
drivers for network interfaces, drivers (PMDs) for interfacing with Crypto (CAAM) block have also been included in the DPDK
source code.

Since this guide contains support for both DPAA2 and DPAA platforms, the following markers are used throughout

the guide:

• DPAA2 – This marker marks the steps/text applicable only for DPAA2 platforms. for example, LS2088.

• DPAA – This marker marks the steps/text applicable only for DPAA platforms. for example, LS1043.

All other steps which don’t have any marker are applicable for both the platforms.

 NOTE

Multi-thread environment

DPDK was originally designed for Intel architectures, however efforts are underway to make it multiple architecture

friendly. There are still some restrictions which should be taken care when used on NXP platforms.

1. Multiple pthreads

DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows for significant

performance gains, but lacks flexibility and is not always efficient. DPDK is comprised of several libraries -

some of the functions in these libraries can be safely called from multiple threads simultaneously, while

others cannot.

The run-time environment of the DPDK is typically a single thread per logical core. It is best to avoid sharing

data structures between threads and/or processes where possible. Where this is not possible, the execution

blocks must access the data in a thread-safe manner. Mechanisms such as atomic variables or locking can

be used to allow execution blocks to operate serially. However, this can effect the performance of the

application.

2. Fast-path APIs

Applications operating in the data plane are performance sensitive but certain functions within those

libraries may not be safe to call from multiple threads simultaneously.

The Hash, LPM, Mempool libraries and RX/TX in the PMD are examples of such multi-thread unsafe

functions. The RX/TX of the PMD are the most critical aspects of a DPDK application and it is recommended

that no locking be used with these paths as it will impact performance. However, these functions can be

safely used from multiple threads when each thread is performing I/O on a different NIC queue. If multiple

threads are to use the same hardware queue on the same NIC port, then locking or some other form of

mutual exclusion is necessary. In the NXP implementation, each thread has to use a software portal (DPIO)

instance to access the underlying DPAA hardware. Thus, it is recommended that only one thread per logical

core should be created for RX/TX and other I/O access to DPAA hardware.

 NOTE

9.2.2.2 DPAA: Supported DPDK Features
Following is the list of DPDK NIC features which DPAA driver support:

• Allmulticast mode

• Basic stats

• Extended stats

• Flow control

• Firmware Version information

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 789

• Jumbo frame

• L3 checksum offload

• L4 checksum offload

• Link status

• MTU update

• Promiscuous mode

• Queue start/stop

• Speed Capabilities

• Scattered RX

• Unicast MAC filter

• RSS Hash

• Packet type parsing

• ARMv8

9.2.2.3 DPAA2: Supported DPDK Features
Following is the list of DPDK NIC features which DPAA2 driver support:

• Allmulticast mode

• Basic stats

• Firmware Version information

• Flow control

• Jumbo frame

• L3 checksum offload

• L4 checksum offload

• Link Status

• Link Status Events

• MTU update

• Packet type parsing

• Promiscuous mode

• Queue start/stop

• RSS hash

• Unicast MAC filter

• VLAN offload

• VLAN filter

• Speed capabilities

• ARMv8

• Linux VFIO

• Extended stats

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
790 NXP Semiconductors

9.2.3 Build DPDK
This section includes three sub-sections which detail:

1. Building DPDK binaries (libraries and sample applications) using the Flexbuild build system.

2. Building DPDK binaries as standalone package, through DPDK's own build system.

3. Building Pktgen application which can be used as a software packet generator using DPDK as underlying layer.

9.2.3.1 Build DPDK using Flexbuild
DPDK is one of the application packages of the Flexbuild system. This section details method to build DPDK as a standalone
package within the Flexbuild environment. It is assumed that the Flexbuild environment has already been configured before
executing the commands below.

Refer to LSDK Quick Start on page 41 for complete details of using the Flexbuild build system.

Once the Flexbuild environment has been setup, following commands can be used to build DPDK applications and libraries.
Generated files (libraries and binaries) would be available in the <Flexbuild>/build/apps/components_arm64 folder. Once the
rootfs (root filesystem) is generated, the components_arm64 folder would be merged in it.

flex-builder -c openssl -arm64 # to resolve the dependency on OpenSSL package

flex-builder -c dpdk -a arm64 # build dpdk application

flex-builder -c pktgen-dpdk -a arm64 # to generate dpdk pktgen application

DPDK is dependent on OpenSSL package for software crypto and OpenSSL PMD. It is necessary to build

OpenSSL before DPDK in Flexbuild environment to suffice this dependency. If building DPDK on target platform,

it is possible that OpenSSL libraries are already available in library path. In this case, building OpenSSL library

would not be required.

 NOTE

Refer How to build LSDK with Flexbuild on page 54 for packing these binaries into the target rootfs using the Flexbuild build
system.

Layout of DPDK Binaries

Single image of DPDK binary supports both the DPAA and DPAA2 platforms. Once the DPDK package has been installed, binaries
would be available in /usr/local/bin folder in the rootfs. Flexbuild system generates a single rootfs for all NXP platforms it
supports.

/usr/local/bin # Contains the sample applications listed in Table 163. DPDK
Application References on page 787
/usr/local/include/dpdk # All DPDK header necessary for external application development
/usr/local/lib # Various static DPDK libraries for external application development

DPDK binaries have been placed in the /usr/local/bin folder to take advantage of the binary search path set

in the PATH variable. In case the PATH variable doesn't contain the /usr/local/bin by default, it can be added

to it to enable BASH command completion.

At various places in this document, above binaries would be referred for representing execution as well as other

information. It is assumed that execution is being done either using the PATH variable set, as explained above, or

with absolute path to the binaries.

 NOTE

Besides the above folders, another set of files are also available in rootfs to support DPDK application execution. These files are
available in the /usr/local/dpdk folder in the rootfs.

Table below depicts various DPDK artifacts which are available in the Flexbuild generated rootfs:

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 791

S/No File/Image name related to /usr/local/ Description

1 ./lib/lib*.a DPAA and DPAA2, both.

Static Libraries for compiling external
applications.

2 ./include/dpdk/*.h DPAA and DPAA2, both.

Headers for compiling external
applications.

2 ./bin/l2fwd

./bin/l3fwd

./bin/l2fwd-crypto

./bin/ipsec-secgw

./bin/testpmd

DPAA and DPAA2, both.

DPDK Example applications and PMD test
application.

3 ./dpaa/usdpaa_config_ls<PLAT>.xml

./dpaa/usdpaa_policy_hash_ipv4_1queue.xml

./dpaa/usdpaa_policy_hash_ipv4_2queue.xml

./dpaa/usdpaa_policy_hash_ipv4_4queue.xml

DPAA Only.

FMC Configurations and Policy files.

<PLAT> is platform name for DPAA
platform, for example ls1043 or ls1046.

Each Policy file for defining the number of
queues per port as mentioned in its name.

4 ./dpaa2/dynamic_dpl.sh

./dpaa2/destroy_dynamic_dpl.sh

DPAA2 Only.

Dynamic DPL container creation and
teardown script.

5 ./share/dpdk/usertools/dpdk-setup.sh

./share/dpdk/usertools/dpdk_devbind.py

DPAA and DPAA2, both.

DPDK NIC binding utility.

This is only applicable for executing DPDK
applications in VM.

6 ./disable_services.sh When executing a Ubuntu OS over
Layerscape board, performance on core 0
can become non-deterministic because of
OS services and threads.

This script disables the extra services on a
Ubuntu OS so that all cores of a board can
be used without major impact to the
performance.

Table continues on the next page...

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
792 NXP Semiconductors

Table continued from the previous page...

7. ./examples/ipsec_secgw/ep0.cfg

./examples/ipsec_secgw/ep1.cfg

./ipsec/ep0_64X64.cfg

./ipsec/ep1_64X64.cfg

./ipsec/ep0_64X64_proto.cfg

./ipsec/ep0_64X64_sha256.cfg

./ipsec/ep1_64X64_proto.cfg

./ipsec/ep1_64X64_sha256.cfg

Configuration files for ipsec-gw example
application.

The ep0 and ep1 files are standard
configurations for 2 tunnels for encryption
and decryption, each. The ep0_64X64 and
ep1_64X64 are for 64 tunnels for
encryption and decryption, each.

8. /usr/bin/pktgen Packetgeneration application

9.2.3.2 Standalone build of DPDK Libraries and Applications
This section details steps required to build DPDK binaries (libraries and example applications) in a standalone environment. This
environment can either be on a host enabled for cross building for Layerscape boards or directly on the Layerscape target board.

This section primarily focuses on standalone building of DPDK on a host machine using cross compilation for

Layerscape boards as target. Though, necessary notes have been added to enable compilation directly on target

boards. Refer How to build LSDK with Flexbuild on page 54 for creating an environment suitable for building DPDK

on Layerscape boards.

For steps detailing building DPDK using Flexbuild system, refer How to build LSDK with Flexbuild on page 54 and

Build DPDK using Flexbuild on page 791.

 NOTE

Obtain the DPDK source code

The DPDK source code contains all the necessary libraries for build example applications as well as test applications. The source
code also includes various configuration and scripts for supporting build and execution. Obtain the DPDK source code using the
link below:

• git clone https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk -b
integration

Once the above repository has been cloned, DPDK source code is available for compilation. This source is common for both,
DPAA and DPAA2 platforms.

Prerequisites before compiling DPDK

Before compiling DPDK as a standalone build, following dependencies need to be resolved independently:

• Platform compliant and compiled Linux Kernel source code so that KNI modules can be built.

— This is optional and if KNI module support is not required, this can be ignored.

— For details of compiling platform compliant Linux Kernel, refer How to build LSDK with Flexbuild on page 54.

— For disabling KNI module, see notes below.

• OpenSSL libraries required for building software crypto driver (OpenSSL PMD).

— OpenSSL package needs to be separately compiled and libraries installed at a known path before DPDK build can be
done.

— This is optional and if software crypto driver support is not required, this dependency can be ignored.

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 793

Refer to How to build LSDK with Flexbuild on page 54 for more information on how to build OpenSSL as part of

Flexbuild system. If using Flexbuild and referring to this link for building OpenSSL package, commands specified

below can be skipped.

 NOTE

Following steps are for building OpenSSL as a standalone package, outside the Flexbuild system. This is not a preferred
way and should be used only if Flexbuild system is not available. Follow the steps given below to build OpenSSL
package.

git clone git://git.openssl.org/openssl.git # Clone the OpenSSL source code
cd openssl # Change into cloned directory

git checkout OpenSSL_1_0_2l # Checkout the specific branch supported
by DPDK

Export the Cross Compilation tool chain for building OpenSSL for target. The following step for exporting cross
compilation toolchain is required only when compiling on Host. On a target board, it is assumed default build toolchain
would be used.

export CROSS_COMPILE=<path to uncompressed toolchain archive>/bin/aarch64-linux-gnu-

Configure the OpenSSL build system with following command. The --prefix argument specifies a path where
OpenSSL libraries would be deployed after build completes. This is also a path which would be provided to DPDK build
system for accessing the compiled OpenSSL libraries.

./Configure linux-aarch64 --prefix=<OpenSSL library path> shared

make depend
make
make install
export OPENSSL_PATH=<OpenSSL library path>

When building DPDK on target board, it is possible that OpenSSL libraries required by DPDK are already available

as part of the rootfs, in which case external compilation of OpenSSL package would not be required.

 NOTE

— For disabling OpenSSL PMD support, see notes below.

Compiling DPDK

Follow the below steps to compile DPDK once the above prerequisites are resolved. These steps are common for DPAA and
DPAA2 targets and are needed only when cross compiling on a host for Layerscape boards as target. In case of direct
compilation on target boards, it is assumed that prerequisites would be satisfied using the root filesystem. In case root
filesystem doesn't contain necessary prerequisites, below steps would be required once prerequisites have been built/obtained
independently.

1. Setup the environment for compilation

a. Setup Linux Kernel path. This is optional and required only for KNI and ixgb_uio module compilation. Skip in case
ixgb_uio or KNI module or KNI example application is not required. Note, that the KNI module or KNI example
application is not part of the root filesystem by default.

export RTE_KERNELDIR=<Path to compiled Linux kernel to compile KNI kernel module>

b. Setup cross compilation toolchain.

This step is required only on the host environment where default toolchain is not for target boards. When compiling
on a target board, this step can be skipped.

export CROSS=<path to cross-compile toolchain>

c. Setup OpenSSL path for software crypto drivers (OpenSSL PMD). This is optional and can be skipped in case
software crypto driver (OpenSSL PMD) support is not required.

export OPENSSL_PATH=<path to installed OpenSSL>

2. Use DPDK build system for compiling DPDK.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
794 NXP Semiconductors

DPDK binaries generated using below steps are compatible for both, DPAA and DPAA2, platforms. This is also

valid when DPDK is build through Flexbuild build system. Refer How to build LSDK with Flexbuild on page 54 for

steps to build DPDK using Flexbuild build system.

 NOTE

a. Execute the following command:

make T=arm64-dpaa-linuxapp-gcc install DESTDIR=<location to install DPDK>

Where DESTDIR=<location to install DPDK> is an optional parameter to deploy all the DPDK binaries (libraries
and example applications) to a standard Linux package specific layout within a directory represented by this
parameter. Alternatively, a directory named arm64-dpaa-linuxapp-gcc is also created and binaries and libraries
are also available in it.

b. Disabling KNI module compilation: In case KNI kernel module is not required (RTE_KERNELDIR variable is not set),
use the following command. DESTDIR can be added, as explained above, if required.

make T=arm64-dpaa-linuxapp-gcc CONFIG_RTE_KNI_KMOD=n install

c. Enabling software crypto driver support: Software crypto driver (OpenSSL PMD) is disabled by default. If it is
required set OPENSSL_PATH variable, use the following command. DESTDIR can be added, as explained above, if
required.

make T=arm64-dpaa-linuxapp-gcc CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I$
{OPENSSL_PATH}/include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/" install

d. In case KNI is not required and software crypto support is required, use the following command. DESTDIR can be
added, as explained above, if required..

make T=arm64-dpaa-linuxapp-gcc CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I$
{OPENSSL_PATH}/include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/"
CONFIG_RTE_KNI_KMOD=n install

For more information about the DPDK build system, refer DPDK Documentation.

 NOTE

DPDK arm64-dpaa-linuxapp-gcc folder contains .config file for storing the build configuration. Another way

of disabling or enabling support features, like KNI and software crypto drivers, is to edit this file before executing

the make command. If this method is adopted, parameters to command line for disabling the feature are not

required.

 NOTE

If KNI or software crypto driver support is disabled using the make command line parameters, it would not modify

the configuration file for DPDK in the <target> folder. Every subsequent compilation of DPDK or example

application would need to include the same command line arguments to avoid failure because of missing features

which were not compiled. Or, edit the .config folder in the arm64-dpaa-linuxapp-gcc build folder.

 NOTE

Compiling DPDK Example applications

Once the DPDK source code has been compiled, the DPDK example applications can be built independently as required.

1. Before the example applications can be built, the path to DPDK SDK needs to be set which includes the DPDK source
code. This would be used by build system to look for compiled libraries and headers.

export RTE_SDK=<path to DPDK source code, where compilation was done>

2. Target should be set to same value as done for compilation of DPDK.

export RTE_TARGET=arm64-dpaa-linuxapp-gcc

3. Once the above variables are set, example applications can be compiled using the following commands:

make -C examples/l3fwd # for the L3 forwarding application

make -C examples/l2fwd # for the L2 forwarding application

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 795

http://dpdk.org/doc/guides/prog_guide/dev_kit_build_system.html

make -C examples/ip_fragmentation # for the IP fragmentation application

make -C examples/ip_reassembly # for the IP reassembly application

make -C examples/ipsec-secgw # for the IPSec gateway application

make -C examples/ipsec-secgw CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I$
{OPENSSL_PATH}/include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/" # for IPSec
application with openssl PMD

make -C examples/l2fwd-crypto # for the L2 forwarding with crypto support application

make -C examples/l2fwd-crypto CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I$
{OPENSSL_PATH}/include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/" # for L2
forwarding crypto operations with openssl PMD

Above are sample commands for a limited set of DPDK example applications. Other applications too be compiled using
similar command pattern.

All the example applications currently supported by DPDK are available as part of the DPDK source code in

the ./examples/ folder. Other examples can also be compiled using the pattern stated above. It should be noted

though that verification of all example applications has not been done for either of DPAA or DPAA2 platforms.

 NOTE

4. Once the example application are compiled, the binaries would be available in the following folder within the DPDK source
code folder:

examples/l3fwd/build/app/* # for L3 forwarding application binary and map file

Similar to the pattern above, binaries for the example applications compiled would be available in their respective build/
app folder.

Besides the above example application, DPDK also provides a testpmd binary which can be used for comprehensive
verification of DPDK driver (PMD) features for available and compatible devices. This binary is compiled by default during
DPDK source compilation explained in Compiling DPDK section.

Only a small set of DPDK example applications are currently deployed to root filesystem (/usr/local/bin) when

compiling DPDK through Flexbuild build system. These are: l2fwd, l3fwd, l2fwd-crypto, ipsec-gw and

testpmd.

 NOTE

9.2.3.3 DPDK based Packet Generator
Pktgen is a packet generator powered by DPDK. It requires DPDK environment for compilation and DPDK compliant infrastructure
for execution. DPAA and DPAA2 DPDK PMD (Poll Mode Drivers) can be used by Pktgen for building a packet generator using
the DPAA infrastructure.

Prerequisities for compiling Pktgen

For compiling Pktgen, libpcap library is required. If Pktgen is being built as a cross compiled target, the libpcap too should be
compiled against the same compiled. If using the Flexbuild system, libpcap can be obtained as an external package from Ubuntu
repository. Refer How to build LSDK with Flexbuild on page 54 for more information.

For libpcap library compilation and deployment, refer Tcpdump and libpcap project pages. Libpcap current and

past releases can be obtained from this link. Documentation for libpcap is included in its source code. Also note

that libpcap should be compiled for target board if working in a cross compilation environment.

 NOTE

Obtaining the Pktgen source code

Fetch the Pktgen source code using the following clone command:

git clone http://dpdk.org/git/apps/pktgen-dpdk
git checkout pktgen-3.4.3

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
796 NXP Semiconductors

http://www.tcpdump.org/#source
http://www.tcpdump.org/release/

Compiling Pktgen

Compilation steps below assume that compiled DPDK binaries (libraries and headers) are available in build directory generated
by DPDK. Refer DPDK Build Steps for compiling DPDK and creating the build (arm64-dpaa-linuxapp-gcc) directory. Further, it
is expected that libpcap libraries and headers are also present in this build folder.

Export the path to DPDK build environment and build folder defined by the compilation target:

export RTE_SDK=<path to compiled DPDK source code containing build folder>

export RTE_TARGET=<arm64-dpaa-linuxapp-gcc or arm64-dpaa-linuxapp-gcc> # Select the build
folder based on required DPAA or DPAA2 target>

Build the source code:

make

Before executing the Pktgen application

For executing the Pktgen application, Pktgen.lua file and pktgen binary are needed on the execution environment.

If build was done using a cross compiled environment, transfer these binaries to the target environment from the build host. If the
compilation was done on the target board, skip this step.

cd <Pktgen compiled source code>
cp Pktgen.lua <target board>
cp app/app/arm64-dpaa-linuxapp-gcc/pktgen <target board>

9.2.3.4 Build OVS-DPDK using Flexbuild
OVS is a popular multilayer virtual switch for enabling massive network automation through programmatic extensions.

OVS-DPDK is one of the application packages of the Flexbuild system which used DPDK as underlying framework. This section
details method to build OVS-DPDK as a standalone package within the Flexbuild environment. It is assumed that the Flexbuild
environment has already been configured before executing the commands below.

Refer to LSDK Quick Start on page 41 for complete details of using the Flexbuild build system.

In the Flexbuild configurations, OVS-DPDK needs to be configured to 'y' for enabling packaging of OVS-DPDK in

Flexbuild generated root filesystem, if not already enabled. For more information, refer How to build LSDK with

Flexbuild.

 NOTE

Once the Flexbuild environment has been setup, following commands can be used to build OVS-DPDK package. Generated files
(libraries and binaries) would be available in the <Flexbuild>/build/apps/components_arm64 folder. Once the rootfs (root
filesystem) is generated, the components_arm64 folder would be merged in it.

$ flex-builder -c ovs-dpdk

OVS-DPDK is dependent on DPDK package as it is used as its underlying framework. Flexbuild is designed to

compile DPDK before OVS-DPDK if not already built.

 NOTE

Layout of OVS-DPDK Binaries

A OVS-DPDK binary image supports both the DPAA and DPAA2 platforms. Once the OVS-DPDK package has been installed,
binaries would be available in /usr/local/ folder in the rootfs. Flexbuild system generates a single rootfs for all NXP platforms
it supports.

OVS-DPDK binaries are deployed into the root filesystem as per the default layout of installation target for OVS-

DPDK build system.

 NOTE

Table below depicts various OVS-DPDK artifacts which are available in the Flexbuild generated rootfs:

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 797

S/No File/Image name related to /usr/local/ Description

1 ./bin/ovs-dpctl

./bin/ovs-vsctl

./bin/ovsdb-client

./sbin/ovsdb-server

./sbin/ovs-vswitchd

And various other binaries installed by OVS package as default.

For both, DPAA and DPAA2, platforms.

Various OVS binaries.

2 ./share/man/man7/ovs-* Various OVS man-pages.

9.2.3.5 Virtual machine (VM or guest) images
This section describes steps for deploying a Virtual Machine and executing DPDK applications in it. Additionally, OVS-DPDK
package is used for deploying a software switch on the host machine through which virtual machines communicate with other
virtual machine or external network.

For obtaining necessary artifacts (kernel image, rootfs) for booting up a virtual machine on Layerscape board, refer

Configuring and Building on page 877 KVM/Qemu.

 NOTE

9.2.4 Executing DPDK Applications on Host
This section describes how to execute DPDK and related applications in both Host and VM environments.

IP_ADDR_BRD, IP_ADDR_IMAGE_SERVER, and TFTP_BASE_DIR are not U-Boot or Linux environment variables.

They are used in this document to represent:

1. IP_ADDR_BRD: IP address of target board in test setup.

2. IP_ADDR_IMAGE_SERVER: IP address of the machine where all the software images are kept. These

images are transferred to the board using either tftp or scp.

3. TFTP_BASE_DIR: TFTP base directory of TFTP server running on the machine where images are kept.

 NOTE

9.2.4.1 Booting up the Target board
Follow the instructions mentioned in LSDK Quick Start on page 41 to get the target board up and working.

While bringing up a DPAA2 platform specific board (LS2088A or LS1088A), use the following boot arguments to

obtain best performance. This can be done by appending the following string to the bootargs environment variable

in uboot.

default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7

Above setting insures that at least 8GB of hugepages are available with the application. isolcpus insures that

Linux Kernel doesn't use these CPUs for scheduling its tasks - that prevents context switching of any application

running on these cores. If the installed memory is lesser, lower number of hugepages can be used.

 NOTE

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
798 NXP Semiconductors

DPAA1 platorms (LS1043ARDB, LS1046A) may have lower memory e.g (2GB) and lower number of cores. In that

case, following string can be appended to bootargs:

default_hugepagesz=2MB hugepagesz=2MB hugepages=448 isolcpus=1-3
bportals=s0 qportals=s0

Above setting insures that at least 448 hugepages are available with the application. isolcpus insures that Linux

Kernel doesn't use these CPUs for scheduling its tasks - that prevents context switching of any application running

on these cores. If the installed memory is lower, you may use lower number of hugepages. The bportals and

qportals ensures that only 1 portal is available for kernel use (since only one core is for kernel), rest are available

for user space.

 NOTE

For UEFI, to update the boot arguments please refer to UEFI section in the user manual.

 NOTE

For the DPAA platform, DPDK specific Device Tree file (for example, fsl-ls1046a-rdb-usdpaa.dtb for

LS1046A and fsl-ls1043a-rdb-usdpaa.dtb for LS1043A) should be used for booting up the board. This

Device tree file is configured to provide userspace applications with network interfaces.

Also note that once the above mentioned Device Tree configuration is used, all FMAN ports would be available in

the userspace only. Changes to the Device Tree file would be required to assign some of the FMAN ports to Linux

Kernel.

One can use the following method to replace default fsl-ls104xa-rdb.dtb with fsl-ls104xa-rdb-

usdpaa.dtb to support DPDK on LS104XRDB platforms.

Example 1: After enterring Ubuntu on the board, run following instructions for LS1046ARDB:

cd /boot
mv fsl-ls1046a-rdb.dtb fsl-ls1046a-rdb-ori.dtb
ln -s fsl-ls1046a-rdb-usdpaa.dtb fsl-ls1046a-rdb.dtb

then reboot the board

As an alternative, the following method can be used.

Example 2: On the host computer, run the following instructions for LS1046ARDB:

cd flexbuild
source setup.env
sed -i 's/fsl-ls1046a-rdb.dtb/fsl-ls1046a-rdb-usdpaa.dtb/g' configs/
board/ls1046ardb/manifest
flex-builder -i mkdistroscr -a arm64

The new auto boot script will be in build/firmware/u-boot/ls1046ardb/ls1046ardb_boot.scr.

Then replace the old non-DPAA boot script in SD cards’ boot partition with the one you just generated.

 NOTE

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 799

Optionally follow the below instructions to assign one of the FMAN ports on LS104x (DPAA) RDB boards to Linux.

With standard flexbuild generated dtb all interfaces will be assinged to either Linux or Userspace.
When using fsl-ls1043a-rdb.dtb or
fsl-ls1046a-rdb.dtb all network interfaces will be assigned to Linux. When using fsl-ls1046a-
rdb-usdpaa.dtb or fsl-ls1046a-rdb-usdpaa.dtb
all network interfaces will be assigned to user space.
The example below shows the changes that are required to assign one network interface to Linux and
configure FMAN to support DPDK applications.

Example: Modify fsl-ls1046a-rdb-usdpaa.dts file to assign FMAN ports to Linux by removing the following

ethernet node that corresponds to FM0-MAC3 (RGMII-1).

 ethernet@2 {
 compatible = "fsl,dpa-ethernet-init";
 fsl,bman-buffer-pools = <&bp7 &bp8 &bp9>;
 fsl,qman-frame-queues-rx = <0x54 1 0x55 1>;
 fsl,qman-frame-queues-tx = <0x74 1 0x75 1>;
 };

Then modify the file usdpaa_config_ls1046.xml (located in /usr/local/dpdk/dpaa) by removing the

corresponding port entry. For example the below entry needs to be removed for FM0-MAC3(RGMII-1):

<port type="MAC" number="3" policy="hash_ipsec_src_dst_spi_policy0"/>

Then update the policy rule ids for the remaining entries in usdpaa_config_ls1046.xml file. For example the

DPDK port 'X' should have policy as hash_ipsec_src_dst_spi_policy'X'. e.g.

<port type="MAC" number="4" policy="hash_ipsec_src_dst_spi_policy0"/>
<port type="MAC" number="5" policy="hash_ipsec_src_dst_spi_policy1"/>
<port type="MAC" number="6" policy="hash_ipsec_src_dst_spi_policy2"/>
<port type="MAC" number="9" policy="hash_ipsec_src_dst_spi_policy3"/>
<port type="MAC" number="10" policy="hash_ipsec_src_dst_spi_policy4"/>

 NOTE

9.2.4.2 Prerequisities for running DPDK Applications
This section describes the procedures once the target platform is booted up and logged into the Linux shell. This section is
applicable to both DPAA and DPAA2 platforms and is organized as follows:

• Generic Setup - DPAA on page 801 and Generic Setup - DPAA2 on page 802 contain common steps to be executed
before executing any of DPDK sample application or external DPDK applications. One of these sections would be relevant
depending on the platform, DPAA or DPAA2, being used.

• Application specific sections contain steps on how to execute the DPDK example and related applications.

9.2.4.2.1 Test Environment Setup
Test Environment Setup

Various sample application execution steps are detailed in the following sections. Figure below describes the setup containing
the DUT (Device Under Test) and the Packet Generator (Spirent, Ixia or any other software/hardware packet generator). This is
applicable for the commands provided in following section.

The setup includes a one-to-one link between DUT and Packet generator unit. DPDK application running on the DUT is expected
to forward the traffic from one port to another. The setup below and commands described in following sections can be scaled for
more number of ports.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
800 NXP Semiconductors

Figure 207. Test Setup

9.2.4.2.2 Generic Setup - DPAA
This section details steps required to setup necessary environment for execution of DPDK applications on DPAA platform. This
section is applicable for sample as well as any external DPDK applications. For further details about the applicable configuration
file for DPAA platform, refer to Build OVS-DPDK using Flexbuild on page 797. For DPAA2 platform specific setup, refer to Generic
Setup - DPAA2 on page 802.

DPAA Hardware Configuration files

DPAA platforms supports hardware acceleration of packet queues. These queues need to be configured in the FMAN (Frame
Manager) prior to being used. This can be done by choosing the appropriate policy configuration file packaged along with Flexbuild
rootfs or DPDK source code.

Either of 1, 2, or 4 queue based policy files can be selected before application is executed. For example, 1 queue policy file would
define single queue per physical interface of DPAA. Similarly, 2 and 4 queue are for defining 2 or 4 queues for each defined
interface, respectively.

Once selected, it is not possible to change the configuration for number of max queues, without rebooting the

board. Configuration file should be selected based on requirement and this constraint.

 NOTE

Following are the available platform specific configuration files:

• usdpaa_config_ls1043.xml for LS1043A board

• usdpaa_config_ls1046.xml for LS1046A board

Following are the available policy files:

• usdpaa_policy_hash_ipv4_1queue.xml for 1 queue per port

• usdpaa_policy_hash_ipv4_2queue.xml for 2 queues per port

• usdpaa_policy_hash_ipv4_4queue.xml for 4 queues per port

It is important to execute the applications using the same queue configuration as per the policy file used. This is

because once the queue configuration is done, DPAA hardware would distribute packets across configured number

of queues. Not consuming packets from any queue would lead to queue buildup eventually stopping the I/O.

 NOTE

Setting up the DPAA environment

Configure number of queues using environment variable:

export DPAA_NUM_RX_QUEUES=<Number of queues>

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 801

Based on the number of queues defined in the above parameter, select the policy configuration file and execute the fmc binary:

fmc -c <Configuration file> -p <Policy File> -a

For example, in case of LS1043 platform, using 1 queue, following would be the command to execute:

export DPAA_NUM_RX_QUEUES=1
fmc -c ./usdpaa_config_ls1043.xml -p ./usdpaa_policy_hash_ipv4_1queue.xml -a

It is important that value of DPAA_NUM_RX_QUEUES matches to the policy file being used. In case of mismatch,

DPDK application may show unexpected behavior.

 NOTE

LSDK 18.03 (or dpdk release 18.02) onwards DPAA platforms enables the push mode by default. However, if you

are using eventdev or have limited number of portal resources, set

#export DPAA_PUSH_QUEUES_NUMBER=0

 NOTE

Setup hugepages for DPDK application to use for packet and general buffers. This step can be ignored if hugepages are
already mounted. Use command mount | grep hugetlbfs to check if hugepages are already setup.

mkdir /mnt/hugepages

mount -t hugetlbfs none /mnt/hugepages

Hereafter, DPDK sample applications are ready to be executed on the DPAA platform.

9.2.4.2.3 Generic Setup - DPAA2
This section details steps required to setup necessary environment for execution of DPDK applications over DPAA2 platform. This
section is applicable for sample as well as any external DPDK applications. For further details about the applicable configuration
file for DPAA2 platform, refer to Build OVS-DPDK using Flexbuild on page 797. For DPAA platform specific setup, refer to Generic
Setup - DPAA on page 801.

These steps must be performed before running any of the DPDK application on host.

Setting up the DPAA2 Environment

For executing DPDK application on DPAA2 platform, a resource container needs to be created which contains all necessary
interfaces to the DPAA2 hardware blocks. Necessary configuration scripts are provided with DPDK package for creating and
destroying containers.

1. Configure the DPAA2 resource container with dynamic_dpl.sh script. This script is available under /usr/local/dpdk/
dpaa2/dpdk-extras folder in the rootfs.

cd /usr/local/dpdk/dpaa2/ # Or, any other folder if custom installation of DPDK is done
./dynamic_dpl.sh <DPMAC1.id> <DPMAC2.id> ... <DPMACn.id>

In the above command, <DPMAC1.id> refers to the DPAA2 MAC resource, for example, dpmac.1 or dpmac.2. Modify the
above command as per the number of physical MAC ports required by the application (constrained by availability and
connectivity on the DUT).

Output of dynamic_dpl.sh command shows the name of the container created. This name is passed to DPDK applications
using the DPRC environment variable. Following block shows sample output of the dynamic_dpl.sh command:

##################### Container dprc.2 is created ####################
Container dprc.2 have following resources :=>

 * 16 DPBP
 * 5 DPCON
 * 4 DPSECI
 * 3 DPNI
 * 10 DPIO
 * 10 DPCI

######################### Configured Interfaces #########################

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
802 NXP Semiconductors

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 dpmac.3 00:00:00:00:0:3
dpni.2 dpmac.2 00:00:00:00:0:2

MAC addresses assigned to the interfaces can be verified through the output of the above command. This information is
used by packet generator for creating flows.

It is possible to modify the number of interfaces (DPBP, DPCON, DPNI, etc) in a container. This can be done by

defining environment variable COMPONENT_COUNT=<number> before executing the script. For example, to set

number of DPBP to 4, use export DPBP_COUNT=4.

Though the flexibility has been provided to modify the interfaces in the container, note that resources

need to be balanced and changing any count will require corresponding changes to other interfaces.

Incorrect changes can render the DPDK application unable to execute.

 NOTE

2. Setup the environment variable using the container name reported by dynamic_dpl.sh command:

export DPRC=dprc.2

Once the above setup is complete, DPDK application can be executed on the DPAA2 platform.

Teardown of DPAA2 Environment

It might be required to change the configuration of the resource contain to modify the components included in it. As the number
of resources in the system are limited, number of containers which can be created as also limited. It is possible to remove an
existing container and create another.

Execute the following command to teardown a container:

cd /usr/local/dpdk/dpaa2 # Or, any other folder if custom installation of
DPDK is done
./destroy_dynamic_dpl.sh <Container Name> # for example, "dprc.2"

9.2.4.2.4 DPAA2: Multiple parallel DPDK Applications
This section describes steps for executing multiple parallel DPDK application on DPAA2 platform.

For executing multiple DPDK applications, each application instance should run with its own resource container (DPRC). This
constraint is because of the way DPDK framework is designed to use a given container for exclusive use, irrespective of resources
within, and bind it using VFIO layer. This design prevents parallel access to single resource container from multiple parallel
instances of a single DPDK application, multiple parallel execution of different DPDK applications.

Creating Multiple DPRC instances

Using the resouce container script documented in this section, create multiple resource container instances on host. Following
command creates a resource container with 2 network interfaces (and all other resources necessary to run a DPDK application).

First DPRC: (assuming name as dprc.2 through rest of the document)

cd /usr/local/dpdk/dpaa2 # Or, any other folder if custom installation of
DPDK is done
./dynamic_dpl.sh <DPMAC1.id> <DPMAC2.id> # For example, execute ./dynamic_dpl.sh dpmac.1
dpmac.2

Second DPRC: (assuming name as dprc.3 through rest of the document)

cd /usr/local/dpdk/dpaa2 # Or, any other folder if custom installation of
DPDK is done
./dynamic_dpl.sh <DPMAC3.id> <DPMAC4.id> # For example, execute ./dynamic_dpl.sh dpmac.3
dpmac.4

Executing multiple DPDK Applications

Once the resource containers are created, on two separate terminals, execute the following commands to run l2fwd application,
bridging traffic between both interfaces available in the container:

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 803

export DPRC=dprc.2
cd /usr/local/bin
./l2fwd -c 0x3 -n 1 --file-prefix=p1 --socket-mem=1024 -- -p 0x3 -q 1

Some of the arguments, which are deviations from general l2fwd command, are explained below:

--file-prefix: Each DPDK Application attempts to allocate some hugepages for DMA'd area. This allocation is done in the
hugepages through the use of hugepage mount, by creating and mapping a file. This arguments instructs the EAL to append a
string to the file name. This way, multiple instances, having different such arguments, wouldn't attempt to open same hugepage
mapping file.

--socket-mem: Passed to EAL, this instructs the EAL to allocate only specified amount of memory from the hugepages. By default,
if this is not provided, a DPDK application would acquire all possible hugepages (all free pages) available on the Linux system.

For the second instance, command like following can be executed:

export DPRC=dprc.3
cd /usr/local/bin
./l2fwd -c 0xc -n 1 --file-prefix=p2 --socket-mem=1024 -- -p 0x3 -q 1

Note the difference of values for -c and --file-prefix between the first and second command.

9.2.4.3 DPDK example applications
DPDK example application binaries are available in the /usr/local/bin folder in the Flexbuild generated rootfs.

Command snippets below assume that commands are executed while being present in /usr/local/bin or

appropriate PATH variable has been set. Also, a DPDK binary can be executed on both, DPAA and DPAA2, platform

without any modifications.

 NOTE

Only a selected few DPDK example applications have been deployed in the root filesystem by default. For non-

deployed example application, compilation needs to be done using DPDK source code. Refer Standalone build of

DPDK Libraries and Applications on page 793 for more details.

 NOTE

L2fwd – Layer 2 Forwarding Application

Sample application to show forwarding between multiple ports based on the Layer 2 information (switching).

l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1

In the above command: -c refers to the core mask for cores to be assigned to DPDK; -p is the port mask for ports to be used by
application; -q defines the number of queues to serve on each port. Other command line parameters may also be provided - for
a complete list, refer L2 Forwarding Sample Application (in Real and Virtualized Environments).

isolcpus provided as boot argument to u-boot assures that isolated cores are not scheduled by Linux kernel.

Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in performance. It is

recommended that DPDK applicaton core mask values avoid using Core 0.

 NOTE

L2fwd application periodically prints the I/O stats. To avoid CPU core to be interrupted because of these scheduled

prints, '-t 0' option can be appended at the end of command line.

 NOTE

L3fwd – Layer 3 Forwarding Application

Sample application to show forwarding between multiple ports based on the Layer 3 information (routing).

l3fwd -c 0x6 -n 1 -- -p 0x3 --config="(0,0,1),(1,0,2)"

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
804 NXP Semiconductors

http://dpdk.org/doc/guides-17.05/sample_app_ug/l2_forward_real_virtual.html

In the above command: -c refers to the core mask for cores to be assigned to DPDK; -p is the port mask for ports to be used by
application; --config is (Port, Queue, Core) configuration used by application for attaching cores to queues on each port. Other
command line parameters may also be provided - for a complete list, refer L3 Forwarding Sample Application.

Other variations of the above command described below change the configuration of ports, queue and cores services them.

1. 4 core - 2 Port, 2 queues per port:

l3fwd -c 0xF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3)"

2. 4 core - 2 Port with destination MAC address:

l3fwd -c 0xF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3)" --eth-
dest=0,11:11:11:11:11:11 --eth-dest=1,00:00:00:11:11:11

3. 8 core - 2 Port with 4 queues per port:

l3fwd -c 0xFF -n 1 -- -p 0x3 --config="(0,0,0),(0,1,1),(0,2,2),(0,3,3),(1,0,4),(1,1,5),
(1,2,6),(1,3,7)"

Although, above command snippets use the Core 0 for DPDK application, for best performance Core 0 use is not

recommended as Linux OS schedules its tasks on it. It is also recommended that isolcpus be used in Linux boot

argument to prevent Linux from scheduling tasks on other Cores.

 NOTE

L2fwd-Crypto – Layer 2 Forwarding using DPAA/DPAA2 CAAM Hardware

This variation of Layer 2 forwarding application uses DPAA/DPAA2 CAAM block for encryption of packets.

• Layer 2 forwarding with Cipher only support:

l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_ONLY --cipher_algo aes-cbc --
cipher_op ENCRYPT --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10

• Layer 2 forwarding with Cypher-Hash support:

l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_HASH --cipher_algo aes-cbc --
cipher_op ENCRYPT --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --
auth_algo sha1-hmac --auth_op GENERATE --auth_key_random_size 64

• Layer 2 forwarding with Hash only support:

l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_ONLY --auth_algo sha1-hmac --auth_op
GENERATE --auth_key_random_size 64

L2fwd-Crypto – Layer 2 Forwarding using OpenSSL Software Instructions

This variation of Layer 2 forwarding application uses OpenSSL library for performing software crypto operations. Internally, the
OpenSSL library would use the ARMCE instructions specific for ARM CPUs. For DPDK, this application uses the OpenSSL PMD
as its underlying driver.

This command requires support of OpenSSL package while building the DPDK applications. Refer this section of

this document, for details about toggling compilation of software crypto support, which includes the OpenSSL

driver.

 NOTE

• Cipher_only

— For DPAA Platform

◦ 1 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_ONLY
--cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x10

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 805

http://dpdk.org/doc/guides-17.05/sample_app_ug/l3_forward.html

◦ 2 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" -c 0x6 -n 1 -- -p
0x3 -q 1 --chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --
cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x30

◦ 4 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" --vdev
"crypto_openssl2" --vdev "crypto_openssl3" -c 0xf -n 1 -- -p 0xf -q 1 --chain
CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0xF0

— For DPAA2 Platform

◦ 1 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_ONLY
--cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x100

◦ 2 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" -c 0x6 -n 1 -- -p
0x3 -q 1 --chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --
cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x300

◦ 4 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" --vdev
"crypto_openssl2" --vdev "crypto_openssl3" -c 0xf -n 1 -- -p 0xf -q 1 --chain
CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0xF00

• Cipher_hash

— For DPAA Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_HASH
--cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --auth_op
GENERATE --cryptodev_mask 0x10 --auth_key_random_size 64

— For DPAA2 Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_HASH
--cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --auth_op
GENERATE --cryptodev_mask 0x100 --auth_key_random_size 64

In the above ccommands, for scaling to multiple cores or ports, toggle the -c and -p arguments as described above.

• Hash_cipher

— For DPAA Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_CIPHER
--auth_algo sha1-hmac --auth_op GENERATE --cipher_algo aes-cbc --cipher_op ENCRYPT
--cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x10
--auth_key_random_size 64

— For DPAA2 Platform:

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
806 NXP Semiconductors

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_CIPHER
--auth_algo sha1-hmac --auth_op GENERATE --cipher_algo aes-cbc --cipher_op ENCRYPT
--cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask
0x100 --auth_key_random_size 64

In the above commands, for scaling to multiple cores or ports, toggle the -c and -p arguments.

• Hash_only

— For DPAA Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_ONLY
--auth_algo sha1-hmac --auth_op GENERATE --cryptodev_mask 0x10 --
auth_key_random_size 64

— For DPAA2 Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_ONLY
--auth_algo sha1-hmac --auth_op GENERATE --cryptodev_mask 0x100 --
auth_key_random_size 64

— For scaling to multiple cores or ports, toggle the -c and -p arguments as described above.

For more information on L2fwd-crypto application, refer to L2 Forwarding with Crypto Sample Application.

IPSec-secgw – IPSec Gateway using DPAA/DPAA2 CAAM Hardware

For IPsec application, two DUTs need to be configured as endpoint 0 (ep0) and endpoint 1 (ep1). Assuming that endpoint
have 4 ports each:

• Connect Port 1 and Port 3 of the ep0 and ep1 to each other (back-to-back).

• Connect Port 0 and Port 2 of the ep0 and ep1 to packet generator (for example, Spirent).

The Stream generated by packet generator needs to have IP addresses in following pattern:

EP0:
 port 0: 32 flows with destination IP: 192.168.1.XXX, 192.168.2.XXX, ,192.168.31.XXX,
192.168.32.XXX
 port 2: 32 flows with destination IP: 192.168.33.XXX, 192.168.34.XXX, ,
192.168.63.XXX,192.168.64.XXX
EP1:
 port 0: 32 flows with destination IP: 192.168.101.XXX, 192.168.102.XXX, ,
192.168.131.XXX,192.168.132.XXX
 port 2: 32 flows with destination IP: 192.168.133.XXX, 192.168.134.XXX, ,
192.168.163.XXX,192.168.164.XXX

Above represents default configurations for the endpoints in ep0_64X64.cfg and ep1_64X64.cfg. Custom port mappings,
SA/SP and the routes can be configured in the corresponding configuration file named as ep0.cfg and ep1.cfg for respective
endpoint. These files are available in Flexbuild generated rootfs; for further details, refer this table.

For more information, refer to IPsec Security Gateway Sample Application .

Endpoint 0 (ep0) configuration:

ipsec-secgw -c 0xf -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f
ep0_64X64.cfg

Endpoint 1 (ep1) configuration:

ipsec-secgw -c 0xf -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f
ep1_64X64.cfg

Running IPSec Gateway application with protocol offload

The DPAA/DPAA2 CAAM hardware also support IPSec protocol offload. The command and configurations are exactly same except
the cfg files. For protocol offload, the cfg files are ep0_64X64_proto.cfg and ep1_64X64_proto.cfg. Performance with protocol

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 807

http://dpdk.org/doc/guides-17.05/sample_app_ug/l2_forward_crypto.html
http://dpdk.org/doc/guides-17.05/sample_app_ug/ipsec_secgw.html

offload would be much better than the standard case. In case of platforms which have 8 cores, the command for 8 core will also
be exactly same as non-offload case, except the name of the cfg files.

Endpoint 0 (ep0) configuration:

ipsec-secgw -c 0xf -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f
ep0_64X64_proto.cfg

Endpoint 1 (ep1) configuration:

ipsec-secgw -c 0xf -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f
ep1_64X64_proto.cfg

Running IPSec Gateway Application with 8 Cores

For running this 8 core ipsec-secgw use-case, it is required that the default configuration of the DPRC container

be modified to have at least 16 DPIO objects. Default configuration for DPRC created using dynamic_dpl.sh

has max 10 DPIO objects.

For increasing the number of DPIO objects, following steps can be performed:

1. Destroy the existing DPRC container, if any, using "destroy_dynamic_dpl.sh <container name>"

command.

2. Set number of DPIO to 16 using "export DPIO_COUNT=16". It is important to note that DPIO resources

are limited in the system. Based on currently used objects (for example, another DPRC container existing,

or being used by Linux Kernel), it is possible that higher number of DPIO objects maynot be available.

3. Create DPRC container by using "dynamic_dpl.sh <list of DPMACS to add>" command.

 NOTE

For running IPsec application with multiple queues using 64X64 tunnels and with 8 cores, following command and configuration
needs to be done:

Endpoint 0 (ep0) configuration: Sample configuration for this is available in ep0_64X64.cfg file available in /usr/local/dpdk/
dpaa2/ folder in root filesystem.

ipsec-secgw -c 0xFF -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3),(2,0,4),
(2,1,5),(3,0,6),(3,1,7)" -f ep0_64X64.cfg

Endpoint 1 (ep1) configuration: Sample configuration for this is available in ep1_64X64.cfg file available in /usr/local/dpdk/
dpaa2/ folder in root filesystem.

ipsec-secgw -c 0xFF -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3),(2,0,4),
(2,1,5),(3,0,6),(3,1,7)" -f ep1_64X64.cfg

IPSec-secgw – IPSec Gateway using OpenSSL PMD

The command, flow stream and port configuration is similar to the IPSec-secgw – IPSec Gateway using DPAA/DPAA2 CAAM
Hardware on page 807 command, flow stream and port configuration, except that it uses OpenSSL PMD for crypto operations.
Internally, the OpenSSL PMD uses the ARMCE instructions for the ARM CPUs for performaning crypto operations.

• For DPAA Platform:

— Endpoint 0 configuration

ipsec-secgw -c 0xf --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),
(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x10 -f ep0_64X64.cfg

Endpoint 1 configuration

ipsec-secgw -c 0xf --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),
(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x10 -f ep1_64X64.cfg

• For DPAA2 Platform:

— Endpoint 0 configuration

ipsec-secgw -c 0xf --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),
(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x100 -f ep0_64X64.cfg

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
808 NXP Semiconductors

Endpoint 1 configuration

ipsec-secgw -c 0xf --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),
(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x100 -f ep1_64X64.cfg

KNI - Using Kernel Network Interface Module

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace applications to exchange packets with the
kernel networking stack. For details please refer: http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html

Loading the KNI kernel module without any parameter. By default only one kernel thread is created for all KNI devices for packet
receiving in kernel side:

#insmod rte_kni.ko

Affine the kni task to a single core e.g core number #1

#taskset -pc 1 `pgrep -fl kni_single | awk '{print $1}'`

Run the kni application

kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,..])
[,port,lcore_rx,lcore_tx[,lcore_kthread,..]]"
#./kni -c 0xf -n 1 -- -p 0x3 -P --config="(0,0,1),(1,0,1)"
where config is : (PORT, kni lcore Rx core, kni lcore tx core)

On another console check the interfaces with:

#ifconfig -a

Enable the given interface and assign IP address (if any)

Pktgen – DPDK based Software Packet Generator

Pktgen is a software packet generator based on DPDK. Refer DPDK based Packet Generator on page 796 for steps required for
building Pktgen.

All the commands below assume that Pktgen application is either executed from current folder or appropriate path environment
variable has been set.

1. 3 Port, 1 Core each

pktgen -l 0-3 -n 1 --proc-type auto --file-prefix pg --log-level 8 -- -T -P -m "[1].0,
[2].1, [3].2"

2. 1 Port, 2 Core

pktgen -l 0-3 -n 1 --proc-type auto --file-prefix pg --log-level 8 -- -T -P -m "[1:2].0"

3. To start or stop traffic on a specific port:

start 0 # start <port number>
stop 0 # stop <port number>

4. To start or stop traffic on all ports:

str
stp

9.2.4.4 Command interface (CMDIF) demo application
DPDK based Command interface (CMDIF) demo application demonstrates the communication between GPP and AIOP using
DPDK API’s and Command Interface library. Command Interface library is provided as a lib module within examples/cmdif/
(examples/cmdif/lib/librte_cmdif.a).

This application requires a corresponding process running on AIOP core/s, which will read and respond to CMDIF application.
CMDIF application is only supported on DPAA2 which will have AIOP.

.

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 809

http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html

Include the library librte_cmdif.a, when you are writing an application over DPAA2 CMDIF based raw device.

 NOTE

The application verifies the following:

1. CMDIF client (where GPP is the client and AIOP is the server)

2. CMDIF server (where GPP is the server and AIOP is the client)

CMDIF Client (GPP is client)

In the CMDIF client, the GPP is the client and the AIOP is the server. Requests are initiated by the GPP and are sent to the AIOP
core. The AIOP responds back with the response.

The CMDIF client (demo) is responsible for the following:

• Opens a CI communication channel using a single DPCI device, defined in container used by application

• Sends multiple messages from GPP to AIOP using synchronous commands

• Sends and receive response for multiple messages from GPP to AIOP using asynchronous commands

• Application Validates the response received from the AIOP Server application and prints the result on console

• Closes the opened CI communication channels

CMDIF Server (GPP is server)

In the CMDIF server, the GPP is the server and the AIOP is the client. Requests are initiated by the AIOP and are sent to the
GPP core. The GPP responds back to the AIOP with success or error.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
810 NXP Semiconductors

The CMDIF server (demo) is responsible for the following:

• Registers the server module

• Opens the Sever session

• Initiates the client open on the AIOP client

• Receives requests/commands from the AIOP

• Closes the server session

• Unregisters the module

Running demo application

The demo application showcases only a single thread or core use-case, thus supporting the coremask with single core.

dynamic_dpl.sh is not required to run along with cmdif_demo.

 NOTE

Executing demo application example also requires the following:

• Running dynamic_AIOP_dpl.sh (instead of dynamic_dpl.sh)

• Loading the cmdif_integ_dbg.elf (provided in AIOPSL - https://github.com/qoriq-open-source/aiopsl/tree/integration/
demos/images) using the aiop_tool which needs to run in background.

For example:

./dynamic_AIOP_dpl.sh
export DPRC = > dprc container created for GPP<
aiop_tool load -g dprc.3 -f cmdif_integ_dbg.elf &
cmdif_demo -c 0x2

Description about the command:

• dynamic_AIOP_dpl.sh – creates three containers

— First one for the AIOP

— Second one for the aiop_tool which loads the AIOP FW

— Third one for DPDK’s use (Use this container name as $DPRC export variable)

• The -c option enables cores 2

Expected output

The application should print below logs on console in case of CMDIF client:

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 811

https://github.com/qoriq-open-source/aiopsl/tree/integration/demos/images
https://github.com/qoriq-open-source/aiopsl/tree/integration/demos/images

• PASSED open commands

• PASSED synchronous send commands

• PASSED asynchronous send/receive commands

• PASSED: close commands

Also, verify that application prints below logs in console in case of CMDIF server:

• PASSED cmdif session open

• PASSED sync command

• PASSED Async commands

• PASSED Isolation context test

• PASSED cmdif session close

9.2.5 OVS-DPDK and DPDK in VM with VIRTIO Interfaces
DPDK example and DPDK-based applications can also run inside the virtual machine. This section describes steps to run these
applications inside the virtual machine on both DPAA and DPAA2 platforms.

The virtual machine runs inside the host Linux system and is launched by an application called QEMU.

While using the virtual machine, the console logs for the guest Linux do not appear on the host Linux console (i.e

UART). The guest logs are exposed through telnet, and they can be accessed by doing telnet on the host

board's IP Address (IP_ADDR_BRD) and GUEST_CONSOLE_TELNET_PORT. Each Virtual machine that is run on

a single host is allocated a different GUEST_CONSOLE_TELNET_PORT, and this port number is specified by user

running virtual machine through the QEMU command line.

 NOTE

Following is the layout of the sub-sections of this chapter:

• Generic steps - DPAA & DPAA2 platforms on page 812 describing steps required for QEMU setup for both, DPAA and
DPAA2 platforms.

• Configuring OVS on page 813 describing steps necessary to launch OVS-DPDK on the host machine for switching traffic
between VMs and external network.

• Various sections for lauching a virtual machine and executing a DPDK application:

— Launch Virtual Machine on page 816 for launching a virtual machine.

— Accessing virtual machine console on page 817 for accessing a virtual machine console from a network connected
machine over telnet.

— Launching two virtual machines on page 817 for launching more than one virtual machine.

— Running DPDK applications in VM on page 818 for running DPDK applications in the virtual machine.

• Multi Queue VIRTIO support on page 820 describes steps for DPDK application using multiple queues.

9.2.5.1 Generic steps - DPAA & DPAA2 platforms
Refer to Configuring and Building on page 877 KVM/Qemu for detailed information about deploying virtual machines using KVM/
QEMU using Layerscape boards.

The reference above serves as base for deploying Virtual Machines and DPDK application in them. All following sections assume
that kernel image and virtual machine rootfs is available with DPDK sample application images in it.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
812 NXP Semiconductors

Give IP Address to the board so that virtual machine consoile can be accessed using telnet.

ifconfig eth<x> <IP_ADDR_BRD>

 NOTE

9.2.5.2 Configuring OVS
OVS-DPDK application binary and configuration files are available in the /usr/local folder in the Flexbuild generated rootfs.

It is assumed that before executing command snippets in this section, necessary steps mentioned in Generic steps - DPAA &
DPAA2 platforms on page 812 have already been executed.

Command snippets below assume that commands are executed while being present in /usr/local/ folder. Or,

appropriate PATH variable has been set. As the OVS commands are spread across multiple folder, each command

snippet also shows the location of these binaries relative to above folder.

 NOTE

Command snippets below assume that commands are executed while being present in this folder or appropriate PATH variable
has been set.

OVS is used as a back-end for VHOST USER ports. The physical ports on the target platform and the vhost user ports (virtio
devices) are added to ovs-vswitch and the flows in OVS are programmed so as to establish traffic switching between physical
ports and vhost devices as follows:

• Incoming traffic Physical port1 => output to vhost-user port 1

• Incoming traffic on vhost-user port1 => output on physical port 1

• Incoming traffic on physical port 2 => output on vhost-user port 2

• Incoming traffic on vhost-user port 2 => output on physical port 2

The following steps must be followed to setup OVS as vhost switching back-end:

1. Reset the OVS environment.

pkill -9 ovs

rm -rf /usr/local/etc/openvswitch/conf.db

rm -rf /usr/local/var/run/openvswitch/vhost-user1

rm -rf /usr/local/var/run/openvswitch/vhost-user2

2. Specify the initial Open vSwitch (OVS) database to use:

mkdir -p /usr/local/etc/openvswitch # If the folder doesn't already exist

mkdir -p /var/log/openvswitch # to ensure that OVS logging can be done

mkdir -p /usr/local/var/run/openvswitch

ovsdb-tool create /usr/local/etc/openvswitch/conf.db /usr/local/share/openvswitch/
vswitch.ovsschema

ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock --
remote=db:Open_vSwitch,Open_vSwitch,manager_options --pidfile --detach --log-
file=/var/log/openvswitch/ovs-vswitchd.log

export DB_SOCK=/usr/local/var/run/openvswitch/db.sock

3. Configure the OVS to support DPDK ports:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true

4. Configure OVS to work with 1G Hugepages

export SOCK_MEM=1024

For LS1088A and LS2088A, use SOCK_MEM=1024. For LS1043A and LS1046A platforms, use SOCK_MEM=200.

 NOTE

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 813

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-mem="$SOCK_MEM"

5. Define Cores for OVS Operations

export OVS_SERVICE_MASK=0x1
export OVS_CORE_MASK=0x6

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-lcore-mask=$OVS_SERVICE_MASK

ovs-vsctl --no-wait set Open_vSwitch . other_config:pmd-cpu-mask=$OVS_CORE_MASK

OVS_CORE_MASK should be chosen such as to not include Core 0. OVS_SERVICE_MASK should be any core which

is not already assigned to OVS_CORE_MASK. This way, OVS services threads (defined by OVS_SERVICE_MASK)

will not compete for CPU scheduling with OVS I/O threads (OVS_CORE_MASK). OVS_SERVICE_MASK can be set

to Core 0 as defined in example above

 NOTE

For LS1043 and LS1046, it is important to note that available hugepages can be a restriction when running OVS

with default configuration. For example, this can restrict the number of ports that can be attached to OVS bridge.

To reduce default memory consumption of OVS, use

export DPDK_EXCLUDE_DEFAULT_MBUF=1

as environment variable before ovs-vswitchd is executed. This would reduce the usage of the descriptors by

about 16000 per port. (Each descriptor is slightly above 2K in size for MTU=1500)

 NOTE

6. Start the ovs-vswitchd daemon:

ovs-vswitchd unix:$DB_SOCK --pidfile --detach -c $OVS_CORE_MASK

—detach option makes the daemon run in background. If this option is given same shell can be used to run

further commands, otherwise ssh to the target board and run further commands. Each time you reboot or there is

an OVS termination, you need to rebuild the OVS environment and repeat steps 1-6 of this section

 NOTE

7. Create an OVS bridge.

ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

8. Create DPDK port

For creating DPDK ports with OVS, platform specific port information needs to be provided to OVS.

• For DPAA Platform:

ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk options:dpdk-
devargs=fm1-mac3

ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk options:dpdk-
devargs=fm1-mac4

Above commands attach the DPAA ports fm1-mac3 and fm1-mac4 with OVS. In case different ports are required, above
command should be modified accordingly.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
814 NXP Semiconductors

For LS1043 and LS1046, it is important to note that available hugepages can be a restriction when running OVS

with default configuration. For example, this can restrict the number of ports that can be attached to OVS bridge.

To reduce the memory consumption of OVS per port, use

ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
options:dpdk-devargs=fm1-mac3 options:n_rxq=2 options:n_rxq_desc=256
options:n_txq_desc=256

ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk
options:dpdk-devargs=fm1-mac4 options:n_rxq=2 options:n_rxq_desc=256
options:n_txq_desc=256

In the above, options:n_rxq=2 defines the number of Rx queues per DPAA port. options:n_rxq_desc=256

defines the number of descriptors per Rx queue. Similarly for Tx use n_txq and n_txq_desc.

 NOTE

• For DPAA2 Platform:

ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk options:dpdk-
devargs=dpni.1

ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk options:dpdk-
devargs=dpni.2

Above commands attach the DPAA2 ports dpni.1 and dpni.2 with OVS. In case different ports are required, above
command should be modified accordingly.

9. Create vhost-user port

ovs-vsctl add-port br0 vhost-user1 -- set Interface vhost-user1 type=dpdkvhostuser

ovs-vsctl add-port br0 vhost-user2 -- set Interface vhost-user2 type=dpdkvhostuser

10. Commands to Configure Multi Queues

 ovs-vsctl set Interface dpdk0 options:n_rxq=4
 ovs-vsctl set Interface dpdk1 options:n_rxq=4
 ovs-vsctl set Interface dpdk0 options:n_txq=4
 ovs-vsctl set Interface dpdk1 options:n_txq=4

The above commands are required only in case of multi-queue use case(Four queues been used in above reference

commands). For single queue mode no commands needed as OVS by default configures single queue.

 NOTE

11. Delete OVS flow

ovs-ofctl del-flows br0

12. Set OVS flow rules for external-to-external path:

The commands below configure a hard-coded bi-directional data path between Port 1 and Port 2. Use this step

only for OVS external-to-external testing. For OVS Host-to-VM configuration, skip and continue with next step.

 NOTE

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=1,actions=output:2

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=2,actions=output:1

13. Set OVS flow rules between Host to VM:

The steps below configure OVS such that Port 1 <=> Port 3 and Port 2 <=> Port 4 are connected to

each other. If a different configuration is required, the commands below should be altered as well as VM

configurations.

 NOTE

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=1,actions=output:3

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=3,actions=output:1

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=2,actions=output:4

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 815

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=4,actions=output:2

OVS Switch (ovs-vswitchd) must be run before launching the virtual machine using QEMU, otherwise the virtual

machine launch will fail.

 NOTE

14. Run the following command to enable emc-cache lookups in OVS. This helps in enhancing the lookup speed to ensure
better performance.

ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=1

15. Verify the Flows inserted:

ovs-ofctl dump-flows br0

9.2.5.3 Launch Virtual Machine
This section describes necessary environment setup and commands for launching a Virtual Machine (VM).

It is assumed that before executing command snippets in this section, necessary steps mentioned in Generic steps - DPAA &
DPAA2 platforms on page 812 and Configuring OVS on page 813 have already been executed.

Setup the environment

For accessing the VM, telnet is used. This environment variable defines the telnet port to be used.

export GUEST_CONSOLE_TELNET_PORT=4446 # Telnet port to be used for accessing the virtual
machine

For generating a root filesystem image, refer Creating a guest Linux root filesystem on page 881. Replace the <VM_ROOTFS_IMG>
in below command with the absolute path to the generated image.

Once the rootfs image has been generated on the build machine, it would need to be copied over to the board for

deploying the virtual machine. This would require enough space on the board. Check and copy the image from

build machine to appropriate location, taking this space constraint into consideration.

 NOTE

export ROOTFS_IMG=<VM_ROOTFS_IMG>

Define other environment variables which are used by the QEMU command to configure the virtual machine environment:

export VM_MEM=2048M
export VM_CORES=2
export NUM_QUEUES=1

• For LS1043A and LS1046A platforms, set VM_MEM to 696M. For L2088A and LS1088A platforms, set VM_MEM

to 2048M.

• VM_CORES are the number of cores to reserve for the virtual machine operation.

 NOTE

Export the following paths:

export VHOST1_PATH=/usr/local/var/run/openvswitch/vhost-user1
export VHOST2_PATH=/usr/local/var/run/openvswitch/vhost-user2

Launch QEMU and virtual machine

Launch the QEMU emulator using the following command.

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial tcp::
$GUEST_CONSOLE_TELNET_PORT,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200
rootwait earlyprintk' -m $VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=
$VHOST1_PATH -netdev type=vhost-user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES
-device virtio-net-pci,disable-modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off -
chardev socket,id=char2,path=$VHOST2_PATH -netdev type=vhost-
user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device virtio-net-pci,disable-

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
816 NXP Semiconductors

modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -smp $VM_CORES -S -drive
if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo

For best performance, Core 0 in the VM should not be used for DPDK I/O threads.

Also, to avoid system services from using GPUs scheduled for DPDK I/O threads, it is recommended that

isolcpus be used for isolating cores from Linux Kernel scheduling in VM. The exact configuration is dependent

on number of CPU assigned by QEMU to VM using the VM_CORES environment variable.

Append isolcpus=1-$VM_CORES to the 'root=/dev/vda rw console=ttyAMA0,115200 rootwait

earlyprintk' string in the qemu-system-aarch64 command given above.

 NOTE

Following logs will appear on the host UART console:

QEMU 2.5.0 monitor - type 'help' for more information
(qemu) QEMU waiting for connection on: disconnected:telnet::4446,server

Complete QEMU logs are visible only when telnet is used for logging into the guest machine, as described in

Accessing virtual machine console on page 817.

 NOTE

The –S option mentioned in the qemu command stops the virtual machine bootup after initial setup. Run the info cpus command
on QEMU CLI interface to see the QEMU threads.

(qemu) info cpus
* CPU #0: thread_id=2559
 CPU #1: (halted) thread_id=2560

SSH on the board (telnet to IP address IP_ADDR_BRD) from other console and affine the threads to the cores using the taskset
command:

taskset -p 0x4 <tid1>
taskset -p 0x8 <tid1>

It is recommended to affine the VCPUs to the cores on which OVS threads are not running. For better performance

VCPU threads should be given one physical CPU each if possible.

 NOTE

Run the c command from the QEMU CLI to continue the VM boot-up:

(qemu) c

9.2.5.4 Accessing virtual machine console
Telnet to the IP_ADDR_BRD at port GUEST_CONSOLE_PORT from any machine, which can reach IP_ADDR_BRD over network:

telnet 192.168.1.141 4446
Trying 192.168.1.141...
Connected to 192.168.1.141.
Escape character is '^]'.
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Initializing cgroup subsys cpuacct
[0.000000] Linux version 4.4.65 (root@dash1) (gcc version 5.4.0 20160609 (Ubuntu/Linaro
5.4.0-6ubuntu1~16.04.4)) #1 SMP PREEMPT Fri Jun 23 07:34:43 IST 2017

Only a partial terminal output has been shown above.

9.2.5.5 Launching two virtual machines
This section describes steps for launching 2 virtual machine simultaenously for multiple VM use case.

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 817

• Memory assigned to each virtual machine should not exceed the total number of huge pages assigned on

system. In following example, 2048Mb to each virtual machine has been specified and verified to be working

correctly.

• Console telnet port of both virtual machine must be different. In the below example, VM1 has port 4446

and VM2 has port 4447 configured for telnet. Modify the command accordingly if different values are

required.

 NOTE

Launch VM1:

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial tcp::
4446,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200 rootwait earlyprintk' -m
$VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -netdev type=vhost-
user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-net-pci,disable-
modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off -chardev socket,id=char2,path=
$VHOST2_PATH -netdev type=vhost-user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES
-device virtio-net-pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -
smp $VM_CORES -S -drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-
device,drive=foo

Launch VM2:

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial tcp::
4447,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200 rootwait earlyprintk' -m
$VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -netdev type=vhost-
user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-net-pci,disable-
modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off -chardev socket,id=char2,path=
$VHOST2_PATH -netdev type=vhost-user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES
-device virtio-net-pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -
smp $VM_CORES -S -drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-
device,drive=foo

9.2.5.6 Running DPDK applications in VM
All the DPDK applications mentioned in this section have been tested in following configuration:

• Two Physical network interfaces.

• Two virtio-net devices in the virtual machine.

Following figure illustrates the test setup:

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
818 NXP Semiconductors

Figure 210. DPDK virtionet test setup

Generic Setup

DPDK example application binaries are available in the /usr/local/bin folder in the Flexbuild generated rootfs.

• Setup Hugepages

mkdir /mnt/hugepages
mount -t hugetlbfs none /mnt/hugepages
echo 512 > /proc/sys/vm/nr_hugepages ; for dpaa1 change change size as 512

For the below commands, it is assumed that they are executed from /usr/local folder. Modify the commands

for different path or PATH variable configuration.

 NOTE

• Setup the devices using DPDK Scripts

./share/dpdk/usertools/dpdk-devbind.py --status

./share/dpdk/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:03.0

./share/dpdk/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

Run DPDK Applications

Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in performance. It is

recommended that DPDK applicaton core mask values avoid using Core 0.

 NOTE

Executing l2fwd application:

bin/l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1 -T 0

Executing l3fwd application:

bin/l3fwd -c 0x2 -n 1 -- -p 0x1 --config="(0,0,1)" -P --parse-ptype

Testpmd

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 819

• For TX only:

./bin/testpmd -c 0x3 -n 1 -- -i --nb-cores=1 --portmask=0x1 --nb-ports=1 --forward-
mode=txonly --disable-hw-vlan --port-topology=chained

• For RX only:

./bin/testpmd -c 0x3 -n 1 -- -i --nb-cores=1 --portmask=0x1 --nb-ports=1 --forward-
mode=rxonly --disable-hw-vlan --port-topology=chained

9.2.5.7 Multi Queue VIRTIO support
To scale the performance against the number of VM cores, the VIRTIO devices need to be configured with multiple queues. This
section explains the steps required for setup multi queue VIRTIO devices.

Refer Generic Setup - DPAA on page 801 setup of DPAA platform including configuration necessary for defining multiple queues
before DPDK application is executed. No special setup is required for DPAA2 before DPDK application start. Further, refer
Configuring OVS on page 813 for setting OVS-DPDK on the host. Steps defined below build upon the configurations and steps
provided in these sections for multiqueue support.

QEMU commands for multiqueue vhost devices are different and are shown later in the section.

Additional steps for setup of OVS

Besides the steps mentioned in Configuring OVS on page 813, following changes are required to modify the number of supported
queues in the virtual machine.

Run following commands after adding DPDK and vhost-user ports to the bridge:

ovs-vsctl set Interface dpdk0 options:n_rxq=2
ovs-vsctl set Interface dpdk1 options:n_rxq=2
ovs-vsctl set Interface dpdk0 options:n_txq=2
ovs-vsctl set Interface dpdk1 options:n_txq=2
ovs-vsctl set Interface vhost-user1 options:n_rxq=2
ovs-vsctl set Interface vhost-user2 options:n_rxq=2
ovs-vsctl set Interface vhost-user1 options:n_txq=2
ovs-vsctl set Interface vhost-user2 options:n_txq=2

Launch VM with multiqueue VHOST devices

Similar to the steps mentioned in Launch Virtual Machine on page 816, following steps are required to start the virtual machine.
Changes are highlighted with bold:

Command snippets shown below are valid for DPAA2 platform. Replace dpaa2 with dpaa for equivalent command

on DPAA platform.

 NOTE

export GUEST_CONSOLE_TELNET_PORT=4446
export VM_MEM=2048M # For DPAA1 use VM_MEM=650M
export VM_CORES=2

export NUM_QUEUES=2

export ROOTFS_IMG=<VM_ROOTFS_IMG>

export VHOST1_PATH=/usr/local/var/run/openvswitch/vhost-user1
export VHOST2_PATH=/usr/local/var/run/openvswitch/vhost-user2

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial tcp::
$GUEST_CONSOLE_TELNET_PORT,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200
rootwait earlyprintk' -m $VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=
$VHOST1_PATH -netdev type=vhost-user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES
-device virtio-net-pci,disable-
modern=false,addr=0x3,netdev=hostnet1,mq=on,id=net1,mrg_rxbuf=off,vectors=6 -chardev
socket,id=char2,path=$VHOST2_PATH -netdev type=vhost-
user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device virtio-net-pci,disable-
modern=false,addr=0x4,netdev=hostnet2,mq=on,id=net2,mrg_rxbuf=off,vectors=6 -smp $VM_CORES -S
-drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
820 NXP Semiconductors

DPDK applications in VM

Connect to VM terminal as explained in Accessing virtual machine console on page 817. Once logged-in as Guest, DPDK
applications using multiple queues can be run in VM.

If the number of queues defined for DPDK application in VM is not equal to number of queues (NUM_QUEUES)

defined in QEMU command, the application may fail to start.

 NOTE

DPDK binaries and scripts in the virtual machine are expected to be at the same location as installed for host, and described in
Build DPDK using Flexbuild on page 791.

For the below commands, it is assumed that they are executed from /usr/local folder. Modify the commands

for different path or PATH variable configuration.

 NOTE

Besides the above steps, all steps are same as described in single queue VM usecase.

Setup the devices using DPDK scripts:

./share/dpdk/usertools/dpdk-devbind.py --status

./share/dpdk/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:03.0

./share/dpdk/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

Execute l3fwd application:

./examples/l3fwd -c 0x3 -n 1 -- -p 0x3 --config="(0,0,0),(0,1,0),(1,0,1),(1,1,1)" -P --
parse-ptype

Execute testpmd application:

./bin/testpmd -c 3 -n 1 -- -i --nb-cores=1 --nb-ports=1 --total-num-mbufs=1025 --forward-
mode=txonly --disable-hw-vlan --rxq=2 --txq=2 --port-topology=chained

9.2.6 DPDK on Docker

9.2.6.1 Docker Overview
Docker provides an environment for a given image, over which any user space application can be executed. An image must
contain/expose all the tools which are required to run any application.

For more information on Docker, see https://docs.docker.com/engine/userguide/.

9.2.6.2 Traffic Multiplexer/De-Multiplexer
On the DPAA2 architecture, the MC provides various methods by which incoming traffic can be split of over the multiple DPNIs.
The sections below provide more information.

Using DPDMUX

MC provides an object (DPDMUX) which splits incoming traffic over the multiple DPNIs based on following parameters:

1. MAC based classification

2. VLAN based classification

3. MAC + VLAN base classification

4. User defined key based classification.

DPDMUX has its own filter table which consists of default filtering rules. Default filtering rules are a combination of MAC address
configured on DPNI and port information as a destination. Once the DPDMUX object is connected to a given DPNI, then the entry

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 821

https://docs.docker.com/engine/userguide/

for a particular DPNI will be added to the filtering table. All incoming default traffic will be distributed based on the destination
MAC address in the packet. The user may add more entries to the filtering table as per his/her requirement.

The diagram below shows a sample use case for DPDMUX and associated links for a single DPMAC object. It can be extended
up-to a maximum number of DPMACs, each having its own DPDMUX object.

Using DPSW

MC also provides another object(DPSW) which internally implements DPAA2 H/W Switch. This Switch instance can also be used
for traffic forwarding to multiple hosts. On LS2088 there is only once instance of DPSW that can be created and required ports
will be connected to the same DPSW instance.

DPSW has its own filter table which populates dynamically with source MAC address and port which packet is received on. Default
incoming traffic will be flooded to all ports except ingress port and filtering rules will be learnt into filtering table. After learning,
same packet will be forwarded to the destined port only.

Below diagram shows a sample use case for DPSW and associated links for single DPMAC object. It can be extended up-to
maximum number of DPMACs with same DPSW instance.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
822 NXP Semiconductors

9.2.6.3 Docker's Resource Setup

9.2.6.3.1 Application Container Configuration
For each Docker instance, a DPRC needs to be created containing DPAA2 hardware blocks necessary for the Docker container.

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 823

A helper script dynamic_dpl.sh, part of the LSDK rootfs, can be used for creating such DPRC. For example, following command
snippet creates a DPRC containing 8 DPNI objects (logical network interfaces) which are not backed by any physical link (DPMAC)
and have MAC addresses starting from 00:00:00:00:05:00. For more details about creating DPRC, refer Creating DPRCs

/usr/local/dpdk/dpaa2/dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b
00:00:00:00:05:00

The output of the above command would be similar to:

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>

 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI

 ######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 UNCONNECTED 00:00:00:00:05:01
dpni.2 UNCONNECTED 00:00:00:00:05:02
dpni.3 UNCONNECTED 00:00:00:00:05:03
dpni.4 UNCONNECTED 00:00:00:00:05:04
dpni.5 UNCONNECTED 00:00:00:00:05:05
dpni.6 UNCONNECTED 00:00:00:00:05:06
dpni.7 UNCONNECTED 00:00:00:00:05:07
dpni.8 UNCONNECTED 00:00:00:00:05:08

Each such DPRC would be assigned to a Docker container. Thus, multiple such DPRC would have to be created as per the use-
case and Docker instances required for it.

Resouces available on a DPAA2 system are limited and assigning them to DPRC can result error if requested

resources are not available. For the above script output, if the script doesn't return any error and all the DPNIs

have different MAC addresses, result can be considered success. In case of error or failure to assign MAC

addresses, resource assignment to the DPRCs need to be restructured.

 NOTE

9.2.6.3.2 Kernel Container Configuration
The kernel has its defined root container (dprc.1). The user will be adding required traffic multiplexer/de-multiplexer objects into
the kernel’s container and connecting the application container’s network interfaces for traffic distribution.

Configuration using DPDMUX

/*Create DPDMUX objects with total number of required links i.e. downlinks and uplinks both.
Here dpdmux.0 object is created*/

restool dpdmux create --num-ifs=3 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-
groups=8 --manip=DPDMUX_MANIP_NONE

/*Connecting downlinks and uplinks with above created DPDMUX */
restool dprc connect dprc.1 --endpoint1=dpmac.x --endpoint2=dpdmux.0.0
restool dprc connect dprc.1 --endpoint1=dpni.y --endpoint2=dpdmux.0.1
restool dprc connect dprc.1 --endpoint1=dpni.z --endpoint2=dpdmux.0.2

/*Where x, y and z are object indices created in resource containers*/

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
824 NXP Semiconductors

Configuration using DPSW

/*Create DPSW object with total number of required links i.e. downlinks and uplinks both. Here
dpsw.0 object is created */
 restool dpsw create --num-ifs=3

/*Connecting downlinks and uplinks with above created DPSW */
 restool dprc connect dprc.1 --endpoint1=dpmac.x --endpoint2=dpsw.0.0
 restool dprc connect dprc.1 --endpoint1=dpni.y --endpoint2=dpsw.0.1
 restool dprc connect dprc.1 --endpoint1=dpni.z --endpoint2=dpsw.0.2

/*Where x, y and z are object indices which are created in resource containers*/

9.2.6.4 Running the Docker Container
To execute Docker, make sure you have completed the following prerequisites:

1. The Docker daemon must be running. If not, follow the instructions given at the link below to execute the daemon.

https://docs.docker.com/engine/docker-overview/

2. The Docker tool must be installed, which will be working as the client to run the Docker container.

Download the required image, which should be run as an environment. Use the command below to get generic prebuilt images:

docker pull <distribution>:<tag>

e.g. docker pull Ubuntu:16.04 for standard Ubuntu version 16.04

All downloaded images can be verified using the command below:

docker images

Once images are downloaded, the Docker container can be started using the steps below:

/*Below commands will execute a docker container named as docker0*/

/*Exporting application resource container to docker tool*/
export DPRC="dprc.<index>"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`

/*Running docker container*/
docker run
-–privileged /*It provides privilege to docker container to
 access host completely*/
--interactive /*Docker container will be running state */

/*Exporting host environment variable to docker container*/
--env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib

/*Exporting host devices to docker container*/
--device=/dev/vfio/vfio:/dev/vfio/vfio
--device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO

/*User defined name to docker container */
--name=docker0 --hostname=docker0

/*container will be detached once it is launched and host prompt will
be available to use*/
--detach

/*Exporting host partitions to docker container*/
--volume=/usr:/usr
--volume=/sys:/sys
--volume=/dev:/dev ubuntu:16.04

/*Attaching docker console*/
docker exec -it docker0 bash

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 825

https://docs.docker.com/engine/docker-overview/

9.2.6.5 Running the DPDK Application
Once docker is launched and connected, then execute the DPDK application by running the respective command. The command
below is a sample to run DPDK L3FWD:

./l3fwd -c 0xFF -n 4 -- -p 0xFF -P --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3),(4,0,4),(5,0,5),
(6,0,6),(7,0,7)" -P

9.2.6.6 Example Configuration: Using DPDMUX
On Host:

export MAX_QOS=16
export DPNI_NORMAL_BUF=1

Create container for docker0:

./dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b 00:00:00:00:05:00

##################### Container dprc.2 is created ####################
Container dprc.2 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 UNCONNECTED 00:00:00:00:05:01
dpni.2 UNCONNECTED 00:00:00:00:05:02
dpni.3 UNCONNECTED 00:00:00:00:05:03
dpni.4 UNCONNECTED 00:00:00:00:05:04
dpni.5 UNCONNECTED 00:00:00:00:05:05
dpni.6 UNCONNECTED 00:00:00:00:05:06
dpni.7 UNCONNECTED 00:00:00:00:05:07
dpni.8 UNCONNECTED 00:00:00:00:05:08

Create container for docker1:

./dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b 00:00:00:00:05:08

##################### Container dprc.3 is created ####################
Container dprc.3 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################
Interface Name Endpoint Mac Address
============== ======== ==================
dpni.9 UNCONNECTED 00:00:00:00:05:09
dpni.10 UNCONNECTED 00:00:00:00:05:0a
dpni.11 UNCONNECTED 00:00:00:00:05:0b
dpni.12 UNCONNECTED 00:00:00:00:05:0c
dpni.13 UNCONNECTED 00:00:00:00:05:0d
dpni.14 UNCONNECTED 00:00:00:00:05:0e
dpni.15 UNCONNECTED 00:00:00:00:05:0f
dpni.16 UNCONNECTED 00:00:00:00:05:10

Create DPDMUX objects with downlinks and uplinks

restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-
groups=8 --manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-
groups=8 --manip=DPDMUX_MANIP_NONE

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
826 NXP Semiconductors

restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-
groups=8 --manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-
groups=8 --manip=DPDMUX_MANIP_NONE

Create uplink connections

restool dprc connect dprc.1 --endpoint1=dpdmux.0.0 --endpoint2=dpmac.1
restool dprc connect dprc.1 --endpoint1=dpdmux.1.0 --endpoint2=dpmac.2
restool dprc connect dprc.1 --endpoint1=dpdmux.2.0 --endpoint2=dpmac.3
restool dprc connect dprc.1 --endpoint1=dpdmux.3.0 --endpoint2=dpmac.4

Create downlink connections for docker0

restool dprc connect dprc.1 --endpoint1=dpni.1 --endpoint2=dpdmux.0.1
restool dprc connect dprc.1 --endpoint1=dpni.2 --endpoint2=dpdmux.1.1
restool dprc connect dprc.1 --endpoint1=dpni.3 --endpoint2=dpdmux.2.1
restool dprc connect dprc.1 --endpoint1=dpni.4 --endpoint2=dpdmux.3.1

Create downlink connections for docker1

restool dprc connect dprc.1 --endpoint1=dpni.5 --endpoint2=dpdmux.0.2
restool dprc connect dprc.1 --endpoint1=dpni.6 --endpoint2=dpdmux.1.2
restool dprc connect dprc.1 --endpoint1=dpni.7 --endpoint2=dpdmux.2.2
restool dprc connect dprc.1 --endpoint1=dpni.8 --endpoint2=dpdmux.3.2

NOTE: The above commands are for 1G test. In case 10G port is to be used append the above
commands to create uplink and downlink
connections to append "--committed-rate=10000 --max-rate=10000"

Running DPDK L2fwd on docker0

export DPRC="dprc.2"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`

docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --
name=docker0 --hostname=docker0 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/
dev ubuntu:16.04

docker attach docker0

cd /usr/local/bin

./l2fwd -c 0x0F -n 1 --file-prefix=docker0 --socket-mem=2048 -- -p 0x0F -q 1

Running DPDK L2fwd on docker1

export DPRC="dprc.3"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`

docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --
name=docker1 --hostname=docker1 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/
dev ubuntu:16.04

docker attach docker1

cd /usr/local/bin
./l2fwd -c 0xF0 -n 1 --file-prefix=docker1 --socket-mem=2048 -- -p 0x0F -q 1

The above set of commands are for reference on LS2088A. On LS1088 DPDMUX object supports upto 4 downlinks

(dpni's). These can be assigned to a docker instance as per requirement. For example, one usecase would assign

two dpni's in each of the two docker container instances however other usecase would be to assign one dpni to

each of four docker instances.

 NOTE

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 827

9.2.6.7 Example Configuration: Using DPSW
On Host

Common Container settings:

export MAX_QOS=16
export DPNI_NORMAL_BUF=1

Create container for docker0:

./dynamic_dpl.sh dpni -b 00:00:00:00:05:00

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 1 DPNI
 * 10 DPIO
 * 2 DPCI

######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 UNCONNECTED 00:00:00:00:05:01

Create container for docker1:

./dynamic_dpl.sh dpni -b 00:00:00:00:05:01

##################### Container dprc.3 is created ####################

Container dprc.3 have following resources :=>

 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 1 DPNI
 * 10 DPIO
 * 2 DPCI

######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.2 UNCONNECTED 00:00:00:00:05:02

Create DPSW objects

restool dpsw create --num-ifs=3
 restool dprc connect dprc.1 --endpoint1=dpsw.0.0 --endpoint2=dpmac.1

Create downlink connections for docker0

restool dprc connect dprc.1 --endpoint1=dpni.1 --endpoint2=dpsw.0.1

Create downlink connections for docker1

restool dprc connect dprc.1 --endpoint1=dpni.2 --endpoint2=dpsw.0.2

Running DPDK L2fwd on docker0

export DPRC="dprc.2"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`

docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
828 NXP Semiconductors

name=docker0 --hostname=docker0 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/
dev ubuntu:16.04

docker exec -it docker0 bash

cd /usr/local/bin
./l2fwd -c 0x04 -n 1 --file-prefix=docker0 --socket-mem=2048 -- -p 0x01 -q 1

Running DPDK L2fwd on docker1

export DPRC="dprc.3"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`

docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --
name=docker1 --hostname=docker1 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/
dev ubuntu:16.04

docker exec -it docker1 bash

cd /usr/local/bin
./l2fwd -c 0x08 -n 1 --file-prefix=docker1 --socket-mem=2048 -- -p 0x01 -q 1

The above commands are for LS2088A only as LS1088A doesn't support DPSW object.

 NOTE

9.2.7 Known Limitations and Future Work
Generic Limitations:

1. The hardware internally uses the hardware access portals for each thread doing packet I/O, which limits the number of
I/O threads thereby impacting the performance. The number of available portals is different for DPAA and DPAA2.

2. Not all functionalities supported by DPDK framework have been implemented by DPAA and DPAA2 drivers (PMDs). For
list of supported features, refer DPAA: Supported DPDK Features on page 789 and DPAA2: Supported DPDK Features
on page 790.

3. Using Core 0 for I/O related work is known to impact performance - whether on host or in VM. Disabling services can
result in normal performance but the results are non-deterministic. Affining Core 0 to I/O should be avoided as much as
possible.

4. It has been observed that PCI NIC card events can lead to performance drop on certain platforms. The behavior is non-
deterministic across platforms. For peak performance numbers, PCI NIC cards should be disabled.

5. DPDK docker support is currently only available for DPAA2 platforms.

DPAA Specific Limitations:

1. Ports assigned to user space cannot be assigned dynamically to kernel space or vice-versa.

2. The FMAN configuration script cannot be re-run without system restart. i.e. number of queues configured cannot be
changed.

3. (DPDK-204) Performance of DPAA1 application degrades on assigning some ports to Linux Kernel.

4. (DPDK-1045) Setting MTU > 1600 in OVS-DPDK is not supported. The system behavior is undeterministic in such case.

9.2.8 Troubleshooting
Following are some common steps and suggestions outlined for best performance from DPDK Applications:

1. To obtain best performance, please ensure that the boot-up time command line arguments are similar to below:

For DPAA2:

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 829

console=ttyS1,115200 root=/dev/mmcblk0p3 earlycon=uart8250,mmio,0x21c0600
default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7

For DPAA:

console=ttyS0,115200 root=/dev/mmcblk0p3 earlycon=uart8250,mmio,0x21c0500
default_hugepagesz=2m hugepagesz=2m hugepages=448 isolcpus=1-3 bportals=s0 qportals=s0

isolcpus in the above ensures that only Linux Kernel schedules its threads on Core 0 only. Core 1-x would be used for
DPDK application threads.

Hugepage count defined by hugepages should also be modified to maximum possible so as to allow DPDK applications
to have larger buffers.

The value of hugepages is dependent on the size of RAM available on the board. Value should be selected based

on specific use-case as any memory allocated for hugepage is not usable for Linux Kernel OS operations.

 NOTE

2. If there is issue with reception of transmission of packets, verify the following points:

a. Ensure that no error has been reported by DPDK application at startup. Generally the output is descriptive enough
for cause of problem.

b. Check the mapping of ports against the physical ports:

• In case of DPAA platform, ensure that the mapping of physical interfaces with DPDK ports is correct. Refer
LS1043ARDB Port Layout or LS1046ARDB Port Layout.

• In case of DPAA2 platform, ensure that correct dpni.X has been used in the dynamic_dpl.sh script while
creating the dprc containers. A common pitfall is to use an incorrect dpni as against the physical port being
used for IO.

c. Ensure that traffic generator to board connectivity is proper. You may run testpmd in tx_only mode to validate if the
packets are going out on specific interfaces. For information about testpmd application and its supported arguments,
refer the web documentation.

d. Ensure that the traffic generator stream settings are correct and enough streams are being generated for proper
distribution between DPDK application cores.

e. Ensure that the MAC address of stream generated by traffic generator matches that of the dpni port, or the interface
is in promiscous mode.

3. If the performance is not as expected:

a. Ensure that the stream configuration of the traffic generator is approrpriate and that it can generate multiple streams.
In case the streams have all same IP destination and/or source, the distribution of traffic across multiple cores
wouldn't happen.

For obtaining best performance, it is important to configure the number of streams from packet generator

adequately. If the number of streams generated by packet generator are not adequate, it would lead to improper

distribution across the queues defined (especially in case of multiple queue setup) and eventually lack of

performance.

 NOTE

b. Using standard process tools in Linux, for example ps, top, verify that all the DPDK application threads have been
started (as per application configuration on command line) and busy looping.

4. For DPAA2 Platform certain tuning parameters are available. User can enable them according to the requirements.

• To offload the RX error packet drop (parsing error) handling in hardware. Set,

#export DPAA2_PARSE_ERR_DROP=1

• To disable the TX congestion control - i.e. infinite size of TX queues, set:

#export DPAA2_TX_CGR_OFF=1

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
830 NXP Semiconductors

http://dpdk.org/doc/guides-16.07/testpmd_app_ug/index.html

• To configure the TQ queue congestion control - taildrop size in byte (default is 64K bytes), set:

#export DPAA2_TX_TAILDROP_SIZE=<size>

9.2.9 DPDK Performance Reproducibility Guide
This chapter describes various cases and points which are important for obtaining best performance from DPDK software on the
DPAA and DPAA2 platforms. This is a suggestive list of best practices and optimal configurations which can help extract maximum
performance of the DPAA/DPAA2 hardware.

The practices mentioned in this chapter are based on tests in controlled environment. These are not intended for

production or deployment without adequate analysis of the impact on use-cases.

 NOTE

This document is divided into two broad sections: Steps required before booting up the Linux Kernel and steps required before
DPDK application execution.

Before booting up Linux

1. Choosing Optimal Board Support Packages (BSP)

• Choosing a compatible board support package is critical for functionality as well as performance of DPDK application.

For DPAA and DPAA2 platforms, select the top frequency RCW/PBL binaries stably supported by boards. For example,
for LS2088ARDB DPAA2, Rev 1.0 boards with frequency of 2000x800x2133 is known to perform best. Other frequency,
though stable, would result in slower performance. Below table describes an indicative set of known BSP files for DPDK
supported SoC.

2. Disabling hardware prefetching through u-boot

• For LS2088A DPAA2 platform, it is possible to disable hardware prefetching through u-boot. This can enhance
performance in multicore scenario.

• For disabling hardware prefetching, following command should be used on u-boot prompt:

setenv hwconfig 'fsl_ddr:bank_intlv=auto;core_prefetch:disable=0xFE'

After executing the above command, board bank needs to be reset for the setting to take place. In the above command,
field disable=0xFE defines the mask for disabling prefetching on specific cores. For example, for disabling prefetching
on 3rd and 4th core, use disable=0x0C.

Also, it should be noted that disabling prefetching on Core 0 is not supported.

This setting doesn't have impact on single core case. Maximum performance gain is observed when all 8 cores of

LS2088 board are being used (of which 7 cores have prefetching disabled as Core 0 doesn't support this feature).

 NOTE

3. Linux Boot Arguments

• For DPAA platform, following configuration should be appended to default boot arguments:

default_hugepagesz=2m hugepagesz=2m hugepages=448 isolcpus=1-3 bportals=s0 qportals=s0

Through the above boot arguments, 896 Mb of hugepages have been assigned for all DPDK applications (448 pages
of 2M size each).

isolcpus isolates the CPUs 1, 2, 3 from Linux Kernel process schedulers' scheduling algorithm. All System Service
would be scheduled on Core 0 and that should be avoided in application configuration for I/O threads.

• For DPAA2 platform, following configuration should be appended to default boot arguments:

default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7

It is recommended to use 1G huge page size for DPAA2 platform.

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 831

• In case UEFI based booting is used on LS2088 platform, the boot agruments are changed from grub.fg. Please refer
to UEFI section on how to update the arguments.

It should be noted that CPU isolation configuration cannot be changed in a running Linux Kernel. Whereas, huge

page configuration can be changed from Linux prompt by writing to /proc/sys/vm/nr_hugepages file. Thus,

CPU isolation should be carefully decided before booting up Linux Kernel.

 NOTE

nousb can be appended to boot arguments to disable USB in Linux Kernel. This prevents any interrupts from USB

devices to be serviced by CPU cores. This is especially important when Core 0 is being used for DPDK I/O

performance. But, this option should only be used if there is no dependency of USB devices for system execution,

for example, a USB mass storage which contains either the root filesystem or extra filesystem containing data

necessary for execution.

 NOTE

4. For Best performance, use the data cores as isolated cpus and operate them in tickless mode. For this:

a. Compile the Kernel with CONFIG_NO_HZ_FULL=y

b. Add bootargs with 'isolcpus=1-7 rcu_nocbs=1-7 nohz_full=1-7' for 8 core platform and 'isolcpus=1-3
rcu_nocbs=1-3 nohz_full=1-3' for 4 core platform

The CONFIG_NO_HZ_FULL linux kernel build option is used to configure a tickless kernel. The idea is to configure

certain processor cores to operate in tickless mode and these cores do not receive any periodic interrupts. These

cores will run dedicated tasks (and no other tasks will be schedules on such cores obviating the need to send a

scheduling tick). A CONFIG_HZ based timer interrupt will invalidate L1 cache on the core and this can degrade

dataplane performance by a few % points (to be quantified, but estimated to be 1-3%). Running tickless typically

means getting 1 timer interrupt/sec instead of 1000/sec

 NOTE

5. Setup of the Performance Validation Environment

• It is important that the environment for performance verification uses a balanced core loading approach. Each core
should be loaded with equal number of Rx/Tx queues, irrespective of their count. Images below describe some of the
I/O scenario using an example setup containing a target board and a packet generator. In all the cases shown, it is
assumed that each port has a single queue being serviced by a CPU core. Also, even though below images show 8
ports, it is a generic representation. DPAA boards may not have 8 equal ports (1G/10G) - this representation is
assuming traffic is always distributed across equal capacity ports.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
832 NXP Semiconductors

Image above describes 2 cases: One for single port and another for 4 ports. It can be noted that all the cores are
equally loaded (equal number of cores, irrespective numbers of ports being serviced). Further, the 4 port case shows
that there is more than one way to move stream of packets. (Note the direction of arrows in each case.)

Image above describes a case with 4 ports where the CPU cores are not equally loaded. This is not a recommended
combination as this would mean some streams being served (packet per second) slower than others. 8 port
combination shown in the image above extends the mapping of 4 ports shown in image before. Once again, it should
be noted that there are multiple ways to create a balanced set of streams. A performance setup should choose one
baseline and all performance reports should be based on that baseline.

For Performance measurement, performing I/O across non-equal capacity ports (1G=>10G, vice-verse) is not a

valid case. This would lead to build up of queues on higher capacity links eventually stopping traffic when hardware

is unable to obtain buffers for storing new incoming packets - eventually stopping traffic.

 NOTE

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 833

6. Uninstalling PCI Ethernet (e1000) NIC Cards

• It has been observed that when PCI Ethernet card (for example, on DPAA/DPAA2 RDB boards Intel e1000) are
installed, they have a tendency to poll frequently the CPU cores (Core 0, in case of isolation). This has adverse impact
on the application performance if DPDK I/O threads are scheduled on same cores which services these interrupts.

• For best performance, such PCI Ethernet cards should be uninstalled from the hardware. If un-installation is not
possible, see the comments mentioned in section below to disable the interface by unlinking it from the Linux Kernel.

nopci can be appended to boot arguments to completely disable PCI devices from being detected by Linux Kernel.

This prevents PCI interrupts from being serviced by CPU. But, this option should not be used if there is dependency

on any PCI device for system execution.

 NOTE

Before and during DPDK Application start

1. Disabling System Services

• In full fledged distributions, like Ubuntu, the root filesystem contains various system services by default. These services
are targeted towards a generic environment. Many of these services require periodic CPU cycles. DPDK I/O threads
execute as a run-to-completion process, infinitely looping over CPUs they are affined to. Services which require periodic
CPU cycles can interrupt the DPDK I/O threads causing loss of packets and/or latency.

• CPU cores can be isolated from Linux's scheduling algorithm thereby preventing isolated CPU cores from being used
for the CPU cycles required by system services. Thus, for cases where less than 4 (for DPAA platform) or 8 (for DPAA2
platform) are required, system services would not interrupt the DPDK I/O threads until the time DPDK I/O threads avoid
using the non-isolated cores.

• In case performance on all cores is required (4 for DPAA platform, and 8 for DPAA2 platform), system services need
to be turned off so that there is no interruption to DPDK I/O threads scheduled on Core 0. This can be done using the
following command:

/usr/local/dpdk/disable_services.sh

Script to disable system services is only applicable for LSDK with Ubuntu 16.04 filesystem. Also, this script will only

disable services which are enabled in stock root filesystem generated by Flexbuild. There may be more services

which are installed which might impact DPDK I/O threads which may need to be manually stopped.

 NOTE

2. Using High Performance (PEB) Buffer (Only for DPAA2)

• In DPAA2 platform, while creating the resource container using the dynamic_dpl.sh script, it is possible to toggle
between high performance PEB buffers and normal buffers (DDR). By default, the high performance buffers are enabled
for LS2088A; for LS1088A, default configuration is normal buffers.

For LS2088A, it is recommended to use high performance buffers which is enabled by default. Though, there is

caveat to this as described below.

PEB buffers are limited resources. Overusage of buffers, either through large number of queues or deep taildrop

settings, can cause the PEB buffers to overflow causing a interruption of I/O. The hardware might also enter a state

from which it will not recover until board is restarted.

Exact limitations of number of queues is based on various parameters and cannot be stated objectively without

defining the use-case. As a thumb-rule, refrain from using PEB buffers if configuration requires more than 1 queue

per CPU core to be used, assuming all ports and CPU cores are being employed.

 NOTE

For toggling between normal and high performance buffers, use the following environment variable before executing
the dynamic_dpl.sh script:

export DPNI_NORMAL_BUF=1 # disables high performance buffers; enables normal buffers

3. Disabling PCI Ethernet (e1000) NICs

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
834 NXP Semiconductors

• As mentioned in the above section, it is preferable if no PCI Ethernet hardware (like e1000 on DPAA/DPAA2 boards)
is installed. But, if it is not possible to uninstall a hardware device, following command can be used to unlink the Ethernet
card from PCI driver in the Linux Kernel thereby preventing the CPU cores from being interrupted with periodic
interrupts. This is specially important when all core performance is to be recorded.

echo 1 > /sys/bus/pci/devices/<PCI device BDF address>/remove

In the above command, replace <PCI device BDF address> with appropriate BDF format bus address of the PCI
device, for example 0000:01:00.0, after properly bypassing the : character in the name to avoid failure reported by
Linux Bash prompt. For example, echo 1 > /sys/bus/pci/devices/0000\:01\:00.0/remove.

This command would unlink the PCI device with BDF address 0000:01:00.0 from its PCI driver's control, thereby
disabling it from Linux Kernel.

Once the device is unlined from the PCI driver, it would not be usable through the Linux Kernel interface until bound

to same or another PCI driver. It is out of scope for this document to record steps necessary for linking a PCI device

to a PCI driver to bring it under Linux Kernel control.

 NOTE

4. DPDK Optimal Example Application Configuration

• Avoiding Core 0

— As mentioned above, distributions like Ubuntu have large number of system services. Though some of these
services can be disabled, there would always be cases of interrupts or un-interruptible services which would
require Core 0 cycles. Isolating the cores through Linux Kernel can be done using Linux boot arguments. This
would allow isolated cores to be used exclusively for DPDK I/O threads.

— Once a configuration of isolated cores is set, similar configuration should be done in DPDK application using the
-c or --coremask command line option.

— If 4 core (in LS1043A or LS1046A) or 8 core (LS1088A or LS2088A) performance is required, system services
should be disabled. Though, it should be noted that performance number using Core 0 show un-deterministic
behavior of latency and packet losses. For example, LS2088A has been observed to perform fairly stable on 8
core configuration with services disabled, but same cannot be stated for LS1088A boards.

• Avoiding Core 0 in case of Virtual Machine

— Core 0 impact on the DPDK I/O performance is valid for host as well as for Virtual Machine (VM). While configuring
DPDK application in VM, Core 0 should be avoided. The Qemu configuration should be such as to avoid using
the Host's Core 0 for any VM logical core which is running DPDK I/O threads.

— For a VM environment, OVS or similar switching stack maybe used on the host. Qemu configuration should be
such as to avoid mapping the logical cores (VCPU) assigned to VM with any of the CPU cores which run the
switching stack threads. taskset command is recommended for affining the Qemu threads (serving VM VCPUs)
to a particular core. Refer Launch QEMU and virtual machine for more details.

• Using Multi-queue configuration to spread load across multiple CPUs

— DPDK applications can utilize RSS based spreading of incoming frames across multiple queues servicing a
particular port. This is especially helpful in obtaining better performance by utilizing 1:N mapping of ports to CPU
cores. That is, more than 1 CPU core serves a single port.

This requires adequate configuration of Port-Queue-Core combination through DPDK application command line.
For example, l3fwd application can be configured to use 8 ports on a LS2088A board for serving 2 ports using
the following command:

l3fwd -c 0xFF -n 1 -- -p 0x3 --config="(0,0,0),(0,1,1),(0,2,2),(0,3,3),(1,0,4),
(1,1,5),(1,2,6),(1,3,7)"

In the above command, the --config argument takes multiple tuples of (port, queue, core). Note that Port
number 0 is being served by Core 0, 1, 2 and 3 using separate queue numbers.

Data Plane Development Kit (DPDK)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 835

Using similar configuration described for l2fwd application above, optimal utilization of Cores can be achieved.
The command line options vary with DPDK application and DPDK online web manual should be referred for
specific example applications.

Though the above command snippet utilizes Core 0, necessary care should be taken as described in text above.

— As mentioned above, DPDK uses RSS (Receive Side Scaling) to spread the incoming frames across multiple
queues. Multi-queue setup needs to be supported by varying flows from the Packet Generator. The flows created
should be such as to have varying Layer-2 or Layer-3 field values.

◦ As flow distribution is based on hash over Layer-2 and Layer-3 fields, it is possible that lower number of flows
would distribute unevenly across queues. Number of flows created should be large enough to spread equally
across all the configured queues.

• Consideration for CPU clusters

— SoC have multiple clusters housing one or more CPUs. Each cluster shares a L2 cache. In general, this allows
threads sharing data over CPUs from same cluster to perform better than threads sharing data across CPUs from
different clusters.

— For best performance, it is recommended that DPDK application configuration for selecting CPU cores should
be such to either use all CPUs from same cluster or spread queues equally across clusters. When this is combined
with Core 0 issue, it implies that using Cluster having Core 0 might perform slightly worse than using cluster which
doesn't use Core 0.

• Using limited number of I/O buffers

— DPDK allows an application to change the number of maximum in-flight buffers. This is especially useful when
there is memory constraint and DPDK application has limited resources.

— Each buffer, for processing, has to be fetched into the system caches (L2/L1). Larger the number of buffers in-
flight simultaneously, more would be the flushing of buffer addresses. To avoid excessive pressure on the L2
caches (eviction, hit, miss cycle), lower number of buffers should be used. Exact numbers would depend on the
use-case and resources available.

For example, in case of l3fwd application, --socket-mem=1025 like EAL argument can be provided to the
application as shown in command snippet below. Note that the argument has been provided before the -- - these
are passed to DPDK framework rather than the application itself.

./l3fwd -c 0xFF -n 1 --socket-mem=1025 -- -p 0x1 --config="(0,0,0),(0,1,1),
(0,2,2),(0,3,3),(0,4,4),(0,5,5),(0,6,6),(0,7,7)"

• Degradation of OVS performance with increase in flows

— It has been observed that OVS doesn't perform well when the number of flows are large. This is because of OVS's
inherent design to use a flow matching table of size 8000. If larger than 8000 flows are used, the overall
performance degrades because of hash collisions. If more than 8000 flows are required, use the following
command after OVS bridge has been created:

ovs-vsctl set bridge br0 other-config:flow-eviction-threshold=65535

This command would set the size of OVS internal flow table to 65535.

• Use -n 1 as argument passed to DPDK EAL

— -n argument for DPDK application is for defining number of DDR channels for the system - which is typically valid
for NUMA architectures. This parameter is used for mempool memory alignments. For NXP SoCs, this should
be set to "1". NXP SoCs supported by DPDK are non-NUMA.

9.3 QorIQ OpenDataPlane (ODP)

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
836 NXP Semiconductors

9.3.1 Introduction
This section provides information about ODP Sample Applications built on ODP API v1.11 implementation. User can experience
the main functionalities of OpenDataPlane (ODP) with these applications and can also learn how to use the ODP API from source
code of these applications.

The section explores the following target applications:

• ODP generator sample application

• ODP pktio sample application

• ODP ipsec transport and tunnel sample applications

• ODP packet classify sample application

• ODP timer sample application

• ODP traffic manager sample application

• ODP LPM IP Forwarding sample application

• ODP OpenFastPath Applications (FPM & FPM_BURSTMODE, WebServer)

Refer to the Linaro website for more information on ODP, its architecture and user guide:

OpenDataPlane API Reference Manual for linux-generic

OpenDataPlane (ODP) User Guide

OpenDataPlane (ODP) Implementers Guide

9.3.1.1 Intended audience
This document is intended for software developers and architects who want to develop ODP applications on QorIQ based
platforms. The document assumes that users are familiar with Linux-based software development, and also with the ODP concepts
and APIs.

9.3.1.2 Definitions and acronyms

SDK Software Development Kit

RDB Reference Design Board

DUT Device Under Test

FMan Frame Manager

PBL Pre Boot Loader

RCW Reset Configuration Word

UDP User Datagram Protocol

SIP DIP Source Internet Protocol and Destination Internal Protocol

9.3.1.3 Supported platforms
Current release is supported on the following QorIQ processing platforms:

• LS1088A

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 837

http://docs.opendataplane.org/snapshots/odp-publish/generic/dox_html/master/latest/linux-generic-doxygen-html/index.html
http://docs.opendataplane.org/snapshots/odp-publish/generic/usr_html/master/latest/linux-generic/output/users-guide.html
http://docs.opendataplane.org/snapshots/odp-publish/generic/usr_html/master/latest/linux-generic/output/implementers-guide.html

• LS2088A

9.3.1.4 Unsupported ODP API's
Following ODP API's are not supported in this release:

odp_pktin_ts_res
odp_pktin_ts_from_ns
odp_schedule_release_context
odp_packet_add_data
odp_packet_rem_data
odp_packet_ts_set
odp_packet_ts
odp_packet_extend_head
odp_packet_trunc_head
odp_packet_extend_tail
odp_packet_trunc_tail
odp_packet_copy_from_pkt
odp_packet_concat
odp_packet_split
odp_packet_copy_part
odp_packet_align
odp_packet_move_data
odp_packet_copy_data
odp_ipsec_mtu_update
odp_ipsec_in
odp_ipsec_out
odp_schedule_order_lock
odp_schedule_order_unlock
odp_queue_lock_count
odp_cos_drop_set
odp_cls_cos_pool_set
odp_pktio_skip_set
odp_cls_cos_pool
odp_cos_drop
odp_tm_enq_with_cnt
odp_schedule_pause
odp_schedule_resume

9.3.1.5 ODP Limitations and Known Issues
The following are the limitations and known issues for this release.

Limitations

• Route option with subnet is not supported in odp_ipsec and odp_ipsec_offload application.

• CRYPTO – DPAA hardware is an asynchronous hardware. Hence only asynchronous mode is supported for crypto operations.

• IPsec – Only ESP sessions are supported (crypto algorithm supported : 3DES, AES, authentication algorithm : SHA1, MD5,
SHA256)

• IPsec - Some features like anti replay check, fragmentation, SA lifetime support, TRANSPORT mode, IPV6, udp_encap,
copy_dscp, copy_df, dec_ttl are not supported.

• CRYPTO – New buffer/Out of place crypto mode is not supported.

• CRYPTO – Sessions with requirement of authentication before cipher are not supported.

• Per CoS pool is not supported.

• Same threshold configuration is supported for all queues of an pktio.

• Refer to the Unsupported ODP API's on page 838 chapter for a list of the API's that are not supported in this release.

• Restart of FPM application is not supported.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
838 NXP Semiconductors

• Maximum 4 weighted TM queues are supported and only single group is supported.

Known Issues

• ODP-416 - Freed buffer pool memory can't be reclaimed.

• ODP-819 - Adding new SA cause the existing traffic to halt for some time.

• ODP-1131 - ODP-SCHED-POLL-MODE: Applications restart is not working once traffic is sent.

9.3.2 Product Description
The figure below identifies how ODP application runs in a typical network processor software architecture.

ODP Applications ODP Applications

PKTIO, Queue IO,
Crypto, Classifier,
Runtime services

Extended API

Resource-mgmt,
discovery, Eth-config

Crypto-PAC
AIOP Mgmt & Comm

NW-services – KNI, L2. L3

NW
Services*

Run-Time ServicesIO & Acceleration

Queue, Scheduler

ClassifierOffload* Crypto PKTIO

Resource
Mgmt*

Timers Memory

SyncBuffers

Arch/ ARM

KNI

Routing
ARP

VFIO

SEC

PME

AIOPDPAA 1

DPAA 2

LS
-B

us

R
es

-M
gr

P
la

tfo
rm

 s
pe

ci
fic

Fr
am

ew
or

k
A

P
I L

ay
er

A
pp

lic
at

io
ns

ODP API

Figure 213. ODP on Layerscape QorIQ Platforms

9.3.3 Using Flexbuild to Compile ODP/OFP
Run the following commands in order to compile ODP using Flexbuild:

$ cd <flexbuild_dir>
$ source setup.env

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 839

$ flex-builder -c odp
The command above will automatically check dependent linux and build linux firstly, then
generate ODP images.
Note: ODP is supported only based on linux-4.9 kernel with verification in this release, not
supported on linux-4.14.

Run the following commands to install ODP applications into rootfs:

$ flex-builder -i merge-component
$ flex-builder -i compressrfs

In the rootfs, ODP binaries are available under /usr/local/odp/bin.

To compile OFP please make sure ODP and OpenSSL are already compiled.

$ flex-builder -c ofp -a arm64

In rootfs, OFP binaries are available under /usr/local/ofp/bin folder.

9.3.4 Using ODP Applications
Execute the below commands to allocate resources for ODP applications.

9.3.4.1 LS2088ARDB/LS2085ARDB Board Preparation and Bring-up

Board Bring-up

The LS2088A documentation contains Software Deployment Guides for all the LS2088ARDB reference board. Refer to the
LS2088ARDB Software Deployment Guide for instructions on how to deploy U-Boot, Linux kernel and Management Complex
and root file system to the board.

Interface Naming Conventions

Throughout the ODP User Manual, ODP application commands are listed. These commands use intf-1, intf-2, …, intf-x as generic
interface names. Use dpni.<x> in placeof intf-<x> when running ODP commands on LS2088ARDB/LS2085ARDB.

The table below provides the mapping between the generic interface names and the names to be used in the ODP commands
for LS2088ARDB/LS2085ARDB:.

Generic Interface Names LS2088ARDB/LS2085ARDB Ports LS2088ARDB/LS2085ARDB Interface
Names

intf-1 eth4 dpmac.1(dpni.x*)

intf-2 eth5 dpmac.2(dpni.x*)

intf-3 eth6 dpmac.3(dpni.x*)

intf-4 eth7 dpmac.4(dpni.x*)

intf-5 eth0 dpmac.5(dpni.x*)

intf-6 eth1 dpmac.6(dpni.x*)

intf-7 eth2 dpmac.7(dpni.x*)

intf-8 eth3 dpmac.8(dpni.x*)

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
840 NXP Semiconductors

Mapping between dpmac to dpni is auto-generated by the resource allocation “dynamic_dpl.sh” script. See the

steps below for details.

 NOTE

Resource Allocation Commands

Execute the following commands to allocate the resources required to run the ODP applications.

$ cd /usr/local/odp/scripts
$ source ./dynamic_dpl.sh dpmac.1 dpmac.2 (Reference command)

In order to use multiple interfaces, user can run the following command:

source ./dynamic_dpl.sh dpmac.1 dpmac.2 …… dpmac.8

 NOTE

The output log of the reference command is shown below:

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>

 * 4 DPBP
 * 5 DPCON
 * 1 DPSECI
 * 3 DPNI
 * 10 DPIO
 * 10 DPCI

######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 dpmac.1 00:00:00:00:0:1
dpni.2 dpmac.2 00:00:00:00:0:2
dpni.3 dpni.3 00:00:00:11:11:11

dynamic_dpl.sh script allocates default number of resources like buffer pools (DPBP), I/O thread context

(DPIO), S/W queues (DPCI) etc. as shown in output above.

 NOTE

To increase the number of resources required by an application the environment variables below shall be exported to overwrite
the default configuration before executing dynamic_dpl.sh script.

DPBP_COUNT : Defines number of buffer pools that can be allocated in an application.

Usage : export DPBP_COUNT=<n>
 e.g "export DPBP_COUNT=4"

DPCI_COUNT : Defines the number of queues that can be created in an application.

Usage : export DPCI_COUNT=<n>
 e.g "export DPCI_COUNT=10"

DPCONC_COUNT : Defines number of scheduler groups that can be created in an application. 3
scheduler groups
are created by default for all applications to create Control, Worker and 'All' scheduler
group.

Usage : export DPCONC_COUNT=<n>
 eg. "export DPCONC_COUNT=6"

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 841

Configuration for ODP OpenFastPath applications(fpm & fpm_burstmode)

DPCI_COUNT : Defines the number of queues that can be created in an application.
 Set the DPCI_COUNT=128 for OpenFastPath applications, using below command:

Usage : export DPCI_COUNT =<n>
e.g "export DPCI_COUNT =128"

Execute the command below to specify the memory requirement for ODP application:

export APPL_MEM_SIZE=32

The command above reserves 32MB of memory for the ODP application.

Note: If the command above is not executed, then first ODP application will consume all memory and no other ODP application
can be run.

9.3.4.2 LS1088ARDB Board Preparation and Bring-up

Board Bring-up

The LS1088A documentation contains Software Deployment Guides for all the LS1088ARDB reference board. Refer to the
LS1088ARDB Software Deployment Guide for instructions on how to deploy U-Boot, Linux kernel and Management Complex and
root file system to the board.

Interface Naming Conventions

Throughout the ODP User Manual, ODP application commands are listed. These commands use intf-1, intf-2, …, intf-x as generic
interface names. Use dpni.<x> in placeof intf-<x> when running ODP commands on LS1088ARDB.

Example command listed in user manual:

$./odp_pktio -c 2 -m 2 -i <intf-1>,<intf-2>

Corresponding command to run on LS1088A:

$./odp_pktio -c 2 -m 2 -i dpni.1,dpni.2

The table below provides the mapping between the generic interface names and the names to be used in the ODP commands
for LS1088ARDB:

Generic Interface Names LS1088ARDB Ports LS1088ARDB Interface Names

intf-1 eth4 dpmac.1(dpni.x*)

intf-2 eth5 dpmac.2(dpni.x*)

intf-3 eth6 dpmac.3(dpni.x*)

intf-4 eth7 dpmac.4(dpni.x*)

intf-5 eth0 dpmac.5(dpni.x*)

intf-6 eth1 dpmac.6(dpni.x*)

intf-7 eth2 dpmac.7(dpni.x*)

intf-8 eth3 dpmac.8(dpni.x*)

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
842 NXP Semiconductors

(*) dpni.x to dpmac.<index> mapping is auto-generated by the resource allocation “dynamic_dpl.sh” script. See

the steps below for details.

 NOTE

Resource Allocation Commands

Execute the following commands to allocate the resources required to run the ODP applications.

$ cd /usr/local/odp/scripts
$ source ./dynamic_dpl.sh dpmac.1 dpmac.2 (Reference command)

In order to use multiple interfaces, user can run the following command:

source ./dynamic_dpl.sh dpmac.1 dpmac.2 …… dpmac.8

 NOTE

The output log of the reference command is shown below:

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>

 * 4 DPBP
 * 5 DPCON
 * 1 DPSECI
 * 3 DPNI
 * 10 DPIO
 * 10 DPCI

######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 dpmac.1 00:00:00:00:0:1
dpni.2 dpmac.2 00:00:00:00:0:2
dpni.3 dpni.3 00:00:00:11:11:11

To increase the number of resources required by an application the environment variables below shall be exported to
overwrite the default configuration before executing dynamic_dpl.sh script.

DPBP_COUNT : Defines number of buffer pools that can be allocated in an application.
Usage : export DPBP_COUNT=<n> e.g "export DPBP_COUNT=4"
DPCI_COUNT : Defines the number of queues that can be created in an application. Usage :
export DPCI_COUNT=<n> e.g "export DPCI_COUNT=10"
DPCONC_COUNT : Defines number of scheduler groups that can be created in an application. 3
DPIO's are created by default for all applications to create Control, Worker and 'All'
scheduler group. Usage : export DPCONC_COUNT=<n> eg. "export DPCONC_COUNT=6"

Execute the command below to specify the memory requirement for ODP application:

export APPL_MEM_SIZE=32

The command above reservers 32MB of memory for the ODP application.

If the command above is not executed, then first ODP application will consume all memory and no other ODP

application can be run.

 NOTE

9.3.4.3 odp_pktio application

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 843

9.3.4.3.1 Overview
The odp_pktio application is a sample packet input/output application which receives packets from external traffic source and
reflects back the packets after swapping the IP addresses and MAC addresses.

The application will be configured using its available command line options:

 Usage: %s OPTIONS
 E.g. %s -i eth1,eth2,eth3 -m 0

 OpenDataPlane example application.

 Mandatory OPTIONS:
 -i, --interface Eth interfaces (comma-separated, no spaces)

 Optional OPTIONS
 -c, --count <number> CPU count.
 -m, --mode 0: Receive and send directly (no queues)
 1: Receive and send via queues.
 2: Receive via scheduler, send via queues.
 -h, --help Display help and exit.
 environment variables: ODP_PKTIO_DISABLE_SOCKET_MMAP
 ODP_PKTIO_DISABLE_SOCKET_MMSG
 ODP_PKTIO_DISABLE_SOCKET_BASIC
 can be used to advanced pkt I/O selection for linux-generic

9.3.4.3.2 Test setup

Interface#1 brd_if#1

brd_if#2Interface#2

Spirent Test
Center

DUT

odp_pktio

Figure 214. Test setup (odp-pktio)

9.3.4.3.3 Running odp_pktio on DUT
Execute below commands on DUT to run odp_pktio:

$./odp_pktio -c 2 -m 2 -i <intf-1>,<intf-2>

Interfaces intf-1 can be dpni.<index>. See LS2088ARDB/LS2085ARDB Board Preparation and Bring-up on page

840 or LS1088ARDB Board Preparation and Bring-up on page 842for interface details.

 NOTE

For additional details on options, see the command line options mentioned above.

9.3.4.3.4 Test description
The application will receive traffic from the traffic generator – and this will be seen in the application console, on one interface or
on multiple interfaces where the application is running. Once a packet is received, its destination Ethernet addresses will be
swapped (and so the IP addresses) and the packet will be sent back on the port it came from, to the packet originator.

As a reference, packet scheduler mode is chosen.

A number of 100000 packets will be sent on one port, from the Spirent test center/traffic generator.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
844 NXP Semiconductors

Packet format

Eth source Eth destination Ip source Ip destination Proto

Any Any Any Any Ipv4/UDP

The application will send back 100000 packets to the Spirent test center, each packet having its Ethernet and IP addresses
swapped.

9.3.4.4 odp_generator application

9.3.4.4.1 Overview
The odp_generator application is a sample application which demonstrate termination use cases. It supports the following
functionalities:

1. Receive packets from external traffic source.

2. Transmit self generated UDP packets to external network.

3. Initiate a self generated PING request and expects corresponding response from the external network source.

The application will be configured using its available command line options:

Usage: %s OPTIONS
 E.g. %s -I eth1 -r

 OpenDataPlane example application.

 Work mode:
 1.send udp packets
 2.receive udp packets
 3.works like ping

 Mandatory OPTIONS:
 -I, --interface Eth interfaces (comma-separated, no spaces)
 -a, --srcmac src mac address
 -b, --dstmac dst mac address
 -c, --srcip src ip address
 -d, --dstip dst ip address
 -s, --packetsize payload length of the packets
 -m, --mode work mode: send udp(u), receive(r), send icmp(p)
 -n, --count the number of packets to be send
 -t, --timeout only for ping mode, wait ICMP reply timeout seconds
 -i, --interval wait interval ms between sending each packet
 default is 1000ms. 0 for flood mode

 Optional OPTIONS
 -h, --help Display help and exit.
 environment variables: ODP_PKTIO_DISABLE_SOCKET_MMAP
 ODP_PKTIO_DISABLE_SOCKET_MMSG
 ODP_PKTIO_DISABLE_SOCKET_BASIC
 can be used to advanced pkt I/O selection for linux-generic

9.3.4.4.2 Test setup
Figure 215. Test setup (odp_generator)

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 845

9.3.4.4.3 Running odp_generator on DUT
Execute below commands on DUT to run odp generator application:

Receive mode:

$./odp_generator -I <intf-1> -m r -w 1

UDP mode:

$./odp_generator -I <intf-1>--srcmac 00:00:00:00:00:0X --dstmac
00:00:10:00:94:02 --srcip 192.85.2.2 --dstip 192.85.1.2 --packetsize 64 -m u

Ping mode:

$./odp_generator -I <intf-1> --srcmac 00:00:00:00:00:0X --dstmac
00:10:94:00:00:02 --srcip 192.85.2.2 --dstip 192.85.1.2 --packetsize 64 -m
p

Interfaces intf-1 can be dpni.<index> . See LS2088ARDB/LS2085ARDB Board Preparation and Bring-up on page

840 or LS1088ARDB Board Preparation and Bring-up on page 842 for interface details.

 NOTE

For additional details on options, see the command line options mentioned above.

9.3.4.5 ODP ipsec application (odp_ipsec, odp_ipsec_offload)

9.3.4.5.1 Overview
The “odp_ipsec” application functions as a simple L3 IPv4 router with support for IPsec in both transmit and receive directions.
Note that both IPsec "transport" and “tunnel” modes are supported. These applications authenticate and encrypts/decrypts traffic
from external source and forwards the encrypted/decrypted packets.

The applications will be configured using its available command line options:

Usage: %s OPTIONS
 E.g. %s -i eth1,eth2,eth3 -m 0

 OpenDataPlane example application.

 Mandatory OPTIONS:
 -i, --interface Eth interfaces (comma-separated, no spaces)
 -m, --mode 0: SYNC
 1: ASYNC_IN_PLACE
 2: ASYNC_NEW_BUFFER
 Default: 0: SYNC api mode

 Routing / IPSec OPTIONS:
 -r, --route SubNet:Intf:NextHopMAC
 -p, --policy SrcSubNet:DstSubNet:(in|out):(ah|esp|both)
 -e, --esp SrcIP:DstIP:(3des|aes|null):SPI:Key192u
 -a, --ah SrcIP:DstIP:(md5|sha1|null):SPI:Key128
 -t, --tun SrcIP:DstIP:TunSrcIP:TunDstIP

 Where: NextHopMAC is raw hex/dot notation, i.e. 03.BA.44.9A.CE.02

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
846 NXP Semiconductors

 IP is decimal/dot notation, i.e. 192.168.1.1
 SubNet is decimal/dot/slash notation, i.e 192.168.0.0/16
 SPI is raw hex, 32 bits
 KeyXXX is raw hex, XXX bits long

 Examples:
 -r 192.168.222.0/24:p8p1:08.00.27.F5.8B.DB
 -p 192.168.111.0/24:192.168.222.0/24:out:esp
 -e 192.168.111.2:192.168.222.2:3des:
201:656c8523255ccc23a66c1917aa0cf30991fce83532a4b224
 -a
192.168.111.2:192.168.222.2:sha1:201:2122232425262728292a2b2c2d2e2f3031323334
 -t 192.168.3.2:192.168.2.2:192.168.160.2:192.168.160.1

In addition, the odp_ipsec_offload application demonstrates IPSec ESP protocol offload advantages over standard algorithm-
oriented crypto API.

The applications will be configured using its available command line options:

Usage: %s OPTIONS
 E.g. %s -i eth1,eth2,eth3

 OpenDataPlane example application.

 Mandatory OPTIONS:
 -i, --interface Eth interfaces (comma-separated, no spaces)

 Routing / IPSec OPTIONS:
 -r, --route SubNet:Intf:NextHopMAC
 -p, --policy SrcSubNet:DstSubNet:(in|out):(ah|esp|both)
 -e, --esp SrcIP:DstIP:(3des|aes|null):SPI:Key192
 -a, --ah SrcIP:DstIP:(md5|sha1|null):SPI:Key128
 -t, --tun SrcIP:DstIP:TunSrcIP:TunDstIP

 Where: NextHopMAC is raw hex/dot notation, i.e. 03.BA.44.9A.CE.02
 IP is decimal/dot notation, i.e. 192.168.1.1
 SubNet is decimal/dot/slash notation, i.e 192.168.0.0/16
 SPI is raw hex, 32 bits
 KeyXXX is raw hex, XXX bits long
 Modes Options:
 -q, specify the queue type
 0: ODP_SCHED_SYNC_PARALLEL
 1: ODP_SCHED_SYNC_ATOMIC (default)
 2: ODP_SCHED_SYNC_ORDERED

 Examples:
 -r 192.168.222.0/24:p8p1:08.00.27.F5.8B.DB
 -p 192.168.111.0/24:192.168.222.0/24:out:esp
 -e 192.168.111.2:192.168.222.2:3des:
201:656c8523255ccc23a66c1917aa0cf30991fce83532a4b224
 -a
192.168.111.2:192.168.222.2:sha1:201:2122232425262728292a2b2c2d2e2f3031323334
 -t 192.168.3.2:192.168.2.2:192.168.160.2:192.168.160.1

9.3.4.5.2 Test setup
This test uses the hardware setup described in below figures:

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 847

Host1 DUT

brd_if0

192.168.111.1

brd_if1

192.168.222.1

Host2

Eth0

192.168.222.2

Crypto SubnetClear Subnet

ETH0

192.168.111.2

Figure 216. Transport mode setup

DUT DUT

brd1_if#0

192.168.2.1

brd1_if#1

192.168.160.1

brd2_if#0

192.168.160.2

brd2_if#1

192.168.3.1

Crypto Subnet

Figure 217. Tunnel mode setup

9.3.4.5.3 Running ODP ipsec applications on DUT

Transport mode (odp_ipsec)

Execute below commands on DUT for odp_ipsec application in transport mode.

$./odp_ipsec -i brd_if#0, brd_if#1 -c <Num of cores> -m 1 -
r 192.168.111.2/32: brd_if#0:00.11.00.00.00.01 -r 192.168.222.2/32:
brd_if#1:00.22.00.00.00.02 -p 192.168.111.0/24:192.168.222.0/24:out:esp -e
192.168.111.2:192.168.222.2:3des:201:656c8523255ccc23a66c1917aa0cf30991fce83532a4b224
-p 192.168.222.0/24:192.168.111.0/24:in:esp –e
192.168.222.2:192.168.111.2:3des:301:c966199f24d095f3990a320d749056401e82b26570320292

Execute below commands on Host1:

• ifconfig eth0 192.168.111.2 up

• ifconfig eth0 hw ether 00:11:00:00:00:01

• ip route add 192.168.222.0/24 via 192.168.111.1

• arp -s 192.168.111.1 00:00:00:00:00:01

Execute below commands on Host2 for odp_ipsec application in transport mode

• ifconfig eth0 192.168.222.2 up

• ifconfig eth0 hw ether 00:22:00:00:00:02

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
848 NXP Semiconductors

• ip route add 192.168.111.0/24 via 192.168.222.1

• arp -s 192.168.222.1 00:00:00:00:00:02

Host2 has the following setkey configuration file applied. Use reference setkey script as below:

 #!/usr/sbin/setkey -f
 # Flush the SAD and SPD
 flush;
 spdflush;

 add 192.168.111.2 192.168.222.2 esp 0x201 -E 3des-cbc
 0x656c8523255ccc23a66c1917aa0cf30991fce83532a4b224;

 add 192.168.222.2 192.168.111.2 esp 0x301 -E 3des-cbc
 0xc966199f24d095f3990a320d749056401e82b26570320292;

 spdadd 192.168.111.2 192.168.222.2 any -P in ipsec
 esp/transport//require;

 spdadd 192.168.222.2 192.168.111.2 any -P out ipsec
 esp/transport//require;

Tunnel mode (odp_ipsec_offload and odp_ipsec)

Execute the below commands for tunnel mode in odp_ipsec_offload application

On Left board(DUT):

$./odp_ipsec_offload -i brd1_if#0,brd1_if#1 -r 192.168.2.2/32:brd1_if#0:02.00.c0.a8.3c.01 -
r 192.168.3.2/32:brd1_if#1:<next hop (mac addr of brd2_if#0)> -p
192.168.2.0/24:192.168.3.0/24:out:both -e
192.168.2.2:192.168.3.2:aes:1:0102030405060708090a0b0c0d0e0f10 -a
192.168.2.2:192.168.3.2:sha1:1:2122232425262728292a2b2c2d2e2f3031323334 -t
192.168.2.2:192.168.3.2:192.168.160.1:192.168.160.2 -p 192.168.3.0/24:192.168.2.0/24:in:both
-e
192.168.3.2:192.168.2.2:aes:2:0102030405060708090a0b0c0d0e0f10 -a
192.168.3.2:192.168.2.2:sha1:2:2122232425262728292a2b2c2d2e2f3031323334 -t
192.168.3.2:192.168.2.2:192.168.160.2:192.168.160.1 -c 1

On Right board(Host2):

$./odp_ipsec_offload -i brd2_if#0,brd2_if#1 -r 192.168.3.2/32:brd2_if#1:02.00.c0.a8.3c.02 -
r 192.168.2.2/32:brd2_if#0:< next hop (mac addr of brd1_if#1> -p
192.168.2.0/24:192.168.3.0/24:in:both -e
192.168.2.2:192.168.3.2:aes:1:0102030405060708090a0b0c0d0e0f10 -a
192.168.2.2:192.168.3.2:sha1:1:2122232425262728292a2b2c2d2e2f3031323334 -t
192.168.2.2:192.168.3.2:192.168.160.1:192.168.160.2 -p
192.168.3.0/24:192.168.2.0/24:out:both -e
192.168.3.2:192.168.2.2:aes:2:0102030405060708090a0b0c0d0e0f10 -a
192.168.3.2:192.168.2.2:sha1:2:2122232425262728292a2b2c2d2e2f3031323334 -t
192.168.3.2:192.168.2.2:192.168.160.2:192.168.160.1 -c 1

Execute the below commands for tunnel mode in odp_ipsec application

On Left board(DUT):

$./odp_ipsec -i brd1_if#0,brd1_if#1 -r 192.168.2.2/32:brd1_if#0:02.00.c0.a8.3c.01 -r
192.168.3.2/32:brd1_if#1:<next hop (mac addr of brd2_if#0)> -p
192.168.2.0/24:192.168.3.0/24:out:both -e
192.168.2.2:192.168.3.2:3des:1:656c8523255ccc23a66c1917aa0cf30991fce83532a4b224 -a
192.168.2.2:192.168.3.2:md5:1:a731649644c5dee92cbd9c2e7e188ee6 -t
192.168.2.2:192.168.3.2:192.168.160.1:192.168.160.2 -p 192.168.3.0/24:192.168.2.0/24:in:both
-e
192.168.3.2:192.168.2.2:3des:2:656c8523255ccc23a66c1917aa0cf30991fce83532a4b224 -a
192.168.3.2:192.168.2.2:md5:2:a731649644c5dee92cbd9c2e7e188ee6 -t
192.168.3.2:192.168.2.2:192.168.160.2:192.168.160.1 -c 1 -m 1

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 849

On Right board(Host2):

$./odp_ipsec -i brd2_if#0,brd2_if#1 -r 192.168.3.2/32:brd2_if#1:02.00.c0.a8.3c.02 -r
192.168.2.2/32:brd2_if#0:< next hop (mac addr of brd1_if#1> -p
192.168.2.0/24:192.168.3.0/24:in:both -e
192.168.2.2:192.168.3.2:3des:1:656c8523255ccc23a66c1917aa0cf30991fce83532a4b224 -a
192.168.2.2:192.168.3.2:md5:1:a731649644c5dee92cbd9c2e7e188ee6 -t
192.168.2.2:192.168.3.2:192.168.160.1:192.168.160.2 -p
192.168.3.0/24:192.168.2.0/24:out:both -e
192.168.3.2:192.168.2.2:3des:2:656c8523255ccc23a66c1917aa0cf30991fce83532a4b224 -a
192.168.3.2:192.168.2.2:md5:2:a731649644c5dee92cbd9c2e7e188ee6 -t
192.168.3.2:192.168.2.2:192.168.160.2:192.168.160.1 -c 1 -m 1

For LS108xARDB:

brd1_if#0 dpni.<DPNI_INDEX_1>
brd2_if#0 dpni.<DPNI_INDEX 2>
brd2_if#1 dpni.<DPNI_INDEX_1>
brd1_if#1 dpni.<DPNI_INDEX_2>

For additional details on options, see the command line options mentioned above.

9.3.4.6 odp_classifier application

9.3.4.6.1 Overview
odp_classifier is a sample application to demonstrate classification among the queues based on configured packet matching rules
along with the rules for non-matching(default queue) as well as error'ed packets. The current implementation demonstrates
classification based on following parameters:

1. IP Source address

2. IP QoS

3. VLAN Priority

The following are functional behavior of the application:

• Application configures multiple packet matching rules specifying the queue as a target place.

• Traffic, matching with the configured rules, will be distributed among the target queues.

• Remaining traffic will be forwarded to default queue.

Application is supported for two modes as given below:

• Drop mode: All the received frames are dropped at application.

• Reply mode: Received frame are reflected back onto the same interface after swapping its Ethernet SMAC & DMAC and
SIP & DIP addresses.

The application will be configured using its available command line options:

Usage: %s OPTIONS

Mandatory OPTIONS:

 i , --interface Eth interfaces (comma-separated, no spaces)
 , --policy <odp_pmr_term_e>:<value>:<mask bits>:<queue name>
od p_pmr_term_e: Type of packet matching rule
va lue: Value of rule to be matched
ma sk bits: Masking bits for matching rules
qu eue name: Target Queue where packet is to be received
 , --l2_policy <VLAN Priority Value>:<queue name>
VL AN Priority Value: L2 VLAN priority value
:Q eue Name: Target Queue where packet is to be received
 , --l3_policy <L3 QoS Value>:<queue name>
L3 QoS Value: L3 QoS or IP TOS (One byte) value

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
850 NXP Semiconductors

Qu eue Name: Target Queue where packet is to be received
 Optional OPTIONS
 , --count <number> CPU count.
 , --mode Mode of application
0: Packet Drop mode. Received packets will be dropped
1: Packet Reply mode. Received packets will be sent back
De fault: Packet Drop mode.
 , --timeout Time to run the classifier
1: Time for which the classifier will be run in seconds
0: Runs in infinite loop
De fault: Runs in infinite loop.
 , --l3_policy_precedence Flag to flip precedence between L2 and L3 Policy.
1: L3 policy rule will take precedence over L2 Policy rules
0: L2 policy rule will take precedence over L3 policy rules
De fault: 0
 -h, --help Display help and exit

9.3.4.6.2 Test setup

Figure 218. Test setup (odp_classifier)

9.3.4.6.3 Running odp_classifier on DUT
Execute below commands on DUT to odp classifier application:

Reply mode:
$./odp_classifier –i <intf-1> -p ODP_PMR_SIP_ADDR:192.85.1.1:FFFFFFFF:queue1 -l 1:queue2 -q
40:queue3 -m 1
Drop Mode:
$./odp_classifier –i <intf-1> -p ODP_PMR_SIP_ADDR:192.85.1.1:FFFFFFFF:queue1 -l 1:queue2 -q
40:queue3 -m 0

Interface intf-1 can be dpni.<index> or fm<X>-mac<Y>. See and LS2088ARDB/LS2085ARDB Board Preparation

and Bring-up on page 840 or LS1088ARDB Board Preparation and Bring-up on page 842 for interface details as

per board in use.

 NOTE

For LS2085ARDB/LS2088ARDB, DPBP objects are required to be increaesed to 16 for configuring multiple rules

for classifciation. Refer section LS2088ARDB/LS2085ARDB Board Preparation and Bring-up on page 840 to

increase object count in resource container.

 NOTE

For additional details on options, see the command line options mentioned above.

NOTE: odp_classifier is only supported on LS2088ARDB/LS2085ARDB platform.

9.3.4.7 odp_timer application

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 851

9.3.4.7.1 Overview
odp_timer is a sample application that will enqueue an event after a certain time period, when the timer expires and dequeues
that event and validates it.

The application will create number of threads, given by –c option and allocate a timer for each thread. Each timer will be added
by the application with ticks given by –p option.

Feasibility of ticks will be checked by min and max values given by options –m and –x.

When timer expires, a timeout buffer will be enqueued into a queue that will be received by application using odp_schedule() API.
After that, buffer will be validated and timer will reset if more timeouts remain given by –t option.

The application will be configured using its available command line options:

Usage: %s OPTIONS
 -c, --count <number> CPU count);
 -r, --resolution <us> timeout resolution in usec
 -m, --min <us> minimum timeout in usec
 -x, --max <us> maximum timeout in usec
 -p, --period <us> timeout period in usec
 -t, --timeouts <count> timeout repeat count
 -h, --help this help

9.3.4.7.2 Test setup

DUT

odp_timer_test

Figure 219. Test setup (odp_timer)

9.3.4.7.3 Running odp_timer on DUT
Execute below commands on DUT to run the odp timer application

$./odp_timer_test –c 2 –t 2

For additional details on options, see the command line options mentioned above.

9.3.4.8 odp_lpmfwd application

9.3.4.8.1 Overview
odp_lpmfwd application demonstrates the IPv4 packets forwarding based upon Longest Prefix Match methodology. The LPM
based IPv4 forwarding application is a multi-threaded application that routes IPv4 packets from one Ethernet interface to another.
The packets that reach the LPM application can be forwarded to destination IP address using LPM route algorithm. The LPM
routing algorithm uses the prefix for destination IP address to do the route look up.

Longest Prefix Match Algorithm:

Instead of using traditional Radix-Trie algorithm, here we choose to use one simpler LPM algorithm. It uses 5 level tables: First
level table – 65536 entries array, indexed by the top 16 bits of IP address. Second level table – 32 entries array, indexed by bit12~15

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
852 NXP Semiconductors

of IP address. Third level table – 32 entries array, indexed by bit8~11 of IP address. Fourth level table – 32 entries array, indexed
by bit4~7 of IP address. Fifth level table – 32 entries array, indexed by bit0~3 of IP address. The 2nd level to 5th level tables are
only created when its first level table entry has valid value. See below figure:

At init time, only the first level (i.e. top16 bits) array is created which contains 65536 null entries. While adding route entries to the
FIB table, the 2nd level to 5th level arrays will be created accordingly. This is a typical ASIC design algorithm of LPM which is fast
and simple to search while costs far more memory. The worst case is to index and compare 5 times when searching an IP address,
but it’s still fast enough.

Examples:

1) Add one Class A route 10.0.0.0/8 to the route table. (Gateway is 1.1.1.1, destination port is 1) The first 16bit of 10.0.0.0
(0x0a000000) is 0x0a00 (2560). And the mask is 8 bit which is smaller than the 1st level bit-length (16b), so below entries (from
0x0a00 to 0x0aff) will be created in the FIB table:

From entry No.2560 to No.2815 (total 255 entries) are filled with same content (flag, gwIP, dstPort, ptr …). Now if a packet with
DIP of 10.1.1.1 comes in, its first 16 bit value is 0x0a01 (2561). So, the No.2561 entry of the 1st level table will be checked. If it’s
a ‘leaf’ node (now it is), then the best-match is found. And the packet will be forwarded to the ‘dstPort’ after replacing the SMAC
and DMAC. And, any DIP of 10.x.x.x will all be forwarded to port 1 with gwIP 1.1.1.1 based on above table.

2) Now, a new route 10.1.1.0/24 is added to the FIB table. The table will be like this:

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 853

The new route will overwrite the No.2561 (0x0a01) entry with ‘flag’ of ‘nonLeaf’ and a pointer to ‘next-level-table’. Now a 16-entry-
block memory will be allocated as the ‘next-level-table’ because the 2nd level is 4bit indexed. And the base address of this new
block will be set to the ‘nxtLvlTblPtr’ of No.2561. Because the next 4 bit of the new route is 0 (bit16 to bit19 of 0x0a010100), so the
1st entry in the 2nd level table is used as another ‘nonLeaf’ entry. While all the other entries in the 2nd level table should be filled
with the same value of its ‘parent’ route (10.0.0.0/8). The netmask is 24bit which is larger than 16+4, so the 3rd level table should
also be allocated (16 entries). And the next 4bit of the new route is 1 (bit20 to bit23 of 0x0a010100), so the 2nd entry will be used
for the new route. And because the netmask (24bit) is no-larger-than 16+4+4, so this entry will be the ‘Leaf’ entry of this new route
(see above figure in green). And the according values (gwIP, dstPort, etc.) will be filled in that entry. Now a frame with DIP of
10.1.1.100 comes. There will have 3 lookups to get the final result:

• Index with first 16bit of DIP, whose value is 0x0a01. ‘Non-leaf’ means to continue the next-level lookup.

• Index with the next 4bit of DIP, whose value is 0. Then ‘Non-leaf’ again.

• Index with the next 4bit of DIP, whose value is 1. Then the ‘leaf’ node is found and the lookup reaches an end.

Now a frame with DIP of 10.1.192.10 comes. You can see it will find the ‘leaf’ node in the 2nd level table and get the route of net-
address 10.0.0.0/8. And a frame with DIP of 10.1.10.10 will find its ‘leaf’ node in the 3rd level table and also get the route of net-
address 10.0.0.0/8 as we expected. The multi-branch trie algorithm provides a very fast way of route-lookup but a relatively
complicated way of route-add/deletion.

Application Usage:

There are two binaries for LPM based IPv4 packets forwarding:

odp_lpmfwd : Main binary which will do forwarding.

odp_lpmfwd_config : Helper binary to configure the routes, interfaces and ARPs.

Both binaries will communicate via Linux message queues.

odp_lpmfwd usage:

./odp_lpmfwd -h

OpenDataPlane LPM forwarding application.

Usage: odp_lpmfwd OPTIONS
 E.g. odp_lpmfwd -i eth1,eth2 -m 0 -c 1
 In the above example,
 eth1 and eth2 are the interfaces from which pkts will be forwarded
 depends upon the routes

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
854 NXP Semiconductors

Mandatory OPTIONS:
 -i, --interface eth interfaces (comma-separated, no spaces)

Optional OPTIONS
 -m, --mode 0: Burst send & receive packets (no queues)
 1: Send & receive packets through ODP Schedular.
 Default: Packet burst mode.
 -c, --count <number> CPU count.
 -h, --help Display help and exit.

odp_lpmfwd_config usage:

./odp_lpmfwd_config --help

Usage:
 odp_lpmfwd_config[OPTIONS…]
 -B, --routeadd=TYPE adding a route
 -E, --showintf=TYPE show interfaces
 -F, --intfconf=TYPE change intf config
 -G, --arpadd=TYPE adding a arp entry
 -P, --PID=TYPE pid to hook with (Mandatory param)
 -?, --help Give this help list
 --usage Give a short usage message
 -V, --version Print program version

Help for show all enabled interfaces:

./odp_lpmfwd_config –P <pid of odp_lpmfwd> -E –help

Usage: -E [OPTION...]
 -a, --a=ALL All interfaces
 -?, --help Give this help list
 --usage Give a short usage message
 -V, --version Print program version

Example:
 ./odp_lpmfwd_config -P 2234 -E -a true

Help for assign IP addresses to interfaces:

./odp_lpmfwd_config –P <pid of odp_lpmfwd> -F –help

Usage: -F [OPTION...]
 -a, --a=IPADDR IP Address
-i, --i=IFNUM If Number
-?, --help Give this help list
--usage Give a short usage message
-V, --version Print program version

Example: ./odp_lpmfwd_config -P 2234 -F -a
 192.168.222.1 -i 1Where i is the index of the interface.

e.g.: For following command:
./odp_lpmfwd –i intf-2,intf-1
In odp_lpmfwd_config to assign the IP addresses “i” should be 1 for intf-2 and 2 for intf-1

Help for ARP entry addition:

./odp_lpmfwd_config –P <pid of odp_lpmfwd> -G –help

Usage: -G [OPTION...]
-m, --m=MACADDR MAC Address
-r, --r=Replace Replace Exiting Entry - true/ false {Default:false}
-s, --s=IPADDR IP Address
-?, --help Give this help list
--usage Give a short usage message
-V, --version Print program version

Example: ./odp_lpmfwd_config -P 2234 -G -s 192.168.111.2 -m 00:00:00:00:00:11 -r true

Help for route entry addition:

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 855

./odp_lpmfwd_config –P <pid of odp_lpmfwd> -B –help

Usage: -B [OPTION...]

 -c, --c=FIBCNT Number of FIB entries
 -d, --d=DESTIP Destination IP
 -g, --g=GWIP Gateway IP
 -n, --n=NETMASK netmask length to be used by LPM
 -?, --help Give this help list
 --usage Give a short usage message
 -V, --version Print program version

Example:
 ./odp_lpmfwd_config -P 2234 -B -d 192.168.111.0 -g 192.168.222.2 -n 24 -c 256

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

9.3.4.8.2 Running odp_lpmfwd on DUT
Execute below commands on DUT to run odp_lpmfwd:

$./odp_lpmfwd –i <intf-1>,<intf-2> &

Interfaces intf-1 and intf-2 can be fm<X>-mac<Y>. See LS2088ARDB/LS2085ARDB Board Preparation and Bring-

up on page 840 or LS1088ARDB Board Preparation and Bring-up on page 842 for interface details as per board

in use.

 NOTE

To configure the interfaces, routes and ARPs, run the following commands:

$./odp_lpmfwd_config -P $1 -E -a true
$./odp_lpmfwd_config -P $1 -F -a 192.168.222.1 -i 1
$./odp_lpmfwd_config -P $1 -F -a 192.168.111.1 -i 2
$./odp_lpmfwd_config -P $1 -G -s 192.168.222.2 -m 00:00:00:00:00:10 -r true
$./odp_lpmfwd_config -P $1 -G -s 192.168.111.2 -m 00:00:00:00:00:11 -r true
$./odp_lpmfwd_config -P $1 -B -d 192.168.111.0 -g 192.168.222.2 -n 24 -c 256
$./odp_lpmfwd_config -P $1 -B -d 192.168.222.0 -g 192.168.111.2 -n 24 -c 256

Where $1 is PID of the process odp_lpmfwd.

9.3.4.8.3 Test description
When a packet is received on one of the input interfaces, it will be routed and forwarded according to the LPM algorithm. The
packet will be changed - destination Ethernet address will be updated according to received command line options, the TTL (Hop
Limit) will be decremented and the checksum will be recalculated. Finally the packet will be transmitted on the outgoing interface.

Packet format

Stream 1 on interface#1: IPv4 stream, DIP 192.168.222.4

Stream 2 on interface#2: IPv4 stream, DIP 192.168.111.4

9.3.4.9 odp_tm application

9.3.4.9.1 Overview
odp_tm application demonstrate general Traffic management mechanism on egress side that accepts packets from input queues
and applies scheduling and/or bandwidth controls to decide which input packet should be chosen as the next output packet and
when this output packet can be sent to external network.

odp_tm supports upto 8 tm_queues (0 to 7) on egress side. Number of tm_queues are configurable (discussed in later sections).
Once a packet is received then tm_queue selection is done based on below criteria:

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
856 NXP Semiconductors

If packet contains a VLAN header then VLAN priority signifies the output tm_queue i.e. VLAN prio 0 to tm_queue0, VLAN prio 1
to tm_queue1 and so on. If configured tm_queues are lesser than VLAN prio value then non-matching VLAN priority packet will
always be enqueued to last tm_queue. If packet does not contains any VLAN header then packet will always be enqueued to last
tm_queue. PRIO=0 having the highest priority and PRIO=7 having the lowest priority.

Supported scheduling algorithm:

• Strict Priority Scheduling upto 8 priority tm_queues.

• Weighted Fair Queue Scheduling. If weights on each are same then weighted round robin scheduling will be in effect.

Along with Scheduling, single rate bandwidth shaper can also applied on outgoing traffic.

Output interface will be selected based on the configured route using option "-d" (--Destination
SubNet:Intf:NextHopMAC)

Usage: odp_tm OPTIONS
 E.g. odp_tm -i eth1,eth2,eth3 -m 0
OpenDataPlane example application.
Mandatory OPTIONS:
 -i, --interface Eth interfaces(comma-separated, no spaces)
Optional OPTIONS
 -c, --count <number> CPU count.
 -d, --Destination SubNet:Intf:NextHopMACSubNet: IPaddress with mask bits
 i.e. aa:bb:cc:dd/maskbitsIntf: Interface name i.e. dpni-0NextHopMAC: Destination
Mac Address for next hop.
 Bytes are dot(.) separated i.e. 00.00.00.00.08.01
 -m, --mode 0: Scheduling profile as Strict Priority
 1: Scheduling profile as Weighted scheduling.
 Default Scheduling profile as Strict Priority
 -s, --shaping <boolean> Flag to enable/disable shaping.
 0: To disable
 1: To enable.
 Default shaper is disabled
 -r, --rate <number> Shaping rate in Mbps. Valid only if shaping enabled Values must be
in range (1, 10000)
 -b, --burst-size <number> maximum burst size in KB.Valid only if shaping enabled Values
must be in range (1, 64)
 -n, --num-prio <number> Number of priority queues configured on egress side.
 Only valid if scheduling profile is strict prio Default all supported
priority queues will be configured.
 -w, --weight <queue_name>:<weight> Weight value corresponding to each queue.
 multiple queues configuration will be comma-separated and no spaces.
Values must be in range (1, 255).
 E.g. odp_tm -w queue1:10,queue2:20 -h, --help Display help and exit.

Input configuration used in command will be applied on all the network interfaces that are being used in the

command.

 NOTE

9.3.4.9.2 Running odp_tm on DUT
Execute below commands on DUT to run odp_tm application:

./odp_tm -i <intf-1>,<intf-2> -c 8 -d 192.168.111.0/24:dpni.2:00.00.00.00.08.02 -d
192.168.222.0/24:dpni.1:00.00.00.00.08.01 -s 1 -r 500 -b 32

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 857

9.3.4.9.3 Test Setup

9.3.4.9.4 Test Description
Validation of scheduling without shaper:

Configure traffic stream on both the interfaces, having VLAN priority 0 to 7 and destination IP address targeting to a common
output interface. Inject traffic to both the input interfaces.

• In case of strict priority scheduling, highest priority traffic (VLAN prio 0) should be received on output interface if input
traffic rate is greater than output rate(10Gbps) otherwise mixed traffic will be received.

• In case of weighted priority scheduling, mixed traffic will be received depending upon the queue weights on output
interface with 10Gbps output rate. If configured weights are equal, then mixed traffic will be in equal percentage.

Validation of scheduling with shaper:

Configure traffic stream on both the interfaces, having VLAN priority 0 to 7 and destination IP address targeting to a common
output interface. Inject traffic to both the input interfaces.

• In case of strict priority scheduling, highest priority traffic (VLAN prio 0) should be received on output interface if input
traffic rate is greater than output rate(Configured shaping rate) otherwise mixed traffic will be received.

• In case of weighted priority scheduling, mixed traffic will be received depending upon the queue weights on output
interface with configured shaping rate. If configured weights are equal, then mixed traffic will be in equal percentage.

9.3.4.10 OpenFastPath applications

9.3.4.10.1 Overview

OpenFastPath is an open source implementation of a high performance TCP/IP stack that provides features that network
application developers need to cope with today’s fast-paced network. To enable this packet processing OFP uses OpenDataPlane.
More details about OFP can be found at http://www.openfastpath.org/index.php/service/technicaloverview/

Following application have been integrated in the ODP for the use on Layerscape architecture:

1.FPM (Forwarding Plane Manager)

./fpm -h
Usage: fpm OPTIONS
 E.g. fpm -i eth1,eth2,eth3
ODPFastpath application.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
858 NXP Semiconductors

http://www.openfastpath.org/index.php/service/technicaloverview/

Mandatory OPTIONS: -i, --interface Eth interfaces (comma-separated, no spaces)

Optional OPTIONS
 -c, --count <number> Core count.
 -p, --performance Performance Statistics
 -h, --help Display help and exit.

2. FPM_BURSTMODE (Forwarding Plane Manager in burstmode)

./fpm_burstmode -h
Usage: fpm_burstmode OPTIONS
 E.g. fpm_burstmode -i eth1,eth2,eth3
ODPFastpath application.

Mandatory OPTIONS: -i, --interface Eth interfaces (comma-separated, no spaces)

Optional OPTIONS -c, --count <number> Core count.
-h, --help Display help and exit.

.

9.3.4.10.2 Test Setup OpenFastPath (fpm & fpm_burstmode)

9.3.4.10.3 Running fpm and fpm_burstmode applications
Execute below commands on DUT to run "fpm" and "fpm_burstmode" applications on the LS1088ardb boards:

$ cd /usr/ofp/bin
<Execute the application>
$./fpm -i <intf-1>,<intf-2> (For running fpm application)
or
$./fpm_burstmode -i <intf-1>,<intf-2> (For running fpm_burstmode application)

<Assign IP Address to the TAP devices created for each interface used>
$ ifconfig fp0 192.168.111.1/24 up
$ ifconfig fp1 192.168.222.1/24 up

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 859

• DPCI_COUNT must be increased to 128 to run these applications. This can be done by setting the

environment variable using "export DPCI_COUNT=128" command before running the dynamic_dpl.sh.

Interfaces intf-1 can be dpni.<index>. See LS2088ARDB/LS2085ARDB Board Preparation and Bring-up on

page 840 or LS1088ARDB Board Preparation and Bring-up on page 842 for interface details.

• fpm is supported upto 7 core

 NOTE

9.3.4.10.4 Test description-ODP OpenFastPath (fpm & fpm_burstmode)
When a packet is received on one of the input interfaces, it will be routed and forwarded according to the forwarding algorithm.
The packet will be changed - destination Ethernet address will be updated according to received command line options, the TTL
(Hop Limit) will be decremented and the checksum will be recalculated. Finally the packet will be transmitted on the outgoing
interface.

Packet format

Stream 1 on interface#1: IPv4 stream, SIP 192.168.111.2 DIP 192.168.222.2

Stream 2 on interface#2: IPv4 stream, SIP 192.168.222.2 DIP 192.168.111.2

Note: User can create desired routes for different Source and Destination IPs using following commands on the board:

$ route add -net <subnet/subnet mask> gw <gw address>
for example, Route for destination Subnet 11.11.11.0 to go out through the DPMAC.2(Refer Setup
diagram) should look like:
 route add -net 11.11.11.0/24 gw 192.168.222.2

9.3.4.10.5 OFP Webserver Application
This section describes the steps to run the OFP webserver application over NXP ODP implementation. The diagram below shows
how the connection is done to verify the application. In the diagram below, the box running OFP webserver is a NXP board and
the web client agent can wither be a Linux-based host machine or any other board.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
860 NXP Semiconductors

Figure 225. Setup for Webserver

Steps for Testing Webserver

On a NXP board hosting webserver

On the console of the NXP board intended to host the webserver application, export the following variables before running
dynamic_dpl.sh:

export www_dir="/home/root/";
export DPCI_COUNT=128;

Create an ofp.conf file with following contents

debug 0
loglevel set debug
ifconfig fp0 192.168.10.1/24

The www_dir can be any directory where yourWebPage.html file is saved. Keep a default web page index.html in the www_dir
for default cases.

Contents of a basic index.html file

<html>
<head>
</head>
<body>
<h1>Basic Html</h1>
</body>
</html>

On the board, use the command below to run the webserver:

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 861

./webserver -i dpni.1 -f ofp.conf

On Linux machine running web-client:

On the client side: (Run a client that can send http requests)

lynx http://192.168.10.1:2048/yourWebPage.html

9.3.5 Troubleshooting
• Please ensure to use correct bootargs:

bootargs console=ttyS1,115200 root=/dev/ram0 earlycon=uart8250,mmio,0x21c0600,115200
ramdisk_size=0x2000000 default_hugepagesz=2m hugepagesz=2m hugepages=256

• In case application is not able to run please ensure dpni.<index> is used correctly in the command line.

In case packets are not flowing:

• Ensure that traffic generator to board connectivity is proper.

• Ensure that the stream is configured properly having the destination MAC address of that interface where the stream is
destined.

• Ensure that there should be no space when interface are specified in application command.

If multiple instances of ODP applications need to be run:

Make sure to set APPL_MEM_SIZE environment variable before running the application to specify the memory to be used by
application. The size is specified in MegaBytes e.g in case application plans to use 32MB of memory, then following command
can do reservation:

export APPL_MEM_SIZE=32

9.3.6 Using Debug Tool to Get Hardware Statistics for DPAA2
Platforms

Using DEBUG TOOL to get hardware stats for DPAA2 platforms:

plat_debug_tool is used to display stats of hardware blocks like QBMAN, Crypto, etc.

How to use plat_debug_tool

The plat_debug_tool is only applicable to DPAA2 platforms.

 NOTE

1. Enabling Debug Server in ODP applications

By default debug server is disabled in ODP applications. To enable debug server, execute following commands

$ export PLAT_DEBUG_THREAD=1
$ export PLAT_DEBUG_PORT=<x>

• <x> : UDP port number on which debug server will listen upon.

• Valid range: 1024 to 65535.

• Default port is 10000.

2. Running plat_debug_tool client

Before running plat_debug_tool, execute following command:

$ export PLAT_DEBUG_PORT=<x>

• <x> : UDP port number on which client will bind to.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
862 NXP Semiconductors

• Default port is 10000.

UDP port number should be same as given for server.

 NOTE

For running plat_debug_tool, execute following command.

$./plat_debug_tool -d dpni.1 -o 0 -c 0 -i 192.168.10.10 (Reference Command)

• Usage: ./plat_debug_tool OPTIONS

— Mandatory OPTIONS:

◦ -d, --device Device name like dpni.1, dpbp.1

Execute restool command to identify the HW devices used by ODP application

 NOTE

Supported devices:

▪ dpni.x - for hardware interfaces

▪ dpbp.x - for buffer pools

▪ dpseci.x - for ipsec

option not required for object ID 20 (will be ignored if given)

 NOTE

◦ -o, --obj_id all: Display all the stats for a given device.

Stats for dpni.x

▪ 0: Dpni Stats

▪ 1: Dpni Attributes

▪ 2: Dpni Link State

▪ 3: Dpni Max Frame Length

▪ 4: Dpni MTU

▪ 5: L3 chksum hardware offload (enable/disable)

▪ 6: L4 chksum hardware offload (enable/disable)

▪ 7: Dpni Primary Mac Addr

▪ 8: Congestion Group Id for FQs

▪ 9: Scheduling Priority for FQs

▪ 10: Tail Drop Threashold for FQs

▪ 11: FQ Context

▪ 12: FQ State

Stats for dpbp.x

▪ 13: Qbman frame count

▪ 14: Qbman byte count

▪ 15: Qbman has free buffers or not

▪ 16: Qbman buffer pool is depleted or not

▪ 17: Number of free buffers in qbman

QorIQ OpenDataPlane (ODP)

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 863

Stats for dpsec.x

▪ 18: DPseci Attributes

▪ 19: DPseci counters

▪ 20: Per SA stats (only for odp_ipsec and odp_ipsec_proto apps)

To use per SA stats option, It is required to enable the ipsec-debugs at compile time. Following are the steps to

enable the ipsec-debugs in yocto:

1. Go to the following path:

a. cd sources/meta-fsl-dataplane/recipes-extended/odp

2. Add a following line in the file "odp_git.bb"

a. For board ls2080ardb:

i. EXTRA_OECONF_append_ls2080ardb += "--enable-ipsec-debug=yes"

b. For board ls2088ardb:

i. EXTRA_OECONF_append_ls2088ardb += "--enable-ipsec-debug=yes"

3. Go back to the build directory and run the following commands to recompile the ODP:

a. bitbake -f -c clean odp

b. bitbake -f -c compile odp

 NOTE

◦ -c, --command

▪ 0: get

▪ 1: reset

◦ -i, --dest_ip

▪ IP address of debug server

▪ Default: local host (127.0.0.1)

◦ -h, --help

▪ Display help and exit.

9.4 USDPAA
USDPAA is no longer supported as an API for direct customer use. All non-NXP software should use one of the standard APIs,
DPDK or ODP instead of USDPAA. USDPAA software may still exist as a layer below other software components such as DPDK,
but do not assume that this will continue in future software releases.

Linux user space

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
864 NXP Semiconductors

Chapter 10
Virtualization

10.1 KVM/QEMU

10.1.1 KVM/QEMU Overview
This document is a guide and tutorial to building and using KVM (Kernel-based Virtual Machine) on NXP QorIQ SoCs.

Virtualization provides an environment that enables running multiple operating systems on a single computer system.
Virtualization uses hardware and software technologies together to enable this by providing an abstraction layer between system
hardware and the OS. The isolated environment in which OSes run is known as a virtual machine (or VM). The abstraction layer
that manages all this is referred to as a hypervisor or virtual machine manager. The hypervisor layer operates at a privilege level
higher than that of the operating systems, thus enabling it to enforce system security, ensure that virtual machines cannot interfere
with each other, and transparently provide other services such as I/O sharing to the VM.

Figure 226.

KVM is a Linux kernel driver that together with QEMU, an open source machine emulator, provides an open source virtualization
platfiorm based on Linux. KVM and QEMU together act as a virtual machine manager that can boot and run operating systems
in virtual machines. See Figure below.

In this document the term host kernel refers to the underlying instance of Linux with the KVM driver that acts as the hypervisor.
The term guest refers to the operating system, such as Linux, that runs in a virtual machine. A virtual machine will be referred to
as a "VM".

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 865

Figure 227.

NXP QorIQ SoCs based on ARM v7 and ARM v8 CPUs are supported.

10.1.1.1 Using QEMU and KVM

10.1.1.1.1 Overview of Using QEMU
QEMU is used to start virtual machines. The QEMU application is named qemu-system-arm (for 32 bit platforms) or qemu-
system-aarch64 (for 64 bit platforms).

In addition to the QEMU executable itself, the following is a list of the minimum components that must be available on the target
system to launch a virtual machine using QEMU:

• The host Linux kernel on the target must be built with virtualization support for KVM enabled .

• A guest OS kernel image (e.g. zImage or Image for Linux)

• A guest root filesystem (If needed by the guest OS. For example, a Linux guest requires a rootfs.)

• Recommended: A working network interface (to interface to the guest's console and the QEMU monitor)

The QEMU Emulator User Documentation [1] (see References on page 874) contains complete documentation for all QEMU
command line arguments. The Table below summarizes some of the flags and arguments for basic operation.

Table 165.

Argument Descriptions

-enable-kvm Specifies that the Linux KVM should be used for the virtual machine's CPUs

-nographic Disables graphical output-console will be on emulated serial port.

-M machine Specifies the type of virtual machine. One value is supported:

• virt

Table continues on the next page...

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
866 NXP Semiconductors

Table 165. (continued)

Argument Descriptions

-smp cpu_count Specifies the number of CPUs for the virtual machine.

The number of virtual CPUs allowed is the same as the value of the CONFIG_NR_CPUS
config option in the host Linux kernel. To see this value issue the following command from
Linux on the target board:

zcat /proc/config.gz | grep NR_CPUS

-kernel file Specifies the guest OS image. The supported image types are in Image format (the generic
Linux kernel binary image file) and zImage (a compressed version of the Linux kernel image)

-initrd file Specifies a root filesystem image

-append cmdline Use cmdline as the guest OS kernel command line (passed in the bootargs property of the /
chosen node in the guest device tree)

-serial dev Redirects the virtual serial port to the host device dev. QEMU supports many possible host
devices. Please refer to the QEMU User Documentation [1] (see References on page 874)
for complete details.

Note: if using a tcp device with the server option QEMU will wait for a connection to the device
before continuing unless the nowait option is used.

-m megs Specifies the size of the VM's RAM in megabytes. This option is ignored if using direct mapped
memory.

See Virtual Machine Memory on page 868 for further details on options for allocating
memory.

-mem-path path Specifies the path to a file from which to allocate memory for the virtual machine. This option
should be used to allocate memory from hugetlbfs.

See Virtual Machine Memory on page 868 for further details on options for allocating
memory.

-monitor dev Redirects the QEMU monitor to the host device dev. QEMU supports many possible host
devices. Please refer to the QEMU User Documentation [1] (see References on page 874)
for complete details.

Note: if using a tcp device with the server option QEMU will wait for a connection to the device
before continuing unless the nowait option is used.

-S Do not start CPU at startup (you must type 'c' in the monitor). This can be useful if debugging.

-gdb dev Wait for gdb connection on device dev

-drive [args] Used to create a virtual disk in a virtual machine.

See Virtual block devices on page 869 for additional information.

-netdev [args]

-device virtio-net-device [args]

The -netdev and -device virtio-net-device arguments specify the network backend and front
end for createing virtual network devices in virtual machines.

See Virtual network interfaces on page 868 for additional information.

Table continues on the next page...

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 867

Table 165. (continued)

Argument Descriptions

-cpu model Select CPU model. Only one model is supported:

• host

Below is an example command line a user would run from the host Linux to start virt virtual machine booting a Linux guest:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /boot/
Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor
stdio

10.1.1.1.2 Virtual Machine Memory
QEMU allocates and loads images into a VM's memory prior to starting the VM. The amount of memory needed for a virtual
machine will be dependent on the workload to be run in the VM. There are two ways to allocate memory:

1. Allocation via hugetlbfs

Hugetlbfs is a Linux mechanism that allows applications to allocate memory backed large physically contiguous regions of
memory. QEMU can take advantage of hugetlbfs for allocation of memory for virtual machines, which can provide a
significant performance improvement over malloc allocated memory. Hugetlbfs allocated memory provides the flexibility of
memory that can be allocated and freed with performance comparable to direct mapped memory.

The -mem-path argument to QEMU specifies the path to the hugetlbfs mount point where the huge pages should be
allocated from.

The -m argument to QEMU specifies the amount of memory to allocate to the virtual machine. There are no constraints
on the size passed to this argument other than that the amount of memory must fit within the constraints of the system and
be enough for the workload in the VM.

See the how-to article Quick-start Steps to Run KVM Using Hugetlbfs on page 882 for an example of how to use hugetlbfs.

2. Allocation via malloc

The default for QEMU is to allocate guest memory by the standard malloc facility available to user space applications in
Linux. The amount of memory is specified with the -m command line argument. Malloc'ed memory has the flexibility of
being allocated and freed by QEMU as needed. However, malloc'ed memory is backed by 4KB physical pages that are not
contiguous and emulation is required by KVM to present a contiguous guest physical memory region to the VM. This
approach is discouraged since the emulation can result in a substantial performance penalty for certain workloads.

The guest device tree generated by QEMU will contain a memory node that specifies the total amount of memory.

A virtual machine's memory is part of the address space of the QEMU process. This means that the amount of

memory allocated to a VM is limited by the standard limits that exist for Linux processes. A 32-bit host kernel has

a 2GiB virtual address space used for stack, text, and other data, and this limits the amount of memory that can

be allocated to a VM.

 NOTE

10.1.1.1.3 Virtual network interfaces
QEMU provides a number of options for creating virtual network interfaces in virtual machines. Virtual network interfaces are
specified using the QEMU command line and guest software sees them as memory mapped devices.

There are two aspects of virtual network interfaces with QEMU:

1. The network “front-end”, which is the network card as seen by the guest. This is specified with the -device QEMU argument.
The argument to specify a virtio network front end would look like: -device virtio-net-pci

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
868 NXP Semiconductors

2. The network "backend", which connects the network card to some network. Network backend options include user mode
networking, a host TAP interface, sockets, or virtual distributed Ethernet. The network backend is specified using the -
netdev command line argument of QEMU. Note: It is possible to connect two virtual machines using virtual network
interfaces. Normally QEMU userspace process emulates I/O accesses from the guest. However, there is an in-kernel
implementation: vhost-net which puts the data plane emulation code into the kernel.

For example, to use a virtio NIC card with a TAP interface back-end the QEMU command line argument would look like:

-netdev tap,id=tap0,script=/root/qemu-ifup -device virtio-net-pci,netdev=tap0

The script “/root/qemu-ifup” is a script that QEMU invokes and passes the TAP interface name as an argument. For example, the
script could add the TAP interface to an Ethernet bridge.

See the QEMU Users Manual [1] (see References on page 874) for detailed information about command line options and the
types of network interfaces and backends. For best performance, the virtio front-end is recommended.

For additional information about QEMU networking see the references in For More Information on page 875.

For a detailed example, see the how-to article How to Use Virtual Network Interfaces Using Virtio on page 883 .

10.1.1.1.4 Virtual block devices
There are a number of approaches to provide a virtual disk to a KVM/QEMU virtual machine. A guest disk image can be a single
raw file on the host filesystem, a file in a virtual disk format such as qcow2 and vdi, or a block device on the host Linux system.
The virtual disk is assigned on the QEMU command line. In the example below, the file my_guest_disk is a disk image and is
assigned to the VM when QEMU is launched: -drive file=my_guest_disk,cache=none,if=virtio

Refer to the QEMU Users manual [1] (see References on page 874) for details on the types of virtual disk images that may be
created and the related arguments to QEMU.

QEMU allows for various storing caching attributes to be set for the guest. The cache option is specified with cache= property.
The following options are supported:

• writethrough: The host page cache is used, but the data is written to the physical device. This mode ensures data integrety.

• writeback: This is the default mode (when the cache property is missing). The host page cache is used, the normal page
cache management will handle the write to the storage device.

• none: The host page cache is bypassed, the guests writes go directly to the storage device. The storage device may have a
write cache.

• directsync: The host page cache is bypassed and the data is written to the physical device.

• unsafe: The flush commands to ensure the data integrity are ignored.

For a detailed example, see the how to article How to Use Virtual Disks Using Virtio on page 885.

10.1.1.1.5 Direct assigned devices

VFIO - Virtual Function I/O
The VFIO is a Linux userspace driver infrastructure, an IOMMU/device agnostic framework for exposing direct device access
from userspace. For the highest possible I/O performance, virtual machines make use of direct device access, called also
device assignment. From a host and device perspenctive, the VFIO framework turns the virtual machines - QEMU - into a
userspace driver, with the benefits of significantly reduced latency and direct use of device drivers.

The VFIO framework provides:

• device access

• IOMMU programming interface

• high performance interrupt support

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 869

Furthermore, the VFIO framework supports several bus infrastructures, such as PCI, platform devices and also the LS2 MC bus.
In the following paragraphs both PCI and LS2 MC bus infrastructure support will be presented.

VFIO PCI
The VFIO driver abstracts PCI devices as regions and IRQs. The regions component includes the PCI configuration space,
MMIO and I/O port BAR spaces and MMIO PCI ROM access, while the IRQs include INTx, legacy interrupts, but also
Message Signaled Interrupts.

One can follow the Control path, Data path and IRQ path through a VFIO PCI infrastructure in the below image. Also, more
information on how to use the PCI Direct Assignment feature can be found in the How to use PCIE direct assignment on page
894 chapter.

VFIO for LS2 MC Bus
The DPAA2 architecture works with the concept of MC containers - DPRCs. From the point of view of the OS, a DPRC
behaves similar to a plug and play bus, like PCI. DPRC commands can be used to enumerate the contents of the DPRC and
discover the hardware objects present (includin mappable regions and interrupts). The VFIO infrastructure for the FSL MC Bus
can be found below.

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
870 NXP Semiconductors

The root container always belongs to the Linux host, while any child container can be assigned to user-space applications such
as DPDK/ODP or virtual machines - QEMU. In the context of direct device assignment, this means that any DPAA2 object that
needs to be made available to a guest VM should be places in a child container and, furthermore, the child container should be
bound to the VFIO FSL MC driver. One can find more on how to use this feature in the How to use DPAA2 direct assignment
without scripts on page 887 chapter.

10.1.1.1.6 VMs and the Linux Scheduler

Each virtual machine appears to the host Linux as a process with each virtual CPU in the VM implemented as a thread. A VM
appears as an instance of QEMU when looking at Linux processes as can be seen in the example below:

$ ps -ef
 o
 o
root 1333 1 0 Oct01 ttyS0 00:00:00 -sh
root 1336 2 0 08:24 ? 00:00:00 [kworker/u4:2]
root 1372 1333 18 08:27 ttyS0 00:00:17 qemu-system-arm -enable-kvm -m
root 1361 1304 0 08:28 ? 00:00:00 sshd: root@pts/0
root 1363 1361 0 08:28 pts/0 00:00:00 -sh
 o
 o

CPUs appear as threads. To see thread IDs use the info cpus command in the QEMU monitor. Example of a VM with 8 virtual
CPUs:

(qemu) info cpus
* CPU #0: thread_id=1984
 CPU #1: (halted) thread_id=1985
 CPU #2: (halted) thread_id=1986
 CPU #3: (halted) thread_id=1987

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 871

 CPU #4: (halted) thread_id=1988
 CPU #5: (halted) thread_id=1989
 CPU #6: (halted) thread_id=1990
 CPU #7: (halted) thread_id=1991

To see the QEMU threads using the ps command:

root@ls_machine:~# ps -eL | grep qemu
 1981 1981 ttyS1 00:00:00 qemu-system-aar
 1981 1982 ttyS1 00:00:00 qemu-system-aar
 1981 1983 ttyS1 00:00:00 qemu-system-aar
 1981 1984 ttyS1 00:00:00 qemu-system-aar
 1981 1985 ttyS1 00:00:00 qemu-system-aar
 1981 1986 ttyS1 00:00:00 qemu-system-aar
 1981 1987 ttyS1 00:00:00 qemu-system-aar
 1981 1988 ttyS1 00:00:00 qemu-system-aar
 1981 1989 ttyS1 00:00:00 qemu-system-aar
 1981 1990 ttyS1 00:00:00 qemu-system-aar
 1981 1991 ttyS1 00:00:00 qemu-system-aar

Being a Linux thread means that standard Linux mechanisms can be used to control aspects of how the threads are scheduled
relative to other threads/processes. These mechanisms include:

• process priority

• CPU affinity

• isolcpus

• cgroups

10.1.1.2 Virtual Machine Overview
A guest OS running in a KVM/QEMU virtual machine "sees" a hardware environment similar to running on a physical board. The
guest sees CPUs, memory, and a number of I/O devices. Some aspects of this environment are virtualized (emulated in software
by KVM/QEMU) but this virtualization is mostly transparent to the guest, and changes to the guest are typically not required to
run in a virtual machine.

The number of virtual machines that can be run simultaneously is only limited by the amount of available resources (like any other
application on Linux).

KVM/QEMU implements a generic virt machine which is described completely by the device tree. The virtual machine contains
the following resources:

• one or more ARMv7/ARMv8 virtual CPUs

• memory

• virtual console based on an emulated PL011

• virtio over PCI (used for virtual devices such as block and network devices)

• ARM Virtual Generic Interrupt Controller

• ARM virtual timer and counter

10.1.1.3 Introduction to KVM and QEMU
QEMU (pronounced KYOO-em-yoo) is a software-based machine emulator that emulates a variety of CPUs and hardware
systems. KVM is a Linux kernel device driver that provides virtual CPU services to QEMU. The two software components work
together as a virtual machine manager.

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
872 NXP Semiconductors

Figure 228.

QEMU is a Linux user-space application that runs on the host Linux instance and is used to start and manage a virtual machine.
QEMU provides the following:

• A command line interface that provides extensive customization and configuration of a virtual machine when it is started--
e.g. type of VM, which images to load, and how virtual devices are configured

• Loading of all images needed by the guest-- e.g kernel images, root filesystem, guest device tree

• Setting the initial state of the VM and booting the guest

• Virtual I/O services, such as virtual network interfaces and virtual disks

• Debug services-which provide the capability to debug a guest OS using GDB (similar to a virtual JTAG)

KVM is a device driver in the Linux kernel whose key role in the VM architecture is to provide virtual CPU services. These services
involve two aspects:

1. First, KVM provides an API set that QEMU uses to set and get the state of virtual CPUs and run them. For example,
QEMU sets the initial values of the CPU's registers before starting the VM.

2. Second, after KVM starts a guest OS, certain operations (such as privileged instructions) performed by the OS cause an
exception (or exit) into the host Linux kernel that must be handled and processed by KVM. This handling of traps is
referred to as "emulation". These traps are transparent to the guest.

The KVM API is documented in the Linux kernel-- Documentation/virtual/kvm/api.txt.

KVM/QEMU supports virtual I/O which allows sharing of physical I/O devices by multiple VMs. Virtual network and block I/O are
supported. See For More Information on page 875 for references that provide additional information on virtio.

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 873

10.1.1.4 Device Tree Overview
A device tree is a data structure that describes hardware resources such as CPUs, memory, and I/O devices. An device tree
aware OS is passed a device tree which it reads to determine what hardware resources are available.

The host Linux kernel is booted first by a bootloader, for example u-boot (an open source bootloader). U-boot passes the kernel
a hardware device tree that lists and describes all system hardware resources available to the host kernel (CPUs/cores, memory,
interrupt controller and I/O).

Similarly, when a guest OS is booted in a KVM/QEMU virtual machine, QEMU passes it a guest device tree that describes all
the hardware resources in the VM. See Figure below.

Figure 229.

The guest device tree is generated by QEMU and is used to define the resources a virtual machine will see. The guest device
tree defines CPUs, memory, and I/O devices. QEMU places the guest device tree in the virtual machine's memory prior to starting
the virtual machine.

10.1.1.5 References
[1] QEMU Emulator User Documentation: http://qemu.weilnetz.de/qemu-doc.html

[2] The Linux usage model for device tree data: https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt

[3] Specification for virtio devices: http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
874 NXP Semiconductors

http://qemu.weilnetz.de/qemu-doc.html
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf

10.1.1.6 For More Information
KVM

• KVM website: http://www.linux-kvm.org

• ARM VM specification: http://lwn.net/Articles/589122/

• Supporting KVM on ARM architecture: http://lwn.net/Articles/557132/

QEMU

• QEMU website: http://www.qemu.org/

Device Trees

• devicetree.org website: http://devicetree.org

• DTC, the device tree compiler is available at: https://git.kernel.org/pub/scm/utils/dtc/dtc.git . DTC also includes a library
called libfdt which can be used by software to parse device trees.

Virtio-- a framework for doing virtual I/O using KVM/QEMU

• http://www.ibm.com/developerworks/linux/library/l-virtio/

• http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

• http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf

Virtual Networking with QEMU

• http://wiki.qemu.org/Documentation/Networking

• http://www.linux-kvm.org/page/Networking

10.1.1.7 Virtual machine reference

10.1.1.7.1 VM Overview
In general the architecture of KVM/QEMU is such that few changes should be needed to guest software to run in a VM-- i.e. a full
virtualization approach is used, which means that virtual CPUs and virtual I/O devices behave like the physical hardware they
are emulating.

However, there are some differences between virtual machines and native hardware that should be considered when targeting
an OS to a KVM virtual machine. These differences can be divided into 2 general categories that will be discussed in further detail
in this section:

1. Initial state and boot

2. CPUs

10.1.1.7.2 Memory Map of Virtual I/O Devices
The virt virtual machine contains a small subset of the devices found on a SoC. The available devices will be represented in the
device tree passed to the guest at boot (e.g. virtual interrupt controller, virtual PCIE controller).

10.1.1.7.3 Virtual machine state at initialization
10.1.1.7.3.1 Initial State and Boot
When booting the Host, kernel is entered into the HYP mode for ARMv7 respectively EL2 privillege level for ARMv8. After the
boot the kernel uses a stub to install KVM and switches back to SVC, respectively EL1. The virtual machine has no virtualization
extensions available, so the guest kernel will be entered in SVC mode (ARMv7) respectively EL1 (ARMv8).

In case of a real hardware the boot program will provide some services before giving control to the OS. The necessary steps
needed to be done by the bootloader are described in the kernel documentation: Documentation/arm/Booting/ (ARMv7),

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 875

http://www.linux-kvm.org
http://lwn.net/Articles/589122/
http://lwn.net/Articles/557132/
http://www.qemu.org
http://devicetree.org
https://git.kernel.org/pub/scm/utils/dtc/dtc.git
http://www.ibm.com/developerworks/linux/library/l-virtio/
http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf
http://wiki.qemu.org/Documentation/Networking
http://www.linux-kvm.org/page/Networking

Documentation/arm64/booting.txt (ARMv8). In case of virtualization, KVM/QEMU makes the necessary actions to put hardware
into the initial state (as seen by the guest) and also will take the role of the bootloader and makes the necessary settings.

It is recommended that a guest OS be minimally device tree aware. The libfdt library (available with the DTC tool) provides a full
range of APIs to parse and manipulate device trees and will make the process of adding device tree awareness to an OS
straightforward.

10.1.1.7.3.2 Initial State of Virtual CPUs
In a VM with multiple virtual CPUs, CPU #0 is the boot CPU and all other vcpus in the partition are considered secondary. The
boot method for the secondary CPUs is PSCI.

The virtual CPU entry conditions comply with the entry conditions specified by linux/Documentation/arm/Booting (ARMv7) or
Documentation/ arm64/booting.txt (ARMv8)

10.1.1.7.4 Virtual CPUs
10.1.1.7.4.1 Virtual CPU Specification

Software running in a virtual machine sees a virtual CPU that emulates an ARMv7/ARMv8 core without virtualization extensions.

The virtual CPU type will match that of the host hardware platform.

10.1.1.7.4.2 Time in the Virtual CPU
ARM architecture has an optional extension, the generic timers, which provides:

• a counter (physical counter) that measures passing of time in real time

• a timer (physical timer) for each CPU. The timer is programmed to raise an interrupt to the CPU after a certain amount of
time has passed.

The generic timers include virtualization support by introducing:

• a new counter, the virtual counter

• a new timer, the virtual timer.

This allows the virtual machine to have direct access to reading (virtual) counters and programming (virtual) timers without
trapping.

KVM uses the physical timers in the host, the virtual machine access to the physical timers being disabled.

The virtual machine accesses the virtual timer and can, in this way, directly access the timer hardware without trapping to the
hypervisor. However, the virtual timers do not raise virtual interrupts, but hardware interrupts which trap to the hypervisor. KVM
injects a corresponding virtual interrupt into the VM when it detects that the virtual timer expired.

10.1.1.7.5 VGIC
The ARM Generic Interrupt Controller (GIC) provides hardware support for virtualization. The guest is able to mask, acknowledge
and EOI interrupts without trapping to the hypervisor. However, there is a central part of the GIC called distributor which is
responsible for interrupt prioritization and distribution to each CPU which does not provide virtualization extensions and for this
part KVM provides an in-kernel emulation. Also, all the physical interrupts cannot be directly received by the guest. Instead, the
KVM will program a virtual interrupt which will be raised in the guest. But, with the virtualization support in the GIC controller,
when the guest is ACK-ing and EOI-ing the virtual interrupt, there is no need to trap into KVM.

QEMU/KVM provides 2 flavours of an emulated GIC:

• a GICv2 emulation which is the default option. Example command line:-machine type=virt

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
876 NXP Semiconductors

• a GICv3 emulation selected by the gic-version property. Example command line: -machine type=virt,gic-version=3.
The GICv3 emulated interrupt controller is available only for platforms that have a physical GICv3 interrupt controller.

10.1.2 Configuring and Building

10.1.2.1 Overview
Linux with KVM enabled and QEMU can be built as part of the standard build process used to build the NXP LSDK.

The build instructions in the sections that follow assume a succesfull build/installation of the host. Please refer to the LSDK
documentation for the host installation steps.

By default, the QEMU package installed on the target board will be the one retrieved from the Ubuntu 16.04 sources. In order to
use features such as DPAA2 Direct Assignment or PCIE Direct Assignment, please refer to the Building QEMU on page 880
chapter in order to compile and build the necessary QEMU 2.9.0 version.

10.1.2.2 Quick Start - Recommended Configuration Options
The steps below show all the recommended configuration options to enable in order to build a kernel with virtual I/O enabled with
the same kernel image serving as both host and guest. The sections that follow explain these options in further detail.

Note: The configuration options to run virtual machines are enabled by default in the LSDK. However they are listed here for
reference.

1. From the main menuconfig window enable virtualization:

[*] Virtualization

2. In the virtualization menu enable the following options:

[*] Kernel-based Virtual Machine (KVM) support

3. Enable network bridging

Networking support --->
 Networking options --->
 <*> 802.1d Ethernet Bridging

4. Enable virtio PCI

Device Drivers --->
 Virtio drivers --->
 <*> PCI driver for virtio devices

5. Enable virtio for block devices

Device Drivers --->
 [*] Block devices --->
 <*> Virtio block driver

6. Enable virtio for network devices

Device Drivers --->
 [*] Network device support
 [*] Network core driver support
 <*> Universal TUN/TAP device driver support
 <*> Virtio network driver

7. Enable vhost for virtio network devices

[*] Virtualization
 <*> Host kernel accelerator for virtio net

8. Enable Huge TLB file support

File Systems --->
 Pseudo filesystems --->
 [*] Huge TLB file system support

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 877

9. Enable guest serial support

Device Drivers --->
 Character devices --->
 Serial drivers --->
 <*> ARM AMBA PL011 serial port support
 [*] Support for console on AMBA serial port

10. Enable VFIO support

Device Drivers --->
 <*> VFIO Non-Privileged userspace driver framework

11. Enable VFIO support for QorIQ DPAA2 fsl-mc (Management Complex) devices

Device Drivers --->
 <*> VFIO Non-Privileged userspace driver framework (VFIO [=y]) --->
 [*] VFIO No-IOMMU support ----
 <*> VFIO support for QorIQ DPAA2 fsl-mc bus devices

12. Enable support for PCI VFIO

Device Drivers --->
 <*> VFIO Non-Privileged userspace driver framework (VFIO [=y]) --->
 [*] VFIO No-IOMMU support ----
 <*> VFIO support for PCI devices

10.1.2.3 Host Kernel: Enabling KVM
This section describes the core, basic options needed to enable KVM in the host kernel. KVM is enabled in the host kernel under
the virtualization menu of the main kernel menuconfig window.

[*] Virtualization

Core KVM support is enabled as follows:

[*] Kernel-based Virtual Machine (KVM) support

10.1.2.4 Host Kernel: Enabling Virtual Networking
Virtual network interfaces on page 868 describes how virtual networking can be used to give each VMs a virtual network interface
which share physical network interfaces in Linux.

One common approach to configuring virtual networking is for QEMU to use a tun/tap interface bridged to a physical network
interface. To do this Ethernet bridging and the kernel's tun/tap features must be enabled in the host kernel:

Networking support --->
 Networking options --->
 <*> 802.1d Ethernet Bridging
Device Drivers --->
 [*] Network device support
 [*] Network core driver support
 <*> Universal TUN/TAP device driver support

In order to enable vhost-net, the following config option should ne enabled:

[*] Virtualization
 <*> Host kernel accelerator for virtio net

10.1.2.5 Host kernel: Enabling DPAA2 direct assignment
Direct assigned devices on page 869 chapter describes the mechanism used to passthrough fsl-mc bus devices to guest VMs
using the VFIO framework. This section lists the Kconfig options that should be enabled in the Linux host kernel in order to support
DPAA2 Direct Assignment.

Enable VFIO framework support

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
878 NXP Semiconductors

Device Drivers --->
 <*> VFIO Non-Privileged userspace driver framework

Enable VFIO support for QorIQ DPAA2 fsl-mc (Management Complex) devices

Device Drivers --->
 <*> VFIO Non-Privileged userspace driver framework (VFIO [=y]) --->
 [*] VFIO No-IOMMU support ----
 <*> VFIO support for QorIQ DPAA2 fsl-mc bus devices

"VFIO No-IOMMU support" option is needed (only) for VFIO support in guest (e.g. DPDK in guest userspace)

 NOTE

10.1.2.6 Host kernel: Enabling PCIE direct assignment
Direct assigned devices on page 869 chapter describes the mechanism used to passthough PCI devices using the VFIO
framework.

This section lists the required Kconfig options in the host Linux kernel in order to use the aforementioned feature.

Enable VFIO framework support

Device Drivers --->
 <*> VFIO Non-Privileged userspace driver framework

Enable support for PCI VFIO

Device Drivers --->
 <*> VFIO Non-Privileged userspace driver framework (VFIO [=y]) --->
 <*> VFIO support for PCI devices

10.1.2.7 Guest kernel: Enabling console
QEMU emulates an AMBA/PL011 console.

Below the kernel configuration options are shown to enable console:

Device Drivers --->
 Character devices --->
 Serial drivers --->
 <*> ARM AMBA PL011 serial port support
 [*] Support for console on AMBA serial port

10.1.2.8 Guest Kernel: Enabling Network and Block Virtual I/O
Virtio is a framework for doing paravirtualized I/O using QEMU/KVM. In order to support communication between guest and
hypervisor virtio uses a PCI transport protocol.

Below the kernel configuration options are shown to enable virtio-pci:

Device Drivers --->
 Virtio drivers --->
 <*> PCI driver for virtio devices

Below the kernel configuration options are shown to enable virtio drivers in the Linux kernel to support networking I/O and block
(disk) I/O.

Device Drivers --->
 [*] Network device support
 [*] Network core driver support
 <*> Virtio network driver
Device Drivers --->
 [*] Block devices --->
 <*> Virtio block driver

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 879

10.1.2.9 Building kernel with KVM support using flexbuild

The steps presented here assume an understanding of using the flex-builder script to build LSDK. For details

refer to LSDK building instructions.

 NOTE

The kernel can be built using the flex-builder script (For more information please refer to the LSDK building instructions):

flex-builder -c linux -a arm64 // build linux for arm64
flex-builder -c linux -a arm32 -m ls1021atwr //build for LS1021 platform

If the kernel configuration needs to be changed, the menuconfig should be invoked and the necessary changes performed:

flex-builder -c linux -a arm64 -B menuconfig // build linux for arm64
flex-builder -c linux -a arm32 -m ls1021atwr -B menuconfig //build for LS1021 platform

The same kernel image will be used by both guest and host.

10.1.2.10 Building QEMU
flex-builder script is used to generate the host root file system (For more details please see the LSDK building instructions).
The generated host root filesystem already contains the QEMU installed. In the case the user wants to use a different QEMU
version, this new version should be manually compiled and installed on the target (Note:The provided steps are targetting 64 bit
platforms).

In order to use the DPAA2 Direct Assignment feature, a user should use the following commands in order to compile and install
the proper QEMU version on the target.

1. Clone QEMU:

$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/qemu

2. Get the right branch:

$ git checkout qemu-2.9

3. Install the fdt library. The fdt library is a dependency, QEMU 2.9 uses a newer library than the one from the Ubuntu
16.04 userland, so compile it locally.

$ git submodule update --init dtc

4. Install the dependencies. These are the minimum dependencies required:

$ apt-get install pkg-config
$ apt-get install libglib2.0-dev
$ apt-get install libpixman-1-dev
$ apt-get install libaio-dev
$ apt-get install libusb-1.0-0-dev

If the last two dependencies are not present, the config step will not complain but will not build the required support.

5. Configure and compile QEMU

$./configure --prefix=<folder_where_the_qemu_will_be_installed> --target-list=aarch64-
softmmu --enable-fdt --enable-kvm --with-system-pixman
$ make

6. Install QEMU

$ make install

7. Include the folder containing the qemu executable in the system path.

$ export PATH=<folder_where_the_qemu_will_be_installed>/bin:$PATH

8. Make sure that the minimum required libraries are linked:

$ ldd qemu-system-aarch64
 linux-vdso.so.1 => (0x0000ffffbad94000)
 libz.so.1 => /lib/aarch64-linux-gnu/libz.so.1 (0x0000ffffbad35000)

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
880 NXP Semiconductors

 libaio.so.1 => /lib/aarch64-linux-gnu/libaio.so.1 (0x0000ffffbad23000)
 libpixman-1.so.0 => /usr/lib/aarch64-linux-gnu/libpixman-1.so.0 (0x0000ffffbacbe000)
 libutil.so.1 => /lib/aarch64-linux-gnu/libutil.so.1 (0x0000ffffbacab000)
 libnuma.so.1 => /usr/lib/aarch64-linux-gnu/libnuma.so.1 (0x0000ffffbac8d000)
 libusb-1.0.so.0 => /lib/aarch64-linux-gnu/libusb-1.0.so.0 (0x0000ffffbac67000)
 libglib-2.0.so.0 => /lib/aarch64-linux-gnu/libglib-2.0.so.0 (0x0000ffffbab60000)
 libstdc++.so.6 => /usr/lib/aarch64-linux-gnu/libstdc++.so.6 (0x0000ffffba9d1000)
 libm.so.6 => /lib/aarch64-linux-gnu/libm.so.6 (0x0000ffffba924000)
 libgcc_s.so.1 => /lib/aarch64-linux-gnu/libgcc_s.so.1 (0x0000ffffba903000)
 libpthread.so.0 => /lib/aarch64-linux-gnu/libpthread.so.0 (0x0000ffffba8d7000)
 libc.so.6 => /lib/aarch64-linux-gnu/libc.so.6 (0x0000ffffba790000)
 /lib/ld-linux-aarch64.so.1 (0x0000ffffbad69000)
 libudev.so.1 => /lib/aarch64-linux-gnu/libudev.so.1 (0x0000ffffba75f000)
 libpcre.so.3 => /lib/aarch64-linux-gnu/libpcre.so.3 (0x0000ffffba6ee000)

9. Make sure that the qemu version is the expected one.

$ qemu-system-aarch64 --version
QEMU emulator version 2.9.0 ...

10.1.2.11 Creating a host Linux root filesystem
Creating a Linux root filesystem is out of the scope of this document. Please reference the NXP LSDK documentation on how to
create root filesystems with flex-builder installer script. This section describes the software components needed on the host
root filesystem to use KVM/QEMU.

The host root filesystem is the filesystem booted by the host kernel. The host rootfs is distinct from a guest root filesystem which
may be needed by certain guest such as Linux.

A host root filesystem capable of running Linux as a guest needs the following components:

• Guest Linux kernel image (e.g. Image, zImage)

• QEMU executable (qemu-system-aarch64 or qemu-system-arm)

• Guest root fileystem

Example host root filesystem layout with the required components to boot a Linux guest:

/root/zImage # guest Linux kernel
/root/ubuntu_xenial_arm64_rootfs.ext4.img # guest virtual disk image
/usr/bin/qemu-system-arm # QEMU for ARMv7 platforms
/usr/bin/qemu-system-aarch64 # QEMU for ARMv8 platforms

10.1.2.12 Creating a guest Linux root filesystem
In order to run a virtual machine, a guest Linux root filesystem is needed. There are various possibilities to host a guest root
filesystem: a ramdisk, a virtual disk image, a block device on the host Linux system.

Also there are multiple virtual disk formats. qemu-img command can be used to generate, alter and convert between various
virtual disk image formats.

A raw virtual disk can be created with the flex-builder script (the command is actually a wrapper over qemu-img):

flex-builder -i mkguestrfs -a <arch> -B 2G

The command will generate a 2GB raw disk image:

build/images/ubuntu_xenial_arm64_rootfs.ext4.img

10.1.3 KVM/QEMU How-to's

10.1.3.1 Quick-start Steps to Build and Deploy KVM

The following steps show how to build and deploy the necessay components in order to run virtual machines:

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 881

1. Build and install the LSDK on the board. (for details see #unique_1107)

2. Build the guest virtual disk (for details see Creating a guest Linux root filesystem on page 881)

3. Transfer the guest virtual image and the guest image on the host. The guest image (Image or zImage) is already in the /
boot partition on the host system.

10.1.3.2 Quick-start Steps to Run KVM Using Hugetlbfs
This example assumes that the host Linux kernel is booted, has a working network interface, and the following images are present
in the host root filesystem:

• Guest kernel image (/boot/zImage or /boot/Image)

• Guest virtual disk image (/root/ubuntu_xenial_arm64_rootfs.ext4.img)

• QEMU (/usr/bin/qemu-system-arm or /usr/bin/qemu-system-aarch64)

Mount the HugeTLB filesystem on the host:

echo 512 > /proc/sys/vm/nr_hugepages
mkdir /boot/hugetlbfs #any mount point can be used
mount -t hugetlbfs none /boot/hugetlbfs/

This example will use 512 2M pages (2M is the defaul huge page size)

Start QEMU specifying the 2MB huge page pool as the file from which to allocate memory. In this example 512MB of memory is
allocated to the VM:

64 bit ARMv8:

qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs/ -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -
drive if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor
stdio

On the GICv3 capable platforms the following emulated GIC controllers can be used:

• an emulated GICv3 interrupt controller can be used: -machine type=virt,gic-version=3

• an emulated GICv2 interrupt controller can be used: -machine type=virt

The ITS emulation is supported only with a GICv3 emulated interrupt controller.

On the GICv2 capable platforms only an emulated GICv2 interrupt comtroller can be used: -machine type=virt

 NOTE

32bit ARMv7:

qemu-system-arm -smp 2 -m 512 -mem-path /mnt/hugetlbfs/ -cpu host -machine type=virt -
kernel /boot/zImage -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm32_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor
stdio

Explanation of the command line options:

• -smp 2: specifies the number of virtual CPUs.

• -m 512: the amount of memory for the VM

• -mem-path /mnt/hugetlbfs/: allocates from hugetlbfs based memory

• -cpu host: the type of the CPU. In this case it is the same as the host CPU

• -machine type=virt,gic-version=3: the type of the virtual machine: virt machine + an GICv3 emulated interrupt controller

• -machine type=virt: the type of the virtual machine: virt machine + an GICv2 emulated interrupt controller

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
882 NXP Semiconductors

• -kernel /boot/Image : name of guest Linux kernel

• -enable-kvm: specifies that KVM should be used

• -serial tcp::4446,server,telnet : provide an emulated serial port (telnet server) on port 4446 on the host Linux system.
Default behavior will be for QEMU to wait until the user connects to this port before booting the VM.

• -drive if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-

device,drive=foo: creates a virtio based virtual disk (for details see Virtual block devices on page 869)

• -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk': guest Lininux boot args

• -display none: do not display video output

• -monitor stdio: start QEMU monitor

At this point QEMU is waiting for a telnet connection to the virtual machine's console (port 4446 of the target board) prior to starting
the virtual machine.

Connect to QEMU via telnet to start the virtual machine booting. In this example the target board has IP address 192.168.4.100.

-bash-3.2$ telnet 192.168.4.100 4446
Trying 192.168.4.100...
Connected to 192.168.4.100 (192.168.4.100).
Escape character is '^]'.
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Initializing cgroup subsys cpuacct
..........................
[OK] Reached target Multi-User System.
[OK] Reached target Graphical Interface.
 Starting Update UTMP about System Runlevel Changes...
[OK] Started Update UTMP about System Runlevel Changes.

Ubuntu 16.04.2 LTS localhost ttyAMA0

localhost login: root
Password:
Last login: Mon Jun 5 22:07:09 UTC 2017 on ttyAMA0
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.65-00001-g6fed54f aarch64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage
root@localhost:~#

10.1.3.3 How to Use Virtual Network Interfaces Using Virtio
As discussed in Virtual network interfaces on page 868, there are two aspects of virtual network interfaces-- 1) the "front end"
(the device as seen by the guest OS) and 2) the "backend" (the means by the virtual device is connected to the network).

This example uses a "virtio" model NIC card and a tap network backend. The virtual network interface is bridged via a TAP
interface to the physical network. The guest OS is Linux.

When starting QEMU we will add the following arguments to create the virtual network interface:

-netdev tap,id=tap0,script=/home/root/qemu-ifup,downscript=no,ifname="tap0" -device virtio-
net-pci,netdev=tap0

Perform the following steps:

1. Enable virtio networking in the host and guest Linux kernels.

2. On the host Linux create a bridge to the physical network interface to be used by the virtual network interface in the
virtual machine using the brctl command. In this example the physical interface being used is eth2:

brctl addbr br0
ifconfig br0 192.168.3.30 netmask 255.255.248.0

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 883

ifconfig eth2 0.0.0.0
brctl addif br0 eth2

3. Create a qemu-ifup script on the host Linux system. For the TAP backend type, when QEMU creates the virtual network
interface it invokes a user-created script that allows customization of how the TAP interface is to be handled. The name
of the TAP interface created by QEMU is passed as an argument. In this example we will bridge the the TAP inteface to
the bridge created in step #2. See the example qemu-ifup script below:

#!/bin/sh
TAP interface will be passed in $1
bridge=br0
guest_device=$1
ifconfig $guest_device 0.0.0.0 up
brctl addif $bridge $guest_device

4. When starting QEMU specify that the network device type is "virtio" and specify the path to the script created in step #3:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /
boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -netdev tap,id=tap0,script=qemu-ifup,downscript=no,ifname="tap0" -
device virtio-net-pci,netdev=tap0 -append 'root=/dev/vda rw console=ttyAMA0 rootwait
earlyprintk' -monitor stdio

5. In the guest OS the virtual network interface will appear and can be brought up and assigned an IP address in the
normal way. In the example below (the commands are run from the guest command shell) the virtio interface is eth0.

root@localhost:~# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
 link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff
3: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1
 link/sit 0.0.0.0 brd 0.0.0.0
6: docker0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
 link/ether 02:42:a5:57:0b:85 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 scope global docker0
 valid_lft forever preferred_lft forever

root@localhost:~# ethtool -i enp0s1
driver: virtio_net
version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: 0000:00:01.0
supports-statistics: no
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no

$ ifconfig enp0s1 192.168.3.31 netmask 255.255.248.0

10.1.3.4 How to use vhost-net with virtio
vhost-net is a character device that can be used to reduce the number of system calls involved in virtio networking. vhost-net
moves network packets between the guest and the host system using the Linux kernel, bypassing QEMU.

In order to use vhost-net perform the following steps:

1. Enable virtio networking and vhost-net in the host and guest Linux kernels.

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
884 NXP Semiconductors

2. On the host Linux create a bridge to the physical network interface to be used by the virtual network interface in the
virtual machine using the brctl command. In this example the physical interface being used is eth2:

brctl addbr br0
ifconfig br0 192.168.3.30 netmask 255.255.248.0
ifconfig eth2 0.0.0.0
brctl addif br0 eth2

3. Create a qemu-ifup script on the host Linux system. For the TAP backend type, when QEMU creates the virtual network
interface it invokes a user-created script that allows customization of how the TAP interface is to be handled. The name
of the TAP interface created by QEMU is passed as an argument. In this example we will bridge the the TAP inteface to
the bridge created in step #2. See the example qemu-ifup script below:

#!/bin/sh
TAP interface will be passed in $1
bridge=br0
guest_device=$1
ifconfig $guest_device 0.0.0.0 up
brctl addif $bridge $guest_device

4. When starting QEMU specify that the network device type is "virtio" and that vhost-net (vhost=on parameter) is used:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /
boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -netdev tap,id=tap0,script=qemu-
ifup,downscript=no,ifname="tap0",vhost=on -device virtio-net-pci,netdev=tap0 -append
'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor stdio

5. In the guest the virtual interface will come up as described in How to Use Virtual Network Interfaces Using Virtio on
page 883. In the Host kernel the vhost thread can be seen consuming CPU:

 2928 root 20 0 3258364 458340 19956 S 109.3 3.1 1:59.36 qemu-system-
aar
 2944 root 20 0 0 0 0 R 99.7 0.0 1:43.52
vhost-2928

 3020 root 20 0 225660 1224 1068 S 88.7 0.0 0:05.75 iperf

10.1.3.5 How to Use Virtual Disks Using Virtio
As discussed in Virtual block devices on page 869, there are a number of formats available for virtual disk images.

The example below uses a raw file. The steps below go through the process of creating a virtual disk image, assigning it to a VM,
partitioning the disk, creating a filesystem on it, and mounting it.

1. On the host Linux, create a binary image to represent the guest disk. For example to create a 16MB disk:

$ dd if=/dev/zero of=my_guest_disk bs=4K count=4K

2. Start QEMU, specifying the name of the virtual disk file for the -drive argument:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /
boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -drive if=none,file=my_guest_disk,cache=none,id=user,format=raw -
device virtio-blk-pci,drive=user -append 'root=/dev/vda rw console=ttyAMA0 rootwait
earlyprintk' -monitor stdio

3. After the guest has booted the virtual disk is visible as a block device in /dev with the name vda, vdb, etc. In this
example we have actually two virtual disks: one for the guest rootfs (vda) and one for my_guest_disk.

$ ls -l /dev/vdb
brw-rw---- 1 root disk 254, 0 Jan 1 1970 /dev/vdb

A virtual block device can be treated like any other hard disk. It can be partitioned, formatted, and mounted.

4. Configure a partition on the disk with fdisk:

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 885

root@localhost:~# fdisk /dev/vdb

Welcome to fdisk (util-linux 2.27.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0xc9820d64.

Command (m for help):

Display the partition table:

Command (m for help): p
Disk /dev/vdb: 16 MiB, 16777216 bytes, 32768 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc9820d64

Command (m for help):

Create a new partition:

Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1):
First sector (2048-32767, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-32767, default 32767):

Created a new partition 1 of type 'Linux' and of size 15 MiB.

Command (m for help):

Display the new partition:

Command (m for help): p
Disk /dev/vdb: 16 MiB, 16777216 bytes, 32768 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc9820d64

Device Boot Start End Sectors Size Id Type
/dev/vdb1 2048 32767 30720 15M 83 Linux

Write the partition table to disk and exit:

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

5. Create a filesystem on the new partition:

root@localhost:~# mkfs.ext4 /dev/vdb1
mke2fs 1.42.13 (17-May-2015)
Creating filesystem with 15360 1k blocks and 3840 inodes
Filesystem UUID: 8f0c49e4-2737-498e-a984-c5f05ba59b99
Superblock backups stored on blocks:
 8193

Allocating group tables: done
Writing inode tables: done

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
886 NXP Semiconductors

Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

6. Mount the filesystem:

root@localhost:~# mount /dev/vdb1 /boot/
root@localhost:~# echo "A virtual disk" > /boot/test.txt
root@localhost:~# cat /boot/test.txt
A virtual disk

10.1.3.6 How to use virtual disks using virtio-blk-dataplane
Virtio-blk-dataplane was developed for high performance disk I/O, especially for high IOPS devices. The QEMU performs the disk
I/O in a dedicated thread that is optimized for I/O performance.

In this example an sdcard is used, a block device on the Linux host.

1. Start QEMU:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /
boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -object iothread,id=iothread0 -drive if=none,file=/dev/
mmcblk0,cache=none,id=drive0,format=raw,aio=native -device virtio-blk-
pci,drive=drive0,scsi=off,iothread=iothread0 -append 'root=/dev/vda rw console=ttyAMA0
rootwait earlyprintk' -monitor stdio

2. After the guest boots, the virtual disk is visible as a block device with the name vda, vdb, etc.

root@localhost:~# fdisk /dev/vdb

Welcome to fdisk (util-linux 2.27.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): p
Disk /dev/vdb: 16 MiB, 16777216 bytes, 32768 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc9820d64

Device Boot Start End Sectors Size Id Type
/dev/vdb1 2048 32767 30720 15M 83 Linux

In this case the disk has 1 partition. The partition can be mounted and used.

10.1.3.7 How to use DPAA2 direct assignment without scripts
As presented in the introductory chapter Direct assigned devices on page 869, the DPAA2 architecture has the concept of MC
containers which are arranged in a tree structure. While the root container always belongs to the host Linux, the child containers
can be directly assigned to a user-space application such as ODP or DPDK or, as in our case, to a QEMU guest VM.

In the pursuit of creating a guest VM with one DPAA2 network interface directly assigned, we first need to create the child container
and all the necessary MC objects.

In order to determine the number of DPAA2 objects needed to create a network interface see: DPAA2 objects dependencies. For
our example the following rule applies:

• the DPIO number should be equal to the number of cores for the guest VM to be deployed (for better performance)

• the DPCON number is equal to the number of cores multiplied by the number of interfaces

• one DPBP and DPMCP object for each network interface

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 887

The following section describes the steps to be followed in order to create a single core VM with one DPAA2 network interface
assigned. The objects are created using the restool userspace program. For more details about the restool usage see DPRCs
and restool chapter.

1. Create and populate the child container

• Create the necessary MC objects

— create the child container (this container will be assigned to the guest)

$ restool dprc create dprc.1
dprc.2 is created under dprc.1

— create the necessary objects in the child container

$ restool dpio create --container=dprc.2
dpio.11 is created under dprc.2
$ restool dpcon create --num-priorities=2 --container=dprc.2
dpcon.3 is created under dprc.2
$ restool dpmcp create --container=dprc.2
dpmcp.25 is created under dprc.2
$ restool dpbp create --container=dprc.2
dpbp.4 is created under dprc.2
$ restool dpni create --container=dprc.2
dpni.3 is created under dprc.2

• Change the plugged state of the newly created objects to plugged.

$ restool dprc assign dprc.2 --object=dpio.11 --plugged=1
$ restool dprc assign dprc.2 --object=dpcon.3 --plugged=1
$ restool dprc assign dprc.2 --object=dpmcp.25 --plugged=1
$ restool dprc assign dprc.2 --object=dpbp.4 --plugged=1
$ restool dprc assign dprc.2 --object=dpni.3 --plugged=1

• Check if objects were created properly by listing the contents of the child container:

$ restool dprc show dprc.2
dprc.2 contains 4 objects:
object label plugged-state
dpni.3 plugged
dpbp.4 plugged
dpmcp.25 plugged
dpio.11 plugged
dpcon.3 plugged

• Connect the dpni object to the required dpmac in your scenario:

$ restool dprc connect dprc.1 --endpoint1=dpni.3 --endpoint2=dpmac.3

2. Bind the newly created DPRC device to the vfio-fsl-mc driver

$ echo vfio-fsl-mc > /sys/bus/fsl-mc/devices/dprc.2/driver_override
$ echo dprc.2 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind

3. Add the device command below (for the DPRC to be assigned) to the QEMU command line:

 -device vfio-fsl-mc,host=dprc.2

Also, make sure to specify the appropiate number of cores for the guest VM. It should match the number of dpio objects
created in the child container. In our case, 1 core.

 -smp 1

4. Make sure to assign each vcpu thread to one physical CPU only

• Start QEMU with -S option (the vcpu threads are not yet started). We need this in order for the Ethernet drivers in the
guest to correctly bind the objects to the cores.

qemu-system-aarch64 -smp 1 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /
boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-
blk-device,drive=foo -append 'root=/dev/vda rw console=ttyAMA0 rootwait
earlyprintk' -monitor stdio -device vfio-fsl-mc,host=dprc.2 -S

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
888 NXP Semiconductors

Get the VM thread IDs entering QEMU shell

(qemu) info cpus
* CPU #0: thread_id=4952

• Assign one vcpu thread to one core only

$ taskset -p 0x1 4952
pid 4952's current affinity mask: ff
pid 4952's new affinity mask: 1

• start the vcpu threads

(qemu) c

10.1.3.8 How to use DPAA2 direct assignment with scripts
While in the previous chapter, How to use DPAA2 direct assignment without scripts on page 887, we saw how to use the DPAA2
Direct Assignment feature manually, by creating each individual DPAA2 object needed in the child DPRC, in this chapter we will
present a second method to create the desired configuration for a child container that will be assigned to the guest VM.

In order to describe the DPAA2 object configuration for a guest VM, thus a child DPRC, we employ the DPL - Data Path Layout
syntax. The restool package has a new helper script, ls-append-dpl, that can parse DPL files which describe a child DPRC
configuration and create that scenario using the restool tool.

One can check if the aforementioned script is available:

$ which ls-append-dpl

$ ls-append-dpl --help
Usage: /usr/local/bin/ls-append-dpl [options] <dpl-file>

Options:
 -h, --help
 Print this help and exit
 root@localhost:~#

The next section will describe how to use the ls-append-dpl script in order to create the child container that will be assigned to
the guest VM. The next section will cover only the DPRC creation process, step #1 from the previous chapter, while the remaining
steps are still the same.

Single core guest with one network interface
Applying the rule presented before, we already know that in order to assign a network interface to a single core guest the child
container should contain: 1 DPNI, 1 DPBP, 1 DPMCP, 1 DPIO and 1 DPCON.

• Create the DPL file

The file vm_1_core.dts is a text file that uses the DPL syntax and describes the required configuration for a child container
that will be used for a single core, one network interface guest.

It has the exact same syntax as a DPL file used to describe the static host configuration. In the vm_1_core.dts file we can
see that a dprc object is described:

 dprc@2 {
 compatible = "fsl,dprc";
 parent = "dprc.1";

The parent property is mandatory and it should describe the parent container for the new one.

In this simple configuration, the single dpni created is connected to the dpmac@1 in the connections section as follows:

 connection@1{
 endpoint1 = "dpni@1";
 endpoint2 = "dpmac@1";
 };

If you want to connect the dpni@1 with any other object just change the value of endpoint2. For example, for a connection
to be established with dpmac@2 change the fragment to:

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 889

 endpoint2 = "dpmac@2";

• Deploy the DPL configuration

$ ls-append-dpl vm_1_core.dts
Created the following objects:
 dpmcp.50
 dpni.1
 dpio.8
 dpcon.1
 dprc.2
 dpbp.1

Multi core guest with one network interface

In order to tranzition from 1 core guest to a multi core one, only the number of dpio and dpcon objects described in the DPL file
need to be changed. Thus, in the case of a guest VM with 8 cores and one DPAA2 network interface, the DPL files should list
and describe: 8 dpio, 8 dpcon, 1 dpmcp, 1 dpbp, 1 dpni.

The vm_8_core.dts describes the configuration required for a 8 core guest VM with one DPAA2 interface. You can use it in a
similar fashion:

$ ls-append-dpl vm_8_core.dts

ANNEX 1 - vm_1_core.dts

/dts-v1/;
/ {
 dpl-version = <10>;
 /***
 * Containers
 ***/
 containers {

 dprc@2 {
 compatible = "fsl,dprc";
 parent = "dprc.1";
 options = "DPRC_CFG_OPT_SPAWN_ALLOWED", "DPRC_CFG_OPT_ALLOC_ALLOWED",
"DPRC_CFG_OPT_OBJ_CREATE_ALLOWED", "DPRC_CFG_OPT_IRQ_CFG_ALLOWED";

 objects {

 /* -------------- DPBPs --------------*/
 obj_set@dpbp {
 type = "dpbp";
 ids = <1>;
 };

 /* -------------- DPCONs --------------*/
 obj_set@dpcon {
 type = "dpcon";
 ids = <1>;
 };

 /* -------------- DPIOs --------------*/
 obj_set@dpio {
 type = "dpio";
 ids = <1>;
 };

 /* -------------- DPMCPs --------------*/
 obj_set@dpmcp {
 type = "dpmcp";
 ids = <1>;
 };

 /* -------------- DPNIs --------------*/
 obj_set@dpni {

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
890 NXP Semiconductors

 type = "dpni";
 ids = <1>;
 };
 };
 };
 };

 /***
 * Objects
 ***/
 objects {

 dpbp@1 {
 compatible = "fsl,dpbp";
 };

 dpcon@1 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpio@1 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpmcp@1 {
 compatible = "fsl,dpmcp";
 };

 dpni@1 {
 compatible = "fsl,dpni";
 type = "DPNI_TYPE_NIC";
 options = "DPNI_OPT_NO_FS";
 num_queues = <8>;
 num_tcs = <1>;
 mac_filter_entries = <16>;
 vlan_filter_entries = <0>;
 fs_entries = <0>;
 qos_entries = <0>;
 };
 };

 /***
 * Connections
 ***/
 connections {

 connection@1{
 endpoint1 = "dpni@1";
 endpoint2 = "dpmac@1";
 };
 };
};

ANNEX 2 - vm_8_core.dts

/dts-v1/;
/ {
 dpl-version = <10>;
 /***
 * Containers
 ***/
 containers {

 dprc@2 {
 compatible = "fsl,dprc";
 parent = "dprc.1";

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 891

 options = "DPRC_CFG_OPT_SPAWN_ALLOWED", "DPRC_CFG_OPT_ALLOC_ALLOWED",
"DPRC_CFG_OPT_OBJ_CREATE_ALLOWED", "DPRC_CFG_OPT_IRQ_CFG_ALLOWED";

 objects {

 /* -------------- DPBPs --------------*/
 obj_set@dpbp {
 type = "dpbp";
 ids = <1>;
 };

 /* -------------- DPCONs --------------*/
 obj_set@dpcon {
 type = "dpcon";
 ids = <1 2 3 4 5 6 7 8>;
 };

 /* -------------- DPIOs --------------*/
 obj_set@dpio {
 type = "dpio";
 ids = <1 2 3 4 5 6 7 8>;
 };

 /* -------------- DPMCPs --------------*/
 obj_set@dpmcp {
 type = "dpmcp";
 ids = <1>;
 };

 /* -------------- DPNIs --------------*/
 obj_set@dpni {
 type = "dpni";
 ids = <1>;
 };
 };
 };
 };

 /***
 * Objects
 ***/
 objects {

 dpbp@1 {
 compatible = "fsl,dpbp";
 };

 dpcon@1 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpcon@2 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpcon@3 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpcon@4 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpcon@5 {
 compatible = "fsl,dpcon";

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
892 NXP Semiconductors

 num_priorities = <0x2>;
 };

 dpcon@6 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpcon@7 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpcon@8 {
 compatible = "fsl,dpcon";
 num_priorities = <0x2>;
 };

 dpio@1 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpio@2 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpio@3 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpio@4 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpio@5 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpio@6 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpio@7 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpio@8 {
 compatible = "fsl,dpio";
 channel_mode = "DPIO_LOCAL_CHANNEL";
 num_priorities = <0x8>;
 };

 dpmcp@1 {
 compatible = "fsl,dpmcp";
 };

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 893

 dpni@1 {
 compatible = "fsl,dpni";
 type = "DPNI_TYPE_NIC";
 options = "DPNI_OPT_NO_FS";
 num_queues = <8>;
 num_tcs = <1>;
 mac_filter_entries = <16>;
 vlan_filter_entries = <0>;
 fs_entries = <0>;
 qos_entries = <0>;
 };
 };

 /***
 * Connections
 ***/
 connections {

 connection@1{
 endpoint1 = "dpni@1";
 endpoint2 = "dpmac@1";
 };
 };
};

10.1.3.9 How to use PCIE direct assignment
Select the PCIe device that will be assigned to Virtual Machine. For example, it is e1000e PCI network device (0000.01.00.0).

1. Bind the PCI device to the VFIO driver:

• Assume e1000e device with identity 0000.01.00.0

echo vfio-pci > /sys/bus/pci/devices/0000\:01\:00.0/driver_override
echo 0000:01:00.0 > /sys/bus/pci/drivers/e1000e/unbind
echo 0000:01:00.0 > /sys/bus/pci/drivers/vfio-pci/bind

2. All device in the iommu-group must be assigned to same virtual machine.

• The command below will list all devices in the same iommu-group:

ls -l /sys/bus/pci/devices/0000:06:0d.0/iommu_group/devices

• All devices must be bound to VFIO using step (1) above.

3. Add the device command below to the QEMU command line for all devices in the iommu-group:

-device vfio-pci,host=0000:01:00.0

4. Device will be available in Virtual Machine.

This feature is enabled for LS1088 and LS2088 devices only.

10.1.3.10 Debugging: How to Examine Initial Virtual Machine State
with QEMU

It can be helpful when debugging to examine the state of the virtual machine prior to executing the first instruction of the guest
OS.

To do this, start QEMU with the -S option.

Example:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /boot/
Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
894 NXP Semiconductors

device,drive=foo -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor
stdio -S

The console was started with the "-serial tcp::4446,server,telnet" option so QEMU waits for a connection prior to starting
initialization. Use telnet to connect to port 4446 of the target.

At this point QEMU initializes the VM, but does not execute the entry point to the guest OS. The monitor prompt can now be used
to examine initial state:

QEMU 2.5.0 monitor - type 'help' for more information
(qemu) QEMU waiting for connection on: disconnected:telnet::4446,server

(qemu)

To see where boot images are loaded and placed by QEMU use the info roms command:

(qemu) info roms
addr=0000000000000000 size=0x000038 mem=ram name="smpboot"
addr=0000000040000000 size=0x000028 mem=ram name="bootloader"
addr=0000000040080000 size=0xf0aa00 mem=ram name="/boot/Image"
addr=0000000048000000 size=0x010000 mem=ram name="dtb"
/rom@etc/acpi/tables size=0x200000 name="etc/acpi/tables"
/rom@etc/table-loader size=0x000880 name="etc/table-loader"
/rom@etc/acpi/rsdp size=0x000024 name="etc/acpi/rsdp"
(qemu)

A trivial bootloader is loaded at the start of guest memory at 0x40000000

The kernel image (zImage) is loaded at 0x40080000.

To examine the initial state of registers use the info registers command:

(qemu) info registers
PC=0000000040000000 SP=0000000000000000
X00=0000000000000000 X01=0000000000000000 X02=0000000000000000 X03=0000000000000000
X04=0000000000000000 X05=0000000000000000 X06=0000000000000000 X07=0000000000000000
X08=0000000000000000 X09=0000000000000000 X10=0000000000000000 X11=0000000000000000
X12=0000000000000000 X13=0000000000000000 X14=0000000000000000 X15=0000000000000000
X16=0000000000000000 X17=0000000000000000 X18=0000000000000000 X19=0000000000000000
X20=0000000000000000 X21=0000000000000000 X22=0000000000000000 X23=0000000000000000
X24=0000000000000000 X25=0000000000000000 X26=0000000000000000 X27=0000000000000000
X28=0000000000000000 X29=0000000000000000 X30=0000000000000000
PSTATE=400003c5 -Z-- EL1h
q00=0000000000000000:0000000000000000 q01=0000000000000000:0000000000000000
q02=0000000000000000:0000000000000000 q03=0000000000000000:0000000000000000
q04=0000000000000000:0000000000000000 q05=0000000000000000:0000000000000000
q06=0000000000000000:0000000000000000 q07=0000000000000000:0000000000000000
q08=0000000000000000:0000000000000000 q09=0000000000000000:0000000000000000
q10=0000000000000000:0000000000000000 q11=0000000000000000:0000000000000000
q12=0000000000000000:0000000000000000 q13=0000000000000000:0000000000000000
q14=0000000000000000:0000000000000000 q15=0000000000000000:0000000000000000
q16=0000000000000000:0000000000000000 q17=0000000000000000:0000000000000000
q18=0000000000000000:0000000000000000 q19=0000000000000000:0000000000000000
q20=0000000000000000:0000000000000000 q21=0000000000000000:0000000000000000
q22=0000000000000000:0000000000000000 q23=0000000000000000:0000000000000000
q24=0000000000000000:0000000000000000 q25=0000000000000000:0000000000000000
q26=0000000000000000:0000000000000000 q27=0000000000000000:0000000000000000
q28=0000000000000000:0000000000000000 q29=0000000000000000:0000000000000000
q30=0000000000000000:0000000000000000 q31=0000000000000000:0000000000000000
FPCR: 00000000 FPSR: 00000000
(qemu)

The program counter is set to 0x40000000 which is the effective address of the entry point of the kernel.

10.1.3.11 Debugging: How to Profile Virtualization Overhead with KVM

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 895

Running software in a virtual machine can cause additional overhead that affects performance. The virtualization overhead is
directly related to the number of times the hypervisor (KVM) is invoked to handle exception conditions that may occur in the virtual
machine. These exception handling events are referred to as 'exits', because guest context is exited.

Examples of exits include things such the guest executing a privileged instruction, access a privileged CPU register, accessing
a virtual I/O device, or a hardware interrupt such as a decrementer interrupt.

The type and number of exits that occur is workload dependent.

KVM implements a mechanism in which different events are logged. These events are actually tracepoint events, and perf nicely
integrates with them. You have to compile the host kernel with the following options:

Kernel hacking --->
 [*] Tracers --->
 [*] Trace process context switches and events

Counting Events

A count of a subset of KVM events that occur can be seen under debugfs. To see this first mount debugfs:

mount -t debugfs none /sys/kernel/debug

The statistics can be seen using perf tool:

perf stat -e "kvm:*" -p 1395
^C
 Performance counter stats for process id '1395':

 5678 kvm:kvm_entry
 5678 kvm:kvm_exit
 3121 kvm:kvm_guest_fault
 2278 kvm:kvm_irq_line
 0 kvm:kvm_mmio_emulate
 0 kvm:kvm_emulate_cp15_imp
 2438 kvm:kvm_wfi
 0 kvm:kvm_unmap_hva
 2 kvm:kvm_unmap_hva_range
 0 kvm:kvm_set_spte_hva
 0 kvm:kvm_hvc
 3119 kvm:kvm_userspace_exit
 0 kvm:kvm_set_irq
 0 kvm:kvm_ack_irq
 4068 kvm:kvm_mmio
 0 kvm:kvm_fpu
 0 kvm:kvm_age_page

 59.316709040 seconds time elapsed

Tracing events

Detailed traced can be generated using ftrace:

[enable ftrace in kernel: events and system calls]
$echo 1 > /sys/kernel/debug/tracing/events/kvm/enable
$cat /sys/kernel/debug/tracing/trace_pipe

qemu-system-arm-1366 [000] 716.115891: kvm_guest_fault: ipa 0x9000000, hsr 0x93430046,
hxfar 0xa084c030, pc 0x80266a9c
qemu-system-arm-1366 [000] 716.115892: kvm_mmio: mmio write len 2 gpa 0x9000030 val
0xf01
qemu-system-arm-1366 [000] 716.115895: kvm_userspace_exit: reason KVM_EXIT_MMIO (6)
qemu-system-arm-1366 [000] d... 716.115907: kvm_entry: PC: 0x80266aa0
qemu-system-arm-1366 [000] d... 716.116234: kvm_exit: PC: 0x800cf508
qemu-system-arm-1366 [000] d... 716.118274: kvm_entry: PC: 0x800cf508
qemu-system-arm-1366 [000] d... 716.118704: kvm_exit: PC: 0x0000981c
qemu-system-arm-1366 [000] d... 716.120737: kvm_entry: PC: 0x0000981c
qemu-system-arm-1366 [000] d... 716.121159: kvm_exit: PC: 0x800bb104
qemu-system-arm-1366 [000] d... 716.123197: kvm_entry: PC: 0x800bb104

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
896 NXP Semiconductors

qemu-system-arm-1366 [000] d... 716.123620: kvm_exit: PC: 0x8009cae0
qemu-system-arm-1366 [000] d... 716.125696: kvm_entry: PC: 0x8009cae0
qemu-system-arm-1366 [000] d... 716.126091: kvm_exit: PC: 0x800c90f4
qemu-system-arm-1366 [000] d... 716.128130: kvm_entry: PC: 0x800c90f4
qemu-system-arm-1366 [000] d... 716.128561: kvm_exit: PC: 0x801f37f4
qemu-system-arm-1366 [000] d... 716.130594: kvm_entry: PC: 0x801f37f4
qemu-system-arm-1366 [000] d... 716.130623: kvm_exit: PC: 0x8020576c
qemu-system-arm-1366 [000] d... 716.130635: kvm_entry: PC: 0x8020576c
qemu-system-arm-1366 [000] d... 716.131018: kvm_exit: PC: 0x43014750
qemu-system-arm-1366 [000] d... 716.133053: kvm_entry: PC: 0x43014750
qemu-system-arm-1366 [000] d... 716.133478: kvm_exit: PC: 0x80205778
qemu-system-arm-1366 [000] d... 716.135555: kvm_entry: PC: 0x80205778

10.1.3.12 Debugging virtual machines

10.1.3.12.1 QEMU Monitor
When starting QEMU, a monitor shell is available that can be used to control and see the state of VM. By default this monitor is
started in the Linux shell where QEMU is invoked.

See example below of the output when starting QEMU. The user can interact with the monitor at the (qemu) prompt.

QEMU 2.5.0 monitor - type 'help' for more information
(qemu) QEMU waiting for connection on: disconnected:telnet::4446,server

The monitor can also be exposed over a network port by using the -monitor dev command line option. See Overview of Using
QEMU on page 866 and the QEMU user's manual [1] (see References on page 874).

Refer to the QEMU user's manual [1] for a complete listing of the monitor commands available. Below is a list of some useful
commands supported in the NXP SDK implementation of QEMU:

• help - lists all the available commands with usage information

• info cpus - displays the state and thread ID of all virtual CPUs

• info registers - displays the contents of the default vcpu's registers

• cpu cpu_number - sets the default vcpu number

• system_reset - resets the VM

• x/fmt addr -- virtual memory dump starting at 'addr'

• xp/fmt addr -- physical memory dump starting at 'addr'

10.1.3.12.2 QEMU GDB Stub
QEMU supports debugging of a VM using gdb. QEMU contains a gdb stub that can be attached to from a host system and allows
standard source level debugging capabilities to examine the state of the VM and do run control.

KVM/QEMU

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 897

Figure 230.

To use the gdb stub, start QEMU with the -gdb dev option where dev specifies the type of connection to be used. See the QEMU
user's manual [1] (see References on page 874) for details.

One useful option when debugging is the -S argument to QEMU which causes QEMU to wait to start the first instruction of the
guest until told to start using the monitor (continue command).

In the example below the tcp device type is used. A gdb stub will be active on port 4445 of the host Linux kernel when starting
QEMU:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3 -kernel /boot/
Image -enable-kvm -display none -serial tcp::4446,server,telnet -drive
if=none,file=ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -device virtio-blk-
device,drive=foo -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor
stdio -gdb tcp::4444

After the guest has been started normally, gdb can be used to connect to the VM (in this example the host kernel has an ip address
of 192.168.3.30):

(gdb) target remote 192.168.4.100:4444
Remote debugging using 192.168.4.100:4444
0xffff000008096258 in ?? ()

Debugging with gdb can then proceed normally:

(gdb) p/x $pc
$4 = 0xffff000008096258

10.2 Linux Containers (LXC) for NXP QorIQ User's Guide

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
898 NXP Semiconductors

10.2.1 Introduction to Linux Containers

10.2.1.1 NXP LXC Release Notes
This document describes current limitations in the release of LXC for NXP SoCs.

Copyright (C) 2017 NXP Semiconductors, Inc.

NXP LXC Release Notes
04/27/2016

Overview

This document describes new features, current limitations, and
working demos in Linux Containers (LXC) for QorIQ Layerscape SDK.

Fixes

 o Seccomp support on ARMv8 platforms.

 o Unprivileged containers support on ARMv8 platforms.

SDK Demo List

 o Basic container usage flow and management commands
 o Container networking setups
 o Shared networking
 o Private NICs
 o Ethernet bridge
 o MACVLAN
 o VLAN
 o Adjusting container capabilities
 o Tuning container resource usage
 o Running application containers
 o Isolating USDPAA applications in LXC containers. This has been
 tested using the USDPAA reflector app in a Multiple Instance Scenario
 on a DPAA board. After parititioning the board resources in order to
 support multiple reflector instances, these have been further isolated
 in container environments.
 o Running an unprivileged container linked to a host bridge.
 o Running containers with Seccomp protection.

10.2.1.2 Overview
This document is a guide and tutorial to using Linux Containers on NXP ARMv7 and ARMv8-based SoCs.

Linux Containers is a lightweight virtualization technology that allows the creation of environments in Linux called "containers"
in which Linux applications can be run in isolation from the rest of the system and with fine grained control over resources allocated
to the container (e.g. CPU, memory, network).

There are 2 implementations of containers in the LSDK:

• LXC. LXC is a user space package that provides a set of commands to create and manage containers and uses existing
Linux kernel features to accomplish the desired isolation and control.

• Libvirt. The libvirt package is a virtualization toolkit that provides a set of management tools for managing virtual machines
and Linux containers. The libvirt driver for containers is called "lxc", but the libvirt "lxc" driver is distinct from the user space
LXC package.

Applications in a container run in a "sandbox" and can be restricted in what they can do and what visibility they have. In a container:

• An application "sees" only other processes that are in the container.

• An application has access only to network resources granted to the container.

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 899

• If configured as such, an application "sees" only a container-specific root filesystem. In addition to limiting access to data in
the system's host rootfs, by limiting the /dev entries that exist in the containers rootfs this limits the devices that the container
can access.

• The file POSIX capabilities available to programs are controlled and configured by the system administrator.

• The container's processes run in what is known as a "control group" which the system administrator can use to monitor and
control the container's resources.

Why are containers useful? Below are a few examples of container use cases:

• Application partitioning -- control CPU utilization between high priority and low priority applications, control what resources
applications can access.

• Virtual private server -- boot multiple instances of user space, each which effectively looks like a private instance of a server.
This approach is commonly used in website infrastructure.

• Software upgrade -- run Linux user space in a container, when it becomes necessary to upgrade applications in the system,
create and test upgraded software in a new container. The old container can be stopped and the new container can be started
as desired.

• Terminal servers -- user accesses the system with a thin client, with containers on the server providing applications. Each
user gets a private, sandboxed workspace.

There are two general usage models for containers:

• application containers: Running a single application in a container. In this scenario, a single executable program is started
in the container.

• system containers: Booting an instance of user space in a container. Booting multiple system containers allows multiple
isolated instances of user space to run at the same time.

Containers are conceptually different than virtual machine technologies such as QEMU/KVM. Virtual machines emulate a
hardware platform and are capable of booting an operating system kernel. A container is a mechanism to isolate Linux applications.
In a system using containers there is only one Linux kernel running -- the host Linux kernel.

10.2.1.3 Comparing LXC and Libvirt
LXC and the lxc driver in libvirt provide similar capabilities and use the same kernel mechanisms to create containers. This section
highlights some of the differences between the two tools.

LXC

• Container management is done with local LXC package commands. No remote support.

• Container creation done with lxc-create. LXC config file and template govern the creation of the template and the container's
rootfs.

libvirt

• libvirt abstracts the container and thus a variety of tools can be used to manage containers.

• Remote management is supported.

• Container configuration defined in libvirt XML file.

• No tools to facilitate container creation.

• Same tools can be used to manage containers and KVM/QEMU virtual machines.

10.2.1.4 For Further Information
Linux containers is an approach to virtualization similar to OS virtualization solutions such as Linux VServer and OpenVZ that
are widely used for virtual private servers. Documentation for these projects has helpful and relevant information:

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
900 NXP Semiconductors

• http://linux-vserver.org/Overview

• http://wiki.openvz.org/Main_Page

The LXC package is an open source project and much information is available online.

General Information

• libvirt LXC driver: http://libvirt.org/drvlxc.html

• Getting started with LXC using libvirt : https://www.berrange.com/posts/2011/09/27/getting-started-with-lxc-using-libvirt/

• LXC: Official web page for the LXC project: https://linuxcontainers.org/

• LXC: Overview article on LXC on IBM developerWorks (2009): http://www.ibm.com/developerworks/linux/library/l-lxc-
containers/

• LXC manpages: https://linuxcontainers.org/lxc/manpages/

• Article on POSIX file capabilities: http://www.friedhoff.org/posixfilecaps.html

• SUSE LXC tutorial: https://www.suse.com/documentation/sles11/singlehtml/lxc_quickstart/lxc_quickstart.html

• LXC Linux Containers, presentation: http://www.slideshare.net/samof76/lxc-17456998

• Stephane Graber's LXC 1.0 blog posts: https://www.stgraber.org/2013/12/20/lxc-1-0-blog-post-series/

• Linux Plumbers 2013 videos: https://www.youtube.com/channel/UCIxsmRWj3-795FMlrsikd3A/videos

• Control Groups: https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

Containers and Security

If using containers to sandbox untrusted applications, a thorough understanding is needed of the capabilities granted to a container
and the security vulnerabilities they may imply. The following references are helpful for understanding container security:

• Ubuntu's security issues and mitigations with LXC, https://wiki.ubuntu.com/LxcSecurity

• Emeric Nasi, Exploiting capabilities, http://packetstorm.foofus.com/papers/attack/exploiting_capabilities_the_dark_side.pdf

• Secure containers with SELinux and Smack, http://www.ibm.com/developerworks/linux/library/l-lxc-security/index.html

• Seccomp and sandboxing, http://lwn.net/Articles/332974/

Mailing Lists

For LXC, there are two mailing lists available which can be subscribed to. Archives of the lists are also available.

 https://lists.linuxcontainers.org/listinfo/lxc-devel

 https://lists.linuxcontainers.org/listinfo/lxc-users

10.2.2 More Details

10.2.2.1 LXC: Command Reference
This section contains links to available open source documentation for the commands in the LXC user space package.

Table 166.

LXC man page Description Man Page Link

lxc lxc overview click here

lxc-attach start a process inside a running container click here

lxc-autostart start/stop/kill auto-started containers click here

Table continues on the next page...

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 901

http://linux-vserver.org/Overview
http://wiki.openvz.org/Main_Page
http://libvirt.org/drvlxc.html
https://www.berrange.com/posts/2011/09/27/getting-started-with-lxc-using-libvirt/
https://linuxcontainers.org/
http://www.ibm.com/developerworks/linux/library/l-lxc-containers/
http://www.ibm.com/developerworks/linux/library/l-lxc-containers/
https://linuxcontainers.org/lxc/manpages/
http://www.friedhoff.org/posixfilecaps.html
https://www.suse.com/documentation/sles11/singlehtml/lxc_quickstart/lxc_quickstart.html
http://www.slideshare.net/samof76/lxc-17456998
https://www.stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://www.youtube.com/channel/UCIxsmRWj3-795FMlrsikd3A/videos
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://wiki.ubuntu.com/LxcSecurity
http://packetstorm.foofus.com/papers/attack/exploiting_capabilities_the_dark_side.pdf
http://www.ibm.com/developerworks/linux/library/l-lxc-security/index.html
http://lwn.net/Articles/332974/
https://lists.linuxcontainers.org/listinfo/lxc-devel
https://lists.linuxcontainers.org/listinfo/lxc-users
http://man7.org/linux/man-pages/man7/lxc.7.html
http://man7.org/linux/man-pages/man1/lxc-attach.1.html
http://man7.org/linux/man-pages/man1/lxc-autostart.1.html

Table 166. (continued)

LXC man page Description Man Page Link

lxc-cgroup manage the control group associated with a container click here

lxc-checkconfig check the current kernel for lxc support click here

lxc-clone clone a new container from an existing one click here

lxc-config query LXC system configuration click here

lxc.conf a description of all configuration options available click here

lxc-console launch a console for the specified container click here

lxc-create creates a container click here

lxc-destroy destroy a container previously created with lxc-create click here

lxc-execute run the specified command inside a container click here

lxc-freeze freeze (suspend) all the container's processes click here

lxc-info query information about a container click here

lxc-ls list the containers existing on the system click here

lxc-monitor monitor the container state click here

lxc-snapshot snapshot an existing container click here

lxc-start starts a container previously created with lxc-create click here

lxc-stop stop a container click here

lxc-unfreeze resumes a containers processes suspended previously with lxc-freeze click here

lxc-unshare run a task in a new set of namespaces click here

lxc-usernsexec run task as root in a new user namespace click here

lxc-wait wait for a specific container state click here

The following LXC commands are not supported:

• lxc-usernsexec

10.2.2.2 LXC: Configuration Files

This section is applicable to LXC only, not to libvirt.

 NOTE

For LXC, configuration files are used to configure aspects of a container at the time it is created. The configuration file defines
what resources are private to the container and what is shared. By default the following resources are private to a container:

• process IDs

• sysv ipc mechanisms

• mount points

This means for example, that by default the container will share network resources and the filesystem with the host system, but
will have it's own private process IDs.

The container configuration file allows additional isolation to be specified through configuration in the following areas:

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
902 NXP Semiconductors

http://man7.org/linux/man-pages/man1/lxc-cgroup.1.html
http://man7.org/linux/man-pages/man1/lxc-checkconfig.1.html
http://man7.org/linux/man-pages/man1/lxc-clone.1.html
http://man7.org/linux/man-pages/man1/lxc-config.1.html
http://man7.org/linux/man-pages/man5/lxc.conf.5.html
http://man7.org/linux/man-pages/man1/lxc-console.1.html
http://man7.org/linux/man-pages/man1/lxc-create.1.html
http://man7.org/linux/man-pages/man1/lxc-destroy.1.html
http://man7.org/linux/man-pages/man1/lxc-execute.1.html
http://man7.org/linux/man-pages/man1/lxc-freeze.1.html
http://man7.org/linux/man-pages/man1/lxc-info.1.html
http://man7.org/linux/man-pages/man1/lxc-ls.1.html
http://man7.org/linux/man-pages/man1/lxc-monitor.1.html
http://man7.org/linux/man-pages/man1/lxc-snapshot.1.html
http://man7.org/linux/man-pages/man1/lxc-start.1.html
http://man7.org/linux/man-pages/man1/lxc-stop.1.html
http://man7.org/linux/man-pages/man1/lxc-unfreeze.1.html
http://man7.org/linux/man-pages/man1/lxc-unshare.1.html
http://man7.org/linux/man-pages/man1/lxc-usernsexec.1.html
http://man7.org/linux/man-pages/man1/lxc-wait.1.html

• network

• console

• mount points and the backing store for the root filesystem

• control groups (cgroups)

• POSIX capabilities

See the http://man7.org/linux/man-pages/man5/lxc.conf.5.html for details on each configuration option.

When a container is created a new directory with the container's name is created in /var/lib/lxc. The configuration file for the
container is stored in:

 /var/lib/lxc/[container-name]/config

Below is an example of the contents of a minimal configuration file for a container named "foo", which has no networking:

$ cat /var/lib/lxc/foo/config
Container with non-virtualized network
lxc.utsname = foo
lxc.tty = 1
lxc.pts = 1
lxc.rootfs = /var/lib/lxc/foo/rootfs
lxc.mount.entry=/lib /var/lib/lxc/foo/rootfs/lib none ro,bind 0 0
lxc.mount.entry=/usr/lib /var/lib/lxc/foo/rootfs/usr/lib none ro,bind 0 0

See the LXC: Getting Started (with a Busybox System Container) on page 907 how-to article for an introduction to the container
lifecycle and how configuration files are used when creating containers.

Several example configuration files are provided with LXC:

/usr/share/doc/lxc-common/examples/lxc-complex.conf
/usr/share/doc/lxc-common/examples/lxc-empty-netns.conf
/usr/share/doc/lxc-common/examples/lxc-macvlan.conf
/usr/share/doc/lxc-common/examples/lxc-no-netns.conf
/usr/share/doc/lxc-common/examples/lxc-phys.conf
/usr/share/doc/lxc-common/examples/lxc-veth.conf
/usr/share/doc/lxc-common/examples/lxc-vlan.conf
/usr/share/doc/lxc-common/examples/seccomp-v1.conf
/usr/share/doc/lxc-common/examples/seccomp-v2-blacklist.conf
/usr/share/doc/lxc-common/examples/seccomp-v2.conf

10.2.2.3 LXC: Templates

This section is applicable to LXC only, not to libvirt.

 NOTE

For LXC, When a container is "created" a directory for the container (which has the same name as the container) is created under /
var/lib/lxc. This is where the container's configuration file is stored and can be edited.

For system containers (containers created with lxc-create), the default is for the root filesystem structure of the container to be
stored here as well.

Creating containers is simplified by the use of example "templates" provided with the LXC. Template examples are provided for a
number of different Linux distributions. A template is a script invoked by lxc-create that creates the root filesystem structure and
sets up the container's config file.

The following example templates are provided with LXC and can be referred to for the expected template structure:

/usr/share/lxc/templates/lxc-alpine
/usr/share/lxc/templates/lxc-altlinux
/usr/share/lxc/templates/lxc-archlinux
/usr/share/lxc/templates/lxc-busybox
/usr/share/lxc/templates/lxc-centos
/usr/share/lxc/templates/lxc-cirros
/usr/share/lxc/templates/lxc-debian
/usr/share/lxc/templates/lxc-download

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 903

http://man7.org/linux/man-pages/man5/lxc.conf.5.html

/usr/share/lxc/templates/lxc-fedora
/usr/share/lxc/templates/lxc-gentoo
/usr/share/lxc/templates/lxc-openmandriva
/usr/share/lxc/templates/lxc-opensuse
/usr/share/lxc/templates/lxc-oracle
/usr/share/lxc/templates/lxc-plamo
/usr/share/lxc/templates/lxc-sshd
/usr/share/lxc/templates/lxc-ubuntu
/usr/share/lxc/templates/lxc-ubuntu-cloud

For the NXP LSDK the busybox template is recommended and has been tested with flex-builder created root filesystems.

The how-to examples provided in this user guide that create system containers use the busybox template.

10.2.2.4 Containers with Libvirt
This section provides an overview to using libvirt-based containers.

For an general introduction to libvirt, please see the container information available on the libvirt website: http://libvirt.org/
drvlxc.html.

With libvirt, a container "domain" is specified in an XML file. The XML is used to "define" the container, which then allows the
container to be managed with the standard libvirt domain lifecycle.

Libvirt XML

The XML for the simplest functional container would look like the example below:

<domain type='lxc'>
 <name>container1</name>
 <memory>500000</memory>
 <os>
 <type>exe</type>
 <init>/bin/sh</init>
 </os>
 <devices>
 <console type='pty'/>
 </devices>
</domain>

Refer to the XML reference information available on the libvirt website for detailed reference information: http://libvirt.org/
formatdomain.html

The <domain> element must specify a type attribute of "lxc" for a container/lxc domain. There are 4 additional sub-nodes required:

• <name> - specifies the name of the container

• <memory> - specifies the maximum memory the container may use

• <os> - identifies the initial program to run. In the example this is /bin/sh. For an application based container this is the name
of the application. If booting an instance of Linux user space this would typically by /sbin/init.

• <devices> - specifies any devices, in the above example there is just a console

Filesystem mounts (from http://libvirt.org/drvlxc.html)

In the absence of any explicit configuration, the container will inherit the host OS filesystem mounts. A number of mount points
will be made read only, or re-mounted with new instances to provide container specific data. The following special mounts are
setup by libvirt:

• /dev a new "tmpfs" pre-populated with authorized device nodes

• /dev/pts a new private "devpts" instance for console devices

• /sys the host "sysfs" instance remounted read-only

• /proc a new instance of the "proc" filesystem

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
904 NXP Semiconductors

http://libvirt.org/drvlxc.html
http://libvirt.org/drvlxc.html
http://libvirt.org/formatdomain.html
http://libvirt.org/formatdomain.html
http://libvirt.org/drvlxc.html

• /proc/sys the host "/proc/sys" bind-mounted read-only

• /sys/fs/selinux the host "selinux" instance remounted read-only

• /sys/fs/cgroup/NNNN the host cgroups controllers bind-mounted to only expose the sub-tree associated with the container

• /proc/meminfo a FUSE backed file reflecting memory limits of the container

Additional filesystem mounts can be created using the <filesystem> node under the <devices> node. See the libvirt.org
documentation referenced above for further details.

Device nodes from http://libvirt.org/drvlxc.html

The container init process will be started with CAP_MKNOD capability removed and blocked from re-acquiring it. As such it will
not be able to create any device nodes in /dev or anywhere else in its filesystems. Libvirt itself will take care of pre-populating
the /dev filesystem with any devices that the container is authorized to use. The current devices that will be made available to all
containers are:

• /dev/zero

• /dev/null

• /dev/full

• /dev/random

• /dev/urandom

• /dev/stdin symlinked to /proc/self/fd/0

• /dev/stdout symlinked to /proc/self/fd/1

• /dev/stderr symlinked to /proc/self/fd/2

• /dev/fd symlinked to /proc/self/fd

• /dev/ptmx symlinked to /dev/pts/ptmx

• /dev/console symlinked to /dev/pts/0

10.2.2.5 Linux Control Groups (cgroups)
Linux control groups (or cgroups) is a feature of the Linux kernel that allows the allocation, prioritization,control, and monitoring
of resources such as CPU time, memory, network bandwidth among groups of Linux processes.

Cgroups is one of the underlying Linux kernel features that LXC is built upon. LXC automatically creates a cgroup for each container
when it is started. A pre-requisite for using LXC is mounting the cgroup virtual filesystem.

Cgroups encompass a number of different subsystems or "controllers" that are used for managing and controlling different
resources. The following subsystems/controllers are supported:

• cpu - controls CPU allocation for tasks in a cgroup;

• cpuset - assigns individual CPUs and memory nodes to tasks in a cgroup;

• cpuacct - generates automatic reports on CPU resources used by the tasks in a cgroup;

• memory - isolates the memory behavior of a group of tasks from the rest of the system;

• devices - allows or denies access to devices by tasks in a crgroup;

• freezer - suspends or resumes tasks in a cgroup;

• net_cls - tags packets with a class identifier that allows the Linux traffic controller to identify packets originating from a particular
cgroup;

• net_prio - provides a way to dynamically set the priority of network traffic per each network interface for applications within
various cgroups;

• blkio - controls and monitors access to I/O on block devices by tasks in cgroups.

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 905

http://libvirt.org/drvlxc.html

Check out the Red Hat documentation on cgroups here: https://access.redhat.com/site/documentation/en-US/
Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch-Subsystems_and_Tunable_Parameters.html.

Cgroup subsystems can be configured within the configuration file used when creating a container. The configuration file accepts
cgroup configuration in the following form:

lxc.cgroup.[subsystem name] = <value>

See the http://man7.org/linux/man-pages/man5/lxc.conf.5.html for further details.

Cgroup subsystems can also be displayed or updated while a container is running using the lxc-cgroup command:

lxc-cgroup -n [container-name] [cgroup-subsystem] [value]

For some examples of how to use cgroups to control container configuration, see the article: LXC: How to use cgroups to manage
and control a containers resources on page 917.

10.2.2.6 Linux Namespaces
Linux namespaces is a feature in the Linux kernel that allows one to unshare and isolate a processes' resources like UTS, PID,
IPC, file system mount and network from their parent. To achieve this the kernel places the resources in different namespaces.

When LXC spawns the container's main process it unshares all these resources except the network. The network is controlled
from the configuration file and is shared by default.

A network namespace provides an isolated view of the networking stack (network device interfaces, IPv4 and IPv6 protocol stacks,
IP routing tables, firewall rules, the /proc/net and /sys/class/net directory trees, sockets, etc.). A physical network device can live
in exactly one network namespace. A virtual network device ("veth") pair provides a pipe-like abstraction that can be used to
create tunnels between network namespaces, and can be used to create a bridge to a physical network device in another
namespace. When a network namespace is freed (i.e., when the last process in the namespace terminates), its physical network
devices are moved back to the initial network namespace (not to the parent of the process).

Each namespace is documented in the Linux clone man page. See: clone (2)

10.2.2.7 POSIX Capabilities
Linux supports the concept of file "capabilities" which provides fine grained control over what executable programs are permitted
to do. Instead of the "all or nothing" paradigm where a super-user or "root" has the power to perform all operations, capabilities
provide a mechanism to grant a specific program specific capabilities.

LXC uses this feature of the kernel to implement containers. By default processes running in a container will have all capabilities,
but this can be configured. Capabilities can be dropped in the container's configuration file. See LXC: Configuration Files on page
902.

For example, to drop the CAP_SYS_MODULE, CAP_MKNOD, CAP_SETUID, and CAP_NET_RAW capabilities, the following
configuration file options would be specified:

 lxc.cap.drop = sys_module mknod setuid net_raw

Each capability is documented in the Linux capabilities man page. See: capabilities (7)

In order to fully isolate a container, the capabilities to be dropped must be carefully considered. The Linux Vserver project considers
only the following capabilities as safe for virtual private servers:

 CAP_CHOWN
 CAP_DAC_OVERRIDE
 CAP_DAC_READ_SEARCH
 CAP_FOWNER
 CAP_FSETID
 CAP_KILL
 CAP_SETGID
 CAP_SETUID
 CAP_NET_BIND_SERVICE
 CAP_SYS_CHROOT

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
906 NXP Semiconductors

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch-Subsystems_and_Tunable_Parameters.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch-Subsystems_and_Tunable_Parameters.html
http://man7.org/linux/man-pages/man5/lxc.conf.5.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

 CAP_SYS_PTRACE
 CAP_SYS_BOOT
 CAP_SYS_TTY_CONFIG
 CAP_LEASE

(see: http://linux-vserver.org/Paper#Secure_Capabilities)

10.2.3 LXC: How To's

10.2.3.1 LXC: Getting Started (with a Busybox System Container)
The following article describes steps to run a simple container example. All the command below are issued from a host Linux
command prompt.

1. Confirm that your kernel environment is configured correctly using lxc-checkconfig. All options should show as 'enabled.

lxc-checkconfig
--- Namespaces ---
Namespaces: enabled
Utsname namespace: enabled
Ipc namespace: enabled
Pid namespace: enabled
User namespace: enabled
Network namespace: enabled

--- Control groups ---
Cgroup: enabled
Cgroup clone_children flag: enabled
Cgroup device: enabled
Cgroup sched: enabled
Cgroup cpu account: enabled
Cgroup memory controller: enabled
Cgroup cpuset: enabled

--- Misc ---
Veth pair device: enabled
Macvlan: enabled
Vlan: enabled
Bridges: enabled
Advanced netfilter: enabled
CONFIG_NF_NAT_IPV4: enabled
CONFIG_NF_NAT_IPV6: enabled
CONFIG_IP_NF_TARGET_MASQUERADE: enabled
CONFIG_IP6_NF_TARGET_MASQUERADE: enabled
CONFIG_NETFILTER_XT_TARGET_CHECKSUM: enabled
FUSE (for use with lxcfs): enabled

--- Checkpoint/Restore ---
checkpoint restore: missing
CONFIG_FHANDLE: enabled
CONFIG_EVENTFD: enabled
CONFIG_EPOLL: enabled
CONFIG_UNIX_DIAG: enabled
CONFIG_INET_DIAG: enabled
CONFIG_PACKET_DIAG: enabled
CONFIG_NETLINK_DIAG: enabled
File capabilities: enabled

Note: Before booting a new kernel, you can check its configuration

Usage : CONFIG=/path/to/config /usr/bin/lxc-checkconfig

If the cgroup namespace option shows as required:

Cgroup namespace: required

The /cgroup directory most likely needs to be created and or mounted.

2. Create a container

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 907

http://linux-vserver.org/Paper#Secure_Capabilities

Create a system container using lxc-create and specify the busybox template and lxc-empty-netns.conf config file. lxc-
empty-netns.conf is a simple config file with no networking:

lxc-create -n foo -t busybox -f /usr/share/doc/lxc-common/examples/lxc-empty-netns.conf
setting root password to "root"
Password for 'root' changed
#

By default, LXC will try to install the dropbear ssh utility, if it's available on the host system. The Busybox template also has
support for installing OpenSSH (assuming it's installed on the host Linux) in the container. This needs to be passed explicitly
using a command line parameter:

lxc-create -n foo -t busybox -f /usr/share/doc/lxc-common/examples/lxc-empty-
netns.conf -- -s openssh
setting root password to "root"
Password for 'root' changed
'OpenSSH' ssh utility installed
#

3. List containers that exist

lxc-ls -f
NAME STATE AUTOSTART GROUPS IPV4 IPV6
foo STOPPED 0 - - -

4. From a shell on the host Linux, start the container. When prompted, press 'Enter'.

lxc-start -n foo -F

Please press Enter to activate this console.

/ #

/ #

Note that the shell is now running within the container. Normal Linux commands can be executed.

Important notice: while this mode starts the container and directly connects to one of its terminals, there is a minor caveat:
the terminal will be stuck in this container console until the container is halted (either from here, by running halt, or from
another terminal by running lxc-stop). In order to avoid this, there is also the possibility to start the container as a daemon
and connect to it using lxc-console (this is the default mode). This provides better terminal capabilities and the user is not
forced to stop the container from another terminal. On the other hand, there is no indication that after running lxc-start the
container has actually started - no errors are reported. You must check if the container is running yourself, using lxc-info
- see below.

lxc-start -n foo
lxc-console -n foo

Type <Ctrl+a q> to exit the console, <Ctrl+a Ctrl+a> to enter Ctrl+a itself

foo login: root
Password: (root)
~ #
~ #
~ #
~ # (Ctrl+a q)
#

This will be the preferred mode of starting and connecting to containers.

5. List processes in the container.

From in the container shell use the ps command to list processes:

~ # ps
 PID USER VSZ STAT COMMAND
 1 root 2384 S init
 4 root 2384 S /bin/syslogd
 6 root 2388 S -sh

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
908 NXP Semiconductors

 7 root 2384 S init
 8 root 2388 R ps

Note process IDs have a number-space unique to the container.

6. Show the status of the foo container (from a host shell):

lxc-info -n foo
Name: foo
State: RUNNING
PID: 4544
CPU use: 0.01 seconds
Memory use: 472.00 KiB
KMem use: 0 bytes

7. Look at the files/directories in /var/lib/lxc related to the container

ls -l /var/lib/lxc/foo
total 2
-rw-r--r-- 1 root root 675 May 30 15:37 config
drwxr-xr-x 16 root root 1024 May 30 15:44 rootfs

This shows the containers config file and rootfs backing store.

Look at the contents of the config file:

cat /var/lib/lxc/foo/config
Template used to create this container: /usr/share/lxc/templates/lxc-busybox
Parameters passed to the template:
For additional config options, please look at lxc.conf(5)
lxc.utsname = omega
lxc.network.type = empty
lxc.network.flags = up
lxc.rootfs = /var/lib/lxc/foo/rootfs
lxc.haltsignal = SIGUSR1
lxc.utsname = foo
lxc.tty = 1
lxc.pts = 1
lxc.cap.drop = sys_module mac_admin mac_override sys_time

When using LXC with apparmor, uncomment the next line to run unconfined:
#lxc.aa_profile = unconfined
lxc.mount.entry = /lib lib none ro,bind 0 0
lxc.mount.entry = /usr/lib usr/lib none ro,bind 0 0
lxc.mount.entry = /sys/kernel/security sys/kernel/security none ro,bind,optional 0 0
lxc.mount.auto = proc:mixed sys

8. Start a process inside the container using lxc-attach. This command will run the process inside the system container's
isolated environment. The container has to be running already.

lxc-attach -n foo -- /bin/sh
root@foo:/# ps
PID USER TIME COMMAND
 1 root 0:00 init
 6 root 0:00 /bin/syslogd
 8 root 0:00 /bin/getty -L tty1 115200 vt100
 9 root 0:00 init
 10 root 0:00 /bin/sh
 11 root 0:00 ps
root@foo:/# ls -l /dev
total 0
crw-rw-rw- 1 root 5 136, 1 May 26 13:13 console
lrwxrwxrwx 1 root root 13 May 26 13:12 fd -> /proc/self/fd
lrwxrwxrwx 1 root root 7 May 26 13:13 kmsg -> console
srw-rw-rw- 1 root root 0 May 26 13:13 log
crw-rw-rw- 1 root root 1, 3 May 26 13:10 null
lrwxrwxrwx 1 root root 13 May 26 13:12 ptmx -> /dev/pts/ptmx
drwxr-xr-x 2 root root 0 May 26 13:13 pts
brw------- 1 root root 1, 0 May 26 13:10 ram0
drwxrwxrwt 2 root root 40 May 26 13:13 shm
lrwxrwxrwx 1 root root 15 May 26 13:12 stderr -> /proc/self/fd/2

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 909

lrwxrwxrwx 1 root root 15 May 26 13:12 stdin -> /proc/self/fd/0
lrwxrwxrwx 1 root root 15 May 26 13:12 stdout -> /proc/self/fd/1
crw-rw-rw- 1 root root 5, 0 May 26 13:10 tty
crw-rw-rw- 1 root root 4, 0 May 26 13:10 tty0
crw--w---- 1 root root 136, 0 May 26 13:13 tty1
crw-rw-rw- 1 root root 4, 0 May 26 13:10 tty5
crw-rw-rw- 1 root root 1, 9 May 26 13:10 urandom
crw-rw-rw- 1 root root 1, 5 May 26 13:10 zero
root@foo:/#

9. Stop the container (from a host shell)

lxc-stop -n foo
#
lxc-info -n foo
Name: foo
State: STOPPED

10. Destroy the container. This removes the containers config file and backing store.

lxc-destroy -n foo
#

10.2.3.2 LXC: How to configure non-virtualized networking (lxc-no-
netns.conf)

One approach to providing networking capability to a container is to simply allow the container to use existing host network
interfaces. To accomplish this, a configuration file is created with no networking setup (i.e. the lxc.network.type property is not
set) and the default will be to allow the container to access the host's networking interfaces.

With this approach no network namespace is created for the container.

An example config is provided:

/usr/share/doc/lxc-common/examples/lxc-no-netns.conf

The contents of lxc-no-netns.conf look like this:

Container with non-virtualized network
lxc.network.type = none
lxc.utsname = delta

The example below shows starting an application container (running bash) with this config file and shows that the host network
interface enp1s0 is inherited and accessible by the container:

lxc-execute -n mytest -f /usr/share/doc/lxc-common/examples/lxc-no-netns.conf -- /bin/bash
root@delta:/root# ifconfig
docker0 Link encap:Ethernet HWaddr 02:42:b0:95:11:e0
 inet addr:172.17.0.1 Bcast:0.0.0.0 Mask:255.255.0.0
 inet6 addr: fe80::42:b0ff:fe95:11e0/64 Scope:Link
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:18 errors:0 dropped:0 overruns:0 frame:0
 TX packets:15 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:4568 (4.5 KB) TX bytes:1236 (1.2 KB)

enp1s0 Link encap:Ethernet HWaddr 68:05:ca:36:9d:75
 inet addr:192.168.1.20 Bcast:0.0.0.0 Mask:255.255.248.0
 inet6 addr: fe80::6a05:caff:fe36:9d75/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:94306 errors:0 dropped:0 overruns:0 frame:0
 TX packets:40146 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:138650604 (138.6 MB) TX bytes:2922616 (2.9 MB)
 Interrupt:100 Memory:30460c0000-30460e0000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
910 NXP Semiconductors

 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:1018 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1018 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:78782 (78.7 KB) TX bytes:78782 (78.7 KB)

lxcbr0 Link encap:Ethernet HWaddr 00:16:3e:00:00:00
 inet addr:10.0.3.1 Bcast:0.0.0.0 Mask:255.255.255.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

10.2.3.3 LXC: How to assign a physical network interface to a
container (lxc-phys.conf)

One approach to providing networking capability to a container is to directly assign an available, unused network interface to the
container. The interface is not shared, it becomes the private resource of the container.

An example LXC configuration file is provided to configure this type of networking:

/usr/share/doc/lxc-common/examples/lxc-phys.conf

The contents of the default lxc-phys.conf example are show below:

Container with network virtualized using a physical network device with name
'eth0'
lxc.utsname = gamma
lxc.network.type = phys
lxc.network.flags = up
lxc.network.link = eth0
lxc.network.hwaddr = 4a:49:43:49:79:ff
lxc.network.ipv4 = 10.2.3.6/24
lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3297

Note: The network type is set to: phys. Make a copy of the example config file and update it with the name of the Ethernet
interface to be assigned, an appropriate IP address, and any other appropriate changes (e.g. mac address). For example, the
change (in universal diff format) to set the interface enp1s0 and IP address 192.168.10.3 would look like:

/usr/share/doc/lxc-common/examples/lxc-phys.conf
+++ lxc-phys.conf
@@ -3,7 +3,6 @@
 lxc.utsname = gamma
 lxc.network.type = phys
 lxc.network.flags = up
-lxc.network.link = eth0
-lxc.network.hwaddr = 4a:49:43:49:79:ff
-lxc.network.ipv4 = 10.2.3.6/24
-lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3297
+lxc.network.link = enp1s0
+lxc.network.hwaddr = 00:e0:0c:00:93:05
+lxc.network.ipv4 = 192.168.10.3/24

A simple way to test the new config file and the network interface is to run /bin/bash as a command with lxc-execute, which will
provide a shell running in the container:

lxc-execute -n mytest -f lxc-phys.conf -- /bin/bash
bash-4.2#

In the container, use the fm1-gb4 interface normally:

bash-4.3# ifconfig
enp1s0 Link encap:Ethernet HWaddr 00:e0:0c:00:93:05
 inet addr:192.168.10.3 Bcast:192.168.10.255 Mask:255.255.255.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 911

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:508 (508.0 B)
 Memory:fe5e8000-fe5e8fff

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

bash-4.2# ping -c 3 192.168.10.1
PING 192.168.10.1 (192.168.10.1) 56(84) bytes of data.
64 bytes from 192.168.10.1: icmp_req=1 ttl=64 time=0.385 ms
64 bytes from 192.168.10.1: icmp_req=2 ttl=64 time=0.207 ms
64 bytes from 192.168.10.1: icmp_req=3 ttl=64 time=0.187 ms

--- 192.168.10.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.187/0.259/0.385/0.090 ms

10.2.3.4 LXC: How to configure networking with virtual Ethernet pairs
(lxc-veth.conf)

One approach to providing a virtual network interface to a container is using the "Virtual ethernet pair device" feature of the Linux
kernel in conjunction with a network bridge.

See the veth description in http://man7.org/linux/man-pages/man5/lxc.conf.5.html for additional details on this approach to
networking.

With this approach LXC creates a new network namespace for the container.

The example configuration file lxc-veth.conf demonstrates this approach:

/usr/share/doc/lxc-common/examples/lxc-veth.conf

The contents of the default lxc-veth.conf example are show below:

Container with network virtualized using a pre-configured bridge named br0 and
veth pair virtual network devices
lxc.utsname = beta
lxc.network.type = veth
lxc.network.flags = up
lxc.network.link = br0
lxc.network.hwaddr = 4a:49:43:49:79:bf
lxc.network.ipv4 = 10.2.3.5/24
lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3597

Note, the network type value is: veth and the link property value is br0.

First, create a network bridge which is attached to a physical network interface and assign the bridge an IP address. The bridge
becomes one endpoint In the example below the bridge br0 is created, interface enp1s0 is added to it, and the bridge is assigned
an IP address of 192.168.20.2.

brctl addbr br0
ifconfig br0 192.168.20.2 up
ifconfig enp1s0 up
brctl addif br0 enp1s0

Make a copy of the example config file and update it with an appropriate IP address and any other appropriate changes (e.g. mac
address). For example, the change (in universal diff format) to update the IP address to 192.168.20.3 would look like:

--- /usr/share/doc/lxc-common/examples/lxc-veth.conf
+++ lxc-veth.conf
@@ -5,5 +5,5 @@

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
912 NXP Semiconductors

http://man7.org/linux/man-pages/man5/lxc.conf.5.html

 lxc.network.flags = up
 lxc.network.link = br0
 lxc.network.hwaddr = 4a:49:43:49:79:bf
-lxc.network.ipv4 = 10.2.3.5/24
+lxc.network.ipv4 = 192.168.20.3/24
 lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3597

A simple way to test the new config file and the network interface is to run /bin/bash as a command with lxc-execute, which will
provide a shell running in the container:

lxc-execute -n mytest -f lxc-veth.conf -- /bin/bash
bash-4.2#

In the container, use the virtual network interface (eth0 in this example) normally:

bash-4.2# ifconfig
eth0 Link encap:Ethernet HWaddr 4a:49:43:49:79:bf
 inet addr:192.168.20.3 Bcast:192.168.20.255 Mask:255.255.255.0
 inet6 addr: fe80::4849:43ff:fe49:79bf/64 Scope:Link
 inet6 addr: 2003:db8:1:0:214:1234:fe0b:3597/64 Scope:Global
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:6 errors:0 dropped:0 overruns:0 frame:0
 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:468 (468.0 B) TX bytes:586 (586.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

bash-4.2# ping -c 3 192.168.20.1
PING 192.168.20.1 (192.168.20.1) 56(84) bytes of data.
64 bytes from 192.168.20.1: icmp_req=1 ttl=64 time=0.433 ms
64 bytes from 192.168.20.1: icmp_req=2 ttl=64 time=0.221 ms
64 bytes from 192.168.20.1: icmp_req=3 ttl=64 time=0.228 ms

--- 192.168.20.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.221/0.294/0.433/0.098 ms

10.2.3.5 LXC: How to configure networking with macvlan (lxc-
macvlan.conf)

An LXC container can be provided with a virtual network interface using the "MAC-VLAN" feature of the Linux kernel (see kernel
config option CONFIG_MACVLAN). MAC-VLAN allows virtual interfaces to be created that route packets to or from a MAC address
to a physical network interface.

See the macvlan description in http://man7.org/linux/man-pages/man5/lxc.conf.5.html for some additional details on this approach
to networking.

The example configuration file lxc-veth.conf demonstrates this approach:

/usr/share/doc/lxc-common/examples/lxc-macvlan.conf

The contents of the provided lxc-phys.conf example configuration file are show below:

Container with network virtualized using the macvlan device driver
lxc.utsname = alpha
lxc.network.type = macvlan
lxc.network.flags = up
lxc.network.link = eth0
lxc.network.hwaddr = 4a:49:43:49:79:bd
lxc.network.ipv4 = 10.2.3.4/24
lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3596

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 913

http://man7.org/linux/man-pages/man5/lxc.conf.5.html

Make a copy of the example config file and update it with the physical network interface to be used, an appropriate IP address,
and any other appropriate changes (e.g. mac address). For example, the change (in universal diff format) to specify the enp1s0
interface and update the IP address to 192.168.1.24 would look like:

--- /usr/share/doc/lxc-common/examples/lxc-macvlan.conf
+++ lxc-macvlan.conf
@@ -2,7 +2,7 @@
 lxc.utsname = alpha
 lxc.network.type = macvlan
 lxc.network.flags = up
-lxc.network.link = eth0
+lxc.network.link = enp1s0
 lxc.network.hwaddr = 4a:49:43:49:79:bd
-lxc.network.ipv4 = 10.2.3.4/24
+lxc.network.ipv4 = 192.168.10.3/24
 lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3596

Put the network interface in promiscuous mode:

ifconfig enp1s0 promisc
ifconfig enp1s0
enp1s0 Link encap:Ethernet HWaddr 00:e0:0c:00:93:05
 inet addr:192.168.10.2 Bcast:192.168.10.255 Mask:255.255.255.0
 inet6 addr: fe80::2e0:cff:fe00:9305/64 Scope:Link
 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
 RX packets:5 errors:0 dropped:0 overruns:0 frame:0
 TX packets:17 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:344 (344.0 B) TX bytes:1314 (1.2 KiB)
 Memory:fe5e0000-fe5e0fff

Test the MAC-VLAN interface by starting an application container running /bin/bash:

lxc-execute -n mytest -f lxc-macvlan.conf -- /bin/bash
bash-4.2#

Note: the shell prompt above ("bash-4.2") is in the container.

Test the interface in the now running container:

bash-4.2# ifconfig
eth0 Link encap:Ethernet HWaddr 4a:49:43:49:79:bd
 inet addr:192.168.10.3 Bcast:192.168.10.255 Mask:255.255.255.0
 inet6 addr: fe80::4849:43ff:fe49:79bd/64 Scope:Link
 inet6 addr: 2003:db8:1:0:214:1234:fe0b:3596/64 Scope:Global
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:586 (586.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

bash-4.2# ping -c 3 192.168.10.1
PING 192.168.10.1 (192.168.10.1) 56(84) bytes of data.
64 bytes from 192.168.10.1: icmp_req=1 ttl=64 time=0.380 ms
64 bytes from 192.168.10.1: icmp_req=2 ttl=64 time=0.204 ms
64 bytes from 192.168.10.1: icmp_req=3 ttl=64 time=0.201 ms

--- 192.168.10.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.201/0.261/0.380/0.085 ms

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
914 NXP Semiconductors

10.2.3.6 LXC: How to configure networking using a VLAN (lxc-
vlan.conf)

A container can be provided with a virtual network interface using VLANs.

See the vlan description in http://man7.org/linux/man-pages/man5/lxc.conf.5.html for some additional details on this approach to
networking.

The example configuration file lxc-veth.conf demonstrates this approach:

/usr/share/doc/lxc-common/examples/lxc-vlan.conf

The contents of the provided lxc-vlan.conf example configuration file are show below:

 # Container with network virtualized using the vlan device driver
lxc.utsname = alpha
lxc.network.type = vlan
lxc.network.vlan.id = 1234
lxc.network.flags = up
lxc.network.link = eth0
lxc.network.hwaddr = 4a:49:43:49:79:bd
lxc.network.ipv4 = 10.2.3.4/24
lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3596

Make a copy of the example config file and update it with the physical network interface to be used and the vlan ID, an appropriate
IP address, and any other appropriate changes. For example, the change (in universal diff format) to specify the enp1s0 interface,
a VLAN id of 2, and an IP address of 192.168.30.2 would look like:

--- /usr/share/doc/lxc/examples/lxc-vlan.conf 2013-05-30 14:22:14.980406375 +0300
+++ lxc-vlan.conf 2013-06-03 13:26:38.477580000 +0300
@@ -1,9 +1,9 @@
 # Container with network virtualized using the vlan device driver
 lxc.utsname = alpha
 lxc.network.type = vlan
-lxc.network.vlan.id = 1234
+lxc.network.vlan.id = 2
 lxc.network.flags = up
-lxc.network.link = eth0
+lxc.network.link = enp1s0
 lxc.network.hwaddr = 4a:49:43:49:79:bd
-lxc.network.ipv4 = 10.2.3.4/24
+lxc.network.ipv4 = 192.168.30.2/24
 lxc.network.ipv6 = 2003:db8:1:0:214:1234:fe0b:3596

In this setup, the host is connected to a test machine through physical interface enp1s0. On the test machine, the following
commands have been issued (interface p7p1 on this machine has physical link to enp1s0):

[root@everest][~]# modprobe 8021q
[root@everest][~]# lsmod | grep 8021q
8021q 23476 0
garp 13763 1 8021q
[root@everest][~]# vconfig add p7p1 2
Added VLAN with VID == 2 to IF -:p7p1:-
[root@everest][~]# ifconfig p7p1.2 192.168.30.1 up

Test the VLAN interface by starting an application container running /bin/bash:

lxc-execute -n mytest -f lxc-vlan.conf -- /bin/bash
bash-4.2#

Test the interface in the now running container:

bash-4.2# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.30.2 netmask 255.255.255.0 broadcast 192.168.30.255
 inet6 fe80::21e:c9ff:fe49:bb93 prefixlen 64 scopeid 0x20<link>
 ether 00:1e:c9:49:bb:93 txqueuelen 0 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 915

http://man7.org/linux/man-pages/man5/lxc.conf.5.html

 TX packets 6 bytes 468 (468.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 16436
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 0 (Local Loopback)
 RX packets 4 bytes 200 (200.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 4 bytes 200 (200.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

bash-4.2# ping -c 3 192.168.30.1
PING 192.168.30.1 (192.168.30.1) 56(84) bytes of data.
64 bytes from 192.168.30.1: icmp_req=1 ttl=64 time=0.338 ms
64 bytes from 192.168.30.1: icmp_req=2 ttl=64 time=0.372 ms
64 bytes from 192.168.30.1: icmp_req=3 ttl=64 time=0.355 ms

--- 192.168.30.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.338/0.355/0.372/0.013 ms

10.2.3.7 LXC: How to monitor containers
Containers transition through a set of well defined states. After a container is created it is in the "stopped" state.

 | STOPPED |<---------------
 --------- |
 | |
 start |
 | |
 V |
 ---------- |
 | STARTING |--error- |
 ---------- | |
 | | |
 V V |
 --------- ---------- |
 | RUNNING | | ABORTING | |
 --------- ---------- |
 | | |
 no process | |
 | | |
 V | |
 ---------- | |
 | STOPPING |<------- |
 ---------- |
 | |

A number of commands are available in LXC to monitor the state of a container. The following examples provide an introduction
and demonstrate the capabilities of these commands.

1. lxc-info

The lxc-info command shows the current state of the container.

In the example below, a container called "foo" has already been created but not started and the container is stopped:

lxc-info -n foo
Name: foo
State: STOPPED
After the container is started lxc-info shows the container in the running state:

lxc-start -n foo
lxc-info -n foo
Name: foo
State: RUNNING
PID: 5075

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
916 NXP Semiconductors

CPU use: 0.01 seconds
Memory use: 508.00 KiB
KMem use: 0 bytes

2. lxc-monitor

The lxc-monitor command can monitor the state of one or more containers, the command continues to run until it is killed.

In this example lxc-monitor monitors the state of a container named "foo":

lxc-monitor -n foo

In a separate shell, start and then stop the container foo:

lxc-start -n foo
lxc-stop -n foo

The running lxc-monitor command displays the state changes as they occur:

'foo' changed state to [STARTING]
'foo' changed state to [RUNNING]
'foo' changed state to [STOPPING]
'foo' changed state to [STOPPED]

3. lxc-wait

The lxc-wait command will wait for a container state change and then exit. This can be useful for scripting and synchonizing
the start or exit of a container.

For example, to wait until the container named "foo" stops:

lxc-wait -n foo -s STOPPED

10.2.3.8 LXC: How to modify the capabilities of a container to provide
additional isolation

As described in POSIX Capabilities on page 906 ,by default processes running in a container will have all capabilities. And the
configuration for a container can further restrict these capabilities.

This example shows how to remove the ability for a container to issue the mknod command.

By default a container can issue the mknod command:

~ # mknod zero c 1 5
~ # ls -l zero
crw-r--r-- 1 root root 1, 5 Jun 3 17:08 zero

In this example we modify the config file of a container named "foo" (/var/lib/lxc/foo/config) and specify in the lxc.cap.drop property
that the mknod capability (CAP_MKNOD) should be removed:

@@ -5,6 +5,7 @@
 lxc.utsname = foo
 lxc.tty = 1
 lxc.pts = 1
+lxc.cap.drop = mknod
 lxc.rootfs = /var/lib/lxc/foo/rootfs
 lxc.mount.entry=/lib /var/lib/lxc/foo/rootfs/lib none ro,bind 0 0
 lxc.mount.entry=/usr/lib /var/lib/lxc/foo/rootfs/usr/lib none ro,bind 0 0

Now restart the container and the mknod operation is no longer permitted:

~ # mknod zero c 1 5
mknod: zero: Operation not permitted

10.2.3.9 LXC: How to use cgroups to manage and control a containers
resources

This example demonstrates how to use control croups to control which CPU's a container is scheduled on and the percentage of
CPU time allocated to a container.

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 917

In this example we'll examine and change:

• the cpuset subsystem's cpus parameter which controls which physical CPUs the container's processes will run on

• the cpu subsystem's shares parameter which controls the percentage of the CPU to be allocated to the container

1. Start two application containers each running /bin/bash:

First container:

lxc-execute -n foo1 -f lxc-no-netns.conf -- /bin/bash
bash-4.2#

Second container:

lxc-execute -n foo2 -f lxc-no-netns.conf -- /bin/bash
bash-4.2#

2. In both containers start a process that will put a 100% load on the CPUs:

(while true; do true; done) &

3. The cpuset.cpus subsystem/value specifies which physical CPUs the container's processes run on. From a host shell,
examine this with the lxc-cgroup command:

lxc-cgroup -n foo1 cpuset.cpus
0-7

In this example the host system has 4 CPUs.

This can also be seen directly through the /cgroup filesystem:

cat /sys/fs/cgroup/cpuset/lxc/foo1/cpuset.cpus
0-7

4. Change both containers to run only on CPU 2:

lxc-cgroup -n foo1 cpuset.cpus 2
lxc-cgroup -n foo2 cpuset.cpus 2
#

The top command now shows CPU 2 with 100% utilization. The bash commands running in each container, each have
about 50% of the CPU:

top - 17:14:41 up 10 min, 4 users, load average: 1.64, 0.61, 0.23
Tasks: 100 total, 3 running, 97 sleeping, 0 stopped, 0 zombie
Cpu0 : 0.0%us, 0.3%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu1 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu2 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu3 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu4 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu5 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu6 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 3996400k total, 189836k used, 3806564k free, 1652k buffers
Swap: 0k total, 0k used, 0k free, 26180k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2875 root 20 0 3624 416 164 R 50 0.0 1:28.12 bash
 2874 root 20 0 3624 424 168 R 50 0.0 1:31.06 bash

5. The cpu.shares subsystem/value specifies the percentage of the CPU allocated to the cgroup/container. By default each
container has a shares value of 1024:

lxc-cgroup -n foo1 cpu.shares
1024
lxc-cgroup -n foo2 cpu.shares
1024

6. Change container "foo2" to have about 10% of the CPU:

lxc-cgroup -n foo2 cpu.shares 100
lxc-cgroup -n foo1 cpu.shares 900

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
918 NXP Semiconductors

Now the top command output reflects the new CPU allocation:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2874 root 20 0 3624 424 168 R 90 0.0 2:53.63 bash
 2875 root 20 0 3624 416 164 R 10 0.0 2:11.36 bash

7. Stop the containers

lxc-stop -n foo1 -k
lxc-stop -n foo2 -k
#

10.2.3.10 LXC: How to run an application in a container with lxc-
execute

The lxc-execute command allows a single application to be run in a container (as contrasted with a system container which boots
an instance of Linux user space starting with System V style init).

In the example below an instance of a QEMU/KVM virtual machine is started in a container called foo.

Note, it is not required to explicitly create (and destroy) a container when running application containers with lxc-execute. The
containers will automatically created and destroyed.

1. Start QEMU in the container with lxc-execute:

lxc-execute -n foo -f lxc-no-netns.conf -- qemu-system-ppc -enable-kvm -smp 2 -m 256M -
nographic -M ppce500 -kernel uImage -initrd rootfs.ext2.gz -append "root=/dev/ram rw
console=ttyS0,115200" -serial tcp::4445,server,telnet

NOTE: For 64bit platforms, please replace qemu-system-ppc with qemu-system-ppc64.

Some notes:

• The QEMU command line follows the double dash ("--") specfied on the lxc-execute command line and distinguishes argument
to lxc-execute from arguments to qemu-system-ppc.

• Using the specified configuration file, QEMU will run in the network namespace of the host system, meaning the TCP ports
for serial and the monitor (ports 4445 and 4446) can be accessed from the host. However, lxc-execute will accept a
configuration file as an argument allowing customization of the degree of isolation of the container.

• In this example there are 2 virtual cpus specified, which results in a total of 3 QEMU processes/threads. So we expect to see
3 QEMU processes in the container.

2. Examine the state of the container with lxc-ls and lxc-info:

lxc-ls --active
foo

lxc-info -n foo
Name: foo
State: RUNNING
PID: 3205
IP: 192.168.2.80
CPU use: 3.96 seconds
Memory use: 140.46 MiB
KMem use: 0 bytes

3. In the QEMU console look at the CPU status which shows the process IDs for the two virtual CPUs in in the virtual machine:

(qemu) info cpus
* CPU #0: nip=0x00000000c001450c thread_id=4
 CPU #1: nip=0x00000000c001450c thread_id=5
(qemu)

Note that the process/thread IDs as viewed from within the container (thread IDs 4 and 5) are different than from the host, since
they are in a different namespace.

5. Using the container's cgroup restrict the physical CPUs on which the virtual machine is allowed to run.

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 919

By default all 4 CPUs can be used by the container :

by default all 4 CPUs can be used by the container
cat /cgroup/lxc/foo/cpuset.cpus
0-3

Restrict the containers processes to CPUs 2 and 3:

echo 2-3 > /cgroup/lxc/foo/cpuset.cpus
cat /cgroup/lxc/foo/cpuset.cpus
2-3

10.2.3.11 LXC: How to run an unprivileged container
With the addition of the user namespace in the Linux kernel, a normal user on a Linux host can create and run container instances.
This feature has been integrated in the LXC package, starting from version 1.0.

The steps below detail the necessary steps required in order to configure and manage an unprivileged container.

NOTE: Before running these steps, make sure that the host is properly configured for container use, by running lxc-checkconfig
(cgroups, namespaces, etc.).

1. Create the /etc/subuid and /etc/subgid file on the Linux host. These will be used to store the unprivileged user's
subordinate UIDs and GIDs. The unprivileged user has the ability to manage users on his own in his user namespace, and
their IDs will be mapped to corresponding ranges on IDs on the host system. The subordinate IDs will correspond to the
ranges defined in these files.

for file in '/etc/subuid' '/etc/subgid'; do
 touch $file
 chown root:root $file
 chmod 644 $file
done

2. Add a user in the system - lxc-user.

useradd lxc-user -p $(echo test | openssl passwd -1 -stdin)

3. Check the contents of /etc/subuid and /etc/subgid. If they contain the following entries, the user has been automatically
assigned a default set of subordinate IDs.

root@t4240qds:~# cat /etc/sub*
lxc-user:100000:65536
lxc-user:100000:65536
root@t4240qds:~#

If the files are empty, you need to manually assign a set of subordinate IDs to the user.

usermod --add-subuids 100000-165536 lxc-user
usermod --add-subgids 100000-165536 lxc-user

4. The container will have a virtual interface linked to a bridge on the host. Use the following command to create the bridge.

brctl addbr br0 && ifconfig br0 10.0.0.1

5. You must create and edit the /etc/lxc/lxc-usernet file. This file specifies how many interfaces the lxc-user will be allowed
to have linked in this bridge.

echo "lxc-user veth br0 10" > /etc/lxc/lxc-usernet

6. Create the /home/lxc-user/.config/lxc directory on the host. This will hold the default configuration for unprivileged
containers belonging to the lxc-user.

mkdir -p /home/lxc-user/.config/lxc

7. Create the default container configuration file, /home/lxc-user/.config/lxc/default.conf, and paste the following lines.

lxc.network.type = veth
lxc.network.link = br0
lxc.network.flags = up
lxc.id_map = u 0 100000 65536
lxc.id_map = g 0 100000 65536

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
920 NXP Semiconductors

8. Change the ownership of the newly created files and folders to lxc-user.

chown -R lxc-user:lxc-user /home/lxc-user/.config

9. For each of the mounted cgroup controllers, created a directory in the top called lxc-user, and change its ownership to lxc-
user. Be sure to enable the cgroup.clone_children and memory.use_hierarchy flags.

echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy

for c in `ls /sys/fs/cgroup/`; do
 echo 1 > /sys/fs/cgroup/$c/cgroup.clone_children
 mkdir /sys/fs/cgroup/$c/lxc-user
 chown -R lxc-user:lxc-user /sys/fs/cgroup/$c/lxc-user
done

10. Login as the new user in a new console.

t4240qds login: lxc-user
Password:
t4240qds:~$

11. Copy the shell PID in the lxc-user cgroups.

for c in `ls /sys/fs/cgroup/`; do
 echo $$ > /sys/fs/cgroup/$c/lxc-user/tasks
done

12. From the same shell as before, create a Busybox container. You can pass it a custom config file using the -f cmdline
parameter. Otherwise, it will pick the default config from /home/lxc-user/.config/default.conf.

t4240qds:~$ lxc-create -n foo -t busybox
setting root password to "root"
Password for 'root' changed
t4240qds:~$

13. Start the container.

t4240qds:~$ lxc-start -n foo -F

Please press Enter to activate this console.
/ #
/ #
/ # whoami
root
/ #

Now you can interact with the container as you would with one created by root. Make sure that all container commands
are run as lxc-user.

10.2.3.12 LXC: How to run containers with Seccomp protection
A large number of system calls are exposed to every userland process with many of them going unused for the entire lifetime of
the process. As system calls change and mature, bugs are found and eradicated. A certain subset of userland applications benefit
by having a reduced set of available system calls. The resulting set reduces the total kernel surface exposed to the application.
System call filtering is meant for use with those applications.

Seccomp (short for secure compute) is a system call filtering mechanism present in the kernel. Initially it has been thought to be
a sandboxing mechanism that would allow userspace processes to issue a very limited set of system calls - read(), write(), exit()
and sigreturn(). This has been further known to be seccomp mode 1, and while it is strong on the security side, it doesn't leave
much room for flexibility.

The next addition to seccomp was to allow filtering (or seccomp mode 2) based on the kernel BPF (Berkeley Packet Filter)
infrastructure. This allows the system administrator to define complex and granular policies, per system call and its arguments.
This is an extension to the BPF mechanism, that allows filtering to apply to system call numbers and their arguments, besides its
original purpose (socket packets). The defined filter results in a seccomp policy which is attached to the userspace process in the
form of a BPF program. Each time the process issues a system call, it is checked against this policy in order to determine how it
will be handled:

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 921

http://lwn.net/Articles/332974/
http://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
http://www.kernel.org/doc/Documentation/networking/filter.txt

• SECCOMP_RET_KILL - the task exits immediately without executing the system call.

• SECCOMP_RET_TRAP - the kernel sends a SIGSYS to the triggering task without executing the system call.

• SECCOMP_RET_ERRNO - a custom errno is returned to userspace without executing the system call.

• SECCOMP_RET_TRACE - causes the kernel to attempt to notify a ptrace-based tracer prior to executing the system call.
The tracer can skip the system call or change it to a valid syscall number.

• SECCOMP_RET_ALLOW - results in the system call being executed.

In order to make the secure computing facility more userspace-friendly, the libseccomp library has been developed, which is
meant to make it easier for applications to take advantage of the packet-filter-based seccomp mode. Prior to this, userspace
applications had to define the BPF filter themselves. libseccomp restructures this approach into a simple and straightforward API
which userspace applications can use. The latest version of libseccomp adds support for Python bindings as well, and is designed
to work on multiple architectures (ARM, MIPS). PowerPC support has also been merged on a separate branch, and is expected
to be included in future releases.

Using seccomp with LXC containers

Refer toLinux Containers (LXC) for NXP QorIQ User's Guide on page 898 for information on how to build LXC with seccomp
support in the SDK.

Note: Currently LXC seccomp support is not available for ARM64 architectures.

Seccomp filtering integrates well with processes sandboxed as containers, as they can be assigned to untrusted users and
exposed with a limited set of allowed system calls. This is a portable and granular low-level security mechanism which can be
used to increase container security. The seccomp policy file needs to be applied only to the init process in the container, and will
be inherited by all its children.

The seccomp policy for the container is specified using the container configuration file, in the form of a single line containing:

lxc.seccomp = /var/lib/lxc/lxc_seccomp.conf

An example lxc_seccomp policy file can look as follows:

2
blacklist
[ppc64]
mknod errno 120
sched_setscheduler trap
fchmodat kill
[ppc]
mknod

The elements in the policy file represent the following:

1. Version number (1/2) - a single integer containing a single number, 1 or 2. Version 1 only allows to define a set of system
calls which are allowed (whitelisted) in the container, specified by syscall number. This version is limited in configurability
and portability, since it's only used to specify allowed syscall numbers, which may differ from arch to arch. Version 2 allows
the policies to be either a whitelist (default deny, except mentioned syscalls) or a blacklist (default allow, except mentioned
syscalls), and the syscalls can be expressed by name.

2. Policy type (whitelist/blacklist) - with an option of a default policy action (errno #, trap, kill, allow). The policy type is per
seccomp context, and can be either whitelist or blacklist, not both.

3. Architecture tag [optional] - mentions that the following set of system calls will only be applied to a specific architecture.
There can be multiple architecture tags and associated syscalls. These tags allow the same seccomp policy file to be used
on multiple platforms, treating each one differently with respect to the set of system calls.

4. System calls - which can be expressed by number (in version 1) or name (in version 2). Optionally, an action can be
expressed after the system call (errno #, trap, kill, allow), specifying the desired seccomp behavior. If this is omitted, the
dafault rule action of the policy will be applied (allow for whitelist policies, kill for blacklist policies).

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
922 NXP Semiconductors

http://github.com/seccomp/libseccomp
http://outflux.net/teach-seccomp/
http://lwn.net/Articles/494252/
http://lwn.net/Articles/634391/
http://github.com/seccomp/libseccomp/tree/working-ppc64
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html

When running a container with the previous policy file on a PowerPC 64-bit platform, the mknod, sched_setscheduler (chrt) and
fchmodat (chmod) system calls will be denied, with mentioned behaviors: mknod will return errno 120 without executing, chrt will
trap and chmod will result in the process executing it being killed. On PowerPC platforms, only mknod will be denied, resulting in
the process being killed. All other system calls will be allowed.

Notes:

• Containers can still be started without loading a seccomp policy file, simply by omitting the lxc.seccomp line in the config file.
No seccomp policy is loaded by default.

• If a container process has a seccomp policy loaded, this can be seen in /proc/PID/status, on the seccomp line. This line will
contain "Seccomp: 2" when using seccomp filter (mode 2). "Seccomp: 0" means there is no seccomp policy in effect.

• Seccomp policies of a process are automatically inherited by its children.

• Currently LXC supports only system call based filtering, with no support for system call arguments.

• The performance degradation of the processes running with a seccomp policy applied is directly proportional with the policy
file size: normally, the system calls are listed as rules in the BPF filter program, and they all need to be parsed and matched
at each system call. The longer the list, the more time this will take.

• The LXC package comes shipped with a set of example policy files which can be found at /share/doc/lxc/examples/seccomp-
*. There's also a policy file, common.seccomp, which denies common security syscall threats in the container, such as kernel
module manipulation, kexec and open_by_handle_at (the vector for the Shocker exploit).

10.2.4 Libvirt
This document is a guide and tutorial to using libvirt on NXP SoCs. Libvirt is an open source toolkit that enables the management
of Linux-based virtualization technologies such as KVM/QEMU virtual machines and Linux containers. The goal of the libvirt
project (see https://libvirt.org) is to provide a stable, standard, hypervisor-agnostic interface for managing virtualization domains
such as virtual machines and containers. Domains can be remote and libvirt provides full security for managing remote domains
over a network. Libvirt is a layer intended to be used as a building block for higher level management tools and applications.

Libvirt provides:

• An interface to remotely manage the lifecycle of virtualization domains – provisioning, start/stop, monitoring

• Support for a variety of hypervisors – KVM/QEMU and Linux Containers are supported in the NXP SDK

• libvirtd – a Linux daemon that runs on a target node/system and allows a libvirt management tool to manage virtualization
domains on the node

• virsh – a basic command shell for managing libvirt domains

• A standard XML format for defining domains

Libvirt Domain Lifecycle

Two types of libvirt domains are supported – KVM/QEMU virtual machines and Linux containers. The following state diagram
illustrates the lifecycle of a domain, the states that domains can be in and the virsh commands that move the domain between
states.

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 923

http://github.com/lxc/lxc/blob/master/config/templates/common.seccomp
http://stealth.openwall.net/xSports/shocker.c
https://libvirt.org

Undefined

define Running

restore

Paused

Saved

save

resume suspend

destroyundefine

start

create

destroy

Defined

Domain States

• Undefined. There are two types of domains – persistent and transient domains. All domains begin in the undefined state
where they are defined in XML definition file, and libvirt is unaware of them.

• Defined. Persistent domains begin with being defined. This adds the domain to libvirt, but it is not running. This state can
also be conceptually thought of as stopped. The output of virsh list –all shows the domain as being shut off.

• Running. The running state is the normal state of an active domain after it has been started. The start command is used to
move persistent domains into this state. Transient domains go from being undefined to running through the create command.

• Paused. The domain execution has been suspended. The domain is unaware of being in this state.

• Saved. The domain state has been saved and could be restored again.

Libvirt URIs

Because libvirt supports managing multiple types of virtualization domains (possibly remote) it uses uniform resource identifiers
(URIs) to describes the target node to manage and the type of domain being managed.

An URI is specified when tools such as virsh makes a connection to a target node running libvirtd. Two types of URIs are supported
– QEMU/KVM and LXC.

QEMU/KVM URIs are in the form:

• for a local node: qemu:///system

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
924 NXP Semiconductors

• for a remote node: qemu[+transport]://[hostname]/system

Linux containers URIs:

• for a local node: lxc:///

• for a remote node: lxc[+transport]://[hostname]/

A default URI can be specified using the environment variable LIBVIRT_DEFAULT_URI or in the /etc/libvirt/libvirtd.conf config
file.

For further information on URIs:

• https://libvirt.org/uri.html

• https://libvirt.org/remote.html#Remote_URI_reference

Virsh

The virsh command is a command line tool provided with the libvirt package for managing libvirt domains. It can be used to create,
start, pause, shutdown domains. The general command format is:

virsh [OPTION]... <command> <domain> [ARG]...

Libvirt XML

The libvirt XML format is defined at http://libvirt.org/format.html.

Running libvirtd

The libvirtd daemon is installed as part of a libvirt packages installation. By default the target system init scripts should start libvirtd.
Running libvirtd on the target system is a pre-requisite to running any management tools such as virsh. The libvirtd daemon can
be manually started like this:

$ systemctl start libvirtd

In some circumstances the daemon may need to be restarted, such as after mounting cgroups or hugetlbfs. Daemon restart can
be done like this:

$ systemctl restart libvirtd

The libvirtd daemon can be configured in /etc/libvirt/libvirtd.conf. The file is self-documented and has detailed comments on the
configuration options available.

The libvirt daemon logs data to /var/log/libvirt/:

• General libvirtd log messages are in: /var/log/libvirt/libvirtd.log

• QEMU/KVM domain logs are in: /var/log/libvirt/qemu/[domain-name].log

• LXC domains logs are in: /var/log/libvirt/lxc/[domain-name].log

The verbosity of logging can be controlled in /etc/libvirt/libvirtd.conf.

Examples

Libvirt KVM/QEMU Examples

Virtio Block scenario

1. We begin with a simple QEMU command line in a text file named kvm_virtio_blk.args:

$ echo "/usr/bin/qemu-system-aarch64 -name kvm_virtio_blk -smp 2 -enable-kvm -m 1024 -
nographic -cpu host -machine type=virt -kernel /boot/Image -serial pty -drive
if=virtio,index=0,file=/root/ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -
append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk'" > kvm_virtio_blk.args

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 925

https://libvirt.org/uri.html
https://libvirt.org/remote.html#Remote_URI_reference
http://libvirt.org/format.html

Note: The serial console is a tty, not a telnet server. The -name option is required and specifies the name of the virtual
machine.

2. Before defining the domain, the QEMU command line must be converted to libvirt XML format:

$ virsh domxml-from-native qemu-argv kvm_virtio_blk.args > kvm_virtio_blk.xml

3. Now the domain can be defined:

$ virsh define kvm_virtio_blk.xml
Domain kvm_virtio_blk defined from kvm_virtio_blk.xml

$ virsh list --all
 Id Name State
 --
 - kvm_virtio_blk shut off

4. Start the domain. This starts the VM and boots the Linux Guest from the ubuntu_xenial_arm64_rootfs.ext4.img image.

$ virsh start kvm_virtio_blk
Domain kvm_virtio_blk started

$ virsh list
 Id Name State
 --
 16 kvm_virtio_blk running

5. The virsh console command can be used to connect to the console of the running Linux domain.

$ virsh console kvm_virtio_blk
Connected to domain kvm_virtio_blk
Escape character is ^]

Ubuntu 16.04.3 LTS localhost ttyAMA0

localhost login: root
Password:
Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.9.62 aarch64)

 *Documentation: https://help.ubuntu.com
 *Management: https://landscape.canonical.com
 *Support: https://ubuntu.com/advantage

6. To stop the domain use the destroy command:

$ virsh destroy kvm_virtio_blk
Domain kvm_virtio_blk destroyed

$ virsh list --all
 Id Name State
 --
 - kvm_virtio_blk shut off

7. To remove the domain from libvirt, use the undefine command:

$ virsh undefine kvm_virtio_blk
Domain kvm_virtio_blk has been undefined

$ virsh list --all
 Id Name State
 --

Note: One can find the full XML for this configuration in Annex 1.

Virtio Net scenario

This example uses a virtio model NIC card and a tap network backend. The virtual network interface is bridged via a TAP interface
to the physical network.

Perform the following steps:

1. Enable virtio networking in the host and guest Linux kernels.

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
926 NXP Semiconductors

2. On the host, create a bridge to the physical network interface to be used by the virtual network interface in the virtual
machine using the brctl command. In this example the physical interface being used is enp1s0:

$ brctl addbr br0
$ ifconfig br0 192.168.1.10 netmask 255.255.248.0
$ ifconfig enp1s0 0.0.0.0
$ brctl addif br0 enp1s0

3. Create a qemu-ifup script on the host Linux system:

#!/bin/sh

#TAP interface will be passed in $1
bridge=br0
guest_device=$1
ifconfig $guest_device 0.0.0.0 up
brctl addif $bridge $guest_device

4. Create a args file and convert it to the libvirt xml:

$ echo "/usr/bin/qemu-system-aarch64 -name kvm_virtio_net -smp 2 -enable-kvm -m 1024 -
nographic -cpu host -machine type=virt -kernel /boot/Image -serial pty -drive
if=virtio,index=0,file=/root/ubuntu_xenial_arm64_rootfs.ext4.img,id=foo,format=raw -
netdev tap,id=tap0,script=/root/qemu-ifup,downscript=no,ifname=tap0 -device virtio-net-
pci,netdev=tap0 -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk'" >
kvm_virtio_net.args

$ virsh domxml-from-native qemu-argv kvm_virtio_net.args > kvm_virtio_net.xml

5. Define and start the domain. Check if the virtual network interface is created.

$ virsh define kvm_virtio_net.xml
Domain kvm_virtio_net defined from kvm_virtio_net.xml

$ virsh start kvm_virtio_net
Domain kvm_virtio_net started

$ virsh console kvm_virtio_net
Connected to domain kvm_virtio_net
Escape character is ^]

Ubuntu 16.04.3 LTS localhost ttyAMA0

localhost login: root
Password:

$ dmesg | grep virtio_net
[4.121280] virtio_net virtio1 enp0s2: renamed from eth0

$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
 link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff
3: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1
 link/sit 0.0.0.0 brd 0.0.0.0
4: docker0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
 link/ether 02:42:81:50:d5:f5 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 scope global docker0
 valid_lft forever preferred_lft forever

The libvirt XML generated and used in this scenario differs from the previous one by the following lines:

<qemu:commandline>
 <qemu:arg value='-netdev'/>
 <qemu:arg value='tap,id=tap0,script=/root/qemu-ifup,downscript=no,ifname=tap0'/>
 <qemu:arg value='-device'/>

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 927

 <qemu:arg value='virtio-net-pci,netdev=tap0'/>
</qemu:commandline>

Note: Currently libvirt has no support for PCI transport, but it can be used using passthrough QEMU command line arguments
(as seen in the previous xml).

Note: If you get the following error when starting the domain please use the steps from this thread to fix it.

could not open /dev/net/tun: Operation not permitted

Note: One can find the full XML for this configuration in Annex 2.

Virtio Block Dataplane

Virtio-blk-dataplane was developed for high performance disk I/O, especially for high IOPS devices. QEMU performs the disk
I/O in a dedicated thread that is optimized for I/O performance.

Even though the scenario can use also a block device on the Linux host, the next steps will show how to implement this using a
raw disk file.

Note: A direct translation between the qemu args are not possible using virsh that is why in this example we will start from the
XML used in the previous scenario and build on it.

1. Create the raw disk file:

$ dd if=/dev/zero of=/root/fake-dev0-backstore.img bs=1M count=300

2. Copy the libvirt XML file from the previous example:

$ cp kvm_virtio_net.xml kvm_virtio_blk_dataplane.xml

3. Change the name and uuid of the new domain. Define the number of IOThreads to be assigned to the domain and used
by the new storage device. Add the storage disk and assign it to the iothread=‘1’.

$ diff kvm_virtio_blk_dataplane.xml kvm_virtio_net.xml

2,3c2,3
< <name>kvm_virtio_blk_dataplane</name>
< <uuid>5c30747a-a2c9-485e-b814-2a503fef8657</uuid>

> <name>kvm_virtio_net</name>
> <uuid>5c30747a-a2c9-485e-b814-2a503fef8653</uuid>
22d21
< <iothreads>1</iothreads>
29,34d27
< </disk>
< <disk type='file' device='disk'>
< <driver name='qemu' type='raw' cache='none' io='native' iothread='1'/>
< <source file='/root/fake-dev0-backstore.img'/>
< <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
< <target dev='vdb' bus='virtio'/>

4. Start the new domain and check if virtio-blk-dataplane works properly.

$ virsh define kvm_virtio_blk_dataplane.xml
Domain kvm_virtio_blk_dataplane defined from kvm_virtio_blk_dataplane.xml

$ virsh start kvm_virtio_blk_dataplane
Domain kvm_virtio_blk_dataplane started

After the guest boots, the virtual disk is visible as a block device with the name vdb.
$ virsh console kvm_virtio_blk_dataplane

 root@localhost:~# ls -la /dev/vd*
 brw-rw---- 1 root disk 254, 0 Aug 23 12:00 /dev/vda
 brw-rw---- 1 root disk 254, 16 Aug 23 12:00 /dev/vdb

We can also check if the IOThread is correctly assigned to the domain.
$ virsh iothreadinfo kvm_virtio_blk_dataplane
 IOThread ID CPU Affinity

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
928 NXP Semiconductors

https://bugzilla.redhat.com/show_bug.cgi?id=770020#c13

 1 0-7

Note: One can find the full XML for this configuration in Annex 3.

Libvirt LXC Examples

Basic Example

The following example shows the lifecycle of a simple LXC libvirt domain called lxc_basic.

1. Confirm the host Linux configuration. Begin by confirming that the host kernel is configured correctly and that rootfs
setup such as mounting cgroups has been done. This can be done with the lxc-checkconfig command.

2. Create a libvirt XML file defining the container. The example below shows a very simple container defined in
lxc_basic.xml that runs the command /bin/sh and has a console:

$ cat lxc_basic.xml
<domain type='lxc'>
 <name>lxc_basic</name>
 <memory>500000</memory>
 <os>
 <type>exe</type>
 <init>/bin/sh</init>
 </os>
 <devices>
 <console type='pty'/>
 </devices>
</domain>

$ virsh -c lxc:/// define lxc_basic.xml
Domain lxc_basic defined from lxc_basic.xml

$ virsh -c lxc:/// list --all
 Id Name State
 --
 - lxc_basic shut off

$ virsh -c lxc:/// start lxc_basic
Domain lxc_basic started

$ virsh -c lxc:/// console lxc_basic
Connected to domain lxc_basic
Escape character is ^]
#ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:14 ? 00:00:00 /bin/sh
root 3 1 0 13:14 ? 00:00:00 ps -ef

Note: The processes inside the container are running in a separate namespace, hence the different process hierarchysince no
network configuration for the domain is explicitly specified, all networking interfaces are shared with the host (all the other
interfaces are present too - br0 is mentioned as an example)since no filesystem configuration is specified for the domain, the
filesystem is shared with the host– all host mounts are present in the container as well.

Further Information

Libvirt is an open source project and a great deal of technical and usage information is available on the libvirt.org website:

Additional references:

• Architecture: http://libvirt.org/intro.html

• Deployment: http://libvirt.org/deployment.htmlXML

• Format: http://libvirt.org/format.html

• Virsh command reference: http://linux.die.net/man/1/virsh

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 929

https://libvirt.org
http://libvirt.org/intro.html
http://libvirt.org/deployment.htmlXML
http://libvirt.org/format.html
http://linux.die.net/man/1/virsh

• User generated content: http://wiki.libvirt.org/page/Main_Page

Mailing Lists. There are three libvirt mailing lists available which can be subscribed to. Archives of the lists are also available:

• https://www.redhat.com/archives/libvir-list

• https://www.redhat.com/archives/libvirt-users

• https://www.redhat.com/archives/libvirt-announce

Annex 1: kvm_virtio_blk.xml

<domain type='kvm'>
 <name>kvm_virtio_blk</name>
 <uuid>b8ec80c1-4fd6-4e08-aec7-02150fab316d</uuid>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 <vcpu placement='static'>2</vcpu>
 <os>
 <type arch='aarch64' machine='virt'>hvm</type>
 <kernel>/boot/Image</kernel>
 <cmdline>root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk</cmdline>
 </os>
 <features>
 <gic version='3'/>
 </features>
 <cpu mode='custom' match='exact'>
 <model fallback='allow'>host</model>
 </cpu>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/bin/qemu-system-aarch64</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/root/ubuntu_xenial_arm64_rootfs.ext4.img'/>
 <target dev='vda' bus='virtio'/>
 </disk>
 <controller type='pci' index='0' model='pcie-root'/>
 <controller type='pci' index='1' model='dmi-to-pci-bridge'/>
 <controller type='pci' index='2' model='pci-bridge'/>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target type='serial' port='0'/>
 </console>
 <memballoon model='none'/>
 </devices>
</domain>

Annex 2: kvm_virtio_net.xml

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 <name>kvm_virtio_net</name>
 <uuid>5c30747a-a2c9-485e-b814-2a503fef8653</uuid>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 <vcpu placement='static'>2</vcpu>
 <os>
 <type arch='aarch64' machine='virt'>hvm</type>
 <kernel>/boot/Image</kernel>
 <cmdline>root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk</cmdline>
 </os>
 <features>
 <gic version='3'/>
 </features>

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
930 NXP Semiconductors

http://wiki.libvirt.org/page/Main_Page
https://www.redhat.com/archives/libvir-list
https://www.redhat.com/archives/libvirt-users
https://www.redhat.com/archives/libvirt-announce

 <cpu mode='custom' match='exact'>
 <model fallback='allow'>host</model>
 </cpu>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/bin/qemu-system-aarch64</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/root/ubuntu_xenial_arm64_rootfs.ext4.img'/>
 <target dev='vda' bus='virtio'/>
 </disk>
 <controller type='pci' index='0' model='pcie-root'/>
 <controller type='pci' index='1' model='dmi-to-pci-bridge'/>
 <controller type='pci' index='2' model='pci-bridge'/>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target type='serial' port='0'/>
 </console>
 <memballoon model='none'/>
 </devices>
 <qemu:commandline>
 <qemu:arg value='-netdev'/>
 <qemu:arg value='tap,id=tap0,script=/root/qemu-ifup,downscript=no,ifname=tap0'/>
 <qemu:arg value='-device'/>
 <qemu:arg value='virtio-net-pci,netdev=tap0'/>
 </qemu:commandline>
</domain>

Annex 3: kvm_virtio_blk_dataplane.xml

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 <name>kvm_virtio_blk_dataplane</name>
 <uuid>5c30747a-a2c9-485e-b814-2a503fef8657</uuid>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 <vcpu placement='static'>2</vcpu>
 <os>
 <type arch='aarch64' machine='virt'>hvm</type>
 <kernel>/boot/Image</kernel>
 <cmdline>root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk</cmdline>
 </os>
 <features>
 <gic version='3'/>
 </features>
 <cpu mode='custom' match='exact'>
 <model fallback='allow'>host</model>
 </cpu>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <iothreads>1</iothreads>
 <devices>
 <emulator>/usr/bin/qemu-system-aarch64</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/root/ubuntu_xenial_arm64_rootfs.ext4.img'/>
 <target dev='vda' bus='virtio'/>
 </disk>
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='native' iothread='1'/>
 <source file='/root/fake-dev0-backstore.img'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
 <target dev='vdb' bus='virtio'/>

Linux Containers (LXC) for NXP QorIQ User's Guide

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 931

 </disk>
 <controller type='pci' index='0' model='pcie-root'/>
 <controller type='pci' index='1' model='dmi-to-pci-bridge'/>
 <controller type='pci' index='2' model='pci-bridge'/>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target type='serial' port='0'/>
 </console>
 <memballoon model='none'/>
 </devices>
 <qemu:commandline>
 <qemu:arg value='-netdev'/>
 <qemu:arg value='tap,id=tap0,script=/root/qemu-ifup,downscript=no,ifname=tap0'/>
 <qemu:arg value='-device'/>
 <qemu:arg value='virtio-net-pci,netdev=tap0'/>
 </qemu:commandline>
</domain>

10.3 Docker Containers

10.3.1 Introduction to Docker Containers

10.3.1.1 Overview
This section is a guide and tutorial to building and using Docker Containers. Docker Containers are only available on ARM64
platforms, with the exception of LS1043 Big Endian.

Docker is a different set of userspace tools implementing Linux containers and focusing on a different set of use cases. The
highlights of this open source project are ease of use, shared contributions and fast deployment. In the Docker ecosystem,
containers are application environment packages, which can be easily distributed and developed collaboratively, and are
guaranteed to be reproducible on any supporting platform, from the development stage to production. Currently, Docker containers
are mainly targeting cloud environments.

Docker can be viewed as a set of separate components:

• Images - the "build" component of Docker. These are read-only copies of container root filesystems, consisting of the
designed application and it's userspace dependencies. For example, an image can contain an Ubuntu application, an
Apache server and a user web app. This image can be used to get a webserver running.

• Registries - the "distribution" component of Docker. These are public or private stores where users can upload / download
images. The images are versioned, and are built from layers. When sharing images, the layers are first downloaded
separately, and the image is assembled at runtime. Each layer corresponds to a specific user commit. Images can also be
built using buildfiles. The most representative registry example is the Docker Hub. The current Docker installation does not
support registry configuration.

• Containers - the "run" component of Docker. These are very similar to the containers provided by the LXC package. The
main difference is that Docker containers use an overlay filesystem as container support. The layers are taken as is from
the image and marked read-only, with a topmost read-write layer on top. This means that no container makes any
persistent changes to the image by default - these need to be explicitly committed by the user when the environment is in
the desired state. Docker containers are designed to work as application containers by default.

Docker uses a client-server architecture. The client takes the user commands and talks to a daemon, which does the entire
container management work. A Linux host running the daemon is called a Docker Host. The client and daemon can run on the
same machine, or on different ones, communicating through sockets or a RESTful API.

The Docker official page advertises a set of use cases, mostly relevant in cloud environments: continuous integration, continuous
delivery, devops, big data and infrastructure optimization. These can be easily adapted to embedded distributions as well. As for

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
932 NXP Semiconductors

https://HUB.DOCKER.COM/
https://docs.docker.com/v1.9/engine/introduction/understanding-docker/
https://www.docker.com/

the containers themselves, the Linux Containers chapter use cases apply, with a focus on ease of use, fast deployment and
distributed usage.

10.3.2 Docker How To's

10.3.2.1 Running a webserver container
The following article describes the necessary steps to deploy a web server service using a Docker container. This is based on
downloading a prepared image from the Docker hub and using it to start a container.

1. Verify if the docker daemon is running. Make sure that the board has Internet access - this will be required to download
the image from the Docker Hub. The daemon will configure a Linux bridge for the containers with a private network and
NAT.

root@localhost:~# systemctl status docker
● docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: e
Active: active (running) since Mon 2017-05-22 13:36:50 UTC; 16h ago
Docs: https://docs.docker.com
Main PID: 2796 (dockerd)
Tasks: 30
Memory: 666.6M
CPU: 1min 43.627s
CGroup: /system.slice/docker.service
├─2796 /usr/bin/dockerd -H fd://
└─2967 containerd -l unix:///var/run/docker/libcontainerd/docker-cont

May 22 13:36:49 localhost dockerd[2796]: time="2017-05-22T13:36:49.307636000Z" l
May 22 13:36:49 localhost dockerd[2796]: time="2017-05-22T13:36:49.355725000Z" l
May 22 13:36:49 localhost dockerd[2796]: time="2017-05-22T13:36:49.936621000Z" l
May 22 13:36:50 localhost dockerd[2796]: time="2017-05-22T13:36:50.157102000Z" l
May 22 13:36:50 localhost dockerd[2796]: time="2017-05-22T13:36:50.159638000Z" l
May 22 13:36:50 localhost dockerd[2796]: time="2017-05-22T13:36:50.159695000Z" l
May 22 13:36:50 localhost dockerd[2796]: time="2017-05-22T13:36:50.172793000Z" l
May 22 13:36:50 localhost systemd[1]: Started Docker Application Container Engin
May 22 14:05:15 localhost dockerd[2796]: time="2017-05-22T14:05:15.209498000Z" l
May 22 14:06:04 localhost dockerd[2796]: time="2017-05-22T14:06:04.302372000Z" l
root@localhost:~#

In this care, the docker daemon is configured to start at boot time, but if for any reason the daemon is not running just issue
the following commands.

root@localhost:~# systemctl status docker
● docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: e
Active: inactive (dead) since Tue 2017-05-23 06:21:46 UTC; 1s ago Docs: https://
docs.docker.com
Process: 2796 ExecStart=/usr/bin/dockerd -H fd:// $DOCKER_OPTS (code=exited, s
Main PID: 2796 (code=exited, status=0/SUCCESS)

May 22 13:36:50 localhost dockerd[2796]: time="2017-05-22T13:36:50.159638000Z" l
May 22 13:36:50 localhost dockerd[2796]: time="2017-05-22T13:36:50.159695000Z" l
May 22 13:36:50 localhost dockerd[2796]: time="2017-05-22T13:36:50.172793000Z" l
May 22 13:36:50 localhost systemd[1]: Started Docker Application Container Engin
May 22 14:05:15 localhost dockerd[2796]: time="2017-05-22T14:05:15.209498000Z" l
May 22 14:06:04 localhost dockerd[2796]: time="2017-05-22T14:06:04.302372000Z" l
May 23 06:21:45 localhost systemd[1]: Stopping Docker Application Container Engi
May 23 06:21:45 localhost dockerd[2796]: time="2017-05-23T06:21:45.594644000Z" l
May 23 06:21:45 localhost dockerd[2796]: time="2017-05-23T06:21:45.621591Z" leve
May 23 06:21:46 localhost systemd[1]: Stopped Docker Application Container Engin
root@localhost:~# systemctl start docker

2. You can search the registry for available arm64 images, or using any other keyword.

root@localhost:~# docker search arm64
NAME DESCRIPTION STARS OFFICIAL
AUTOMATED

Docker Containers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 933

ericvh/arm64-ubuntu Base image for arm64 (armv8 aka aarch64) U... 6
owlab/alpine-arm64 This is Alpine Linux for arm64 (or aarch64) 3
necrose99/gentoo-arm64 Arm64 with qemu-arm64 static AMD64 host h...
1 [OK]
mickaelguene/arm64-debian Arm64 debian base with umeq install so you...
1 [OK]
markusk/arm64-crosscompile A debian image with the necessary tools in...
1 [OK]
snapcraft/zesty-arm64 Docker image for building Ubuntu snaps
0 [OK]
mickaelguene/arm64-debian-jenkins-slave arm64 with java and sshd with umeq so
you ... 0 [OK]
containerstack/alpine-arm64 Alpine Linux (arm64/aarch64) Docker image
0 [OK]
arm64el/helloworld-arm64el hello world for arm64 el platform
0 [OK]
arm64el/busybox-arm64el busybox image for arm64 0
[OK]
eqw3rty/minecraft-server-arm64 Dockerized Minecraft server for arm64
0 [OK]
arm64el/unshare-arm64el unshare image for arm64el platform
0 [OK]
mickaelguene/arm64-debian-dev arm64 debian images with development tool ...
0 [OK]
necrose99/gentoo-arm64-chroot base Gentoo AMD64 + ARM64 CHROOT volume. ...
0 [OK]
marcust/jessie-arm64-rust Debian Jessie (arm64) image containing a R... 0
ip4368/node-arm64 Node.js is a JavaScript-based platform for... 0
marcust/xenial-arm64-rust Ubuntu Xenial (arm64) image containing a R... 0
snapcraft/xenial-arm64 Docker image for building Ubuntu snaps
0 [OK]
jefby/arm64 arm64 develop 0
dil001/nginx-arm64 These are the arm64 version of the officia... 0
knjcode/arm64-node arm64-compatible Docker base image with No... 0
parity/rust-arm64 RUST for GitLab CI runner (ARM64 architect...
0 [OK]
thenatureofsoftware/mc-arm64 Minio client for arm64 0
thenatureofsoftware/ubuntu-arm64 Ubuntu slim images for arm64 0
dil001/fluentd-arm64 arm64 fork of the offical docker images 0

3. In this example, qoriq/arm64-ubuntu is used. It is a standard Ubuntu compiled for ARM64, with a lighttpd webserver
installed and with a home page configured to display some information on the board, processes and networking in the
container. First download the image.

root@localhost:~# docker pull qoriq/arm64-ubuntu
Using default tag: latest
latest: Pulling from qoriq/arm64-ubuntu
a3ed95caeb02: Pull complete
9025035f8d16: Pull complete
d54663dfcaf9: Pull complete
b940f6a4f33c: Pull complete
688957367bc4: Pull complete
88ca67eab938: Pull complete
f5f1c1a40562: Pull complete
688957367bc4: Pull complete
88ca67eab938: Pull complete
f5f1c1a40562: Pull complete
357cdf8f1a01: Pull complete
de8e5d34ebd8: Pull complete
811aa6d4eba3: Pull complete
0dc75b6c54d0: Pull complete
654cadd8a53b: Pull complete
40d300e17719: Pull complete
ce42abd87d1e: Pull complete
Digest: sha256:eaef3a08336f59155e6cfb61bf55688711214561ddf00817b5c848211ac66b00
Status: Downloaded newer image for qoriq/arm64-ubuntu:latest

You can check the image is available using docker images:

Virtualization

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
934 NXP Semiconductors

root@localhost:~# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
qoriq/arm64-ubuntu latest 903eaef3b724 12 months ago 326.4 MB
root@localhost:~#

4. Start a container using the following command:

root@localhost:~# docker run -d -p 30081:80 --name=sandbox1 \
-h sandbox1 qoriq/arm64-ubuntu \
bash -c "lighttpd -f /etc/lighttpd/lighttpd.conf -D"

• run - create and start the container. Optionally, download the image if not available on the host.

• -d - start the container as a daemon.

• -p 30081:80 - forward port 80 in the container to port 30081 on the board.

• --name=sandbox1 - the name of the container (as visible to Docker).

• -h sandbox1 - the hostname inside the container.

• qoriq/arm64-ubuntu - the base image for the container.

• bash -c "lighttpd -f /etc/lighttpd/lighttpd.conf -D" - the command to execute as PID 1 in the container.

The command will return a unique SHA for the container. You can check that the webserver is up and running by
accessing http://BOARD_IP:30081/ from a browser. You can also check the container is running using docker:

root@localhost:~# docker ps -a

CONTAINERID IMAGE COMMAND CREATED STATUS
PORTS NAMES
b5b8a45db81c qoriq/arm64-ubuntu "bash -c 'lighttpd -f" 16 hours ago Exited
(0)16 hours ago sandbox1

5. Stopping and deleting the container are easy operations:

root@localhost:~# docker stop sandbox1
sandbox1
root@localhost:~# docker rm sandbox1
sandbox1

6. A similar command can be used to delete the image from the board.

root@localhost:~# docker rmi qoriq/arm64-ubuntu
Untagged: qoriq/arm64-ubuntu:latest
Untagged: qoriq/arm64-
ubuntu@sha256:eaef3a08336f59155e6cfb61bf55688711214561ddf00817b5c848211ac66b00
Deleted: sha256:903eaef3b7240612111df4308f4d598ae1dee14b696a4b01654175b6771520f1
Deleted: sha256:48e73c491543279a59d202470394f0f91acd9b3a8a6f5f9befa933bc4cf4776a
Deleted: sha256:e21b9d6aa0007e242abb10948b13c93e4471694695a91a47d639f45927f25eb6
Deleted: sha256:7ec2184e81ef396a206e965e6dae42a122c4348dd7cfee1b731aa59931a5ec82
Deleted: sha256:0b081c8c711c2d14522ea1b5763e5ead19ab2975e4c28864a0ee2c0942ebae43
Deleted: sha256:b256d9ce72b40a1dc9dfdb13003a44976ba81e4fb31e774e913ed57241424231
Deleted: sha256:e07c8e0adb08295db7e3f2e13f41be622d5b8590575f87813922dd4ef0914e8f
Deleted: sha256:09ec9672e9e6d30855f1274415edf6a023b86764261b6cd88fc2b692f997977d
Deleted: sha256:d29d57006e3df9a03fb3d430183166c9337378404c1ad66db391251ea24592fd
Deleted: sha256:84be8839209cbbecd3b3f064b9593e16d30468d71c788fc3ab8f3125990002bf
Deleted: sha256:09be261c306e6c01756d16c31e2a9d4b638e8d205a068b767cb0a078480633a9
Deleted: sha256:47d9e04c91309d23f8135f579a302c2309b206cb392c42c55ec13b2c26fb317f
Deleted: sha256:8495eed3352e7d2a237f179e3a3a6e449a56821a77e2efd943bc9ccf8d6d964c
Deleted: sha256:423a2c50f96dad2f267bbbe11a8a9efc21e776419fbd618ec1a9a21e918c918b
Deleted: sha256:67629909bfc67e60ba87451caf1f98b375e8b81f21a87bab5f5e2740a78c025b
Deleted: sha256:f821f1edfff4c38033e84024e844e503d5e0e470155c4bd69ec3f0af04f01b6b
Deleted: sha256:837a3e2cff861610e7672192dac0342041c30b2548a3a63a47b92d964a862c8a
Deleted: sha256:129149fe5b4dc97f940c38cd37cfa3fc06bbdc12a8d9d22e4aa3b3e4ff709346

Docker Containers

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 935

Chapter 11
Power Management

11.1 Power Management User Manual

Linux SDK for QorIQ Processors

Description

QorIQ Processors have features to minimize power consumption at several different levels. All processors support a sleep mode
(LPM20). Some processors, such as T1040, LS1021, LS1046, also support a deep sleep mode (LPM35).

The following power management features are supported on various QorIQ processors:

• Dynamic power management

• Shutting down unused IP blocks

• Cores support low power modes (such as PW15)

• Processors enter low power state (LPM20, LPM35)

— LPM20 mode: most part of processor clocks are shut down

— LPM35 mode: power is removed to cores, cache and IP blocks of the processor such as DIU, eLBC, PEX, eTSEC,
USB, SATA, eSDHC etc.

• CPU hotplug: If cores are down at runtime, they will enter low power state.

The wake-up event sources caused quitting from low power mode are listed as below:

• Wake on LAN (WoL) using magic packet

• Wake by MPIC timer or FlexTimer

• Wake by Internal and external interrupts

For more information on a specific processor, refer to processor Reference Manual.

Kernel Configure Tree View Options

For ARM platforms

Kernel Configure Tree View Options Description

Power management options -->
 [*] Suspend to RAM and standby

Enable sleep feature

Device Drivers --->
 SOC (System On Chip) specific Drivers --->
 [*] Layerscape Soc Drivers
 [*] FTM alarm driver

Enable the FTM alarm (FlexTimer
module) driver

CPU Power Management --->
CPU Idle --->

Enable the CPU Idle driver

Table continues on the next page...

Power Management

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
936 NXP Semiconductors

Table continued from the previous page...

Kernel Configure Tree View Options Description

[*] CPU idle PM support
[*] Ladder governor (for periodic timer tick)
-*- Menu governor (for tickless system)
 ARM CPU Idle Drivers --->
 [*] Generic ARM/ARM64 CPU idle Driver

Table continues on the next page...

Compile-time Configuration Options

Linux Framework Hardware Feature Platform Kernel Config

Suspend LPM20 LS1012, LS1021,
LS1046

CONFIG_SUSPEND

wake by Flextimer LS1012, LS1021,
LS1046

CONFIG_FTM_ALARM

CPU idle PW15 LS1012, LS1021,
LS1046

CONFIG_ARM_CPUIDLE

Device Tree Binding

Property Type Description

fsl,#rcpm-wakeup-cells unsigned int the number of cells in "rcpm-wakeup" except the pointer to "rcpm"

rcpm-wakeup unsigned int require if the IP block can work as a wakeup source

For processors integrated RCPM

 rcpm: rcpm@1ee2000 {
 compatible = "fsl,ls1046a-rcpm", "fsl,qoriq-rcpm-2.1";
 reg = <0x0 0x1ee2000 0x0 0x1000>;
 fsl,#rcpm-wakeup-cells = <1>;
 };

 ftm0: ftm0@29d0000 {
 compatible = "fsl,ftm-alarm";
 reg = <0x0 0x29d0000 0x0 0x10000>;
 interrupts = <0 86 0x4>;
 big-endian;
 rcpm-wakeup = <&rcpm 0x0 0x20000000>;
 status = "okay";
 };

Refer to the Linux document: Documentation/devicetree/bindings/soc/fsl/rcpm.txt

Source Files

The source files are maintained in the Linux kernel source tree.

Power Management User Manual

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 937

Source File Description

drivers/soc/fsl/layerscape/rcpm.c the RCPM driver needed by the sleep feature

drivers/soc/fsl/layerscape/ftm_alarm.c the FTM timer driver worked as a wakeup source

drivers/cpuidle/cpuidle-arm.c the cpuidle driver for ARM core

Verification in Linux

• Cpuidle Driver

The cpuidle driver can switch CPU state according to the idle policy (governor). For more information, please see
"Documentation/cpuidle/sysfs.txt" in kernel source code.

/* Check the cpuidle driver which is currently used. */
cat /sys/devices/system/cpu/cpuidle/current_driver

/* Check the following directory to see the detailed statistic information of each state
on each CPU. */
/sys/devices/system/cpu/cpu0/cpuidle/state0/
/sys/devices/system/cpu/cpu0/cpuidle/state1/

Supporting Documentation

• QorIQ processor reference manuals

11.2 CPU Frequency Switching User Manual

Linux SDK for QorIQ Processors

Abbreviations and Acronyms

DFS: Dynamic Frequency Scaling

Description

QorIQ Processors support DFS (Dynamic Frequency Switching) feature, also known as CPU Frequency Switch, which can change
the frequency of cores dynamically.

For more information on a specific processor, refer to processor Reference Manual.

Kernel Configure Tree View Options Description

CPU Power Management -->
 CPU Frequency scaling -->
 [*] CPU Frequency scaling
 <*> CPU frequency translation statistics
 Default CPUFreq governor (userspace) -->
 -*- 'userspace' governor for userspace frequency scaling
 ARM CPU frequency scaling drivers -->
 <*> CPU frequency scaling driver for Freescale QorIQ
SoCs

Enable the CPU frequency driver

Power Management

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
938 NXP Semiconductors

Compile-time Configuration Options

Linux Framework Hardware Feature Platform Kernel Config

cpufreq DFS ALL CONFIG_CPU_FREQ,
CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPA
CE

cpufreq DFS Layerscape CONFIG_QORIQ_CPUFREQ

User Space Application

Simply using command "cat" and "echo" can verify this feature.

Device Tree Binding

Property Type Status Description

#clock-cells unsigned int Required The number of cells in a clock-specifier

clocks handle Required Clock source handle

compatible String Required Compatible strings

reg unsigned int Required register address range

Table continues on the next page...

clockgen: clocking@1ee1000 {
 compatible = "fsl,ls1012a-clockgen";
 reg = <0x0 0x1ee1000 0x0 0x1000>;
 #clock-cells = <2>;
 clocks = <&sysclk>;
};

Source Files

The driver source is maintained in the Linux kernel source tree.

Table continued from the previous page...

Source File Description

drivers/cpufreq/qoriq_cpufreq.c CPU frequency scaling driver for qoriq chips

Verification in Linux

• CPU frequency mode

In order to test the CPU frequency scaling feature, we need to enable the CPU frequency
feature on the
menuconfig and choose the USERSPACE governor.
You can learn more about CPU frequency scaling feature by referring to the kernel
documents.
They all are put under Documentation/cpu-freq/ directory.
For example: all the information about governors is put in Documentation/cpu-freq/
governors.txt.

CPU Frequency Switching User Manual

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 939

Test step:
1. list all the frequencies a core can support (take cpu 0 for example) :
 # cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
1199999 599999 299999 799999 399999 199999 1066666 533333 266666

2. check the CPU's current frequency
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq
1199999

3. change the CPU's frequency we expect:
echo 799999 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

You can check the CPU's current frequency again to confirm if the frequency transition is
successful.

Please note that if the frequency you want to change to doesn't support by current CPU,
kernel will
round up or down to one CPU supports.

11.3 Thermal Management User Manual

Description

The thermal management function is based on TMU (Thermal Monitoring Unit).

The driver sets two thresholds for management function. If the CPU temperature crosses the first one (75 C for LS2080. 85 C for
other platforms), the driver will trigger CPU frequency limitation auto-scaling according to the temperature trend; If the CPU
temperature crosses the second one (85 C for LS2080, 95 C for other platforms, critical for core) the driver will shut down the
system.

User could also get current temperature through sysfs interface.

Specifications

Target boards: T1040RDB, T1042RDB, T1023RDB, T1024RDB, LS1021ATWR, LS1043ARDB, LS2080ARDB.

Operating system: Linux 3.12+

Kernel Configure Tree View Options (For PowerPC platform)

Kernel Configure Tree View Options Description

Platform support --->
 CPU Frequency scaling --->
 PowerPC CPU frequency scaling drivers --->
 <*> CPU frequency scaling driver for NXP QorIQ SoCs

Enable CPUfreq driver.

Device Drivers --->
 [*] Generic Thermal sysfs driver --->
 [*] generic cpu cooling support
 [*] Freescale QorIQ Thermal Monitoring Unit

Enable thermal management
framework, cpu cooling device
support and QorIQ thermal driver.

Power Management

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
940 NXP Semiconductors

Kernel Configure Tree View Options (For ARM platform)

Kernel Configure Tree View Options Description

CPU Power Management --->
 CPU Frequency scaling --->
 ARM CPU frequency scaling drivers --->
 <*> CPU frequency scaling driver for NXP QorIQ SoCs

Enable CPUfreq driver.

Device Drivers --->
 [*] Generic Thermal sysfs driver --->
 [*] generic cpu cooling support
 [*] Freescale QorIQ Thermal Monitoring Unit

Enable thermal management
framework, cpu cooling device
support and QorIQ thermal driver.

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_QORIQ_CPUFREQ y/n n Enable QorIQ CPUfreq driver

CONFIG_THERMAL y/m/n n Enable thermal management support

CONFIG_CPU_THERMAL y/m/n n Enable cpu cooling device support

CONFIG_QORIQ_THERMAL y/m/n n Enable QorIQ thermal driver

Device Tree Binding

tmu: tmu@f0000 {
 compatible = "fsl,qoriq-tmu";
 reg = <0xf0000 0x1000>;
 interrupts = <18 2 0 0>;
 fsl,tmu-range = <0x000a0000 0x00090026 0x0008004a 0x0001006a>;
 fsl,tmu-calibration = <0x00000000 0x00000025
 0x00000001 0x00000028
 0x00000002 0x0000002d
 0x00000003 0x00000031
 0x00000004 0x00000036
 0x00000005 0x0000003a
 0x00000006 0x00000040
 0x00000007 0x00000044
 0x00000008 0x0000004a
 0x00000009 0x0000004f
 0x0000000a 0x00000054

 0x00010000 0x0000000d
 0x00010001 0x00000013
 0x00010002 0x00000019
 0x00010003 0x0000001f
 0x00010004 0x00000025
 0x00010005 0x0000002d
 0x00010006 0x00000033
 0x00010007 0x00000043
 0x00010008 0x0000004b
 0x00010009 0x00000053

 0x00020000 0x00000010
 0x00020001 0x00000017
 0x00020002 0x0000001f
 0x00020003 0x00000029
 0x00020004 0x00000031
 0x00020005 0x0000003c
 0x00020006 0x00000042
 0x00020007 0x0000004d

Thermal Management User Manual

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 941

 0x00020008 0x00000056

 0x00030000 0x00000012
 0x00030001 0x0000001d>;
};

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/thermal/qoriq_thermal.c QorIQ thermal driver.

Verification in Linux

There are two parts for verification: management and monitor.

[Management:]

1. When CPU temperature cross the first threshold, CPU frequency may be reduced by changing frequency limitation, use the
following command to check the current frequency:

~$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

2. When CPU temperature cross the first threshold, system will shutdown.

[Monitor:]

You can manually read the thermal interfaces in sysfs:
~$ cat /sys/class/thermal/thermal_zone0/temp
35000
This means the current temperature is 35 C.

11.4 System Monitor

11.4.1 Power Monitor User Manual

Description

There are two methods currently we can use to measure the power consumption which are called online and offline power
monitoring respectively. The difference between them is that offline power monitoring support measuring power consumption
during sleep or deep sleep.

The Power Monitor can be supported on P4080DS/P5020DS/P5040DS/T4240QDS/LS1043QDS/LS1046QDS/LS1088QDS/
LS2088QDS board.

This User guide uses the LS240QDS board as an example.

Online Power Monitoring

The Lm-sensors tool (download from http://dl.lm-sensors.org/lm-sensors/releases) will be used to read the power/temperature
from on-boards sensors. The drivers vary from sensor to sensor. Basically they would be INA220, ZL6100 and ADT7461 etc.

The device driver support either a built-in kernel or module loading.

Kernel Configure Tree View Options

Power Management

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
942 NXP Semiconductors

Option Description

Device Drivers --->
 <*> Hardware Monitoring support --->
 <*> Texas Instruments INA219 and compatibles

Enables INA220

Device Drivers --->
 [*] Enable compatibility bits for old user-space
 <*> I2C device interface
 [*] Autoselect pertinent helper modules
 I2C Hardware Bus support --->
 <*> MPC107/824x/85xx/512x/52xx/83xx/86xx

Enables I2C block device driver support

Device Drivers --->
 <*> I2C bus multiplexing support
 Multiplexer I2C Chip support --->
 <*> Philips PCA954x I2C Mux/switches

Enables I2C bus multiplexing PCA9547

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_I2C_MPC y/n y Enable I2C bus protocol

SENSORS_INA2XX y/n y Enables INA220

CONFIG_I2C_MUX_PCA954x y/n y Enables I2C multiplexing PCA9547

Device Tree Binding

Property Type Status Description

compatible String Required "Philips,pca9547" for pca9547

reg integer Required reg = <0x77>

compatible String Required "ti,ina220" for ina220

reg integer Required reg = <the i2c address of ina220>

Default node:
 i2c@118000 {
 pca9547@77 {
 compatible = "philips,pca9547";
 reg = <0x77>;
 #address-cells = <1>;
 #size-cells = <0>;

 channel@2 {
 #address-cells = <1>;
 #size-cells = <0>;
 reg = <0x2>;

 ina220@40 {
 compatible = "ti,ina220";
 reg = <0x40>;
 shunt-resistor = <1000>;
 };

 ina220@41 {
 compatible = "ti,ina220";
 reg = <0x41>;
 shunt-resistor = <1000>;

System Monitor

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 943

 };

 ina220@44 {
 compatible = "ti,ina220";
 reg = <0x44>;
 shunt-resistor = <1000>;
 };

 ina220@45 {
 compatible = "ti,ina220";
 reg = <0x45>;
 shunt-resistor = <1000>;
 };

 ina220@46 {
 compatible = "ti,ina220";
 reg = <0x46>;
 shunt-resistor = <1000>;
 };

 ina220@47 {
 compatible = "ti,ina220";
 reg = <0x47>;
 shunt-resistor = <1000>;
 };
 };
 };

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/i2c/muxes/i2c-mux-pca954x.c PCA9547 driver

drivers/hwmon/ina2xx.c ina220 driver

Test Procedure

Do the following to validate under the kernel

1. The bootup information is displayed:

......
i2c /dev entries driver
mpc-i2c ffe118000.i2c: timeout 1000000 us
mpc-i2c ffe118100.i2c: timeout 1000000 us
mpc-i2c ffe119000.i2c: timeout 1000000 us
mpc-i2c ffe119100.i2c: timeout 1000000 us
i2c i2c-0: Added multiplexed i2c bus 6
i2c i2c-0: Added multiplexed i2c bus 7
i2c i2c-0: Added multiplexed i2c bus 8
i2c i2c-0: Added multiplexed i2c bus 9
i2c i2c-0: Added multiplexed i2c bus 10
i2c i2c-0: Added multiplexed i2c bus 11
i2c i2c-0: Added multiplexed i2c bus 12
i2c i2c-0: Added multiplexed i2c bus 13
pca954x 0-0077: registered 8 multiplexed busses for I2C mux pca9547
ina2xx 8-0040: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0041: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0045: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0046: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0047: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0044: power monitor ina220 (Rshunt = 1000 uOhm)
......

root@LS1046ARDB:~# sensors
ina220-i2c-0-40

Power Management

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
944 NXP Semiconductors

Adapter: 2180000.i2c
in0: +0.01 V
in1: +1.04 V
power1: 6.82 W
curr1: +6.48 A

adt7461-i2c-0-4c
Adapter: 2180000.i2c
temp1: +29.0°C (low = +0.0°C, high = +85.0°C)
 (crit = +85.0°C, hyst = +75.0°C)
temp2: +47.8°C (low = +0.0°C, high = +85.0°C)
 (crit = +85.0°C, hyst = +75.0°C)

Please make sure to include the "sensors" command in your rootfs

 NOTE

11.4.2 Thermal Monitor User Manual

Description

The Temperature Monitoring function is provided by the chip ADT7461.

This driver exports the values of Temperature to SYSFS. The user space lm-sensors tools can get and display these values.

Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers --->
 [*] Hardware Monitoring support --->
 [*] National Semiconductor LM90 and compatibles

Enable thermal monitor chip driver like ADT7461.

Device Drivers --->
 <*> I2C bus multiplexing support --->
 Multiplexer I2C Chip support --->
 <*> Philips PCA954x I2C Mux/switches

Enable I2C PCA954x multiplexer support

Compile-time Configuration Options

Option Values Default Value Description

CONFIG_HWMON y/m/n n Enable Hardware Monitor

CONFIG_SENSORS_LM90 y/m/n n Enable ATD7461 driver

CONFIG_I2C_MUX y/m/n n Enable I2C bus multiplexing support

CONFIG_I2C_MUX_PCA954x y/m/n n Enable PCA954x driver

Device Tree Binding

 adt7461@4c {
 compatible = "adi,adt7461";
 reg = <0x4c>;
 };

 pca9547@77 {
 compatible = "philips,pca9547";
 reg = <0x77>;
 };

System Monitor

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 945

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/hwmon/hwmon.c Linux hwmon subsystem support

drivers/hwmon/lm90.c ADT7461 chip driver

drivers/i2c/i2c-mux.c I2C bus multiplexing support

drivers/i2c/muxes/pca954x.c PCA954x chip driver

Verification in Linux

There are two ways to get temperature results.

1. You can manually read the thermal interfaces in sysfs:
~$ ls /sys/class/hwmon/hwmon1/devices
alarms temp1_crit temp1_min_alarm temp2_max_alarm
driver temp1_crit_alarm temp2_crit temp2_min
hwmon temp1_crit_hyst temp2_crit_alarm temp2_min_alarm
modalias temp1_input temp2_crit_hyst temp2_offset
name temp1_max temp2_fault uevent
power temp1_max_alarm temp2_input update_interval
subsystem temp1_min temp2_max

~$ cat /sys/class/hwmon/hwmon1/devices/temp1_input
29000

2. You can use lm_sensors tools as follows.
~ # sensors

adt7461-i2c-1-4c
Adapter: MPC adapter
temp1: +34.0 C (low = +0.0 C, high = +85.0 C)
 (crit = +85.0 C, hyst = +75.0 C)
temp2: +48.5 C (low = +0.0 C, high = +85.0 C)
 (crit = +85.0 C, hyst = +75.0 C)

"lm_sensors is integrated into rootfs file system by default. If there is no "sensors" command in your rootfs just add
lmsensors-sensors package and build your own rootfs."

Power Management

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
946 NXP Semiconductors

Chapter 12
Benchmarking guidelines

12.1 Coremark

12.1.1 Test Environment

Objectives

The Coremark benchmaring guideline aims to do the following:

• Baseline the Coremark performance on QorIQ Layerscape platforms

• Identify any optimizations and ensure they are implemented on the QorIQ Layerscape platforms.

• Investigate other changes that may improve performance

Hardware Platform Identification

Board Silicon Revision Default
Freqeuncy(Core/CCB/DDR)
in MHz

Core Type

LS1021ATWR Rev2.0 1000/300/1600 cortex A7

LS1043ARDB Rev1.1 1600/400/1600 cortex A53

LS1046ARDB Rev1.0 1800/700/2100 cortex A72

LS1088ARDB Rev1.0 1600/700/2100 cortex A53

LS2088ARDB Rev1.0 2000/800/2133 cortex A72

For more information on each boards switch settings, refer to the boards's Reference Manual or Getting Started Guide on http://
www.nxp.com/

Software Platforma Identification

All software was built from Layerscape SDK.

Boot Loader

U-boot 2017.03 with NXP-specific patches on top.

Coremark Application

• Source Code Download:

Coremark Source code can be downloaded from http://www.eembc.org/coremark/index.php

Toolchain version is gcc-5.4 with glibc-2.23

• Build Coremark

1. If you are compiling Coremark on a 64-bit Linux machine (machine on which you have the intended compiler), go to
coremark_v1.0/linux64 directory, else go to coremark_v1.0/linux directory.

Coremark

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 947

http://www.nxp.com/
http://www.nxp.com/
http://www.eembc.org/coremark/index.php

2. Give the complete compiler path under "CC" flag in core_portme.mak file.

3. For a 32-bit ARM platform, the toolchain path is /usr/bin/arm-linux-gnueabihf-gcc by default. Change the “CC”
flag in linux/core_portme.mak as the following:

CC = /usr/bin/arm-linux-gnueabihf-gcc

4. For a 64-bit ARM platform, the toolchain path is /usr/bin/aarch64-linux-gnu-gcc. Change the “CC” flag in
linux64/core_portme.mak as the following:

CC = /usr/bin/aarch64-linux-gnu-gcc

5. Go back to the coremark_v1.0 directory. Perform the following commands on the command line:

— For a 64-bit ARM platform (LS1043A/LS1046A/LS1088A/LS2088A):

Single Thread:

make PORT_CFLAGS="-O3 -funroll-all-loops --param max-inline-insns-auto=550"

Multithread:

make PORT_CFLAGS="-O3 -funroll-all-loops --param max-inline-insns-auto=550 -
DMULTITHREAD=<Thread_number> -DUSE_FORK=1"

— For a 32-bit ARM platform (LS1021A and LS1043A/LS1046A 32-bit)

Single Thread:

make PORT_CFLAGS="-O3 -march=armv7-a -mfloat-abi=hard -mfpu=neon -mtune=cortex-a7
-funroll-all-loops --param max-inline-insns-auto=300 -static"

Multithread:

make PORT_CFLAGS="-O3 -march=armv7-a -mfloat-abi=hard -mfpu=neon -mtune=cortex-a7
-funroll-all-loops --param max-inline-insns-auto=300 -static -
DMULTITHREAD=<Thread_number> -DUSE_FORK=1"

6. The command will first compile, generate the executable file (coremark.exe) and try to run the benchmark. Transfer
the executable file to the target.

12.1.2 Test Procedure

Running test and result collection

1. Deploy the target board with corresponding software mentioned in hte previous section.

2. Put coremark binary compiled with optimized flags mentioned in section test environment on target board

3. Run the benchmark:

coremark.exe

Check the log below for the results:

2K performance run parameters for coremark.
CoreMark Size : 666
Total ticks : 16663
Total time (secs): 16.663000
Iterations/Sec : 6601.452320
Iterations : 110000
Compiler version : GCC5.4.0 20160609
Compiler flags : -mcpu=cortex-a53 -O3 -funroll-all-loops --param max-inline-insns-auto=550
-DPERFORMANCE_RUN=1 -lrt
Memory location : Please put data memory location here
 (e.g. code in flash, data on heap etc)
seedcrc : 0xe9f5
[0]crclist : 0xe714
[0]crcmatrix : 0x1fd7
[0]crcstate : 0x8e3a
[0]crcfinal : 0x33ff
Correct operation validated. See readme.txt for run and reporting rules.

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
948 NXP Semiconductors

CoreMark 1.0 : 6601.452320 / GCC5.4.0 20160609 -mcpu=cortex-a53 -O3 -funroll-all-loops --param
max-inline-insns-auto=550 -DPERFORMANCE_RUN=1 -lrt / Heap

This test measures the variation of the benchmark results, so an average across 5 runs was taken for every result.

12.2 Dhrystone

12.2.1 Test Environment

Objectives

The Dhrystone benchmaring guideline aims to do the following:

• Baseline the Dhrystone performance on QorIQ Layerscape platforms.

• Identify any optimizations and ensure they are implemented on the QorIQ Layerscape platforms.

• Investigate other changes that may improve performance.

Hardware Platform Identification

Board Silicon Revision Default
Freqeuncy(Core/CCB/DDR)
in MHz

Core Type

LS1021ATWR Rev2.0 1000/300/1600 cortex A7

LS1043ARDB Rev1.1 1600/400/1600 cortex A53

LS1046ARDB Rev1.0 1800/700/2100 cortex A72

LS1088ARDB Rev1.0 1600/700/2100 cortex A53

LS2088ARDB Rev1.0 2000/800/2133 cortex A72

For more information on each boards switch settings, refer to the boards's Reference Manual or Getting Started Guide on http://
www.nxp.com/

Software Platforma Identification

All software was built from Layerscape SDK.

Boot Loader

U-boot 2017.03 with NXP-specific patches on top.

Dhrystone Application

Dhrystone is a synthetic computing benchmark program intended to be representative of system (integer) programming. It is a
simple program that is carefully designed to statistically mimic the processor usage of some common set of programs. It also has
some pitfalls, for the performance will be affected by many factors such as the compiler, libraries etc.

• Source Code Download:

Dhrystone 1.0 Source code can be downloaded from: http://www.xanthos.se/~joachim/vaxmips.html (Dhrystone-
src.tar.gz)

Toolchain version is gcc-5.4 with glibc-2.23.

Dhrystone

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 949

http://www.nxp.com/
http://www.nxp.com/
http://www.xanthos.se/~joachim/vaxmips.html

• Build Dhrystone

1. Download the source code from http://www.xanthos.se/~joachim/vaxmips.html Dhrystone-src.tar.gz

2. Unpack the package

3. Go back to the dhrystone_v1.0 directory and build dhrystone binary

— For a 64-bit ARM platform:

#/usr/bin/aarch64-linux-gnu-gcc -O3 -funroll-all-loops --param max-inline-insns-
auto=550 -static dhry21a.c dhry21b.c timers.c -o dhrystone

— For 32-bit ARM platform:

/usr/bin/arm-linux-gnueabihf-gcc -O3 -funroll-all-loops --param max-inline-
insns-auto=550 -static dhry21a.c dhry21b.c timers.c -o dhrystone

12.2.2 Test Procedure

Running test and result collection

1. Deploy the target board with corresponding software mentioned in hte previous section.

2. Put Dhrystone binary compiled with optimized flags mentioned in section 2.2.2.3 on target board

3. Run the benchmark:

echo 50000000 | ./dhrystone

Check the log below for the results:

Dhrystone Benchmark, Version 2.1 (Language: C)

Please give the number of runs through the benchmark:
Execution starts, 50000000 runs through Dhrystone
Execution ends

Final values of the variables used in the benchmark:

Int_Glob: 5
 should be: 5
Bool_Glob: 1
 should be: 1
Ch_1_Glob: A
 should be: A
Ch_2_Glob: B
 should be: B
Arr_1_Glob[8]: 7
 should be: 7
Arr_2_Glob[8][7]: 50000010
 should be: Number_Of_Runs + 10
Ptr_Glob->
 Ptr_Comp: 855702608
 should be: (implementation-dependent)
 Discr: 0
 should be: 0
 Enum_Comp: 2
 should be: 2
 Int_Comp: 17
 should be: 17
 Str_Comp: DHRYSTONE PROGRAM, SOME STRING
 should be: DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->
 Ptr_Comp: 855702608
 should be: (implementation-dependent), same as above
 Discr: 0
 should be: 0
 Enum_Comp: 1
 should be: 1

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
950 NXP Semiconductors

http://www.xanthos.se/~joachim/vaxmips.html

 Int_Comp: 18
 should be: 18
 Str_Comp: DHRYSTONE PROGRAM, SOME STRING
 should be: DHRYSTONE PROGRAM, SOME STRING
Int_1_Loc: 5
 should be: 5
Int_2_Loc: 13
 should be: 13
Int_3_Loc: 7
 should be: 7
Enum_Loc: 1
 should be: 1
Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING
 should be: DHRYSTONE PROGRAM, 1'ST STRING
Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING
 should be: DHRYSTONE PROGRAM, 2'ND STRING

Register option selected? YES
Microseconds for one run through Dhrystone: 0.1
Dhrystones per Second: 8519121.2
VAX MIPS rating = 4848.675

[root@ls1043agw ~]$ echo 50000000|./dhry21

Dhrystone Benchmark, Version 2.1 (Language: C)

Please give the number of runs through the benchmark:
Execution starts, 50000000 runs through Dhrystone
Execution ends

Final values of the variables used in the benchmark:

Int_Glob: 5
 should be: 5
Bool_Glob: 1
 should be: 1
Ch_1_Glob: A
 should be: A
Ch_2_Glob: B
 should be: B
Arr_1_Glob[8]: 7
 should be: 7
Arr_2_Glob[8][7]: 50000010
 should be: Number_Of_Runs + 10
Ptr_Glob->
 Ptr_Comp: 1046248528
 should be: (implementation-dependent)
 Discr: 0
 should be: 0
 Enum_Comp: 2
 should be: 2
 Int_Comp: 17
 should be: 17
 Str_Comp: DHRYSTONE PROGRAM, SOME STRING
 should be: DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->
 Ptr_Comp: 1046248528
 should be: (implementation-dependent), same as above
 Discr: 0
 should be: 0
 Enum_Comp: 1
 should be: 1
 Int_Comp: 18
 should be: 18
 Str_Comp: DHRYSTONE PROGRAM, SOME STRING
 should be: DHRYSTONE PROGRAM, SOME STRING
Int_1_Loc: 5
 should be: 5
Int_2_Loc: 13

Dhrystone

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 951

 should be: 13
Int_3_Loc: 7
 should be: 7
Enum_Loc: 1
 should be: 1
Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING
 should be: DHRYSTONE PROGRAM, 1'ST STRING
Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING
 should be: DHRYSTONE PROGRAM, 2'ND STRING

Register option selected? YES
Microseconds for one run through Dhrystone: 0.1
Dhrystones per Second: 8498703.9
VAX MIPS rating = 4837.054

12.3 EEMBC

12.3.1 Test Environment

Objectives

The EEMBC benchmaring guideline aims to do the following:

• Baseline the EEMBC performance on QorIQ Layerscape platforms.

• Identify any optimizations and ensure they are implemented on the QorIQ Layerscape platforms.

• Investigate other changes that may improve performance.

Hardware Platform Identification

Board Silicon Revision Default
Freqeuncy(Core/CCB/DDR)
in MHz

Core Type

LS1021ATWR Rev2.0 1000/300/1600 cortex A7

LS1043ARDB Rev1.1 1600/400/1600 cortex A53

LS1046ARDB Rev1.0 1800/700/2100 cortex A72

LS1088ARDB Rev1.0 1600/700/2100 cortex A53

LS2088ARDB Rev1.0 2000/800/2133 cortex A72

For more information on each boards switch settings, refer to the boards's Reference Manual or Getting Started Guide on http://
www.nxp.com/

Software Platforma Identification

All software was built from Layerscape SDK.

Boot Loader

U-boot 2017.03 with NXP-specific patches on top.

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
952 NXP Semiconductors

http://www.nxp.com/
http://www.nxp.com/

Endianness

For ARM architecture:

Define correct Endianness by either modifying th_lite/<platform>/al/thcfg.h to:

#if !defined(EE_BIG_ENDIAN) && !defined(EE_LITTLE_ENDIAN)
#define EE_BIG_ENDIAN (FALSE)
#define EE_LITTLE_ENDIAN (TRUE)
#endif

Or by modifying /util/make/gcc.mak to:

COMPILER_DEFINES += -DEE_BIG_ENDIAN=1 -DEE_LITTLE_ENDIAN=1

Data Types

th_lite/<platform>/al/eembc_dt.h has various data types definitions If not already done, do:

#define HAVE_64 (1)

The default definition for data types is:

typedef unsigned long e_u24;
typedef signed long e_s24;

typedef unsigned long e_u32;
typedef signed long e_s32;

However, as ppc follows I32LP64, in case of 64 bit execution long will be considered 64 bit. So the data type definitions should
be changed to:

typedef unsigned int e_u24;
typedef signed int e_s24;

typedef unsigned int e_u32;
typedef signed int e_s32;

Build the benchmark with following compiler flags:

32bit ARM(LS1021A/LS1043A/LS1046A 32ibt):

TOOLS = /usr/bin
CC = $(TOOLS)/ arm-linux-gnueabihf-gcc
AS = $(TOOLS)/arm-linux-gnueabihf-as
LD = $(TOOLS)/ arm-linux-gnueabihf-gcc
AR = $(TOOLS)/ arm-linux-gnueabihf-ar
SIZE = $(TOOLS)/ arm-linux-gnueabihf-size

#Both TCPMark and IPMark, use following compiler flags:
COMPILER_FLAGS = -mcpu=cortex-a7 -mtune=cortex-a7 -O3 -funroll-all-loops -ftree-vectorize -
flto -fwhole-program -fgcse-las
LINKER_FLAGS = -lm -static --sysroot=/opt/fsl-qoriq/1.9/sysroots/ppce500v2-fsl-linux-gnuspe

64bit ARM(LS1043A/LS1046A/LS1088A/LS2088A):
TOOLS = /usr/bin

CC = $(TOOLS)/ aarch64-linux-gnu-gcc
AS = $(TOOLS)/ aarch64-linux-gnu-as
LD = $(TOOLS)/ aarch64-linux-gnu-gcc
AR = $(TOOLS)/ aarch64-linux-gnu-ar

COMPILER_FLAGS = -O3 -funroll-all-loops -ftree-vectorize
LINKER_FLAGS = -lm -static
SIZE = $(TOOLS)/ aarch64-linux-gnu-size

Generate EEMBC Binary for Target Board

1. Create a working directory.

2. Retrieve EEMBC v2.0 from http://www.eembc.org/

EEMBC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 953

http://www.eembc.org/

3. Extract the EEMBC v2.0 source code.

4. Edit util/make/gcc.mak so that the CC variable points to the correct location of your compiler. See the table above for
detailed compiler flags and configuration.

5. Build binary using the make command:

make VER=v2 TOOLCHAIN=gcc THLITE=_lite all-lite

6. After the build is complete, copy binary files under <EEMBC_2.0_INSTALL_DIR>/networking/gcc/bin_lite to target board.

12.3.2 Test Procedure

Running test and result collection

1. Deploy the target board with corresponding software mentioned in the previous section.

2. Put EEMBC Netmark binary compiled with optimized flags mentioned in section test environment on target board.
EEMBC Netmark binary file list are as follows:

networking/tcpbulk_lite.exe
networking/tcpjumbo_lite.exe
networking/tcpmixed_lite.exe
networking/ip_pktcheckb1m_lite.exe
networking/ip_pktcheckb2m_lite.exe
networking/ip_pktcheckb4m_lite.exe
networking/ip_pktcheckb512k_lite.exe
networking/ip_reassembly_lite.exe
networking/ip_reassembly_lite.exe
networking/nat_lite.exe -INITTIME
networking/nat_lite.exe
networking/ospfv2_lite.exe
networking/qos_lite.exe
networking/routelookup_lite.exe

3. Run the benchmark:

networking/tcpbulk_lite.exe -i 200000
networking/tcpjumbo_lite.exe -i 300000
networking/tcpmixed_lite.exe -i 100000
networking/ip_pktcheckb1m_lite.exe -i 50000
networking/ip_pktcheckb2m_lite.exe -i 30000
networking/ip_pktcheckb4m_lite.exe -i 10000
networking/ip_pktcheckb512k_lite.exe -i 100000
networking/ip_reassembly_lite.exe -INITTIME -i 5000
networking/ip_reassembly_lite.exe -i 5000
networking/nat_lite.exe -INITTIME -i 10000
networking/nat_lite.exe -i 10000
networking/ospfv2_lite.exe -i 10000
networking/qos_lite.exe -i 300
networking/routelookup_lite.exe -i 20000

Check the log below for the results:

root@localhost# ./tcpbulk_lite -i 167000
 Configure benchmark for bulk data transfer test
Initialize network buffer pools
INFO: Initializing client and server NIF
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 167000
>> Bench Mark : TCP-BM bulk V2.0R1

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
954 NXP Semiconductors

-- Non-Intrusive CRC = 0
-- Iterations = 167000
-- Target Duration = 1600000
-- Target Timer Rate = 1000000
-- v1 = -4280
-- v2 = 0
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 104375.000
-- Total Run Time = 1.600sec
-- Time / Iter = 0.000009581sec
>> DONE!
>> BM: TCP-BM bulk V2.0R1
>> ID: NTW tcp

root@localhost# ./tcpjumbo_lite -i 250500
 Configure benchmark for jumbo packet transfer test
Initialize network buffer pools
INFO: Initializing client and server NIF
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 250500
>> Bench Mark : TCP-BM jumbo V2.0R1
-- Non-Intrusive CRC = 0
-- Iterations = 250500
-- Target Duration = 1540000
-- Target Timer Rate = 1000000
-- v1 = -24000
-- v2 = 0
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 162662.338
-- Total Run Time = 1.540sec
-- Time / Iter = 0.000006148sec
>> DONE!
>> BM: TCP-BM jumbo V2.0R1
>> ID: NTW tcp

root@localhost# ./tcpmixed_lite -i 83500
 Configure benchmark for mixed packet size test
Initialize network buffer pools
INFO: Initializing client and server NIF
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 83500
>> Bench Mark : TCP-BM mixed V2.0R1
-- Non-Intrusive CRC = 0
-- Iterations = 83500
-- Target Duration = 1940000
-- Target Timer Rate = 1000000
-- v1 = -2736
-- v2 = 0
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 43041.237

EEMBC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 955

-- Total Run Time = 1.940sec
-- Time / Iter = 0.000023234sec
>> DONE!
>> BM: TCP-BM mixed V2.0R1
>> ID: NTW tcp

root@localhost# ./ip_pktcheckb1m_lite -i 41750
>> Datagram buffer size : 0x0100000
>> Datagram alignment : 4
>> Descriptor padd size : 8
>> Number of Datagrams allocated : 720
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 41750
>> Bench Mark : Networking: IP Packet Check Benchmark, 1.0M V2.0R1
-- Non-Intrusive CRC = e3b5
-- Iterations = 41750
-- Target Duration = 2260000
-- Target Timer Rate = 1000000
-- v1 = 30060000
-- v2 = 1670000
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 18473.451
-- Total Run Time = 2.260sec
-- Time / Iter = 0.000054132sec
>> DONE!
>> BM: Networking: IP Packet Check Benchmark, 1.0M V2.0R1
>> ID: NTW ip_pktchec

root@localhost# ./ip_pktcheckb2m_lite -i 25050
>> Datagram buffer size : 0x0200000
>> Datagram alignment : 4
>> Descriptor padd size : 8
>> Number of Datagrams allocated : 1412
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 25050
>> Bench Mark : Networking: IP Packet Check Benchmark, 2.0M V2.0R1
-- Non-Intrusive CRC = 48b
-- Iterations = 25050
-- Target Duration = 2720000
-- Target Timer Rate = 1000000
-- v1 = 35370600
-- v2 = 1828650
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 9209.559
-- Total Run Time = 2.720sec
-- Time / Iter = 0.000108583sec
>> DONE!
>> BM: Networking: IP Packet Check Benchmark, 2.0M V2.0R1
>> ID: NTW ip_pktchec

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
956 NXP Semiconductors

root@localhost# ./ip_pktcheckb4m_lite -i 8350
>> Datagram buffer size : 0x0400000
>> Datagram alignment : 4
>> Descriptor padd size : 8
>> Number of Datagrams allocated : 2824
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 8350
>> Bench Mark : Networking: IP Packet Check Benchmark, 4.0M V2.0R1
-- Non-Intrusive CRC = d86c
-- Iterations = 8350
-- Target Duration = 1800000
-- Target Timer Rate = 1000000
-- v1 = 23580400
-- v2 = 1244150
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 4638.889
-- Total Run Time = 1.800sec
-- Time / Iter = 0.000215569sec
>> DONE!
>> BM: Networking: IP Packet Check Benchmark, 4.0M V2.0R1
>> ID: NTW ip_pktchec

root@localhost# ./ip_pktcheckb512k_lite -i 83500
>> Datagram buffer size : 0x0080000
>> Datagram alignment : 4
>> Descriptor padd size : 8
>> Number of Datagrams allocated : 374
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 83500
>> Bench Mark : Networking: IP Packet Check Benchmark, 0.5M V2.0R1
-- Non-Intrusive CRC = 3e1d
-- Iterations = 83500
-- Target Duration = 2160000
-- Target Timer Rate = 1000000
-- v1 = 31229000
-- v2 = 1753500
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 38657.407
-- Total Run Time = 2.160sec
-- Time / Iter = 0.000025868sec
>> DONE!
>> BM: Networking: IP Packet Check Benchmark, 0.5M V2.0R1
>> ID: NTW ip_pktchec

root@localhost# ./ip_reassembly_lite -INITTIME -i 4175
*** Initialization Timing Run, Subtract from normal run for score ***
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC

EEMBC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 957

>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 4175
>> Bench Mark : INITIALIZATION Networking: IP Reassembly Benchmark V2.0R1
-- Non-Intrusive CRC = 0
-- Iterations = 4175
-- Target Duration = 640000
-- Target Timer Rate = 1000000
-- v1 = 200
-- v2 = 0
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 6523.438
-- Total Run Time = 0.640sec
-- Time / Iter = 0.000153293sec
>> DONE!
>> BM: INITIALIZATION Networking: IP Reassembly Benchmark V2.0R1
>> ID: NTW ip_reasmIT

root@localhost# ./ip_reassembly_lite -i 4175
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 4175
>> Bench Mark : Networking: IP Reassembly Benchmark V2.0R1
-- Non-Intrusive CRC = 678e
-- Iterations = 4175
-- Target Duration = 1940000
-- Target Timer Rate = 1000000
-- v1 = 200
-- v2 = 4939025
-- v3 = 835000
-- v4 = 0
-- Iterations/Sec = 2152.062
-- Total Run Time = 1.940sec
-- Time / Iter = 0.000464671sec
>> DONE!
>> BM: Networking: IP Reassembly Benchmark V2.0R1
>> ID: NTW ip_reasm

root@localhost# ./nat_lite -INITTIME -i 8350
*** Initialization Timing Run, Subtract from normal run for score ***
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 8350
>> Bench Mark : INITIALIZATION Network Address Translation V2.0R1
-- Non-Intrusive CRC = 0
-- Iterations = 8350
-- Target Duration = 960000
-- Target Timer Rate = 1000000
-- v1 = 1000

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
958 NXP Semiconductors

-- v2 = 0
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 8697.917
-- Total Run Time = 0.960sec
-- Time / Iter = 0.000114970sec
>> DONE!
>> BM: INITIALIZATION Network Address Translation V2.0R1
>> ID: NTW NATIT

root@localhost# ./nat_lite -i 8350
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 8350
>> Bench Mark : Network Address Translation V2.0R1
-- Non-Intrusive CRC = 9d46
-- Iterations = 8350
-- Target Duration = 2320000
-- Target Timer Rate = 1000000
-- v1 = 1000
-- v2 = 0
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 3599.138
-- Total Run Time = 2.320sec
-- Time / Iter = 0.000277844sec
>> DONE!
>> BM: Network Address Translation V2.0R1
>> ID: NTW NAT

root@localhost# ./ospfv2_lite -i 8350
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 8350
>> Bench Mark : Networking: OSPF Benchmark V2.0R1
-- Non-Intrusive CRC = 7f12
-- Iterations = 8350
-- Target Duration = 1480000
-- Target Timer Rate = 1000000
-- v1 = 400
-- v2 = 4
-- v3 = 8
-- v4 = 32000
-- Iterations/Sec = 5641.892
-- Total Run Time = 1.480sec
-- Time / Iter = 0.000177246sec
>> DONE!
>> BM: Networking: OSPF Benchmark V2.0R1
>> ID: NTW ospf

root@localhost# ./qos_lite -i 250
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100

EEMBC

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 959

>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 250
>> Bench Mark : Networking: QoS V2.0R1
-- Non-Intrusive CRC = fa81
-- Iterations = 250
-- Target Duration = 1000000
-- Target Timer Rate = 1000000
-- v1 = 100
-- v2 = 100
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 250.000
-- Total Run Time = 1.000sec
-- Time / Iter = 0.004000000sec
>> DONE!
>> BM: Networking: QoS V2.0R1
>> ID: NTW QoS

root@localhost# ./routelookup_lite -i 16700
>> self-check completed ok.
>>--
>> EEMBC Component : EEMBC Portable Test Harness V4.100
>> EEMBC Member Company : EEMBC
>> Target Processor : HOST EXAMPLE
>> Target Platform : 32 Bit
>> Target Timer Available : YES
>> Target Timer Intrusive : YES
>> Target Timer Rate : 1000000
>> Target Timer Granularity : 10
>> Recommended Iterations : 16700
>> Bench Mark : Networking: Route Lookup Benchmark V2.0R1
-- Non-Intrusive CRC = 407d
-- Iterations = 16700
-- Target Duration = 2100000
-- Target Timer Rate = 1000000
-- v1 = 0
-- v2 = 0
-- v3 = 0
-- v4 = 0
-- Iterations/Sec = 7952.381
-- Total Run Time = 2.100sec
-- Time / Iter = 0.000125749sec
>> DONE!
>> BM: Networking: Route Lookup Benchmark V2.0R1
>> ID: NTW routelookup EEMBC

For other platforms, use the ratio (CPU_Freq_target_platform/2000) to get the corresponding parameter.

 NOTE

There is a run to run variation, so an average across 5 runs was taken for every result.

Networking Version 2.0 Calculation

Networking Version 2.0 produces two aggregate "mark" scores: the TCPmark™ and the IPmark™. The IPmark is intended for
developers of infrastructure equipment, while the TCPmark, which includes the TCP benchmark, focuses on client- and server-
based network hardware.

The IPmark is the geometric mean of the scores for QoS, Route Lookup, OSPF, IP Reassembly, Network Address Translation,
and the geometric mean of the individual scores for IP Packet check, all divided by 10:

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
960 NXP Semiconductors

IPmark = Geomean ((Geomean (IP Packet Check [0.5MB], IP Packet Check [1MB], IP Packet Check
[2MB], IP Packet Check [4MB]), QoS, Route Lookup, OSPF, IP Reassembly, NAT))/10

The TCPmark is the geometric mean of the scores for TCP Jumbo, TCP Bulk, and TCP Mixed divided by 100:

TCPmark = Geomean (TCP jumbo, TCP bulk, TCP Mixed)/100

To calculate a geometric mean, multiply all the results of the tests together and take the nth root of the product, where n equals
the number of tests.

NAT and IP Reassembly Benchmarks

To calculate the iterations per second for the NAT and IP Reassembly benchmarks, it's necessary to run the benchmarks twice:

1. Run the benchmark with the flag -INITTIME supplied on the command line.

2. Run the benchmark without the flag -INITTIME supplied on the command line. The same executable must be run both
times and the number of iterations must be identical.

3. Subtract the time of the first run from the time of the second run and calculate the iterations per second based on the
calculated time.

The score reported for each device is a single-number figure of merit calculated by taking the geometric mean of the individual
Networking scores and dividing by 395.184. This normalization factor is derived from the lowest score in this category on
December 5, 2000. Scores for each of the individual benchmarks within this suite allow designers to weight and aggregate the
benchmarks to suit specific application requirements.

To calculate a geometric mean, multiply all the results (*) of the tests together and take the nth root of the product, where n equals
the number of tests. (*) Scores included in geometric mean:

•OSPF
•Route Lookup
•Packet Flow - 512 kbytes
•Packet Flow - 1 Mbyte
•Packet Flow - 2 Mbytes

This calculation can also be found on EEMBC website: http://eembc.org/benchmark/reports/mark.php?suite=NT2

 NOTE

12.4 LMBench

12.4.1 Test Environment

Objectives

The LMBench benchmaring guideline aims to do the following:

• Baseline the LMBench performance on QorIQ Layerscape platforms.

• Identify any optimizations and ensure they are implemented on the QorIQ Layerscape platforms.

• Investigate other changes that may improve performance.

LMBench

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 961

http://eembc.org/benchmark/reports/mark.php?suite=NT2

Hardware Platform Identification

Board Silicon Revision Default
Freqeuncy(Core/CCB/DDR)
in MHz

Core Type

LS1021ATWR Rev2.0 1000/300/1600 cortex A7

LS1043ARDB Rev1.1 1600/400/1600 cortex A53

LS1046ARDB Rev1.0 1800/700/2100 cortex A72

LS1088ARDB Rev1.0 1600/700/2100 cortex A53

LS2088ARDB Rev1.0 2000/800/2133 cortex A72

For more information on each board's switch settings, refer to the boards's Reference Manual or Getting Started Guide on http://
www.nxp.com/

Software Platforma Identification

All software was built from Layerscape SDK.

Boot Loader

U-boot 2017.03 with NXP-specific patches on top.

If the target platform support chip select interleaving and address hash, please enable chip select interleaving and address hash,
disabling ecc by hwconfig with syntax:

“hwconfig=fsl_ddr:bank_intlv=cs0_cs1,addr_hash=true,ecc=off”

LMBench Application

The rootfs includes LMBench binaries which were built without optimization. For general latency performance, the default
LMBench binary file in the root file system will be OK. To get better bandwidth performance result, modify the compiler flags to
enable "O3" optimization.

1. Download lmbench source code from following link: https://sourceforge.net/projects/lmbench/files/latest/download

2. Change “CC” and “CFLAGS” in file src/Makefile as the following:

CC = /usr/bin/aarch64-linux-gnu-gcc
CFLAGS = -O3

3. Build code with new optimized compiler flags:

#make

4. Transfer the bw_mem binary file to target board.

12.4.2 Test Procedure

Running Test and Result Collection

Separate U-Boot image was flashed in alternate U-Boot flash bank and the DUT is booted out of that bank. Binaries compiled
with different flags were run separately and then the data was collected for the binary showing the best results. To get full LMBench
test result, run lmbench-run to get the full test result.

There is a run to run variation in, so an average across 5 runs was taken for every result

Benchmarking guidelines

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
962 NXP Semiconductors

http://www.nxp.com/
http://www.nxp.com/
https://sourceforge.net/projects/lmbench/files/latest/download

Scripts for LMBench Test

Execution latency test script:

for i in `seq 1 5`
do
echo “Integer, integer64,float,double float execution latency”
lat_ops
done

Memory read latency test script:

for i in `seq 1 5`
do
echo “L1, L2, L3 and DDR read latency”
lat_mem_rd 100M
done

Memory bandwidth test script:

#!/bin/sh

for opt in rd wr rdwr cp frd fwr fcp bzero bcopy
do
 echo "L1 cache bandwidth $opt test with #$proc process"
 #8k is fit for all platform

 for idx in `seq 1 5`
 do
 bw_mem -P 1 8k $opt
 done
 echo "L2 cache bandwidth $opt test"
 # For Layerscape platform, each platform has more than 256K L2 cache, so chose 128k as L2
cache size.
 for idx in `seq 1 5`
 do
 bw_mem -P 1 128k $opt
 done

 echo "Main mem bandwidth $opt test"
 for idx in `seq 1 5`
 do
 bw_mem -P 1 100m $opt
 done
done

LMBench

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 963

Chapter 13
Connect to cloud: EdgeScale

13.1 What is EdgeScale
EdgeScale is a unified, scalable, and secure device management solution for Edge Computing applications. It enables OEMs
and developers to leverage cloud compute frameworks like AWS Greengrass, Azure IoT, and Aliyun on Layerscape devices.

EdgeScale provides the missing piece of device security and management needed for customers to securely deploy and manage
many Edge computing devices from the cloud. End-users and developers can use the EdgeScale cloud dashboard to securely
enroll Edge devices, monitor their health, attest, and deploy container applications and firmware updates.

EdgeScale can also be used as a development environment to build containers and generate firmware.

Supported features

• EdgeScale dashboard for users

• Secure device enrolment

• Secure key/certificate provisioning

• OTA: firmware update (LS1043 or LS1046)

• Device status monitoring on the cloud

• Dynamic deployment of container-based applications

The above specified features are currently supported in LSDK. For more details, please visit: EDGESCALE: EdgeScale for Secure
Edge Computing

13.2 Building EdgeScale client
To build EdigeScale client, perform the following steps:

1. Execute the following commands to set up Flexbuild environment:

$ cd <flexbuild_dir>
$ source setup.env

2. Execute the commands below to enable EdgeScale client:

EdgeScale components are disabled by default in LSDK, users can edit flexbuild/configs/
build_lsdk.cfg as below to enable it.
$ vi configs/build_lsdk.cfg
CONFIG_BUILD_QORIQ_EDGESCALE_EDS=y
CONFIG_BUILD_QORIQ_EDS_KUBELET=y
CONFIG_BUILD_QORIQ_EDS_PUPPET=y
CONFIG_BUILD_QORIQ_EDS_BOOTSTRAP=y

3. Execute the commands below to compile custom kernel for EdgeScale agents in Flexbuild, <arch> can be
“arm32”or“arm64”

$ cd <flexbuild_dir>
$ source setup.env
$ flex-builder -i repo-fetch -B qoriq-edgescale-eds
$ flex-builder -i repo-fetch -B <kernel-repo>
$ cp packages/apps/qoriq-edgescale-eds/edgescale_demo_kernel.config packages/linux/
<kernel-repo>/arch/<arch>/configs
$ flex-builder -c linux -a <arch> -B fragment:edgescale_demo_kernel.config

Connect to cloud: EdgeScale

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
964 NXP Semiconductors

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/edgescale-for-secure-edge-computing:EDGESCALE
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/edgescale-for-secure-edge-computing:EDGESCALE

4. Execute the command below to compile EdgeScale with client in Flexbuild:

$ flex-builder -i mkallfw -m <machine> -b sd
$ flex-builder -i mkrfs -a <arch>
$ flex-builder -c edgescale -a <arch>
$ flex-builder -i mkbootpartition -a <arch>
$ flex-builder -i merge-component -a <arch>
$ flex-builder -i compressrfs -a <arch>

13.3 Procedure to start EdgeScale
For complete details on how to start EdgeScale, see https://portal.edgescale.org/#/start

Procedure to start EdgeScale

Layerscape Software Development Kit 18.03 Documentation, Rev. 18.03, 04/2018
NXP Semiconductors 965

https://portal.edgescale.org/#/start

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, CodeWarrior, Layerscape, PowerQUICC,

QorIQ, CoreNet, and QUICC Engine are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. Arm, Cortex, and TrustZone are registered

trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2018 NXP B.V.

Document Number: LSDK
Rev. 18.03, 04/2018

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 About this document
	2 Acronyms and abbreviations
	3 Release notes
	3.1 What's New
	3.2 Components
	3.3 Feature Support Matrix
	3.4 Supported Targets
	3.5 Fixed, Open, and Closed Issues

	4 Layerscape SDK user guide
	4.1 LSDK Quick Start
	4.1.1 Download and assemble LSDK images
	4.1.2 Deploy LSDK Images on the target board
	4.1.2.1 Deploy LSDK images from Linux Host
	4.1.2.2 Deploy LSDK images on board

	4.1.3 Deploy LSDK Images for secure boot on the target board
	4.1.3.1 Deploy LSDK images from Linux Host
	4.1.3.2 Deploy LSDK Secure images on board

	4.2 How to build LSDK with Flexbuild
	4.3 Advanced Use Case Instructions
	4.4 Procedure to Run Secure Boot
	4.4.1 Prepare board for Secure Boot
	4.4.2 Running secure boot on target platforms
	4.4.3 Steps to run Chain of Trust with Confidentiality

	4.5 LSDK Memory Layout
	4.6 Board-specific Information
	4.6.1 TWR-LS1021A
	4.6.1.1 On-board Switch Settings
	4.6.1.2 Clock Frequency
	4.6.1.3 U-Boot Environment Variables
	4.6.1.4 Supported Boot Options
	4.6.1.5 System Memory Map
	4.6.1.6 NOR Flash (Virtual) Banks
	4.6.1.7 Supported Reset Configuration Word (RCW) Binaries
	4.6.1.8 FlexCAN User Manual

	4.6.2 LS1012ARDB
	4.6.2.1 On-board Switch Settings
	4.6.2.2 U-Boot Environment Variables
	4.6.2.3 Supported Boot Options
	4.6.2.4 System Memory Map
	4.6.2.5 Supported Reset Configuration Word (RCW) Binaries
	4.6.2.6 Flash Bank Usage
	4.6.2.7 Basic Networking Ping Test
	4.6.2.8 Check 'Link Up' for Serial Ethernet Interfaces

	4.6.3 LS1043ARDB
	4.6.3.1 On-board Switch Settings
	4.6.3.2 Supported boot options
	4.6.3.3 U-Boot Environment Variables
	4.6.3.4 System Memory Map
	4.6.3.5 NOR Flash (Virtual) Banks
	4.6.3.6 Supported Reset Configuration Word (RCW) Binaries
	4.6.3.7 Frame Manager Microcode (FMan ucode)

	4.6.4 LS1046ARDB
	4.6.4.1 On-board Switch Settings
	4.6.4.2 Supported Boot Options
	4.6.4.3 U-Boot Environment Variables
	4.6.4.4 System Memory Map
	4.6.4.5 QSPI Flash (Virtual) Banks
	4.6.4.6 Supported Reset Configuration Word (RCW) Binaries
	4.6.4.7 Frame Manager Microcode (FMan ucode)

	4.6.5 LS1088ARDB
	4.6.5.1 On-board Switch Settings
	4.6.5.2 Supported Boot Types
	4.6.5.3 Booting
	4.6.5.4 U-Boot Environment Variables
	4.6.5.5 Supported Reset Configuration Word (RCW) Binaries
	4.6.5.6 Ethernet MAC Connectivity

	4.6.6 LS2088ARDB
	4.6.6.1 On-board Switch Settings
	4.6.6.2 Supported Boot Options
	4.6.6.3 Booting
	4.6.6.4 U-Boot Environment Variables
	4.6.6.5 NOR Flash (Virtual) Banks
	4.6.6.6 Supported RCW (Reset Configuration Word) Binaries
	4.6.6.7 Ethernet MAC Connectivity

	5 Bootloaders
	5.1 General boot flow
	5.2 U-Boot
	5.2.1 LSDK U-Boot uses distro boot feature

	5.3 UEFI
	5.3.1 Introduction
	5.3.2 UEFI overview
	5.3.3 LSDK distro boot with UEFI
	5.3.4 Product Execution
	5.3.4.1 Flash Layout
	5.3.4.2 LS1043ARDB
	5.3.4.3 LS1046ARDB
	5.3.4.4 LS2088ARDB

	5.3.5 LSDK Distro Boot Logs
	5.3.6 PXE Boot
	5.3.6.1 Creating the PXE Boot Setup
	5.3.6.2 Installing the Kernel

	6 Security
	6.1 Secure boot
	6.1.1 Hardware Pre-Boot Loader (PBL) based platforms
	6.1.1.1 Introduction
	6.1.1.2 Secure boot process
	6.1.1.3 Pre-boot phase
	6.1.1.4 ISBC phase
	6.1.1.4.1 Flow in the ISBC code
	6.1.1.4.2 Super Root Keys (SRKs) and signing keys
	6.1.1.4.3 Key revocation
	6.1.1.4.4 Alternate image support
	6.1.1.4.5 ESBC with CSF header

	6.1.1.5 ESBC phase
	6.1.1.5.1 Boot script
	Where to place the boot script?
	Chain of Trust
	Sample boot script
	esbc_validate command
	esbc_halt command

	Chain of Trust with confidentiality
	blob enc command
	Sample encap boot script

	blob dec command
	Sample Decap Boot Script

	6.1.1.6 Next executable (Linux phase)
	6.1.1.7 Product execution
	6.1.1.7.1 Introduction
	6.1.1.7.2 Chain of Trust with confidentiality
	Other images required for the demo
	Running secure boot (Chain of Trust with confidentiality)

	6.1.1.7.3 ISBC Key Extension (IE)
	Introduction
	How it works
	IE Key Structure
	Sample Input File and Output
	Generate Header for Next Level Images (bootscript, rootfs, dtb, linux).

	6.1.1.8 Troubleshooting
	6.1.1.9 CSF Header Data Structure
	6.1.1.10 ISBC Validation Error Codes
	6.1.1.11 ESBC Validation Error Codes
	6.1.1.12 Trust Architecture and SFP Information

	6.1.2 Service Processor (SP) Based Platforms
	6.1.2.1 Secure Boot Introduction
	6.1.2.1.1 Secure Boot process
	Super Root Key (SRK)

	6.1.2.2 ISBC Phase
	6.1.2.2.1 ISBC for PBI validation
	6.1.2.2.2 ISBC for Boot1 (Boot Loader 1) validation

	6.1.2.3 ESBC Phase
	6.1.2.3.1 esbc_validate command
	6.1.2.3.2 esbc_halt command
	6.1.2.3.3 blob enc command
	6.1.2.3.4 blob dec command
	6.1.2.3.5 Boot Script
	Chain of Trust
	Chain of Trust with confidentiality

	6.1.2.4 Next executable phase
	6.1.2.5 Product Execution
	6.1.2.5.1 Introduction
	6.1.2.5.2 Chain of Trust with confidentiality
	Other images required for demo
	Running secure boot (Chain of Trust with confidentiality)

	6.1.2.5.3 ISBC Key Extension (IE)
	IE table format
	Enabling IE via the Code Signing Tool
	uni_sign on ESBC
	uni_sign On ESBC
	uni_pbi
	uni_pbi
	uni_sign on next level images
	uni_sign on Next Level Images

	6.1.2.6 PBI structure
	6.1.2.7 CSF header structure definition
	6.1.2.8 CSF header structure definition
	6.1.2.9 Secure boot specific RCW fields
	6.1.2.10 ISBC error codes
	6.1.2.11 ESBC error codes
	6.1.2.12 Troubleshooting

	6.1.3 Code Signing Tool
	6.1.3.1 Key generation
	6.1.3.1.1 gen_keys
	6.1.3.1.2 gen_otpmk_drbg
	6.1.3.1.3 gen_drv_drbg

	6.1.3.2 Header creation
	6.1.3.2.1 uni_pbi
	Sample Input File

	6.1.3.2.2 uni_pbi (create_hdr_pbi)
	Sample Input File
	PBI structure

	6.1.3.2.3 uni_sign
	Sample Input File

	6.1.3.2.4 uni_sign (create_hdr_isbc)
	Sample Input File (ISBC)

	6.1.3.2.5 uni_sign (create_hdr_esbc)
	Sample Input File (ESBC)

	6.1.3.3 Signature generation
	6.1.3.3.1 gen_sign
	6.1.3.3.2 sign_embed

	6.2 Trusted Execution (OP-TEE)
	6.2.1 Introduction
	6.2.1.1 Support Platform
	6.2.1.2 Test Sequence

	6.2.2 Appendix A: Loading OP-TEE OS binary
	6.2.3 Appendix B: Initialization flow of OP-TEE OS
	6.2.4 Appendix C: Runtime flow of OP-TEE

	6.3 Fuse Provisioning User Guide
	6.3.1 Introduction
	6.3.2 Fuse Programming Scenarios
	6.3.2.1 Fuse Provisioning during OEM Manufacturing

	6.3.3 Fuse Provisioning Utility
	6.3.3.1 Fuse file structure
	6.3.3.2 Sample input file for fuse provisioning tool

	6.3.4 Steps to build fuse provisioning firmware image
	6.3.5 Deploy and run fuse provisioning
	6.3.5.1 Enable POVDD for SFP
	6.3.5.2 Deploy firmware image on board
	6.3.5.3 Run firmware image on board

	6.3.6 Validation
	6.3.7 Error Codes

	6.4 PKCS#11 and Secure Object Library
	6.4.1 Introduction
	6.4.2 Supported APIs
	6.4.2.1 PKCS#11 Library – libpkcs11
	6.4.2.2 Secure Object Library – libsecure_obj
	6.4.2.3 Integrating Secure Object Library with OpenSSL
	6.4.2.3.1 OpenSSL Engine – libeng_secure_obj
	6.4.2.3.2 Example Usage with OpenSSL

	6.4.3 Board Bootup & Running applications
	6.4.3.1 Board Bootup
	6.4.3.2 Running applications
	6.4.3.2.1 sobj_app
	6.4.3.2.2 pkcs11_app
	6.4.3.2.3 mp_app
	6.4.3.2.4 mp_verify
	6.4.3.2.5 sobj_eng_app

	6.4.4 Validation
	6.4.5 Appendix

	7 Linux kernel
	7.1 Configuring and building
	7.2 Device Drivers
	7.2.1 Enhanced Direct Memory Access (eDMA)
	7.2.2 CAAM Direct Memory Access (DMA)
	7.2.3 Enhanced Secured Digital Host Controller (eSDHC)
	7.2.4 IEEE 1588
	7.2.5 Integrated Flash Controller (IFC)
	7.2.5.1 Integrated Flash Controller NOR Flash User Manual
	7.2.5.2 Integrated Flash Controller NAND Flash User Manual

	7.2.6 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	7.2.7 Quad Serial Peripheral Interface (QSPI)
	7.2.8 Real Time Clock (RTC)
	7.2.9 Synchronous Audio Interface (SAI)
	7.2.10 Serial Advanced Technology Attachment (SATA)
	7.2.11 Security Engine (SEC)
	7.2.12 Time Division Multiplexing (TDM)
	7.2.13 Universal Serial Bus Interfaces
	7.2.13.1 USB 2.0 Host Driver User Manual
	7.2.13.2 USB 2.0 Gadget Network Driver User Manual
	7.2.13.3 USB 3.0 Host/Peripheral Linux Driver User Manual

	7.2.14 Watchdog
	7.2.15 QUICC Engine Time Division Multiplexing User Manual

	8 QorIQ networking technologies
	8.1 Summary of networking technologies
	8.2 DPAA1-specific Software
	8.2.1 DPAA Software Architecture Overview
	8.2.1.1 Introduction
	8.2.1.1.1 General architectural considerations
	8.2.1.1.2 Multicore design
	8.2.1.1.3 Parse/classification software offload
	8.2.1.1.4 Flow order considerations
	8.2.1.1.5 Managing flow-to-core affinity

	8.2.1.2 DPAA1 Goals
	8.2.1.3 FMan Overview
	8.2.1.4 QMan Overview
	8.2.1.5 QMan Scheduling
	8.2.1.6 BMan
	8.2.1.7 Order Handling
	8.2.1.8 Pool Channels
	8.2.1.9 Application Mapping
	8.2.1.10 FQ/WQ/Channel

	8.2.2 Linux Ethernet
	8.2.2.1 Introduction
	8.2.2.2 The DPAA1-Ethernet view of the world
	8.2.2.2.1 The Linux kernel APIs
	8.2.2.2.2 The Driver's building blocks
	Net Devices
	Frame Queues
	Buffer Pools

	8.2.2.3 DPAA1 resources initialization
	8.2.2.3.1 What, Why and How resources are initialized
	8.2.2.3.2 Hashing/PCD frame queues

	8.2.2.4 The (Simplified) Life of a packet
	8.2.2.4.1 Private net device: Tx
	8.2.2.4.2 Private net device: Rx

	8.2.2.5 Private DPAA1 ethernet driver
	8.2.2.5.1 Network driver
	8.2.2.5.2 Configuration
	Device tree configuration
	Kconfig options
	Bootargs
	ethtool options

	8.2.2.5.3 Features
	Congestion management
	Scatter/Gather support
	Jumbo frames support
	GRO/GSO Support
	Transmit packet steering
	TX and RX Hardware Checksum
	Priority Flow Control
	Core Affined Queues

	8.2.2.6 Quality of Service
	8.2.2.6.1 Policing
	8.2.2.6.2 Scheduling and Shaping
	Description
	The CEETM architecture
	Features
	Integration with queuing disciplines

	User guide
	Supported platforms
	Getting started
	Limitations
	Usage

	Examples
	Rate limit two streams
	Prioritization of two streams
	Assigning weights to two streams
	Unshaped Fair Queuing of two streams

	8.2.2.7 Debugging
	8.2.2.7.1 Ethtool support
	8.2.2.7.2 Read/Write of FMan Registers
	8.2.2.7.3 Sysfs support

	8.2.2.8 Frequently Asked Questions
	8.2.2.9 Known Issues

	8.2.3 Queue Manager (QMan) and Buffer Manager (BMan)
	8.2.3.1 QMan/BMan Drivers Introduction
	8.2.3.2 QMan BMan API Reference Manual
	8.2.3.2.1 Introduction to the Queue Manager and the Buffer Manager
	8.2.3.2.2 Buffer Manager
	Buffer Manager (BMan) Overview
	BMan configuration interface
	BMan Device-Tree Node
	Free Buffer Proxy Records
	Logical I/O Device Number (BMan)

	Buffer Pool Node
	Buffer Pool ID
	Seeding Buffer Pools
	Depletion Thresholds

	BMan Portal Device-Tree Node
	Portal Initialization (BMan)
	Portal sharing

	8.2.3.2.3 BMan CoreNet portal APIs
	BMan High-Level Portal Interface
	Overview (BMan)
	Portal management (BMan)
	Modifying interrupt-driven portal duties (BMan)
	Processing non-interrupt-driven portal duties (BMan)
	Recovery support (BMan)
	Determining if the release ring is empty

	Pool Management
	Releasing and Acquiring Buffers
	Depletion State

	8.2.3.2.4 Queue Manager
	QMan Overview
	Queue Manager's Function
	Frame Descriptors
	Frame Queue Descriptors (QMan)
	Work Queues
	Channels
	Portals
	Dedicated Portal Channels
	Pool Channels
	Portal Sub-Interfaces
	Frame queue dequeuing
	Unscheduled Dequeues
	Scheduled Dequeues
	Pull Mode
	Push Mode
	Stashing to Processor Cache

	Frame Queue States
	Hold active
	Dequeue Atomicity
	Parking Scheduled FQs
	Order Preservation & Discrete Consumption Acknowledgement

	Enqueue Rejections
	Order Restoration

	QMan configuration interface
	QMan device-tree node
	Frame Queue Descriptors
	Packed Frame Descriptor Records
	Logical I/O Device Number (QMan)

	QMan pool channel device-tree node
	Channel ID

	QMan portal device-tree node
	Portal Access to Pool Channels
	Stashing Logical I/O Device Number
	Portal Initialization (QMan)
	Auto-Initialization

	8.2.3.2.5 QMan portal APIs
	QMan High-Level Portal Interface
	Overview (QMan)
	Frame and Message Handling
	Portal management (QMan)
	Modifying interrupt-driven portal duties (QMan)
	Processing non-interrupt-driven portal duties (QMan)
	Recovery support (QMan)
	Stopping and restarting dequeues to the portal
	Manipulating the portal static dequeue command
	Determining if the enqueue ring is empty

	Frame queue management
	Querying a FQ object
	Initialize a FQ
	Schedule a FQ
	Retire a FQ
	Put a FQ out of service
	Query a FQD from QMan
	Unscheduled (volatile) dequeuing of a FQ
	Set FQ flow control state

	Enqueue Command (without ORP)
	Enqueue Command with ORP
	DCA Mode
	Congestion Management Records
	Zero-Configuration Messaging
	FQ allocation
	Ad-hoc FQ allocator
	FQ range allocator
	Future FQ allocator changes

	Helper functions

	8.2.3.2.6 Sysfs and debugfs QMan/BMan interfaces
	QMan sysfs
	/sys/devices/ffe000000.soc/ffe318000.qman
	/sys/devices/ffe000000.soc/ffe318000.qman/error_capture
	/sys/devices/ffe000000.soc/ffe318000.qman/error_capture/sbec_< 0..6>
	/sys/devices/ffe000000.soc/ffe318000.qman/sfdr_in_use
	/sys/devices/ffe000000.soc/ffe318000.qman/pfdr_fpc
	/sys/devices/ffe000000.soc/ffe318000.qman/pfdr_cfg
	/sys/devices/ffe000000.soc/ffe318000.qman/idle_stat
	/sys/devices/ffe000000.soc/ffe318000.qman/err_isr
	/sys/devices/ffe000000.soc/ffe318000.qman/dcp< 0..3> _dlm_avg
	/sys/devices/ffe000000.soc/ffe318000.qman/ci_rlm_avg

	BMan sysfs
	/sys/devices/ffe000000.soc/ffe31a000.bman
	/sys/devices/ffe000000.soc/ffe31a000.bman/error_capture
	/sys/devices/ffe000000.soc/ffe31a000.bman/error_capture/sbec_< 0..1>
	/sys/devices/ffe000000.soc/ffe31a000.bman/pool_count
	/sys/devices/ffe000000.soc/ffe31a000.bman/fbpr_fpc
	/sys/devices/ffe000000.soc/ffe31a000.bman/err_isr

	QMan debugfs
	/sys/kernel/debug/qman
	/sys/kernel/debug/qman/query_cgr
	/sys/kernel/debug/qman/query_congestion
	/sys/kernel/debug/qman/query_fq_fields
	/sys/kernel/debug/qman/query_fq_np_fields
	/sys/kernel/debug/qman/query_cq_fields
	/sys/kernel/debug/qman/query_ceetm_ccgr
	/sys/kernel/debug/qman/query_wq_lengths
	/sys/kernel/debug/qman/fqd/avoid_blocking_[enable | disable]
	/sys/kernel/debug/qman/fqd/prefer_in_cache_[enable | disable]
	/sys/kernel/debug/qman/fqd/cge_[enable | disable]
	/sys/kernel/debug/qman/fqd/cpc_[enable | disable]
	/sys/kernel/debug/qman/fqd/cred
	/sys/kernel/debug/qman/fqd/ctx_a_stashing_[enable | disable]
	/sys/kernel/debug/qman/fqd/hold_active_[enable | disable]
	/sys/kernel/debug/qman/fqd/orp_[enable | disable]
	/sys/kernel/debug/qman/fqd/sfdr_[enable | disable]
	sys/kernel/debug/qman/fqd/state_[active | oos | parked | retired | tentatively_sched | truly_sched]
	/sys/kernel/debug/qman/fqd/tde_[enable | disable]
	/sys/kernel/debug/qman/fqd/wq
	/sys/kernel/debug/qman/fqd/summary
	/sys/kernel/debug/qman/ccsrmempeek
	/sys/kernel/debug/qman/query_ceetm_xsfdr_in_use

	BMan debugfs
	/sys/kernel/debug/bman
	/sys/kernel/debug/bman/query_bp_state

	8.2.3.2.7 Error handling and reporting
	Handling and Reporting

	8.2.3.2.8 Operating system specifics
	Portal maintenance
	Callback context
	Blocking semantics

	8.2.4 Configuring DPAA Frame Queues
	8.2.4.1 Introduction
	8.2.4.2 FMan Network interface Frame Queue Configuration
	8.2.4.3 FMan network interface ingress FQs configuration
	8.2.4.4 Ingress FQs common configuration guidelines
	8.2.4.5 Dynamic load balancing with order preservation - ingress FQs configuration guidelines
	8.2.4.6 Dynamic load balancing with order restoration - ingress FQs configuration guidelines
	8.2.4.7 Static distribution - Ingress FQs Configuration Guidelines
	8.2.4.8 FMan network interface egress FQs configuration
	8.2.4.9 Accelerator Frame Queue Configuration
	8.2.4.10 DPAA1 Frame Queue Configuration Guideline Summary

	8.2.5 Frame Manager
	8.2.5.1 Frame Manager Linux Driver User Guide
	8.2.5.1.1 Introduction
	8.2.5.1.2 The Linux FMD Devices
	8.2.5.1.3 Linux FMD Programming Model
	8.2.5.1.4 Frame Manager Linux Driver API Reference
	The Linux FMan Device
	The Linux PCD Device
	The Linux Port Devices

	8.2.5.2 Frame Manager Driver User Guide
	8.2.5.2.1 Introduction
	8.2.5.2.2 Frame Manager Features
	8.2.5.2.3 Frame Manager Driver Components
	8.2.5.2.4 Driver Modules in the System
	Multicore Approach
	SMP

	8.2.5.2.5 FMan Driver Calling Sequence
	8.2.5.2.6 Global FMan Driver
	FMan Hardware Overview
	Global FMan Driver Software Abstraction

	How to use the Global FMan Driver?
	Global FMan Driver Scope
	Global FMan Driver Sequence
	Global FMan Driver Functional Description
	FMan Configuration and Initialization
	Resource Management & Tuning
	Load Balancing
	Statistics

	8.2.5.2.7 FMan Parse-Classify-Distribute Driver
	FMan PCD Hardware Overview
	FMan PCD Software Abstraction
	FMan PCD Flow
	Global FMan PCD Module
	Global FMan-PCD Resources
	How to Associate PCD Resources
	FMan Header Manipulation
	Custom Classifier Hash-Table Node

	How to use the FMan PCD Driver?
	FMan PCD Driver Scope
	FMan PCD Driver Sequence
	FMan PCD Driver Functional Description
	Global PCD Initialization
	PCD Resources
	Network Environment Characteristics
	Software Parser
	Keygen Schemes
	Custom Classifier Root
	Match-Table Nodes
	Hash-Table Nodes
	Manipulations
	Header Manipulation
	IP Reassembly
	IP Fragmentation
	IPSec Manipulation

	Frame Replicator
	Policer Profiles
	PCD Organization
	PCD Definition Sequence
	Host Command
	PCD Statistics
	Custom Classifier Statistics

	8.2.5.2.8 FMan Port Driver
	FMan Port Hardware Overview
	FMan Port Driver Software Abstraction

	How to use the FMan Port Driver?
	FMan Port Driver Scope
	FMan Port Driver Sequence
	FMan Port Driver Functional Description
	FMan Port Configuration and Initialization
	FMan Port Types
	Independent-Mode
	Resource Management
	Virtual Storage Profiles Support
	Rate Limiting
	Simple BMI-to-BMI (regular) mode
	Port LIODN
	Port-PCD Binding
	Port-PCD Binding Changes

	8.2.5.2.9 FMan MAC Driver
	FMan MAC Hardware Overview
	FMan MAC Software Abstraction

	How To Use The FMan MAC Driver?
	FMan MAC Driver Scope
	FMan MAC Driver Sequence
	FMan MAC Driver Functional Description
	FMan MAC Configuration and Initialization
	FMan MAC Addressing
	IEEE1588 Support
	MAC Statistics

	8.2.5.2.10 FMan VSP Driver
	FMan VSP Hardware Overview
	How To Use The FMan VSP Driver?
	FMan VSP Driver Scope
	FMan VSP Driver Sequence
	FMan VSP Driver Functional Description
	Virtual Storage Profile Initialization
	Virtual Storage Profile Parsing

	8.2.5.2.11 FMan RTC (IEEE 1588) Driver
	FMan RTC Hardware Overview
	How To Use The RTC Driver?
	RTC Driver Scope
	RTC Driver Sequence
	RTC Driver Functional Description
	FMan RTC 1588 module utilization
	Utilizing IEEE1588 for MAC frames time stamping
	Utilizing IEEE1588 for PTP

	8.2.5.2.12 FMan MURAM Driver
	FMan MURAM Hardware Overview
	FMan MURAM Driver Software Abstraction

	How To Use The FMan MURAM Driver?
	FMan MURAM Driver Scope
	FMan MURAM Driver Sequence
	FMan MURAM Driver Functional Description

	8.2.5.2.13 Supported Network Protocols
	L2 Protocols
	L3 Protocols
	L4 Protocols
	Private Headers
	Fields Supported By Driver for Keygen Extraction

	8.2.6 Frame Manager Configuration Tool User Guide
	8.2.6.1 Introduction
	8.2.6.2 FMC Tool Features
	8.2.6.3 FMC Tool Components and Packaging
	8.2.6.4 FMC Tool - Runtime Environment Mode
	8.2.6.5 FMC Tool - Host Mode
	8.2.6.5.1 Host Mode Output - C Source Code Files

	8.2.6.6 FMC Tool Command-Line Arguments
	8.2.6.7 The NetPDL and NetPCD XML Markup Languages
	8.2.6.8 Protocol files
	8.2.6.8.1 Standard Protocol File
	8.2.6.8.2 Custom Protocol File

	8.2.6.9 Policy file
	8.2.6.9.1 Distribution Section
	8.2.6.9.2 Policy Section
	8.2.6.9.3 Classification Section
	8.2.6.9.4 Policer Section

	8.2.6.10 Configuration File
	8.2.6.11 NXP NetPDL Reference
	8.2.6.11.1 Basic XML Rules
	8.2.6.11.2 The netpdl Element
	8.2.6.11.3 The protocol element
	Effect of Setting prevproto Attribute to otherl3 or otherl4

	8.2.6.11.4 The format element
	The fields Element
	The field Element

	8.2.6.11.5 The execute-code element
	The before Element
	The after Element
	Child Elements of the before and after Elements
	The assign-variable Element
	The if Element
	The if-true Element
	The if-false Element

	The switch Element
	The case Element
	The default Element

	The action Element (for use in a Custom Protocol file)

	8.2.6.11.6 Expressions
	Operands
	Numbers
	Fields
	Variables
	Result Array Variables
	Parameter Array Variable
	Header Size Variables
	Frame Window Variable
	The prevprotoOffset Variable

	Operators
	The concat Operator
	The checksum Operator
	Expression Priorities
	Operator Precendence
	Variable Size

	Expression Types
	Logical Expressions
	Arithmetic Expressions

	8.2.6.11.7 Tips and Recommendations
	Result Array Fields that Must be Manually Updated
	Result Array Fields that Should Not be Modified
	Setting the Next Protocol

	8.2.6.11.8 Limitations
	Complex Expressions

	8.2.6.12 NetPCD Reference
	8.2.6.12.1 The netpcd element
	netpcd Attribute Definitions
	netpcd Example

	8.2.6.12.2 The policy element
	policy Attribute Definitions
	policy Example

	8.2.6.12.3 The dist_order element
	dist_order Attribute Definitions
	dist_order Example

	8.2.6.12.4 The distributionref element
	distributionref Attribute Definitions
	distributionref Example

	8.2.6.12.5 The distribution element
	distribution Attribute Definitions
	distribution Example
	Default Groups

	8.2.6.12.6 The key element
	key Attribute Definitions
	key Example

	8.2.6.12.7 The fieldref element
	fieldref Attribute Definitions
	fieldref Example

	8.2.6.12.8 The queue element
	queue Attribute Definitions
	queue Example

	8.2.6.12.9 The protocols and protocolref elements
	protocols and protocolref Attribute Definitions
	protocols and protocolref Example

	8.2.6.12.10 The combine element
	combine Attribute Definitions
	combine Example

	8.2.6.12.11 The action element (for use in a policy file)
	action Attribute Definitions
	Statistics
	action Example

	8.2.6.12.12 The classification element
	classification Attribute Definitions
	classification Statistics
	classification Example
	Frame Replicators
	framelength Statistics
	Statistics Example
	Coarse Classification Resource Reservation

	8.2.6.12.13 The entry element
	entry Attribute Definitions
	entry Example

	8.2.6.12.14 The policer element
	policer Attribute Definitions
	policer Example

	8.2.6.12.15 The nonheader element
	nonheader Attribute Definitions
	nonheader Example

	8.2.6.12.16 Hash Tables
	8.2.6.12.17 Virtual Storage Profiles Element
	vsp Attributes
	vsp Examples

	8.2.6.12.18 Manipulation Parameters
	IP Fragmentation
	IP Reassembly
	Header Manipulation
	Header Manipulation - Insert
	Header Manipulation - Remove
	Header Manipulation - Insert-Header
	Header Manipulation - Remove_Header
	Header Manipulation - Update
	Header Manipulation - Custom
	Header Manipulation - Nextmanip
	Header Manipulation - Example

	8.2.6.13 Standard Protocol File - Excerpt
	8.2.6.14 Custom Protocol File - GTP Protocol Example

	8.2.7 Security Engine (SEC)
	8.2.8 Decompression/Compression Acceleration (DCE)

	8.3 DPAA2-specific Software
	8.3.1 DPAA2 Software Overview
	8.3.1.1 Introduction
	8.3.1.2 DPAA2 Hardware
	8.3.1.2.1 Introduction
	8.3.1.2.2 DPAA2 hardware
	8.3.1.2.3 LS2088A block diagram

	8.3.1.3 DPAA2 Linux Software
	8.3.1.3.1 Introduction
	8.3.1.3.2 Linux and DPAA2
	8.3.1.3.3 DPAA2, Management Complex, and drivers
	8.3.1.3.4 DPAA2 and plug-and-play
	8.3.1.3.5 Datapath layout files and restool

	8.3.1.4 DPAA2 Networking Subsystem Deeper Dive
	8.3.1.4.1 DPAA2 hardware abstraction example
	Object summary

	8.3.1.4.2 Management Complex: How DPAA2 objects are created and managed
	Object creation, the datapath layout file, and restool
	DPRC objects, plug and play, and the fsl-mc Linux “bus”

	8.3.1.4.3 Objects and topology
	8.3.1.4.4 AIOP in DPAA2

	8.3.2 DPAA2 Standard Linux Documentation
	8.3.2.1 Kernel Documentation Directory
	8.3.2.2 DPAA2 Resource Management Tool (restool) User Manual
	8.3.2.2.1 DPRC commands
	list command
	show command
	info command
	create command
	create command
	destroy command
	assign command
	unassign command
	set-quota command
	set-label command
	connect command
	disconnect command
	generate-dpl command

	8.3.2.2.2 DPNI Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.3 DPIO Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.4 DPSW Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.5 DPBP Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.6 DPCON Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.7 DPCI Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.8 DPSECI Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.9 DPDMUX Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.10 DPMCP Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.11 DPMAC Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.12 DPDCEI Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.2.2.13 DPAIOP Commands
	help command
	info command
	create command
	create command
	destroy command

	8.3.3 DPAA2 User Manual
	8.3.4 DPAA2 API Reference Manual
	8.3.5 Backplane Support on Layerscape
	8.3.5.1 Overview
	8.3.5.1.1 10GBase-KR Support on Layerscape Platforms
	8.3.5.1.2 Physical Layer Signaling System
	8.3.5.1.3 Auto-negotiation
	8.3.5.1.4 Link Training

	8.3.5.2 Enable Backplane Support on Layerscape
	8.3.5.2.1 Setup
	8.3.5.2.2 Enable Backplane Connection from MC
	8.3.5.2.3 Enable Backplane Support in Linux Kernel
	Enable Backplane PHY Driver
	Add Backplane PHY Devices in Device Tree
	SerDes Device and Internal MDIO Buses
	Backplane PHY Devices
	Connect with Backplane PHY Device Handle

	8.3.5.2.4 SerDes Setup
	8.3.5.2.5 Board Configuration

	8.3.5.3 Use Cases

	8.3.6 AIOP
	8.3.6.1 AIOP Sample Applications
	8.3.6.1.1 Creating AIOP Containers
	8.3.6.1.2 AIOP Packet Reflector Application
	AIOP Packet Reflector Overview
	Running the Reflector Application
	Generating Traffic to Test AIOP Reflector Application

	8.3.6.1.3 AIOP Packet Classifier Application
	AIOP Packet Classifier Overview
	Running the Classifier Application
	Generating Traffic to Test AIOP Classifier Application

	8.3.6.1.4 AIOP Control Flow Application
	AIOP Control Flow Overview
	Running the Control Flow Application
	Generating Traffic to Test AIOP Control Flow Application

	8.3.6.1.5 AIOP Header Manipulation Application
	AIOP Header Manipulation Overview
	Running the Header Manipulation application
	Generating Traffic to Test AIOP Header Manipulation Application

	8.3.6.1.6 AIOP Statistics Application
	AIOP Statistics Overview
	Running the AIOP Statistics Application
	Generating Traffic to Test AIOP Statistics Application

	8.3.6.1.7 AIOP QoS_demo Application
	AIOP QoS_demo Overview
	Running the QoS_demo Application
	Generating traffic to test AIOP QoS_demo Application

	8.3.6.2 AIOP Tool User's Guide
	8.3.6.2.1 Introduction
	8.3.6.2.2 DPAA2 Software
	8.3.6.2.3 Product Description
	Overview
	Product features

	8.3.6.2.4 System Requirements
	Environment required

	8.3.6.2.5 AIOP Tool Usage
	Run time pre-requisites
	Environment setting
	Command line arguments
	Command execution samples

	8.3.6.2.6 Known Limitations
	8.3.6.2.7 Sample VFIO Binding Script
	8.3.6.2.8 Steps For Dynamic DPRC Suitable For AIOP Tool Using restool

	8.3.6.3 AIOP User Manual
	8.3.6.4 AIOP Program Profiling
	8.3.6.4.1 Overview
	8.3.6.4.2 AIOP Program Design: Budgets Per Processing Elements
	8.3.6.4.3 AIOP Program Profiling and Performance Tuning
	8.3.6.4.4 FDMA/CDMA
	8.3.6.4.5 Core Profiling
	8.3.6.4.6 Memory profiling
	8.3.6.4.7 CTLU - Parser
	8.3.6.4.8 OSM
	8.3.6.4.9 Statistics Engine
	8.3.6.4.10 IP Fragmentation (IPF)
	8.3.6.4.11 IP Reassembly (IPR)
	8.3.6.4.12 IPSec
	8.3.6.4.13 Appendix A

	8.3.6.5 AIOP Service Layer API Reference Manual
	8.3.6.6 AIOP SDK Applications Debug

	8.4 Packet Forward Engine (PFE) Network Driver
	8.4.1 Introduction
	8.4.1.1 Overview
	8.4.1.2 Purpose
	8.4.1.3 Features

	8.4.2 High level decomposition and data flow
	8.4.3 NAPI support
	8.4.4 Interrupt coalescing
	8.4.5 Checksum offloading
	8.4.6 Scatter gather support
	8.4.7 Ethtool support

	8.5 Linux Ethernet Driver for eTSEC
	8.5.1 Linux Ethernet Driver for eTSEC
	8.5.1.1 Introduction
	8.5.1.1.1 Overview
	8.5.1.1.2 Purpose
	8.5.1.1.3 Features
	8.5.1.1.4 Notes on high level decomposition and data flow

	8.5.1.2 Functionality
	8.5.1.2.1 Multi-Queue support
	8.5.1.2.2 RSS support
	8.5.1.2.3 NAPI support
	8.5.1.2.4 Interrupt Coalescing
	8.5.1.2.5 Header Recognition and Csum Offload
	8.5.1.2.6 Scatter Gather support

	8.5.1.3 Configuration and Control
	8.5.1.3.1 Device Tree initialization
	8.5.1.3.2 Ethtool support

	9 Linux user space
	9.1 Libraries
	9.1.1 OpenSSL
	9.1.1.1 Overview
	9.1.1.2 Manual Build of OpenSSL with Cryptodev Engine Support
	9.1.1.3 Hardware Offloading with OpenSSL
	9.1.1.4 TLS Ciphersuites and TLS Protocol Versions

	9.1.2 Runtime Assembler Library Reference
	9.1.2.1 Runtime Assembler Library Reference

	9.2 Data Plane Development Kit (DPDK)
	9.2.1 Introduction
	9.2.1.1 Supported Platforms and Platform-specific Details
	9.2.1.1.1 LS1043A Reference Design Board (RDB)
	9.2.1.1.2 LS1046A Reference Design Board (RDB)
	9.2.1.1.3 LS1088A Reference Design Board (RDB)
	9.2.1.1.4 LS2088A Reference Design Board (RDB)

	9.2.1.2 References

	9.2.2 DPDK Overview
	9.2.2.1 DPDK DPAA Platform Support
	9.2.2.2 DPAA: Supported DPDK Features
	9.2.2.3 DPAA2: Supported DPDK Features

	9.2.3 Build DPDK
	9.2.3.1 Build DPDK using Flexbuild
	9.2.3.2 Standalone build of DPDK Libraries and Applications
	9.2.3.3 DPDK based Packet Generator
	9.2.3.4 Build OVS-DPDK using Flexbuild
	9.2.3.5 Virtual machine (VM or guest) images

	9.2.4 Executing DPDK Applications on Host
	9.2.4.1 Booting up the Target board
	9.2.4.2 Prerequisities for running DPDK Applications
	9.2.4.2.1 Test Environment Setup
	9.2.4.2.2 Generic Setup - DPAA
	9.2.4.2.3 Generic Setup - DPAA2
	9.2.4.2.4 DPAA2: Multiple parallel DPDK Applications

	9.2.4.3 DPDK example applications
	9.2.4.4 Command interface (CMDIF) demo application

	9.2.5 OVS-DPDK and DPDK in VM with VIRTIO Interfaces
	9.2.5.1 Generic steps - DPAA & DPAA2 platforms
	9.2.5.2 Configuring OVS
	9.2.5.3 Launch Virtual Machine
	9.2.5.4 Accessing virtual machine console
	9.2.5.5 Launching two virtual machines
	9.2.5.6 Running DPDK applications in VM
	9.2.5.7 Multi Queue VIRTIO support

	9.2.6 DPDK on Docker
	9.2.6.1 Docker Overview
	9.2.6.2 Traffic Multiplexer/De-Multiplexer
	9.2.6.3 Docker's Resource Setup
	9.2.6.3.1 Application Container Configuration
	9.2.6.3.2 Kernel Container Configuration

	9.2.6.4 Running the Docker Container
	9.2.6.5 Running the DPDK Application
	9.2.6.6 Example Configuration: Using DPDMUX
	9.2.6.7 Example Configuration: Using DPSW

	9.2.7 Known Limitations and Future Work
	9.2.8 Troubleshooting
	9.2.9 DPDK Performance Reproducibility Guide

	9.3 QorIQ OpenDataPlane (ODP)
	9.3.1 Introduction
	9.3.1.1 Intended audience
	9.3.1.2 Definitions and acronyms
	9.3.1.3 Supported platforms
	9.3.1.4 Unsupported ODP API's
	9.3.1.5 ODP Limitations and Known Issues

	9.3.2 Product Description
	9.3.3 Using Flexbuild to Compile ODP/OFP
	9.3.4 Using ODP Applications
	9.3.4.1 LS2088ARDB/LS2085ARDB Board Preparation and Bring-up
	9.3.4.2 LS1088ARDB Board Preparation and Bring-up
	9.3.4.3 odp_pktio application
	9.3.4.3.1 Overview
	9.3.4.3.2 Test setup
	9.3.4.3.3 Running odp_pktio on DUT
	9.3.4.3.4 Test description

	9.3.4.4 odp_generator application
	9.3.4.4.1 Overview
	9.3.4.4.2 Test setup
	9.3.4.4.3 Running odp_generator on DUT

	9.3.4.5 ODP ipsec application (odp_ipsec, odp_ipsec_offload)
	9.3.4.5.1 Overview
	9.3.4.5.2 Test setup
	9.3.4.5.3 Running ODP ipsec applications on DUT

	9.3.4.6 odp_classifier application
	9.3.4.6.1 Overview
	9.3.4.6.2 Test setup
	9.3.4.6.3 Running odp_classifier on DUT

	9.3.4.7 odp_timer application
	9.3.4.7.1 Overview
	9.3.4.7.2 Test setup
	9.3.4.7.3 Running odp_timer on DUT

	9.3.4.8 odp_lpmfwd application
	9.3.4.8.1 Overview
	9.3.4.8.2 Running odp_lpmfwd on DUT
	9.3.4.8.3 Test description

	9.3.4.9 odp_tm application
	9.3.4.9.1 Overview
	9.3.4.9.2 Running odp_tm on DUT
	9.3.4.9.3 Test Setup
	9.3.4.9.4 Test Description

	9.3.4.10 OpenFastPath applications
	9.3.4.10.1 Overview
	9.3.4.10.2 Test Setup OpenFastPath (fpm & fpm_burstmode)
	9.3.4.10.3 Running fpm and fpm_burstmode applications
	9.3.4.10.4 Test description-ODP OpenFastPath (fpm & fpm_burstmode)
	9.3.4.10.5 OFP Webserver Application

	9.3.5 Troubleshooting
	9.3.6 Using Debug Tool to Get Hardware Statistics for DPAA2 Platforms

	9.4 USDPAA

	10 Virtualization
	10.1 KVM/QEMU User Guide and Reference
	10.1.1 KVM/QEMU Overview
	10.1.1.1 Using QEMU and KVM
	10.1.1.1.1 Overview of Using QEMU
	10.1.1.1.2 Virtual Machine Memory
	10.1.1.1.3 Virtual network interfaces
	10.1.1.1.4 Virtual block devices
	10.1.1.1.5 Direct assigned devices
	10.1.1.1.6 VMs and the Linux Scheduler

	10.1.1.2 Virtual Machine Overview
	10.1.1.3 Introduction to KVM and QEMU
	10.1.1.4 Device Tree Overview
	10.1.1.5 References
	10.1.1.6 For More Information
	10.1.1.7 Virtual machine reference
	10.1.1.7.1 VM Overview
	10.1.1.7.2 Memory Map of Virtual I/O Devices
	10.1.1.7.3 Virtual machine state at initialization
	Initial State and Boot
	Initial State of Virtual CPUs

	10.1.1.7.4 Virtual CPUs
	Virtual CPU Specification
	Time in the Virtual CPU

	10.1.1.7.5 VGIC

	10.1.2 Configuring and Building
	10.1.2.1 Overview
	10.1.2.2 Quick Start - Recommended Configuration Options
	10.1.2.3 Host Kernel: Enabling KVM
	10.1.2.4 Host Kernel: Enabling Virtual Networking
	10.1.2.5 Host kernel: Enabling DPAA2 direct assignment
	10.1.2.6 Host kernel: Enabling PCIE direct assignment
	10.1.2.7 Guest kernel: Enabling console
	10.1.2.8 Guest Kernel: Enabling Network and Block Virtual I/O
	10.1.2.9 Building kernel with KVM support using flexbuild
	10.1.2.10 Building QEMU
	10.1.2.11 Creating a host Linux root filesystem
	10.1.2.12 Creating a guest Linux root filesystem

	10.1.3 KVM/QEMU How-to's
	10.1.3.1 Quick-start Steps to Build and Deploy KVM
	10.1.3.2 Quick-start Steps to Run KVM Using Hugetlbfs
	10.1.3.3 How to Use Virtual Network Interfaces Using Virtio
	10.1.3.4 How to use vhost-net with virtio
	10.1.3.5 How to Use Virtual Disks Using Virtio
	10.1.3.6 How to use virtual disks using virtio-blk-dataplane
	10.1.3.7 How to use DPAA2 direct assignment without scripts
	10.1.3.8 How to use DPAA2 direct assignment with scripts
	10.1.3.9 How to use PCIE direct assignment
	10.1.3.10 Debugging: How to Examine Initial Virtual Machine State with QEMU
	10.1.3.11 Debugging: How to Profile Virtualization Overhead with KVM
	10.1.3.12 Debugging virtual machines
	10.1.3.12.1 QEMU Monitor
	10.1.3.12.2 QEMU GDB Stub

	10.2 Linux Containers User Guide
	10.2.1 Introduction to Linux Containers
	10.2.1.1 NXP LXC Release Notes
	10.2.1.2 Overview
	10.2.1.3 Comparing LXC and Libvirt
	10.2.1.4 For Further Information

	10.2.2 More Details
	10.2.2.1 LXC: Command Reference
	10.2.2.2 LXC: Configuration Files
	10.2.2.3 LXC: Templates
	10.2.2.4 Containers with Libvirt
	10.2.2.5 Linux Control Groups (cgroups)
	10.2.2.6 Linux Namespaces
	10.2.2.7 POSIX Capabilities

	10.2.3 LXC How To's
	10.2.3.1 LXC: Getting Started (with a Busybox System Container)
	10.2.3.2 LXC: How to configure non-virtualized networking (lxc-no-netns.conf)
	10.2.3.3 LXC: How to assign a physical network interface to a container (lxc-phys.conf)
	10.2.3.4 LXC: How to configure networking with virtual Ethernet pairs (lxc-veth.conf)
	10.2.3.5 LXC: How to configure networking with macvlan (lxc-macvlan.conf)
	10.2.3.6 LXC: How to configure networking using a VLAN (lxc-vlan.conf)
	10.2.3.7 LXC: How to monitor containers
	10.2.3.8 LXC: How to modify the capabilities of a container to provide additional isolation
	10.2.3.9 LXC: How to use cgroups to manage and control a containers resources
	10.2.3.10 LXC: How to run an application in a container with lxc-execute
	10.2.3.11 LXC: How to run an unprivileged container
	10.2.3.12 LXC: How to run containers with Seccomp protection

	10.2.4 Libvirt

	10.3 Docker Containers
	10.3.1 Introduction to Docker Containers
	10.3.1.1 Overview

	10.3.2 Docker How To's
	10.3.2.1 Running a webserver container

	11 Power Management
	11.1 Power Management User Manual
	11.2 CPU Frequency Switching User Manual
	11.3 Thermal Management User Manual
	11.4 System Monitor
	11.4.1 Power Monitor User Manual
	11.4.2 Thermal Monitor User Manual

	12 Benchmarking guidelines
	12.1 Coremark
	12.1.1 Test Environment
	12.1.2 Test Procedure

	12.2 Dhrystone
	12.2.1 Test Environment
	12.2.2 Test Procedure

	12.3 EEMBC
	12.3.1 Test Environment
	12.3.2 Test Procedure

	12.4 LMBench
	12.4.1 Test Environment
	12.4.2 Test Procedure

	13 Connect to cloud: EdgeScale
	13.1 What is EdgeScale
	13.2 Building EdgeScale client
	13.3 Procedure to start EdgeScale

AIOP Service Layer API Reference Manual

Rev 1
Dec 2017

Contents
Chapter 1

AIOP Service Layer API

1.1 Overview . 1

1.2 AIOP General . 1
1.2.1 Overview . 1
1.2.2 Function Documentation . 1
1.2.2.1 fsl_read_external_data . 1
1.2.3 AIOP SL General Definitions . 2
1.2.3.1 Overview . 2
1.2.3.2 Enumeration Type Documentation . 3
1.2.3.2.1 aiop_bus_transaction . 3
1.2.3.2.2 aiop_cache_allocate_policy . 3
1.2.3.3 LDPAA API . 3
1.2.3.3.1 Overview . 3
1.2.3.3.2 Data Structure Documentation . 4
1.2.3.3.2.1 struct ldpaa_fd . 4
1.2.3.3.3 LDPAA FD Definitions . 4
1.2.3.3.3.1 Overview . 4
1.2.3.3.3.2 Macro Definition Documentation . 5
1.2.3.3.3.2.1 FD_LENGTH_MASK . 5
1.2.3.3.3.2.2 FD_LENGTH_MEM_MASK . 5
1.2.3.3.3.2.3 FD_MEM_MASK . 5
1.2.3.3.3.2.4 FD_BMT_MASK . 5
1.2.3.3.3.2.5 FD_IVP_MASK . 5
1.2.3.3.3.2.6 FD_BPID_MASK . 6
1.2.3.3.3.2.7 FD_SL_MASK . 6
1.2.3.3.3.2.8 FD_FMT_MASK . 6
1.2.3.3.3.2.9 FD_OFFSET_MASK . 6
1.2.3.3.3.2.10 FD_VA_MASK . 6
1.2.3.3.3.2.11 FD_CBMT_MASK . 6
1.2.3.3.3.2.12 FD_ASAL_MASK . 6
1.2.3.3.3.2.13 FD_PTV2_MASK . 6
1.2.3.3.3.2.14 FD_PTV1_MASK . 6
1.2.3.3.3.2.15 FD_PTA_MASK . 6
1.2.3.3.3.2.16 FD_DROPP_MASK . 6

NXP Semiconductors
AIOP Service Layer API Reference Manual

i

Section number Title Page

1.2.3.3.3.2.17 FD_SC_MASK . 6
1.2.3.3.3.2.18 FD_DD_MASK . 6
1.2.3.3.3.2.19 FD_CS_MASK . 7
1.2.3.3.3.2.20 FD_DS_MASK . 7
1.2.3.3.3.2.21 FD_AS_MASK . 7
1.2.3.3.3.2.22 FD_FLC_STASH_MASK . 7
1.2.3.3.3.2.23 FD_FLC_NO_STASH_MASK . 7
1.2.3.3.3.2.24 FD_ADDR_OFFSET . 7
1.2.3.3.3.2.25 FD_MEM_LENGTH_OFFSET . 7
1.2.3.3.3.2.26 FD_BPID_OFFSET . 7
1.2.3.3.3.2.27 FD_BMT_IVP_OFFSET . 7
1.2.3.3.3.2.28 FD_OFFSET_OFFSET . 7
1.2.3.3.3.2.29 FD_SL_FMT_OFFSET . 7
1.2.3.3.3.2.30 FD_FRC_OFFSET . 7
1.2.3.3.3.2.31 FD_ERR_OFFSET . 7
1.2.3.3.3.2.32 FD_CBMT_VA_OFFSET . 8
1.2.3.3.3.2.33 FD_PTA_PVT_ASA_OFFSET . 8
1.2.3.3.3.2.34 FD_DD_SC_DROPP_OFFSET . 8
1.2.3.3.3.2.35 FD_FLC_DS_AS_CS_OFFSET . 8
1.2.3.3.3.2.36 FD_MEM_SHIFT . 8
1.2.3.3.3.2.37 FD_IVP_SHIFT . 8
1.2.3.3.3.2.38 FD_BMT_SHIFT . 8
1.2.3.3.3.2.39 FD_FMT_SHIFT . 8
1.2.3.3.3.2.40 FD_SL_SHIFT . 8
1.2.3.3.3.2.41 FD_VA_SHIFT . 8
1.2.3.3.3.2.42 FD_CBMT_SHIFT . 8
1.2.3.3.3.2.43 FD_PTV2_SHIFT . 8
1.2.3.3.3.2.44 FD_PTV1_SHIFT . 8
1.2.3.3.3.2.45 FD_PTA_SHIFT . 9
1.2.3.3.3.2.46 FD_SC_SHIFT . 9
1.2.3.3.3.2.47 FD_DD_SHIFT . 9
1.2.3.3.3.2.48 FD_AS_SHIFT . 9
1.2.3.3.3.2.49 FD_DS_SHIFT . 9
1.2.3.3.4 LDPAA FD GETTER/SETTER MACROs 9
1.2.3.3.4.1 Overview . 9
1.2.3.3.4.2 Macro Definition Documentation . 10
1.2.3.3.4.2.1 LDPAA_FD_GET_ADDR . 10
1.2.3.3.4.2.2 LDPAA_FD_GET_LENGTH . 10
1.2.3.3.4.2.3 LDPAA_FD_GET_MEM . 10
1.2.3.3.4.2.4 LDPAA_FD_GET_BPID . 10
1.2.3.3.4.2.5 LDPAA_FD_GET_IVP . 10
1.2.3.3.4.2.6 LDPAA_FD_GET_BMT . 11
1.2.3.3.4.2.7 LDPAA_FD_GET_OFFSET . 11
1.2.3.3.4.2.8 LDPAA_FD_GET_FMT . 11
1.2.3.3.4.2.9 LDPAA_FD_GET_SL . 11

NXP Semiconductors
AIOP Service Layer API Reference Manual

ii

Section number Title Page

1.2.3.3.4.2.10 LDPAA_FD_GET_FRC . 11
1.2.3.3.4.2.11 LDPAA_FD_GET_ERR . 11
1.2.3.3.4.2.12 LDPAA_FD_GET_VA . 11
1.2.3.3.4.2.13 LDPAA_FD_GET_CBMT . 11
1.2.3.3.4.2.14 LDPAA_FD_GET_ASAL . 11
1.2.3.3.4.2.15 LDPAA_FD_GET_PTV2 . 12
1.2.3.3.4.2.16 LDPAA_FD_GET_PTV1 . 12
1.2.3.3.4.2.17 LDPAA_FD_GET_PTA . 12
1.2.3.3.4.2.18 LDPAA_FD_GET_DROPP . 12
1.2.3.3.4.2.19 LDPAA_FD_GET_SC . 12
1.2.3.3.4.2.20 LDPAA_FD_GET_DD . 12
1.2.3.3.4.2.21 LDPAA_FD_GET_CS . 12
1.2.3.3.4.2.22 LDPAA_FD_GET_AS . 12
1.2.3.3.4.2.23 LDPAA_FD_GET_DS . 12
1.2.3.3.4.2.24 LDPAA_FD_GET_FLC . 13
1.2.3.3.4.2.25 LDPAA_FD_SET_ADDR . 13
1.2.3.3.4.2.26 LDPAA_FD_SET_LENGTH . 13
1.2.3.3.4.2.27 LDPAA_FD_SET_MEM . 13
1.2.3.3.4.2.28 LDPAA_FD_SET_BPID . 13
1.2.3.3.4.2.29 LDPAA_FD_SET_IVP . 13
1.2.3.3.4.2.30 LDPAA_FD_SET_BMT . 13
1.2.3.3.4.2.31 LDPAA_FD_SET_OFFSET . 13
1.2.3.3.4.2.32 LDPAA_FD_SET_FMT . 14
1.2.3.3.4.2.33 LDPAA_FD_SET_SL . 14
1.2.3.3.4.2.34 LDPAA_FD_SET_FRC . 14
1.2.3.3.4.2.35 LDPAA_FD_SET_ERR . 14
1.2.3.3.4.2.36 LDPAA_FD_SET_VA . 14
1.2.3.3.4.2.37 LDPAA_FD_SET_ASAL . 14
1.2.3.3.4.2.38 LDPAA_FD_SET_CBMT . 14
1.2.3.3.4.2.39 LDPAA_FD_SET_PTV2 . 15
1.2.3.3.4.2.40 LDPAA_FD_SET_PTV1 . 15
1.2.3.3.4.2.41 LDPAA_FD_SET_PTA . 15
1.2.3.3.4.2.42 LDPAA_FD_SET_DROPP . 15
1.2.3.3.4.2.43 LDPAA_FD_SET_SC . 15
1.2.3.3.4.2.44 LDPAA_FD_SET_DD . 15
1.2.3.3.4.2.45 LDPAA_FD_SET_CS . 15
1.2.3.3.4.2.46 LDPAA_FD_SET_AS . 15
1.2.3.3.4.2.47 LDPAA_FD_SET_DS . 16
1.2.3.3.4.2.48 LDPAA_FD_SET_FLC . 16
1.2.3.4 AIOP Return Status . 16
1.2.3.4.1 Overview . 16
1.2.3.4.2 Macro Definition Documentation . 16
1.2.3.4.2.1 SUCCESS . 16
1.2.3.4.2.2 BASE_SW_MODULES_STATUS_ID 16
1.2.3.4.2.3 HM_MODULE_STATUS_ID . 17

NXP Semiconductors
AIOP Service Layer API Reference Manual

iii

Section number Title Page

1.2.3.4.2.4 IPR_MODULE_STATUS_ID . 17
1.2.3.4.2.5 IPF_MODULE_STATUS_ID . 17
1.2.3.4.2.6 TCP_GSO_MODULE_STATUS_ID . 17
1.2.3.4.2.7 TCP_GRO_MODULE_STATUS_ID . 17
1.2.3.4.2.8 DPNI_DRV_MODULE_STATUS_ID 17
1.2.3.4.2.9 CWAPR_MODULE_STATUS_ID . 17
1.2.3.4.2.10 CWAPF_MODULE_STATUS_ID . 17
1.2.3.4.2.11 CWAP_DTLS_MODULE_STATUS_ID 17
1.2.3.5 AIOP HWC Definitions . 17
1.2.3.5.1 Overview . 17
1.2.3.5.2 AIOP HWC General Definitions . 18
1.2.3.5.2.1 Overview . 18
1.2.3.5.2.2 Macro Definition Documentation . 18
1.2.3.5.2.2.1 HWC_SIZE . 18
1.2.3.5.2.2.2 HWC_FD_SIZE . 18
1.2.3.5.2.2.3 HWC_ADC_SIZE . 18
1.2.3.5.2.2.4 HWC_PRC_SIZE . 18
1.2.3.5.2.2.5 HWC_SPID_ADDRESS . 18
1.2.3.5.2.2.6 HWC_ACC_IN_ADDRESS . 18
1.2.3.5.2.2.7 HWC_ACC_IN_ADDRESS2 . 19
1.2.3.5.2.2.8 HWC_ACC_IN_ADDRESS3 . 19
1.2.3.5.2.2.9 HWC_ACC_IN_ADDRESS4 . 19
1.2.3.5.2.2.10 HWC_ACC_OUT_ADDRESS . 19
1.2.3.5.2.2.11 HWC_ACC_OUT_ADDRESS2 . 19
1.2.3.5.2.2.12 HWC_ACC_RESERVED1 . 19
1.2.3.5.2.2.13 HWC_ACC_RESERVED2 . 19
1.2.3.5.2.2.14 HWC_ADC_ADDRESS . 19
1.2.3.5.2.2.15 HWC_PRC_ADDRESS . 19
1.2.3.5.2.2.16 HWC_FD_ADDRESS . 19
1.2.3.5.2.2.17 HWC_PARSE_RES_ADDRESS . 19
1.2.3.5.2.2.18 GET_DEFAULT_SPID . 19
1.2.3.5.2.2.19 SET_DEFAULT_SPID . 19
1.2.3.5.3 AIOP ADC Definitions . 20
1.2.3.5.3.1 Overview . 20
1.2.3.5.3.2 Data Structure Documentation . 20
1.2.3.5.3.2.1 struct frame_queue_context . 20
1.2.3.5.3.2.2 struct additional_dequeue_context . 21
1.2.3.5.3.3 Macro Definition Documentation . 22
1.2.3.5.3.3.1 ADC_CHANNEL_MASK . 22
1.2.3.5.3.3.2 ADC_FQID_MASK . 22
1.2.3.5.3.3.3 ADC_PL_MASK . 22
1.2.3.5.3.3.4 ADC_ICID_MASK . 22
1.2.3.5.3.3.5 ADC_WQID_MASK . 23
1.2.3.5.3.3.6 ADC_PRI_MASK . 23
1.2.3.5.3.3.7 ADC_FDSRC_MASK . 23

NXP Semiconductors
AIOP Service Layer API Reference Manual

iv

Section number Title Page

1.2.3.5.3.3.8 ADC_VA_MASK . 23
1.2.3.5.3.3.9 ADC_FCF_MASK . 23
1.2.3.5.3.3.10 ADC_BDI_MASK . 23
1.2.3.5.3.3.11 ADC_FQD_CTX_OFFSET . 23
1.2.3.5.3.3.12 ADC_CHANNEL_FQID_OFFSET . 23
1.2.3.5.3.3.13 ADC_PL_ICID_OFFSET . 23
1.2.3.5.3.3.14 ADC_WQID_PRI_OFFSET . 23
1.2.3.5.3.3.15 ADC_FDSRC_VA_FCA_BDI_OFFSET 23
1.2.3.5.3.4 AIOP ADC Getters . 23
1.2.3.5.3.4.1 Overview . 23
1.2.3.5.3.4.2 Macro Definition Documentation . 24
1.2.3.5.3.4.3 ADC_GET_ICID . 24
1.2.3.5.4 AIOP PRC Definitions . 24
1.2.3.5.4.1 Overview . 24
1.2.3.5.4.2 Data Structure Documentation . 24
1.2.3.5.4.2.1 struct presentation_context . 24
1.2.3.5.4.3 Macro Definition Documentation . 25
1.2.3.5.4.3.1 PRC_NDS_MASK . 25
1.2.3.5.4.3.2 PRC_OSRC_MASK . 25
1.2.3.5.4.3.3 PRC_OEP_MASK . 25
1.2.3.5.4.3.4 PRC_OSEL_MASK . 25
1.2.3.5.4.3.5 PRC_OSRM_MASK . 26
1.2.3.5.4.3.6 PRC_SR_BIT_OFFSET . 26
1.2.3.5.4.3.7 PRC_NDS_BIT_OFFSET . 26
1.2.3.5.4.3.8 PRC_OSRC_BIT_OFFSET . 26
1.2.3.5.4.3.9 PRC_OEP_BIT_OFFSET . 26
1.2.3.5.4.3.10 PRC_OSEL_BIT_OFFSET . 26
1.2.3.5.4.3.11 PTA_NOT_LOADED_ADDRESS . 26
1.2.3.5.4.4 AIOP PRC Getters . 26
1.2.3.5.4.4.1 Overview . 26
1.2.3.5.4.4.2 Macro Definition Documentation . 27
1.2.3.5.4.4.3 PRC_GET_PARAMETER . 27
1.2.3.5.4.4.4 PRC_GET_SEGMENT_ADDRESS . 27
1.2.3.5.4.4.5 PRC_GET_SEGMENT_LENGTH . 27
1.2.3.5.4.4.6 PRC_GET_SEGMENT_OFFSET . 27
1.2.3.5.4.4.7 PRC_GET_SR_BIT . 27
1.2.3.5.4.4.8 PRC_GET_NDS_BIT . 27
1.2.3.5.4.4.9 PRC_GET_FRAME_HANDLE . 27
1.2.3.5.4.4.10 PRC_GET_SEGMENT_HANDLE . 27
1.2.3.5.4.4.11 PRC_GET_OSM_SOURCE_VALUE 27
1.2.3.5.4.4.12 PRC_GET_OSM_EXECUTION_PHASE_VALUE 27
1.2.3.5.4.4.13 PRC_GET_OSM_SELECT_VALUE 27
1.2.3.5.4.4.14 PRC_GET_OSM_ORDER_SCOPE_RANGE_MASK_VALUE 27
1.2.3.5.4.4.15 PRC_GET_ISV_VALUE . 28
1.2.3.6 AIOP Default Task Params . 28

NXP Semiconductors
AIOP Service Layer API Reference Manual

v

Section number Title Page

1.2.3.6.1 Overview . 28
1.2.3.6.2 Data Structure Documentation . 28
1.2.3.6.2.1 struct aiop_default_task_params . 28
1.2.3.7 Read external data bits definitions . 28
1.2.3.7.1 Overview . 28
1.2.3.7.2 Macro Definition Documentation . 29
1.2.3.7.2.1 READ_DATA_USING_FDMA . 29
1.2.3.7.2.2 READ_DATA_USING_CDMA . 29

1.3 Accelerators APIs . 29
1.3.1 Overview . 29
1.3.2 FDMA . 29
1.3.2.1 Overview . 29
1.3.2.2 FDMA General Definitions . 30
1.3.2.2.1 Overview . 30
1.3.2.2.2 Macro Definition Documentation . 30
1.3.2.2.2.1 FDMA_PTA_SEG_HANDLE . 30
1.3.2.2.2.2 FDMA_ASA_SEG_HANDLE . 30
1.3.2.2.2.3 DEFAULT_SEGMENT_HEADROOM_SIZE 30
1.3.2.2.2.4 DEFAULT_SEGMENT_SIZE . 30
1.3.2.3 FDMA Enumerations . 30
1.3.2.3.1 Overview . 30
1.3.2.3.2 Enumeration Type Documentation . 31
1.3.2.3.2.1 fdma_st_options . 31
1.3.2.3.2.2 fdma_cfa_options . 31
1.3.2.3.2.3 fdma_split_psa_options . 32
1.3.2.3.2.4 fdma_enqueue_tc_options . 32
1.3.2.3.2.5 fdma_replace_sa_options . 32
1.3.2.3.2.6 fdma_dma_data_access_options . 33
1.3.2.3.2.7 fdma_pta_size_type . 33
1.3.2.4 FDMA Commands Flags . 33
1.3.2.4.1 Overview . 33
1.3.2.4.2 FDMA Present Frame Flags . 34
1.3.2.4.2.1 Overview . 34
1.3.2.4.2.2 Macro Definition Documentation . 34
1.3.2.4.2.2.1 FDMA_INIT_NO_FLAGS . 34
1.3.2.4.2.2.2 FDMA_INIT_NDS_BIT . 34
1.3.2.4.2.2.3 FDMA_INIT_SR_BIT . 34
1.3.2.4.2.2.4 FDMA_INIT_AS_BIT . 34
1.3.2.4.2.2.5 FDMA_INIT_VA_BIT . 34
1.3.2.4.2.2.6 FDMA_INIT_PL_BIT . 34
1.3.2.4.2.2.7 FDMA_INIT_BDI_BIT . 35
1.3.2.4.3 FDMA PRES Flags . 35
1.3.2.4.3.1 Overview . 35
1.3.2.4.3.2 Macro Definition Documentation . 35

NXP Semiconductors
AIOP Service Layer API Reference Manual

vi

Section number Title Page

1.3.2.4.3.2.1 FDMA_PRES_NO_FLAGS . 35
1.3.2.4.3.2.2 FDMA_PRES_SR_BIT . 35
1.3.2.4.4 FDMA EXT Flags . 35
1.3.2.4.4.1 Overview . 35
1.3.2.4.4.2 Macro Definition Documentation . 35
1.3.2.4.4.2.1 FDMA_EXT_NO_FLAGS . 35
1.3.2.4.4.2.2 FDMA_EXT_ST_BIT . 35
1.3.2.4.5 FDMA ENWF Flags . 36
1.3.2.4.5.1 Overview . 36
1.3.2.4.5.2 Macro Definition Documentation . 36
1.3.2.4.5.2.1 FDMA_ENWF_NO_FLAGS . 36
1.3.2.4.5.2.2 FDMA_ENWF_TC . 36
1.3.2.4.5.2.3 FDMA_ENWF_PS_BIT . 36
1.3.2.4.5.2.4 FDMA_ENWF_RL_BIT . 36
1.3.2.4.6 FDMA ENF Flags . 36
1.3.2.4.6.1 Overview . 36
1.3.2.4.6.2 Macro Definition Documentation . 37
1.3.2.4.6.2.1 FDMA_ENF_NO_FLAGS . 37
1.3.2.4.6.2.2 FDMA_ENF_TC . 37
1.3.2.4.6.2.3 FDMA_ENF_PS_BIT . 37
1.3.2.4.6.2.4 FDMA_ENF_BDI_BIT . 37
1.3.2.4.6.2.5 FDMA_ENF_AS_BIT . 37
1.3.2.4.6.2.6 FDMA_ENF_RL_BIT . 37
1.3.2.4.7 FDMA Discard WF Flags . 37
1.3.2.4.7.1 Overview . 37
1.3.2.4.7.2 Macro Definition Documentation . 38
1.3.2.4.7.2.1 FDMA_DIS_NO_FLAGS . 38
1.3.2.4.7.2.2 FDMA_DIS_WF_TC_BIT . 38
1.3.2.4.8 FDMA Replicate Flags . 38
1.3.2.4.8.1 Overview . 38
1.3.2.4.8.2 Macro Definition Documentation . 38
1.3.2.4.8.2.1 FDMA_REPLIC_NO_FLAGS . 38
1.3.2.4.8.2.2 FDMA_REPLIC_ENQ_BIT . 38
1.3.2.4.8.2.3 FDMA_REPLIC_DSF_BIT . 38
1.3.2.4.8.2.4 FDMA_REPLIC_PS_BIT . 39
1.3.2.4.8.2.5 FDMA_REPLICATE_CFA . 39
1.3.2.4.8.2.6 FDMA_REPLIC_RL_BIT . 39
1.3.2.4.9 FDMA Concatenate Flags . 39
1.3.2.4.9.1 Overview . 39
1.3.2.4.9.2 Macro Definition Documentation . 39
1.3.2.4.9.2.1 FDMA_CONCAT_NO_FLAGS . 39
1.3.2.4.9.2.2 FDMA_CONCAT_SF_BIT . 39
1.3.2.4.9.2.3 FDMA_CONCAT_FS1_BIT . 39
1.3.2.4.9.2.4 FDMA_CONCAT_FS2_BIT . 40
1.3.2.4.9.2.5 FDMA_CONCAT_PCA_BIT . 40

NXP Semiconductors
AIOP Service Layer API Reference Manual

vii

Section number Title Page

1.3.2.4.10 FDMA Split Flags . 40
1.3.2.4.10.1 Overview . 40
1.3.2.4.10.2 Macro Definition Documentation . 40
1.3.2.4.10.2.1 FDMA_SPLIT_NO_FLAGS . 40
1.3.2.4.10.2.2 FDMA_SPLIT_CFA . 40
1.3.2.4.10.2.3 FDMA_SPLIT_PSA . 40
1.3.2.4.10.2.4 FDMA_SPLIT_SM_BIT . 40
1.3.2.4.10.2.5 FDMA_SPLIT_SR_BIT . 41
1.3.2.4.11 FDMA Replace Flags . 41
1.3.2.4.11.1 Overview . 41
1.3.2.4.11.2 Macro Definition Documentation . 41
1.3.2.4.11.2.1 FDMA_REPLACE_NO_FLAGS . 41
1.3.2.4.11.2.2 FDMA_REPLACE_SA . 41
1.3.2.4.12 FDMA Copy Flags . 41
1.3.2.4.12.1 Overview . 41
1.3.2.4.12.2 Macro Definition Documentation . 42
1.3.2.4.12.2.1 FDMA_COPY_NO_FLAGS . 42
1.3.2.4.12.2.2 FDMA_COPY_SM_BIT . 42
1.3.2.4.12.2.3 FDMA_COPY_DM_BIT . 42
1.3.2.4.13 FDMA ACQUIRE BUFFER Flags . 42
1.3.2.4.13.1 Overview . 42
1.3.2.4.13.2 Macro Definition Documentation . 42
1.3.2.4.13.2.1 FDMA_ACQUIRE_NO_FLAGS . 42
1.3.2.4.13.2.2 FDMA_ACQUIRE_BDI_BIT . 42
1.3.2.4.14 FDMA RELEASE BUFFER Flags . 42
1.3.2.4.14.1 Overview . 42
1.3.2.4.14.2 Macro Definition Documentation . 43
1.3.2.4.14.2.1 FDMA_RELEASE_NO_FLAGS . 43
1.3.2.4.14.2.2 FDMA_RELEASE_BDI_BIT . 43
1.3.2.4.15 FDMA ISOLATION ATTRIBUTES Flags 43
1.3.2.4.15.1 Overview . 43
1.3.2.4.15.2 Macro Definition Documentation . 43
1.3.2.4.15.2.1 FDMA_ICID_CONTEXT_VA . 43
1.3.2.4.15.2.2 FDMA_ICID_CONTEXT_eVA . 43
1.3.2.4.15.2.3 FDMA_ICID_CONTEXT_PL . 43
1.3.2.4.15.2.4 FDMA_ICID_CONTEXT_BDI . 43
1.3.2.5 FDMA Status . 44
1.3.2.5.1 Overview . 44
1.3.2.5.2 Macro Definition Documentation . 44
1.3.2.5.2.1 FDMA_STATUS_UNABLE_PRES_DATA_SEG 44
1.3.2.5.2.2 FDMA_STATUS_UNABLE_PRES_ASA_SEG 44
1.3.2.6 FDMA Structures . 44
1.3.2.6.1 Overview . 44
1.3.2.6.2 Data Structure Documentation . 45
1.3.2.6.2.1 struct fdma_amq . 45

NXP Semiconductors
AIOP Service Layer API Reference Manual

viii

Section number Title Page

1.3.2.6.2.2 struct fdma_present_frame_params . 46
1.3.2.6.2.3 struct fdma_present_segment_params . 46
1.3.2.6.2.4 struct fdma_queueing_destination_params 47
1.3.2.6.2.5 struct fdma_concatenate_frames_params 47
1.3.2.6.2.6 struct fdma_split_frame_params . 48
1.3.2.6.2.7 struct fdma_insert_segment_data_params 49
1.3.2.6.2.8 struct fdma_delete_segment_data_params 50
1.3.2.7 FDMA Functions . 51
1.3.2.7.1 Overview . 51
1.3.2.7.2 Function Documentation . 52
1.3.2.7.2.1 fdma_present_default_frame . 52
1.3.2.7.2.2 fdma_present_frame . 53
1.3.2.7.2.3 fdma_present_default_frame_without_segments 54
1.3.2.7.2.4 fdma_present_frame_without_segments 55
1.3.2.7.2.5 fdma_present_default_frame_segment 55
1.3.2.7.2.6 fdma_present_frame_segment . 56
1.3.2.7.2.7 fdma_read_default_frame_asa . 57
1.3.2.7.2.8 fdma_read_default_frame_pta . 58
1.3.2.7.2.9 fdma_extend_default_segment_presentation 59
1.3.2.7.2.10 fdma_store_default_frame_data . 60
1.3.2.7.2.11 fdma_store_frame_data . 61
1.3.2.7.2.12 fdma_store_and_enqueue_default_frame_fqid 62
1.3.2.7.2.13 fdma_store_and_enqueue_frame_fqid . 63
1.3.2.7.2.14 fdma_store_and_enqueue_default_frame_qd 64
1.3.2.7.2.15 fdma_store_and_enqueue_frame_qd . 65
1.3.2.7.2.16 fdma_enqueue_default_fd_fqid . 66
1.3.2.7.2.17 fdma_enqueue_fd_fqid . 67
1.3.2.7.2.18 fdma_enqueue_default_fd_qd . 68
1.3.2.7.2.19 fdma_enqueue_fd_qd . 68
1.3.2.7.2.20 fdma_discard_default_frame . 69
1.3.2.7.2.21 fdma_discard_frame . 70
1.3.2.7.2.22 fdma_discard_fd . 70
1.3.2.7.2.23 fdma_force_discard_fd . 71
1.3.2.7.2.24 fdma_terminate_task . 72
1.3.2.7.2.25 fdma_replicate_frame_fqid . 72
1.3.2.7.2.26 fdma_replicate_frame_qd . 73
1.3.2.7.2.27 fdma_concatenate_frames . 74
1.3.2.7.2.28 fdma_split_frame . 75
1.3.2.7.2.29 fdma_trim_default_segment_presentation 77
1.3.2.7.2.30 fdma_modify_default_segment_data . 78
1.3.2.7.2.31 fdma_modify_default_segment_full_data 79
1.3.2.7.2.32 fdma_insert_default_segment_data . 80
1.3.2.7.2.33 fdma_insert_segment_data . 81
1.3.2.7.2.34 fdma_delete_default_segment_data . 82
1.3.2.7.2.35 fdma_delete_segment_data . 83

NXP Semiconductors
AIOP Service Layer API Reference Manual

ix

Section number Title Page

1.3.2.7.2.36 fdma_close_default_segment . 84
1.3.2.7.2.37 fdma_close_segment . 84
1.3.2.7.2.38 fdma_replace_default_asa_segment_data 85
1.3.2.7.2.39 fdma_replace_default_pta_segment_data 86
1.3.2.7.2.40 fdma_calculate_default_frame_checksum 87
1.3.2.7.2.41 get_frame_length . 88
1.3.2.7.2.42 get_default_amq_attributes . 88
1.3.2.7.2.43 set_default_amq_attributes . 89
1.3.2.7.2.44 get_concatenate_amq_attributes . 89
1.3.2.7.2.45 fdma_present_default_frame_default_segment 89
1.3.2.7.2.46 fdma_replace_default_segment_data . 90
1.3.2.7.2.47 fdma_copy_data . 92
1.3.2.7.2.48 fdma_dma_data . 93
1.3.2.7.2.49 fdma_set_data_write_attributes . 94
1.3.2.7.2.50 fdma_set_data_read_attributes . 94
1.3.2.7.2.51 fdma_set_sru_write_attributes . 95
1.3.2.7.2.52 fdma_set_sru_read_attributes . 95
1.3.2.7.2.53 FDMA Discard Frame Flags . 95
1.3.2.7.2.53.1 Overview . 95
1.3.2.7.2.53.2 Macro Definition Documentation . 96
1.3.2.7.2.53.3 FDMA_DIS_FRAME_NO_FLAGS . 96
1.3.2.7.2.53.4 FDMA_DIS_VA_BIT . 96
1.3.2.7.2.53.5 FDMA_DIS_AS_BIT . 96
1.3.2.7.2.53.6 FDMA_DIS_PL_BIT . 96
1.3.2.7.2.53.7 FDMA_DIS_BDI_BIT . 96
1.3.2.7.2.53.8 FDMA_DIS_FRAME_TC_BIT . 96
1.3.2.7.2.54 FDMA Concatenate AMQ Flags . 96
1.3.2.7.2.54.1 Overview . 96
1.3.2.7.2.54.2 Macro Definition Documentation . 97
1.3.2.7.2.54.3 FDMA_CONCAT_AMQ_VA1 . 97
1.3.2.7.2.54.4 FDMA_CONCAT_AMQ_PL1 . 97
1.3.2.7.2.54.5 FDMA_CONCAT_AMQ_BDI1 . 97
1.3.2.7.2.54.6 FDMA_CONCAT_AMQ_VA2 . 97
1.3.2.7.2.54.7 FDMA_CONCAT_AMQ_PL2 . 97
1.3.2.7.2.54.8 FDMA_CONCAT_AMQ_BDI2 . 97
1.3.3 CDMA . 97
1.3.3.1 Overview . 97
1.3.3.2 CDMA Commands Flags . 98
1.3.3.2.1 Overview . 98
1.3.3.2.2 CDMA DMA MUTEX ModeBits . 98
1.3.3.2.2.1 Overview . 98
1.3.3.2.2.2 Macro Definition Documentation . 98
1.3.3.2.2.2.1 CDMA_DMA_NO_MUTEX_LOCK 98
1.3.3.2.2.2.2 CDMA_PREDMA_MUTEX_READ_LOCK 98
1.3.3.2.2.2.3 CDMA_PREDMA_MUTEX_WRITE_LOCK 98

NXP Semiconductors
AIOP Service Layer API Reference Manual

x

Section number Title Page

1.3.3.2.2.2.4 CDMA_POSTDMA_MUTEX_RM_BIT 98
1.3.3.2.3 CDMA MUTEX ModeBits . 99
1.3.3.2.3.1 Overview . 99
1.3.3.2.3.2 Macro Definition Documentation . 99
1.3.3.2.3.2.1 CDMA_MUTEX_READ_LOCK . 99
1.3.3.2.3.2.2 CDMA_MUTEX_WRITE_LOCK . 99
1.3.3.3 CDMA Functions . 99
1.3.3.3.1 Overview . 99
1.3.3.3.2 Function Documentation . 100
1.3.3.3.2.1 cdma_refcount_decrement_and_release 100
1.3.3.3.2.2 cdma_acquire_context_memory . 100
1.3.3.3.2.3 cdma_release_context_memory . 101
1.3.3.3.2.4 cdma_read . 102
1.3.3.3.2.5 cdma_write . 102
1.3.3.3.2.6 cdma_mutex_lock_take . 103
1.3.3.3.2.7 cdma_mutex_lock_release . 104
1.3.3.3.2.8 cdma_read_with_mutex . 105
1.3.3.3.2.9 cdma_write_with_mutex . 106
1.3.3.3.2.10 cdma_ws_memory_init . 107
1.3.3.3.2.11 cdma_refcount_get . 107
1.3.3.3.2.12 cdma_set_data_write_attributes . 108
1.3.3.3.2.13 cdma_set_data_read_attributes . 108
1.3.4 PARSER . 109
1.3.4.1 Overview . 109
1.3.4.2 PARSER Macros . 109
1.3.4.2.1 Overview . 109
1.3.4.2.2 Frame Attributes Extension Masks . 110
1.3.4.2.2.1 Overview . 110
1.3.4.2.2.2 Macro Definition Documentation . 110
1.3.4.2.2.2.1 PARSER_ATT_UD_SOFT_PARSER_BIT_0 110
1.3.4.2.2.2.2 PARSER_ATT_UD_SOFT_PARSER_BIT_1 110
1.3.4.2.2.2.3 PARSER_ATT_UD_SOFT_PARSER_BIT_2 110
1.3.4.2.2.2.4 PARSER_ATT_UD_SOFT_PARSER_BIT_3 110
1.3.4.2.2.2.5 PARSER_ATT_UD_SOFT_PARSER_BIT_4 110
1.3.4.2.2.2.6 PARSER_ATT_UD_SOFT_PARSER_BIT_5 110
1.3.4.2.2.2.7 PARSER_ATT_UD_SOFT_PARSER_BIT_6 110
1.3.4.2.2.2.8 PARSER_ATT_UD_SOFT_PARSER_BIT_7 110
1.3.4.2.3 Frame Attributes Masks 1 . 111
1.3.4.2.3.1 Overview . 111
1.3.4.2.3.2 Macro Definition Documentation . 111
1.3.4.2.3.2.1 PARSER_ATT_IPV6_ROUTING_HDR_2_MASK 111
1.3.4.2.3.2.2 PARSER_ATT_GTP_PRIMED_MASK 111
1.3.4.2.3.2.3 PARSER_ATT_VLAN_PRIORITY_MASK 111
1.3.4.2.3.2.4 PARSER_ATT_PTP_MASK . 111
1.3.4.2.3.2.5 PARSER_ATT_VXLAN_MASK . 111

NXP Semiconductors
AIOP Service Layer API Reference Manual

xi

Section number Title Page

1.3.4.2.3.2.6 PARSER_ATT_ETH_SLOW_PROTOCOL_MASK 112
1.3.4.2.3.2.7 PARSER_ATT_IKE_MASK . 112
1.3.4.2.3.2.8 PARSER_ATT_ETH_MAC_MASK 112
1.3.4.2.3.2.9 PARSER_ATT_ETH_MAC_UNICAST_MASK 112
1.3.4.2.3.2.10 PARSER_ATT_ETH_MAC_MULTICAST_MASK 112
1.3.4.2.3.2.11 PARSER_ATT_ETH_MAC_BROADCAST_MASK 112
1.3.4.2.3.2.12 PARSER_ATT_BPDU_MASK . 112
1.3.4.2.3.2.13 PARSER_ATT_FCOE_MASK . 112
1.3.4.2.3.2.14 PARSER_ATT_FCOE_INIT_PROTOCOL_MASK 112
1.3.4.2.3.2.15 PARSER_ATT_LLC_SNAP_MASK 112
1.3.4.2.3.2.16 PARSER_ATT_UNKOWN_LLC_OUI_MASK 112
1.3.4.2.3.2.17 PARSER_ATT_VLAN_1_MASK . 112
1.3.4.2.3.2.18 PARSER_ATT_VLAN_N_MASK . 112
1.3.4.2.3.2.19 PARSER_ATT_CFI_IN_VLAN_MASK 113
1.3.4.2.3.2.20 PARSER_ATT_PPPOE_PPP_MASK 113
1.3.4.2.3.2.21 PARSER_ATT_MPLS_1_MASK . 113
1.3.4.2.3.2.22 PARSER_ATT_MPLS_N_MASK . 113
1.3.4.2.3.2.23 PARSER_ATT_ARP_MASK . 113
1.3.4.2.4 Frame Attributes Error Masks 1 . 113
1.3.4.2.4.1 Overview . 113
1.3.4.2.4.2 Macro Definition Documentation . 113
1.3.4.2.4.2.1 PARSER_ATT_VXLAN_PARSING_ERROR_MASK 113
1.3.4.2.4.2.2 PARSER_ATT_SHIM_SOFT_PARSING_ERROR_MASK 113
1.3.4.2.4.2.3 PARSER_ATT_PARSING_ERROR_MASK 113
1.3.4.2.4.2.4 PARSER_ATT_ETH_PARSING_ERROR_MASK 114
1.3.4.2.4.2.5 PARSER_ATT_LLC_SNAP_PARSING_ERROR_MASK 114
1.3.4.2.4.2.6 PARSER_ATT_VLAN_PARSING_ERROR_MASK 114
1.3.4.2.4.2.7 PARSER_ATT_PPPOE_PPP_PARSING_ERROR_MASK 114
1.3.4.2.4.2.8 PARSER_ATT_MPLS_PARSING_ERROR_MASK 114
1.3.4.2.4.2.9 PARSER_ATT_ARP_PARSING_ERROR_MASK 114
1.3.4.2.5 Frame Attributes Masks 2 . 114
1.3.4.2.5.1 Overview . 114
1.3.4.2.5.2 Macro Definition Documentation . 115
1.3.4.2.5.2.1 PARSER_ATT_L2_UNKOWN_PROTOCOL_MASK 115
1.3.4.2.5.2.2 PARSER_ATT_IPV4_1_MASK . 115
1.3.4.2.5.2.3 PARSER_ATT_IPV4_1_UNICAST_MASK 115
1.3.4.2.5.2.4 PARSER_ATT_IPV4_1_MULTICAST_MASK 115
1.3.4.2.5.2.5 PARSER_ATT_IPV4_1_BROADCAST_MASK 115
1.3.4.2.5.2.6 PARSER_ATT_IPV4_N_MASK . 115
1.3.4.2.5.2.7 PARSER_ATT_IPV4_N_UNICAST_MASK 115
1.3.4.2.5.2.8 PARSER_ATT_IPV4_N_MULTICAST_MASK 115
1.3.4.2.5.2.9 PARSER_ATT_IPV4_N_BROADCAST_MASK 115
1.3.4.2.5.2.10 PARSER_ATT_IPV6_1_MASK . 115
1.3.4.2.5.2.11 PARSER_ATT_IPV6_1_UNICAST_MASK 116
1.3.4.2.5.2.12 PARSER_ATT_IPV6_1_MULTICAST_MASK 116

NXP Semiconductors
AIOP Service Layer API Reference Manual

xii

Section number Title Page

1.3.4.2.5.2.13 PARSER_ATT_IPV6_N_MASK . 116
1.3.4.2.5.2.14 PARSER_ATT_IPV6_N_UNICAST_MASK 116
1.3.4.2.5.2.15 PARSER_ATT_IPV6_N_MULTICAST_MASK 116
1.3.4.2.5.2.16 PARSER_ATT_IP_1_OPTIONS_MASK 116
1.3.4.2.5.2.17 PARSER_ATT_IP_1_UNKNOWN_PROTOCOL_MASK 116
1.3.4.2.5.2.18 PARSER_ATT_IP_1_IS_FRAGMENT_MASK 116
1.3.4.2.5.2.19 PARSER_ATT_IP_1_IS_INIT_FRAGMENT_MASK 116
1.3.4.2.5.2.20 PARSER_ATT_IP_N_OPTIONS_MASK 116
1.3.4.2.5.2.21 PARSER_ATT_IP_N_UNKNOWN_PROTOCOL_MASK 116
1.3.4.2.5.2.22 PARSER_ATT_IP_N_IS_FRAGMENT_MASK 116
1.3.4.2.5.2.23 PARSER_ATT_IP_N_IS_INIT_FRAGMENT_MASK 116
1.3.4.2.5.2.24 PARSER_ATT_ICMP_MASK . 117
1.3.4.2.5.2.25 PARSER_ATT_IGMP_MASK . 117
1.3.4.2.5.2.26 PARSER_ATT_ICMPV6_MASK . 117
1.3.4.2.5.2.27 PARSER_ATT_UDP_LITE_MASK 117
1.3.4.2.5.2.28 PARSER_ATT_MIN_ENCAP_MASK 117
1.3.4.2.5.2.29 PARSER_ATT_MIN_ENCAP_S_FLAG_MASK 117
1.3.4.2.6 Frame Attributes Error Masks 2 . 117
1.3.4.2.6.1 Overview . 117
1.3.4.2.6.2 Macro Definition Documentation . 117
1.3.4.2.6.2.1 PARSER_ATT_L2_SOFT_PARSING_ERROR_MASK 117
1.3.4.2.6.2.2 PARSER_ATT_IP_1_PARSING_ERROR_MASK 117
1.3.4.2.6.2.3 PARSER_ATT_IP_N_PARSING_ERROR_MASK 117
1.3.4.2.7 Frame Attributes Masks 3 . 118
1.3.4.2.7.1 Overview . 118
1.3.4.2.7.2 Macro Definition Documentation . 118
1.3.4.2.7.2.1 PARSER_ATT_GRE_MASK . 118
1.3.4.2.7.2.2 PARSER_ATT_GRE_R_BIT_SET_MASK 118
1.3.4.2.7.2.3 PARSER_ATT_L3_UNKOWN_PROTOCOL_MASK 118
1.3.4.2.7.2.4 PARSER_ATT_UDP_MASK . 118
1.3.4.2.7.2.5 PARSER_ATT_TCP_MASK . 118
1.3.4.2.7.2.6 PARSER_ATT_TCP_OPTIONS_MASK 119
1.3.4.2.7.2.7 PARSER_ATT_TCP_CONTROLS_6_11_SET_MASK 119
1.3.4.2.7.2.8 PARSER_ATT_TCP_CONTROLS_3_5_SET_MASK 119
1.3.4.2.7.2.9 PARSER_ATT_IPSEC_MASK . 119
1.3.4.2.7.2.10 PARSER_ATT_IPSEC_ESP_MASK 119
1.3.4.2.7.2.11 PARSER_ATT_IPSEC_AH_MASK 119
1.3.4.2.7.2.12 PARSER_ATT_SCTP_MASK . 119
1.3.4.2.7.2.13 PARSER_ATT_DCCP_MASK . 119
1.3.4.2.7.2.14 PARSER_ATT_L4_UNKOWN_PROTOCOL_MASK 119
1.3.4.2.7.2.15 PARSER_ATT_GTP_MASK . 119
1.3.4.2.7.2.16 PARSER_ATT_ESP_OVER_UDP_MASK 119
1.3.4.2.7.2.17 PARSER_ATT_ISCSI_MASK . 119
1.3.4.2.7.2.18 PARSER_ATT_CAPWAP_CONTROL_MASK 119
1.3.4.2.7.2.19 PARSER_ATT_CAPWAP_DATA_MASK 120

NXP Semiconductors
AIOP Service Layer API Reference Manual

xiii

Section number Title Page

1.3.4.2.7.2.20 PARSER_ATT_IPV6_ROUTING_HDR_1 120
1.3.4.2.8 Frame Attributes Error Masks 3 . 120
1.3.4.2.8.1 Overview . 120
1.3.4.2.8.2 Macro Definition Documentation . 120
1.3.4.2.8.2.1 PARSER_ATT_MIN_ENCAP_PARSING_ERROR_MASK 120
1.3.4.2.8.2.2 PARSER_ATT_GRE_PARSING_ERROR_MASK 120
1.3.4.2.8.2.3 PARSER_ATT_L3_SOFT_PARSING_ERROR_MASK 120
1.3.4.2.8.2.4 PARSER_ATT_UDP_PARSING_ERROR_MASK 120
1.3.4.2.8.2.5 PARSER_ATT_TCP_PARSING_ERROR_MASK 120
1.3.4.2.8.2.6 PARSER_ATT_IPSEC_PARSING_ERROR_MASK 121
1.3.4.2.8.2.7 PARSER_ATT_SCTP_PARSING_ERROR_MASK 121
1.3.4.2.8.2.8 PARSER_ATT_DCCP_PARSING_ERROR_MASK 121
1.3.4.2.8.2.9 PARSER_ATT_L4_SOFT_PARSING_ERROR_MASK 121
1.3.4.2.8.2.10 PARSER_ATT_GTP_PARSING_ERROR_MASK 121
1.3.4.2.8.2.11 PARSER_ATT_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_←↩

MASK . 121
1.3.4.2.8.2.12 PARSER_ATT_L5_SOFT_PARSING_ERROR_MASK 121
1.3.4.2.9 PARSER Error Codes . 121
1.3.4.2.9.1 Overview . 121
1.3.4.2.9.2 Macro Definition Documentation . 122
1.3.4.2.9.2.1 PARSER_FRAME_TRUNCATION 122
1.3.4.2.9.2.2 PARSER_ETH_802_3_TRUNCATION 122
1.3.4.2.9.2.3 PARSER_PPPOE_TRUNCATION . 122
1.3.4.2.9.2.4 PARSER_PPPOE_MTU_VIOLATED 122
1.3.4.2.9.2.5 PARSER_PPPOE_VERSION_INVALID 122
1.3.4.2.9.2.6 PARSER_PPPOE_TYPE_INVALID 122
1.3.4.2.9.2.7 PARSER_PPPOE_CODE_INVALID 122
1.3.4.2.9.2.8 PARSER_PPPOE_SESSION_ID_INVALID 122
1.3.4.2.9.2.9 PARSER_IPV4_PACKET_TRUNCATION 123
1.3.4.2.9.2.10 PARSER_IPV4_CHECKSUM_ERROR 123
1.3.4.2.9.2.11 PARSER_IPV4_VERSION_ERROR 123
1.3.4.2.9.2.12 PARSER_IPV4_MIN_FRAG_SIZE_ERROR 123
1.3.4.2.9.2.13 PARSER_IPV4_HEADER_LENGTH_ERROR 123
1.3.4.2.9.2.14 PARSER_IPV6_PACKET_TRUNCATION 123
1.3.4.2.9.2.15 PARSER_IPV6_EXTENSION_HEADER_VIOLATION 123
1.3.4.2.9.2.16 PARSER_IPV6_VERSION_ERROR 123
1.3.4.2.9.2.17 PARSER_IPV6_ROUTING_HEADER_ERROR 123
1.3.4.2.9.2.18 PARSER_GRE_VERSION_ERROR 123
1.3.4.2.9.2.19 PARSER_MINENC_CHECKSUM_ERROR 123
1.3.4.2.9.2.20 PARSER_TCP_INVALID_OFFSET 124
1.3.4.2.9.2.21 PARSER_TCP_PACKET_TRUNCATION 124
1.3.4.2.9.2.22 PARSER_TCP_CHECKSUM_ERROR 124
1.3.4.2.9.2.23 PARSER_TCP_BAD_FLAGS . 124
1.3.4.2.9.2.24 PARSER_UDP_LENGTH_ERROR . 124
1.3.4.2.9.2.25 PARSER_UDP_CHECKSUM_ZERO 124

NXP Semiconductors
AIOP Service Layer API Reference Manual

xiv

Section number Title Page

1.3.4.2.9.2.26 PARSER_UDP_CHECKSUM_ERROR 124
1.3.4.2.9.2.27 PARSER_SCTP_PORT_0_DETECTED 124
1.3.4.2.9.2.28 PARSER_GTP_UNSUPPORTED_VERSION 124
1.3.4.2.9.2.29 PARSER_GTP_INVALID_PROTOCOL_TYPE 124
1.3.4.2.9.2.30 PARSER_GTP_INVALID_L_BIT_ERROR 124
1.3.4.2.10 Parse Result Error Queries . 124
1.3.4.2.10.1 Overview . 124
1.3.4.2.10.2 Macro Definition Documentation . 125
1.3.4.2.10.2.1 PARSER_IS_VXLAN_PARSING_ERROR_DEFAULT 125
1.3.4.2.10.2.2 PARSER_IS_SHIM_SOFT_PARSING_ERROR_DEFAULT 125
1.3.4.2.10.2.3 PARSER_IS_PARSING_ERROR_DEFAULT 125
1.3.4.2.10.2.4 PARSER_IS_ETH_PARSING_ERROR_DEFAULT 125
1.3.4.2.10.2.5 PARSER_IS_LLC_SNAP_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.6 PARSER_IS_VLAN_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.7 PARSER_IS_PPPOE_PPP_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.8 PARSER_IS_MPLS_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.9 PARSER_IS_ARP_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.10 PARSER_IS_L2_SOFT_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.11 PARSER_IS_OUTER_IP_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.12 PARSER_IS_INNER_IP_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.13 PARSER_IS_LAST_IP_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.14 PARSER_IS_MIN_ENCAP_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.15 PARSER_IS_GRE_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.16 PARSER_IS_L3_SOFT_PARSING_ERROR_DEFAULT 126
1.3.4.2.10.2.17 PARSER_IS_UDP_PARSING_ERROR_DEFAULT 127
1.3.4.2.10.2.18 PARSER_IS_TCP_PARSING_ERROR_DEFAULT 127
1.3.4.2.10.2.19 PARSER_IS_IPSEC_PARSING_ERROR_DEFAULT 127
1.3.4.2.10.2.20 PARSER_IS_SCTP_PARSING_ERROR_DEFAULT 127
1.3.4.2.10.2.21 PARSER_IS_DCCP_PARSING_ERROR_DEFAULT 127
1.3.4.2.10.2.22 PARSER_IS_L4_SOFT_PARSING_ERROR_DEFAULT 127
1.3.4.2.10.2.23 PARSER_IS_GTP_PARSING_ERROR_DEFAULT 127
1.3.4.2.10.2.24 PARSER_IS_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_DE←↩

FAULT . 127
1.3.4.2.10.2.25 PARSER_IS_L5_SOFT_PARSING_ERROR_DEFAULT 127
1.3.4.2.11 Parse Result Attributes Queries . 127
1.3.4.2.11.1 Overview . 127
1.3.4.2.11.2 Macro Definition Documentation . 129
1.3.4.2.11.2.1 PARSER_IS_UD_SOFT_PARSER_BIT_0_SET 129
1.3.4.2.11.2.2 PARSER_IS_UD_SOFT_PARSER_BIT_1_SET 129
1.3.4.2.11.2.3 PARSER_IS_UD_SOFT_PARSER_BIT_2_SET 129
1.3.4.2.11.2.4 PARSER_IS_UD_SOFT_PARSER_BIT_3_SET 129
1.3.4.2.11.2.5 PARSER_IS_UD_SOFT_PARSER_BIT_4_SET 129
1.3.4.2.11.2.6 PARSER_IS_UD_SOFT_PARSER_BIT_5_SET 129
1.3.4.2.11.2.7 PARSER_IS_UD_SOFT_PARSER_BIT_6_SET 130
1.3.4.2.11.2.8 PARSER_IS_UD_SOFT_PARSER_BIT_7_SET 130

NXP Semiconductors
AIOP Service Layer API Reference Manual

xv

Section number Title Page

1.3.4.2.11.2.9 PARSER_IS_ROUTING_HDR_IN_2ND_IPV6_HDR_DEFAULT . . . 130
1.3.4.2.11.2.10 PARSER_IS_GTP_PRIMED_DEFAULT 130
1.3.4.2.11.2.11 PARSER_IS_VLAN_PRIORITY_DEFAULT 130
1.3.4.2.11.2.12 PARSER_IS_PTP_DEFAULT . 130
1.3.4.2.11.2.13 PARSER_IS_ETH_SLOW_PROTOCOL_DEFAULT 130
1.3.4.2.11.2.14 PARSER_IS_ETH_MAC_DEFAULT 130
1.3.4.2.11.2.15 PARSER_IS_ETH_MAC_UNICAST_DEFAULT 130
1.3.4.2.11.2.16 PARSER_IS_ETH_MAC_MULTICAST_DEFAULT 130
1.3.4.2.11.2.17 PARSER_IS_ETH_MAC_BROADCAST_DEFAULT 130
1.3.4.2.11.2.18 PARSER_IS_BPDU_DEFAULT . 130
1.3.4.2.11.2.19 PARSER_IS_FCOE_DEFAULT . 130
1.3.4.2.11.2.20 PARSER_IS_FCOE_INIT_PROTOCOL_DEFAULT 131
1.3.4.2.11.2.21 PARSER_IS_LLC_SNAP_DEFAULT 131
1.3.4.2.11.2.22 PARSER_IS_UNKNOWN_LLC_OUI_DEFAULT 131
1.3.4.2.11.2.23 PARSER_IS_ONE_VLAN_DEFAULT 131
1.3.4.2.11.2.24 PARSER_IS_MORE_THAN_ONE_VLAN_DEFAULT 131
1.3.4.2.11.2.25 PARSER_IS_CFI_IN_VLAN_DEFAULT 131
1.3.4.2.11.2.26 PARSER_IS_PPPOE_PPP_DEFAULT 131
1.3.4.2.11.2.27 PARSER_IS_ONE_MPLS_DEFAULT 131
1.3.4.2.11.2.28 PARSER_IS_MORE_THAN_ONE_MPLS_DEFAULT 131
1.3.4.2.11.2.29 PARSER_IS_ARP_DEFAULT . 131
1.3.4.2.11.2.30 PARSER_IS_L2_UNKNOWN_PROTOCOL_DEFAULT 131
1.3.4.2.11.2.31 PARSER_IS_IP_DEFAULT . 132
1.3.4.2.11.2.32 PARSER_IS_OUTER_IPV4_DEFAULT 132
1.3.4.2.11.2.33 PARSER_IS_OUTER_IPV4_UNICAST_DEFAULT 132
1.3.4.2.11.2.34 PARSER_IS_OUTER_IPV4_MULTICAST_DEFAULT 132
1.3.4.2.11.2.35 PARSER_IS_OUTER_IPV4_BROADCAST_DEFAULT 132
1.3.4.2.11.2.36 PARSER_IS_TUNNELED_IP_DEFAULT 132
1.3.4.2.11.2.37 PARSER_IS_INNER_IPV4_DEFAULT 132
1.3.4.2.11.2.38 PARSER_IS_INNER_IPV4_UNICAST_DEFAULT 132
1.3.4.2.11.2.39 PARSER_IS_INNER_IPV4_MULTICAST_DEFAULT 132
1.3.4.2.11.2.40 PARSER_IS_INNER_IPV4_BROADCAST_DEFAULT 132
1.3.4.2.11.2.41 PARSER_IS_OUTER_IPV6_DEFAULT 132
1.3.4.2.11.2.42 PARSER_IS_OUTER_IPV6_UNICAST_DEFAULT 132
1.3.4.2.11.2.43 PARSER_IS_OUTER_IPV6_MULTICAST_DEFAULT 133
1.3.4.2.11.2.44 PARSER_IS_INNER_IPV6_DEFAULT 133
1.3.4.2.11.2.45 PARSER_IS_INNER_IPV6_UNICAST_DEFAULT 133
1.3.4.2.11.2.46 PARSER_IS_INNER_IPV6_MULTICAST_DEFAULT 133
1.3.4.2.11.2.47 PARSER_IS_OUTER_IP_OPTIONS_DEFAULT 133
1.3.4.2.11.2.48 PARSER_IS_OUTER_IP_UNKNOWN_PROTOCOL_DEFAULT . . . 133
1.3.4.2.11.2.49 PARSER_IS_OUTER_IP_FRAGMENT_DEFAULT 133
1.3.4.2.11.2.50 PARSER_IS_OUTER_IP_INIT_FRAGMENT_DEFAULT 133
1.3.4.2.11.2.51 PARSER_IS_INNER_IP_OPTIONS_DEFAULT 133
1.3.4.2.11.2.52 PARSER_IS_INNER_IP_UNKNOWN_PROTOCOL_DEFAULT . . . 133
1.3.4.2.11.2.53 PARSER_IS_INNER_IP_FRAGMENT_DEFAULT 133

NXP Semiconductors
AIOP Service Layer API Reference Manual

xvi

Section number Title Page

1.3.4.2.11.2.54 PARSER_IS_INNER_IP_INIT_FRAGMENT_DEFAULT 134
1.3.4.2.11.2.55 PARSER_IS_ICMP_DEFAULT . 134
1.3.4.2.11.2.56 PARSER_IS_IGMP_DEFAULT . 134
1.3.4.2.11.2.57 PARSER_IS_ICMPV6_DEFAULT . 134
1.3.4.2.11.2.58 PARSER_IS_UDP_LITE_DEFAULT 134
1.3.4.2.11.2.59 PARSER_IS_MIN_ENCAP_DEFAULT 134
1.3.4.2.11.2.60 PARSER_IS_MIN_ENCAP_S_FLAG_DEFAULT 134
1.3.4.2.11.2.61 PARSER_IS_GRE_DEFAULT . 134
1.3.4.2.11.2.62 PARSER_IS_GRE_R_BIT_SET_DEFAULT 134
1.3.4.2.11.2.63 PARSER_IS_L3_UNKOWN_PROTOCOL_DEFAULT 134
1.3.4.2.11.2.64 PARSER_IS_UDP_DEFAULT . 134
1.3.4.2.11.2.65 PARSER_IS_TCP_DEFAULT . 134
1.3.4.2.11.2.66 PARSER_IS_TCP_OR_UDP_DEFAULT 135
1.3.4.2.11.2.67 PARSER_IS_TCP_OPTIONS_DEFAULT 135
1.3.4.2.11.2.68 PARSER_IS_TCP_CONTROLS_6_11_SET_DEFAULT 135
1.3.4.2.11.2.69 PARSER_IS_TCP_CONTROLS_3_5_SET_DEFAULT 135
1.3.4.2.11.2.70 PARSER_IS_IPSEC_DEFAULT . 135
1.3.4.2.11.2.71 PARSER_IS_IPSEC_ESP_DEFAULT 135
1.3.4.2.11.2.72 PARSER_IS_IPSEC_AH_DEFAULT 135
1.3.4.2.11.2.73 PARSER_IS_SCTP_DEFAULT . 135
1.3.4.2.11.2.74 PARSER_IS_DCCP_DEFAULT . 135
1.3.4.2.11.2.75 PARSER_IS_L4_UNKOWN_PROTOCOL_DEFAULT 135
1.3.4.2.11.2.76 PARSER_IS_GTP_DEFAULT . 135
1.3.4.2.11.2.77 PARSER_IS_IKE_OVER_UDP_DEFAULT 135
1.3.4.2.11.2.78 PARSER_IS_ESP_OVER_UDP_DEFAULT 136
1.3.4.2.11.2.79 PARSER_IS_ISCSI_DEFAULT . 136
1.3.4.2.11.2.80 PARSER_IS_CAPWAP_CONTROL_DEFAULT 136
1.3.4.2.11.2.81 PARSER_IS_CAPWAP_DATA_DEFAULT 136
1.3.4.2.11.2.82 PARSER_IS_ROUTING_HDR_IN_1ST_IPV6_HDR_DEFAULT . . . 136
1.3.4.2.12 Parse Result Getters . 136
1.3.4.2.12.1 Overview . 136
1.3.4.2.12.2 Macro Definition Documentation . 137
1.3.4.2.12.2.1 PARSER_GET_NEXT_HEADER_DEFAULT 137
1.3.4.2.12.2.2 PARSER_GET_SHIM1_OFFSET_DEFAULT 137
1.3.4.2.12.2.3 PARSER_GET_SHIM2_OFFSET_DEFAULT 137
1.3.4.2.12.2.4 PARSER_GET_OUTER_IP_PID_OFFSET_DEFAULT 137
1.3.4.2.12.2.5 PARSER_GET_ETH_OFFSET_DEFAULT 137
1.3.4.2.12.2.6 PARSER_GET_LLC_SNAP_OFFSET_DEFAULT 137
1.3.4.2.12.2.7 PARSER_GET_FIRST_VLAN_TCI_OFFSET_DEFAULT 137
1.3.4.2.12.2.8 PARSER_GET_LAST_VLAN_TCI_OFFSET_DEFAULT 137
1.3.4.2.12.2.9 PARSER_GET_LAST_ETYPE_OFFSET_DEFAULT 137
1.3.4.2.12.2.10 PARSER_GET_PPPOE_OFFSET_DEFAULT 137
1.3.4.2.12.2.11 PARSER_GET_FIRST_MPLS_OFFSET_DEFAULT 138
1.3.4.2.12.2.12 PARSER_GET_LAST_MPLS_OFFSET_DEFAULT 138
1.3.4.2.12.2.13 PARSER_GET_OUTER_IP_OFFSET_DEFAULT 138

NXP Semiconductors
AIOP Service Layer API Reference Manual

xvii

Section number Title Page

1.3.4.2.12.2.14 PARSER_GET_ARP_OFFSET_DEFAULT 138
1.3.4.2.12.2.15 PARSER_GET_FCOE_OFFSET_DEFAULT 138
1.3.4.2.12.2.16 PARSER_GET_FIP_OFFSET_DEFAULT 138
1.3.4.2.12.2.17 PARSER_GET_INNER_IP_OFFSET_DEFAULT 138
1.3.4.2.12.2.18 PARSER_GET_MINENCAP_OFFSET_DEFAULT 138
1.3.4.2.12.2.19 PARSER_GET_GRE_OFFSET_DEFAULT 138
1.3.4.2.12.2.20 PARSER_GET_L4_OFFSET_DEFAULT 138
1.3.4.2.12.2.21 PARSER_GET_L5_OFFSET_DEFAULT 138
1.3.4.2.12.2.22 PARSER_GET_1ST_IPV6_ROUTING_HDR_OFFSET_DEFAULT . . 138
1.3.4.2.12.2.23 PARSER_GET_2ND_IPV6_ROUTING_HDR_OFFSET_DEFAULT . . 138
1.3.4.2.12.2.24 PARSER_GET_NEXT_HEADER_OFFSET_DEFAULT 139
1.3.4.2.12.2.25 PARSER_GET_IPV6_FRAG_HEADER_OFFSET_DEFAULT 139
1.3.4.2.12.2.26 PARSER_GET_GROSS_RUNNING_SUM_CODE_DEFAULT 139
1.3.4.2.12.2.27 PARSER_GET_RUNNING_SUM_DEFAULT 139
1.3.4.2.12.2.28 PARSER_GET_PARSE_ERROR_CODE_DEFAULT 139
1.3.4.2.12.2.29 PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_OFFSE←↩

T_DEFAULT . 139
1.3.4.2.12.2.30 PARSER_GET_IP_N_PID_OFFSET_DEFAULT 139
1.3.4.2.13 Pointer in Frame Getters . 139
1.3.4.2.13.1 Overview . 139
1.3.4.2.13.2 Macro Definition Documentation . 140
1.3.4.2.13.2.1 PARSER_GET_SHIM1_POINTER_DEFAULT 140
1.3.4.2.13.2.2 PARSER_GET_SHIM2_POINTER_DEFAULT 140
1.3.4.2.13.2.3 PARSER_GET_OUTER_IP_PID_POINTER_DEFAULT 140
1.3.4.2.13.2.4 PARSER_GET_ETH_POINTER_DEFAULT 140
1.3.4.2.13.2.5 PARSER_GET_LLC_SNAP_POINTER_DEFAULT 140
1.3.4.2.13.2.6 PARSER_GET_FIRST_VLAN_TCI_POINTER_DEFAULT 140
1.3.4.2.13.2.7 PARSER_GET_LAST_VLAN_TCI_POINTER_DEFAULT 140
1.3.4.2.13.2.8 PARSER_GET_LAST_ETYPE_POINTER_DEFAULT 140
1.3.4.2.13.2.9 PARSER_GET_PPPOE_POINTER_DEFAULT 140
1.3.4.2.13.2.10 PARSER_GET_FIRST_MPLS_POINTER_DEFAULT 141
1.3.4.2.13.2.11 PARSER_GET_LAST_MPLS_POINTER_DEFAULT 141
1.3.4.2.13.2.12 PARSER_GET_OUTER_IP_POINTER_DEFAULT 141
1.3.4.2.13.2.13 PARSER_GET_ARP_POINTER_DEFAULT 141
1.3.4.2.13.2.14 PARSER_GET_FCOE_POINTER_DEFAULT 141
1.3.4.2.13.2.15 PARSER_GET_FIP_POINTER_DEFAULT 141
1.3.4.2.13.2.16 PARSER_GET_INNER_IP_POINTER_DEFAULT 141
1.3.4.2.13.2.17 PARSER_GET_MINENCAP_POINTER_DEFAULT 141
1.3.4.2.13.2.18 PARSER_GET_GRE_POINTER_DEFAULT 141
1.3.4.2.13.2.19 PARSER_GET_L4_POINTER_DEFAULT 141
1.3.4.2.13.2.20 PARSER_GET_L5_POINTER_DEFAULT 141
1.3.4.2.13.2.21 PARSER_GET_1ST_IPV6_ROUTING_HDR_POINTER_DEFAULT . 141
1.3.4.2.13.2.22 PARSER_GET_2ND_IPV6_ROUTING_HDR_POINTER_DEFAU←↩

LT . 141
1.3.4.2.13.2.23 PARSER_GET_NEXT_HEADER_POINTER_DEFAULT 142

NXP Semiconductors
AIOP Service Layer API Reference Manual

xviii

Section number Title Page

1.3.4.2.13.2.24 PARSER_GET_IPV6_FRAG_HEADER_POINTER_DEFAULT 142
1.3.4.2.13.2.25 PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_POINTE←↩

R_DEFAULT . 142
1.3.4.2.13.2.26 PARSER_GET_IP_N_PID_POINTER_DEFAULT 142
1.3.4.2.14 PARSER Setters . 142
1.3.4.2.14.1 Overview . 142
1.3.4.2.14.2 Macro Definition Documentation . 142
1.3.4.2.14.2.1 PARSER_SET_PRPID . 142
1.3.4.2.14.2.2 PARSER_SET_STARTING_HXS . 142
1.3.4.2.15 Flags for parse_result_generate function 142
1.3.4.2.15.1 Overview . 142
1.3.4.2.15.2 Macro Definition Documentation . 143
1.3.4.2.15.2.1 PARSER_NO_FLAGS . 143
1.3.4.2.15.2.2 PARSER_VALIDATE_L3_CHECKSUM 143
1.3.4.2.15.2.3 PARSER_VALIDATE_L4_CHECKSUM 143
1.3.4.2.15.2.4 PARSER_VALIDATE_L3_L4_CHECKSUM 143
1.3.4.2.16 PARSER HXS configuration in parse profile defines 143
1.3.4.2.16.1 Overview . 143
1.3.4.2.16.2 Macro Definition Documentation . 143
1.3.4.2.16.2.1 PARSER_PRP_HXS_CONFIG_EN . 143
1.3.4.2.16.2.2 PARSER_PRP_HXS_CONFIG_ERM 143
1.3.4.2.16.2.3 PARSER_PRP_PPP_HXS_CONFIG_EMC 144
1.3.4.2.16.2.4 PARSER_PRP_MPLS_HXS_CONFIG_LIE 144
1.3.4.2.16.2.5 PARSER_PRP_IPV6_HXS_CONFIG_RHE 144
1.3.4.2.16.2.6 PARSER_PRP_TCP_UDP_HXS_CONFIG_SPPR 144
1.3.4.3 PARSER Enumerations . 144
1.3.4.3.1 Overview . 144
1.3.4.3.2 Enumeration Type Documentation . 145
1.3.4.3.2.1 parser_starting_hxs_code . 145
1.3.4.4 PARSER Structures . 146
1.3.4.4.1 Overview . 146
1.3.4.4.2 Data Structure Documentation . 146
1.3.4.4.2.1 struct parse_result . 146
1.3.4.4.2.2 struct vlan_hxs_configuration . 148
1.3.4.4.2.3 struct mpls_hxs_configuration . 148
1.3.4.4.2.4 struct parse_profile_record . 149
1.3.4.4.2.5 struct parse_profile_input . 152
1.3.4.5 PARSER Functions . 152
1.3.4.5.1 Overview . 152
1.3.4.5.2 Function Documentation . 153
1.3.4.5.2.1 parser_profile_create . 153
1.3.4.5.2.2 parser_profile_replace . 153
1.3.4.5.2.3 parser_profile_delete . 154
1.3.4.5.2.4 parser_profile_query . 154
1.3.4.5.2.5 parse_result_generate_checksum . 155

NXP Semiconductors
AIOP Service Layer API Reference Manual

xix

Section number Title Page

1.3.4.5.2.6 parse_result_generate_default . 156
1.3.4.5.2.7 parse_result_generate . 157
1.3.4.5.2.8 parse_result_generate_basic . 158
1.3.4.5.2.9 parser_pop_vlan_update . 159
1.3.4.5.2.10 parser_push_vlan_update . 159
1.3.5 KEYGEN . 159
1.3.5.1 Overview . 159
1.3.5.2 KEYGEN Macros . 160
1.3.5.2.1 Overview . 160
1.3.5.2.2 Key Composition Rule Attributes . 160
1.3.5.2.2.1 Overview . 160
1.3.5.2.2.2 Macro Definition Documentation . 160
1.3.5.2.2.2.1 KEYGEN_KCR_LENGTH . 160
1.3.5.3 KEYGEN Enumerations . 160
1.3.5.3.1 Overview . 160
1.3.5.3.2 Enumeration Type Documentation . 163
1.3.5.3.2.1 kcr_builder_gec_source . 163
1.3.5.3.2.2 kcr_builder_parse_result_offset . 163
1.3.5.3.2.3 kcr_builder_protocol_fecid . 164
1.3.5.3.2.4 keygen_hw_accel_id . 165
1.3.5.4 KEYGEN Structures . 165
1.3.5.4.1 Overview . 165
1.3.5.4.2 Data Structure Documentation . 165
1.3.5.4.2.1 struct kcr_builder . 165
1.3.5.4.2.2 struct kcr_builder_fec_single_mask . 166
1.3.5.4.2.3 struct kcr_builder_fec_mask . 166
1.3.5.5 KEYGEN Functions . 166
1.3.5.5.1 Overview . 166
1.3.5.5.2 Function Documentation . 167
1.3.5.5.2.1 keygen_kcr_builder_init . 167
1.3.5.5.2.2 keygen_kcr_builder_add_constant_fec 167
1.3.5.5.2.3 keygen_kcr_builder_add_input_value_fec 168
1.3.5.5.2.4 keygen_kcr_builder_add_protocol_specific_field 168
1.3.5.5.2.5 keygen_kcr_builder_add_protocol_based_generic_fec 169
1.3.5.5.2.6 keygen_kcr_builder_add_generic_extract_fec 170
1.3.5.5.2.7 keygen_kcr_builder_add_valid_field_fec 170
1.3.5.5.2.8 keygen_kcr_create . 172
1.3.5.5.2.9 keygen_kcr_replace . 172
1.3.5.5.2.10 keygen_kcr_delete . 173
1.3.5.5.2.11 keygen_kcr_query . 173
1.3.5.5.2.12 keygen_gen_key . 174
1.3.5.5.2.13 keygen_gen_hash . 175
1.3.6 TABLE . 175
1.3.6.1 Overview . 175
1.3.6.2 TABLE Macros . 175

NXP Semiconductors
AIOP Service Layer API Reference Manual

xx

Section number Title Page

1.3.6.2.1 Overview . 175
1.3.6.2.2 TABLE Attributes . 176
1.3.6.2.2.1 Overview . 176
1.3.6.2.2.2 TABLE Type Attribute . 176
1.3.6.2.2.2.1 Overview . 176
1.3.6.2.2.2.2 Macro Definition Documentation . 176
1.3.6.2.2.2.3 TABLE_ATTRIBUTE_TYPE_EM . 176
1.3.6.2.2.2.4 TABLE_ATTRIBUTE_TYPE_LPM 176
1.3.6.2.2.2.5 TABLE_ATTRIBUTE_TYPE_MFLU 177
1.3.6.2.2.2.6 TABLE_ATTRIBUTE_TYPE_MASK 177
1.3.6.2.2.2.7 TABLE_ATTRIBUTE_TYPE_OFFSET 177
1.3.6.2.2.3 TABLE Location Attribute . 177
1.3.6.2.2.3.1 Overview . 177
1.3.6.2.2.3.2 Macro Definition Documentation . 177
1.3.6.2.2.3.3 TABLE_ATTRIBUTE_LOCATION_PEB 177
1.3.6.2.2.3.4 TABLE_ATTRIBUTE_LOCATION_DP_DDR 177
1.3.6.2.2.3.5 TABLE_ATTRIBUTE_LOCATION_SYS_DDR 177
1.3.6.2.2.3.6 TABLE_ATTRIBUTE_LOCATION_MASK 177
1.3.6.2.2.3.7 TABLE_ATTRIBUTE_LOCATION_OFFSET 178
1.3.6.2.2.4 TABLE Miss Result Attribute . 178
1.3.6.2.2.4.1 Overview . 178
1.3.6.2.2.4.2 Macro Definition Documentation . 178
1.3.6.2.2.4.3 TABLE_ATTRIBUTE_MR_NO_MISS 178
1.3.6.2.2.4.4 TABLE_ATTRIBUTE_MR_MISS . 178
1.3.6.2.2.4.5 TABLE_ATTRIBUTE_MR_MASK 178
1.3.6.2.2.4.6 TABLE_ATTRIBUTE_MR_OFFSET 178
1.3.6.2.3 TABLE Results Types . 178
1.3.6.2.3.1 Overview . 178
1.3.6.2.3.2 Macro Definition Documentation . 179
1.3.6.2.3.2.1 TABLE_RESULT_TYPE_OPAQUE 179
1.3.6.2.4 TABLE Rule Options . 179
1.3.6.2.4.1 Overview . 179
1.3.6.2.4.2 TABLE Rule Timestamp Options . 179
1.3.6.2.4.2.1 Overview . 179
1.3.6.2.4.2.2 Macro Definition Documentation . 179
1.3.6.2.4.2.3 TABLE_RULE_TIMESTAMP_NONE 179
1.3.6.2.4.2.4 TABLE_RULE_TIMESTAMP_ENABLE 179
1.3.6.2.5 TABLE Rule Key . 179
1.3.6.2.5.1 Overview . 179
1.3.6.2.5.2 Macro Definition Documentation . 180
1.3.6.2.5.2.1 TABLE_KEY_EXACT_MATCH_SIZE 180
1.3.6.2.5.2.2 TABLE_KEY_EXACT_MATCH_RESERVED_SIZE 180
1.3.6.2.5.2.3 TABLE_KEY_LPM_IPV4_SIZE . 180
1.3.6.2.5.2.4 TABLE_KEY_LPM_IPV4_RESERVED_SIZE 180
1.3.6.2.5.2.5 TABLE_KEY_LPM_IPV6_SIZE . 180

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxi

Section number Title Page

1.3.6.2.5.2.6 TABLE_KEY_LPM_IPV6_RESERVED_SIZE 180
1.3.6.2.5.2.7 TABLE_KEY_MFLU_SIZE . 180
1.3.6.2.5.2.8 TABLE_KEY_MFLU_MASK_SIZE 180
1.3.6.2.5.2.9 TABLE_KEY_MFLU_PRIORITY_FIELD_SIZE 180
1.3.6.2.5.2.10 TABLE_KEY_MFLU_RESERVED1_SIZE 180
1.3.6.2.6 TABLE Lookup Flags . 181
1.3.6.2.6.1 Overview . 181
1.3.6.2.6.2 Macro Definition Documentation . 181
1.3.6.2.6.2.1 TABLE_LOOKUP_FLAG_SEG_NON_DEFAULT 181
1.3.6.2.6.2.2 TABLE_LOOKUP_FLAG_PRA_NON_DEFAULT 181
1.3.6.2.6.2.3 TABLE_LOOKUP_FLAG_FD_NON_DEFAULT 181
1.3.6.2.6.2.4 TABLE_LOOKUP_FLAG_MTDT_NON_DEFAULT 181
1.3.6.2.6.2.5 TABLE_LOOKUP_FLAG_NONE . 181
1.3.6.2.7 Status returned to calling function . 181
1.3.6.2.7.1 Overview . 181
1.3.6.2.7.2 Macro Definition Documentation . 182
1.3.6.2.7.2.1 TABLE_STATUS_SUCCESS . 182
1.3.6.2.7.2.2 TABLE_STATUS_MISS . 182
1.3.6.2.7.2.3 TABLE_STATUS_MFLU_DIFF_PRIORITY 182
1.3.6.3 TABLE Enumerations . 182
1.3.6.3.1 Overview . 182
1.3.6.3.2 Enumeration Type Documentation . 182
1.3.6.3.2.1 table_hw_accel_id . 182
1.3.6.4 TABLE Structures . 182
1.3.6.4.1 Overview . 182
1.3.6.4.2 Data Structure Documentation . 183
1.3.6.4.2.1 struct table_result . 183
1.3.6.4.2.2 struct table_key_desc_em . 183
1.3.6.4.2.3 struct table_key_desc_lpm_ipv4 . 184
1.3.6.4.2.4 struct table_key_desc_lpm_ipv6 . 184
1.3.6.4.2.5 struct table_key_desc_mflu . 184
1.3.6.4.2.6 union table_key_desc . 185
1.3.6.4.2.7 struct table_rule . 186
1.3.6.4.2.8 struct table_lookup_result . 186
1.3.6.4.2.9 struct table_lookup_key_desc_lpm_ipv4 186
1.3.6.4.2.10 struct table_lookup_key_desc_lpm_ipv6 187
1.3.6.4.2.11 union table_lookup_key_desc . 187
1.3.6.4.2.12 struct table_create_params . 188
1.3.6.4.2.13 struct table_get_params_output . 189
1.3.6.4.2.14 struct table_lookup_non_default_params 189
1.3.6.5 TABLE Functions . 190
1.3.6.5.1 Overview . 190
1.3.6.5.2 Function Documentation . 191
1.3.6.5.2.1 table_create . 191
1.3.6.5.2.2 table_replace_miss_result . 191

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxii

Section number Title Page

1.3.6.5.2.3 table_get_params . 192
1.3.6.5.2.4 table_get_miss_result . 193
1.3.6.5.2.5 table_delete . 193
1.3.6.5.2.6 table_rule_create . 194
1.3.6.5.2.7 table_rule_create_or_replace . 195
1.3.6.5.2.8 table_rule_replace . 196
1.3.6.5.2.9 table_rule_modify_priority . 197
1.3.6.5.2.10 table_rule_query_get_result . 198
1.3.6.5.2.11 table_rule_query_get_key_desc . 199
1.3.6.5.2.12 table_rule_delete . 200
1.3.6.5.2.13 table_lookup_by_key . 201
1.3.6.5.2.14 table_lookup_by_keyid_default_frame 202
1.3.6.5.2.15 table_lookup_by_keyid . 203
1.3.6.5.2.16 table_rule_replace_by_key_desc . 204
1.3.6.5.2.17 table_rule_query_by_key_desc . 205
1.3.6.5.2.18 table_rule_delete_by_key_desc . 207
1.3.6.5.2.19 table_get_next_ruleid . 208
1.3.6.6 TABLE Typedefs . 209
1.3.6.6.1 Overview . 209
1.3.7 OSM . 209
1.3.7.1 Overview . 209
1.3.7.2 OSM Structures . 209
1.3.7.2.1 Overview . 209
1.3.7.2.2 Data Structure Documentation . 210
1.3.7.2.2.1 struct scope_status_params . 210
1.3.7.2.3 Macro Definition Documentation . 210
1.3.7.2.3.1 OSM_SCOPE_ID_STAGE_INCREMENT_MASK 210
1.3.7.2.3.2 OSM_SCOPE_ID_LEVEL_INCREMENT_MASK 210
1.3.7.3 OSM Commands Flags . 211
1.3.7.3.1 Overview . 211
1.3.7.3.2 Scope enter mode bits . 211
1.3.7.3.2.1 Overview . 211
1.3.7.3.2.2 Macro Definition Documentation . 211
1.3.7.3.2.2.1 OSM_SCOPE_ENTER_CHILD_TO_CONCURENT 211
1.3.7.3.2.2.2 OSM_SCOPE_ENTER_CHILD_TO_EXCLUSIVE 211
1.3.7.3.2.2.3 OSM_SCOPE_ENTER_CHILD_SCOPE_INCREMENT 211
1.3.7.3.2.2.4 OSM_SCOPE_ENTER_RELINQUISH_PARENT_EXCLUSIVITY . . 211
1.3.7.4 OSM Functions . 212
1.3.7.4.1 Overview . 212
1.3.7.4.2 Function Documentation . 212
1.3.7.4.2.1 osm_scope_transition_to_exclusive_with_increment_scope_id 212
1.3.7.4.2.2 osm_scope_transition_to_exclusive_with_new_scope_id 213
1.3.7.4.2.3 osm_scope_transition_to_concurrent_with_increment_scope_id 213
1.3.7.4.2.4 osm_scope_transition_to_concurrent_with_new_scope_id 214
1.3.7.4.2.5 osm_scope_relinquish_exclusivity . 214

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxiii

Section number Title Page

1.3.7.4.2.6 osm_scope_enter_to_exclusive_with_increment_scope_id 215
1.3.7.4.2.7 osm_scope_enter_to_exclusive_with_new_scope_id 215
1.3.7.4.2.8 osm_scope_enter . 216
1.3.7.4.2.9 osm_scope_exit . 217
1.3.7.4.2.10 osm_get_scope . 217
1.3.8 TMAN . 218
1.3.8.1 Overview . 218
1.3.8.2 Typedef Documentation . 219
1.3.8.2.1 tman_arg_8B_t . 219
1.3.8.2.2 tman_cb_t . 219
1.3.8.3 Enumeration Type Documentation . 219
1.3.8.3.1 e_tman_granularity . 219
1.3.8.4 TMAN MACROS . 219
1.3.8.4.1 Overview . 219
1.3.8.4.2 Macro Definition Documentation . 220
1.3.8.4.2.1 TMAN_GET_MISSED_EXPIRATION 220
1.3.8.4.2.2 TMAN_GET_TIMER_HANDLE . 220
1.3.8.5 TMAN Data Structures . 220
1.3.8.5.1 Overview . 220
1.3.8.5.2 Data Structure Documentation . 220
1.3.8.5.2.1 struct tman_tmi_params . 220
1.3.8.6 TMAN Flags . 220
1.3.8.6.1 Overview . 220
1.3.8.6.2 Enumeration Type Documentation . 221
1.3.8.6.2.1 e_tman_query_timer . 221
1.3.8.6.3 TMAN instance delete flags . 221
1.3.8.6.3.1 Overview . 221
1.3.8.6.3.2 Macro Definition Documentation . 222
1.3.8.6.3.2.1 TMAN_INS_DELETE_MODE_WO_EXPIRATION 222
1.3.8.6.3.2.2 TMAN_INS_DELETE_MODE_FORCE_EXP 222
1.3.8.6.4 TMAN timer delete flags . 222
1.3.8.6.4.1 Overview . 222
1.3.8.6.4.2 Macro Definition Documentation . 222
1.3.8.6.4.2.1 TMAN_TIMER_DELETE_MODE_WO_EXPIRATION 222
1.3.8.6.4.2.2 TMAN_TIMER_DELETE_MODE_FORCE_EXP 222
1.3.8.6.4.2.3 TMAN_TIMER_DELETE_MODE_WAIT_EXP 222
1.3.8.6.5 TMAN timer create flags . 222
1.3.8.6.5.1 Overview . 222
1.3.8.6.5.2 Macro Definition Documentation . 223
1.3.8.6.5.2.1 TMAN_CREATE_TIMER_MODE_USEC_GRANULARITY 223
1.3.8.6.5.2.2 TMAN_CREATE_TIMER_MODE_100_USEC_GRANULARITY . . . 223
1.3.8.6.5.2.3 TMAN_CREATE_TIMER_MODE_10_MSEC_GRANULARITY . . . 223
1.3.8.6.5.2.4 TMAN_CREATE_TIMER_MODE_SEC_GRANULARITY 223
1.3.8.6.5.2.5 TMAN_CREATE_TIMER_MODE_10_USEC_GRANULARITY . . . 223
1.3.8.6.5.2.6 TMAN_CREATE_TIMER_MODE_MSEC_GRANULARITY 223

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxiv

Section number Title Page

1.3.8.6.5.2.7 TMAN_CREATE_TIMER_MODE_100_MSEC_GRANULARITY . . . 223
1.3.8.6.5.2.8 TMAN_CREATE_TIMER_MODE_TPRI 223
1.3.8.6.5.2.9 TMAN_CREATE_TIMER_ONE_SHOT 224
1.3.8.6.5.2.10 TMAN_CREATE_TIMER_MODE_HIGH_PRIORITY_TASK 224
1.3.8.6.5.2.11 TMAN_CREATE_TIMER_MODE_MID_PRIORITY_TASK 224
1.3.8.6.5.2.12 TMAN_CREATE_TIMER_MODE_LOW_PRIORITY_TASK 224
1.3.8.7 TMAN functions . 224
1.3.8.7.1 Overview . 224
1.3.8.7.2 Function Documentation . 224
1.3.8.7.2.1 tman_create_tmi . 224
1.3.8.7.2.2 tman_delete_tmi . 225
1.3.8.7.2.3 tman_query_tmi . 226
1.3.8.7.2.4 tman_create_timer . 226
1.3.8.7.2.5 tman_delete_timer . 227
1.3.8.7.2.6 tman_modify_timer . 228
1.3.8.7.2.7 tman_recharge_timer . 229
1.3.8.7.2.8 tman_query_timer . 229
1.3.8.7.2.9 tman_timer_completion_confirmation . 229
1.3.8.7.2.10 tman_get_timestamp . 230
1.3.8.7.2.11 tman_get_tmi_statistic . 230
1.3.9 STE (Statistics) . 231
1.3.9.1 Overview . 231
1.3.9.2 Statistics flags . 231
1.3.9.2.1 Overview . 231
1.3.9.2.2 Macro Definition Documentation . 231
1.3.9.2.2.1 STE_MODE_SATURATE . 231
1.3.9.2.2.2 STE_MODE_32_BIT_CNTR_SIZE . 231
1.3.9.2.2.3 STE_MODE_64_BIT_CNTR_SIZE . 231
1.3.9.3 Statistics Compound commands flags . 232
1.3.9.3.1 Overview . 232
1.3.9.3.2 Macro Definition Documentation . 232
1.3.9.3.2.1 STE_MODE_COMPOUND_32_BIT_CNTR_SIZE 232
1.3.9.3.2.2 STE_MODE_COMPOUND_64_BIT_CNTR_SIZE 232
1.3.9.3.2.3 STE_MODE_COMPOUND_32_BIT_ACC_SIZE 232
1.3.9.3.2.4 STE_MODE_COMPOUND_64_BIT_ACC_SIZE 232
1.3.9.3.2.5 STE_MODE_COMPOUND_CNTR_SATURATE 232
1.3.9.3.2.6 STE_MODE_COMPOUND_ACC_SATURATE 232
1.3.9.4 Statistics error registers addresses . 232
1.3.9.4.1 Overview . 232
1.3.9.4.2 Macro Definition Documentation . 233
1.3.9.4.2.1 STE_BASE_ADDRESS . 233
1.3.9.4.2.2 STE_STECR1_ADDRESS . 233
1.3.9.4.2.3 STE_STESR_ADDRESS . 233
1.3.9.4.2.4 STE_ERR_CAPT1_ADDRESS . 233
1.3.9.4.2.5 STE_ERR_CAPT2_ADDRESS . 233

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxv

Section number Title Page

1.3.9.4.2.6 STE_ERR_CAPT3_ADDRESS . 233
1.3.9.4.2.7 STE_ERR_CAPT4_ADDRESS . 233
1.3.9.5 Statistics status register bits definitions . 233
1.3.9.5.1 Overview . 233
1.3.9.5.2 Macro Definition Documentation . 234
1.3.9.5.2.1 STE_ERR_STATUS_WRITE_ACCESS 234
1.3.9.5.2.2 STE_ERR_STATUS_READ_ACCESS 234
1.3.9.5.2.3 STE_ERR_STATUS_NON_16_BYTE_ALIGN 234
1.3.9.5.2.4 STE_ERR_STATUS_UNRECOGNIZED_CMD 234
1.3.9.5.2.5 STE_ERR_STATUS_BAD_AXI . 234
1.3.9.6 Statistics control register bits definitions . 234
1.3.9.6.1 Overview . 234
1.3.9.6.2 Macro Definition Documentation . 234
1.3.9.6.2.1 STE_CLEAR_CAP_ERROR . 234
1.3.9.7 Statistics capture attributes definitions . 235
1.3.9.7.1 Overview . 235
1.3.9.7.2 Macro Definition Documentation . 235
1.3.9.7.2.1 STE_ERR_CAP_32_BIT_CNTR_SIZE 235
1.3.9.7.2.2 STE_ERR_CAP_64_BIT_CNTR_SIZE 235
1.3.9.7.2.3 STE_ERR_CAP_32_BIT_ACC_SIZE 236
1.3.9.7.2.4 STE_ERR_CAP_64_BIT_ACC_SIZE 236
1.3.9.7.2.5 STE_ERR_CAP_CNTR_SATURATE 236
1.3.9.7.2.6 STE_ERR_CAP_ACC_SATURATE . 236
1.3.9.7.2.7 STE_ERR_TASK_ID_MASK . 236
1.3.9.7.2.8 STE_ERR_CAP_DCMD_MASK . 236
1.3.9.7.2.9 STE_ERR_CAP_EC_MASK . 236
1.3.9.7.3 Enumeration Type Documentation . 236
1.3.9.7.3.1 e_ste_err_dcmd . 236
1.3.9.7.3.2 e_ste_err_ec . 236
1.3.9.8 Statistics error macros . 237
1.3.9.8.1 Overview . 237
1.3.9.8.2 Macro Definition Documentation . 237
1.3.9.8.2.1 STE_GET_STATUS_REGISTER . 237
1.3.9.8.2.2 STE_GET_ERR_CAP_ATTRIBUTES 237
1.3.9.8.2.3 STE_GET_ERR_ACC_VALUE . 237
1.3.9.8.2.4 STE_GET_ERR_MSB_COUNTER_ADDRESS 237
1.3.9.8.2.5 STE_GET_ERR_LSB_COUNTER_ADDRESS 237
1.3.9.8.2.6 STE_CLEAR_CAPTURED_ERROR . 237
1.3.9.9 Statistics functions . 238
1.3.9.9.1 Overview . 238
1.3.9.9.2 Function Documentation . 238
1.3.9.9.2.1 ste_set_32bit_counter . 238
1.3.9.9.2.2 ste_set_64bit_counter . 238
1.3.9.9.2.3 ste_inc_counter . 239
1.3.9.9.2.4 ste_dec_counter . 239

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxvi

Section number Title Page

1.3.9.9.2.5 ste_inc_and_acc_counters . 240
1.3.9.9.2.6 ste_inc_and_sub_counters . 241
1.3.9.9.2.7 ste_dec_and_acc_counters . 241
1.3.9.9.2.8 ste_dec_and_sub_counters . 242
1.3.9.9.2.9 ste_barrier . 243

1.4 DPLIB . 243
1.4.1 Overview . 243
1.4.2 DPCI DRV . 243
1.4.2.1 Overview . 243
1.4.2.2 Function Documentation . 244
1.4.2.2.1 dpci_drv_enable . 244
1.4.2.2.2 dpci_drv_disable . 244
1.4.2.2.3 dpci_drv_linkup . 244
1.4.2.2.4 dpci_drv_get_initial_presentation . 245
1.4.2.2.5 dpci_drv_set_initial_presentation . 245
1.4.2.2.6 dpci_drv_set_concurrent . 246
1.4.2.2.7 dpci_drv_set_exclusive . 246
1.4.2.2.8 dpci_drv_set_order_mode_none . 246
1.4.2.3 DPCI Entry Point flags . 247
1.4.2.3.1 Overview . 247
1.4.2.3.2 Macro Definition Documentation . 247
1.4.2.3.2.1 DPCI_DRV_EP_SERVER . 247
1.4.2.3.2.2 DPCI_DRV_EP_CLIENT . 247
1.4.3 DPNI DRV . 247
1.4.3.1 Overview . 247
1.4.3.2 Variable Documentation . 249
1.4.3.2.1 rate . 249
1.4.3.2.2 options . 249
1.4.3.2.3 up . 249
1.4.3.2.4 rate . 249
1.4.3.2.5 options . 249
1.4.3.2.6 options . 250
1.4.3.2.7 pass_timestamp . 250
1.4.3.2.8 pass_parser_result . 250
1.4.3.2.9 pass_frame_status . 250
1.4.3.2.10 private_data_size . 250
1.4.3.2.11 data_align . 250
1.4.3.2.12 data_head_room . 250
1.4.3.2.13 data_tail_room . 250
1.4.3.2.14 l3_checksum_gen . 252
1.4.3.2.15 l4_checksum_gen . 252
1.4.3.2.16 options . 252
1.4.3.2.17 mode . 252
1.4.3.2.18 unit . 252

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxvii

Section number Title Page

1.4.3.2.19 default_color . 252
1.4.3.2.20 cir . 252
1.4.3.2.21 cbs . 252
1.4.3.2.22 eir . 252
1.4.3.2.23 ebs . 252
1.4.3.2.24 mode . 252
1.4.3.2.25 delta_bandwidth . 252
1.4.3.2.26 tc_sched . 252
1.4.3.2.27 prio_group_A . 252
1.4.3.2.28 prio_group_B . 252
1.4.3.2.29 separate_groups . 252
1.4.3.2.30 rate_limit . 252
1.4.3.2.31 max_burst_size . 252
1.4.3.2.32 key_cfg_iova . 252
1.4.3.2.33 discard_on_miss . 252
1.4.3.2.34 default_tc . 252
1.4.3.2.35 key_iova . 252
1.4.3.2.36 mask_iova . 252
1.4.3.2.37 key_size . 252
1.4.3.2.38 errors . 252
1.4.3.2.39 error_action . 252
1.4.3.2.40 max_threshold . 252
1.4.3.2.41 min_threshold . 252
1.4.3.2.42 drop_probability . 252
1.4.3.2.43 mode . 252
1.4.3.2.44 units . 252
1.4.3.2.45 green . 252
1.4.3.2.46 yellow . 252
1.4.3.2.47 red . 252
1.4.3.2.48 tail_drop_threshold . 252
1.4.3.2.49 peb_bp_free_bufs . 252
1.4.3.2.50 backup_bp_free_bufs . 252
1.4.3.2.51 custom_header_first . 252
1.4.3.2.52 link_to_hard_hxs . 252
1.4.3.2.53 start_pc . 252
1.4.3.2.54 byte_code . 252
1.4.3.2.55 size . 252
1.4.3.2.56 param_array . 252
1.4.3.2.57 param_offset . 252
1.4.3.2.58 param_size . 252
1.4.3.2.59 enable . 252
1.4.3.2.60 units . 253
1.4.3.2.61 threshold . 253
1.4.3.2.62 oal . 253
1.4.3.2.63 enable . 253

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxviii

Section number Title Page

1.4.3.2.64 units . 253
1.4.3.2.65 green . 253
1.4.3.2.66 yellow . 253
1.4.3.2.67 red . 253
1.4.3.2.68 units . 253
1.4.3.2.69 threshold_entry . 253
1.4.3.2.70 threshold_exit . 254
1.4.3.2.71 notification_mode . 254
1.4.3.3 Order Scope options . 254
1.4.3.3.1 Overview . 254
1.4.3.4 Link Options . 254
1.4.3.4.1 Overview . 254
1.4.3.4.2 Macro Definition Documentation . 254
1.4.3.4.2.1 DPNI_DRV_LINK_OPT_AUTONEG 254
1.4.3.4.2.2 DPNI_DRV_LINK_OPT_HALF_DUPLEX 254
1.4.3.4.2.3 DPNI_DRV_LINK_OPT_PAUSE . 255
1.4.3.4.2.4 DPNI_DRV_LINK_OPT_ASYM_PAUSE 255
1.4.3.4.2.5 DPNI_LINK_OPT_PFC_PAUSE . 255
1.4.3.4.2.6 Buffer Layout modification options . 255
1.4.3.4.2.6.1 Overview . 255
1.4.3.4.2.6.2 Macro Definition Documentation . 255
1.4.3.4.2.6.3 DPNI_DRV_BUF_LAYOUT_OPT_TIMESTAMP 255
1.4.3.4.2.6.4 DPNI_DRV_BUF_LAYOUT_OPT_PARSER_RESULT 255
1.4.3.4.2.6.5 DPNI_DRV_BUF_LAYOUT_OPT_FRAME_STATUS 255
1.4.3.4.2.6.6 DPNI_DRV_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE 255
1.4.3.4.2.6.7 DPNI_DRV_BUF_LAYOUT_OPT_DATA_ALIGN 256
1.4.3.4.2.6.8 DPNI_DRV_BUF_LAYOUT_OPT_DATA_HEAD_ROOM 256
1.4.3.4.2.6.9 DPNI_DRV_BUF_LAYOUT_OPT_DATA_TAIL_ROOM 256
1.4.3.4.2.6.10 Enumeration Type Documentation . 256
1.4.3.4.2.6.11 dpni_drv_frame_annotation . 256
1.4.3.5 Number of Flow Steering entries per DPNIs 256
1.4.3.5.1 Overview . 256
1.4.3.6 Attributes DPNI Attributes . 256
1.4.3.6.1 Overview . 256
1.4.3.6.2 Data Structure Documentation . 261
1.4.3.6.2.1 struct dpni_drv_link_state . 261
1.4.3.6.2.2 struct dpni_drv_link_cfg . 261
1.4.3.6.2.3 struct dpni_drv_buf_layout . 262
1.4.3.6.2.4 struct dpni_drv_tx_checksum . 262
1.4.3.6.2.5 struct dpni_drv_rx_tc_policing_cfg . 262
1.4.3.6.2.6 struct dpni_drv_tx_schedule . 263
1.4.3.6.2.7 struct dpni_drv_tx_selection . 263
1.4.3.6.2.8 struct dpni_drv_tx_shaping . 263
1.4.3.6.2.9 struct dpni_drv_qos_tbl . 264
1.4.3.6.2.10 struct dpni_drv_qos_rule . 264

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxix

Section number Title Page

1.4.3.6.2.11 struct dpni_drv_error_cfg . 264
1.4.3.6.2.12 struct dpni_drv_wred . 264
1.4.3.6.2.13 struct dpni_drv_early_drop_cfg . 264
1.4.3.6.2.14 struct dpni_drv_free_bufs . 265
1.4.3.6.2.15 struct dpni_drv_sparser_param . 265
1.4.3.6.2.16 struct dpni_drv_taildrop . 266
1.4.3.6.2.17 struct dpni_drv_early_drop . 266
1.4.3.6.2.18 struct dpni_drv_congestion_notification_cfg 266
1.4.3.6.3 Macro Definition Documentation . 267
1.4.3.6.3.1 DPNI_DRV_EXTRACT_OUT_FRAME_HEADER_ERR 267
1.4.3.6.3.2 DPNI_DRV_PEB_FREE_BUFS . 267
1.4.3.6.3.3 DPNI_DRV_BACKUP_FREE_BUFS 267
1.4.3.6.4 Typedef Documentation . 267
1.4.3.6.4.1 dpni_drv_pools_cfg . 267
1.4.3.6.4.2 dpni_drv_statistics . 267
1.4.3.6.4.3 dpni_drv_queue_type . 267
1.4.3.6.4.4 dpni_drv_attr . 267
1.4.3.6.4.5 rx_cb_t . 268
1.4.3.6.5 Enumeration Type Documentation . 268
1.4.3.6.5.1 dpni_enqueue_attributes . 268
1.4.3.6.5.2 dpni_drv_counter . 268
1.4.3.6.5.3 dpni_drv_qos_counter . 269
1.4.3.6.5.4 dpni_drv_policer_mode . 269
1.4.3.6.5.5 dpni_drv_policer_unit . 269
1.4.3.6.5.6 dpni_drv_policer_color . 269
1.4.3.6.5.7 dpni_drv_tx_schedule_mode . 269
1.4.3.6.5.8 dpni_drv_error_action . 269
1.4.3.6.5.9 dpni_drv_early_drop_mode . 269
1.4.3.6.5.10 dpni_drv_congestion_unit . 269
1.4.3.6.6 Function Documentation . 269
1.4.3.6.6.1 dpni_drv_register_rx_cb . 269
1.4.3.6.6.2 dpni_drv_register_rx_cb_etype . 270
1.4.3.6.6.3 dpni_drv_unregister_rx_cb . 270
1.4.3.6.6.4 dpni_drv_unregister_rx_cb_etype . 271
1.4.3.6.6.5 dpni_drv_enable . 271
1.4.3.6.6.6 dpni_drv_disable . 271
1.4.3.6.6.7 task_get_receive_niid . 272
1.4.3.6.6.8 task_set_send_niid . 272
1.4.3.6.6.9 task_get_send_niid . 272
1.4.3.6.6.10 dpni_drv_get_primary_mac_addr . 272
1.4.3.6.6.11 dpni_drv_set_primary_mac_addr . 273
1.4.3.6.6.12 dpni_drv_add_mac_addr . 273
1.4.3.6.6.13 dpni_drv_remove_mac_addr . 273
1.4.3.6.6.14 dpni_drv_set_max_frame_length . 274
1.4.3.6.6.15 dpni_drv_get_max_frame_length . 274

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxx

Section number Title Page

1.4.3.6.6.16 sl_prolog . 274
1.4.3.6.6.17 sl_prolog_with_ref_take . 275
1.4.3.6.6.18 sl_prolog_with_custom_header . 275
1.4.3.6.6.19 sl_tman_expiration_task_prolog . 276
1.4.3.6.6.20 dpni_drv_send . 276
1.4.3.6.6.21 dpni_drv_explicit_send . 276
1.4.3.6.6.22 dpni_drv_set_multicast_promisc . 277
1.4.3.6.6.23 dpni_drv_get_multicast_promisc . 277
1.4.3.6.6.24 dpni_drv_set_unicast_promisc . 278
1.4.3.6.6.25 dpni_drv_get_unicast_promisc . 279
1.4.3.6.6.26 dpni_drv_get_spid . 279
1.4.3.6.6.27 dpni_drv_get_spid_ddr . 279
1.4.3.6.6.28 dpni_drv_get_num_of_nis . 280
1.4.3.6.6.29 dpni_drv_set_concurrent . 280
1.4.3.6.6.30 dpni_drv_set_exclusive . 280
1.4.3.6.6.31 dpni_drv_set_concurrent_etype . 281
1.4.3.6.6.32 dpni_drv_set_exclusive_etype . 281
1.4.3.6.6.33 dpni_drv_get_ordering_mode . 282
1.4.3.6.6.34 dpni_drv_get_ordering_mode_etype . 282
1.4.3.6.6.35 dpni_drv_set_order_scope . 282
1.4.3.6.6.36 dpni_drv_enable_etype_fs . 283
1.4.3.6.6.37 dpni_drv_get_connected_ni . 283
1.4.3.6.6.38 dpni_drv_get_connected_obj . 284
1.4.3.6.6.39 dpni_drv_set_rx_buffer_layout . 284
1.4.3.6.6.40 dpni_drv_get_rx_buffer_layout . 285
1.4.3.6.6.41 dpni_drv_register_rx_buffer_layout_requirements 285
1.4.3.6.6.42 dpni_drv_get_counter . 285
1.4.3.6.6.43 dpni_drv_get_qos_counter . 286
1.4.3.6.6.44 dpni_drv_get_statistics . 286
1.4.3.6.6.45 dpni_drv_reset_statistics . 287
1.4.3.6.6.46 dpni_drv_get_dpni_id . 288
1.4.3.6.6.47 dpni_drv_get_ni_id . 288
1.4.3.6.6.48 dpni_drv_get_link_state . 288
1.4.3.6.6.49 dpni_drv_set_link_cfg . 289
1.4.3.6.6.50 dpni_drv_clear_mac_filters . 289
1.4.3.6.6.51 dpni_drv_clear_vlan_filters . 289
1.4.3.6.6.52 dpni_drv_set_vlan_filters . 290
1.4.3.6.6.53 dpni_drv_add_vlan_id . 290
1.4.3.6.6.54 dpni_drv_remove_vlan_id . 290
1.4.3.6.6.55 dpni_drv_get_initial_presentation . 291
1.4.3.6.6.56 dpni_drv_set_initial_presentation . 291
1.4.3.6.6.57 dpni_drv_get_initial_presentation_etype 292
1.4.3.6.6.58 dpni_drv_set_initial_presentation_etype 292
1.4.3.6.6.59 dpni_drv_set_tx_checksum . 293
1.4.3.6.6.60 dpni_drv_get_tx_checksum . 293

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxi

Section number Title Page

1.4.3.6.6.61 dpni_drv_set_rx_tc_policing . 294
1.4.3.6.6.62 dpni_drv_get_rx_tc_policing . 294
1.4.3.6.6.63 dpni_drv_set_tx_selection . 295
1.4.3.6.6.64 dpni_drv_set_tx_shaping . 296
1.4.3.6.6.65 dpni_drv_set_qos_table . 296
1.4.3.6.6.66 dpni_drv_add_qos_entry . 297
1.4.3.6.6.67 dpni_drv_remove_qos_entry . 297
1.4.3.6.6.68 dpni_drv_clear_qos_table . 298
1.4.3.6.6.69 dpni_drv_prepare_rx_tc_early_drop . 298
1.4.3.6.6.70 dpni_drv_set_rx_tc_early_drop . 298
1.4.3.6.6.71 task_set_tx_tc . 299
1.4.3.6.6.72 task_get_tx_tc . 299
1.4.3.6.6.73 task_switch_to_egress_parse_profile . 299
1.4.3.6.6.74 dpni_drv_prepare_key_cfg . 300
1.4.3.6.6.75 dpni_drv_get_num_free_bufs . 300
1.4.3.6.6.76 dpni_drv_set_errors_behavior . 300
1.4.3.6.6.77 dpni_drv_enable_ingress_soft_parser . 301
1.4.3.6.6.78 dpni_drv_enable_egress_soft_parser . 301
1.4.3.6.6.79 dpni_drv_load_wriop_ingress_soft_parser 301
1.4.3.6.6.80 dpni_drv_load_wriop_egress_soft_parser 302
1.4.3.6.6.81 dpni_drv_enable_wriop_ingress_soft_parser 302
1.4.3.6.6.82 dpni_drv_enable_wriop_egress_soft_parser 302
1.4.3.6.6.83 dpni_drv_set_tx_taildrop . 303
1.4.3.6.6.84 dpni_drv_get_tx_taildrop . 303
1.4.3.6.6.85 dpni_drv_set_tx_early_drop . 303
1.4.3.6.6.86 dpni_drv_get_tx_early_drop . 304
1.4.3.6.6.87 dpni_drv_set_rx_taildrop . 304
1.4.3.6.6.88 dpni_drv_get_rx_taildrop . 304
1.4.3.6.6.89 dpni_drv_set_rx_early_drop . 305
1.4.3.6.6.90 dpni_drv_get_rx_early_drop . 305
1.4.3.6.6.91 dpni_drv_set_pools . 305
1.4.3.6.6.92 dpni_drv_set_congestion_notification . 306
1.4.3.6.6.93 dpni_drv_get_congestion_notification . 306
1.4.3.6.6.94 dpni_drv_set_rx_priorities . 307
1.4.3.6.6.95 dpni_drv_get_attributes . 308
1.4.3.6.6.96 options . 308
1.4.3.6.6.96.1 Overview . 308
1.4.4 EP . 308
1.4.4.1 Overview . 308
1.4.4.2 Initial Presentation Options . 309
1.4.4.2.1 Overview . 309
1.4.4.2.2 Macro Definition Documentation . 309
1.4.4.2.2.1 EP_INIT_PRESENTATION_OPT_PTA 309
1.4.4.2.2.2 EP_INIT_PRESENTATION_OPT_ASAPA 309
1.4.4.2.2.3 EP_INIT_PRESENTATION_OPT_ASAPO 309

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxii

Section number Title Page

1.4.4.2.2.4 EP_INIT_PRESENTATION_OPT_ASAPS 309
1.4.4.2.2.5 EP_INIT_PRESENTATION_OPT_SPA 309
1.4.4.2.2.6 EP_INIT_PRESENTATION_OPT_SPS 309
1.4.4.2.2.7 EP_INIT_PRESENTATION_OPT_SPO 309
1.4.4.2.2.8 EP_INIT_PRESENTATION_OPT_SR 310
1.4.4.2.2.9 EP_INIT_PRESENTATION_OPT_NDS 310
1.4.4.3 Initial Presentation . 310
1.4.4.3.1 Overview . 310
1.4.5 Data Path Key Generator API . 310

1.5 NETF (Network Libraries) . 310
1.5.1 Overview . 310
1.5.2 Macro Definition Documentation . 311
1.5.2.1 TCP_GRO_SET_METADATA_SEG_SIZES_ADDR 311
1.5.3 Typedef Documentation . 311
1.5.3.1 gro_timeout_cb_t . 311
1.5.4 GENERAL . 311
1.5.4.1 Overview . 311
1.5.4.2 AIOP Frame Operations . 312
1.5.4.2.1 Overview . 312
1.5.4.2.2 Frame Operations Functions . 312
1.5.4.2.2.1 Overview . 312
1.5.4.2.2.2 Function Documentation . 312
1.5.4.2.2.2.1 create_frame . 312
1.5.4.2.2.2.2 create_fd . 313
1.5.4.2.2.2.3 create_arp_request_broadcast . 315
1.5.4.2.2.2.4 create_arp_request . 316
1.5.5 IP . 317
1.5.5.1 Overview . 317
1.5.5.2 IP Header Modification . 317
1.5.5.2.1 Overview . 317
1.5.5.2.2 Macro Definition Documentation . 318
1.5.5.2.2.1 NO_IP_ENCAPSULATION_FOUND_ERROR 318
1.5.5.2.2.2 NO_IP_HDR_ERROR . 318
1.5.5.2.3 HM IP Modes . 318
1.5.5.2.3.1 Overview . 318
1.5.5.2.3.2 IPv4 header modification mode bits . 318
1.5.5.2.3.2.1 Overview . 318
1.5.5.2.3.2.2 Macro Definition Documentation . 319
1.5.5.2.3.2.3 IPV4_MODIFY_MODE_L4_CHECKSUM 319
1.5.5.2.3.2.4 IPV4_MODIFY_MODE_IPTTL . 319
1.5.5.2.3.2.5 IPV4_MODIFY_MODE_IPTOS . 319
1.5.5.2.3.2.6 IPV4_MODIFY_MODE_IPID . 319
1.5.5.2.3.2.7 IPV4_MODIFY_MODE_IPSRC . 319
1.5.5.2.3.2.8 IPV4_MODIFY_MODE_IPDST . 319

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxiii

Section number Title Page

1.5.5.2.3.3 IPv4 header Mangle bits . 319
1.5.5.2.3.3.1 Overview . 319
1.5.5.2.3.3.2 Macro Definition Documentation . 319
1.5.5.2.3.3.3 IPV4_MANGLE_DSCP . 319
1.5.5.2.3.3.4 IPV4_MANGLE_TTL . 319
1.5.5.2.3.4 IPv6 header Mangle bits . 319
1.5.5.2.3.4.1 Overview . 319
1.5.5.2.3.4.2 Macro Definition Documentation . 320
1.5.5.2.3.4.3 IPV6_MANGLE_DSCP . 320
1.5.5.2.3.4.4 IPV6_MANGLE_HOP_LIMIT . 320
1.5.5.2.3.4.5 IPV6_MANGLE_FLOW_LABEL . 320
1.5.5.2.3.5 IPv6 header modification mode bits . 320
1.5.5.2.3.5.1 Overview . 320
1.5.5.2.3.5.2 Macro Definition Documentation . 320
1.5.5.2.3.5.3 IPV6_MODIFY_MODE_L4_CHECKSUM 320
1.5.5.2.3.5.4 IPV6_MODIFY_MODE_IPHL . 320
1.5.5.2.3.5.5 IPV6_MODIFY_MODE_IPTC . 320
1.5.5.2.3.5.6 IPV6_MODIFY_MODE_FLOW_LABEL 320
1.5.5.2.3.5.7 IPV6_MODIFY_MODE_IPSRC . 320
1.5.5.2.3.5.8 IPV6_MODIFY_MODE_IPDST . 321
1.5.5.2.3.6 IPv4 header encapsulation mode bits . 321
1.5.5.2.3.6.1 Overview . 321
1.5.5.2.3.6.2 Macro Definition Documentation . 321
1.5.5.2.3.6.3 IPV4_ENCAP_MODE_TTL . 321
1.5.5.2.3.6.4 IPV4_ENCAP_MODE_TOS_DS . 321
1.5.5.2.3.6.5 IPV4_ENCAP_MODE_TOS_ECN . 321
1.5.5.2.3.6.6 IPV4_ENCAP_MODE_DF . 321
1.5.5.2.3.7 IPv6 header encapsulation mode bits . 321
1.5.5.2.3.7.1 Overview . 321
1.5.5.2.3.7.2 Macro Definition Documentation . 321
1.5.5.2.3.7.3 IPV6_ENCAP_MODE_HL . 321
1.5.5.2.3.7.4 IPV6_ENCAP_MODE_TC_DSCP . 321
1.5.5.2.3.7.5 IPV6_ENCAP_MODE_TC_ECN . 322
1.5.5.2.3.8 IP header decapsulation mode bits . 322
1.5.5.2.3.8.1 Overview . 322
1.5.5.2.3.8.2 Macro Definition Documentation . 322
1.5.5.2.3.8.3 IP_DECAP_MODE_TTL_HL . 322
1.5.5.2.3.8.4 IP_DECAP_MODE_TOS_TC_DS . 322
1.5.5.2.3.8.5 IP_DECAP_MODE_TOS_TC_ECN 322
1.5.5.2.3.9 IP header checksum calculation mode bits 322
1.5.5.2.3.9.1 Overview . 322
1.5.5.2.3.9.2 Macro Definition Documentation . 322
1.5.5.2.3.9.3 IP_CKSUM_CALC_MODE_NONE 322
1.5.5.2.3.9.4 IP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA 322
1.5.5.2.3.10 IPv4 time-stamp options . 323

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxiv

Section number Title Page

1.5.5.2.3.10.1 Overview . 323
1.5.5.2.4 HM IP related functions . 323
1.5.5.2.4.1 Overview . 323
1.5.5.2.4.2 Function Documentation . 323
1.5.5.2.4.2.1 ipv4_header_modification . 323
1.5.5.2.4.2.2 ipv4_mangle . 324
1.5.5.2.4.2.3 ipv4_dec_ttl_modification . 325
1.5.5.2.4.2.4 ipv4_ts_opt_modification . 325
1.5.5.2.4.2.5 ipv6_header_modification . 326
1.5.5.2.4.2.6 ipv6_mangle . 327
1.5.5.2.4.2.7 ipv6_dec_hop_limit_modification . 327
1.5.5.2.4.2.8 ipv4_header_encapsulation . 327
1.5.5.2.4.2.9 ipv6_header_encapsulation . 328
1.5.5.2.4.2.10 ip_header_decapsulation . 329
1.5.5.2.4.2.11 ip_set_nw_src . 329
1.5.5.2.4.2.12 ip_set_nw_dst . 330
1.5.5.2.4.2.13 ip_cksum_calculate . 330
1.5.6 L2 . 331
1.5.6.1 Overview . 331
1.5.6.2 L2 Header Modification . 331
1.5.6.2.1 Overview . 331
1.5.6.2.2 Macro Definition Documentation . 331
1.5.6.2.2.1 NO_VLAN_ERROR . 331
1.5.6.2.2.2 MIN_SEGMENT_SIZE . 332
1.5.6.2.3 HM L2 related functions . 332
1.5.6.2.3.1 Overview . 332
1.5.6.2.3.2 Function Documentation . 332
1.5.6.2.3.2.1 l2_header_remove . 332
1.5.6.2.3.2.2 l2_vlan_header_remove . 333
1.5.6.2.3.2.3 l2_set_vlan_vid . 333
1.5.6.2.3.2.4 l2_set_vlan_pcp . 333
1.5.6.2.3.2.5 l2_set_dl_src . 334
1.5.6.2.3.2.6 l2_set_dl_dst . 334
1.5.6.2.3.2.7 l2_push_vlan . 335
1.5.6.2.3.2.8 l2_push_and_set_vlan . 335
1.5.6.2.3.2.9 l2_pop_vlan . 336
1.5.6.2.3.2.10 l2_push_and_set_mpls . 336
1.5.6.2.3.2.11 l2_pop_mpls . 337
1.5.6.2.3.2.12 l2_mpls_header_remove . 337
1.5.6.2.3.2.13 l2_push_and_set_vxlan . 337
1.5.6.2.3.2.14 l2_pop_vxlan . 338
1.5.6.2.3.2.15 l2_set_vxlan_vid . 338
1.5.6.2.3.2.16 l2_set_vxlan_flags . 339
1.5.6.2.3.2.17 l2_arp_response . 339
1.5.6.2.3.2.18 l2_set_hw_src_dst . 340

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxv

Section number Title Page

1.5.7 L4 . 340
1.5.7.1 Overview . 340
1.5.7.2 L4 Header Modification . 341
1.5.7.2.1 Overview . 341
1.5.7.2.2 HM L4 Modes . 341
1.5.7.2.2.1 Overview . 341
1.5.7.2.2.2 Macro Definition Documentation . 341
1.5.7.2.2.2.1 NO_UDP_FOUND_ERROR . 341
1.5.7.2.2.2.2 NO_TCP_FOUND_ERROR . 341
1.5.7.2.2.2.3 NO_TCP_MSS_FOUND_ERROR . 341
1.5.7.2.2.2.4 NO_L4_FOUND_ERROR . 341
1.5.7.2.2.3 UDP header modification mode bits . 342
1.5.7.2.2.3.1 Overview . 342
1.5.7.2.2.3.2 Macro Definition Documentation . 342
1.5.7.2.2.3.3 L4_UDP_MODIFY_MODE_L4_CHECKSUM 342
1.5.7.2.2.3.4 L4_UDP_MODIFY_MODE_UDPSRC 342
1.5.7.2.2.3.5 L4_UDP_MODIFY_MODE_UDPDST 342
1.5.7.2.2.4 TCP header modification mode bits . 342
1.5.7.2.2.4.1 Overview . 342
1.5.7.2.2.4.2 Macro Definition Documentation . 342
1.5.7.2.2.4.3 L4_TCP_MODIFY_MODE_L4_CHECKSUM 342
1.5.7.2.2.4.4 L4_TCP_MODIFY_MODE_TCPSRC 342
1.5.7.2.2.4.5 L4_TCP_MODIFY_MODE_TCPDST 342
1.5.7.2.2.4.6 L4_TCP_MODIFY_MODE_SEQNUM 343
1.5.7.2.2.4.7 L4_TCP_MODIFY_MODE_ACKNUM 343
1.5.7.2.2.4.8 L4_TCP_MODIFY_MODE_MSS . 343
1.5.7.2.2.5 L4 UDP TCP Checksum Calculation mode bits 343
1.5.7.2.2.5.1 Overview . 343
1.5.7.2.2.5.2 Macro Definition Documentation . 343
1.5.7.2.2.5.3 L4_UDP_TCP_CKSUM_CALC_MODE_NONE 343
1.5.7.2.2.5.4 L4_UDP_TCP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA . . 343
1.5.7.2.3 HM L4 related functions . 343
1.5.7.2.3.1 Overview . 343
1.5.7.2.3.2 Function Documentation . 344
1.5.7.2.3.2.1 l4_udp_header_modification . 344
1.5.7.2.3.2.2 l4_tcp_header_modification . 344
1.5.7.2.3.2.3 l4_set_tcp_src . 345
1.5.7.2.3.2.4 l4_set_tcp_dst . 346
1.5.7.2.3.2.5 l4_set_udp_src . 347
1.5.7.2.3.2.6 l4_set_udp_dst . 347
1.5.7.2.3.2.7 l4_udp_tcp_cksum_calc . 348
1.5.8 NAT . 349
1.5.8.1 Overview . 349
1.5.8.2 NAT Header Modification . 349
1.5.8.2.1 Overview . 349

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxvi

Section number Title Page

1.5.8.2.2 Macro Definition Documentation . 349
1.5.8.2.2.1 NO_L4_IP_FOUND_ERROR . 349
1.5.8.2.3 HM NAT Modes . 349
1.5.8.2.3.1 Overview . 349
1.5.8.2.3.2 NAT header modification mode bits . 350
1.5.8.2.3.2.1 Overview . 350
1.5.8.2.3.2.2 Macro Definition Documentation . 350
1.5.8.2.3.2.3 NAT_MODIFY_MODE_L4_CHECKSUM 350
1.5.8.2.3.2.4 NAT_MODIFY_MODE_IPSRC . 350
1.5.8.2.3.2.5 NAT_MODIFY_MODE_IPDST . 350
1.5.8.2.3.2.6 NAT_MODIFY_MODE_L4SRC . 350
1.5.8.2.3.2.7 NAT_MODIFY_MODE_L4DST . 350
1.5.8.2.3.2.8 NAT_MODIFY_MODE_TCP_SEQNUM 350
1.5.8.2.3.2.9 NAT_MODIFY_MODE_TCP_ACKNUM 350
1.5.8.2.4 HM NAT related functions . 351
1.5.8.2.4.1 Overview . 351
1.5.8.2.4.2 Function Documentation . 351
1.5.8.2.4.2.1 nat_ipv4 . 351
1.5.8.2.4.2.2 nat_ipv6 . 352
1.5.9 IPF . 352
1.5.9.1 Overview . 352
1.5.9.2 IP Fragmentation Macros . 353
1.5.9.2.1 Overview . 353
1.5.9.2.2 IPF General Definitions . 353
1.5.9.2.2.1 Overview . 353
1.5.9.2.2.2 Macro Definition Documentation . 353
1.5.9.2.2.2.1 IPF_CONTEXT_SIZE . 353
1.5.9.2.2.3 Typedef Documentation . 353
1.5.9.2.2.3.1 ipf_ctx_t . 353
1.5.9.2.3 IPF Flags . 353
1.5.9.2.3.1 Overview . 353
1.5.9.2.3.2 Macro Definition Documentation . 354
1.5.9.2.3.2.1 IPF_NO_FLAGS . 354
1.5.9.2.3.2.2 IPF_RESTORE_ORIGINAL_FRAGMENTS 354
1.5.9.2.4 IPF Return Status . 354
1.5.9.2.4.1 Overview . 354
1.5.9.2.4.2 Macro Definition Documentation . 354
1.5.9.2.4.2.1 IPF_GEN_FRAG_STATUS_DONE 354
1.5.9.2.4.2.2 IPF_GEN_FRAG_STATUS_IN_PROCESS 354
1.5.9.2.4.2.3 IPF_GEN_FRAG_STATUS_DF_SET 354
1.5.9.3 IPF Functions . 354
1.5.9.3.1 Overview . 354
1.5.9.3.2 Function Documentation . 355
1.5.9.3.2.1 ipf_generate_frag . 355
1.5.9.3.2.2 ipf_discard_frame_remainder . 356

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxvii

Section number Title Page

1.5.9.3.2.3 ipf_context_init . 356
1.5.10 IPR . 357
1.5.10.1 Overview . 357
1.5.10.2 IPR Macros . 357
1.5.10.2.1 Overview . 357
1.5.10.2.2 Typedef Documentation . 358
1.5.10.2.2.1 ipr_instance_handle_t . 358
1.5.10.2.2.2 ipr_del_cb_t . 358
1.5.10.2.2.3 ipr_timeout_cb_t . 358
1.5.10.3 IPR Data Structures . 358
1.5.10.3.1 Overview . 358
1.5.10.3.2 Data Structure Documentation . 359
1.5.10.3.2.1 struct ipr_params . 359
1.5.10.3.2.2 struct extended_stats_cntrs . 360
1.5.10.4 IPR Modes And Flags . 362
1.5.10.4.1 Overview . 362
1.5.10.4.2 IPR instance flags . 363
1.5.10.4.2.1 Overview . 363
1.5.10.4.2.2 Macro Definition Documentation . 363
1.5.10.4.2.2.1 IPR_MODE_IPV4_TO_TYPE . 363
1.5.10.4.2.2.2 IPR_MODE_IPV6_TO_TYPE . 363
1.5.10.4.2.2.3 IPR_MODE_EXTENDED_STATS_EN 363
1.5.10.4.2.2.4 IPR_MODE_TABLE_LOCATION_INT 364
1.5.10.4.2.2.5 IPR_MODE_TABLE_LOCATION_PEB 364
1.5.10.4.2.2.6 IPR_MODE_TABLE_LOCATION_EXT1 364
1.5.10.4.2.2.7 IPR_MODE_TABLE_LOCATION_EXT2 364
1.5.10.4.2.2.8 IPR_MODE_DO_NOT_PRESERVE_FRAGS 364
1.5.10.4.2.2.9 IPR_MODE_TMI . 364
1.5.10.4.3 IPR stats flags . 364
1.5.10.4.3.1 Overview . 364
1.5.10.4.3.2 Macro Definition Documentation . 364
1.5.10.4.3.2.1 IPR_STATS_IP_VERSION . 364
1.5.10.4.4 IPR Update flags . 365
1.5.10.4.4.1 Overview . 365
1.5.10.4.4.2 Macro Definition Documentation . 365
1.5.10.4.4.2.1 IPR_UPDATE_MAX_FRM_SIZE . 365
1.5.10.4.4.2.2 IPR_UPDATE_MIN_FRG_SIZE . 365
1.5.10.4.4.2.3 IPR_UPDATE_TO_VALUE_IPV4 . 365
1.5.10.4.4.2.4 IPR_UPDATE_TO_VALUE_IPV6 . 365
1.5.10.4.4.2.5 IPR_UPDATE_TO_MODE . 365
1.5.10.4.5 IPR functions return status . 365
1.5.10.4.5.1 Overview . 365
1.5.10.4.5.2 Macro Definition Documentation . 366
1.5.10.4.5.2.1 IPR_REASSEMBLY_REGULAR . 366
1.5.10.4.5.2.2 IPR_REASSEMBLY_SUCCESS . 366

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxviii

Section number Title Page

1.5.10.4.5.2.3 IPR_REASSEMBLY_NOT_COMPLETED 366
1.5.10.4.5.2.4 IPR_ATOMIC_FRAG . 366
1.5.10.4.5.2.5 IPR_MALFORMED_MIN_SIZE_IPV4 366
1.5.10.4.6 IPR Time Out Callback flags . 366
1.5.10.4.6.1 Overview . 366
1.5.10.4.6.2 Macro Definition Documentation . 366
1.5.10.4.6.2.1 IPR_TO_CB_FIRST_FRAG . 366
1.5.10.5 IPR functions . 367
1.5.10.5.1 Overview . 367
1.5.10.5.2 Function Documentation . 367
1.5.10.5.2.1 ipr_early_init . 367
1.5.10.5.2.2 ipr_create_instance . 368
1.5.10.5.2.3 ipr_delete_instance . 368
1.5.10.5.2.4 ipr_reassemble . 369
1.5.10.5.2.5 ipr_modify_max_reass_frm_size . 370
1.5.10.5.2.6 ipr_modify_min_frag_size_ipv4 . 370
1.5.10.5.2.7 ipr_modify_min_frag_size_ipv6 . 371
1.5.10.5.2.8 ipr_modify_timeout_value_ipv4 . 371
1.5.10.5.2.9 ipr_modify_timeout_value_ipv6 . 372
1.5.10.5.2.10 ipr_get_reass_frm_cntr . 372
1.5.11 GSO . 373
1.5.11.1 Overview . 373
1.5.11.2 GSO Macros . 373
1.5.11.2.1 Overview . 373
1.5.11.2.2 TCP GSO General Definitions . 373
1.5.11.2.3 TCP GSO Flags . 373
1.5.11.2.3.1 Overview . 373
1.5.11.2.3.2 Macro Definition Documentation . 374
1.5.11.2.3.2.1 TCP_GSO_NO_FLAGS . 374
1.5.11.2.4 TCP GSO Statuses . 374
1.5.11.2.4.1 Overview . 374
1.5.11.2.4.2 Macro Definition Documentation . 374
1.5.11.2.4.2.1 TCP_GSO_GEN_SEG_STATUS_DONE 374
1.5.11.2.4.2.2 TCP_GSO_GEN_SEG_STATUS_IN_PROCESS 374
1.5.11.2.4.2.3 TCP_GSO_GEN_SEG_STATUS_SYN_RST_SET 374
1.5.11.3 GSO Functions . 374
1.5.11.3.1 Overview . 374
1.5.11.3.2 Function Documentation . 375
1.5.11.3.2.1 tcp_gso_generate_seg . 375
1.5.11.3.2.2 tcp_gso_discard_frame_remainder . 375
1.5.11.3.2.3 tcp_gso_context_init . 376
1.5.12 GRO . 376
1.5.12.1 Overview . 376
1.5.12.2 GRO Structures . 377
1.5.12.2.1 Overview . 377

NXP Semiconductors
AIOP Service Layer API Reference Manual

xxxix

Section number Title Page

1.5.12.2.2 Data Structure Documentation . 377
1.5.12.2.2.1 struct tcp_gro_stats_cntrs . 377
1.5.12.2.2.2 struct tcp_gro_context_metadata . 378
1.5.12.2.2.3 struct gro_context_limits . 378
1.5.12.2.2.4 struct gro_context_timeout_params . 378
1.5.12.2.2.5 struct tcp_gro_context_params . 379
1.5.12.3 GRO Functions . 379
1.5.12.3.1 Overview . 379
1.5.12.3.2 Function Documentation . 380
1.5.12.3.2.1 tcp_gro_aggregate_seg . 380
1.5.12.3.2.2 tcp_gro_flush_aggregation . 381
1.5.12.4 GRO Macros . 381
1.5.12.4.1 Overview . 381
1.5.12.4.2 GRO General Definitions . 381
1.5.12.4.3 GRO Flags . 381
1.5.12.4.3.1 Overview . 381
1.5.12.4.3.1.1 TCP GRO Aggregation Flags . 382
1.5.12.4.3.1.2 Overview . 382
1.5.12.4.3.1.3 Macro Definition Documentation . 382
1.5.12.4.3.1.4 TCP_GRO_NO_FLAGS . 382
1.5.12.4.3.1.5 TCP_GRO_EXTENDED_STATS_EN 382
1.5.12.4.3.1.6 TCP_GRO_METADATA_SEGMENT_SIZES 382
1.5.12.4.3.1.7 TCP_GRO_CALCULATE_TCP_CHECKSUM 382
1.5.12.4.3.1.8 TCP_GRO_CALCULATE_IP_CHECKSUM 382
1.5.12.4.3.1.9 TCP_GRO_USE_HWC_SPID . 382
1.5.12.4.4 TCP GRO Aggregation Statuses . 383
1.5.12.4.4.1 Overview . 383
1.5.12.4.4.2 Macro Definition Documentation . 383
1.5.12.4.4.2.1 TCP_GRO_SEG_AGG_DONE . 383
1.5.12.4.4.2.2 TCP_GRO_SEG_AGG_NOT_DONE 383
1.5.12.4.4.2.3 TCP_GRO_SEG_AGG_DONE_AGG_OPEN 383
1.5.12.4.4.2.4 TCP_GRO_AGG_DISCARDED . 383
1.5.12.4.4.2.5 TCP_GRO_FLUSH_REQUIRED . 383
1.5.12.4.4.2.6 TCP_GRO_SEG_AGG_TIMER_IN_PROCESS 383
1.5.12.4.4.2.7 TCP_GRO_METADATA_USED . 384
1.5.12.4.4.2.8 TCP_GRO_TIMER_UNAVAIL . 384
1.5.12.4.4.2.9 TCP_GRO_SEG_DISCARDED . 384
1.5.12.4.5 TCP GRO Flush Statuses . 384
1.5.12.4.5.1 Overview . 384
1.5.12.4.5.2 Macro Definition Documentation . 384
1.5.12.4.5.2.1 TCP_GRO_FLUSH_AGG_DONE . 384
1.5.12.4.5.2.2 TCP_GRO_FLUSH_NO_AGG . 384
1.5.12.4.5.2.3 TCP GRO Timeout Granularity Flags 385
1.5.12.4.5.2.4 Overview . 385
1.5.12.4.5.2.5 Macro Definition Documentation . 385

NXP Semiconductors
AIOP Service Layer API Reference Manual

xl

Section number Title Page

1.5.12.4.5.2.6 TCP_GRO_CREATE_TIMER_MODE_USEC_GRANULARITY . . . 385
1.5.12.4.5.2.7 TCP_GRO_CREATE_TIMER_MODE_10_USEC_GRANULARITY . 385
1.5.12.4.5.2.8 TCP_GRO_CREATE_TIMER_MODE_100_USEC_GRANULARITY . 385
1.5.12.4.5.2.9 TCP_GRO_CREATE_TIMER_MODE_MSEC_GRANULARITY . . . 385
1.5.12.4.5.2.10 TCP_GRO_CREATE_TIMER_MODE_10_MSEC_GRANULARITY . 385
1.5.12.4.5.2.11 TCP_GRO_CREATE_TIMER_MODE_100_MSEC_GRANULARI←↩

TY . 385
1.5.12.4.5.2.12 TCP_GRO_CREATE_TIMER_MODE_SEC_GRANULARITY 385
1.5.13 IPSEC . 386
1.5.13.1 Overview . 386
1.5.13.2 IPsec Structures . 386
1.5.13.2.1 Overview . 386
1.5.13.2.2 Data Structure Documentation . 386
1.5.13.2.2.1 struct ipsec_encap_cbc_params . 386
1.5.13.2.2.2 struct ipsec_encap_ctr_params . 387
1.5.13.2.2.3 struct ipsec_encap_ccm_params . 387
1.5.13.2.2.4 struct ipsec_encap_gcm_params . 387
1.5.13.2.2.5 struct ipsec_encap_params . 387
1.5.13.2.2.6 struct ipsec_decap_ctr_params . 388
1.5.13.2.2.7 struct ipsec_decap_ccm_params . 389
1.5.13.2.2.8 struct ipsec_decap_gcm_params . 389
1.5.13.2.2.9 struct ipsec_decap_params . 389
1.5.13.2.2.10 struct alg_info . 389
1.5.13.2.2.11 struct ipsec_descriptor_params . 390
1.5.13.3 IPsec Macros . 390
1.5.13.3.1 Overview . 390
1.5.13.3.2 Macro Definition Documentation . 392
1.5.13.3.2.1 IPSEC_FLG_TUNNEL_MODE . 392
1.5.13.3.2.2 IPSEC_FLG_TRANSPORT_PAD_CHECK 392
1.5.13.3.2.3 IPSEC_FLG_BUFFER_REUSE . 392
1.5.13.3.2.4 IPSEC_ENC_OPTS_NAT_EN . 392
1.5.13.3.2.5 IPSEC_ENC_OPTS_NUC_EN . 392
1.5.13.3.2.6 IPSEC_FLG_ENC_DSCP_SET . 393
1.5.13.3.2.7 IPSEC_FLG_LIFETIME_KB_CNTR_EN 393
1.5.13.3.2.8 IPSEC_FLG_LIFETIME_PKT_CNTR_EN 393
1.5.13.3.2.9 IPSEC_FLG_LIFETIME_SEC_CNTR_EN 393
1.5.13.3.2.10 IPSEC_OPTS_ESP_ESN . 393
1.5.13.3.2.11 IPSEC_OPTS_ESP_IPVSN . 393
1.5.13.3.2.12 IPSEC_ENC_OPTS_IVSRC . 393
1.5.13.3.2.13 IPSEC_ENC_OPTS_DFC . 393
1.5.13.3.2.14 IPSEC_ENC_OPTS_DTTL . 393
1.5.13.3.2.15 IPSEC_ENC_OPTS_SNR_EN . 394
1.5.13.3.2.16 IPSEC_DEC_OPTS_ARSNONE . 394
1.5.13.3.2.17 IPSEC_DEC_OPTS_ARS32 . 394
1.5.13.3.2.18 IPSEC_DEC_OPTS_ARS128 . 394

NXP Semiconductors
AIOP Service Layer API Reference Manual

xli

Section number Title Page

1.5.13.3.2.19 IPSEC_DEC_OPTS_ARS64 . 394
1.5.13.3.2.20 IPSEC_DEC_OPTS_TECN . 394
1.5.13.3.2.21 IPSEC_DEC_OPTS_DTTL . 394
1.5.13.3.2.22 IPSEC_DEC_OPTS_DSC . 394
1.5.13.3.2.23 IPSEC_CIPHER_DES_IV64 . 394
1.5.13.3.2.24 IPSEC_AUTH_HMAC_NULL . 394
1.5.13.3.2.25 IPSEC_STATUS_SOFT_KB_EXPIRED 395
1.5.13.3.2.26 IPSEC_STATUS_HARD_KB_EXPIRED 395
1.5.13.3.2.27 IPSEC_STATUS_SOFT_PACKET_EXPIRED 395
1.5.13.3.2.28 IPSEC_STATUS_HARD_PACKET_EXPIRED 395
1.5.13.3.2.29 IPSEC_STATUS_SOFT_SEC_EXPIRED 395
1.5.13.3.2.30 IPSEC_STATUS_HARD_SEC_EXPIRED 395
1.5.13.3.2.31 IPSEC_BUFFER_POOL_DEPLETION 395
1.5.13.3.2.32 IPSEC_SEQ_NUM_OVERFLOW . 395
1.5.13.3.2.33 IPSEC_AR_LATE_PACKET . 395
1.5.13.3.2.34 IPSEC_AR_REPLAY_PACKET . 395
1.5.13.3.2.35 IPSEC_ICV_COMPARE_FAIL . 395
1.5.13.3.2.36 IPSEC_GEN_ENCR_ERR . 395
1.5.13.3.2.37 IPSEC_GEN_DECR_ERR . 396
1.5.13.3.2.38 IPSEC_DECR_VALIDITY_ERR . 396
1.5.13.3.2.39 IPSEC_INTERNAL_ERR . 396
1.5.13.3.2.40 IPSEC_SOFT_SEC_LIFETIME_EXPIRED 396
1.5.13.3.2.41 IPSEC_HARD_SEC_LIFETIME_EXPIRED 396
1.5.13.3.2.42 IPSEC_FORCE_SOFT_SEC_LIFETIME_EXPIRED 396
1.5.13.3.2.43 IPSEC_FORCE_HARD_SEC_LIFETIME_EXPIRED 396
1.5.13.3.3 Typedef Documentation . 396
1.5.13.3.3.1 ipsec_handle_t . 396
1.5.13.3.3.2 ipsec_lifetime_callback_t . 396
1.5.13.4 IPsec Enumerations . 396
1.5.13.4.1 Overview . 396
1.5.13.4.2 Enumeration Type Documentation . 397
1.5.13.4.2.1 ipsec_direction . 397
1.5.13.4.2.2 ipsec_status_codes . 397
1.5.13.4.2.3 key_types . 397
1.5.13.5 IPsec Functions . 397
1.5.13.5.1 Overview . 397
1.5.13.5.2 Function Documentation . 398
1.5.13.5.2.1 ipsec_early_init . 398
1.5.13.5.2.2 ipsec_drv_init . 399
1.5.13.5.2.3 ipsec_create_instance . 399
1.5.13.5.2.4 ipsec_delete_instance . 400
1.5.13.5.2.5 ipsec_add_sa_descriptor . 400
1.5.13.5.2.6 ipsec_del_sa_descriptor . 401
1.5.13.5.2.7 ipsec_get_lifetime_stats . 401
1.5.13.5.2.8 ipsec_decr_lifetime_counters . 402

NXP Semiconductors
AIOP Service Layer API Reference Manual

xlii

Section number Title Page

1.5.13.5.2.9 ipsec_get_seq_num . 402
1.5.13.5.2.10 ipsec_frame_decrypt . 403
1.5.13.5.2.11 ipsec_frame_encrypt . 404
1.5.13.5.2.12 ipsec_force_seconds_lifetime_expiry . 404
1.5.14 Soft Parser Driver . 405
1.5.14.1 Overview . 405
1.5.14.2 Data Structure Documentation . 405
1.5.14.2.1 struct sparser_info . 405
1.5.14.3 Enumeration Type Documentation . 406
1.5.14.3.1 sparser_preloaded . 406
1.5.14.4 Function Documentation . 406
1.5.14.4.1 sparser_drv_load_ingress_parser . 406
1.5.14.4.2 sparser_drv_load_egress_parser . 406
1.5.14.4.3 sparser_drv_get_pclim . 407
1.5.14.4.4 sparser_drv_set_pclim . 407
1.5.14.4.5 parser_enable_ipv6_atomic_frag_detection 407
1.5.14.5 AIOP/WRIOP Parser instructions memory . 408
1.5.14.5.1 Overview . 408
1.5.14.5.2 Macro Definition Documentation . 408
1.5.14.5.2.1 PARSER_MIN_PC . 408
1.5.14.5.2.2 PARSER_MAX_PC . 408
1.5.14.6 Parsing Cycle Limits register . 408
1.5.14.6.1 Overview . 408
1.5.14.6.2 Macro Definition Documentation . 408
1.5.14.6.2.1 PARSER_CYCLE_LIMIT_MAX . 408
1.5.14.6.2.2 PARSER_CYCLE_LIMIT_DISABLE 408
1.5.15 Protocol headers definitions . 409
1.5.15.1 Overview . 409
1.5.15.2 Data Structure Documentation . 417
1.5.15.2.1 struct mplshdr . 417
1.5.15.2.2 struct vxlanhdr . 417
1.5.15.2.3 struct vlanhdr . 417
1.5.15.2.4 struct ethernethdr . 417
1.5.15.2.5 struct ipv4hdr . 418
1.5.15.2.6 struct ipv6hdr . 418
1.5.15.2.7 struct ipv6fraghdr . 418
1.5.15.2.8 struct udphdr . 419
1.5.15.2.9 struct tcphdr . 419
1.5.15.2.10 struct arphdr . 419
1.5.15.2.11 struct capwaphdr . 420
1.5.15.3 Macro Definition Documentation . 420
1.5.15.3.1 IPV4_EOOL_OPTION_TYPE . 420
1.5.15.3.2 IPV4_NOP_OPTION_TYPE . 420
1.5.15.3.3 IPV4_RECORD_ROUTE_OPTION_TYPE 420
1.5.15.3.4 IPV4_TIMESTAMP_OPTION_TYPE . 421

NXP Semiconductors
AIOP Service Layer API Reference Manual

xliii

Section number Title Page

1.5.15.3.5 IPV4_SCURITY_OPTION_TYPE . 421
1.5.15.3.6 IPV4_LSRR_OPTION_TYPE . 421
1.5.15.3.7 IPV4_STREAM_IDENTIFIER_TYPE . 421
1.5.15.3.8 IPV4_SSRR_OPTION_TYPE . 421
1.5.16 CAPWAP . 421
1.5.16.1 Overview . 421
1.5.16.2 CAPWAP DTLS . 421
1.5.16.2.1 Overview . 421
1.5.16.2.2 Data Structure Documentation . 422
1.5.16.2.2.1 struct cwap_dtls_sa_descriptor_params 422
1.5.16.2.2.2 union cwap_dtls_sa_descriptor_params.pdb 423
1.5.16.2.3 Typedef Documentation . 423
1.5.16.2.3.1 cwap_dtls_sa_handle_t . 423
1.5.16.2.4 Function Documentation . 423
1.5.16.2.4.1 cwap_dtls_drv_init . 423
1.5.16.2.4.2 cwap_dtls_early_init . 423
1.5.16.2.4.3 cwap_dtls_create_instance . 424
1.5.16.2.4.4 cwap_dtls_delete_instance . 424
1.5.16.2.4.5 cwap_dtls_add_sa_descriptor . 425
1.5.16.2.4.6 cwap_dtls_del_sa_descriptor . 425
1.5.16.2.4.7 cwap_dtls_get_ar_info . 426
1.5.16.2.4.8 cwap_dtls_frame_decrypt . 426
1.5.16.2.4.9 cwap_dtls_frame_encrypt . 427
1.5.16.3 CAPWAP Fragmentation . 428
1.5.16.3.1 Overview . 428
1.5.16.3.2 Macro Definition Documentation . 428
1.5.16.3.2.1 CWAPF_CONTEXT_SIZE . 428
1.5.16.3.2.2 CWAPF_GEN_FRAG_STATUS_DONE 429
1.5.16.3.2.3 CWAPF_GEN_FRAG_STATUS_IN_PROCESS 429
1.5.16.3.2.4 CWAPF_GEN_FRAG_STATUS_NOT_CAPWAP 429
1.5.16.3.3 Typedef Documentation . 429
1.5.16.3.3.1 cwapf_ctx_t . 429
1.5.16.3.4 Function Documentation . 429
1.5.16.3.4.1 cwapf_generate_frag . 429
1.5.16.3.4.2 cwapf_discard_frame_remainder . 430
1.5.16.3.4.3 cwapf_context_init . 431
1.5.16.4 CAPWAP Reassembly . 431
1.5.16.4.1 Overview . 431
1.5.16.4.2 Data Structure Documentation . 432
1.5.16.4.2.1 struct cwapr_params . 432
1.5.16.4.2.2 struct cwapr_stats_cntrs . 432
1.5.16.4.3 Typedef Documentation . 433
1.5.16.4.3.1 cwapr_instance_handle_t . 433
1.5.16.4.3.2 cwapr_del_cb_t . 433
1.5.16.4.3.3 cwapr_timeout_cb_t . 433

NXP Semiconductors
AIOP Service Layer API Reference Manual

xliv

Section number Title Page

1.5.16.4.4 Function Documentation . 434
1.5.16.4.4.1 cwapr_early_init . 434
1.5.16.4.4.2 cwapr_create_instance . 434
1.5.16.4.4.3 cwapr_delete_instance . 435
1.5.16.4.4.4 cwapr_reassemble . 436
1.5.16.4.4.5 cwapr_modify_max_reass_frm_size . 437
1.5.16.4.4.6 cwapr_modify_timeout_value . 437
1.5.16.4.4.7 cwapr_get_reass_frm_cntr . 437

1.6 Utilities . 438
1.6.1 Overview . 438
1.6.2 AIOP Service Layer Network Utilities . 438
1.6.2.1 Overview . 438
1.6.2.2 Macro Definition Documentation . 439
1.6.2.2.1 AF_INET . 439
1.6.2.2.2 AF_INET6 . 439
1.6.2.2.3 AF_MAX . 439
1.6.2.3 Function Documentation . 439
1.6.2.3.1 inet_pton . 439
1.6.2.3.2 inet_ntop . 440
1.6.2.3.3 htons . 440
1.6.2.3.4 ntohs . 441
1.6.2.3.5 htonl . 441
1.6.2.3.6 ntohl . 441
1.6.3 Debug Utilities . 442
1.6.3.1 Overview . 442
1.6.3.2 Macro Definition Documentation . 442
1.6.3.2.1 REPORT_LEVEL_CRITICAL . 442
1.6.3.2.2 REPORT_LEVEL_MAJOR . 443
1.6.3.2.3 REPORT_LEVEL_MINOR . 443
1.6.3.2.4 REPORT_LEVEL_WARNING . 443
1.6.3.2.5 REPORT_LEVEL_INFO . 443
1.6.3.2.6 REPORT_LEVEL_TRACE . 443
1.6.3.2.7 EVENT_DISABLED . 443
1.6.3.2.8 ASSERT_COND . 443
1.6.3.2.9 ASSERT_COND_LIGHT . 443
1.6.3.2.10 pr_debug . 444
1.6.3.2.11 pr_info . 444
1.6.3.2.12 pr_warn . 444
1.6.3.2.13 pr_err . 444
1.6.3.2.14 pr_crit . 445
1.6.3.2.15 dbg_get_core_id . 445
1.6.3.2.16 dbg_get_num_of_cores . 445
1.6.3.2.17 dbg_get_max_num_of_cores . 445
1.6.4 Accessor API . 446

NXP Semiconductors
AIOP Service Layer API Reference Manual

xlv

Section number Title Page

1.6.4.1 Overview . 446
1.6.4.2 Function Documentation . 447
1.6.4.2.1 ioread8 . 447
1.6.4.2.2 ioread16 . 447
1.6.4.2.3 ioread16be . 447
1.6.4.2.4 ioread32 . 447
1.6.4.2.5 ioread32be . 448
1.6.4.2.6 ioread64 . 448
1.6.4.2.7 ioread64be . 448
1.6.4.2.8 iowrite8 . 449
1.6.4.2.9 iowrite8_wt . 449
1.6.4.2.10 iowrite16 . 449
1.6.4.2.11 iowrite16_wt . 449
1.6.4.2.12 iowrite16be . 450
1.6.4.2.13 iowrite16be_wt . 450
1.6.4.2.14 iowrite32 . 450
1.6.4.2.15 iowrite32_wt . 450
1.6.4.2.16 iowrite32be . 451
1.6.4.2.17 iowrite32be_wt . 451
1.6.4.2.18 iowrite64 . 451
1.6.4.2.19 iowrite64_wt . 451
1.6.4.2.20 iowrite64be . 452
1.6.4.2.21 iowrite64be_wt . 452
1.6.5 Error Handling . 452
1.6.5.1 Overview . 452
1.6.5.2 Macro Definition Documentation . 453
1.6.5.2.1 EPERM . 453
1.6.5.2.2 EIO . 453
1.6.5.2.3 ENOMEM . 453
1.6.5.2.4 EACCES . 453
1.6.5.2.5 EFAULT . 453
1.6.5.2.6 EBUSY . 453
1.6.5.2.7 EEXIST . 453
1.6.5.2.8 ENODEV . 453
1.6.5.2.9 EINVAL . 453
1.6.5.2.10 ENOSPC . 454
1.6.5.2.11 ENOTSUP . 454
1.6.5.2.12 ETIMEDOUT . 454
1.6.5.2.13 ENAVAIL . 454
1.6.6 Time Queries . 454
1.6.6.1 Overview . 454
1.6.6.2 Function Documentation . 454
1.6.6.2.1 fsl_get_time_ms . 454
1.6.6.2.2 fsl_get_time_since_epoch_ms . 455
1.6.7 FSL OS Interface (System call hooks) . 455

NXP Semiconductors
AIOP Service Layer API Reference Manual

xlvi

Section number Title Page

1.6.7.1 Overview . 455
1.6.7.2 Function Documentation . 455
1.6.7.2.1 fsl_print . 455
1.6.7.2.2 fsl_rand . 456
1.6.8 Checksum . 456
1.6.8.1 Overview . 456
1.6.8.2 Function Documentation . 456
1.6.8.2.1 cksum_ones_complement_sum16 . 456
1.6.8.2.2 cksum_ones_complement_dec16 . 457
1.6.8.2.3 cksum_update_uint32 . 457
1.6.8.2.4 cksum_accumulative_update_uint32 . 458
1.6.9 Utility Library Application Programming Interface 458
1.6.9.1 Overview . 458
1.6.9.2 Data Structure Documentation . 459
1.6.9.2.1 struct list_t . 459
1.6.9.3 Macro Definition Documentation . 459
1.6.9.3.1 LIST_FIRST . 459
1.6.9.3.2 LIST_INIT . 460
1.6.9.3.3 LIST . 460
1.6.9.3.4 INIT_LIST . 460
1.6.9.3.5 MEMBER_OFFSET . 460
1.6.9.3.6 LIST_FOR_EACH . 461
1.6.9.3.7 LIST_FOR_EACH_SAFE . 461
1.6.9.3.8 LIST_FOR_EACH_OBJECT_SAFE . 461
1.6.9.3.9 LIST_FOR_EACH_OBJECT . 462
1.6.9.4 Function Documentation . 462
1.6.9.4.1 list_add . 462
1.6.9.4.2 list_add_to_tail . 463
1.6.9.4.3 list_del . 463
1.6.9.4.4 list_del_and_init . 463
1.6.9.4.5 list_move . 464
1.6.9.4.6 list_move_to_tail . 464
1.6.9.4.7 list_is_empty . 464
1.6.9.4.8 list_append . 465
1.6.9.4.9 list_num_of_objs . 465
1.6.10 Storage Profile Driver . 465
1.6.10.1 Overview . 465
1.6.10.2 Enumeration Type Documentation . 467
1.6.10.2.1 sp_frame_format . 467
1.6.10.3 Function Documentation . 467
1.6.10.3.1 sp_drv_register_bp_requirements . 467
1.6.10.3.2 sp_drv_get_spid . 468
1.6.10.3.3 sp_drv_get_bpid . 468
1.6.10.3.4 sp_drv_set_aiop_icid . 469
1.6.10.3.5 sp_drv_set_aiop_pl . 469

NXP Semiconductors
AIOP Service Layer API Reference Manual

xlvii

Section number Title Page

1.6.10.3.6 sp_drv_set_aiop_bdi . 469
1.6.10.3.7 sp_drv_set_dhr . 470
1.6.10.3.8 sp_drv_set_ff . 470
1.6.10.3.9 sp_drv_set_va . 470
1.6.10.3.10 sp_drv_set_ptar . 471
1.6.10.3.11 sp_drv_set_sghr . 471
1.6.10.3.12 sp_drv_set_asar . 472
1.6.10.3.13 sp_drv_set_bp_sr . 473
1.6.10.3.14 sp_drv_set_bp_bp . 473

1.7 Kernel . 474
1.7.1 Overview . 474
1.7.2 Memory Management . 474
1.7.2.1 Overview . 474
1.7.2.2 Dynamic Memory Allocation . 474
1.7.2.2.1 Overview . 474
1.7.2.2.2 Enumeration Type Documentation . 475
1.7.2.2.2.1 e_memory_partition_id . 475
1.7.2.2.3 Function Documentation . 475
1.7.2.2.3.1 fsl_malloc . 475
1.7.2.2.3.2 fsl_free . 475
1.7.2.2.3.3 fsl_get_mem . 476
1.7.2.2.3.4 fsl_put_mem . 476
1.7.2.2.3.5 fsl_mem_exists . 476
1.7.2.3 SLAB . 477
1.7.2.3.1 Overview . 477
1.7.2.3.2 Data Structure Documentation . 477
1.7.2.3.2.1 struct slab_debug_info . 477
1.7.2.3.2.2 struct bman_debug_info . 478
1.7.2.3.3 Macro Definition Documentation . 478
1.7.2.3.3.1 SLAB_DDR_MANAGEMENT_FLAG 478
1.7.2.3.3.2 SLAB_OPTIMIZE_MEM_UTILIZATION_FLAG 478
1.7.2.3.3.3 SLAB_CDMA_REFCOUNT_DECREMENT_TO_ZERO 479
1.7.2.3.4 Typedef Documentation . 479
1.7.2.3.4.1 slab_release_cb_t . 479
1.7.2.3.5 Function Documentation . 479
1.7.2.3.5.1 slab_create . 479
1.7.2.3.5.2 slab_free . 480
1.7.2.3.5.3 slab_acquire . 480
1.7.2.3.5.4 slab_release . 480
1.7.2.3.5.5 slab_refcount_incr . 481
1.7.2.3.5.6 slab_refcount_decr . 481
1.7.2.3.5.7 slab_debug_info_get . 481
1.7.2.3.5.8 slab_bman_debug_info_get . 481
1.7.2.3.5.9 slab_register_context_buffer_requirements 482

NXP Semiconductors
AIOP Service Layer API Reference Manual

xlviii

Section number Title Page

1.7.2.4 Shared Buffer Pool . 483
1.7.2.4.1 Overview . 483
1.7.2.4.2 Function Documentation . 483
1.7.2.4.2.1 shbp_acquire . 483
1.7.2.4.2.2 shbp_release . 483
1.7.2.5 System Memory Management Service . 483
1.7.2.5.1 Overview . 483
1.7.2.5.2 Data Structure Documentation . 485
1.7.2.5.2.1 struct initial_mem_mng . 485
1.7.2.5.2.2 struct t_mem_mng_phys_addr_alloc_info 485
1.7.2.5.2.3 struct t_mem_mng_partition_info . 485
1.7.2.5.2.4 struct t_mem_mng_phys_addr_alloc_partition 486
1.7.2.5.2.5 struct t_mem_mng_partition . 486
1.7.2.5.2.6 struct t_mem_mng . 486
1.7.2.5.3 Macro Definition Documentation . 487
1.7.2.5.3.1 MEMORY_ATTR_NONE . 487
1.7.2.5.3.2 MEMORY_ATTR_CACHEABLE . 487
1.7.2.5.3.3 MEMORY_ATTR_NON_CACHEABLE 487
1.7.2.5.3.4 MEMORY_ATTR_MALLOCABLE . 487
1.7.2.5.3.5 SYS_DEFAULT_HEAP_PARTITION 487
1.7.2.5.4 Function Documentation . 487
1.7.2.5.4.1 sys_virt_to_phys . 487
1.7.2.5.4.2 sys_phys_to_virt . 488
1.7.2.5.4.3 sys_fast_virt_to_phys . 488
1.7.2.5.4.4 sys_fast_phys_to_virt . 488
1.7.2.5.4.5 sys_shram_alloc . 489
1.7.2.5.4.6 sys_shram_free . 489
1.7.2.5.4.7 sys_register_phys_addr_alloc_partition 489
1.7.2.5.4.8 sys_register_mem_partition . 490
1.7.2.5.4.9 sys_unregister_mem_partition . 491
1.7.2.5.4.10 sys_get_phys_addr_alloc_partition_info 491
1.7.2.5.4.11 sys_get_mem_partition_info . 491
1.7.2.5.4.12 sys_get_phys_mem . 492
1.7.2.5.4.13 sys_put_phys_mem . 492
1.7.2.5.4.14 sys_mem_exists . 492
1.7.3 Synchronization . 493
1.7.3.1 Overview . 493
1.7.3.2 Spin-lock functions . 493
1.7.3.2.1 Overview . 493
1.7.3.2.2 Function Documentation . 493
1.7.3.2.2.1 lock_spinlock . 493
1.7.3.2.2.2 unlock_spinlock . 495
1.7.3.3 Atomic operations . 495
1.7.3.3.1 Overview . 495
1.7.3.3.2 Function Documentation . 496

NXP Semiconductors
AIOP Service Layer API Reference Manual

xlix

Section number Title Page

1.7.3.3.2.1 atomic_incr64 . 496
1.7.3.3.2.2 atomic_decr64 . 496
1.7.4 Event Manager . 497
1.7.4.1 Overview . 497
1.7.4.2 Typedef Documentation . 497
1.7.4.2.1 evmng_cb . 497
1.7.4.3 Function Documentation . 498
1.7.4.3.1 evmng_register . 498
1.7.4.3.2 evmng_unregister . 498
1.7.4.3.3 evmng_raise_event . 499
1.7.4.4 Events provided by AIOPSL . 499
1.7.4.4.1 Overview . 499
1.7.4.5 AIOPSL Generator ID . 500
1.7.4.5.1 Overview . 500
1.7.4.5.2 Macro Definition Documentation . 500
1.7.4.5.2.1 EVMNG_GENERATOR_AIOPSL . 500
1.7.5 Command Interface . 500
1.7.5.1 Overview . 500
1.7.5.2 Command Interface - Client . 500
1.7.5.2.1 Overview . 500
1.7.5.2.2 Data Structure Documentation . 501
1.7.5.2.2.1 struct cmdif_desc . 501
1.7.5.2.3 Macro Definition Documentation . 501
1.7.5.2.3.1 CMDIF_OPEN_SIZE . 501
1.7.5.2.4 Typedef Documentation . 502
1.7.5.2.4.1 cmdif_cb_t . 502
1.7.5.2.5 Function Documentation . 502
1.7.5.2.5.1 cmdif_open . 502
1.7.5.2.5.2 cmdif_close . 503
1.7.5.2.5.3 cmdif_send . 503
1.7.5.2.5.4 cmdif_resp_read . 504
1.7.5.2.6 Send Attributes . 504
1.7.5.2.6.1 Overview . 504
1.7.5.2.6.2 Macro Definition Documentation . 505
1.7.5.2.6.2.1 CMDIF_PRI_LOW . 505
1.7.5.2.6.2.2 CMDIF_PRI_HIGH . 505
1.7.5.2.6.2.3 CMDIF_ASYNC_CMD . 505
1.7.5.2.6.2.4 CMDIF_NORESP_CMD . 505
1.7.5.3 Command Interface - Server . 505
1.7.5.3.1 Overview . 505
1.7.5.3.2 Data Structure Documentation . 506
1.7.5.3.2.1 struct cmdif_module_ops . 506
1.7.5.3.3 Macro Definition Documentation . 506
1.7.5.3.3.1 CMDIF_SESSION_OPEN_SIZE . 506
1.7.5.3.4 Typedef Documentation . 506

NXP Semiconductors
AIOP Service Layer API Reference Manual

l

Section number Title Page

1.7.5.3.4.1 open_cb_t . 506
1.7.5.3.4.2 close_cb_t . 506
1.7.5.3.4.3 ctrl_cb_t . 507
1.7.5.3.5 Function Documentation . 507
1.7.5.3.5.1 cmdif_register_module . 507
1.7.5.3.5.2 cmdif_unregister_module . 508
1.7.5.3.5.3 cmdif_session_open . 508
1.7.5.3.5.4 cmdif_session_close . 509
1.7.5.3.5.5 cmdif_srv_cb . 509
1.7.6 Isolation Context . 510
1.7.6.1 Overview . 510
1.7.6.2 Data Structure Documentation . 510
1.7.6.2.1 struct icontext . 510
1.7.6.3 Macro Definition Documentation . 510
1.7.6.3.1 ICONTEXT_INVALID . 510
1.7.6.4 Function Documentation . 511
1.7.6.4.1 icontext_cmd_get . 511
1.7.6.4.2 icontext_aiop_get . 511
1.7.6.4.3 icontext_get . 511
1.7.6.4.4 icontext_dma_read . 511
1.7.6.4.5 icontext_dma_write . 512
1.7.6.4.6 icontext_acquire . 512
1.7.6.4.7 icontext_release . 513
1.7.6.4.8 icontext_ws_set . 514
1.7.7 RCU . 514
1.7.7.1 Overview . 514
1.7.7.2 Function Documentation . 514
1.7.7.2.1 rcu_synchronize . 514
1.7.7.2.2 rcu_read_unlock . 515
1.7.7.2.3 rcu_read_lock . 515

NXP Semiconductors
AIOP Service Layer API Reference Manual

li

Chapter 1
AIOP Service Layer API
1.1 Overview
The primary audience for this material is AIOP application software developers, looking for references
that describe detailed low level functions of the AIOP service layer.

Modules
• AIOP General
• Accelerators APIs
• DPLIB
• NETF (Network Libraries)
• Utilities
• Kernel

1.2 AIOP General

1.2.1 Overview

AIOP General macros and functions.

Modules

• AIOP SL General Definitions

Functions

• void fsl_read_external_data (void ∗ws_addr, uint64_t ext_address, uint16_t copy_size, uint32_←↩
t flags)

1.2.2 Function Documentation

1.2.2.1 void fsl_read_external_data (void ∗ ws_addr, uint64_t ext_address, uint16_t
copy_size, uint32_t flags)

This service routine will read the data from an external address in System memory using DMA to fetch in
workspace memory

NXP Semiconductors
AIOP Service Layer API Reference Manual

1

AIOP General

Parameters

in ws_addr - A pointer to the source/target location in Workspace Memory for DMA
Data. Workspace address is limited to 16 bits.

in ext_address - System memory source address, for DMA, where data reside. External
address can only be from PEB, DP-DDR or System DDR as memory
partitions

in copy_size - Number of bytes to copy (limited to 12 bits in case FDMA is used as
engine)

in flags - Please refer to command flags .

Warning

The maximum legal access size (in bytes) is 0x3FFF in case CDMA is used as engine
In this function the task yields.
This function may result in a fatal error.

1.2.3 AIOP SL General Definitions

1.2.3.1 Overview

AIOP General Definitions.

Modules

• LDPAA API
• AIOP Return Status
• AIOP HWC Definitions
• AIOP Default Task Params
• Read external data bits definitions

• enum aiop_bus_transaction {
NON_COHERENT_NO_CACHE,
NON_COHERENT_NO_CACHE_LKUP,
NON_COHERENT_CACHE_LKUP,
COHERENT_CACHE_LKUP }

• enum aiop_cache_allocate_policy {
ALLOC_NONE,
ALLOC_ON_MISS,
ALLOC_NONE_ON_MISS }

NXP Semiconductors
AIOP Service Layer API Reference Manual

2

AIOP General

1.2.3.2 Enumeration Type Documentation

1.2.3.2.1 enum aiop_bus_transaction

Enumerator

NON_COHERENT_NO_CACHE Non-coherent, non-cacheable register space access. Don't
lookup in downstream cache.

NON_COHERENT_NO_CACHE_LKUP Non-coherent, cacheable memory space access. Don't'
lookup in downstream cache.

NON_COHERENT_CACHE_LKUP Non-coherent, cacheable memory space access. Lookup in
downstream cache.

COHERENT_CACHE_LKUP Coherent, cacheable memory space access. Lookup in downstream
cache.

1.2.3.2.2 enum aiop_cache_allocate_policy

AIOP cache allocate policy.

Enumerator

ALLOC_NONE Do not allocate in downstream cache. This option is valid only for transactions
with no downstream lookup.

ALLOC_ON_MISS Allocate on lookup miss in cacheable transactions.
ALLOC_NONE_ON_MISS Do not allocate on lookup miss in cacheable transactions.

1.2.3.3 LDPAA API

1.2.3.3.1 Overview

LDPAA General API.

Modules

• LDPAA FD Definitions
• LDPAA FD GETTER/SETTER MACROs

Data Structures

• struct ldpaa_fd

NXP Semiconductors
AIOP Service Layer API Reference Manual

3

AIOP General

1.2.3.3.2 Data Structure Documentation

1.2.3.3.2.1 struct ldpaa_fd

Frame Descriptor structure.

The Frame Descriptor (FD) includes information related to the frame, such as frame format, the amount
of frame data, presence of an annotation subsection containing frame meta-data.

Data Fields

volatile
uint64_t

addr Buffer address.

volatile
uint32_t

length Frame data length.

volatile
uint32_t

offset Frame data offset.

volatile
uint32_t

frc Frame Context.

volatile
uint32_t

control Fame control fields.

volatile
uint64_t

flc Flow Context.

1.2.3.3.3 LDPAA FD Definitions

1.2.3.3.3.1 Overview

LDPAA FD Definitions.

Macros

• #define FD_LENGTH_MASK
• #define FD_LENGTH_MEM_MASK
• #define FD_MEM_MASK
• #define FD_BMT_MASK
• #define FD_IVP_MASK
• #define FD_BPID_MASK
• #define FD_SL_MASK
• #define FD_FMT_MASK
• #define FD_OFFSET_MASK
• #define FD_VA_MASK
• #define FD_CBMT_MASK
• #define FD_ASAL_MASK
• #define FD_PTV2_MASK
• #define FD_PTV1_MASK
• #define FD_PTA_MASK
• #define FD_DROPP_MASK
• #define FD_SC_MASK
• #define FD_DD_MASK
• #define FD_CS_MASK

NXP Semiconductors
AIOP Service Layer API Reference Manual

4

AIOP General

• #define FD_DS_MASK
• #define FD_AS_MASK
• #define FD_FLC_STASH_MASK
• #define FD_FLC_NO_STASH_MASK
• #define FD_ADDR_OFFSET
• #define FD_MEM_LENGTH_OFFSET
• #define FD_BPID_OFFSET
• #define FD_BMT_IVP_OFFSET
• #define FD_OFFSET_OFFSET
• #define FD_SL_FMT_OFFSET
• #define FD_FRC_OFFSET
• #define FD_ERR_OFFSET
• #define FD_CBMT_VA_OFFSET
• #define FD_PTA_PVT_ASA_OFFSET
• #define FD_DD_SC_DROPP_OFFSET
• #define FD_FLC_DS_AS_CS_OFFSET
• #define FD_MEM_SHIFT
• #define FD_IVP_SHIFT
• #define FD_BMT_SHIFT
• #define FD_FMT_SHIFT
• #define FD_SL_SHIFT
• #define FD_VA_SHIFT
• #define FD_CBMT_SHIFT
• #define FD_PTV2_SHIFT
• #define FD_PTV1_SHIFT
• #define FD_PTA_SHIFT
• #define FD_SC_SHIFT
• #define FD_DD_SHIFT
• #define FD_AS_SHIFT
• #define FD_DS_SHIFT

1.2.3.3.3.2 Macro Definition Documentation

1.2.3.3.3.2.1 #define FD_LENGTH_MASK

FD length mask - without memory footprint.

1.2.3.3.3.2.2 #define FD_LENGTH_MEM_MASK

FD length mask - with memory footprint.

1.2.3.3.3.2.3 #define FD_MEM_MASK

FD Memory Footprint mask.

1.2.3.3.3.2.4 #define FD_BMT_MASK

FD Bypass Memory Translation mask.

1.2.3.3.3.2.5 #define FD_IVP_MASK

FD Invalid Pool ID mask.

NXP Semiconductors
AIOP Service Layer API Reference Manual

5

AIOP General

1.2.3.3.3.2.6 #define FD_BPID_MASK

FD Buffer Pool ID mask.

1.2.3.3.3.2.7 #define FD_SL_MASK

FD Short Length mask.

1.2.3.3.3.2.8 #define FD_FMT_MASK

FD Format mask.

1.2.3.3.3.2.9 #define FD_OFFSET_MASK

FD Data Offset mask.

1.2.3.3.3.2.10 #define FD_VA_MASK

FD Virtual Address mask.

1.2.3.3.3.2.11 #define FD_CBMT_MASK

FD Flow Context Bypass Memory Translation mask.

1.2.3.3.3.2.12 #define FD_ASAL_MASK

FD Accelerator Specific Annotation Length mask.

1.2.3.3.3.2.13 #define FD_PTV2_MASK

FD Pass-Through annotation Valid 2 mask.

1.2.3.3.3.2.14 #define FD_PTV1_MASK

FD Pass-Through annotation Valid 1 mask.

1.2.3.3.3.2.15 #define FD_PTA_MASK

FD Pass Through Annotation mask.

1.2.3.3.3.2.16 #define FD_DROPP_MASK

FD Drop Priority mask.

1.2.3.3.3.2.17 #define FD_SC_MASK

FD Stashing Control mask.

1.2.3.3.3.2.18 #define FD_DD_MASK

FD Dynamic Debug Mark mask.

NXP Semiconductors
AIOP Service Layer API Reference Manual

6

AIOP General

1.2.3.3.3.2.19 #define FD_CS_MASK

FD Context Stashing amount mask.

1.2.3.3.3.2.20 #define FD_DS_MASK

FD Annotation Stashing amount mask.

1.2.3.3.3.2.21 #define FD_AS_MASK

FD Data Stashing amount mask.

1.2.3.3.3.2.22 #define FD_FLC_STASH_MASK

FD Flow Context mask (with stashing)

1.2.3.3.3.2.23 #define FD_FLC_NO_STASH_MASK

FD Flow Context mask (without stashing)

1.2.3.3.3.2.24 #define FD_ADDR_OFFSET

FD address offset.

1.2.3.3.3.2.25 #define FD_MEM_LENGTH_OFFSET

FD mem_length offset.

1.2.3.3.3.2.26 #define FD_BPID_OFFSET

FD bpid offset.

1.2.3.3.3.2.27 #define FD_BMT_IVP_OFFSET

FD bmp_ivp offset.

1.2.3.3.3.2.28 #define FD_OFFSET_OFFSET

FD offset offset.

1.2.3.3.3.2.29 #define FD_SL_FMT_OFFSET

FD sl_fmt offset.

1.2.3.3.3.2.30 #define FD_FRC_OFFSET

FD Frame Context offset.

1.2.3.3.3.2.31 #define FD_ERR_OFFSET

FD Frame Errors offset.

NXP Semiconductors
AIOP Service Layer API Reference Manual

7

AIOP General

1.2.3.3.3.2.32 #define FD_CBMT_VA_OFFSET

FD cbmt_va offset.

1.2.3.3.3.2.33 #define FD_PTA_PVT_ASA_OFFSET

FD pta_pvt_asa offset.

1.2.3.3.3.2.34 #define FD_DD_SC_DROPP_OFFSET

FD dd_sc_dropp offset.

1.2.3.3.3.2.35 #define FD_FLC_DS_AS_CS_OFFSET

FD dd_sc_dropp offset.

1.2.3.3.3.2.36 #define FD_MEM_SHIFT

FD MEM shift.

1.2.3.3.3.2.37 #define FD_IVP_SHIFT

FD IVP shift.

1.2.3.3.3.2.38 #define FD_BMT_SHIFT

FD BMT shift.

1.2.3.3.3.2.39 #define FD_FMT_SHIFT

FD FMT shift.

1.2.3.3.3.2.40 #define FD_SL_SHIFT

FD SL shift.

1.2.3.3.3.2.41 #define FD_VA_SHIFT

FD VA shift.

1.2.3.3.3.2.42 #define FD_CBMT_SHIFT

FD CBMT shift.

1.2.3.3.3.2.43 #define FD_PTV2_SHIFT

FD PTV2 shift.

1.2.3.3.3.2.44 #define FD_PTV1_SHIFT

FD PTV1 shift.

NXP Semiconductors
AIOP Service Layer API Reference Manual

8

AIOP General

1.2.3.3.3.2.45 #define FD_PTA_SHIFT

FD PTA shift.

1.2.3.3.3.2.46 #define FD_SC_SHIFT

FD SC shift.

1.2.3.3.3.2.47 #define FD_DD_SHIFT

FD DD shift.

1.2.3.3.3.2.48 #define FD_AS_SHIFT

FD AS shift.

1.2.3.3.3.2.49 #define FD_DS_SHIFT

FD DS shift.

1.2.3.3.4 LDPAA FD GETTER/SETTER MACROs

1.2.3.3.4.1 Overview

LDPAA FD GETTER/SETTER MACROs.

Macros

• #define LDPAA_FD_GET_ADDR(_fd)
• #define LDPAA_FD_GET_LENGTH(_fd)
• #define LDPAA_FD_GET_MEM(_fd)
• #define LDPAA_FD_GET_BPID(_fd)
• #define LDPAA_FD_GET_IVP(_fd)
• #define LDPAA_FD_GET_BMT(_fd)
• #define LDPAA_FD_GET_OFFSET(_fd)
• #define LDPAA_FD_GET_FMT(_fd)
• #define LDPAA_FD_GET_SL(_fd)
• #define LDPAA_FD_GET_FRC(_fd)
• #define LDPAA_FD_GET_ERR(_fd)
• #define LDPAA_FD_GET_VA(_fd)
• #define LDPAA_FD_GET_CBMT(_fd)
• #define LDPAA_FD_GET_ASAL(_fd)
• #define LDPAA_FD_GET_PTV2(_fd)
• #define LDPAA_FD_GET_PTV1(_fd)
• #define LDPAA_FD_GET_PTA(_fd)
• #define LDPAA_FD_GET_DROPP(_fd)
• #define LDPAA_FD_GET_SC(_fd)
• #define LDPAA_FD_GET_DD(_fd)
• #define LDPAA_FD_GET_CS(_fd)
• #define LDPAA_FD_GET_AS(_fd)
• #define LDPAA_FD_GET_DS(_fd)
• #define LDPAA_FD_GET_FLC(_fd)

NXP Semiconductors
AIOP Service Layer API Reference Manual

9

AIOP General

• #define LDPAA_FD_SET_ADDR(_fd, _val)
• #define LDPAA_FD_SET_LENGTH(_fd, _val)
• #define LDPAA_FD_SET_MEM(_fd, _val)
• #define LDPAA_FD_SET_BPID(_fd, _val)
• #define LDPAA_FD_SET_IVP(_fd, _val)
• #define LDPAA_FD_SET_BMT(_fd, _val)
• #define LDPAA_FD_SET_OFFSET(_fd, _val)
• #define LDPAA_FD_SET_FMT(_fd, _val)
• #define LDPAA_FD_SET_SL(_fd, _val)
• #define LDPAA_FD_SET_FRC(_fd, _val)
• #define LDPAA_FD_SET_ERR(_fd, _val)
• #define LDPAA_FD_SET_VA(_fd, _val)
• #define LDPAA_FD_SET_ASAL(_fd, _val)
• #define LDPAA_FD_SET_CBMT(_fd, _val)
• #define LDPAA_FD_SET_PTV2(_fd, _val)
• #define LDPAA_FD_SET_PTV1(_fd, _val)
• #define LDPAA_FD_SET_PTA(_fd, _val)
• #define LDPAA_FD_SET_DROPP(_fd, _val)
• #define LDPAA_FD_SET_SC(_fd, _val)
• #define LDPAA_FD_SET_DD(_fd, _val)
• #define LDPAA_FD_SET_CS(_fd, _val)
• #define LDPAA_FD_SET_AS(_fd, _val)
• #define LDPAA_FD_SET_DS(_fd, _val)
• #define LDPAA_FD_SET_FLC(_fd, _val)

1.2.3.3.4.2 Macro Definition Documentation

1.2.3.3.4.2.1 #define LDPAA_FD_GET_ADDR(_fd)

Macro to get FD ADDRESS field.

_fd - the FD address in workspace.

1.2.3.3.4.2.2 #define LDPAA_FD_GET_LENGTH(_fd)

Macro to get FD LENGTH field.

_fd - the FD address in workspace.

1.2.3.3.4.2.3 #define LDPAA_FD_GET_MEM(_fd)

Macro to get FD MEM field.

_fd - the FD address in workspace.

1.2.3.3.4.2.4 #define LDPAA_FD_GET_BPID(_fd)

Macro to get FD BPID field.

_fd - the FD address in workspace.

1.2.3.3.4.2.5 #define LDPAA_FD_GET_IVP(_fd)

Macro to get FD IVP field.

NXP Semiconductors
AIOP Service Layer API Reference Manual

10

AIOP General

_fd - the FD address in workspace.

1.2.3.3.4.2.6 #define LDPAA_FD_GET_BMT(_fd)

Macro to get FD BMT field.

_fd - the FD address in workspace.

1.2.3.3.4.2.7 #define LDPAA_FD_GET_OFFSET(_fd)

Macro to get FD OFFSET field.

_fd - the FD address in workspace.

1.2.3.3.4.2.8 #define LDPAA_FD_GET_FMT(_fd)

Macro to get FD FMT field.

_fd - the FD address in workspace.

1.2.3.3.4.2.9 #define LDPAA_FD_GET_SL(_fd)

Macro to get FD SL field.

_fd - the FD address in workspace.

1.2.3.3.4.2.10 #define LDPAA_FD_GET_FRC(_fd)

Macro to get FD FRC field.

_fd - the FD address in workspace.

1.2.3.3.4.2.11 #define LDPAA_FD_GET_ERR(_fd)

Macro to get FD ERR field.

_fd - the FD address in workspace.

1.2.3.3.4.2.12 #define LDPAA_FD_GET_VA(_fd)

Macro to get FD VA field.

_fd - the FD address in workspace.

1.2.3.3.4.2.13 #define LDPAA_FD_GET_CBMT(_fd)

Macro to get FD CBMT field.

_fd - the FD address in workspace.

1.2.3.3.4.2.14 #define LDPAA_FD_GET_ASAL(_fd)

Macro to get FD ASAL field.

_fd - the FD address in workspace.

NXP Semiconductors
AIOP Service Layer API Reference Manual

11

AIOP General

1.2.3.3.4.2.15 #define LDPAA_FD_GET_PTV2(_fd)

Macro to get FD PTV2 field.

_fd - the FD address in workspace.

1.2.3.3.4.2.16 #define LDPAA_FD_GET_PTV1(_fd)

Macro to get FD PTV1 field.

_fd - the FD address in workspace.

1.2.3.3.4.2.17 #define LDPAA_FD_GET_PTA(_fd)

Macro to get FD PTA field.

_fd - the FD address in workspace.

1.2.3.3.4.2.18 #define LDPAA_FD_GET_DROPP(_fd)

Macro to get FD DROPP field.

_fd - the FD address in workspace.

1.2.3.3.4.2.19 #define LDPAA_FD_GET_SC(_fd)

Macro to get FD SC field.

_fd - the FD address in workspace.

1.2.3.3.4.2.20 #define LDPAA_FD_GET_DD(_fd)

Macro to get FD DD field.

_fd - the FD address in workspace.

1.2.3.3.4.2.21 #define LDPAA_FD_GET_CS(_fd)

Macro to get FD CS field.

_fd - the FD address in workspace.

1.2.3.3.4.2.22 #define LDPAA_FD_GET_AS(_fd)

Macro to get FD AS field.

_fd - the FD address in workspace.

1.2.3.3.4.2.23 #define LDPAA_FD_GET_DS(_fd)

Macro to get FD DS field.

_fd - the FD address in workspace.

NXP Semiconductors
AIOP Service Layer API Reference Manual

12

AIOP General

1.2.3.3.4.2.24 #define LDPAA_FD_GET_FLC(_fd)

Macro to get FD FLC field.

_fd - the FD address in workspace.

1.2.3.3.4.2.25 #define LDPAA_FD_SET_ADDR(_fd, _val)

Macro to set FD ADDRESS field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.26 #define LDPAA_FD_SET_LENGTH(_fd, _val)

Macro to set FD LENGTH field.

SL bit in the frame descriptor must be valid when calling this macro.
_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.27 #define LDPAA_FD_SET_MEM(_fd, _val)

Macro to set FD MEM field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.28 #define LDPAA_FD_SET_BPID(_fd, _val)

Macro to set FD BPID field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.29 #define LDPAA_FD_SET_IVP(_fd, _val)

Macro to set FD IVP field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.30 #define LDPAA_FD_SET_BMT(_fd, _val)

Macro to set FD BMT field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.31 #define LDPAA_FD_SET_OFFSET(_fd, _val)

Macro to set FD OFFSET field.

NXP Semiconductors
AIOP Service Layer API Reference Manual

13

AIOP General

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.32 #define LDPAA_FD_SET_FMT(_fd, _val)

Macro to set FD FMT field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.33 #define LDPAA_FD_SET_SL(_fd, _val)

Macro to set FD SL field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.34 #define LDPAA_FD_SET_FRC(_fd, _val)

Macro to set FD FRC field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.35 #define LDPAA_FD_SET_ERR(_fd, _val)

Macro to set FD ERR field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.36 #define LDPAA_FD_SET_VA(_fd, _val)

Macro to set FD VA field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.37 #define LDPAA_FD_SET_ASAL(_fd, _val)

Macro to set FD ASAL field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.38 #define LDPAA_FD_SET_CBMT(_fd, _val)

Macro to set FD CBMT field.

_fd - the FD address in workspace.
_val - value to be set.

NXP Semiconductors
AIOP Service Layer API Reference Manual

14

AIOP General

1.2.3.3.4.2.39 #define LDPAA_FD_SET_PTV2(_fd, _val)

Macro to set FD PTV2 field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.40 #define LDPAA_FD_SET_PTV1(_fd, _val)

Macro to set FD PTV1 field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.41 #define LDPAA_FD_SET_PTA(_fd, _val)

Macro to set FD PTA field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.42 #define LDPAA_FD_SET_DROPP(_fd, _val)

Macro to set FD DROPP field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.43 #define LDPAA_FD_SET_SC(_fd, _val)

Macro to set FD SC field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.44 #define LDPAA_FD_SET_DD(_fd, _val)

Macro to set FD DD field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.45 #define LDPAA_FD_SET_CS(_fd, _val)

Macro to set FD CS field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.46 #define LDPAA_FD_SET_AS(_fd, _val)

Macro to set FD AS field.

NXP Semiconductors
AIOP Service Layer API Reference Manual

15

AIOP General

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.47 #define LDPAA_FD_SET_DS(_fd, _val)

Macro to set FD DS field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.3.4.2.48 #define LDPAA_FD_SET_FLC(_fd, _val)

Macro to set FD FLC field.

_fd - the FD address in workspace.
_val - value to be set.

1.2.3.4 AIOP Return Status

1.2.3.4.1 Overview

AIOP function return status definitions.

Macros

• #define SUCCESS
• #define BASE_SW_MODULES_STATUS_ID
• #define HM_MODULE_STATUS_ID
• #define IPR_MODULE_STATUS_ID
• #define IPF_MODULE_STATUS_ID
• #define TCP_GSO_MODULE_STATUS_ID
• #define TCP_GRO_MODULE_STATUS_ID
• #define DPNI_DRV_MODULE_STATUS_ID
• #define CWAPR_MODULE_STATUS_ID
• #define CWAPF_MODULE_STATUS_ID
• #define CWAP_DTLS_MODULE_STATUS_ID

1.2.3.4.2 Macro Definition Documentation

1.2.3.4.2.1 #define SUCCESS

Success return status.

1.2.3.4.2.2 #define BASE_SW_MODULES_STATUS_ID

The base ID for all the SW modules return status.

NXP Semiconductors
AIOP Service Layer API Reference Manual

16

AIOP General

1.2.3.4.2.3 #define HM_MODULE_STATUS_ID

Header Manipulation module ID.

1.2.3.4.2.4 #define IPR_MODULE_STATUS_ID

IP Reassembly module ID.

1.2.3.4.2.5 #define IPF_MODULE_STATUS_ID

IP Fragmentation module ID.

1.2.3.4.2.6 #define TCP_GSO_MODULE_STATUS_ID

TCP GSO module ID.

1.2.3.4.2.7 #define TCP_GRO_MODULE_STATUS_ID

TCP GRO module ID.

1.2.3.4.2.8 #define DPNI_DRV_MODULE_STATUS_ID

DPNI driver module ID.

1.2.3.4.2.9 #define CWAPR_MODULE_STATUS_ID

CAPWAP Reassembly module ID.

1.2.3.4.2.10 #define CWAPF_MODULE_STATUS_ID

CAPWAP Fragmentation module ID.

1.2.3.4.2.11 #define CWAP_DTLS_MODULE_STATUS_ID

CAPWAP DTLS module ID.

1.2.3.5 AIOP HWC Definitions

1.2.3.5.1 Overview

Hardware Context (HWC) Definitions.

Modules

• AIOP HWC General Definitions
• AIOP ADC Definitions
• AIOP PRC Definitions

NXP Semiconductors
AIOP Service Layer API Reference Manual

17

AIOP General

1.2.3.5.2 AIOP HWC General Definitions

1.2.3.5.2.1 Overview

Hardware Context (HWC) General Definitions.

Macros

• #define HWC_SIZE
• #define HWC_FD_SIZE
• #define HWC_ADC_SIZE
• #define HWC_PRC_SIZE
• #define HWC_SPID_ADDRESS
• #define HWC_ACC_IN_ADDRESS
• #define HWC_ACC_IN_ADDRESS2
• #define HWC_ACC_IN_ADDRESS3
• #define HWC_ACC_IN_ADDRESS4
• #define HWC_ACC_OUT_ADDRESS
• #define HWC_ACC_OUT_ADDRESS2
• #define HWC_ACC_RESERVED1
• #define HWC_ACC_RESERVED2
• #define HWC_ADC_ADDRESS
• #define HWC_PRC_ADDRESS
• #define HWC_FD_ADDRESS
• #define HWC_PARSE_RES_ADDRESS
• #define GET_DEFAULT_SPID()
• #define SET_DEFAULT_SPID(_spid)

1.2.3.5.2.2 Macro Definition Documentation

1.2.3.5.2.2.1 #define HWC_SIZE

Hardware Context size.

1.2.3.5.2.2.2 #define HWC_FD_SIZE

Size of the default working frame FD.

1.2.3.5.2.2.3 #define HWC_ADC_SIZE

Additional Dequeue Context size.

1.2.3.5.2.2.4 #define HWC_PRC_SIZE

Presentation Context size.

1.2.3.5.2.2.5 #define HWC_SPID_ADDRESS

Address of Storage Profile ID of the default working frame.

1.2.3.5.2.2.6 #define HWC_ACC_IN_ADDRESS

Address for passing parameters to accelerators.

NXP Semiconductors
AIOP Service Layer API Reference Manual

18

AIOP General

1.2.3.5.2.2.7 #define HWC_ACC_IN_ADDRESS2

Address for passing parameters to accelerators.

1.2.3.5.2.2.8 #define HWC_ACC_IN_ADDRESS3

Address for passing parameters to accelerators.

1.2.3.5.2.2.9 #define HWC_ACC_IN_ADDRESS4

Address for passing parameters to accelerators.

1.2.3.5.2.2.10 #define HWC_ACC_OUT_ADDRESS

Address for reading results from accelerators (1st register)

1.2.3.5.2.2.11 #define HWC_ACC_OUT_ADDRESS2

Address for reading results from accelerators (2nd register)

1.2.3.5.2.2.12 #define HWC_ACC_RESERVED1

Address for reading reserved 1 from hardware accelerator context.

1.2.3.5.2.2.13 #define HWC_ACC_RESERVED2

Address for reading reserved 2 from hardware accelerator context.

1.2.3.5.2.2.14 #define HWC_ADC_ADDRESS

Address of Additional Dequeue Context.

1.2.3.5.2.2.15 #define HWC_PRC_ADDRESS

Address of Presentation Context.

1.2.3.5.2.2.16 #define HWC_FD_ADDRESS

Address of Default working frame FD.

1.2.3.5.2.2.17 #define HWC_PARSE_RES_ADDRESS

Address of parse results.

1.2.3.5.2.2.18 #define GET_DEFAULT_SPID()

Getter for the Storage Profile ID of the default working frame.

1.2.3.5.2.2.19 #define SET_DEFAULT_SPID(_spid)

Setter for the Storage Profile ID of the default working frame.

NXP Semiconductors
AIOP Service Layer API Reference Manual

19

AIOP General

_spid - new spid value.

1.2.3.5.3 AIOP ADC Definitions

1.2.3.5.3.1 Overview

Additional Dequeue Context (ADC) Definitions.

Modules

• AIOP ADC Getters

Data Structures

• struct frame_queue_context
• struct additional_dequeue_context

Macros

• #define ADC_CHANNEL_MASK
• #define ADC_FQID_MASK
• #define ADC_PL_MASK
• #define ADC_ICID_MASK
• #define ADC_WQID_MASK
• #define ADC_PRI_MASK
• #define ADC_FDSRC_MASK
• #define ADC_VA_MASK
• #define ADC_FCF_MASK
• #define ADC_BDI_MASK
• #define ADC_FQD_CTX_OFFSET
• #define ADC_CHANNEL_FQID_OFFSET
• #define ADC_PL_ICID_OFFSET
• #define ADC_WQID_PRI_OFFSET
• #define ADC_FDSRC_VA_FCA_BDI_OFFSET

1.2.3.5.3.2 Data Structure Documentation

1.2.3.5.3.2.1 struct frame_queue_context

Frame Queue Context structure.

8 byte opaque Frame Queue Context delivered from the QMAN in the dequeue responses from this FQ.
At DCP portals, if FF = 0 this carries the return or output FQID for an accelerator, and possibly one or two
extra sets of access management qualifiers (AMQ). Optionally, if FF = 1, this field may carry other data
specific to the accelerator.

NXP Semiconductors
AIOP Service Layer API Reference Manual

20

AIOP General

Data Fields

volatile
uint32_t

fqid_auc_va_←↩
2_3 • bits<0>: VA_3. Valid if AUC = 3.

• bits<1>: VA_2. Valid if AUC is non-zero.
• bits<6-7>: AUC - AMQ usage control: 00 = AMQ_2 and

AMQ_3 are not valid. AMQ_1 is used for all needed autho-
rization (input, output, and control). 01 = AMQ_2 is valid.
AMQ_1 used for input and control, AMQ_2 used for output.
10 = AMQ_2 is valid. AMQ_1 used for input, AMQ_2 used
for control and output. 11 = AMQ_2 and AMQ_3 are valid.
AMQ_1 used for input, AMQ_2 used for control, AMQ_3
used for output.

• bits<8-31>: fqid - Return/Output FQID for an accelerator.

volatile
uint16_t

pl_3_icid_3
• bits<0>: PL_3. Valid if AUC = 3.
• bits<1-15>: ICID_3. Valid if AUC = 3.

volatile
uint16_t

pl_2_icid_2
• bits<0>: PL_2. Valid if AUC is non-zero.
• bits<1-15>: ICID_2. Valid if AUC is non-zero.

1.2.3.5.3.2.2 struct additional_dequeue_context

Additional Dequeue Context (ADC) structure.

Data Fields

volatile struct
frame_queue←↩

_context

fqd_ctx Frame Queue Context as received from QMan via the AIOP DCP.

volatile
uint32_t

channel_fqid
• bits<0-7>: AIOP Channel that this FD arrived on.
• bits<8-31>: The QMan Frame Queue ID that this frame

arrived was dequeued from.

volatile
uint16_t

pl_icid
• bits<0>: Privilege Level.
• bits<1-15>: The Isolation Context ID that the dequeued

frame belongs to.

NXP Semiconductors
AIOP Service Layer API Reference Manual

21

AIOP General

volatile
uint8_t

wqid_pri
• bits<1-3>: QMan Work Queue ID that this FD was de-

queued from.
• bits<5-7>: Entry Priority. Indicates the priority of the pre-

sented FD.

volatile
uint8_t

fdsrc_va_fca←↩
_bdi • bits<1-3>: FD Source. Coded value indicating the source

of the presented FD:

– 0 QMan

– 1 TMan

– 2 CMGW Host Command

– 3 CSCN Message

– 4 BPSCN Message

– 5-7 Reserved.
• bits<5> : VA- Virtual Address (configured in Frame

Queue).
• bits<6> : FCF- FQD_CTX_FMT or Dequeue Response F←↩

QD Context. Format. Indicates the format of the received
FQD_CTX field.

• bits<7> : BDI- Bypass DPAA Resource Isolation.

1.2.3.5.3.3 Macro Definition Documentation

1.2.3.5.3.3.1 #define ADC_CHANNEL_MASK

AIOP Channel mask.

1.2.3.5.3.3.2 #define ADC_FQID_MASK

QMan Frame Queue ID mask.

1.2.3.5.3.3.3 #define ADC_PL_MASK

Privilege Level mask.

1.2.3.5.3.3.4 #define ADC_ICID_MASK

Isolation Context ID mask.

NXP Semiconductors
AIOP Service Layer API Reference Manual

22

AIOP General

1.2.3.5.3.3.5 #define ADC_WQID_MASK

QMan Work Queue ID mask.

1.2.3.5.3.3.6 #define ADC_PRI_MASK

Entry Priority mask.

1.2.3.5.3.3.7 #define ADC_FDSRC_MASK

FD source mask.

1.2.3.5.3.3.8 #define ADC_VA_MASK

Virtual Address mask.

1.2.3.5.3.3.9 #define ADC_FCF_MASK

FQD_CTX format mask.

1.2.3.5.3.3.10 #define ADC_BDI_MASK

Bypass DPAA Resource Isolation mask.

1.2.3.5.3.3.11 #define ADC_FQD_CTX_OFFSET

ADC fqd_ctx offset.

1.2.3.5.3.3.12 #define ADC_CHANNEL_FQID_OFFSET

ADC channel_fqid offset.

1.2.3.5.3.3.13 #define ADC_PL_ICID_OFFSET

ADC pl_icid offset.

1.2.3.5.3.3.14 #define ADC_WQID_PRI_OFFSET

ADC wqid_pri offset.

1.2.3.5.3.3.15 #define ADC_FDSRC_VA_FCA_BDI_OFFSET

ADC fdsrc_va_fca_bdi offset.

1.2.3.5.3.4 AIOP ADC Getters

1.2.3.5.3.4.1 Overview

Additional Dequeue Context (ADC) Getters.

NXP Semiconductors
AIOP Service Layer API Reference Manual

23

AIOP General

Macros

• #define ADC_GET_ICID()

1.2.3.5.3.4.2 Macro Definition Documentation

1.2.3.5.3.4.3 #define ADC_GET_ICID()

Macro to get ICID field.

1.2.3.5.4 AIOP PRC Definitions

1.2.3.5.4.1 Overview

Presentation Context (PRC) Definitions.

Modules

• AIOP PRC Getters

Data Structures

• struct presentation_context

Macros

• #define PRC_SR_MASK
• #define PRC_NDS_MASK
• #define PRC_OSRC_MASK
• #define PRC_OEP_MASK
• #define PRC_OSEL_MASK
• #define PRC_OSRM_MASK
• #define PRC_SR_BIT_OFFSET
• #define PRC_NDS_BIT_OFFSET
• #define PRC_OSRC_BIT_OFFSET
• #define PRC_OEP_BIT_OFFSET
• #define PRC_OSEL_BIT_OFFSET
• #define PTA_NOT_LOADED_ADDRESS

1.2.3.5.4.2 Data Structure Documentation

1.2.3.5.4.2.1 struct presentation_context

Presentation Context (PRC) structure.

Data Fields

volatile
uint32_t

param Entry point opaque parameter value.

NXP Semiconductors
AIOP Service Layer API Reference Manual

24

AIOP General

volatile
uint16_t

seg_address Segment presentation address.

volatile
uint16_t

seg_length Segment actual size.

volatile
uint16_t

seg_offset Segment Presentation Offset value.

volatile
uint8_t

sr_nds
• bits<7> : No Data segment (NDS).
• bits<6> : Entry Point Segment Reference (SR) bit.

volatile
uint8_t

seg_handle Segment Handle.

volatile
uint8_t

osrc_oep_←↩
osel_osrm • bits<0> : OSM Entry Point Source value.

• bits<1> : OSM Entry Point Execution Phase value.
• bits<2-3>: OSM Entry Point Select value.
• bits<5-7>: OSM Entry Point Order Scope Range Mask

value.

volatile
uint8_t

frame_handle Working Frame Handle.

volatile
uint16_t

isv
• bits<15>: Initial Scope Value

1.2.3.5.4.3 Macro Definition Documentation

1.2.3.5.4.3.1 #define PRC_NDS_MASK

No Data Segment (NDS) bit mask.

If set - do not present Data segment. Otherwise - present data segment

1.2.3.5.4.3.2 #define PRC_OSRC_MASK

OSM Entry point source value mask.

1.2.3.5.4.3.3 #define PRC_OEP_MASK

OSM Entry Point Execution Phase value mask.

1.2.3.5.4.3.4 #define PRC_OSEL_MASK

OSM Entry Point Select value mask.

1.2.3.5.4.3.5 #define PRC_OSRM_MASK

OSM Entry Point Order Scope Range value mask.

NXP Semiconductors
AIOP Service Layer API Reference Manual

25

AIOP General

1.2.3.5.4.3.6 #define PRC_SR_BIT_OFFSET

PRC Frame handle offset.

1.2.3.5.4.3.7 #define PRC_NDS_BIT_OFFSET

No Data Segment bit offset.

1.2.3.5.4.3.8 #define PRC_OSRC_BIT_OFFSET

OSM Entry Point source value offset.

1.2.3.5.4.3.9 #define PRC_OEP_BIT_OFFSET

OSM Entry Point Execution Phase value offset.

1.2.3.5.4.3.10 #define PRC_OSEL_BIT_OFFSET

OSM Entry Point Select value offset.

1.2.3.5.4.3.11 #define PTA_NOT_LOADED_ADDRESS

PTA address when PTA is not loaded/not intended to be loaded to the working frame.

1.2.3.5.4.4 AIOP PRC Getters

1.2.3.5.4.4.1 Overview

Presentation Context (PRC) Getters.

Macros

• #define PRC_GET_PARAMETER()
• #define PRC_GET_SEGMENT_ADDRESS()
• #define PRC_GET_SEGMENT_LENGTH()
• #define PRC_GET_SEGMENT_OFFSET()
• #define PRC_GET_SR_BIT()
• #define PRC_GET_NDS_BIT()
• #define PRC_GET_FRAME_HANDLE()
• #define PRC_GET_SEGMENT_HANDLE()
• #define PRC_GET_OSM_SOURCE_VALUE()
• #define PRC_GET_OSM_EXECUTION_PHASE_VALUE()
• #define PRC_GET_OSM_SELECT_VALUE()
• #define PRC_GET_OSM_ORDER_SCOPE_RANGE_MASK_VALUE()
• #define PRC_GET_ISV_VALUE()

1.2.3.5.4.4.2 Macro Definition Documentation

1.2.3.5.4.4.3 #define PRC_GET_PARAMETER()

Macro to get the task entry point parameter value from the presentation context.

NXP Semiconductors
AIOP Service Layer API Reference Manual

26

AIOP General

1.2.3.5.4.4.4 #define PRC_GET_SEGMENT_ADDRESS()

Macro to get the default segment address from the presentation context.

1.2.3.5.4.4.5 #define PRC_GET_SEGMENT_LENGTH()

Macro to get the default segment length from the presentation context.

1.2.3.5.4.4.6 #define PRC_GET_SEGMENT_OFFSET()

Macro to get the default segment offset from the presentation context.

1.2.3.5.4.4.7 #define PRC_GET_SR_BIT()

Macro to get the Segment Reference bit from the presentation context.

1.2.3.5.4.4.8 #define PRC_GET_NDS_BIT()

Macro to get the No-Data-Segment bit from the presentation context.

1.2.3.5.4.4.9 #define PRC_GET_FRAME_HANDLE()

Macro to get the default frame handle from the presentation context.

1.2.3.5.4.4.10 #define PRC_GET_SEGMENT_HANDLE()

Macro to get the default segment handle from the presentation context.

1.2.3.5.4.4.11 #define PRC_GET_OSM_SOURCE_VALUE()

Macro to get the OSM Entry Point Source value from the presentation context.

1.2.3.5.4.4.12 #define PRC_GET_OSM_EXECUTION_PHASE_VALUE()

Macro to get the OSM Entry Point Execution Phase value from the presentation context.

1.2.3.5.4.4.13 #define PRC_GET_OSM_SELECT_VALUE()

Macro to get the OSM Entry Point Select value from the presentation context.

1.2.3.5.4.4.14 #define PRC_GET_OSM_ORDER_SCOPE_RANGE_MASK_VALUE()

Macro to get the OSM Entry Point Order Scope Range Mask value from the presentation context.

1.2.3.5.4.4.15 #define PRC_GET_ISV_VALUE()

Macro to get the Initial Scope Value.

NXP Semiconductors
AIOP Service Layer API Reference Manual

27

AIOP General

1.2.3.6 AIOP Default Task Params

1.2.3.6.1 Overview

AIOP Default Task Parameters.

Data Structures

• struct aiop_default_task_params

1.2.3.6.2 Data Structure Documentation

1.2.3.6.2.1 struct aiop_default_task_params

Default Task Parameters.
Data Fields

uint16_t send_niid NI ID the packet should be sent on.
uint16_t parser_←↩

starting_hxs
Task default Starting HXS for Parser.

uint8_t parser_profile←↩
_id

Task default Parser Profile ID.

uint8_t qd_priority Queueing Destination Priority.
uint8_t current_←↩

scope_level
current scope level

uint8_t scope_mode_←↩
level_arr[4]

scope mode level [0-3]

1.2.3.7 Read external data bits definitions

1.2.3.7.1 Overview

Bit definitions for choosing what hardware engine should be used for reading data from external memory
READ_DATA_USING_FDMA and READ_DATA_USING_CDMA cannot be used at the same time.

Macros

• #define READ_DATA_USING_FDMA
• #define READ_DATA_USING_CDMA

NXP Semiconductors
AIOP Service Layer API Reference Manual

28

Accelerators APIs

1.2.3.7.2 Macro Definition Documentation

1.2.3.7.2.1 #define READ_DATA_USING_FDMA

Fetch data using FDMA DMA Data.

1.2.3.7.2.2 #define READ_DATA_USING_CDMA

Fetch data using CDMA with cache disabled.

1.3 Accelerators APIs

1.3.1 Overview

AIOP Accelerators APIs.

AIOP Accelerator APIs.

Modules

• FDMA
• CDMA
• PARSER
• KEYGEN
• TABLE
• OSM
• TMAN
• STE (Statistics)

1.3.2 FDMA

1.3.2.1 Overview

FSL AIOP FDMA macros and functions.

Modules

• FDMA General Definitions
• FDMA Enumerations
• FDMA Commands Flags
• FDMA Status
• FDMA Structures
• FDMA Functions
• FDMA Discard Frame Flags
• FDMA Concatenate AMQ Flags

NXP Semiconductors
AIOP Service Layer API Reference Manual

29

Accelerators APIs

1.3.2.2 FDMA General Definitions

1.3.2.2.1 Overview

FDMA General Definitions.

Macros

• #define FDMA_PTA_SEG_HANDLE
• #define FDMA_ASA_SEG_HANDLE
• #define DEFAULT_SEGMENT_HEADROOM_SIZE
• #define DEFAULT_SEGMENT_SIZE

1.3.2.2.2 Macro Definition Documentation

1.3.2.2.2.1 #define FDMA_PTA_SEG_HANDLE

SW annotation segment handle.

1.3.2.2.2.2 #define FDMA_ASA_SEG_HANDLE

HW annotation segment handle.

1.3.2.2.2.3 #define DEFAULT_SEGMENT_HEADROOM_SIZE

Default Segment headroom size.

1.3.2.2.2.4 #define DEFAULT_SEGMENT_SIZE

Default Segment size.

1.3.2.3 FDMA Enumerations

1.3.2.3.1 Overview

FDMA Enumerations.

• enum fdma_st_options {
FDMA_ST_DATA_SEGMENT_BIT,
FDMA_ST_PTA_SEGMENT_BIT,
FDMA_ST_ASA_SEGMENT_BIT }

• enum fdma_cfa_options {
FDMA_CFA_NO_COPY_BIT,
FDMA_CFA_ASA_COPY_BIT,
FDMA_CFA_PTA_COPY_BIT,
FDMA_CFA_COPY_BIT }

NXP Semiconductors
AIOP Service Layer API Reference Manual

30

Accelerators APIs

• enum fdma_split_psa_options {
FDMA_SPLIT_PSA_NO_PRESENT_BIT,
FDMA_SPLIT_PSA_PRESENT_BIT,
FDMA_SPLIT_PSA_CLOSE_FRAME_BIT }

• enum fdma_enqueue_tc_options {
FDMA_EN_TC_RET_BITS,
FDMA_EN_TC_TERM_BITS,
FDMA_EN_TC_CONDTERM_BITS }

• enum fdma_replace_sa_options {
FDMA_REPLACE_SA_OPEN_BIT,
FDMA_REPLACE_SA_REPRESENT_BIT,
FDMA_REPLACE_SA_CLOSE_BIT }

• enum fdma_dma_data_access_options {
FDMA_DMA_DA_SYS_TO_WS_BIT,
FDMA_DMA_DA_WS_TO_SYS_BIT,
FDMA_DMA_DA_SYS_TO_SRAM_BIT,
FDMA_DMA_DA_SRAM_TO_SYS_BIT }

• enum fdma_pta_size_type {
PTA_SIZE_NO_PTA,
PTA_SIZE_PTV1,
PTA_SIZE_PTV2,
PTA_SIZE_PTV1_2 }

1.3.2.3.2 Enumeration Type Documentation

1.3.2.3.2.1 enum fdma_st_options

AIOP FDMA segment type options.

Enumerator

FDMA_ST_DATA_SEGMENT_BIT Data Segment.
FDMA_ST_PTA_SEGMENT_BIT PTA Segment.
FDMA_ST_ASA_SEGMENT_BIT ASA Segment.

1.3.2.3.2.2 enum fdma_cfa_options

AIOP FDMA copy frame annotations options.

Enumerator

FDMA_CFA_NO_COPY_BIT Do not copy annotations.
FDMA_CFA_ASA_COPY_BIT Copy ASA.
FDMA_CFA_PTA_COPY_BIT Copy PTA.

NXP Semiconductors
AIOP Service Layer API Reference Manual

31

Accelerators APIs

FDMA_CFA_COPY_BIT Copy ASA + PTA.

1.3.2.3.2.3 enum fdma_split_psa_options

AIOP FDMA Split command Post split action.

Enumerator

FDMA_SPLIT_PSA_NO_PRESENT_BIT Do not present segment from the split frame, keep split
working frame open.

FDMA_SPLIT_PSA_PRESENT_BIT Present segment from the split frame, keep split working
frame open.

FDMA_SPLIT_PSA_CLOSE_FRAME_BIT Do not present, close split working frame using the
provided storage profile, update split FD.

1.3.2.3.2.4 enum fdma_enqueue_tc_options

AIOP FDMA Enqueue Terminate Control options.

Enumerator

FDMA_EN_TC_RET_BITS Return after enqueue.
FDMA_EN_TC_TERM_BITS Terminate: this command will trigger the Terminate task command

right after the enqueue. If the enqueue failed, the frame will be discarded. If a frame structural
error is found with the frame to be discarded, the frame is not discarded and the command returns
with an error code.

FDMA_EN_TC_CONDTERM_BITS Conditional Terminate : trigger the Terminate task command
only if the enqueue succeeded. If the enqueue failed, the frame handle is not released and the
command returns with an error code.

1.3.2.3.2.5 enum fdma_replace_sa_options

AIOP FDMA Replace Segment Action options.

When this command is invoked on annotation segments (PTA or ASA) they always remain open.

Enumerator

FDMA_REPLACE_SA_OPEN_BIT Keep the segment open.
FDMA_REPLACE_SA_REPRESENT_BIT Re-present the segment in workspace.
FDMA_REPLACE_SA_CLOSE_BIT Close the replaced segment to free the workspace memory

associated with the segment. This option is not relevant for replacing ASA/PTA. If it as chosen
for replacing ASA/PTA it will be ignored.

NXP Semiconductors
AIOP Service Layer API Reference Manual

32

Accelerators APIs

1.3.2.3.2.6 enum fdma_dma_data_access_options

AIOP FDMA DMA Data Access command options.

Enumerator

FDMA_DMA_DA_SYS_TO_WS_BIT system memory read to workspace write
FDMA_DMA_DA_WS_TO_SYS_BIT workspace read to system memory write
FDMA_DMA_DA_SYS_TO_SRAM_BIT system memory read to AIOP Shared Memory write
FDMA_DMA_DA_SRAM_TO_SYS_BIT AIOP Shared Memory read to system memory write.

1.3.2.3.2.7 enum fdma_pta_size_type

PTA size type.

Enumerator

PTA_SIZE_NO_PTA The frame has no PTA.
PTA_SIZE_PTV1 Only the first 32B of the PTA are valid and were presented.
PTA_SIZE_PTV2 Only the second 32B of the PTA are valid and were presented.
PTA_SIZE_PTV1_2 64B of the PTA are valid and were presented.

1.3.2.4 FDMA Commands Flags

1.3.2.4.1 Overview

FDMA Commands Flags.

Modules

• FDMA Present Frame Flags
• FDMA PRES Flags
• FDMA EXT Flags
• FDMA ENWF Flags
• FDMA ENF Flags
• FDMA Discard WF Flags
• FDMA Replicate Flags
• FDMA Concatenate Flags
• FDMA Split Flags
• FDMA Replace Flags
• FDMA Copy Flags
• FDMA ACQUIRE BUFFER Flags
• FDMA RELEASE BUFFER Flags
• FDMA ISOLATION ATTRIBUTES Flags
• FDMA Discard Frame Flags
• FDMA Concatenate AMQ Flags

NXP Semiconductors
AIOP Service Layer API Reference Manual

33

Accelerators APIs

1.3.2.4.2 FDMA Present Frame Flags

1.3.2.4.2.1 Overview

FDMA Frame Presentation flags.

Macros

• #define FDMA_INIT_NO_FLAGS
• #define FDMA_INIT_NDS_BIT
• #define FDMA_INIT_SR_BIT
• #define FDMA_INIT_AS_BIT
• #define FDMA_INIT_VA_BIT
• #define FDMA_INIT_PL_BIT
• #define FDMA_INIT_BDI_BIT

1.3.2.4.2.2 Macro Definition Documentation

1.3.2.4.2.2.1 #define FDMA_INIT_NO_FLAGS

Default command configuration.

1.3.2.4.2.2.2 #define FDMA_INIT_NDS_BIT

No Data Segment.

If set - do not present Data segment. Otherwise - present Data segment.

1.3.2.4.2.2.3 #define FDMA_INIT_SR_BIT

Reference within the frame to present from.

If set - end of the frame. Otherwise - start of the frame.

1.3.2.4.2.2.4 #define FDMA_INIT_AS_BIT

AMQ attributes (PL, VA, BDI, ICID) Source.

If set - supplied AMQ attributes are used. If reset - task default AMQ attributes (From Additional Dequeue
Context) are used.

1.3.2.4.2.2.5 #define FDMA_INIT_VA_BIT

Virtual Address.

Frame AMQ attribute. Used only in case FDMA_INIT_AS_BIT is set.

1.3.2.4.2.2.6 #define FDMA_INIT_PL_BIT

Privilege Level.

Frame AMQ attribute. Used only in case FDMA_INIT_AS_BIT is set.

NXP Semiconductors
AIOP Service Layer API Reference Manual

34

Accelerators APIs

1.3.2.4.2.2.7 #define FDMA_INIT_BDI_BIT

Bypass Datapath Isolation.

Frame AMQ attribute. Used only in case FDMA_INIT_AS_BIT is set.

1.3.2.4.3 FDMA PRES Flags

1.3.2.4.3.1 Overview

FDMA Present segment flags.

Macros

• #define FDMA_PRES_NO_FLAGS
• #define FDMA_PRES_SR_BIT

1.3.2.4.3.2 Macro Definition Documentation

1.3.2.4.3.2.1 #define FDMA_PRES_NO_FLAGS

Default command configuration.

1.3.2.4.3.2.2 #define FDMA_PRES_SR_BIT

Reference within the frame to present from (This field is ignored when presenting PTA or ASA segments).

If set - end of the frame. Otherwise - start of the frame.

1.3.2.4.4 FDMA EXT Flags

1.3.2.4.4.1 Overview

FDMA Extend segment flags.

Macros

• #define FDMA_EXT_NO_FLAGS
• #define FDMA_EXT_ST_BIT

1.3.2.4.4.2 Macro Definition Documentation

1.3.2.4.4.2.1 #define FDMA_EXT_NO_FLAGS

Default command configuration.

1.3.2.4.4.2.2 #define FDMA_EXT_ST_BIT

The type of segment to present (DATA / ASA segment).

NXP Semiconductors
AIOP Service Layer API Reference Manual

35

Accelerators APIs

1.3.2.4.5 FDMA ENWF Flags

1.3.2.4.5.1 Overview

FDMA Enqueue working frame flags.

Macros

• #define FDMA_ENWF_NO_FLAGS
• #define FDMA_ENWF_TC
• #define FDMA_ENWF_PS_BIT
• #define FDMA_ENWF_RL_BIT

1.3.2.4.5.2 Macro Definition Documentation

1.3.2.4.5.2.1 #define FDMA_ENWF_NO_FLAGS

Default command configuration.

1.3.2.4.5.2.2 #define FDMA_ENWF_TC

Terminate Control options.

Only one option may be choose from fdma_enqueue_tc_options.

1.3.2.4.5.2.3 #define FDMA_ENWF_PS_BIT

Enqueue Priority source.

Relevant for Queuing Destination Selection. If set - use QD_PRI from h/w context (this is the value found
in the WQID field from the Additional Dequeue Context). Otherwise - use QD_PRI provided with DMA
Command.

1.3.2.4.5.2.4 #define FDMA_ENWF_RL_BIT

Enqueue Relinquish option: Relevant for Queuing Destination Selection.

If set - relinquish OSM exclusivity in current scope right after the enqueue to QMan is issued. Otherwise
- no relinquish.

1.3.2.4.6 FDMA ENF Flags

1.3.2.4.6.1 Overview

FDMA Enqueue frame flags.

Macros

• #define FDMA_ENF_NO_FLAGS
• #define FDMA_ENF_TC
• #define FDMA_ENF_PS_BIT
• #define FDMA_ENF_BDI_BIT

NXP Semiconductors
AIOP Service Layer API Reference Manual

36

Accelerators APIs

• #define FDMA_ENF_AS_BIT
• #define FDMA_ENF_RL_BIT

1.3.2.4.6.2 Macro Definition Documentation

1.3.2.4.6.2.1 #define FDMA_ENF_NO_FLAGS

Default command configuration.

1.3.2.4.6.2.2 #define FDMA_ENF_TC

Terminate Control options.

Only one option may be choose from fdma_enqueue_tc_options.

1.3.2.4.6.2.3 #define FDMA_ENF_PS_BIT

Enqueue Priority source.

Relevant for Queuing Destination Selection. If set - use QD_PRI from h/w context (this is the value found
in the WQID field from the Additional Dequeue Context). Otherwise - use QD_PRI provided with DMA
Command.

1.3.2.4.6.2.4 #define FDMA_ENF_BDI_BIT

Bypass DPAA resource Isolation.

If set - Isolation is not enabled for this command (the FQID ID specified is a real (not virtual) pool ID).
Otherwise - Isolation is enabled for this command (the FQID ID specified is virtual within the specified
ICID).

1.3.2.4.6.2.5 #define FDMA_ENF_AS_BIT

AMQ attributes (PL, VA, BDI, ICID) Source.

If reset - supplied AMQ attributes are used. If set - task default AMQ attributes (From Additional Dequeue
Context) are used.

1.3.2.4.6.2.6 #define FDMA_ENF_RL_BIT

Enqueue Relinquish option: Relevant for Queuing Destination Selection.

If set - relinquish OSM exclusivity in current scope right after the enqueue to QMan is issued. Otherwise
- no relinquish.

1.3.2.4.7 FDMA Discard WF Flags

1.3.2.4.7.1 Overview

FDMA Discard working frame flags.

NXP Semiconductors
AIOP Service Layer API Reference Manual

37

Accelerators APIs

Macros

• #define FDMA_DIS_NO_FLAGS
• #define FDMA_DIS_WF_TC_BIT

1.3.2.4.7.2 Macro Definition Documentation

1.3.2.4.7.2.1 #define FDMA_DIS_NO_FLAGS

Default command configuration.

1.3.2.4.7.2.2 #define FDMA_DIS_WF_TC_BIT

Terminate Control.

If set - Trigger the Terminate task command right after the discard. Otherwise - Return after discard.

1.3.2.4.8 FDMA Replicate Flags

1.3.2.4.8.1 Overview

FDMA Replicate Working Frame flags.

Macros

• #define FDMA_REPLIC_NO_FLAGS
• #define FDMA_REPLIC_ENQ_BIT
• #define FDMA_REPLIC_DSF_BIT
• #define FDMA_REPLIC_PS_BIT
• #define FDMA_REPLICATE_CFA
• #define FDMA_REPLIC_RL_BIT

1.3.2.4.8.2 Macro Definition Documentation

1.3.2.4.8.2.1 #define FDMA_REPLIC_NO_FLAGS

Default command configuration.

1.3.2.4.8.2.2 #define FDMA_REPLIC_ENQ_BIT

Enqueue the replicated frame to the provided Queueing Destination.

Release destination frame handle is implicit when enqueueing. If set - replicate and enqueue. Otherwise -
replicate only.

1.3.2.4.8.2.3 #define FDMA_REPLIC_DSF_BIT

The source frame resources are released after the replication.

Release source frame handle is implicit when discarding. If set - discard source frame and release frame
handle. Otherwise - keep source frame.

NXP Semiconductors
AIOP Service Layer API Reference Manual

38

Accelerators APIs

1.3.2.4.8.2.4 #define FDMA_REPLIC_PS_BIT

Enqueue Priority source.

Relevant for Queuing Destination Selection. If set - use QD_PRI from h/w context (this is the value found
in the WQID field from the Additional Dequeue Context). Otherwise - use QD_PRI provided with DMA
Command.

1.3.2.4.8.2.5 #define FDMA_REPLICATE_CFA

AIOP FDMA copy frame annotations options.

Only one option may be choose from fdma_cfa_options.

1.3.2.4.8.2.6 #define FDMA_REPLIC_RL_BIT

Enqueue Relinquish option: Relevant for Queuing Destination Selection.

If set - relinquish OSM exclusivity in current scope right after the enqueue to QMan is issued (only relevant
when ENQ is set). Otherwise - no relinquish.

1.3.2.4.9 FDMA Concatenate Flags

1.3.2.4.9.1 Overview

FDMA Concatenate Frames flags.

Macros

• #define FDMA_CONCAT_NO_FLAGS
• #define FDMA_CONCAT_SF_BIT
• #define FDMA_CONCAT_FS1_BIT
• #define FDMA_CONCAT_FS2_BIT
• #define FDMA_CONCAT_PCA_BIT

1.3.2.4.9.2 Macro Definition Documentation

1.3.2.4.9.2.1 #define FDMA_CONCAT_NO_FLAGS

Default command configuration.

1.3.2.4.9.2.2 #define FDMA_CONCAT_SF_BIT

Set SF bit on SGE of frame 2.

Note, this will force the usage of SG format on the concatenated frame. If set - Set SF bit. Otherwise - Do
not set SF bit.

1.3.2.4.9.2.3 #define FDMA_CONCAT_FS1_BIT

Frame Source 1: 0: concatenate working frame 1 using FRAME_HANDLE_1 1: concatenate Frame 1
using FD at FD_ADDRESS_1.

NXP Semiconductors
AIOP Service Layer API Reference Manual

39

Accelerators APIs

1.3.2.4.9.2.4 #define FDMA_CONCAT_FS2_BIT

Frame Source 2: 0: concatenate working frame 2 using FRAME_HANDLE_1 1: concatenate Frame 2
using FD at FD_ADDRESS_1.

1.3.2.4.9.2.5 #define FDMA_CONCAT_PCA_BIT

Post Concatenate Action.

If set - close resulting working frame 1 using provided storage profile, update FD1. Otherwise - keep
resulting working frame 1 open.

1.3.2.4.10 FDMA Split Flags

1.3.2.4.10.1 Overview

FDMA Split Frame flags.

Macros

• #define FDMA_SPLIT_NO_FLAGS
• #define FDMA_SPLIT_CFA
• #define FDMA_SPLIT_PSA
• #define FDMA_SPLIT_SM_BIT
• #define FDMA_SPLIT_SR_BIT

1.3.2.4.10.2 Macro Definition Documentation

1.3.2.4.10.2.1 #define FDMA_SPLIT_NO_FLAGS

Default command configuration.

1.3.2.4.10.2.2 #define FDMA_SPLIT_CFA

AIOP FDMA copy frame annotations options.

Only one option may be choose from fdma_cfa_options.

1.3.2.4.10.2.3 #define FDMA_SPLIT_PSA

AIOP FDMA Post split action options.

Only one option may be choose from fdma_split_psa_options.

1.3.2.4.10.2.4 #define FDMA_SPLIT_SM_BIT

Frame split mode.

If set - Split is performed based on Scatter Gather Entry SF bit. Otherwise - Split is performed at the
split_size_sf parameter value of the split command.

NXP Semiconductors
AIOP Service Layer API Reference Manual

40

Accelerators APIs

1.3.2.4.10.2.5 #define FDMA_SPLIT_SR_BIT

Reference within the frame to present from.

If set - end of the frame. Otherwise - start of the frame.

1.3.2.4.11 FDMA Replace Flags

1.3.2.4.11.1 Overview

FDMA Replace working frame segment flags.

Macros

• #define FDMA_REPLACE_NO_FLAGS
• #define FDMA_REPLACE_SA

1.3.2.4.11.2 Macro Definition Documentation

1.3.2.4.11.2.1 #define FDMA_REPLACE_NO_FLAGS

Default command configuration.

The segment will remain open. After using this flag:

1. Segment data in workspace will not be synchronized with the actual Frame data in the FDMA
memory.

2. Segment length attribute in the Presentation Context will not be consistent with the actual FDMA
segment length.

1.3.2.4.11.2.2 #define FDMA_REPLACE_SA

Segment action options.

Only one option may be choose from fdma_replace_sa_options.

1.3.2.4.12 FDMA Copy Flags

1.3.2.4.12.1 Overview

FDMA Copy data flags.

Macros

• #define FDMA_COPY_NO_FLAGS
• #define FDMA_COPY_SM_BIT
• #define FDMA_COPY_DM_BIT

NXP Semiconductors
AIOP Service Layer API Reference Manual

41

Accelerators APIs

1.3.2.4.12.2 Macro Definition Documentation

1.3.2.4.12.2.1 #define FDMA_COPY_NO_FLAGS

Default command configuration.

1.3.2.4.12.2.2 #define FDMA_COPY_SM_BIT

Source Memory:.

If set - Copy source memory address is in the AIOP Shared Memory. Otherwise - Copy source memory
address is in the workspace.

1.3.2.4.12.2.3 #define FDMA_COPY_DM_BIT

Destination Memory:.

If set - Copy destination memory address is in the AIOP Shared Memory. Otherwise - Copy destination
memory address is in the workspace.

1.3.2.4.13 FDMA ACQUIRE BUFFER Flags

1.3.2.4.13.1 Overview

FDMA Acquire buffer flags.

Macros

• #define FDMA_ACQUIRE_NO_FLAGS
• #define FDMA_ACQUIRE_BDI_BIT

1.3.2.4.13.2 Macro Definition Documentation

1.3.2.4.13.2.1 #define FDMA_ACQUIRE_NO_FLAGS

Default command configuration.

1.3.2.4.13.2.2 #define FDMA_ACQUIRE_BDI_BIT

Bypass DPAA resource Isolation: If reset - Isolation is enabled for this command.

The pool ID specified is virtual within the specified ICID. If set - Isolation is not enabled for this command.
The pool ID specified is a real (not virtual) pool ID.

1.3.2.4.14 FDMA RELEASE BUFFER Flags

1.3.2.4.14.1 Overview

FDMA Release buffer flags.

NXP Semiconductors
AIOP Service Layer API Reference Manual

42

Accelerators APIs

Macros

• #define FDMA_RELEASE_NO_FLAGS
• #define FDMA_RELEASE_BDI_BIT

1.3.2.4.14.2 Macro Definition Documentation

1.3.2.4.14.2.1 #define FDMA_RELEASE_NO_FLAGS

Default command configuration.

1.3.2.4.14.2.2 #define FDMA_RELEASE_BDI_BIT

Bypass DPAA resource Isolation: If reset - Isolation is enabled for this command.

The pool ID specified is virtual within the specified ICID. If set - Isolation is not enabled for this command.
The pool ID specified is a real (not virtual) pool ID.

1.3.2.4.15 FDMA ISOLATION ATTRIBUTES Flags

1.3.2.4.15.1 Overview

Isolation context flags.

Macros

• #define FDMA_ICID_CONTEXT_VA
• #define FDMA_ICID_CONTEXT_eVA
• #define FDMA_ICID_CONTEXT_PL
• #define FDMA_ICID_CONTEXT_BDI

1.3.2.4.15.2 Macro Definition Documentation

1.3.2.4.15.2.1 #define FDMA_ICID_CONTEXT_VA

Virtual Address of the Stored frame flag.

1.3.2.4.15.2.2 #define FDMA_ICID_CONTEXT_eVA

Effective Virtual Address of the Stored frame flag.

1.3.2.4.15.2.3 #define FDMA_ICID_CONTEXT_PL

Privilege Level of the Stored frame flag.

1.3.2.4.15.2.4 #define FDMA_ICID_CONTEXT_BDI

BDI of the Stored frame flag.

NXP Semiconductors
AIOP Service Layer API Reference Manual

43

Accelerators APIs

1.3.2.5 FDMA Status

1.3.2.5.1 Overview

FDMA Statuses.

Macros

• #define FDMA_STATUS_UNABLE_PRES_DATA_SEG
• #define FDMA_STATUS_UNABLE_PRES_ASA_SEG

1.3.2.5.2 Macro Definition Documentation

1.3.2.5.2.1 #define FDMA_STATUS_UNABLE_PRES_DATA_SEG

Unable to fulfill specified Data segment presentation size.

This is an indication that the requested data segment presentation size could not be fulfill since the frame
size (starting from the segment offset) is smaller than the requested presentation size.

1.3.2.5.2.2 #define FDMA_STATUS_UNABLE_PRES_ASA_SEG

Unable to fulfill specified ASA segment presentation size.

This is an indication that the requested ASA segment presentation size could not be fulfill since the ASA
size (starting from the ASA segment offset) is smaller than the requested presentation size.

1.3.2.6 FDMA Structures

1.3.2.6.1 Overview

FDMA Structures.

Data Structures

• struct fdma_amq
• struct fdma_present_frame_params
• struct fdma_present_segment_params
• struct fdma_queueing_destination_params
• struct fdma_concatenate_frames_params
• struct fdma_split_frame_params
• struct fdma_insert_segment_data_params
• struct fdma_delete_segment_data_params

NXP Semiconductors
AIOP Service Layer API Reference Manual

44

Accelerators APIs

1.3.2.6.2 Data Structure Documentation

1.3.2.6.2.1 struct fdma_amq

FDMA access management qualifier (AMQs) structure.

NXP Semiconductors
AIOP Service Layer API Reference Manual

45

Accelerators APIs

Data Fields

uint16_t flags icid context flags
uint16_t icid bits<1-15> : ICID of the Stored frame.

1.3.2.6.2.2 struct fdma_present_frame_params

Frame presentation parameters structure.

Data Fields

uint32_t flags initial frame presentation flags
void ∗ seg_dst A pointer to the location in workspace for the presented frame seg-

ment.
void ∗ pta_dst A pointer to a 64B-aligned location in the workspace to store the

64B PTA field. Set PTA_NOT_LOADED_ADDRESS for no PTA
presentation.

void ∗ asa_dst A pointer to a 64B-aligned location in the workspace to store the
ASA.

struct ldpaa_fd
∗

fd_src A pointer to the location in workspace of the FD that is to be pre-
sented.

uint16_t seg_offset location within the presented frame to start presenting the segment
from.

uint16_t present_size Number of frame bytes to present and create an open segment for.
uint16_t icid Bits<1-15> : Isolation Context ID. Frame AMQ attribute. Used

only in case FDMA_INIT_AS_BIT is set.
uint8_t asa_offset The first ASA 64B quantity to present.
uint8_t asa_size Number (maximum) of 64B ASA quantities to present.

uint16_t seg_length Returned parameter: The number of bytes actually presented (the
segment actual size).

uint8_t frame_handle Returned parameter: The handle of the working frame.
uint8_t seg_handle Returned parameter: The handle of the presented segment.

1.3.2.6.2.3 struct fdma_present_segment_params

Segment Presentation parameters structure.

Data Fields

uint32_t flags Present segment flags
void ∗ ws_dst A pointer to the location in workspace for the presented frame seg-

ment.

NXP Semiconductors
AIOP Service Layer API Reference Manual

46

Accelerators APIs

uint16_t offset Location within the presented frame to start presenting from. Must
be within the bound of the frame. Relative to FDMA_PRES_SR←↩
_BIT flag.

uint16_t present_size Number of frame bytes to present (any value including 0).
uint16_t seg_length Returned parameter: The number of bytes actually presented (the

segment actual size).
uint8_t seg_handle Returned parameter: The handle of the presented segment.
uint8_t frame_handle working frame from which to open a segment.

1.3.2.6.2.4 struct fdma_queueing_destination_params

Queueing Destination Enqueue parameters structure.

Data Fields

uint16_t qd Queueing destination for the enqueue.
uint16_t qdbin Distribution hash value passed to QMan for distribution purpose

on the enqueue.
uint8_t qd_priority Queueing Destination Priority.

1.3.2.6.2.5 struct fdma_concatenate_frames_params

Concatenate frames parameters structure.

Data Fields

uint32_t flags concatenate frames flags
uint32_t amq_flags concatenate frames flags

struct
fdma_amq

amq Returned parameter: AMQ attributes (the VA is the effective VA)

uint16_t frame1 The handle of working frame 1, or FD1 address.
uint16_t frame2 The handle of working frame 2, or FD2 address.
uint16_t icid1 Bits<1-15> : Isolation Context ID. Frame AMQ attribute. Used

only in case FDMA_CONCAT_FS1_BIT is set.
uint16_t icid2 Bits<1-15> : Isolation Context ID. Frame AMQ attribute. Used

only in case FDMA_CONCAT_FS2_BIT is set.
uint8_t spid Storage Profile used to store frame data if additional buffers are

required when optionally closing the concatenated working frame
(FDMA_CONCAT_PCA_BIT is set)

uint8_t trim Trim a number of bytes from the beginning of frame 2 before the
concatenation. A size of zero disables the trim.

NXP Semiconductors
AIOP Service Layer API Reference Manual

47

Accelerators APIs

1.3.2.6.2.6 struct fdma_split_frame_params

Split frame parameters structure.

Data Fields

uint32_t flags split frames flags
struct ldpaa_fd

∗
fd_dst A pointer to the location in workspace for the split FD. The FD is

updated (in place). Most of the FD is cloned from the source FD.
The ADDR, LENGTH, MEM, BPID, IVP, BMT, OFFSET, FMT,
SL, ASAL, PTA, PTV1, PTV2 are not updated.

void ∗ seg_dst A pointer to the location in workspace for the presented split frame
segment.

uint16_t seg_offset location within the presented split frame to start presenting the seg-
ment from.

uint16_t present_size Number of frame bytes to present and create an open segment for
(in the split frame).

uint16_t split_size_sf SM bit = 0: Split size, number of bytes to split from the head of the
input frame and move to the output frame. SM bit = 1: not used.

uint16_t seg_length Returned parameter: The number of bytes actually presented from
the split frame (the segment actual size).

uint8_t source_frame←↩
_handle

The handle of the source working frame.

uint8_t split_frame_←↩
handle

Returned parameter: A pointer to the handle of the split working
frame. Only valid when FDMA_SPLIT_PSA flag is FDMA_S←↩
PLIT_PSA_NO_PRESENT_BIT or FDMA_SPLIT_PSA_PRE←↩
SENT_BIT, or FDMA_SPLIT_PSA_CLOSE_FRAME_BIT with
a store error

uint8_t seg_handle Returned parameter: A pointer to the handle of the presented seg-
ment (in the split frame).

uint8_t spid Storage Profile used to store frame data if additional buffers are
required when optionally closing the split working frame.

1.3.2.6.2.7 struct fdma_insert_segment_data_params

Insert Segment data parameters structure.

Data Fields

void ∗ from_ws_src a pointer to the workspace location from which the inserted seg-
ment data starts.

NXP Semiconductors
AIOP Service Layer API Reference Manual

48

Accelerators APIs

void ∗ ws_dst_rs A pointer to the location in workspace for the represented frame
segment (relevant if FDMA_REPLACE_SA_REPRESENT_BI←↩
T flag is set).

uint32_t flags replace working frame segment flags
uint16_t to_offset Offset from the previously presented segment representing where

to insert the data. Must be within the presented segment size.
uint16_t insert_size Size of the data being inserted to the segment.
uint16_t size_rs Number of frame bytes to represent in the segment. Must be greater

than 0. Relevant if FDMA_REPLACE_SA_REPRESENT_BI←↩
T flag is set.

uint16_t seg_length_rs Returned parameter: The number of bytes actually presented (the
segment actual size). Relevant if FDMA_REPLACE_SA_REPR←↩
ESENT_BIT flag is set

uint8_t frame_handle Working frame handle to which the data is being inserted.
uint8_t seg_handle Data segment handle (related to the working frame handle) to

which the data is being inserted.

1.3.2.6.2.8 struct fdma_delete_segment_data_params

Delete Segment data parameters structure.

Data Fields

void ∗ ws_dst_rs A pointer to the location in workspace for the represented frame
segment (relevant if FDMA_REPLACE_SA_REPRESENT_BI←↩
T flag is set).

uint32_t flags FDMA Replace Flags replace working frame segment flags.
uint16_t to_offset Offset from the previously presented segment representing from

where to delete data. Must be within the presented segment size.
uint16_t delete_target←↩

_size
Size of the data being deleted from the segment.

uint16_t size_rs Number of frame bytes to represent in the segment. Must be greater
than 0. Relevant if FDMA_REPLACE_SA_REPRESENT_BI←↩
T flag is set.

uint16_t seg_length_rs Returned parameter: The number of bytes actually presented (the
segment actual size). Relevant if FDMA_REPLACE_SA_REPR←↩
ESENT_BIT flag is set.

uint8_t frame_handle Working frame handle from which the data is being deleted.
uint8_t seg_handle Data segment handle (related to the working frame handle) from

which the data is being deleted.

NXP Semiconductors
AIOP Service Layer API Reference Manual

49

Accelerators APIs

1.3.2.7 FDMA Functions

1.3.2.7.1 Overview

FDMA Functions.

Functions

• int fdma_present_default_frame (void)
• int fdma_present_frame (struct fdma_present_frame_params ∗params)
• int fdma_present_default_frame_without_segments (void)
• int fdma_present_frame_without_segments (struct ldpaa_fd ∗fd, uint32_t flags, uint16_t icid,

uint8_t ∗frame_handle)
• int fdma_present_default_frame_segment (uint32_t flags, void ∗ws_dst, uint16_t offset, uint16_t

present_size)
• int fdma_present_frame_segment (struct fdma_present_segment_params ∗params)
• int fdma_read_default_frame_asa (void ∗ws_dst, uint16_t offset, uint16_t present_size, uint16_t
∗seg_length)

• int fdma_read_default_frame_pta (void ∗ws_dst)
• int fdma_extend_default_segment_presentation (uint16_t extend_size, void ∗ws_dst, uint32_t flags)
• int fdma_store_default_frame_data (void)
• int fdma_store_frame_data (uint8_t frame_handle, uint8_t spid, struct fdma_amq ∗amq)
• int fdma_store_and_enqueue_default_frame_fqid (uint32_t fqid, uint32_t flags)
• int fdma_store_and_enqueue_frame_fqid (uint8_t frame_handle, uint32_t flags, uint32_t fqid,

uint8_t spid)
• int fdma_store_and_enqueue_default_frame_qd (struct fdma_queueing_destination_params ∗qdp,

uint32_t flags)
• int fdma_store_and_enqueue_frame_qd (uint8_t frame_handle, uint32_t flags, struct fdma_←↩

queueing_destination_params ∗qdp, uint8_t spid)
• int fdma_enqueue_default_fd_fqid (uint16_t icid, uint32_t flags, uint32_t fqid)
• int fdma_enqueue_fd_fqid (struct ldpaa_fd ∗fd, uint32_t flags, uint32_t fqid, uint16_t icid)
• int fdma_enqueue_default_fd_qd (uint16_t icid, uint32_t flags, struct fdma_queueing_destination←↩

_params ∗enqueue_params)
• int fdma_enqueue_fd_qd (struct ldpaa_fd ∗fd, uint32_t flags, struct fdma_queueing_destination_←↩

params ∗enqueue_params, uint16_t icid)
• void fdma_discard_default_frame (uint32_t flags)
• void fdma_discard_frame (uint16_t frame, uint32_t flags)
• int fdma_discard_fd (struct ldpaa_fd ∗fd, uint16_t icid, uint32_t flags)
• int fdma_force_discard_fd (struct ldpaa_fd ∗fd, uint16_t icid, uint32_t flags)
• void fdma_terminate_task (void)
• int fdma_replicate_frame_fqid (uint8_t frame_handle1, uint8_t spid, uint32_t fqid, void ∗fd_dst,

uint32_t flags, uint8_t ∗frame_handle2)
• int fdma_replicate_frame_qd (uint8_t frame_handle1, uint8_t spid, struct fdma_queueing_←↩

destination_params ∗enqueue_params, void ∗fd_dst, uint32_t flags, uint8_t ∗frame_handle2)
• int fdma_concatenate_frames (struct fdma_concatenate_frames_params ∗params)
• int fdma_split_frame (struct fdma_split_frame_params ∗params)
• void fdma_trim_default_segment_presentation (uint16_t offset, uint16_t size)
• void fdma_modify_default_segment_data (uint16_t offset, uint16_t size)

NXP Semiconductors
AIOP Service Layer API Reference Manual

50

Accelerators APIs

• void fdma_modify_default_segment_full_data ()
• int fdma_insert_default_segment_data (uint16_t to_offset, void ∗from_ws_src, uint16_t insert_size,

uint32_t flags)
• int fdma_insert_segment_data (struct fdma_insert_segment_data_params ∗params)
• int fdma_delete_default_segment_data (uint16_t to_offset, uint16_t delete_target_size, uint32_←↩

t flags)
• int fdma_delete_segment_data (struct fdma_delete_segment_data_params ∗params)
• void fdma_close_default_segment (void)
• void fdma_close_segment (uint8_t frame_handle, uint8_t seg_handle)
• int fdma_replace_default_asa_segment_data (uint16_t to_offset, uint16_t to_size, void ∗from_ws←↩

_src, uint16_t from_size, void ∗ws_dst_rs, uint16_t size_rs, uint32_t flags, uint16_t ∗seg_length)
• int fdma_replace_default_pta_segment_data (uint32_t flags, void ∗from_ws_src, void ∗ws_dst_rs,

enum fdma_pta_size_type size_type)
• void fdma_calculate_default_frame_checksum (uint16_t offset, uint16_t size, uint16_t ∗checksum)
• void get_frame_length (uint8_t frame_handle, uint32_t ∗length)
• void get_default_amq_attributes (struct fdma_amq ∗amq)
• void set_default_amq_attributes (struct fdma_amq ∗amq)
• void get_concatenate_amq_attributes (uint16_t ∗icid1, uint16_t ∗icid2, uint32_t ∗amq_flags)
• int fdma_present_default_frame_default_segment ()
• int fdma_replace_default_segment_data (uint16_t to_offset, uint16_t to_size, void ∗from_ws_src,

uint16_t from_size, void ∗ws_dst_rs, uint16_t size_rs, uint32_t flags)
• void fdma_copy_data (uint16_t copy_size, uint32_t flags, void ∗src, void ∗dst)
• void fdma_dma_data (uint16_t copy_size, uint16_t icid, void ∗ws_addr, uint64_t sys_addr, uint32←↩

_t flags)
• int fdma_set_data_write_attributes (enum aiop_bus_transaction transaction, enum aiop_cache_←↩

allocate_policy policy)
• int fdma_set_data_read_attributes (enum aiop_bus_transaction transaction, enum aiop_cache_←↩

allocate_policy policy)
• int fdma_set_sru_write_attributes (enum aiop_bus_transaction transaction, enum aiop_cache_←↩

allocate_policy policy)
• int fdma_set_sru_read_attributes (enum aiop_bus_transaction transaction, enum aiop_cache_←↩

allocate_policy policy)

1.3.2.7.2 Function Documentation

1.3.2.7.2.1 int fdma_present_default_frame (void)

Initial presentation of a default working frame into the task workspace.

This command may present a default Data segment of the default working frame (depends on the task
default values).

Implicit input parameters in Task Defaults: segment address, segment offset, segment size, Segment Ref-
erence bit, fd address in workspace (HWC_FD_ADDRESS), AMQ attributes (PL, VA, BDI, ICID).

This command can also be used to initiate construction of a frame from scratch (without a presented
frame). In this case the fd address parameter must point to a null FD (all 0x0, IVP=1, PTA=storage profile
PTAR) in the workspace, and an empty segment must be allocated (of size 0).

Implicitly updated values in Task Defaults: frame handle, segment handle, segment length.

NXP Semiconductors
AIOP Service Layer API Reference Manual

51

Accelerators APIs

Returns

0 or positive value on success. Negative value on error.

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (not relevant if
the NDS bit in the presentation context is set, or if the Data size in the
presentation context is 0). This return value is caused since the requested
presentation exceeded frame data end. The segment handle is valid when
returning with this error, but is shorter than requested.

EIO - Received frame with non-zero FD[err] field. In such a case the returned
frame handle is valid, but no presentations occurred. The segment handle
is not valid when returning with this error.

Warning

In case the presented segment will be used by PARSER/CTLU/KEYGEN, it should be presented in
a 16 byte aligned workspace address (due to HW limitations).
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.2 int fdma_present_frame (struct fdma_present_frame_params ∗ params)

Initial presentation of the frame into the task workspace.

This command can also be used to initiate construction of a frame from scratch (without a presented
frame). In this case the fd address parameter must point to a null FD (all 0x0, IVP=1, PTA=storage profile
PTAR) in the workspace, and an empty segment must be allocated (of size 0).

In case the fd destination parameter points to the default FD address, the service routine will update Task
defaults variables according to command parameters.

Parameters

in,out params - A pointer to the Initial frame presentation command parameters fdma←↩
_present_frame_params.

Returns

0 or positive value on success. Negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

52

Accelerators APIs

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (not relevant if
the NDS bit flag in the function parameters is set, or if the Data size in the
function parameters is 0). This return value is caused since the requested
presentation exceeded frame data end. The segment handle is valid when
returning with this error, but is shorter than requested.

FDMA_STATUS_UNA←↩
BLE_PRES_ASA_SEG

- Unable to fulfill specified ASA segment presentation size (not relevant if
the ASA size in the function parameters is 0). This return value is caused
since the requested presentation exceeded frame ASA end. The ASA seg-
ment is valid when returning with this error, but is shorter than requested.

EIO - Received frame with non-zero FD[err] field. In such a case the returned
frame handle is valid, but no presentations occurred. The segment handle
is not valid when returning with this error.

Warning

In case the presented segment will be used by PARSER/CTLU/KEYGEN, it should be presented in
a 16 byte aligned workspace address (due to HW limitations).
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.3 int fdma_present_default_frame_without_segments (void)

Initial presentation of a default frame into the task workspace without any segments (Data, ASA, PTA).

Implicit input parameters in Task Defaults: AMQ attributes (PL, VA, BDI, ICID), FD address.

Implicitly updated values in Task Defaults: frame handle, NDS bit, ASA size (0), PTA address(PTA_N←↩
OT_LOADED_ADDRESS).

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EIO - Received frame with non-zero FD[err] field. In such a case the returned

frame handle is valid, but no presentations occurred.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

53

Accelerators APIs

1.3.2.7.2.4 int fdma_present_frame_without_segments (struct ldpaa_fd ∗ fd, uint32_t flags,
uint16_t icid, uint8_t ∗ frame_handle)

Initial presentation of a frame into the task workspace without any segments (Data, ASA, PTA).

Implicit input parameters in Task Defaults: AMQ attributes (PL, VA, BDI, ICID).

Implicitly updated values in Task Defaults in case the FD points to the default FD location: frame handle,
NDS bit, ASA size (0), PTA address (PTA_NOT_LOADED_ADDRESS).

Parameters

in fd - A pointer to the workspace location of the Frame Descriptor to present.
in flags - Present segment flags.
in icid - Bits<1-15> : Isolation Context ID. Frame AMQ attribute. Used only

in case FDMA_INIT_AS_BIT is set.
out frame_handle - A handle to the opened working frame.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EIO - Received frame with non-zero FD[err] field. In such a case the returned

frame handle is valid, but no presentations occurred.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.5 int fdma_present_default_frame_segment (uint32_t flags, void ∗ ws_dst, uint16_t
offset, uint16_t present_size)

Open a default segment of the default working frame and copy the segment data into the specified location
in the workspace.

Implicit input parameters in Task Defaults: frame handle.

Implicitly updated values in Task Defaults: segment length, segment handle, segment address, segment
offset.

NXP Semiconductors
AIOP Service Layer API Reference Manual

54

Accelerators APIs

Parameters

in flags - Present segment flags.
in ws_dst - A pointer to the location in workspace for the presented frame segment.
in offset - Location within the presented frame to start presenting from. Must be

within the bound of the frame. Relative to FDMA_PRES_SR_BIT flag.
in present_size - Number of frame bytes to present (any value including 0).

Returns

0 or positive value on success. Negative value on error.

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (not relevant if
the present_size in the function parameters is 0). This return value is caused
since the requested presentation exceeded frame data end. The segment
handle is valid when returning with this error, but is shorter than requested.

Warning

In case the presented segment will be used by PARSER/CTLU/KEYGEN, it should be presented in
a 16 byte aligned workspace address (due to HW limitations).
This command may be invoked only for a default Data segments.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.6 int fdma_present_frame_segment (struct fdma_present_segment_params ∗ params)

Open a segment of a working frame and copy the segment data into the specified location in the workspace.

Parameters

in params - A pointer to the Present frame segment command parameters fdma_←↩
present_segment_params.

Returns

0 or positive value on success. Negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

55

Accelerators APIs

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (not relevant if
the present_size in the function parameters is 0). This return value is caused
since the requested presentation exceeded frame data end. The segment
handle is valid when returning with this error, but is shorter than requested.

Warning

In case the presented segment will be used by PARSER/CTLU/KEYGEN, it should be presented in
a 16 byte aligned workspace address (due to HW limitations).
This command may be invoked only for Data segments.
This command may not be invoked on the default Data segments.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.7 int fdma_read_default_frame_asa (void ∗ ws_dst, uint16_t offset, uint16_t
present_size, uint16_t ∗ seg_length)

Read the Accelerator Specific Annotation (ASA) subsection associated with the default working frame
from external memory into a specified location in the workspace.

Implicit input parameters in Task Defaults: frame handle.

Implicitly updated values in Task Defaults: ASA segment address, ASA segment length (the number of
bytes actually presented given in 64B units), ASA segment offset.

Parameters

in ws_dst - A pointer to the location in workspace for the presented ASA segment
(64 bytes aligned address due to a HW issue).

in offset - Location within the ASA to start presenting from. Must be within the
bound of the frame. Specified in 64B units. Relative to FDMA_PRES←↩
_SR_BIT flag.

in present_size - Number of frame bytes to present (Must be greater than 0). Contains
the number of 64B quantities to present because the Frame ASAL field
is specified in 64B units.

NXP Semiconductors
AIOP Service Layer API Reference Manual

56

Accelerators APIs

out seg_length - The number of bytes actually presented (the segment actual size).

Returns

0 or positive value on success. Negative value on error.

Return values

0 - Success.
FDMA_STATUS_UNA←↩

BLE_PRES_ASA_SEG
- Unable to fulfill specified ASA segment presentation size (not relevant
if the present_size in the function parameters is 0). This return value is
caused since the requested presentation exceeded frame ASA end. The
ASA segment is valid when returning with this error, but is shorter than
requested.

Remarks

The ASA segment handle value is fixed FDMA_ASA_SEG_HANDLE.

Warning

The HW must have previously opened the frame with an automatic initial presentation or initial
presentation command.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.8 int fdma_read_default_frame_pta (void ∗ ws_dst)

Read the Pass Through Annotation (PTA) subsection associated with the default working frame from
external memory into a specified location in the workspace.

Implicit input parameters in Task Defaults: frame handle.

Implicitly updated values in Task Defaults: PTA segment address.

Parameters

in ws_dst - A pointer to the location in workspace for the presented PTA segment
(64 bytes aligned address due to a HW issue).

Returns

0 on Success, or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

57

Accelerators APIs

Return values

0 - Success.
EIO - Unable to present PTA segment (no PTA segment in the working frame).

Remarks

The PTA segment handle value is fixed FDMA_PTA_SEG_HANDLE.
The length of the read PTA can be read directly from the FD.

Warning

The HW must have previously opened the frame with an automatic initial presentation or initial
presentation command.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.9 int fdma_extend_default_segment_presentation (uint16_t extend_size, void ∗
ws_dst, uint32_t flags)

Extend an existing presentation default segment with additional data.

This command can present frame data, and frame accelerator specific annotation data (ASA).

Implicitly updated values in Task Defaults: segment (Data or ASA) length. For ASA segment, specifies
the the count (in 64B units) of the deepest presented unit of ASA.

Parameters

in extend_size - Number of additional bytes to present (0 results in no operation).
For ASA segment, specifies the number of additional 64B quantities
to present from the ASA.

in ws_dst - A pointer to the location within the workspace to present the additional
frame segment data.

in flags - Extend segment mode bits.

Returns

0 or positive value on success. Negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

58

Accelerators APIs

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment extend size. This return value
is caused since the requested presentation exceeded frame data end. The
segment handle is valid when returning with this error, but is shorter than
requested.

FDMA_STATUS_UNA←↩
BLE_PRES_ASA_SEG

- Unable to fulfill specified ASA segment extend size. This return value
is caused since the requested presentation exceeded frame ASA end. The
ASA segment is valid when returning with this error, but is shorter than
requested.

Remarks

The extended data to be presented does not have to be sequential relative to the current presented
segment.
After this command the extended default segment (Data/ASA) values in the presentation context
relevant to this segment will not be valid.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.10 int fdma_store_default_frame_data (void)

Write out modified default Working Frame to the backing storage in system memory described by the
Frame Descriptor and close the working frame.

Existing FD buffers are used to store data.

If the modified frame no longer fits in the original structure, new buffers can be added using the provided
storage profile. If the original structure can not be modified, then a new structure will be assembled using
the default frame storage profile ID.

Implicit input parameters in Task Defaults: frame handle, spid (storage profile ID).

Returns

0 on Success, or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

59

Accelerators APIs

Return values

0 - Success.
ENOMEM - Failed due to buffer pool depletion.

Remarks

FD is updated.
If some segments of the Working Frame are not closed, they will be closed and the segment handles
will be implicitly released.
Release frame handle is implicit in this function.

Warning

All modified segments (which are to be stored) must be replaced (by a replace command) before
storing a frame.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.11 int fdma_store_frame_data (uint8_t frame_handle, uint8_t spid, struct fdma_amq ∗
amq)

Write out modified Working Frame to the backing storage in system memory described by the Frame
Descriptor and close the working frame.

Existing FD buffers are used to store data.

If the modified frame no longer fits in the original structure, new buffers can be added using the provided
storage profile. If the original structure can not be modified, then a new structure will be assembled using
the frame storage profile ID parameter.

Parameters

in frame_handle - Handle to the frame to be closed.
in spid - storage profile ID used to store frame data if additional buffers are

required.
out amq - AMQ attributes fdma_amq.

Returns

0 on Success, or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

60

Accelerators APIs

Return values

0 - Success.
ENOMEM - Failed due to buffer pool depletion.

Remarks

FD is updated.
If some segments of the Working Frame are not closed, they will be closed and the segment handles
will be implicitly released.
Release frame handle is implicit in this function.

Warning

All modified segments (which are to be stored) must be replaced (by a replace command) before
storing a frame.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.12 int fdma_store_and_enqueue_default_frame_fqid (uint32_t fqid, uint32_t flags)

Enqueue the default Working Frame to a given destination according to a frame queue id.

After completion, the Enqueue Working Frame command can terminate the task or return.

If the Working Frame to be enqueued is modified, the Enqueue Frame command performs a Store Frame
Data command on the Working Frame.

If the Working Frame to be enqueued is modified, existing buffers as described by the FD are used to store
data.

If the modified frame no longer fits in the original structure, new buffers can be added using the provided
storage profile.

If the original structure can not be modified, then a new structure will be assembled using the default frame
storage profile ID.

Implicit input parameters in Task Defaults: frame handle, spid (storage profile ID).

Parameters

in fqid - frame queue ID for the enqueue.
in flags - enqueue working frame mode bits.

Returns

0 on Success, or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

61

Accelerators APIs

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

ENOMEM - Failed due to buffer pool depletion.

Remarks

If some segments of the Working Frame are not closed, they will be closed and the segment handles
will be implicitly released.
Release frame handle is implicit in this function.
If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

Function may not return.
All modified segments (which are to be stored) must be replaced (by a replace command) before
storing a frame.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.13 int fdma_store_and_enqueue_frame_fqid (uint8_t frame_handle, uint32_t flags,
uint32_t fqid, uint8_t spid)

Enqueue a Working Frame to a given destination according to a frame queue id.

After completion, the Enqueue Working Frame command can terminate the task or return.

If the Working Frame to be enqueued is modified, the Enqueue Frame command performs a Store Frame
Data command on the Working Frame.

If the Working Frame to be enqueued is modified, existing buffers as described by the FD are used to store
data.

If the modified frame no longer fits in the original structure, new buffers can be added using the provided
storage profile.

If the original structure can not be modified, then a new structure will be assembled using the provided
storage profile ID.

Parameters

in frame_handle - working frame handle to enqueue.
in flags - enqueue working frame mode bits.
in fqid - frame queue ID for the enqueue.
in spid - Storage Profile ID used to store frame data.

NXP Semiconductors
AIOP Service Layer API Reference Manual

62

Accelerators APIs

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

ENOMEM - Failed due to buffer pool depletion.

Remarks

If some segments of the Working Frame are not closed, they will be closed and the segment handles
will be implicitly released.
Release frame handle is implicit in this function.
If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

Function may not return.
All modified segments (which are to be stored) must be replaced (by a replace command) before
storing a frame.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.14 int fdma_store_and_enqueue_default_frame_qd (struct fdma_queueing_←↩
destination_params ∗ qdp, uint32_t flags)

Enqueue the default Working Frame to a given destination according to a queueing destination.

After completion, the Enqueue Working Frame command can terminate the task or return.

If the Working Frame to be enqueued is modified, the Enqueue Frame command performs a Store Frame
Data command on the Working Frame.

If the Working Frame to be enqueued is modified, existing buffers as described by the FD are used to store
data.

If the modified frame no longer fits in the original structure, new buffers can be added using the provided
storage profile.

If the original structure can not be modified, then a new structure will be assembled using the default frame
storage profile ID.

Implicit input parameters in Task Defaults: frame handle, spid (storage profile ID).

NXP Semiconductors
AIOP Service Layer API Reference Manual

63

Accelerators APIs

Parameters

in qdp - Pointer to the queueing destination parameters fdma_queueing_←↩
destination_params.

in flags - enqueue working frame mode bits.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

ENOMEM - Failed due to buffer pool depletion.

Remarks

If some segments of the Working Frame are not closed, they will be closed and the segment handles
will be implicitly released.
Release frame handle is implicit in this function.
If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

Function may not return.
All modified segments (which are to be stored) must be replaced (by a replace command) before
storing a frame.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.15 int fdma_store_and_enqueue_frame_qd (uint8_t frame_handle, uint32_t flags,
struct fdma_queueing_destination_params ∗ qdp, uint8_t spid)

Enqueue a Working Frame to a given destination according to a queueing destination.

After completion, the Enqueue Working Frame command can terminate the task or return.

If the Working Frame to be enqueued is modified, the Enqueue Frame command performs a Store Frame
Data command on the Working Frame.

If the Working Frame to be enqueued is modified, existing buffers as described by the FD are used to store
data.

NXP Semiconductors
AIOP Service Layer API Reference Manual

64

Accelerators APIs

If the modified frame no longer fits in the original structure, new buffers can be added using the provided
storage profile.

If the original structure can not be modified, then a new structure will be assembled using the provided
storage profile ID.

Implicit input parameters in Task Defaults: frame handle, spid (storage profile ID).

Parameters

in frame_handle - working frame handle to enqueue.
in flags - enqueue working frame mode bits.
in qdp - Pointer to the queueing destination parameters fdma_queueing_←↩

destination_params.
in spid - Storage Profile ID used to store frame data.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

ENOMEM - Failed due to buffer pool depletion.

Remarks

If some segments of the Working Frame are not closed, they will be closed and the segment handles
will be implicitly released.
Release frame handle is implicit in this function.
If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

Function may not return.
All modified segments (which are to be stored) must be replaced (by a replace command) before
storing a frame.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.16 int fdma_enqueue_default_fd_fqid (uint16_t icid, uint32_t flags, uint32_t fqid)

Enqueue the default FD (which is not presented) to a given destination according to a frame queue id.

After completion, the Enqueue Frame command can terminate the task or return.

Implicit input parameters in Task Defaults: fd address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

65

Accelerators APIs

Parameters

in icid - ICID of the FD to enqueue.
in flags - enqueue frame flags.
in fqid - frame queue ID for the enqueue.

Returns

0 on Success, or negative value on error.

Remarks

If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

Warning

The frame associated with the FD must not be presented (closed).
Function may not return.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.17 int fdma_enqueue_fd_fqid (struct ldpaa_fd ∗ fd, uint32_t flags, uint32_t fqid,
uint16_t icid)

Enqueue a Frame Descriptor (which is not presented) to a given destination according to a frame queue id.

After completion, the Enqueue Frame command can terminate the task or return.

Parameters

in fd - Pointer to the location in workspace of the Frame Descriptor to be
enqueued ldpaa_fd.

in flags - enqueue frame flags.
in fqid - frame queue ID for the enqueue.
in icid - ICID of the FD to enqueue.

Returns

0 on Success, or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

66

Accelerators APIs

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

Remarks

If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

The frame associated with the FD must not be presented (closed).
Function may not return.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.18 int fdma_enqueue_default_fd_qd (uint16_t icid, uint32_t flags, struct
fdma_queueing_destination_params ∗ enqueue_params)

Enqueue the default FD (which is not presented) to a given destination according to a queueing destination.

After completion, the Enqueue Frame command can terminate the task or return.

Implicit input parameters in Task Defaults: fd address.

Parameters

in icid - ICID of the FD to enqueue.
in flags - enqueue frame flags.
in enqueue_←↩

params
- Pointer to the queueing destination parameters fdma_queueing_←↩
destination_params.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

Remarks

If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

NXP Semiconductors
AIOP Service Layer API Reference Manual

67

Accelerators APIs

Warning

The frame associated with the FD must not be presented (closed).
Function may not return.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.19 int fdma_enqueue_fd_qd (struct ldpaa_fd ∗ fd, uint32_t flags, struct
fdma_queueing_destination_params ∗ enqueue_params, uint16_t icid)

Enqueue a Frame Descriptor (which is not presented) to a given destination according to a queueing
destination.

After completion, the Enqueue Frame command can terminate the task or return.

Parameters

in fd - Pointer to the location in workspace of the Frame Descriptor to be
enqueued ldpaa_fd.

in flags - enqueue frame flags.
in enqueue_←↩

params
- Pointer to the queueing destination parameters fdma_queueing_←↩
destination_params.

in icid - ICID of the FD to enqueue.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

Remarks

If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

The frame associated with the FD must not be presented (closed).
Function may not return.
This function may result in a fatal error.
In this Service Routine the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

68

Accelerators APIs

1.3.2.7.2.20 void fdma_discard_default_frame (uint32_t flags)

Release the resources associated with the default working frame.

Implicit input parameters in Task Defaults: frame handle.

Parameters

in flags - discard frame flags.

Returns

None.

Remarks

Release frame handle and release segment handle(s) are implicit in this function.

Warning

If the frame is built with buffers not managed by BMan, then this command should not be used. If
used, then buffers with IVP=1 will be skipped which may lead to memory leak.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.21 void fdma_discard_frame (uint16_t frame, uint32_t flags)

Release the resources associated with a working frame.

Parameters

in frame - Frame handle to be discarded.
in flags - discard working frame frame flags.

Returns

None.

Remarks

Release frame handle and release segment handle(s) are implicit in this function.

Warning

If the frame is built with buffers not managed by BMan, then this command should not be used. If
used, then buffers with IVP=1 will be skipped which may lead to memory leak.
This function may result in a fatal error.
In this Service Routine the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

69

Accelerators APIs

1.3.2.7.2.22 int fdma_discard_fd (struct ldpaa_fd ∗ fd, uint16_t icid, uint32_t flags)

Release the resources associated with a frame descriptor.

Implicit input parameters in Task Defaults in case FDMA_DIS_AS_BIT is set: AMQ attributes (PL, VA,
BDI, ICID).

Parameters

in fd - A pointer to the location in the workspace of the FD to be discarded
ldpaa_fd.

in icid - ICID of the FD to discard.
in flags - discard frame flags.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EIO - Received frame with non-zero FD[err] field.

Warning

If the frame is built with buffers not managed by BMan, then this command should not be used. If
used, then buffers with IVP=1 will be skipped which may lead to memory leak.
The frame associated with the FD must not be presented (closed).
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.23 int fdma_force_discard_fd (struct ldpaa_fd ∗ fd, uint16_t icid, uint32_t flags)

Force frame discard. This function first zero FD.err field and than discard the frame. (A frame with FD.err
!= 0 cannot be discarded).

Implicit input parameters in Task Defaults in case FDMA_DIS_AS_BIT is set: AMQ attributes (PL, VA,
BDI, ICID).

Implicitly updated values: FD.err is zeroed.

NXP Semiconductors
AIOP Service Layer API Reference Manual

70

Accelerators APIs

Parameters

in fd - A pointer to the location in the workspace of the FD to be discarded
ldpaa_fd.

in icid - ICID of the FD to discard.
in flags - discard frame flags.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EIO - Received frame with non-zero FD[err] field.

Warning

If the frame is built with buffers not managed by BMan, then this command should not be used. If
used, then buffers with IVP=1 will be skipped which may lead to memory leak.
The frame associated with the FD must not be presented (closed).
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.24 void fdma_terminate_task (void)

End all processing on the associated task and notify the Order Scope Manager of the task termination.

Returns

None.

Remarks

Release frame handle(s) and release segment handle(s) are implicit in this function.

Warning

Application software must store (in software managed context) or discard the input frame before
calling Terminate task command to avoid buffer leak.
Function does not return.
This function may result in a fatal error.
In this Service Routine the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

71

Accelerators APIs

1.3.2.7.2.25 int fdma_replicate_frame_fqid (uint8_t frame_handle1, uint8_t spid, uint32_t fqid,
void ∗ fd_dst, uint32_t flags, uint8_t ∗ frame_handle2)

Make a copy of the working frame and optionally enqueue the replicated frame (the copy) according to a
frame queue id.

The source Working Frame may be modified (FDMA internal memory is updated).

The source frame is replicated based on its last known state by the FDMA.

The replication process will not preserve SF bit or SGE boundaries when the SF bit is set.

The replicated working frame DD, DROPP and eVA are inherited from the source frame, its ICID, BDI,
PL and SL are taken from the Storage Profile.

Parameters

in frame_handle1 - Handle of the source frame.
in spid - Storage Profile used to store frame data of the destination frame if

enqueue is selected, also used to determine ICID and memory attributes
(BDI/PL/ICID) of the replicated frame. The eVA of the replicated frame
is taken from the source working frame.

in fqid - frame queue ID for the enqueue.
in fd_dst - A pointer to the location within the workspace of the destination FD.
in flags - replicate working frame flags .
out frame_handle2 - Handle of the replicated frame (when no enqueue selected or enqueue

selected and store failed).

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

ENOMEM - Failed due to buffer pool depletion.

Remarks

If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

72

Accelerators APIs

1.3.2.7.2.26 int fdma_replicate_frame_qd (uint8_t frame_handle1, uint8_t spid, struct
fdma_queueing_destination_params ∗ enqueue_params, void ∗ fd_dst, uint32_t
flags, uint8_t ∗ frame_handle2)

Make a copy of the working frame and optionally enqueue the replicated frame (the copy) according to a
queueing destination.

The source Working Frame may be modified (FDMA internal memory is updated).

The source frame is replicated based on its last known state by the FDMA.

The replication process will not preserve SF bit or SGE boundaries when the SF bit is set.

The replicated working frame DD, DROPP and eVA are inherited from the source frame, its ICID, BDI,
PL and SL are taken from the Storage Profile.

Parameters

in frame_handle1 - Handle of the source frame.
in spid - Storage Profile used to store frame data of the destination frame if

enqueue is selected, also used to determine ICID and memory attributes
(BDI/PL/ICID) of the replicated frame. The eVA of the replicated frame
is taken from the source working frame.

in enqueue_←↩
params

- Pointer to the queueing destination parameters fdma_queueing_←↩
destination_params.

in fd_dst - A pointer to the location within the workspace of the destination FD.
in flags - replicate working frame flags .
out frame_handle2 - Handle of the replicated frame (when no enqueue was selected).

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EBUSY - Enqueue failed due to congestion in QMAN.

ENOMEM - Failed due to buffer pool depletion.

Remarks

If a fatal error is detected prior to the enqueue, the enqueue is not performed, the command returns
with the error code and the FD is still in workspace.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

73

Accelerators APIs

1.3.2.7.2.27 int fdma_concatenate_frames (struct fdma_concatenate_frames_params ∗ params)

Join two frames {frame1 , frame2} and return a new concatenated frame.

The two frames may be modified but all the segments must be closed (open segments on working frame
1 and working frame 2 will be automatically closed by the command and the associated segment handles
will be released).

The command also support the option to trim a number of
bytes from the beginning of the 2nd frame before it is
concatenated.

The frames must be in the same ICID.

Parameters

in,out params - A pointer to the Concatenate frames command parameters fdma_←↩
concatenate_frames_params.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
ENOMEM - Failed due to buffer pool depletion (relevant only if FDMA_CONCAT←↩

_PCA_BIT flag is set). In this case the concatenated frame handle remains
valid.

EIO - Received frame with non-zero FD[err] field.

Remarks

Frame annotation of the first frame becomes the frame annotation of the concatenated frame.
Release of frame handle 2 is implicit in this function.

Warning

Both frames must be opened once calling this command.
In case frame1 handle parameter is the default frame handle, the default frame length variable in the
Task defaults will not be valid after the service routine.
In case frame2 handle parameter is the default frame handle, all Task default variables will not be
valid after the service routine.

NXP Semiconductors
AIOP Service Layer API Reference Manual

74

Accelerators APIs

In case the concatenated frame is not closed (FDMA_CONCAT_PCA_BIT is not set) the FD[length]
of the concatenated frame is not valid after this command (from performance considerations). How-
ever, if the input frame1 was a FD (FS1 = 1), the handle of the concatenated frame1 is stored in the
presentation context and in the frame1 field of the command parameters structure.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.28 int fdma_split_frame (struct fdma_split_frame_params ∗ params)

Split a Working Frame into two frames and return an updated Working Frame along with a split frame.

The source Working Frame may be modified (FDMA internal memory is updated) but all the segments
must be Closed.

All the frame open segments will be implicitly closed, and their segment handles will be released.

In case the fd destination parameter points to the default FD address, the service routine will update the
Task defaults variables according to command parameters.

In case FDMA_SPLIT_SM_BIT flag is not set, the service routine updates the split frame fd.length field.

Parameters

in,out params - A pointer to the Split frame command parameters fdma_split_frame←↩
_params.

Returns

0 or positive value on success. Negative value on error.

Return values

0 - Success.
ENOMEM - Failed due to buffer pool depletion (relevant only if closing split frame)

(relevant for Rev 2).
EINVAL - Last split is not possible.

FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (relevant if FD←↩
MA_SPLIT_PSA_PRESENT_BIT flag is set). This return value is caused
since the requested presentation exceeded frame data end.

Remarks

The first fd is updated to reflect the remainder of the input fd (the second part of the split frame).
The second fd represent the split portion of the frame (the first part of the split frame). This FD is
updated (in place). Most of the FD is cloned from the FD1. The ADDR, LENGTH, BPID, OFFS←↩
ET, FMT are not updated. The split working frame DD, DROPP, eVA, ICID, BDI, PL and SL are
inherited from the source frame.

NXP Semiconductors
AIOP Service Layer API Reference Manual

75

Accelerators APIs

Frame annotation of the first frame is preserved.
If split size is >= frame size then an error will be returned.

Warning

The split frame FD[length] is updated after this command.
The source frame FD[length] is updated after this command only if the source frame is the default
frame.
In case the presented segment will be used by PARSER/CTLU/KEYGEN, it should be presented in
a 16 byte aligned workspace address (due to HW limitations).
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.29 void fdma_trim_default_segment_presentation (uint16_t offset, uint16_t size)

Re-size down a previously presented default Data segment (head/tail trim).

Updates the presented data identified with the segment (Does not do a replace command). The change
will only take place in the FDMA side. After this command the FDMA will associate the segment with
a subset of the original segment of 'size' bytes starting from a specified offset in the original segment (the
new size and offset are the Service Routine parameters).

Implicit input parameters in Task Defaults: frame handle, segment handle.

Implicitly updated values in task defaults: segment length.

Parameters

in offset - Offset from the previously presented segment representing the new
start of the segment (head trim).

in size - New Data segment size in bytes.

Returns

None.

Remarks

Example: Trim segment to 20 bytes at offset 10. The default Data segment represents a 100 bytes at
offset 0 in the frame (0-99) and the user want to the segment to represent only 20 bytes starting at
offset 10 (relative to the presented segment). Parameters:

• offset - 10 (relative to the presented segment)
• size - 20

NXP Semiconductors
AIOP Service Layer API Reference Manual

76

Accelerators APIs

Warning

This command may be invoked only for Data segments.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.30 void fdma_modify_default_segment_data (uint16_t offset, uint16_t size)

Modifies data in the default Data segment of the default Working Frame (in the FDMA).

This Service Routine updates the FDMA that certain data in the presented segment was modified. The up-
dated data is located in the same place the old data was located at in the segment presentation in workspace.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Parameters

in offset - The offset from the previously presented segment representing the start
point of the modification. Must be within the presented segment size.

in size - The Working Frame modified size.

Returns

None.

Remarks

Example: Modify 14 bytes. The default Data segment represents a 100 bytes at offset 0 in the
frame (0-99) and the user has updated bytes 11-24 (14 bytes) at their original location in the segment
presentation in workspace. Parameters:

• offset - 11 (relative to the presented segment)
• size - 14

Warning

This command may be invoked only on the default Data segment.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.31 void fdma_modify_default_segment_full_data ()

Modifies full data in the default Data segment of the default Working Frame (in the FDMA).

This Service Routine updates the FDMA that all the data in the presented segment was modified. The up-
dated data is located in the same place the old data was located at in the segment presentation in workspace.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address, segment
offset, segment size.

NXP Semiconductors
AIOP Service Layer API Reference Manual

77

Accelerators APIs

Returns

None.

Warning

This command may be invoked only on the default Data segment.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.32 int fdma_insert_default_segment_data (uint16_t to_offset, void ∗ from_ws_src,
uint16_t insert_size, uint32_t flags)

Insert new data to the default Working Frame (in the FDMA) through the default Data segment .

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set this Service Routine synchronizes the seg-
ment data between the Task Workspace and the FDMA.

Implicit input parameters in Task Defaults: frame handle, segment handle.

Implicitly updated values in task defaults: segment length, segment address.

Parameters

in to_offset - Offset from the previously presented segment representing where to
insert the data. Must be within the presented segment size.

in from_ws_src - a pointer to the workspace location from which the inserted segment
data starts.

in insert_size - Size of the data being inserted to the segment.
in flags - replace working frame segment flags.

Returns

0 or positive value on success. Negative value on error.

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (relevant if F←↩
DMA_REPLACE_SA_REPRESENT_BIT flag is set). This return value
is caused since the requested presentation exceeded frame data end. The
segment handle is valid when returning with this error, but is shorter than
requested.

NXP Semiconductors
AIOP Service Layer API Reference Manual

78

Accelerators APIs

Remarks

This is basically a replace command with to_size = 0 (0 bytes are replaced, 'size' bytes are inserted).
Example: Insert 2 bytes - The default Data segment represents a 100 bytes at offset 0 in the frame
(0-99), and the user want to insert 2 bytes after the 24th byte in the segment. Parameters:

• to_offset - 25 (relative to the presented segment)
• from_ws_address - <workspace address of the 2 bytes>
• insert_size - 2

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set, the pointer to the workspace start
address of the represented segment and the number of frame bytes to represent remains the same due
to .

Warning

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set, The Service Routine checks whether
there is enough headroom in the Workspace before the default segment address to present the inserted
data (the headroom should be large enough to contain the inserted data size). In case the headroom
is large enough, all the original segment + inserted data will be presented, and the segment size will
be increased by the inserted size. In case there is not enough headroom for the inserted size, the
segment representation will overwrite the old segment presentation in workspace. The segment size
will remain the same.
This command may be invoked only on the default Data segment.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.33 int fdma_insert_segment_data (struct fdma_insert_segment_data_params ∗ params
)

Insert new data to a Working Frame (in the FDMA) through a Data segment.

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set this Service Routine synchronizes the seg-
ment data between the Task Workspace and the FDMA.

Parameters

in params - A pointer to the insert segment data command parameters fdma_←↩
insert_segment_data_params.

Returns

0 or positive value on success. Negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

79

Accelerators APIs

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (relevant if F←↩
DMA_REPLACE_SA_REPRESENT_BIT flag is set). This return value
is caused since the requested presentation exceeded frame data end. The
segment handle is valid when returning with this error, but is shorter than
requested.

Remarks

This is basically a replace command with to_size = 0 (0 bytes are replaced, 'size' bytes are inserted).
Example: Insert 2 bytes - The default Data segment represents a 100 bytes at offset 0 in the frame
(0-99), and the user want to insert 2 bytes after the 24th byte in the segment. Parameters:

• to_offset - 25 (relative to the presented segment)
• from_ws_address - <workspace address of the 2 bytes>
• insert_size - 2

Warning

This command may be invoked only on the Data segment.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.34 int fdma_delete_default_segment_data (uint16_t to_offset, uint16_t
delete_target_size, uint32_t flags)

Delete data from the default Working Frame (in the FDMA) through the default Data segment.

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set this Service Routine synchronizes the seg-
ment data between the Task Workspace and the FDMA.

Implicit input parameters in Task Defaults: frame handle, segment handle.

Implicitly updated values in task defaults: segment length, segment address.

Parameters

in to_offset - Offset from the previously presented segment representing from where
to delete data. Must be within the presented segment size.

in delete_target←↩
_size

- Size of the data being deleted from the segment.

in flags - replace working frame segment flags.

Returns

0 or positive value on success. Negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

80

Accelerators APIs

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (relevant if F←↩
DMA_REPLACE_SA_REPRESENT_BIT flag is set). This return value
is caused since the requested presentation exceeded frame data end. The
segment handle is valid when returning with this error, but is shorter than
requested.

Remarks

This is basically a replace command with to_size = delete_target_size, ws_address = irrelevant (0),
size = 0 (replacing 'delete_target_size' bytes with 0 bytes = deletion).
Example: Delete 10 bytes. The default Data segment represents a 100 bytes at offset 0 in the frame
(0-99), and the user want to delete 10 bytes after the 24th byte. Parameters:

• to_offset - 25 (relative to the presented segment)
• delete_target_size - 10

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set the pointer to the workspace start
address of the represented segment and the number of frame bytes to represent remains the same.

Warning

This command may be invoked only on the default Data segment.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.35 int fdma_delete_segment_data (struct fdma_delete_segment_data_params ∗ params
)

Delete data from a Working Frame (in the FDMA) through a Data segment.

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set this Service Routine synchronizes the seg-
ment data between the Task Workspace and the FDMA.

Parameters

in params - A pointer to the delete segment data command parameters fdma_←↩
delete_segment_data_params.

Returns

0 or positive value on success. Negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

81

Accelerators APIs

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (relevant if F←↩
DMA_REPLACE_SA_REPRESENT_BIT flag is set). This return value
is caused since the requested presentation exceeded frame data end. The
segment handle is valid when returning with this error, but is shorter than
requested.

Remarks

This is basically a replace command with to_size = delete_target_size, ws_address = irrelevant (0),
size = 0 (replacing 'delete_target_size' bytes with 0 bytes = deletion).
Example: Delete 10 bytes. The default Data segment represents a 100 bytes at offset 0 in the frame
(0-99), and the user want to delete 10 bytes after the 24th byte. Parameters:

• to_offset - 25 (relative to the presented segment)
• delete_target_size - 10

Warning

This command may be invoked only on Data segment.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.36 void fdma_close_default_segment (void)

Closes the default segment in the default frame. Free the workspace memory associated with the segment.
All segment modifications which were not written to the working frame will be lost.

Implicit input parameters in Task Defaults: frame handle, segment handle.

Returns

None.

Warning

This command may be invoked only for Data segments.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.37 void fdma_close_segment (uint8_t frame_handle, uint8_t seg_handle)

Closes a segment in the specified frame. Free the workspace memory associated with the segment. All
segment modifications which were not written to the working frame will be lost.

NXP Semiconductors
AIOP Service Layer API Reference Manual

82

Accelerators APIs

Parameters

in frame_handle - working frame from which to close the segment
in seg_handle - The handle of the segment to be closed.

Returns

None.

Warning

This command may be invoked only for Data segments.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.38 int fdma_replace_default_asa_segment_data (uint16_t to_offset, uint16_t to_size,
void ∗ from_ws_src, uint16_t from_size, void ∗ ws_dst_rs, uint16_t size_rs, uint32_t
flags, uint16_t ∗ seg_length)

Replace modified data in the Accelerator Specific Annotation (ASA) segment associated with the default
Working Frame (in the FDMA).

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set this Service Routine synchronizes the ASA
segment data between the Task Workspace and the FDMA.

Implicit input parameters in Task Defaults: frame handle, ASA segment handle.

Implicitly updated values in Task Defaults: ASA segment address, ASA segment length.

Implicitly updated values in FD - ASA length.

Parameters

in to_offset - Offset from the beginning of the ASA data representing the start point
of the replacement specified in 64B quantities.

in to_size - The number of 64B quantities that are to be replaced within the ASA
segment.

in from_ws_src - A pointer to the workspace location from which the replacement seg-
ment data starts.

in from_size - The number of 64B units that will replace the specified portion of the
ASA segment.

NXP Semiconductors
AIOP Service Layer API Reference Manual

83

Accelerators APIs

in ws_dst_rs - A pointer to the location in workspace for the represented frame seg-
ment (relevant if FDMA_REPLACE_SA_REPRESENT_BIT) flag is
set).

in size_rs - Number of frame bytes to represent in 64B portions. Must be greater
than 0. Relevant if FDMA_REPLACE_SA_REPRESENT_BIT flag is
set.

in flags - replace working frame segment flags.
out seg_length - The number of bytes actually presented (the segment actual size).

Returns

0 or positive value on success. Negative value on error.

Return values

0 - Success.
FDMA_STATUS_UNA←↩

BLE_PRES_ASA_SEG
- Unable to fulfill specified ASA segment presentation size (relevant if F←↩
DMA_REPLACE_SA_REPRESENT_BIT flag is set). This return value
is caused since the requested presentation exceeded frame ASA end. The
ASA segment is valid when returning with this error, but is shorter than
requested.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.39 int fdma_replace_default_pta_segment_data (uint32_t flags, void ∗ from_ws_src,
void ∗ ws_dst_rs, enum fdma_pta_size_type size_type)

Replace modified data in the Pass-Through Annotation (PTA) segment associated with the default Work-
ing Frame (in the FDMA).

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set this Service Routine synchronizes the PTA
segment data between the Task Workspace and the FDMA.

The entire PTA annotation (32 or 64 bytes) is replaced when this command is invoked.

Implicit input parameters in Task Defaults: frame handle, PTA segment handle, PTA segment address.

Implicitly updated values in Task Defaults: PTA segment address.

Implicitly updated values in FD - PTA length.

NXP Semiconductors
AIOP Service Layer API Reference Manual

84

Accelerators APIs

Parameters

in flags - replace working frame segment flags.
in from_ws_src - a pointer to the workspace location from which the replacement seg-

ment data starts.
in ws_dst_rs - A pointer to the location in workspace for the represented frame

segment (relevant if FDMA_REPLACE_SA_REPRESENT_BIT flag is
set). In case of representing the PTA, always represent the full PTA (64
bytes).

in size_type - Replacing segment size type of the PTA (fdma_pta_size_type).

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
EIO - Unable to present PTA segment (no PTA segment in working

frame)(relevant if FDMA_REPLACE_SA_REPRESENT_BIT flag is set).

Remarks

The length of the represented PTA can be read directly from the FD.
Reducing PTA to 0B preserve PTA value.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.40 void fdma_calculate_default_frame_checksum (uint16_t offset, uint16_t size,
uint16_t ∗ checksum)

Computes the gross checksum of the default Working Frame.

Parameters

in offset - Number of bytes offset in the frame from which to start calculation of
checksum.

NXP Semiconductors
AIOP Service Layer API Reference Manual

85

Accelerators APIs

in size - Number of bytes to do calculation of checksum. Use 0xffff to calculate
checksum until the end of the frame.

out checksum - Ones complement sum over the specified range of the working frame.

Returns

None.

Warning

The h/w must have previously opened the frame with an initial presentation or initial presentation
command.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.41 void get_frame_length (uint8_t frame_handle, uint32_t ∗ length)

Get a Working Frame current length.

Parameters

in frame_handle - working frame whose length is required.
out length - working frame current length.

Returns

None.

Warning

The h/w must have previously opened the frame with an initial presentation or initial presentation
command.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.42 void get_default_amq_attributes (struct fdma_amq ∗ amq)

Getter for AMQ (ICID, PL, VA, BDI) default attributes. The default AMQ attributes are located in the
Additional Dequeue Context.

NXP Semiconductors
AIOP Service Layer API Reference Manual

86

Accelerators APIs

Parameters

in amq - Returned Additional Dequeue Context AMQ attributes.

Returns

None.

1.3.2.7.2.43 void set_default_amq_attributes (struct fdma_amq ∗ amq)

setter for AMQ (ICID, PL, VA, BDI) default attributes. The default AMQ attributes are located in the
Additional Dequeue Context.

Parameters

in amq - AMQ attributes to set in the Additional Dequeue Context.

Returns

None.

1.3.2.7.2.44 void get_concatenate_amq_attributes (uint16_t ∗ icid1, uint16_t ∗ icid2, uint32_t ∗
amq_flags)

setter for AMQ (ICID, PL, VA, BDI) concatenate attributes. The concatenate attributes are taken from the
Additional Dequeue Context.

This function sets the same AMQ attributes for both frames.

Parameters

out icid1 - ICID to be used in concatenate command for FD1.
out icid2 - ICID to be used in concatenate command for FD2.
out amq_flags - AMQ attributes to be used in concatenate command.

Returns

None.

1.3.2.7.2.45 int fdma_present_default_frame_default_segment ()

NXP Semiconductors
AIOP Service Layer API Reference Manual

87

Accelerators APIs

Open a segment of the default working frame and copy the segment data into the specified location in the
workspace.

Implicit input parameters in Task Defaults: frame handle, segment length, segment address, segment
offset.

Implicitly updated values in Task Defaults: segment length, segment handle.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (not relevant if
the present_size in the function parameters is 0). This error is caused since
the requested presentation exceeded frame data end.

Warning

In case the presented segment will be used by PARSER/CTLU/KEYGEN, it should be presented in
a 16 byte aligned workspace address (due to HW limitations).
This command may be invoked only for Data segments.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.46 int fdma_replace_default_segment_data (uint16_t to_offset, uint16_t to_size, void ∗
from_ws_src, uint16_t from_size, void ∗ ws_dst_rs, uint16_t size_rs, uint32_t flags
)

Replace modified data in the default Data segment in the default Working Frame (in the FDMA).

This Service Routine can replace any data size in the segment with any new data size. the new data will
be taken from from_ws_src pointer parameter.

In case FDMA_REPLACE_SA_REPRESENT_BIT flag is set this Service Routine synchronizes the seg-
ment data between the Task Workspace and the FDMA.

Implicit input parameters in Task Defaults: frame handle, segment handle.

Implicitly updated values in task defaults: segment length, segment address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

88

Accelerators APIs

Parameters

in to_offset - The offset from the previously presented segment representing the start
point of the replacement. Must be within the presented segment size.

in to_size - The Working Frame replaced size.
in from_ws_src - a pointer to the workspace location from which the replacement seg-

ment data starts.
in from_size - The replacing segment size.
in ws_dst_rs - A pointer to the location in workspace for the represented frame

segment (relevant if FDMA_REPLACE_SA_REPRESENT_BIT flag is
set).

in size_rs - Number of frame bytes to represent in the segment. Must be greater
than 0. Relevant if FDMA_REPLACE_SA_REPRESENT_BIT flag is
set).

in flags - replace working frame segment flags.

Returns

0 or positive value on success. Negative value on error.

Return values

0 - Success.
FDMA_STATUS_UNA←↩
BLE_PRES_DATA_SEG

- Unable to fulfill specified data segment presentation size (relevant if F←↩
DMA_REPLACE_SA_REPRESENT_BIT flag is set). This return value
is caused since the requested presentation exceeded frame data end. The
segment handle is valid when returning with this error, but is shorter than
requested.

Remarks

Example: Modify 14 bytes + insert 2 bytes. The default Data segment represents a 100 bytes at
offset 0 in the frame (0-99) and the user want to replace bytes 11-24 (14 bytes) with new 16 bytes
(14 updated + additional 2). Parameters:

• to_offset - 11 (relative to the presented segment)
• to_size - 14
• from_ws_address - <workspace address of the 16 bytes>
• from_size - 16

Warning

This command may be invoked only on the default Data segment.
This function may result in a fatal error.
In this Service Routine the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

89

Accelerators APIs

1.3.2.7.2.47 void fdma_copy_data (uint16_t copy_size, uint32_t flags, void ∗ src, void ∗ dst)

Copy a workspace/Shared memory data to another location within the workspace/Shared memory.

NXP Semiconductors
AIOP Service Layer API Reference Manual

90

Accelerators APIs

Parameters

in copy_size - Number of bytes to copy from source to destination.
in flags - Please refer to Copy command flags .
in src - A pointer to the location in the workspace/AIOP Shared memory of

the source data (limited to 20 bits). (SRAM address is relative to SR←↩
AM start. Workspace address is relative to Workspace start).

in dst - A pointer to the location in the workspace/AIOP Shared memory to
store the copied data (limited to 20 bits). (SRAM address is relative to
SRAM start. Workspace address is relative to Workspace start).

Returns

None.

Remarks

SRAM to SRAM copy of size 0xffc0 is not supported for REV1.

Warning

If source and destination regions overlap then this is a destructive copy.
This function may result in a fatal error.
In this Service Routine the task yields.

1.3.2.7.2.48 void fdma_dma_data (uint16_t copy_size, uint16_t icid, void ∗ ws_addr, uint64_t
sys_addr, uint32_t flags)

Provide direct access to any system memory data. Transfer system memory data to/from the task
workspace/AIOP shared memory.

Parameters

in copy_size - Number of bytes to copy (limited to 12 bits).
in icid - Memory Access ICID. The DMA uses the provided Isolation Context

to make the access.
in ws_addr - A pointer to the source/target location in Workspace or AIOP Shared

Memory for DMA data. Workspace address is limited to 16 bits. AIOP
Shared Memory address is limited to 20 bits.

NXP Semiconductors
AIOP Service Layer API Reference Manual

91

Accelerators APIs

in sys_addr - System memory source/target address for DMA data.
in flags - Please refer to DMA command flags .

Returns

None.

Warning

This function may result in a fatal error.
In this Service Routine the task yields.
This command is not intended to be used in a normal datapath to access frames. It can be used
for accessing data from system memory which is written by other hardware accelerators (such as
Statistics Engine)

1.3.2.7.2.49 int fdma_set_data_write_attributes (enum aiop_bus_transaction transaction, enum
aiop_cache_allocate_policy policy)

Set FDMA data writing transactions attributes.

Parameters

in transaction - Type of data write transaction.
in policy - Cache allocation policy. Significant for cached transactions only.

Returns

0 on success, -EINVAL if no allocation policy is configured for cached transaction.

1.3.2.7.2.50 int fdma_set_data_read_attributes (enum aiop_bus_transaction transaction, enum
aiop_cache_allocate_policy policy)

Set FDMA data reading transactions attributes.

Parameters

in transaction - Type of data read transaction.

NXP Semiconductors
AIOP Service Layer API Reference Manual

92

Accelerators APIs

in policy - Cache allocation policy. Significant for cached transactions only.

Returns

0 on success, -EINVAL if no allocation policy is configured for cached transaction.

1.3.2.7.2.51 int fdma_set_sru_write_attributes (enum aiop_bus_transaction transaction, enum
aiop_cache_allocate_policy policy)

Set FDMA segment resource units (SRU) writing transactions attributes.

Parameters

in transaction - Type of SRU write transaction.
in policy - Cache allocation policy. Significant for cached transactions only.

Returns

0 on success, -EINVAL if no allocation policy is configured for cached transaction.

1.3.2.7.2.52 int fdma_set_sru_read_attributes (enum aiop_bus_transaction transaction, enum
aiop_cache_allocate_policy policy)

Set FDMA segment resource units (SRU) reading transactions attributes.

Parameters

in transaction - Type of SRU read transaction.
in policy - Cache allocation policy. Significant for cached transactions only.

Returns

0 on success, -EINVAL if no allocation policy is configured for cached transaction.

1.3.2.7.2.53 FDMA Discard Frame Flags

1.3.2.7.2.53.1 Overview

FDMA Discard frame flags.

Macros

• #define FDMA_DIS_FRAME_NO_FLAGS
• #define FDMA_DIS_VA_BIT
• #define FDMA_DIS_AS_BIT
• #define FDMA_DIS_PL_BIT
• #define FDMA_DIS_BDI_BIT
• #define FDMA_DIS_FRAME_TC_BIT

NXP Semiconductors
AIOP Service Layer API Reference Manual

93

Accelerators APIs

1.3.2.7.2.53.2 Macro Definition Documentation

1.3.2.7.2.53.3 #define FDMA_DIS_FRAME_NO_FLAGS

Default command configuration.

1.3.2.7.2.53.4 #define FDMA_DIS_VA_BIT

Virtual Address.

Frame AMQ attribute. Used only in case FDMA_DIS_AS_BIT is set.

1.3.2.7.2.53.5 #define FDMA_DIS_AS_BIT

AMQ attributes (PL, VA, BDI, ICID) Source.

If reset - supplied AMQ attributes are used. If set - task default AMQ attributes (From Additional Dequeue
Context) are used.

1.3.2.7.2.53.6 #define FDMA_DIS_PL_BIT

Privilege Level.

Frame AMQ attribute. Used only in case FDMA_DIS_AS_BIT is reset.

1.3.2.7.2.53.7 #define FDMA_DIS_BDI_BIT

Bypass DPAA resource Isolation.

If set - Bypass DPAA resource Isolation of the FD to discard. Used only in case FDMA_DIS_AS_BIT is
reset.

1.3.2.7.2.53.8 #define FDMA_DIS_FRAME_TC_BIT

Terminate Control.

If set - Trigger the Terminate task command right after the discard. Otherwise - Return after discard.

1.3.2.7.2.54 FDMA Concatenate AMQ Flags

1.3.2.7.2.54.1 Overview

FDMA Concatenate Frames AMQ flags.

Macros

• #define FDMA_CONCAT_AMQ_VA1
• #define FDMA_CONCAT_AMQ_PL1
• #define FDMA_CONCAT_AMQ_BDI1
• #define FDMA_CONCAT_AMQ_VA2
• #define FDMA_CONCAT_AMQ_PL2
• #define FDMA_CONCAT_AMQ_BDI2

NXP Semiconductors
AIOP Service Layer API Reference Manual

94

Accelerators APIs

1.3.2.7.2.54.2 Macro Definition Documentation

1.3.2.7.2.54.3 #define FDMA_CONCAT_AMQ_VA1

Configured Virtual Address of FD1.

Relevant only if FDMA_CONCAT_FS1_BIT is set

1.3.2.7.2.54.4 #define FDMA_CONCAT_AMQ_PL1

Privilege Level of FD1.

Relevant only if FDMA_CONCAT_FS1_BIT is set

1.3.2.7.2.54.5 #define FDMA_CONCAT_AMQ_BDI1

Bypass DPAA resource Isolation of FD1 0: Isolation is enabled for FD1 in this command.

1: Isolation is not enabled for FD1 in this command. Relevant only if FDMA_CONCAT_FS1_BIT is set

1.3.2.7.2.54.6 #define FDMA_CONCAT_AMQ_VA2

Configured Virtual Address of FD2.

Relevant only if FDMA_CONCAT_FS2_BIT is set

1.3.2.7.2.54.7 #define FDMA_CONCAT_AMQ_PL2

Privilege Level of FD2.

Relevant only if FDMA_CONCAT_FS2_BIT is set

1.3.2.7.2.54.8 #define FDMA_CONCAT_AMQ_BDI2

Configured Virtual Address of FD2.

Relevant only if FDMA_CONCAT_FS2_BIT is set

1.3.3 CDMA

1.3.3.1 Overview

FSL AIOP CDMA macros and functions.

Modules

• CDMA Commands Flags
• CDMA Functions

NXP Semiconductors
AIOP Service Layer API Reference Manual

95

Accelerators APIs

1.3.3.2 CDMA Commands Flags

1.3.3.2.1 Overview

CDMA Commands Flags.

Modules

• CDMA DMA MUTEX ModeBits
• CDMA MUTEX ModeBits

1.3.3.2.2 CDMA DMA MUTEX ModeBits

1.3.3.2.2.1 Overview

DMA Mutex flags.

0 - 18 19 - 20 23 24 - 31
Pre DMA Mutex Lock Post DMA Rel-Mutex

Macros

• #define CDMA_DMA_NO_MUTEX_LOCK
• #define CDMA_PREDMA_MUTEX_READ_LOCK
• #define CDMA_PREDMA_MUTEX_WRITE_LOCK
• #define CDMA_POSTDMA_MUTEX_RM_BIT

1.3.3.2.2.2 Macro Definition Documentation

1.3.3.2.2.2.1 #define CDMA_DMA_NO_MUTEX_LOCK

Pre DMA Mutex Lock.

No mutex lock is requested.

1.3.3.2.2.2.2 #define CDMA_PREDMA_MUTEX_READ_LOCK

Mutex read lock is requested.

1.3.3.2.2.2.3 #define CDMA_PREDMA_MUTEX_WRITE_LOCK

Mutex write lock is requested.

1.3.3.2.2.2.4 #define CDMA_POSTDMA_MUTEX_RM_BIT

Post DMA Rel-Mutex.

Post DMA Release Mutex Lock.

• 0: No mutex lock to release.

NXP Semiconductors
AIOP Service Layer API Reference Manual

96

Accelerators APIs

• 1: Release mutex lock.

1.3.3.2.3 CDMA MUTEX ModeBits

1.3.3.2.3.1 Overview

Mutex Lock flags.

Macros

• #define CDMA_MUTEX_READ_LOCK
• #define CDMA_MUTEX_WRITE_LOCK

1.3.3.2.3.2 Macro Definition Documentation

1.3.3.2.3.2.1 #define CDMA_MUTEX_READ_LOCK

Mutex Lock.

Mutex read lock is requested.

1.3.3.2.3.2.2 #define CDMA_MUTEX_WRITE_LOCK

Mutex write lock is requested.

1.3.3.3 CDMA Functions

1.3.3.3.1 Overview

AIOP CDMA operations functions.

Functions

• int cdma_refcount_decrement_and_release (uint64_t context_address)
• int cdma_acquire_context_memory (uint16_t pool_id, uint64_t ∗context_memory)
• void cdma_release_context_memory (uint64_t context_address)
• void cdma_read (void ∗ws_dst, uint64_t ext_address, uint16_t size)
• void cdma_write (uint64_t ext_address, void ∗ws_src, uint16_t size)
• void cdma_mutex_lock_take (uint64_t mutex_id, uint32_t flags)
• void cdma_mutex_lock_release (uint64_t mutex_id)
• void cdma_read_with_mutex (uint64_t ext_address, uint32_t flags, void ∗ws_dst, uint16_t size)
• void cdma_write_with_mutex (uint64_t ext_address, uint32_t flags, void ∗ws_src, uint16_t size)
• void cdma_ws_memory_init (void ∗ws_dst, uint16_t size, uint32_t data_pattern)
• void cdma_refcount_get (uint64_t context_address, uint32_t ∗refcount_value)
• int cdma_set_data_write_attributes (enum aiop_bus_transaction transaction, enum aiop_cache_←↩

allocate_policy policy)
• int cdma_set_data_read_attributes (enum aiop_bus_transaction transaction, enum aiop_cache_←↩

allocate_policy policy)

NXP Semiconductors
AIOP Service Layer API Reference Manual

97

Accelerators APIs

1.3.3.3.2 Function Documentation

1.3.3.3.2.1 int cdma_refcount_decrement_and_release (uint64_t context_address)

This routine decrements reference count of Context memory object. If resulting reference count is zero,
the following CDMA_REFCOUNT_DECREMENT_TO_ZERO status code is reported and the Context
memory block is automatically released to the BMan pool it was acquired from.

Parameters

in context_←↩
address

- A pointer to the Context address.

Returns

0 on Success, or positive value on indication.

Return values

0 - Success
CDMA_REFCOUNT_D←↩

ECREMENT_TO_ZERO
- Decrement reference count caused the reference count to go to zero. (not
an error).

Remarks

Only possible if the address provided with the command is the address of the Context.

Warning

If the context memory is released when the reference count drops to zero, a mutex lock (if exists)
will not be released.
In this function the task yields.
This function may result in a fatal error.

1.3.3.3.2.2 int cdma_acquire_context_memory (uint16_t pool_id, uint64_t ∗ context_memory)

This routine requests a Context memory block from a BMan pool. The returned value is a 64 bit address
to the context in external memory (DDR/PEB). The 64 bit address is used to make CDMA access to the
Context memory and can also be used as an address to mutex lock to all or part of the Context. The
reference count is set to 1.

NXP Semiconductors
AIOP Service Layer API Reference Manual

98

Accelerators APIs

Parameters

in pool_id - BMan pool ID used for the Acquire Context Memory.
in context_←↩

memory
- A pointer to the Workspace where to return the acquired 64 bit address
of the Context memory.

Returns

0 on Success, or negative value on error.

Return values

0 - Success
ENOSPC - Failed due to buffer pool depletion.

Warning

The maximum legal pool_id value is 0x03FF.
In this function the task yields.
This function may result in a fatal error.

1.3.3.3.2.3 void cdma_release_context_memory (uint64_t context_address)

This routine releases (frees) the Context memory block to the BMan pool it was acquired from.

Parameters

in context_←↩
address

- Address of Context memory.

Returns

None.

Remarks

This command should be used after task calls to cdma_refcount_decrement() routine and as a result,
a Context Memory reference count has dropped to zero.

Warning

A mutex lock (if exists) will not be released.
In this function the task yields.
This function may result in a fatal error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

99

Accelerators APIs

1.3.3.3.2.4 void cdma_read (void ∗ ws_dst, uint64_t ext_address, uint16_t size)

This routine is used to read data from context memory to Workspace that uses internal CDMA cache for
improved performance when accessing external memory

The read data access will be done regardless of any mutex lock that was set by another task.

Parameters

in ws_dst - A pointer to the Workspace.
in ext_address - A pointer to a context memory address in the external memory (DD←↩

R/PEB).
in size - Read data access size, in bytes.

Returns

None.

Warning

The maximum legal access size (in bytes) is 0x3FFF.
In this function the task yields.
This function may result in a fatal error.
Use this function only if the write to context memory (ext_address) was done with CDMA or CDMA
internal cache was flushed. If it was done by other engine (hardware accelerator or core) then data
fetched might not be the most recent

1.3.3.3.2.5 void cdma_write (uint64_t ext_address, void ∗ ws_src, uint16_t size)

This routine writes data from Workspace to context memory.

The write data access will be done regardless of any mutex
lock that was set by another task.

Any CDMA write will invalidate the cache for the accessed
external memory location.

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

100

Accelerators APIs

in ext_address - A pointer to a context memory address in the external memory (DD←↩
R/PEB).

in ws_src - A pointer to the Workspace.
in size - Write data access size, in bytes.

Returns

None.

Warning

The maximum legal access size (in bytes) is 0x3FFF.
In this function the task yields.
This function may result in a fatal error.

1.3.3.3.2.6 void cdma_mutex_lock_take (uint64_t mutex_id, uint32_t flags)

This routine sets Mutex lock on 64 bits mutex ID. Support for mutex lock access, both read lock and write
lock. Write lock is granted when there are no preceding locks (read or write) active or pending on the
same mutex ID. Read locks are granted when there are no preceding write locks active or pending on the
same mutex ID. If the lock can not be obtained, the function waits and return only when the requested
mutex lock is obtained.
Parameters

in mutex_id - A 64 bits mutex ID. Can be a pointer to the internal/external memory
(DDR/PEB/shared SRAM).

in flags - CDMA Mutex flags

Returns

None.

Remarks

• Each task can have a maximum of 4 simultaneous mutex locks active.
• When a task is terminated, the CDMA will release any active mutex lock(s) associated with the

task to avoid mutex lock leak.

Warning

A mutex lock taken by a task must be released by the same task.
In this function the task yields.
This function may result in a fatal error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

101

Accelerators APIs

1.3.3.3.2.7 void cdma_mutex_lock_release (uint64_t mutex_id)

This routine release mutex ID lock (read or write).

NXP Semiconductors
AIOP Service Layer API Reference Manual

102

Accelerators APIs

Parameters

in mutex_id - A 64 bits mutex ID. Can be a pointer to the internal/external memory
(DDR/PEB/shared SRAM).

Returns

None.

Remarks

Each task can have a maximum of 4 simultaneous mutex locks active.

Warning

A mutex lock taken by a task must be released by the same task.
In this function the task yields.
This function may result in a fatal error.

1.3.3.3.2.8 void cdma_read_with_mutex (uint64_t ext_address, uint32_t flags, void ∗ ws_dst,
uint16_t size)

This routine reads data from external memory to Workspace. Optional mutex lock (read or write) request
before the read transaction occurs and/or mutex lock release after the read transaction occurred.

Write lock is granted when there are no preceding locks (read or write) active or pending on the same
address. Read locks are granted when there are no preceding write locks active or pending on the same
address.

Reading data access is granted only if no mutex write lock is preceding the same ext_address. In this case,
reading data access will take place only when the write lock is released. i.e. this routine returns only when
the read data access is done.

This function reads data from CDMA internal cache for improved performance

Parameters

in ext_address - A pointer to a context memory address in the external memory (D←↩
DR/PEB). This address is used to read data access and mutex lock
take/release.

NXP Semiconductors
AIOP Service Layer API Reference Manual

103

Accelerators APIs

in flags - CDMA Mutex flags .
in ws_dst - A pointer to the Workspace.
in size - Read data access size, in bytes.

Returns

None.

Remarks

• Each task can have a maximum of 4 simultaneous mutex locks active.
• A mutex lock taken by a task must be released by the same task.

Warning

The maximum legal access size (in bytes) is 0x3FFF.
In this function the task yields.
This function may result in a fatal error.
Use this function only if the write to context memory (ext_address) was done with CDMA or CDMA
internal cache was flushed. If it was done by other engine (hardware accelerator or core) then data
fetched might not be the most recent

1.3.3.3.2.9 void cdma_write_with_mutex (uint64_t ext_address, uint32_t flags, void ∗ ws_src,
uint16_t size)

This routine writes data from Workspace to external memory. Optional write mutex lock request before
the write transaction occurs and/or mutex lock release after the write transaction occurred.

Write lock is granted when there are no preceding locks (read or write) active or pending on the same
address.

Writing data access is granted only if no mutex read/write lock is preceding the same destination address.
In this case, writing data access will take place only when the write lock is released.

Parameters

in ext_address - A pointer to a context memory address in the external memory (D←↩
DR/PEB). This address is used to write data access and mutex lock
take/release.

NXP Semiconductors
AIOP Service Layer API Reference Manual

104

Accelerators APIs

in flags - CDMA Mutex flags .
in ws_src - A pointer to the Workspace.
in size - Read data access size, in bytes.

Returns

None.

Remarks

• Each task can have a maximum of 4 simultaneous mutex locks active.
• A mutex lock taken by a task must be released by the same task.

Warning

The maximum legal access size (in bytes) is 0x3FFF.
In this function the task yields.
This function may result in a fatal error.

1.3.3.3.2.10 void cdma_ws_memory_init (void ∗ ws_dst, uint16_t size, uint32_t data_pattern)

This routine writes a provided pattern into a range of workspace memory.

Parameters

in ws_dst - A pointer to the Workspace.
in size - Data initialization size, in bytes.
in data_pattern - Data to write in workspace.

Returns

None.

Warning

If size is not a multiple of 4 bytes, the MSBs of the data_pattern are used to complete the initializa-
tion.
In this function the task yields.
This function may result in a fatal error.

1.3.3.3.2.11 void cdma_refcount_get (uint64_t context_address, uint32_t ∗ refcount_value)

This routine returns the current value of reference count.

NXP Semiconductors
AIOP Service Layer API Reference Manual

105

Accelerators APIs

Parameters

in context_←↩
address

- A pointer to the Context memory.

out refcount_value - Current value of reference count.

Returns

None.

Remarks

This function is for verification only.
This function can be used only if the context memory was read and the reference count was incre-
mented by this task before calling this function.

Warning

In this function the task yields.
This function may result in a fatal error.

1.3.3.3.2.12 int cdma_set_data_write_attributes (enum aiop_bus_transaction transaction, enum
aiop_cache_allocate_policy policy)

Set CDMA data writing transactions attributes.

Parameters

in transaction - Type of data write transaction.
in policy - Cache allocation policy. Significant for cached transactions only.

Returns

0 on success, -EINVAL if no allocation policy is configured for cached transaction.

1.3.3.3.2.13 int cdma_set_data_read_attributes (enum aiop_bus_transaction transaction, enum
aiop_cache_allocate_policy policy)

Set CDMA data reading transactions attributes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

106

Accelerators APIs

Parameters

in transaction - Type of data read transaction.
in policy - Cache allocation policy. Significant for cached transactions only.

Returns

0 on success, -EINVAL if no allocation policy is configured for cached transaction.

1.3.4 PARSER

1.3.4.1 Overview

Freescale AIOP PARSER API.

Modules

• PARSER Macros
• PARSER Enumerations
• PARSER Structures
• PARSER Functions

1.3.4.2 PARSER Macros

1.3.4.2.1 Overview

Freescale AIOP PARSER Macros.

Modules

• Frame Attributes Extension Masks
• Frame Attributes Masks 1
• Frame Attributes Error Masks 1
• Frame Attributes Masks 2
• Frame Attributes Error Masks 2
• Frame Attributes Masks 3
• Frame Attributes Error Masks 3
• PARSER Error Codes
• Parse Result Error Queries
• Parse Result Attributes Queries
• Parse Result Getters
• Pointer in Frame Getters
• PARSER Setters
• Flags for parse_result_generate function
• PARSER HXS configuration in parse profile defines

NXP Semiconductors
AIOP Service Layer API Reference Manual

107

Accelerators APIs

1.3.4.2.2 Frame Attributes Extension Masks

1.3.4.2.2.1 Overview

Frame Attributes Extension Masks Used with parse_result frame_attribute_flags_extension.

Macros

• #define PARSER_ATT_UD_SOFT_PARSER_BIT_0
• #define PARSER_ATT_UD_SOFT_PARSER_BIT_1
• #define PARSER_ATT_UD_SOFT_PARSER_BIT_2
• #define PARSER_ATT_UD_SOFT_PARSER_BIT_3
• #define PARSER_ATT_UD_SOFT_PARSER_BIT_4
• #define PARSER_ATT_UD_SOFT_PARSER_BIT_5
• #define PARSER_ATT_UD_SOFT_PARSER_BIT_6
• #define PARSER_ATT_UD_SOFT_PARSER_BIT_7

1.3.4.2.2.2 Macro Definition Documentation

1.3.4.2.2.2.1 #define PARSER_ATT_UD_SOFT_PARSER_BIT_0

User defined soft parser bit #0.

1.3.4.2.2.2.2 #define PARSER_ATT_UD_SOFT_PARSER_BIT_1

User defined soft parser bit #1.

1.3.4.2.2.2.3 #define PARSER_ATT_UD_SOFT_PARSER_BIT_2

User defined soft parser bit #2.

1.3.4.2.2.2.4 #define PARSER_ATT_UD_SOFT_PARSER_BIT_3

User defined soft parser bit #3.

1.3.4.2.2.2.5 #define PARSER_ATT_UD_SOFT_PARSER_BIT_4

User defined soft parser bit #4.

1.3.4.2.2.2.6 #define PARSER_ATT_UD_SOFT_PARSER_BIT_5

User defined soft parser bit #5.

1.3.4.2.2.2.7 #define PARSER_ATT_UD_SOFT_PARSER_BIT_6

User defined soft parser bit #6.

1.3.4.2.2.2.8 #define PARSER_ATT_UD_SOFT_PARSER_BIT_7

User defined soft parser bit #7.

NXP Semiconductors
AIOP Service Layer API Reference Manual

108

Accelerators APIs

1.3.4.2.3 Frame Attributes Masks 1

1.3.4.2.3.1 Overview

Frame Attributes Part 1 Masks Used with parse_result frame_attribute_flags_1 field.

Macros

• #define PARSER_ATT_IPV6_ROUTING_HDR_2_MASK
• #define PARSER_ATT_GTP_PRIMED_MASK
• #define PARSER_ATT_VLAN_PRIORITY_MASK
• #define PARSER_ATT_PTP_MASK
• #define PARSER_ATT_VXLAN_MASK
• #define PARSER_ATT_ETH_SLOW_PROTOCOL_MASK
• #define PARSER_ATT_IKE_MASK
• #define PARSER_ATT_ETH_MAC_MASK
• #define PARSER_ATT_ETH_MAC_UNICAST_MASK
• #define PARSER_ATT_ETH_MAC_MULTICAST_MASK
• #define PARSER_ATT_ETH_MAC_BROADCAST_MASK
• #define PARSER_ATT_BPDU_MASK
• #define PARSER_ATT_FCOE_MASK
• #define PARSER_ATT_FCOE_INIT_PROTOCOL_MASK
• #define PARSER_ATT_LLC_SNAP_MASK
• #define PARSER_ATT_UNKOWN_LLC_OUI_MASK
• #define PARSER_ATT_VLAN_1_MASK
• #define PARSER_ATT_VLAN_N_MASK
• #define PARSER_ATT_CFI_IN_VLAN_MASK
• #define PARSER_ATT_PPPOE_PPP_MASK
• #define PARSER_ATT_MPLS_1_MASK
• #define PARSER_ATT_MPLS_N_MASK
• #define PARSER_ATT_ARP_MASK

1.3.4.2.3.2 Macro Definition Documentation

1.3.4.2.3.2.1 #define PARSER_ATT_IPV6_ROUTING_HDR_2_MASK

"Routing header in 2nd IPv6 header" mask for frame_attribute_flags_1

1.3.4.2.3.2.2 #define PARSER_ATT_GTP_PRIMED_MASK

"GTP Primed" mask for frame_attribute_flags_1

1.3.4.2.3.2.3 #define PARSER_ATT_VLAN_PRIORITY_MASK

"VLAN Priority (VID=0)" mask for frame_attribute_flags_1

1.3.4.2.3.2.4 #define PARSER_ATT_PTP_MASK

"PTP (1588)" mask for frame_attribute_flags_1

1.3.4.2.3.2.5 #define PARSER_ATT_VXLAN_MASK

"VXLAN" mask for frame_attribute_flags_1

NXP Semiconductors
AIOP Service Layer API Reference Manual

109

Accelerators APIs

1.3.4.2.3.2.6 #define PARSER_ATT_ETH_SLOW_PROTOCOL_MASK

"Ethernt Slow Protocol" mask for frame_attribute_flags_1

1.3.4.2.3.2.7 #define PARSER_ATT_IKE_MASK

"IKE over UDP" mask for frame_attribute_flags_1

1.3.4.2.3.2.8 #define PARSER_ATT_ETH_MAC_MASK

"Ethernet MAC" mask for frame_attribute_flags_1

1.3.4.2.3.2.9 #define PARSER_ATT_ETH_MAC_UNICAST_MASK

"Ethernet MAC Unicast DA" mask for frame_attribute_flags_1

1.3.4.2.3.2.10 #define PARSER_ATT_ETH_MAC_MULTICAST_MASK

"Ethernet MAC Multicast DA" mask for frame_attribute_flags_1

1.3.4.2.3.2.11 #define PARSER_ATT_ETH_MAC_BROADCAST_MASK

"Ethernet MAC Broadcast DA" mask for frame_attribute_flags_1

1.3.4.2.3.2.12 #define PARSER_ATT_BPDU_MASK

"BPDU" mask for frame_attribute_flags_1

1.3.4.2.3.2.13 #define PARSER_ATT_FCOE_MASK

"FCOE" mask for frame_attribute_flags_1

1.3.4.2.3.2.14 #define PARSER_ATT_FCOE_INIT_PROTOCOL_MASK

"FCOE Initial Protocol" mask for frame_attribute_flags_1

1.3.4.2.3.2.15 #define PARSER_ATT_LLC_SNAP_MASK

"LLC+SNAP" mask for frame_attribute_flags_1

1.3.4.2.3.2.16 #define PARSER_ATT_UNKOWN_LLC_OUI_MASK

"Unknown LLC/OUI" mask for frame_attribute_flags_1

1.3.4.2.3.2.17 #define PARSER_ATT_VLAN_1_MASK

"One VLAN" mask for frame_attribute_flags_1

1.3.4.2.3.2.18 #define PARSER_ATT_VLAN_N_MASK

"More than one VLAN" mask for frame_attribute_flags_1

NXP Semiconductors
AIOP Service Layer API Reference Manual

110

Accelerators APIs

1.3.4.2.3.2.19 #define PARSER_ATT_CFI_IN_VLAN_MASK

"CFI in VLAN" mask for frame_attribute_flags_1

1.3.4.2.3.2.20 #define PARSER_ATT_PPPOE_PPP_MASK

"PPPOE+PPP" mask for frame_attribute_flags_1

1.3.4.2.3.2.21 #define PARSER_ATT_MPLS_1_MASK

"One MPLS" mask for frame_attribute_flags_1

1.3.4.2.3.2.22 #define PARSER_ATT_MPLS_N_MASK

"More than one MPLS" mask for frame_attribute_flags_1

1.3.4.2.3.2.23 #define PARSER_ATT_ARP_MASK

"ARP" mask for frame_attribute_flags_1

1.3.4.2.4 Frame Attributes Error Masks 1

1.3.4.2.4.1 Overview

Frame Attribute Errors Part 1 Masks Used with parse_result frame_attribute_flags_1 field.

Macros

• #define PARSER_ATT_VXLAN_PARSING_ERROR_MASK
• #define PARSER_ATT_SHIM_SOFT_PARSING_ERROR_MASK
• #define PARSER_ATT_PARSING_ERROR_MASK
• #define PARSER_ATT_ETH_PARSING_ERROR_MASK
• #define PARSER_ATT_LLC_SNAP_PARSING_ERROR_MASK
• #define PARSER_ATT_VLAN_PARSING_ERROR_MASK
• #define PARSER_ATT_PPPOE_PPP_PARSING_ERROR_MASK
• #define PARSER_ATT_MPLS_PARSING_ERROR_MASK
• #define PARSER_ATT_ARP_PARSING_ERROR_MASK

1.3.4.2.4.2 Macro Definition Documentation

1.3.4.2.4.2.1 #define PARSER_ATT_VXLAN_PARSING_ERROR_MASK

"VXLAN Parsing error" mask for frame_attribute_flags_1

1.3.4.2.4.2.2 #define PARSER_ATT_SHIM_SOFT_PARSING_ERROR_MASK

"Soft parsing error in shim" mask for frame_attribute_flags_1

1.3.4.2.4.2.3 #define PARSER_ATT_PARSING_ERROR_MASK

"Parsing error" mask for frame_attribute_flags_1

NXP Semiconductors
AIOP Service Layer API Reference Manual

111

Accelerators APIs

1.3.4.2.4.2.4 #define PARSER_ATT_ETH_PARSING_ERROR_MASK

"Ethernet parsing error" mask for frame_attribute_flags_1

1.3.4.2.4.2.5 #define PARSER_ATT_LLC_SNAP_PARSING_ERROR_MASK

"LLC+SNAP parsing error" mask for frame_attribute_flags_1

1.3.4.2.4.2.6 #define PARSER_ATT_VLAN_PARSING_ERROR_MASK

"VLAN parsing error" mask for frame_attribute_flags_1

1.3.4.2.4.2.7 #define PARSER_ATT_PPPOE_PPP_PARSING_ERROR_MASK

"PPPOE+PPP parsing error" mask for frame_attribute_flags_1

1.3.4.2.4.2.8 #define PARSER_ATT_MPLS_PARSING_ERROR_MASK

"MPLS parsing error" mask for frame_attribute_flags_1

1.3.4.2.4.2.9 #define PARSER_ATT_ARP_PARSING_ERROR_MASK

"ARP parsing error" mask for frame_attribute_flags_1

1.3.4.2.5 Frame Attributes Masks 2

1.3.4.2.5.1 Overview

Frame Attributes Part 2 Masks Used with parse_result frame_attribute_flags_2 field.

Macros

• #define PARSER_ATT_L2_UNKOWN_PROTOCOL_MASK
• #define PARSER_ATT_IPV4_1_MASK
• #define PARSER_ATT_IPV4_1_UNICAST_MASK
• #define PARSER_ATT_IPV4_1_MULTICAST_MASK
• #define PARSER_ATT_IPV4_1_BROADCAST_MASK
• #define PARSER_ATT_IPV4_N_MASK
• #define PARSER_ATT_IPV4_N_UNICAST_MASK
• #define PARSER_ATT_IPV4_N_MULTICAST_MASK
• #define PARSER_ATT_IPV4_N_BROADCAST_MASK
• #define PARSER_ATT_IPV6_1_MASK
• #define PARSER_ATT_IPV6_1_UNICAST_MASK
• #define PARSER_ATT_IPV6_1_MULTICAST_MASK
• #define PARSER_ATT_IPV6_N_MASK
• #define PARSER_ATT_IPV6_N_UNICAST_MASK
• #define PARSER_ATT_IPV6_N_MULTICAST_MASK
• #define PARSER_ATT_IP_1_OPTIONS_MASK
• #define PARSER_ATT_IP_1_UNKNOWN_PROTOCOL_MASK
• #define PARSER_ATT_IP_1_IS_FRAGMENT_MASK
• #define PARSER_ATT_IP_1_IS_INIT_FRAGMENT_MASK
• #define PARSER_ATT_IP_N_OPTIONS_MASK

NXP Semiconductors
AIOP Service Layer API Reference Manual

112

Accelerators APIs

• #define PARSER_ATT_IP_N_UNKNOWN_PROTOCOL_MASK
• #define PARSER_ATT_IP_N_IS_FRAGMENT_MASK
• #define PARSER_ATT_IP_N_IS_INIT_FRAGMENT_MASK
• #define PARSER_ATT_ICMP_MASK
• #define PARSER_ATT_IGMP_MASK
• #define PARSER_ATT_ICMPV6_MASK
• #define PARSER_ATT_UDP_LITE_MASK
• #define PARSER_ATT_MIN_ENCAP_MASK
• #define PARSER_ATT_MIN_ENCAP_S_FLAG_MASK

1.3.4.2.5.2 Macro Definition Documentation

1.3.4.2.5.2.1 #define PARSER_ATT_L2_UNKOWN_PROTOCOL_MASK

"Unknown L2 EtherType field" mask for frame_attribute_flags_2

1.3.4.2.5.2.2 #define PARSER_ATT_IPV4_1_MASK

"Outer IPv4" mask for frame_attribute_flags_2

1.3.4.2.5.2.3 #define PARSER_ATT_IPV4_1_UNICAST_MASK

"Outer IPv4 unicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.4 #define PARSER_ATT_IPV4_1_MULTICAST_MASK

"Outer IPv4 multicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.5 #define PARSER_ATT_IPV4_1_BROADCAST_MASK

"Outer IPv4 broadcast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.6 #define PARSER_ATT_IPV4_N_MASK

"Inner IPv4" mask for frame_attribute_flags_2

1.3.4.2.5.2.7 #define PARSER_ATT_IPV4_N_UNICAST_MASK

"Inner IPv4 unicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.8 #define PARSER_ATT_IPV4_N_MULTICAST_MASK

"Inner IPv4 multicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.9 #define PARSER_ATT_IPV4_N_BROADCAST_MASK

"Inner IPv4 broadcast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.10 #define PARSER_ATT_IPV6_1_MASK

"Outer IPv6" mask for frame_attribute_flags_2

NXP Semiconductors
AIOP Service Layer API Reference Manual

113

Accelerators APIs

1.3.4.2.5.2.11 #define PARSER_ATT_IPV6_1_UNICAST_MASK

"Outer IPv6 unicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.12 #define PARSER_ATT_IPV6_1_MULTICAST_MASK

"Outer IPv6 multicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.13 #define PARSER_ATT_IPV6_N_MASK

"Inner IPv6" mask for frame_attribute_flags_2

1.3.4.2.5.2.14 #define PARSER_ATT_IPV6_N_UNICAST_MASK

"Inner IPv6 unicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.15 #define PARSER_ATT_IPV6_N_MULTICAST_MASK

"Inner IPv6 multicast DA" mask for frame_attribute_flags_2

1.3.4.2.5.2.16 #define PARSER_ATT_IP_1_OPTIONS_MASK

"Outer IP options" mask for frame_attribute_flags_2

1.3.4.2.5.2.17 #define PARSER_ATT_IP_1_UNKNOWN_PROTOCOL_MASK

"Outer IP unknown protocol/next header" mask for frame_attribute_flags_2

1.3.4.2.5.2.18 #define PARSER_ATT_IP_1_IS_FRAGMENT_MASK

"Outer IP is a fragment" mask for frame_attribute_flags_2

1.3.4.2.5.2.19 #define PARSER_ATT_IP_1_IS_INIT_FRAGMENT_MASK

"Outer IP is an initial fragment (fragment with offset 0)" mask for frame_attribute_flags_2

1.3.4.2.5.2.20 #define PARSER_ATT_IP_N_OPTIONS_MASK

"Inner IP options" mask for frame_attribute_flags_2

1.3.4.2.5.2.21 #define PARSER_ATT_IP_N_UNKNOWN_PROTOCOL_MASK

"Inner IP unknown protocol/next header" mask for frame_attribute_flags_2

1.3.4.2.5.2.22 #define PARSER_ATT_IP_N_IS_FRAGMENT_MASK

"Inner IP is a fragment" mask for frame_attribute_flags_2

1.3.4.2.5.2.23 #define PARSER_ATT_IP_N_IS_INIT_FRAGMENT_MASK

"Inner IP is an initial fragment (fragment with offset 0)" mask for frame_attribute_flags_2

NXP Semiconductors
AIOP Service Layer API Reference Manual

114

Accelerators APIs

1.3.4.2.5.2.24 #define PARSER_ATT_ICMP_MASK

"ICMP" mask for frame_attribute_flags_2

1.3.4.2.5.2.25 #define PARSER_ATT_IGMP_MASK

"IGMP" mask for frame_attribute_flags_2

1.3.4.2.5.2.26 #define PARSER_ATT_ICMPV6_MASK

"ICMPv6" mask for frame_attribute_flags_2

1.3.4.2.5.2.27 #define PARSER_ATT_UDP_LITE_MASK

"UDP Lite" mask for frame_attribute_flags_2

1.3.4.2.5.2.28 #define PARSER_ATT_MIN_ENCAP_MASK

"Min Encap" mask for frame_attribute_flags_2

1.3.4.2.5.2.29 #define PARSER_ATT_MIN_ENCAP_S_FLAG_MASK

"Min Encap S flag set" mask for frame_attribute_flags_2

1.3.4.2.6 Frame Attributes Error Masks 2

1.3.4.2.6.1 Overview

Frame Attribute Errors Part 2 Masks Used with parse_result frame_attribute_flags_2 field.

Macros

• #define PARSER_ATT_L2_SOFT_PARSING_ERROR_MASK
• #define PARSER_ATT_IP_1_PARSING_ERROR_MASK
• #define PARSER_ATT_IP_N_PARSING_ERROR_MASK

1.3.4.2.6.2 Macro Definition Documentation

1.3.4.2.6.2.1 #define PARSER_ATT_L2_SOFT_PARSING_ERROR_MASK

"L2 soft parsing error" mask for frame_attribute_flags_2

1.3.4.2.6.2.2 #define PARSER_ATT_IP_1_PARSING_ERROR_MASK

"Outer IP parsing error" mask for frame_attribute_flags_2

1.3.4.2.6.2.3 #define PARSER_ATT_IP_N_PARSING_ERROR_MASK

"Last IP parsing error" mask for frame_attribute_flags_2

NXP Semiconductors
AIOP Service Layer API Reference Manual

115

Accelerators APIs

1.3.4.2.7 Frame Attributes Masks 3

1.3.4.2.7.1 Overview

Frame Attributes Part 3 Masks Used with parse_result frame_attribute_flags_3 field.

Macros

• #define PARSER_ATT_GRE_MASK
• #define PARSER_ATT_GRE_R_BIT_SET_MASK
• #define PARSER_ATT_L3_UNKOWN_PROTOCOL_MASK
• #define PARSER_ATT_UDP_MASK
• #define PARSER_ATT_TCP_MASK
• #define PARSER_ATT_TCP_OPTIONS_MASK
• #define PARSER_ATT_TCP_CONTROLS_6_11_SET_MASK
• #define PARSER_ATT_TCP_CONTROLS_3_5_SET_MASK
• #define PARSER_ATT_IPSEC_MASK
• #define PARSER_ATT_IPSEC_ESP_MASK
• #define PARSER_ATT_IPSEC_AH_MASK
• #define PARSER_ATT_SCTP_MASK
• #define PARSER_ATT_DCCP_MASK
• #define PARSER_ATT_L4_UNKOWN_PROTOCOL_MASK
• #define PARSER_ATT_GTP_MASK
• #define PARSER_ATT_ESP_OVER_UDP_MASK
• #define PARSER_ATT_ISCSI_MASK
• #define PARSER_ATT_CAPWAP_CONTROL_MASK
• #define PARSER_ATT_CAPWAP_DATA_MASK
• #define PARSER_ATT_IPV6_ROUTING_HDR_1

1.3.4.2.7.2 Macro Definition Documentation

1.3.4.2.7.2.1 #define PARSER_ATT_GRE_MASK

"GRE" mask for frame_attribute_flags_3

1.3.4.2.7.2.2 #define PARSER_ATT_GRE_R_BIT_SET_MASK

"GRE R bit set" mask for frame_attribute_flags_3

1.3.4.2.7.2.3 #define PARSER_ATT_L3_UNKOWN_PROTOCOL_MASK

"Unknown L3 next protocol" mask for frame_attribute_flags_3

1.3.4.2.7.2.4 #define PARSER_ATT_UDP_MASK

"UDP" mask for frame_attribute_flags_3

1.3.4.2.7.2.5 #define PARSER_ATT_TCP_MASK

"TCP" mask for frame_attribute_flags_3

NXP Semiconductors
AIOP Service Layer API Reference Manual

116

Accelerators APIs

1.3.4.2.7.2.6 #define PARSER_ATT_TCP_OPTIONS_MASK

"TCP options" mask for frame_attribute_flags_3

1.3.4.2.7.2.7 #define PARSER_ATT_TCP_CONTROLS_6_11_SET_MASK

"TCP control bits 6-11 set" mask for frame_attribute_flags_3

1.3.4.2.7.2.8 #define PARSER_ATT_TCP_CONTROLS_3_5_SET_MASK

"TCP control bits 3-5 set" mask for frame_attribute_flags_3

1.3.4.2.7.2.9 #define PARSER_ATT_IPSEC_MASK

"IPSec" mask for frame_attribute_flags_3

1.3.4.2.7.2.10 #define PARSER_ATT_IPSEC_ESP_MASK

"IPSec ESP" mask for frame_attribute_flags_3

1.3.4.2.7.2.11 #define PARSER_ATT_IPSEC_AH_MASK

"IPSec AH" mask for frame_attribute_flags_3

1.3.4.2.7.2.12 #define PARSER_ATT_SCTP_MASK

"SCTP" mask for frame_attribute_flags_3

1.3.4.2.7.2.13 #define PARSER_ATT_DCCP_MASK

"DCCP" mask for frame_attribute_flags_3

1.3.4.2.7.2.14 #define PARSER_ATT_L4_UNKOWN_PROTOCOL_MASK

"Unknown L4 next protocol" mask for frame_attribute_flags_3

1.3.4.2.7.2.15 #define PARSER_ATT_GTP_MASK

"GTP" mask for frame_attribute_flags_3

1.3.4.2.7.2.16 #define PARSER_ATT_ESP_OVER_UDP_MASK

"ESP or IKE over UDP" mask for frame_attribute_flags_3

1.3.4.2.7.2.17 #define PARSER_ATT_ISCSI_MASK

"iSCSI" mask for frame_attribute_flags_3

1.3.4.2.7.2.18 #define PARSER_ATT_CAPWAP_CONTROL_MASK

"Capwap control" mask for frame_attribute_flags_3

NXP Semiconductors
AIOP Service Layer API Reference Manual

117

Accelerators APIs

1.3.4.2.7.2.19 #define PARSER_ATT_CAPWAP_DATA_MASK

"Capwap data" mask for frame_attribute_flags_3

1.3.4.2.7.2.20 #define PARSER_ATT_IPV6_ROUTING_HDR_1

Routing header present in 1st IPv6 header.

1.3.4.2.8 Frame Attributes Error Masks 3

1.3.4.2.8.1 Overview

Frame Attribute Errors Part 3 Masks Used with parse_result frame_attribute_flags_3 field.

Macros

• #define PARSER_ATT_MIN_ENCAP_PARSING_ERROR_MASK
• #define PARSER_ATT_GRE_PARSING_ERROR_MASK
• #define PARSER_ATT_L3_SOFT_PARSING_ERROR_MASK
• #define PARSER_ATT_UDP_PARSING_ERROR_MASK
• #define PARSER_ATT_TCP_PARSING_ERROR_MASK
• #define PARSER_ATT_IPSEC_PARSING_ERROR_MASK
• #define PARSER_ATT_SCTP_PARSING_ERROR_MASK
• #define PARSER_ATT_DCCP_PARSING_ERROR_MASK
• #define PARSER_ATT_L4_SOFT_PARSING_ERROR_MASK
• #define PARSER_ATT_GTP_PARSING_ERROR_MASK
• #define PARSER_ATT_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_MASK
• #define PARSER_ATT_L5_SOFT_PARSING_ERROR_MASK

1.3.4.2.8.2 Macro Definition Documentation

1.3.4.2.8.2.1 #define PARSER_ATT_MIN_ENCAP_PARSING_ERROR_MASK

"Min Encap parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.2 #define PARSER_ATT_GRE_PARSING_ERROR_MASK

"GRE parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.3 #define PARSER_ATT_L3_SOFT_PARSING_ERROR_MASK

"L3 soft parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.4 #define PARSER_ATT_UDP_PARSING_ERROR_MASK

"UDP parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.5 #define PARSER_ATT_TCP_PARSING_ERROR_MASK

"TCP parsing error" mask for frame_attribute_flags_3

NXP Semiconductors
AIOP Service Layer API Reference Manual

118

Accelerators APIs

1.3.4.2.8.2.6 #define PARSER_ATT_IPSEC_PARSING_ERROR_MASK

"IPSec parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.7 #define PARSER_ATT_SCTP_PARSING_ERROR_MASK

"SCTP parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.8 #define PARSER_ATT_DCCP_PARSING_ERROR_MASK

"DCCP parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.9 #define PARSER_ATT_L4_SOFT_PARSING_ERROR_MASK

"L4 soft parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.10 #define PARSER_ATT_GTP_PARSING_ERROR_MASK

"GTP parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.11 #define PARSER_ATT_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_MASK

"ESP or IKE over UDP parsing error" mask for frame_attribute_flags_3

1.3.4.2.8.2.12 #define PARSER_ATT_L5_SOFT_PARSING_ERROR_MASK

"L5 soft parsing error" mask for frame_attribute_flags_3

1.3.4.2.9 PARSER Error Codes

1.3.4.2.9.1 Overview

When parsing error is indicated in the Frame Attribute Flags, an error code is returned in the "Parse Error
Code" field in the parser result.

The error codings are priority based thus regardless of which error is found first the more severe is reported.

Macros

• #define PARSER_FRAME_TRUNCATION
• #define PARSER_ETH_802_3_TRUNCATION
• #define PARSER_PPPOE_TRUNCATION
• #define PARSER_PPPOE_MTU_VIOLATED
• #define PARSER_PPPOE_VERSION_INVALID
• #define PARSER_PPPOE_TYPE_INVALID
• #define PARSER_PPPOE_CODE_INVALID
• #define PARSER_PPPOE_SESSION_ID_INVALID
• #define PARSER_IPV4_PACKET_TRUNCATION
• #define PARSER_IPV4_CHECKSUM_ERROR
• #define PARSER_IPV4_VERSION_ERROR
• #define PARSER_IPV4_MIN_FRAG_SIZE_ERROR
• #define PARSER_IPV4_HEADER_LENGTH_ERROR

NXP Semiconductors
AIOP Service Layer API Reference Manual

119

Accelerators APIs

• #define PARSER_IPV6_PACKET_TRUNCATION
• #define PARSER_IPV6_EXTENSION_HEADER_VIOLATION
• #define PARSER_IPV6_VERSION_ERROR
• #define PARSER_IPV6_ROUTING_HEADER_ERROR
• #define PARSER_GRE_VERSION_ERROR
• #define PARSER_MINENC_CHECKSUM_ERROR
• #define PARSER_TCP_INVALID_OFFSET
• #define PARSER_TCP_PACKET_TRUNCATION
• #define PARSER_TCP_CHECKSUM_ERROR
• #define PARSER_TCP_BAD_FLAGS
• #define PARSER_UDP_LENGTH_ERROR
• #define PARSER_UDP_CHECKSUM_ZERO
• #define PARSER_UDP_CHECKSUM_ERROR
• #define PARSER_SCTP_PORT_0_DETECTED
• #define PARSER_GTP_UNSUPPORTED_VERSION
• #define PARSER_GTP_INVALID_PROTOCOL_TYPE
• #define PARSER_GTP_INVALID_L_BIT_ERROR

1.3.4.2.9.2 Macro Definition Documentation

1.3.4.2.9.2.1 #define PARSER_FRAME_TRUNCATION

Frame Truncation: Frame Parsing reached end of frame while parsing a header that expects more data.

1.3.4.2.9.2.2 #define PARSER_ETH_802_3_TRUNCATION

Attempting to access an undefined or reserved HXS TODO.

Ethernet 802.3 length is larger than the frame received

1.3.4.2.9.2.3 #define PARSER_PPPOE_TRUNCATION

PPPoE length is larger than the frame received.

1.3.4.2.9.2.4 #define PARSER_PPPOE_MTU_VIOLATED

PPP MTU exceeds 1492 bytes.

1.3.4.2.9.2.5 #define PARSER_PPPOE_VERSION_INVALID

PPP version field != 0x1.

1.3.4.2.9.2.6 #define PARSER_PPPOE_TYPE_INVALID

PPP type field != 0x1.

1.3.4.2.9.2.7 #define PARSER_PPPOE_CODE_INVALID

PPP code field != 0x0.

1.3.4.2.9.2.8 #define PARSER_PPPOE_SESSION_ID_INVALID

PPP Session ID == 0xffff.

NXP Semiconductors
AIOP Service Layer API Reference Manual

120

Accelerators APIs

1.3.4.2.9.2.9 #define PARSER_IPV4_PACKET_TRUNCATION

IPv4 total length field exceeds the received packet length (excludes L2 header)

1.3.4.2.9.2.10 #define PARSER_IPV4_CHECKSUM_ERROR

IPv4 checksum is incorrect.

1.3.4.2.9.2.11 #define PARSER_IPV4_VERSION_ERROR

Version number in IPv4 packet != 4.

1.3.4.2.9.2.12 #define PARSER_IPV4_MIN_FRAG_SIZE_ERROR

IPv4 Minumun Fragment Size Error - IPv4 non-last fragment does not contain at least eight data bytes.

1.3.4.2.9.2.13 #define PARSER_IPV4_HEADER_LENGTH_ERROR

IPv4 Header Length Error: IPv4 header length is less than 20 bytes, or exceeds the received packet length
(excludes L2 header), or exceeds the IPv4 header Total Packet Length.

1.3.4.2.9.2.14 #define PARSER_IPV6_PACKET_TRUNCATION

IPv6 Packet Truncation: IPv6 Payload length + 40 bytes header exceeds the received packet length (ex-
cludes L2 header), or Payload length == 0x0.

1.3.4.2.9.2.15 #define PARSER_IPV6_EXTENSION_HEADER_VIOLATION

IPv6 Extension Headers Violation: IPv6 Extension Headers applied that are in violation of the IPv6 spec-
ification.

1.3.4.2.9.2.16 #define PARSER_IPV6_VERSION_ERROR

Version number in IPv6 packet != 6.

1.3.4.2.9.2.17 #define PARSER_IPV6_ROUTING_HEADER_ERROR

Routing Header Error: A routing header of type 0 encountered with header length not an even value or
larger than twice the segs left.

1.3.4.2.9.2.18 #define PARSER_GRE_VERSION_ERROR

GRE version is non zero.

1.3.4.2.9.2.19 #define PARSER_MINENC_CHECKSUM_ERROR

Minimum encapsulation checksum is incorrect.

NXP Semiconductors
AIOP Service Layer API Reference Manual

121

Accelerators APIs

1.3.4.2.9.2.20 #define PARSER_TCP_INVALID_OFFSET

TCP offset < 5.

1.3.4.2.9.2.21 #define PARSER_TCP_PACKET_TRUNCATION

TCP Data offset > IP length in Parse Array.

1.3.4.2.9.2.22 #define PARSER_TCP_CHECKSUM_ERROR

TCP checksum is incorrect.

1.3.4.2.9.2.23 #define PARSER_TCP_BAD_FLAGS

None of TCP flags are set, or following TCP flags set together: SYN & FIN, SYN & RST, FIN & RST,
SYN & FIN & RST.

1.3.4.2.9.2.24 #define PARSER_UDP_LENGTH_ERROR

UPD Length Error: UDP length < 8, or does not fit inside the IP length when it is not a fragment.

1.3.4.2.9.2.25 #define PARSER_UDP_CHECKSUM_ZERO

UDP checksum == 0 for IPv6.

1.3.4.2.9.2.26 #define PARSER_UDP_CHECKSUM_ERROR

UDP checksum is incorrect.

1.3.4.2.9.2.27 #define PARSER_SCTP_PORT_0_DETECTED

SCTP source or destination port was set to 0.

1.3.4.2.9.2.28 #define PARSER_GTP_UNSUPPORTED_VERSION

GTP version is not 1 or 2.

1.3.4.2.9.2.29 #define PARSER_GTP_INVALID_PROTOCOL_TYPE

Invalid GTP' or GTPv1 Protocol type.

1.3.4.2.9.2.30 #define PARSER_GTP_INVALID_L_BIT_ERROR

Invalid GTP' length bit.

1.3.4.2.10 Parse Result Error Queries

1.3.4.2.10.1 Overview

These macros return a non-zero value in case an error in the relevant frame's attribute was found.

NXP Semiconductors
AIOP Service Layer API Reference Manual

122

Accelerators APIs

These macros are working on the default working frame's parse result.

Macros

• #define PARSER_IS_VXLAN_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_SHIM_SOFT_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_ETH_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_LLC_SNAP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_VLAN_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_PPPOE_PPP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_MPLS_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_ARP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_L2_SOFT_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_OUTER_IP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_INNER_IP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_LAST_IP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_MIN_ENCAP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_GRE_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_L3_SOFT_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_UDP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_TCP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_IPSEC_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_SCTP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_DCCP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_L4_SOFT_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_GTP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_DEFAULT()
• #define PARSER_IS_L5_SOFT_PARSING_ERROR_DEFAULT()

1.3.4.2.10.2 Macro Definition Documentation

1.3.4.2.10.2.1 #define PARSER_IS_VXLAN_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of VXLAN parsing error.

1.3.4.2.10.2.2 #define PARSER_IS_SHIM_SOFT_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case Soft parsing error in shim is found.

This general flag may be used for reporting an error in case of soft HXS

1.3.4.2.10.2.3 #define PARSER_IS_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case parsing error is found.

The error code is reported in the Parse Result (PARSER Error Codes)

1.3.4.2.10.2.4 #define PARSER_IS_ETH_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of Ethernet parsing error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

123

Accelerators APIs

1.3.4.2.10.2.5 #define PARSER_IS_LLC_SNAP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of LLC+SNAP parsing error.

1.3.4.2.10.2.6 #define PARSER_IS_VLAN_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of VLAN parsing error.

1.3.4.2.10.2.7 #define PARSER_IS_PPPOE_PPP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of PPPOE+PPP parsing error.

1.3.4.2.10.2.8 #define PARSER_IS_MPLS_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of MPLS parsing error.

1.3.4.2.10.2.9 #define PARSER_IS_ARP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of ARP parsing error.

1.3.4.2.10.2.10 #define PARSER_IS_L2_SOFT_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of L2 soft parsing error (can be either error in shim or in hard HXS Soft
Sequence Attachment)

1.3.4.2.10.2.11 #define PARSER_IS_OUTER_IP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of Outer IP parsing error.

1.3.4.2.10.2.12 #define PARSER_IS_INNER_IP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of Inner IP parsing error (only in case of more than 1 IP header in the
frame)

1.3.4.2.10.2.13 #define PARSER_IS_LAST_IP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of Last IP parsing error.

1.3.4.2.10.2.14 #define PARSER_IS_MIN_ENCAP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of Min Encap parsing error.

1.3.4.2.10.2.15 #define PARSER_IS_GRE_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of GRE parsing error.

1.3.4.2.10.2.16 #define PARSER_IS_L3_SOFT_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of L3 soft parsing error (can be either error in shim or in hard HXS Soft
Sequence Attachment)

NXP Semiconductors
AIOP Service Layer API Reference Manual

124

Accelerators APIs

1.3.4.2.10.2.17 #define PARSER_IS_UDP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of UDP parsing error.

1.3.4.2.10.2.18 #define PARSER_IS_TCP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of TCP parsing error.

1.3.4.2.10.2.19 #define PARSER_IS_IPSEC_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of IPSec parsing error.

1.3.4.2.10.2.20 #define PARSER_IS_SCTP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of SCTP parsing error.

1.3.4.2.10.2.21 #define PARSER_IS_DCCP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of DCCP parsing error.

1.3.4.2.10.2.22 #define PARSER_IS_L4_SOFT_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of L4 soft parsing error (can be either error in shim or in hard HXS Soft
Sequence Attachment)

1.3.4.2.10.2.23 #define PARSER_IS_GTP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of GTP parsing error.

1.3.4.2.10.2.24 #define PARSER_IS_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of ESP or IKE parsing error.

1.3.4.2.10.2.25 #define PARSER_IS_L5_SOFT_PARSING_ERROR_DEFAULT()

Returns a non-zero value in case of L5 soft parsing error (can be either error in shim or in hard HXS Soft
Sequence Attachment)

1.3.4.2.11 Parse Result Attributes Queries

1.3.4.2.11.1 Overview

These macros return a non-zero value in case the relevant attribute was found in the frame.

These macros are working on the default working frame's parse result.

Macros

• #define PARSER_IS_UD_SOFT_PARSER_BIT_0_SET()
• #define PARSER_IS_UD_SOFT_PARSER_BIT_1_SET()
• #define PARSER_IS_UD_SOFT_PARSER_BIT_2_SET()

NXP Semiconductors
AIOP Service Layer API Reference Manual

125

Accelerators APIs

• #define PARSER_IS_UD_SOFT_PARSER_BIT_3_SET()
• #define PARSER_IS_UD_SOFT_PARSER_BIT_4_SET()
• #define PARSER_IS_UD_SOFT_PARSER_BIT_5_SET()
• #define PARSER_IS_UD_SOFT_PARSER_BIT_6_SET()
• #define PARSER_IS_UD_SOFT_PARSER_BIT_7_SET()
• #define PARSER_IS_ROUTING_HDR_IN_2ND_IPV6_HDR_DEFAULT()
• #define PARSER_IS_GTP_PRIMED_DEFAULT()
• #define PARSER_IS_VLAN_PRIORITY_DEFAULT()
• #define PARSER_IS_PTP_DEFAULT()
• #define PARSER_IS_VXLAN_DEFAULT()
• #define PARSER_IS_ETH_SLOW_PROTOCOL_DEFAULT()
• #define PARSER_IS_ETH_MAC_DEFAULT()
• #define PARSER_IS_ETH_MAC_UNICAST_DEFAULT()
• #define PARSER_IS_ETH_MAC_MULTICAST_DEFAULT()
• #define PARSER_IS_ETH_MAC_BROADCAST_DEFAULT()
• #define PARSER_IS_BPDU_DEFAULT()
• #define PARSER_IS_FCOE_DEFAULT()
• #define PARSER_IS_FCOE_INIT_PROTOCOL_DEFAULT()
• #define PARSER_IS_LLC_SNAP_DEFAULT()
• #define PARSER_IS_UNKNOWN_LLC_OUI_DEFAULT()
• #define PARSER_IS_ONE_VLAN_DEFAULT()
• #define PARSER_IS_MORE_THAN_ONE_VLAN_DEFAULT()
• #define PARSER_IS_CFI_IN_VLAN_DEFAULT()
• #define PARSER_IS_PPPOE_PPP_DEFAULT()
• #define PARSER_IS_ONE_MPLS_DEFAULT()
• #define PARSER_IS_MORE_THAN_ONE_MPLS_DEFAULT()
• #define PARSER_IS_ARP_DEFAULT()
• #define PARSER_IS_L2_UNKNOWN_PROTOCOL_DEFAULT()
• #define PARSER_IS_IP_DEFAULT()
• #define PARSER_IS_OUTER_IPV4_DEFAULT()
• #define PARSER_IS_OUTER_IPV4_UNICAST_DEFAULT()
• #define PARSER_IS_OUTER_IPV4_MULTICAST_DEFAULT()
• #define PARSER_IS_OUTER_IPV4_BROADCAST_DEFAULT()
• #define PARSER_IS_TUNNELED_IP_DEFAULT()
• #define PARSER_IS_INNER_IPV4_DEFAULT()
• #define PARSER_IS_INNER_IPV4_UNICAST_DEFAULT()
• #define PARSER_IS_INNER_IPV4_MULTICAST_DEFAULT()
• #define PARSER_IS_INNER_IPV4_BROADCAST_DEFAULT()
• #define PARSER_IS_OUTER_IPV6_DEFAULT()
• #define PARSER_IS_OUTER_IPV6_UNICAST_DEFAULT()
• #define PARSER_IS_OUTER_IPV6_MULTICAST_DEFAULT()
• #define PARSER_IS_INNER_IPV6_DEFAULT()
• #define PARSER_IS_INNER_IPV6_UNICAST_DEFAULT()
• #define PARSER_IS_INNER_IPV6_MULTICAST_DEFAULT()
• #define PARSER_IS_OUTER_IP_OPTIONS_DEFAULT()
• #define PARSER_IS_OUTER_IP_UNKNOWN_PROTOCOL_DEFAULT()
• #define PARSER_IS_OUTER_IP_FRAGMENT_DEFAULT()
• #define PARSER_IS_OUTER_IP_INIT_FRAGMENT_DEFAULT()
• #define PARSER_IS_INNER_IP_OPTIONS_DEFAULT()
• #define PARSER_IS_INNER_IP_UNKNOWN_PROTOCOL_DEFAULT()
• #define PARSER_IS_INNER_IP_FRAGMENT_DEFAULT()
• #define PARSER_IS_INNER_IP_INIT_FRAGMENT_DEFAULT()
• #define PARSER_IS_ICMP_DEFAULT()
• #define PARSER_IS_IGMP_DEFAULT()
• #define PARSER_IS_ICMPV6_DEFAULT()
• #define PARSER_IS_UDP_LITE_DEFAULT()

NXP Semiconductors
AIOP Service Layer API Reference Manual

126

Accelerators APIs

• #define PARSER_IS_MIN_ENCAP_DEFAULT()
• #define PARSER_IS_MIN_ENCAP_S_FLAG_DEFAULT()
• #define PARSER_IS_GRE_DEFAULT()
• #define PARSER_IS_GRE_R_BIT_SET_DEFAULT()
• #define PARSER_IS_L3_UNKOWN_PROTOCOL_DEFAULT()
• #define PARSER_IS_UDP_DEFAULT()
• #define PARSER_IS_TCP_DEFAULT()
• #define PARSER_IS_TCP_OR_UDP_DEFAULT()
• #define PARSER_IS_TCP_OPTIONS_DEFAULT()
• #define PARSER_IS_TCP_CONTROLS_6_11_SET_DEFAULT()
• #define PARSER_IS_TCP_CONTROLS_3_5_SET_DEFAULT()
• #define PARSER_IS_IPSEC_DEFAULT()
• #define PARSER_IS_IPSEC_ESP_DEFAULT()
• #define PARSER_IS_IPSEC_AH_DEFAULT()
• #define PARSER_IS_SCTP_DEFAULT()
• #define PARSER_IS_DCCP_DEFAULT()
• #define PARSER_IS_L4_UNKOWN_PROTOCOL_DEFAULT()
• #define PARSER_IS_GTP_DEFAULT()
• #define PARSER_IS_IKE_OVER_UDP_DEFAULT()
• #define PARSER_IS_ESP_OVER_UDP_DEFAULT()
• #define PARSER_IS_ISCSI_DEFAULT()
• #define PARSER_IS_CAPWAP_CONTROL_DEFAULT()
• #define PARSER_IS_CAPWAP_DATA_DEFAULT()
• #define PARSER_IS_ROUTING_HDR_IN_1ST_IPV6_HDR_DEFAULT()

1.3.4.2.11.2 Macro Definition Documentation

1.3.4.2.11.2.1 #define PARSER_IS_UD_SOFT_PARSER_BIT_0_SET()

Returns a non-zero value in case the user defined bit #0 is set in a user defined soft parser.

1.3.4.2.11.2.2 #define PARSER_IS_UD_SOFT_PARSER_BIT_1_SET()

Returns a non-zero value in case the user defined bit #1 is set in a user defined soft parser.

1.3.4.2.11.2.3 #define PARSER_IS_UD_SOFT_PARSER_BIT_2_SET()

Returns a non-zero value in case the user defined bit #2 is set in a user defined soft parser.

1.3.4.2.11.2.4 #define PARSER_IS_UD_SOFT_PARSER_BIT_3_SET()

Returns a non-zero value in case the user defined bit #3 is set in a user defined soft parser.

1.3.4.2.11.2.5 #define PARSER_IS_UD_SOFT_PARSER_BIT_4_SET()

Returns a non-zero value in case the user defined bit #4 is set in a user defined soft parser.

1.3.4.2.11.2.6 #define PARSER_IS_UD_SOFT_PARSER_BIT_5_SET()

Returns a non-zero value in case the user defined bit #5 is set in a user defined soft parser.

NXP Semiconductors
AIOP Service Layer API Reference Manual

127

Accelerators APIs

1.3.4.2.11.2.7 #define PARSER_IS_UD_SOFT_PARSER_BIT_6_SET()

Returns a non-zero value in case the user defined bit #6 is set in a user defined soft parser.

1.3.4.2.11.2.8 #define PARSER_IS_UD_SOFT_PARSER_BIT_7_SET()

Returns a non-zero value in case the user defined bit #7 is set in a user defined soft parser.

1.3.4.2.11.2.9 #define PARSER_IS_ROUTING_HDR_IN_2ND_IPV6_HDR_DEFAULT()

Returns a non-zero value in case Routing hdr in 2nd IPv6 header is found.

1.3.4.2.11.2.10 #define PARSER_IS_GTP_PRIMED_DEFAULT()

Returns a non-zero value in case GTP Primed is found.

1.3.4.2.11.2.11 #define PARSER_IS_VLAN_PRIORITY_DEFAULT()

Returns a non-zero value in case VLAN Priority (VID=0) is found.

1.3.4.2.11.2.12 #define PARSER_IS_PTP_DEFAULT()

Returns a non-zero value in case PTP (1588) frame is found.

1.3.4.2.11.2.13 #define PARSER_IS_ETH_SLOW_PROTOCOL_DEFAULT()

Returns a non-zero value in case Ethernet Slow Protocol is found.

1.3.4.2.11.2.14 #define PARSER_IS_ETH_MAC_DEFAULT()

Returns a non-zero value in case Ethernet MAC is found.

1.3.4.2.11.2.15 #define PARSER_IS_ETH_MAC_UNICAST_DEFAULT()

Returns a non-zero value in case Ethernet MAC with unicast DA is found.

1.3.4.2.11.2.16 #define PARSER_IS_ETH_MAC_MULTICAST_DEFAULT()

Returns a non-zero value in case Ethernet MAC with multicast DA is found.

1.3.4.2.11.2.17 #define PARSER_IS_ETH_MAC_BROADCAST_DEFAULT()

Returns a non-zero value in case Ethernet MAC with broadcast DA is found.

1.3.4.2.11.2.18 #define PARSER_IS_BPDU_DEFAULT()

Returns a non-zero value in case BPDU is found.

1.3.4.2.11.2.19 #define PARSER_IS_FCOE_DEFAULT()

Returns a non-zero value in case FCOE is found.

NXP Semiconductors
AIOP Service Layer API Reference Manual

128

Accelerators APIs

1.3.4.2.11.2.20 #define PARSER_IS_FCOE_INIT_PROTOCOL_DEFAULT()

Returns a non-zero value in case FCOE Initial Protocol is found.

1.3.4.2.11.2.21 #define PARSER_IS_LLC_SNAP_DEFAULT()

Returns a non-zero value in case LLC+SNAP is found.

1.3.4.2.11.2.22 #define PARSER_IS_UNKNOWN_LLC_OUI_DEFAULT()

Returns a non-zero value in case Unknown LLC/OUI is found (LLC is not AAAA03 or OUI is not zero
or Ethernet Length is <= 8).

Next HXS to be executed is the Other L3 shell.

1.3.4.2.11.2.23 #define PARSER_IS_ONE_VLAN_DEFAULT()

Returns a non-zero value in case at least one VLAN is found.

1.3.4.2.11.2.24 #define PARSER_IS_MORE_THAN_ONE_VLAN_DEFAULT()

Returns a non-zero value in case more than one VLAN is found.

1.3.4.2.11.2.25 #define PARSER_IS_CFI_IN_VLAN_DEFAULT()

Returns a non-zero value in case CFI in VLAN is set.

1.3.4.2.11.2.26 #define PARSER_IS_PPPOE_PPP_DEFAULT()

Returns a non-zero value in case PPPoE+PPP is found.

1.3.4.2.11.2.27 #define PARSER_IS_ONE_MPLS_DEFAULT()

Returns a non-zero value in case at least one MPLS is found.

1.3.4.2.11.2.28 #define PARSER_IS_MORE_THAN_ONE_MPLS_DEFAULT()

Returns a non-zero value in case more than one MPLS is found.

1.3.4.2.11.2.29 #define PARSER_IS_ARP_DEFAULT()

Returns a non-zero value in case ARP is found.

1.3.4.2.11.2.30 #define PARSER_IS_L2_UNKNOWN_PROTOCOL_DEFAULT()

Returns a non-zero value in case of an Unknown L2 next protocol Meaning, when next HXS to be executed
is the Other L3 shell.

(e.g. when EtherType field is set to an unrecognized value, or in case of IP HXS when neither IPv4 nor
IPv6 are recognized). Next HXS to be executed is the Other L3 shell.

NXP Semiconductors
AIOP Service Layer API Reference Manual

129

Accelerators APIs

1.3.4.2.11.2.31 #define PARSER_IS_IP_DEFAULT()

Returns a non-zero value in case IP (IPv4/IPv6) is found.

1.3.4.2.11.2.32 #define PARSER_IS_OUTER_IPV4_DEFAULT()

Returns a non-zero value in case Outer IPv4 is found.

1.3.4.2.11.2.33 #define PARSER_IS_OUTER_IPV4_UNICAST_DEFAULT()

Returns a non-zero value in case Outer IPv4, unicast DA is found.

1.3.4.2.11.2.34 #define PARSER_IS_OUTER_IPV4_MULTICAST_DEFAULT()

Returns a non-zero value in case Outer IPv4, multicast DA is found.

1.3.4.2.11.2.35 #define PARSER_IS_OUTER_IPV4_BROADCAST_DEFAULT()

Returns a non-zero value in case Outer IPv4, broadcast DA is found.

1.3.4.2.11.2.36 #define PARSER_IS_TUNNELED_IP_DEFAULT()

Returns a non-zero value in case more than one IP (IPv4/IPv6) is found.

1.3.4.2.11.2.37 #define PARSER_IS_INNER_IPV4_DEFAULT()

Returns a non-zero value in case Inner IPv4 is found (only in case of more than 1 IP header in the frame)

1.3.4.2.11.2.38 #define PARSER_IS_INNER_IPV4_UNICAST_DEFAULT()

Returns a non-zero value in case Inner IPv4, unicast DA is found (only in case of more than 1 IP header
in the frame)

1.3.4.2.11.2.39 #define PARSER_IS_INNER_IPV4_MULTICAST_DEFAULT()

Returns a non-zero value in case Inner IPv4, multicast DA is found (only in case of more than 1 IP header
in the frame)

1.3.4.2.11.2.40 #define PARSER_IS_INNER_IPV4_BROADCAST_DEFAULT()

Returns a non-zero value in case Inner IPv4, broadcast DA is found (only in case of more than 1 IP header
in the frame)

1.3.4.2.11.2.41 #define PARSER_IS_OUTER_IPV6_DEFAULT()

Returns a non-zero value in case Outer IPv6 is found.

1.3.4.2.11.2.42 #define PARSER_IS_OUTER_IPV6_UNICAST_DEFAULT()

Returns a non-zero value in case Outer IPv6, unicast DA is found.

NXP Semiconductors
AIOP Service Layer API Reference Manual

130

Accelerators APIs

1.3.4.2.11.2.43 #define PARSER_IS_OUTER_IPV6_MULTICAST_DEFAULT()

Returns a non-zero value in case Outer IPv6, multicast DA is found.

1.3.4.2.11.2.44 #define PARSER_IS_INNER_IPV6_DEFAULT()

Returns a non-zero value in case Inner IPv6 is found (only in case of more than 1 IP header in the frame)

1.3.4.2.11.2.45 #define PARSER_IS_INNER_IPV6_UNICAST_DEFAULT()

Returns a non-zero value in case Inner IPv6, unicast DA is found (only in case of more than 1 IP header
in the frame)

1.3.4.2.11.2.46 #define PARSER_IS_INNER_IPV6_MULTICAST_DEFAULT()

Returns a non-zero value in case Inner IPv6, multicast DA is found (only in case of more than 1 IP header
in the frame)

1.3.4.2.11.2.47 #define PARSER_IS_OUTER_IP_OPTIONS_DEFAULT()

Returns a non-zero value in case Outer IP with options is found.

1.3.4.2.11.2.48 #define PARSER_IS_OUTER_IP_UNKNOWN_PROTOCOL_DEFAULT()

Returns a non-zero value in case of an Outer IP unknown next header Next HXS to be executed is the
Other L4 shell.

1.3.4.2.11.2.49 #define PARSER_IS_OUTER_IP_FRAGMENT_DEFAULT()

Returns a non-zero value in case Outer IP is a fragment.

1.3.4.2.11.2.50 #define PARSER_IS_OUTER_IP_INIT_FRAGMENT_DEFAULT()

Returns a non-zero value in case Outer IP is an initial fragment (fragment with offset 0)

1.3.4.2.11.2.51 #define PARSER_IS_INNER_IP_OPTIONS_DEFAULT()

Returns a non-zero value in case Inner IP with options is found (only in case of more than 1 IP header in
the frame)

1.3.4.2.11.2.52 #define PARSER_IS_INNER_IP_UNKNOWN_PROTOCOL_DEFAULT()

Returns a non-zero value in case of an Inner IP unknown next header (only in case of more than 1 IP
header in the frame) Next HXS to be executed is the Other L4 shell.

1.3.4.2.11.2.53 #define PARSER_IS_INNER_IP_FRAGMENT_DEFAULT()

Returns a non-zero value in case Inner IP is a fragment (only in case of more than 1 IP header in the frame)

NXP Semiconductors
AIOP Service Layer API Reference Manual

131

Accelerators APIs

1.3.4.2.11.2.54 #define PARSER_IS_INNER_IP_INIT_FRAGMENT_DEFAULT()

Returns a non-zero value in case Inner IP is an initial fragment (fragment with offset 0) (only in case of
more than 1 IP header in the frame)

1.3.4.2.11.2.55 #define PARSER_IS_ICMP_DEFAULT()

Returns a non-zero value in case ICMP is found (Note that ICMP is not indicated for non initial fragment)

1.3.4.2.11.2.56 #define PARSER_IS_IGMP_DEFAULT()

Returns a non-zero value in case IGMP is found (Note that IGMP is not indicated for non initial fragment)

1.3.4.2.11.2.57 #define PARSER_IS_ICMPV6_DEFAULT()

Returns a non-zero value in case ICMPv6 is found (Note that ICMPv6 is indicated for non initial fragment)

1.3.4.2.11.2.58 #define PARSER_IS_UDP_LITE_DEFAULT()

Returns a non-zero value in case UDP Lite is found (Note that UDP Lite is indicated for non initial
fragment)

1.3.4.2.11.2.59 #define PARSER_IS_MIN_ENCAP_DEFAULT()

Returns a non-zero value in case Min Encap is found.

1.3.4.2.11.2.60 #define PARSER_IS_MIN_ENCAP_S_FLAG_DEFAULT()

Returns a non-zero value in case Min Encap with S flag set is found.

1.3.4.2.11.2.61 #define PARSER_IS_GRE_DEFAULT()

Returns a non-zero value in case GRE is found.

1.3.4.2.11.2.62 #define PARSER_IS_GRE_R_BIT_SET_DEFAULT()

Returns a non-zero value in case GRE with R bit set is found.

1.3.4.2.11.2.63 #define PARSER_IS_L3_UNKOWN_PROTOCOL_DEFAULT()

Returns a non-zero value in case of an Unknown L3 next protocol Next HXS to be executed is the Other
L4 shell.

1.3.4.2.11.2.64 #define PARSER_IS_UDP_DEFAULT()

Returns a non-zero value in case UDP is found.

1.3.4.2.11.2.65 #define PARSER_IS_TCP_DEFAULT()

Returns a non-zero value in case TCP is found.

NXP Semiconductors
AIOP Service Layer API Reference Manual

132

Accelerators APIs

1.3.4.2.11.2.66 #define PARSER_IS_TCP_OR_UDP_DEFAULT()

Returns a non-zero value in case TCP or UDP is found.

1.3.4.2.11.2.67 #define PARSER_IS_TCP_OPTIONS_DEFAULT()

Returns a non-zero value in case TCP with options is found.

1.3.4.2.11.2.68 #define PARSER_IS_TCP_CONTROLS_6_11_SET_DEFAULT()

TCP Control bits 6-11 query.

Returns a non-zero value when at least one of TCP control bits 6-11 is set

1.3.4.2.11.2.69 #define PARSER_IS_TCP_CONTROLS_3_5_SET_DEFAULT()

TCP Control bits 3-5 query.

Returns a non-zero value in case at least one of TCP control bits 3-5 is set

1.3.4.2.11.2.70 #define PARSER_IS_IPSEC_DEFAULT()

Returns a non-zero value in case IPSec is found.

1.3.4.2.11.2.71 #define PARSER_IS_IPSEC_ESP_DEFAULT()

Returns a non-zero value in case IPSec ESP is found.

1.3.4.2.11.2.72 #define PARSER_IS_IPSEC_AH_DEFAULT()

Returns a non-zero value in case IPSec AH is found.

1.3.4.2.11.2.73 #define PARSER_IS_SCTP_DEFAULT()

Returns a non-zero value in case SCTP is found.

1.3.4.2.11.2.74 #define PARSER_IS_DCCP_DEFAULT()

Returns a non-zero value in case DCCP is found.

1.3.4.2.11.2.75 #define PARSER_IS_L4_UNKOWN_PROTOCOL_DEFAULT()

Returns a non-zero value in case of an unknown L4 next protocol Next HXS to be executed is the Other
L5 shell.

1.3.4.2.11.2.76 #define PARSER_IS_GTP_DEFAULT()

Returns a non-zero value in case GTP is found.

1.3.4.2.11.2.77 #define PARSER_IS_IKE_OVER_UDP_DEFAULT()

Returns a non-zero value in case IKE over UDP is found.

NXP Semiconductors
AIOP Service Layer API Reference Manual

133

Accelerators APIs

1.3.4.2.11.2.78 #define PARSER_IS_ESP_OVER_UDP_DEFAULT()

Returns a non-zero value in case ESP over UDP is found.

1.3.4.2.11.2.79 #define PARSER_IS_ISCSI_DEFAULT()

Returns a non-zero value in case iSCSI is found.

1.3.4.2.11.2.80 #define PARSER_IS_CAPWAP_CONTROL_DEFAULT()

Returns a non-zero value in case CapWap control is found.

1.3.4.2.11.2.81 #define PARSER_IS_CAPWAP_DATA_DEFAULT()

Returns a non-zero value in case CapWap data is found.

1.3.4.2.11.2.82 #define PARSER_IS_ROUTING_HDR_IN_1ST_IPV6_HDR_DEFAULT()

Returns a non-zero value in case Routing hdr in 1st IPv6 header is found.

1.3.4.2.12 Parse Result Getters

1.3.4.2.12.1 Overview

Returns a non-zero value in case Routing hdr in 2nd IPv6 header is found.

These macros return the offset of the relevant protocol in the frame. Offset 0xFF indicates that the corre-
sponding protocol was not found in the frame. These macros are working on the default working frame's
parse result.

Macros

• #define PARSER_GET_NEXT_HEADER_DEFAULT()
• #define PARSER_GET_SHIM1_OFFSET_DEFAULT()
• #define PARSER_GET_SHIM2_OFFSET_DEFAULT()
• #define PARSER_GET_OUTER_IP_PID_OFFSET_DEFAULT()
• #define PARSER_GET_ETH_OFFSET_DEFAULT()
• #define PARSER_GET_LLC_SNAP_OFFSET_DEFAULT()
• #define PARSER_GET_FIRST_VLAN_TCI_OFFSET_DEFAULT()
• #define PARSER_GET_LAST_VLAN_TCI_OFFSET_DEFAULT()
• #define PARSER_GET_LAST_ETYPE_OFFSET_DEFAULT()
• #define PARSER_GET_PPPOE_OFFSET_DEFAULT()
• #define PARSER_GET_FIRST_MPLS_OFFSET_DEFAULT()
• #define PARSER_GET_LAST_MPLS_OFFSET_DEFAULT()
• #define PARSER_GET_OUTER_IP_OFFSET_DEFAULT()
• #define PARSER_GET_ARP_OFFSET_DEFAULT()
• #define PARSER_GET_FCOE_OFFSET_DEFAULT()
• #define PARSER_GET_FIP_OFFSET_DEFAULT()
• #define PARSER_GET_INNER_IP_OFFSET_DEFAULT()
• #define PARSER_GET_MINENCAP_OFFSET_DEFAULT()
• #define PARSER_GET_GRE_OFFSET_DEFAULT()
• #define PARSER_GET_L4_OFFSET_DEFAULT()

NXP Semiconductors
AIOP Service Layer API Reference Manual

134

Accelerators APIs

• #define PARSER_GET_L5_OFFSET_DEFAULT()
• #define PARSER_GET_1ST_IPV6_ROUTING_HDR_OFFSET_DEFAULT()
• #define PARSER_GET_2ND_IPV6_ROUTING_HDR_OFFSET_DEFAULT()
• #define PARSER_GET_NEXT_HEADER_OFFSET_DEFAULT()
• #define PARSER_GET_IPV6_FRAG_HEADER_OFFSET_DEFAULT()
• #define PARSER_GET_GROSS_RUNNING_SUM_CODE_DEFAULT()
• #define PARSER_GET_RUNNING_SUM_DEFAULT()
• #define PARSER_GET_PARSE_ERROR_CODE_DEFAULT()
• #define PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_OFFSET_DEFAULT()
• #define PARSER_GET_IP_N_PID_OFFSET_DEFAULT()

1.3.4.2.12.2 Macro Definition Documentation

1.3.4.2.12.2.1 #define PARSER_GET_NEXT_HEADER_DEFAULT()

Get Next header.

1.3.4.2.12.2.2 #define PARSER_GET_SHIM1_OFFSET_DEFAULT()

Get Shim1 offset.

1.3.4.2.12.2.3 #define PARSER_GET_SHIM2_OFFSET_DEFAULT()

Get Shim2 offset.

1.3.4.2.12.2.4 #define PARSER_GET_OUTER_IP_PID_OFFSET_DEFAULT()

Get the IP Protocol Identifier offset of the first IP.

1.3.4.2.12.2.5 #define PARSER_GET_ETH_OFFSET_DEFAULT()

Get the ETHERNET header offset.

1.3.4.2.12.2.6 #define PARSER_GET_LLC_SNAP_OFFSET_DEFAULT()

Get the LLC+SNAP header offset.

1.3.4.2.12.2.7 #define PARSER_GET_FIRST_VLAN_TCI_OFFSET_DEFAULT()

Get the first VLAN TCI offset.

1.3.4.2.12.2.8 #define PARSER_GET_LAST_VLAN_TCI_OFFSET_DEFAULT()

Get the last VLAN TCI offset.

1.3.4.2.12.2.9 #define PARSER_GET_LAST_ETYPE_OFFSET_DEFAULT()

Get the last EtherType offset.

1.3.4.2.12.2.10 #define PARSER_GET_PPPOE_OFFSET_DEFAULT()

Get the PPPoE header offset.

NXP Semiconductors
AIOP Service Layer API Reference Manual

135

Accelerators APIs

1.3.4.2.12.2.11 #define PARSER_GET_FIRST_MPLS_OFFSET_DEFAULT()

Get the first MPLS offset.

1.3.4.2.12.2.12 #define PARSER_GET_LAST_MPLS_OFFSET_DEFAULT()

Get the last MPLS offset.

1.3.4.2.12.2.13 #define PARSER_GET_OUTER_IP_OFFSET_DEFAULT()

Get the outer IP header offset.

1.3.4.2.12.2.14 #define PARSER_GET_ARP_OFFSET_DEFAULT()

Get the ARP header offset.

1.3.4.2.12.2.15 #define PARSER_GET_FCOE_OFFSET_DEFAULT()

Get the FCoE header offset.

1.3.4.2.12.2.16 #define PARSER_GET_FIP_OFFSET_DEFAULT()

Get the FIP header offset.

1.3.4.2.12.2.17 #define PARSER_GET_INNER_IP_OFFSET_DEFAULT()

Get the inner IP header offset.

1.3.4.2.12.2.18 #define PARSER_GET_MINENCAP_OFFSET_DEFAULT()

Get the MinEncap header offset.

1.3.4.2.12.2.19 #define PARSER_GET_GRE_OFFSET_DEFAULT()

Get the GRE header offset.

1.3.4.2.12.2.20 #define PARSER_GET_L4_OFFSET_DEFAULT()

Get the L4 (UDP/TCP/SCTP/DCCP/ICMP/IGMP/ICMPv6/UDP Lite) header offset.

1.3.4.2.12.2.21 #define PARSER_GET_L5_OFFSET_DEFAULT()

Get L5 (GTP/ESP/IPsec/iSCSI/CapWap/PTP(not in REV1) header offset.

1.3.4.2.12.2.22 #define PARSER_GET_1ST_IPV6_ROUTING_HDR_OFFSET_DEFAULT()

Get Routing Header offset in 1st IPv6 header.

1.3.4.2.12.2.23 #define PARSER_GET_2ND_IPV6_ROUTING_HDR_OFFSET_DEFAULT()

Get Routing Header offset in 2nd IPv6 header.

NXP Semiconductors
AIOP Service Layer API Reference Manual

136

Accelerators APIs

1.3.4.2.12.2.24 #define PARSER_GET_NEXT_HEADER_OFFSET_DEFAULT()

Get Next header offset (offset to the last result of the parsed header of the next header type)

1.3.4.2.12.2.25 #define PARSER_GET_IPV6_FRAG_HEADER_OFFSET_DEFAULT()

Get IPv6 fragment header offset.

1.3.4.2.12.2.26 #define PARSER_GET_GROSS_RUNNING_SUM_CODE_DEFAULT()

Get Gross Running Sum.

1.3.4.2.12.2.27 #define PARSER_GET_RUNNING_SUM_DEFAULT()

Get Running Sum.

1.3.4.2.12.2.28 #define PARSER_GET_PARSE_ERROR_CODE_DEFAULT()

Get Parse Error Code.

1.3.4.2.12.2.29 #define PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_OFFSET_DEFAULT(
)

Get offset to the next header field before IPv6 fragment extension.

1.3.4.2.12.2.30 #define PARSER_GET_IP_N_PID_OFFSET_DEFAULT()

Get the IP Protocol Identifier offset of the Inner IP.

1.3.4.2.13 Pointer in Frame Getters

1.3.4.2.13.1 Overview

These macros return the pointer to the relevant protocol in the frame.

These macros are working on the default working frame's parse result.

Macros

• #define PARSER_GET_SHIM1_POINTER_DEFAULT()
• #define PARSER_GET_SHIM2_POINTER_DEFAULT()
• #define PARSER_GET_OUTER_IP_PID_POINTER_DEFAULT()
• #define PARSER_GET_ETH_POINTER_DEFAULT()
• #define PARSER_GET_LLC_SNAP_POINTER_DEFAULT()
• #define PARSER_GET_FIRST_VLAN_TCI_POINTER_DEFAULT()
• #define PARSER_GET_LAST_VLAN_TCI_POINTER_DEFAULT()
• #define PARSER_GET_LAST_ETYPE_POINTER_DEFAULT()
• #define PARSER_GET_PPPOE_POINTER_DEFAULT()
• #define PARSER_GET_FIRST_MPLS_POINTER_DEFAULT()
• #define PARSER_GET_LAST_MPLS_POINTER_DEFAULT()
• #define PARSER_GET_OUTER_IP_POINTER_DEFAULT()
• #define PARSER_GET_ARP_POINTER_DEFAULT()

NXP Semiconductors
AIOP Service Layer API Reference Manual

137

Accelerators APIs

• #define PARSER_GET_FCOE_POINTER_DEFAULT()
• #define PARSER_GET_FIP_POINTER_DEFAULT()
• #define PARSER_GET_INNER_IP_POINTER_DEFAULT()
• #define PARSER_GET_MINENCAP_POINTER_DEFAULT()
• #define PARSER_GET_GRE_POINTER_DEFAULT()
• #define PARSER_GET_L4_POINTER_DEFAULT()
• #define PARSER_GET_L5_POINTER_DEFAULT()
• #define PARSER_GET_1ST_IPV6_ROUTING_HDR_POINTER_DEFAULT()
• #define PARSER_GET_2ND_IPV6_ROUTING_HDR_POINTER_DEFAULT()
• #define PARSER_GET_NEXT_HEADER_POINTER_DEFAULT()
• #define PARSER_GET_IPV6_FRAG_HEADER_POINTER_DEFAULT()
• #define PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_POINTER_DEFAULT()
• #define PARSER_GET_IP_N_PID_POINTER_DEFAULT()

1.3.4.2.13.2 Macro Definition Documentation

1.3.4.2.13.2.1 #define PARSER_GET_SHIM1_POINTER_DEFAULT()

Get the pointer to Shim1 in the default frame presented in the workspace.

1.3.4.2.13.2.2 #define PARSER_GET_SHIM2_POINTER_DEFAULT()

Get the pointer to Shim2 in the default frame presented in the workspace.

1.3.4.2.13.2.3 #define PARSER_GET_OUTER_IP_PID_POINTER_DEFAULT()

Get the pointer to IP Protocol Identifier of the first IP in the default frame presented in the workspace.

1.3.4.2.13.2.4 #define PARSER_GET_ETH_POINTER_DEFAULT()

Get the pointer to ETHERNET in the default frame presented in the workspace.

1.3.4.2.13.2.5 #define PARSER_GET_LLC_SNAP_POINTER_DEFAULT()

Get the pointer to LLC+SNAP in the default frame presented in the workspace.

1.3.4.2.13.2.6 #define PARSER_GET_FIRST_VLAN_TCI_POINTER_DEFAULT()

Get the pointer to first VLAN TCI in the default frame presented in the workspace.

1.3.4.2.13.2.7 #define PARSER_GET_LAST_VLAN_TCI_POINTER_DEFAULT()

Get the pointer to last VLAN TCI in the default frame presented in the workspace.

1.3.4.2.13.2.8 #define PARSER_GET_LAST_ETYPE_POINTER_DEFAULT()

Get the pointer to last EtherType in the default frame presented in the workspace.

1.3.4.2.13.2.9 #define PARSER_GET_PPPOE_POINTER_DEFAULT()

Get the pointer to PPPoE header in the default frame presented in the workspace.

NXP Semiconductors
AIOP Service Layer API Reference Manual

138

Accelerators APIs

1.3.4.2.13.2.10 #define PARSER_GET_FIRST_MPLS_POINTER_DEFAULT()

Get the pointer to first MPLS in the default frame presented in the workspace.

1.3.4.2.13.2.11 #define PARSER_GET_LAST_MPLS_POINTER_DEFAULT()

Get the pointer to last MPLS in the default frame presented in the workspace.

1.3.4.2.13.2.12 #define PARSER_GET_OUTER_IP_POINTER_DEFAULT()

Get the pointer to outer IP header in the default frame presented in the workspace.

1.3.4.2.13.2.13 #define PARSER_GET_ARP_POINTER_DEFAULT()

Get the pointer to ARP header in the default frame presented in the workspace.

1.3.4.2.13.2.14 #define PARSER_GET_FCOE_POINTER_DEFAULT()

Get the pointer to FCoE header in the default frame presented in the workspace.

1.3.4.2.13.2.15 #define PARSER_GET_FIP_POINTER_DEFAULT()

Get the pointer to FIP header in the default frame presented in the workspace.

1.3.4.2.13.2.16 #define PARSER_GET_INNER_IP_POINTER_DEFAULT()

Get the pointer to inner IP header in the default frame presented in the workspace.

1.3.4.2.13.2.17 #define PARSER_GET_MINENCAP_POINTER_DEFAULT()

Get the pointer to MinEncap header in the default frame presented in the workspace.

1.3.4.2.13.2.18 #define PARSER_GET_GRE_POINTER_DEFAULT()

Get the pointer to GRE in the default frame presented in the workspace.

1.3.4.2.13.2.19 #define PARSER_GET_L4_POINTER_DEFAULT()

Get the pointer to L4 (UDP/TCP/SCTP/DCCP) header in the default frame presented in the workspace.

1.3.4.2.13.2.20 #define PARSER_GET_L5_POINTER_DEFAULT()

Get the pointer to L5 (GTP/ESP/IPsec) header in the default frame presented in the workspace.

1.3.4.2.13.2.21 #define PARSER_GET_1ST_IPV6_ROUTING_HDR_POINTER_DEFAULT()

Get the pointer to Routing Header in 1st IPv6 header.

1.3.4.2.13.2.22 #define PARSER_GET_2ND_IPV6_ROUTING_HDR_POINTER_DEFAULT()

Get the pointer to Routing Header in 2nd IPv6 header.

NXP Semiconductors
AIOP Service Layer API Reference Manual

139

Accelerators APIs

1.3.4.2.13.2.23 #define PARSER_GET_NEXT_HEADER_POINTER_DEFAULT()

Get the pointer to Next header (last result of the parsed header of the next header type) in the default frame
presented in the workspace.

1.3.4.2.13.2.24 #define PARSER_GET_IPV6_FRAG_HEADER_POINTER_DEFAULT()

Get the pointer to IPv6 fragment header in the default frame presented in the workspace.

1.3.4.2.13.2.25 #define PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_POINTER_DEFAU←↩
LT()

Get the pointer to the next header field before IPv6 fragment extension.

1.3.4.2.13.2.26 #define PARSER_GET_IP_N_PID_POINTER_DEFAULT()

Get the pointer to the IP Protocol Identifier of the Inner IP.

1.3.4.2.14 PARSER Setters

1.3.4.2.14.1 Overview

These macros set parser parameters in the default task params.

Macros

• #define PARSER_SET_PRPID(_val)
• #define PARSER_SET_STARTING_HXS(_val)

1.3.4.2.14.2 Macro Definition Documentation

1.3.4.2.14.2.1 #define PARSER_SET_PRPID(_val)

Macro to set parser_profile_id in the default task params.

1.3.4.2.14.2.2 #define PARSER_SET_STARTING_HXS(_val)

Macro to set parser_starting_hxs in the default task params.

1.3.4.2.15 Flags for parse_result_generate function

1.3.4.2.15.1 Overview

Macros

• #define PARSER_NO_FLAGS
• #define PARSER_VALIDATE_L3_CHECKSUM
• #define PARSER_VALIDATE_L4_CHECKSUM
• #define PARSER_VALIDATE_L3_L4_CHECKSUM

NXP Semiconductors
AIOP Service Layer API Reference Manual

140

Accelerators APIs

1.3.4.2.15.2 Macro Definition Documentation

1.3.4.2.15.2.1 #define PARSER_NO_FLAGS

No flags.

1.3.4.2.15.2.2 #define PARSER_VALIDATE_L3_CHECKSUM

Validate L3 checksum flag.

1.3.4.2.15.2.3 #define PARSER_VALIDATE_L4_CHECKSUM

Validate L4 checksum flag.

1.3.4.2.15.2.4 #define PARSER_VALIDATE_L3_L4_CHECKSUM

Validate L3 & L4 checksum flags.

1.3.4.2.16 PARSER HXS configuration in parse profile defines

1.3.4.2.16.1 Overview

For configuring each HXS (Header Examination Sequence) in the Parse Profile Record, user should use
the flags relevant to each HXS configuration by performing "OR" between the flags and the index for soft
sequence start address.

Macros

• #define PARSER_PRP_HXS_CONFIG_EN
• #define PARSER_PRP_HXS_CONFIG_ERM
• #define PARSER_PRP_PPP_HXS_CONFIG_EMC
• #define PARSER_PRP_MPLS_HXS_CONFIG_LIE
• #define PARSER_PRP_IPV6_HXS_CONFIG_RHE
• #define PARSER_PRP_TCP_UDP_HXS_CONFIG_SPPR

1.3.4.2.16.2 Macro Definition Documentation

1.3.4.2.16.2.1 #define PARSER_PRP_HXS_CONFIG_EN

HXS Config Enable.

When set to 1, it enables soft extension of examination instructions beginning at every protocol HXS
configuration Soft Sequence Start.

1.3.4.2.16.2.2 #define PARSER_PRP_HXS_CONFIG_ERM

Mask Error reporting.

0 disabled, report error from this HXS to the Parser Error Status
1 enabled, do not report error

NXP Semiconductors
AIOP Service Layer API Reference Manual

141

Accelerators APIs

1.3.4.2.16.2.3 #define PARSER_PRP_PPP_HXS_CONFIG_EMC

Enable MTU checking.

1.3.4.2.16.2.4 #define PARSER_PRP_MPLS_HXS_CONFIG_LIE

MPLS Label Interpretation enable.

When this bit is set, next HXS to be executed is based on the interpretation of the last MPLS label (can be
either IPv4/IPv6/Other L3 shell/Default next parse sequence). When the bit is cleared, the Frame Parsing
advances to MPLS Default Next Parse.

1.3.4.2.16.2.5 #define PARSER_PRP_IPV6_HXS_CONFIG_RHE

Routing Header Enable.

When not set (by default), the routing header is ignored and the destination address from the Main header
is used instead.

1.3.4.2.16.2.6 #define PARSER_PRP_TCP_UDP_HXS_CONFIG_SPPR

Short Packet Padding Removal From Checksum Calculation.

When set to 1, the contribution of the padded region at the end of a frame is removed from the checksum
calculation.

1.3.4.3 PARSER Enumerations

1.3.4.3.1 Overview

PARSER Enumerations.

• enum parser_starting_hxs_code {

NXP Semiconductors
AIOP Service Layer API Reference Manual

142

Accelerators APIs

PARSER_ETH_STARTING_HXS,
PARSER_LLC_SNAP_STARTING_HXS,
PARSER_VLAN_STARTING_HXS,
PARSER_PPPOE_PPP_STARTING_HXS,
PARSER_MPLS_STARTING_HXS,
PARSER_ARP_STARTING_HXS,
PARSER_IP_STARTING_HXS,
PARSER_IPV4_STARTING_HXS,
PARSER_IPV6_STARTING_HXS,
PARSER_GRE_STARTING_HXS,
PARSER_MINENCAP_STARTING_HXS,
PARSER_OTHER_L3_SHELL_STARTING_HXS,
PARSER_TCP_STARTING_HXS,
PARSER_UDP_STARTING_HXS,
PARSER_IPSEC_STARTING_HXS,
PARSER_SCTP_STARTING_HXS,
PARSER_DCCP_STARTING_HXS,
PARSER_OTHER_L4_SHELL_STARTING_HXS,
PARSER_GTP_STARTING_HXS,
PARSER_ESP_STARTING_HXS,
PARSER_VXLAN_STARTING_HXS,
PARSER_L5_SHELL_STARTING_HXS,
PARSER_FINAL_SHELL_STARTING_HXS }

1.3.4.3.2 Enumeration Type Documentation

1.3.4.3.2.1 enum parser_starting_hxs_code

PARSER Starting HXS code.

Enumerator

PARSER_ETH_STARTING_HXS Ethernet Starting HXS coding.
PARSER_LLC_SNAP_STARTING_HXS LLC+SNAP Starting HXS coding.
PARSER_VLAN_STARTING_HXS VLAN Starting HXS coding.
PARSER_PPPOE_PPP_STARTING_HXS PPPoE+PPP Starting HXS coding.
PARSER_MPLS_STARTING_HXS MPLS Starting HXS coding.
PARSER_ARP_STARTING_HXS ARP Starting HXS coding.
PARSER_IP_STARTING_HXS IP Starting HXS coding.
PARSER_IPV4_STARTING_HXS IPv4 Starting HXS coding.
PARSER_IPV6_STARTING_HXS IPv6 Starting HXS coding.
PARSER_GRE_STARTING_HXS GRE Starting HXS coding.
PARSER_MINENCAP_STARTING_HXS MinEncap Starting HXS coding.
PARSER_OTHER_L3_SHELL_STARTING_HXS Other L3 Shell Starting HXS coding.
PARSER_TCP_STARTING_HXS TCP Starting HXS coding.

NXP Semiconductors
AIOP Service Layer API Reference Manual

143

Accelerators APIs

PARSER_UDP_STARTING_HXS UDP Starting HXS coding.
PARSER_IPSEC_STARTING_HXS IPSec Starting HXS coding.
PARSER_SCTP_STARTING_HXS SCTP Starting HXS coding.
PARSER_DCCP_STARTING_HXS DCCP Starting HXS coding.
PARSER_OTHER_L4_SHELL_STARTING_HXS Other L4 Shell Starting HXS coding.
PARSER_GTP_STARTING_HXS GTP Starting HXS coding.
PARSER_ESP_STARTING_HXS ESP Starting HXS coding.
PARSER_VXLAN_STARTING_HXS VXLAN Starting HXS coding.
PARSER_L5_SHELL_STARTING_HXS L5 (and above) Shell Starting HXS coding.
PARSER_FINAL_SHELL_STARTING_HXS Final Shell Starting HXS coding.

1.3.4.4 PARSER Structures

1.3.4.4.1 Overview

Freescale AIOP PARSER Structures.

Data Structures

• struct parse_result
• struct vlan_hxs_configuration
• struct mpls_hxs_configuration
• struct parse_profile_record
• struct parse_profile_input

1.3.4.4.2 Data Structure Documentation

1.3.4.4.2.1 struct parse_result

Parse Result structure.

Please refer to the parser specification for more details.

Data Fields

volatile
uint16_t

nxt_hdr Next header.

volatile
uint16_t

frame_←↩
attribute_←↩
flags_extension

Frame Attribute Flags Extension.

NXP Semiconductors
AIOP Service Layer API Reference Manual

144

Accelerators APIs

volatile
uint32_t

frame_←↩
attribute_←↩
flags_1

Frame Attribute Flags (part 1)

volatile
uint32_t

frame_←↩
attribute_←↩
flags_2

Frame Attribute Flags (part 2)

volatile
uint32_t

frame_←↩
attribute_←↩
flags_3

Frame Attribute Flags (part 3)

volatile
uint8_t

shim_offset_1 Shim Offset 1.

volatile
uint8_t

shim_offset_2 Shim Offset 2.

volatile
uint8_t

ip_1_pid_offset Outer IP protocol field offset.

volatile
uint8_t

eth_offset Ethernet offset.

volatile
uint8_t

llc_snap_offset LLC+SNAP offset.

volatile
uint8_t

vlan_tci1_←↩
offset

First VLAN's TCI field offset.

volatile
uint8_t

vlan_tcin_←↩
offset

Last VLAN's TCI field offset.

volatile
uint8_t

last_etype_←↩
offset

Last Ethertype offset.

volatile
uint8_t

pppoe_offset PPPoE offset.

volatile
uint8_t

mpls_offset_1 First MPLS offset.

volatile
uint8_t

mpls_offset_n Last MPLS offset.

volatile
uint8_t

l3_offset Layer 3 (Outer IP, ARP, FCoE or FIP) offset.

volatile
uint8_t

ipn_or_←↩
minencapO_←↩
offset

Inner IP or MinEncap offset.

volatile
uint8_t

gre_offset GRE offset.

volatile
uint8_t

l4_offset Layer 4 offset.

NXP Semiconductors
AIOP Service Layer API Reference Manual

145

Accelerators APIs

volatile
uint8_t

l5_offset Layer 5 offset.

volatile
uint8_t

routing_hdr_←↩
offset1

Routing header offset of 1st IPv6 header.

volatile
uint8_t

routing_hdr_←↩
offset2

Routing header offset of 2nd IPv6 header.

volatile
uint8_t

nxt_hdr_offset Next header offset.

volatile
uint8_t

ipv6_frag_←↩
offset

IPv6 fragmentable part offset.

volatile
uint16_t

gross_←↩
running_sum

Frame's untouched running sum, input to parser.

volatile
uint16_t

running_sum Running Sum.

volatile
uint8_t

parse_error_←↩
code

Parse Error code. Please refer to PARSER Error Codes

volatile
uint8_t

nxt_hdr_←↩
before_ipv6_←↩
frag_ext

Offset to the next header field before IPv6 fragment extension.

volatile
uint8_t

ip_n_pid_offset Inner IP Protocol field offset.

volatile
uint8_t

soft_parsing_←↩
context[21]

Reserved for Soft parsing context.

1.3.4.4.2.2 struct vlan_hxs_configuration

Vlan HXS Configuration in Parser Profile Record structure.

Data Fields

uint16_t en_erm_soft_←↩
seq_start

This field includes: Bits EN, ERM (refer to PARSER HXS config-
uration in parse profile defines) and 11-bit index for soft sequence
start address. Reserved bits must be clear.

uint16_t configured_←↩
tpid_1

configured TPID 1. Configures a TPID value to indicate a VLAN
tag in addition to the common TPID values 0x8100 and 0x88A8

uint16_t configured_←↩
tpid_2

configured TPID 2. Configures a TPID value to indicate a VLAN
tag in addition to the common TPID values 0x8100 and 0x88A8

1.3.4.4.2.3 struct mpls_hxs_configuration

MPLS HXS Configuration in Parser Profile Record structure.

NXP Semiconductors
AIOP Service Layer API Reference Manual

146

Accelerators APIs

Data Fields

uint16_t en_erm_soft_←↩
seq_start

This field includes: Bits EN, ERM (refer to PARSER HXS config-
uration in parse profile defines) and 11-bit index for soft sequence
start address. Reserved bits must be clear.

uint16_t lie_dnp This field includes: Bit LIE (refer to PARSER HXS configuration
in parse profile defines) and 11-bit index for indicating the HXS or
soft sequence start address to advance after the MPLS HXS when
the MPLS Label Interpretation is disabled or MPLS label is >15.
Index value must be equal or greater than IPv4. Reserved bits must
be clear.

1.3.4.4.2.4 struct parse_profile_record

Parser Profile Record structure.

Parsing is directed through parse profiles which provide a template of parsing actions to be taken. 64
profiles are supported. Parser Profile is built of many different HXS (Header Examination Sequence)
configurations. Each configuration includes some flags for actions to be taken, and a Soft Sequence At-
tachment record that is indexed by that HXS Soft Sequence Start field. When enabled, the soft sequence
attachment is executed at the end of the hard HXS execution, just before the hard HXS branches out to the
next HXS.

This is a general 16-bit HXS config description:

0 1 2 3 4 5 - 15
EN – EMC/RHE/SP←↩

PR
ERM/LIE – Soft Sequence

Start

Data Fields

uint16_t vxlan_da1 One configured distinct UDP DA value to indicate a VXLAN tag
(in addition to the common DA value 0x12B5).

uint16_t vxlan_da2 Second configured distinct UDP DA value to indicate a VXLAN
tag (in addition to the common DA value 0x12B5).

uint16_t eth_hxs_config Eth HXS configuration. Includes bits EN, ERM (refer to PARSER
HXS configuration in parse profile defines) and 11-bit index (16-
bit words) for soft sequence start address. Reserved bits must be
clear.

NXP Semiconductors
AIOP Service Layer API Reference Manual

147

Accelerators APIs

uint16_t llc_snap_hxs←↩
_config

LLC/SNAP HXS configuration. Includes bits EN, ERM (refer to
PARSER HXS configuration in parse profile defines) and 11-bit
index (16-bit words) for soft sequence start address. Reserved bits
must be clear.

struct
vlan_hxs_←↩

configuration

vlan_hxs_←↩
config

VLAN HXS config. Refer to vlan_hxs_configuration struct de-
scription.

uint16_t pppoe_ppp_←↩
hxs_config

PPP/PPPOE HXS configuration. Includes bits EN, EMC, ERM
(refer to PARSER HXS configuration in parse profile defines) and
11-bit index (16-bit words) for soft sequence start address. Re-
served bits must be clear.

struct
mpls_hxs_←↩

configuration

mpls_hxs_←↩
config

MPLS HXS config. Refer to mpls_hxs_configuration struct de-
scription.

uint16_t arp_hxs_config ARP HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t ip_hxs_config IP HXS configuration. Includes bits EN, ERM (refer to PARSER
HXS configuration in parse profile defines) and 11-bit index (16-
bit words) for soft sequence start address. Reserved bits must be
clear.

uint16_t ipv4_hxs_←↩
config

IPv4 HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t ipv6_hxs_←↩
config

IPv6 HXS configuration. Includes bits EN, RHE, ERM (refer to
PARSER HXS configuration in parse profile defines) and 11-bit
index (16-bit words) for soft sequence start address. Reserved bits
must be clear.

uint16_t gre_hxs_config GRE HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t minenc_hxs_←↩
config

MINENC HXS configuration. Includes bits EN, ERM (refer to
PARSER HXS configuration in parse profile defines) and 11-bit
index (16-bit words) for soft sequence start address. Reserved bits
must be clear.

NXP Semiconductors
AIOP Service Layer API Reference Manual

148

Accelerators APIs

uint16_t other_l3_←↩
shell_hxs_←↩
config

Other L3 HXS configuration. Includes bits EN, ERM (refer to P←↩
ARSER HXS configuration in parse profile defines) and 11-bit in-
dex (16-bit words) for soft sequence start address. This is the next
HXS to be executed in case of an L2 Unknown Protocol. The Other
L3 HXS does not provide any header parsing and validation results.
It can act as a termination point for the parsing or entry point to a
soft HXS. Reserved bits must be clear.

uint16_t tcp_hxs_config TCP HXS configuration. Includes bits EN, SPPR, ERM (refer to
PARSER HXS configuration in parse profile defines) and 11-bit
index (16-bit words) for soft sequence start address. Reserved bits
must be clear.

uint16_t udp_hxs_←↩
config

UDP HXS configuration. Includes bits EN, SPPR, ERM (refer to
PARSER HXS configuration in parse profile defines) and 11-bit
index (16-bit words) for soft sequence start address. Reserved bits
must be clear.

uint16_t ipsec_hxs_←↩
config

IPSec HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t sctp_hxs_←↩
config

SCTP HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t dccp_hxs_←↩
config

DCCP HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t other_l4_←↩
shell_hxs_←↩
config

Other L4 HXS configuration. Includes bits EN, ERM (refer to P←↩
ARSER HXS configuration in parse profile defines) and 11-bit in-
dex (16-bit words) for soft sequence start address. This is the next
HXS to be executed in case of an L3 Unknown Protocol. The Other
L4 HXS does not provide any header parsing and validation results.
It can act as a termination point for the parsing or entry point to a
soft HXS. Reserved bits must be clear.

NXP Semiconductors
AIOP Service Layer API Reference Manual

149

Accelerators APIs

uint16_t gtp_hxs_config GTP HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t esp_hxs_config ESP HXS configuration. Includes bits EN, ERM (refer to PAR←↩
SER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t vxlan_hxs_←↩
config

VXLAN HXS configuration. Includes bits EN, ERM (refer to PA←↩
RSER HXS configuration in parse profile defines) and 11-bit index
(16-bit words) for soft sequence start address. Reserved bits must
be clear.

uint16_t l5_shell_hxs_←↩
config

L5 Shell (and above) HXS config. Includes bits EN, ERM (refer
to PARSER HXS configuration in parse profile defines) and 11-bit
index (16-bit words) for soft sequence start address. This is the
next HXS to be executed in case of an L4 Unknown Protocol. The
Other L5 HXS does not provide any header parsing and validation
results. It can act as a termination point for the parsing or entry
point to a soft HXS.

uint16_t final_shell_←↩
hxs_config

Final Shell HXS configuration. Includes bits EN, ERM (refer to
PARSER HXS configuration in parse profile defines) and 11-bit
index (16-bit words) for soft sequence start address.

uint32_t soft_←↩
examination←↩
param←↩
array[16]

Soft Examination Parameter Array (W0-W15).

1.3.4.4.2.5 struct parse_profile_input

Parser Profile Input to create/replace parse profile commands.

Data Fields

uint8_t reserved[8] Reserved for compliance with HW format. User should not access
this field

struct parse_←↩
profile_record

parse_profile Parse Profile Record.

1.3.4.5 PARSER Functions

1.3.4.5.1 Overview

Freescale AIOP PARSER Functions.

NXP Semiconductors
AIOP Service Layer API Reference Manual

150

Accelerators APIs

Functions

• int parser_profile_create (struct parse_profile_input ∗parse_profile, uint8_t ∗prpid)
• void parser_profile_replace (struct parse_profile_input ∗parse_profile, uint8_t prpid)
• int parser_profile_delete (uint8_t prpid)
• void parser_profile_query (uint8_t prpid, struct parse_profile_input ∗parse_profile)
• int parse_result_generate_checksum (enum parser_starting_hxs_code starting_hxs, uint8_←↩

t starting_offset, uint16_t ∗l3_checksum, uint16_t ∗l4_checksum)
• int parse_result_generate_default (uint8_t flags)
• int parse_result_generate (uint16_t starting_hxs, uint8_t starting_offset, uint8_t flags)
• int parse_result_generate_basic (void)
• void parser_pop_vlan_update ()
• void parser_push_vlan_update ()

1.3.4.5.2 Function Documentation

1.3.4.5.2.1 int parser_profile_create (struct parse_profile_input ∗ parse_profile, uint8_t ∗ prpid)

Creates Parser Profile which provides a template of parsing actions to be taken.

Parameters

in parse_profile - Parse Profile Input the user should fill (located in the workspace). Must
be 16 bytes aligned.

out prpid - Parse Profile ID (located in the workspace).

Returns

0 on Success, or negative value on error.

Return values

0 - Success
ENOSPC - No more Parse Profiles are available (all 64 are taken)

Warning

In this function the task yields.

1.3.4.5.2.2 void parser_profile_replace (struct parse_profile_input ∗ parse_profile, uint8_t prpid
)

Replaces Parser Profile which provides a template of parsing actions to be taken.

NXP Semiconductors
AIOP Service Layer API Reference Manual

151

Accelerators APIs

Parameters

in parse_profile - Parse Profile Input. User should locate this structure in the workspace
and fill it. Must be 16 bytes aligned.

in prpid - Parse Profile ID.

Returns

None.

Warning

In this function the task yields.

1.3.4.5.2.3 int parser_profile_delete (uint8_t prpid)

Deletes Parser Profile.
Parameters

in prpid - Parse Profile ID.

Returns

0 on Success, or negative value on error.

Return values

0 - Success
ENAVAIL - All Parse Profiles are already deleted.

Warning

In this function the task yields.

1.3.4.5.2.4 void parser_profile_query (uint8_t prpid, struct parse_profile_input ∗ parse_profile)

Returns Parser Profile Entry for a provided Parser Profile ID.

NXP Semiconductors
AIOP Service Layer API Reference Manual

152

Accelerators APIs

Parameters

in prpid - Parse Profile ID (located in the workspace).
out parse_profile - Points to a user preallocated memory in the workspace to which the

parse profile entry will be written. Must be 16 bytes aligned. Note: In
Rev1, only first 48 bytes are correct.

Returns

None.

Warning

In this function the task yields.

1.3.4.5.2.5 int parse_result_generate_checksum (enum parser_starting_hxs_code starting_hxs,
uint8_t starting_offset, uint16_t ∗ l3_checksum, uint16_t ∗ l4_checksum)

Runs parser and generates parse result and L3 & L4 checksums. This function provides, on a per Parse
Profile basis, the ability to begin the examination of a frame at a different offset within the frame with a
different presumption of the first header type.

Implicit input parameters: Segment address, Segment size, Parser Profile ID.

Implicitly updated values in Task Defaults in the HWC: Parser Result.

Parameters

in starting_hxs - Starting HXS for the parser. Please refer to parser_starting_hxs_code.
in starting_offset - Offset from the presented segment where parsing is to start. (Segment

is presented in: Presentation Context [SEGMENT ADDRESS])
out l3_checksum - L3 checksum calculated by the parser (located in the workspace). Must

not be NULL.
out l4_checksum - L4 checksum calculated by the parser (located in the workspace). Must

not be NULL.

Returns

Positive values on checksum generation success, or negative value on error. The exact error code can
be discovered by using PARSER_GET_PARSE_ERROR_CODE_DEFAULT(). See error codes in
PARSER Error Codes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

153

Accelerators APIs

Return values

EIO - Parsing Error or no generation of L3 & L4 checksums
ENOSPC - Block Limit Exceeds (Frame Parsing reached the limit of the minimum

between presentation_length and 256 bytes before completing all parsing)
PARSER_STATUS_L3_←↩
L4_CHECKSUM_GEN←↩

ERATION_SUCCEEDED

- L3 & L4 checksum were generated

PARSER_STATUS_L4_←↩
CHECKSUM_GENERA←↩

TION_SUCCEEDED

- L4 checksum was generated

PARSER_STATUS_L3_←↩
CHECKSUM_GENERA←↩

TION_SUCCEEDED

- L3 checksum was generated

Warning

In this function the task yields. Presented header address in the workspace must be aligned to 16
bytes. This function expects gross running sum field to be valid. l3 & l4 checksum pointers must not
be NULL. This function may result in a fatal error.

1.3.4.5.2.6 int parse_result_generate_default (uint8_t flags)

Runs parser with default task parameters and generates parse result. This function provides, on a per Parse
Profile basis, examination of a frame at the start of the frame (offset 0) with presumption of the first header
type as configured in the default starting HXS.

Implicit input parameters: FD, Segment address, Segment size, Parser Profile ID, Starting HXS.

Implicitly updated values in Task Defaults in the HWC: Parser Result.

Parameters

in flags - Please refer to Flags for parse_result_generate function.

Returns

0 on Success, or negative value on error. The exact error code can be discovered by using PARSE←↩
R_GET_PARSE_ERROR_CODE_DEFAULT(). See error codes in PARSER Error Codes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

154

Accelerators APIs

Return values

0 - Success
EIO - Parsing Error
EIO - L3 Checksum Validation Error
EIO - L4 Checksum Validation Error

ENOSPC - Block Limit Exceeds (Frame Parsing reached the limit of the minimum
between presentation_length and 256 bytes before completing all parsing)

Warning

In this function the task yields. Presented header address in the workspace must be aligned to 16
bytes. In case gross running sum is clear, and L4 validation is not required, running sum field in the
parse result is not valid. In case L4 validation is required but the gross running sum is not correct,
the user must clear it before calling parser. This function may result in a fatal error.

1.3.4.5.2.7 int parse_result_generate (uint16_t starting_hxs, uint8_t starting_offset, uint8_t
flags)

Runs parser and generates parse result. This function provides, on a per Parse Profile basis, the ability to
begin the examination of a frame at a different offset within the frame with a different presumption of the
first header type.

Implicit input parameters: FD, Segment address, Segment size, Parser Profile ID.

Implicitly updated values in Task Defaults in the HWC: Parser Result.

Parameters

in starting_hxs - Starting HXS for the parser.
in starting_offset - Offset from the presented segment where parsing is to start. (Segment

is presented in: Presentation Context [SEGMENT ADDRESS])
in flags - Please refer to Flags for parse_result_generate function.

Returns

0 on Success, or negative value on error. The exact error code can be discovered by using PARSE←↩
R_GET_PARSE_ERROR_CODE_DEFAULT(). See error codes in PARSER Error Codes.

Return values

NXP Semiconductors
AIOP Service Layer API Reference Manual

155

Accelerators APIs

0 - Success
EIO - Parsing Error
EIO - L3 Checksum Validation Error
EIO - L4 Checksum Validation Error

ENOSPC - Block Limit Exceeds (Frame Parsing reached the limit of the minimum
between presentation_length and 256 bytes before completing all parsing)

Warning

In this function the task yields. Presented header address in the workspace must be aligned to 16
bytes. In case gross running sum is clear, and L4 validation is not required, running sum field in the
parse result is not valid. In case L4 validation is required but the gross running sum is not correct,
the user must clear it before calling parser. This function may result in a fatal error.

1.3.4.5.2.8 int parse_result_generate_basic (void)

Runs parser and generates parse result, with the following arguments: PRPID = 0, starting_hxs = 0 (Eth-
ernet), starting_offset = 0, no checksum validation.

Implicit input parameters: FD, Segment address, Segment size.

Implicitly updated values in Task Defaults in the HWC: Parser Result.

Returns

0 on Success, or negative value on error. The exact error code can be discovered by using PARSE←↩
R_GET_PARSE_ERROR_CODE_DEFAULT(). See error codes in PARSER Error Codes.

Return values

0 - Success
EIO - Parsing Error

ENOSPC - Block Limit Exceeds (Frame Parsing reached the limit of the minimum
between presentation_length and 256 bytes before completing all parsing)

Warning

In this function the task yields. Presented header address in the workspace must be aligned to 16
bytes. If input gross running sum is not correct, both "gross running sum" and "running sum" fields
in the parse result are not valid. This function may result in a fatal error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

156

Accelerators APIs

1.3.4.5.2.9 void parser_pop_vlan_update ()

Updates parse result table. This function should be used after performing a VLAN header removal. This
is an optimized function especially for the pop_vlan action.

Implicit input parameters: Parse result address, Presentation context address.

Implicitly updated values in Parse result table in the HWC: Parser Result.

Warning

An update of parse result table should be performed only after a VLAN header removal was executed
and done.

Returns

None

1.3.4.5.2.10 void parser_push_vlan_update ()

Updates parse result table. This function should be used after performing a VLAN header removal. This
is an optimized function especially for the push_vlan action.

Implicit input parameters: Parse result address, Presentation context address.

Implicitly updated values in Parse result table in the HWC: Parser Result.

Warning

An update of parse result table should be performed only after a VLAN header insertion was executed
and done. Block limit event (BLE) status is not handled in this function, it is the user responsibility to
make sure that presentation length can handle VLAN insertion without causing block limit exceeds.

Returns

None

1.3.5 KEYGEN

1.3.5.1 Overview

Freescale AIOP Table API.

NXP Semiconductors
AIOP Service Layer API Reference Manual

157

Accelerators APIs

Modules

• KEYGEN Macros
• KEYGEN Enumerations
• KEYGEN Structures
• KEYGEN Functions

1.3.5.2 KEYGEN Macros

1.3.5.2.1 Overview

Freescale AIOP KEYGEN Macros.

Modules

• Key Composition Rule Attributes

1.3.5.2.2 Key Composition Rule Attributes

1.3.5.2.2.1 Overview

Macros

• #define KEYGEN_KCR_LENGTH

1.3.5.2.2.2 Macro Definition Documentation

1.3.5.2.2.2.1 #define KEYGEN_KCR_LENGTH

Generic Extraction from start of frame.

1.3.5.3 KEYGEN Enumerations

1.3.5.3.1 Overview

KEYGEN Enumerations.

• enum kcr_builder_gec_source {
KEYGEN_KCR_GEC_FRAME,
KEYGEN_KCR_GEC_PARSE_RES }

• enum kcr_builder_parse_result_offset {

NXP Semiconductors
AIOP Service Layer API Reference Manual

158

Accelerators APIs

SHIM_OFFSET_1_OFFSET_IN_PR,
SHIM_OFFSET_2_OFFSET_IN_PR,
IP_1_PID_OFFSET_OFFSET_IN_PR,
ETH_OFFSET_OFFSET_IN_PR,
LLC_SNAP_OFFSET_OFFSET_IN_PR,
TCI1_OFFSET_OFFSET_IN_PR,
TCIN_OFFSET_OFFSET_IN_PR,
LAST_ETYPE_OFFSET_OFFSET_IN_PR,
PPPOE_OFFSET_OFFSET_IN_PR,
MPLS_OFFSET_1_OFFSET_IN_PR,
MPLS_OFFSET_N_OFFSET_IN_PR,
L3_OFFSET_OFFSET_IN_PR,
IPN_OR_MINENCAP0_OFFSET_OFFSET_IN_PR,
GRE_OFFSET_OFFSET_IN_PR,
L4_OFFSET_OFFSET_IN_PR,
L5_OFFSET_OFFSET_IN_PR,
ROUTING_HDR_OFFSET_1_OFFSET_IN_PR,
ROUTING_HDR_OFFSET_2_OFFSET_IN_PR,
NXT_HDR_OFFSET_OFFSET_IN_PR,
IPV6_FRAG_OFFSET_OFFSET_IN_PR,
NXT_HDR_BEFORE_IPV6_FRAG_OFFSET_OFFSET_IN_PR,
IP_N_PID_OFFSET_OFFSET_IN_PR,
SOFT_PARSING_CONTEXT }

• enum kcr_builder_protocol_fecid {

NXP Semiconductors
AIOP Service Layer API Reference Manual

159

Accelerators APIs

KEYGEN_KCR_GEC_FECID,
KEYGEN_KCR_UDC_FECID,
KEYGEN_KCR_VF_FECID,
KEYGEN_KCR_MACDST_FECID,
KEYGEN_KCR_MACSRC_FECID,
KEYGEN_KCR_VLANTCI_1_FECID,
KEYGEN_KCR_VLANTCI_N_FECID,
KEYGEN_KCR_ETYPE_FECID,
KEYGEN_KCR_PPPSID_FECID,
KEYGEN_KCR_PPPPID_FECID,
KEYGEN_KCR_MPLSL_1_FECID,
KEYGEN_KCR_MPLSL_2_FECID,
KEYGEN_KCR_MPLSL_N_FECID,
KEYGEN_KCR_ARP_OP_FECID,
KEYGEN_KCR_ARP_SPA_FECID,
KEYGEN_KCR_ARP_TPA_FECID,
KEYGEN_KCR_ARP_SHA_FECID,
KEYGEN_KCR_ARP_THA_FECID,
KEYGEN_KCR_IPSRC_1_FECID,
KEYGEN_KCR_IPDST_1_FECID,
KEYGEN_KCR_PTYPE_1_FECID,
KEYGEN_KCR_IPTOS_TC_1_FECID,
KEYGEN_KCR_IPID_1_FECID,
KEYGEN_KCR_IPV6FL_1_FECID,
KEYGEN_KCR_IPSRC_N_FECID,
KEYGEN_KCR_IPDST_N_FECID,
KEYGEN_KCR_PTYPE_N_FECID,
KEYGEN_KCR_IPTOS_TC_N_FECID,
KEYGEN_KCR_IPID_N_FECID,
KEYGEN_KCR_IPV6FL_N_FECID,
KEYGEN_KCR_GREPTYPE_FECID,
KEYGEN_KCR_L4PSRC_FECID,
KEYGEN_KCR_L4PDST_FECID,
KEYGEN_KCR_TFLG_FECID,
KEYGEN_KCR_IPSECSPI_FECID,
KEYGEN_KCR_IPSECNH_FECID,
KEYGEN_KCR_GTP_TEID_FECID,
KEYGEN_KCR_ICMP_TYPE_FECID,
KEYGEN_KCR_ICMP_CODE_FECID,
KEYGEN_KCR_NXT_HDR_FECID }

• enum keygen_hw_accel_id {
KEYGEN_ACCEL_ID_MFLU,
KEYGEN_ACCEL_ID_CTLU }

NXP Semiconductors
AIOP Service Layer API Reference Manual

160

Accelerators APIs

1.3.5.3.2 Enumeration Type Documentation

1.3.5.3.2.1 enum kcr_builder_gec_source

Key Composition Rule Builder Generic Extract Source.

Enumerator

KEYGEN_KCR_GEC_FRAME Generic Extraction from start of frame.
KEYGEN_KCR_GEC_PARSE_RES Generic Extraction from Parser Result.

1.3.5.3.2.2 enum kcr_builder_parse_result_offset

Key Composition Rule Builder Parse Result Offset.

Enumerator

SHIM_OFFSET_1_OFFSET_IN_PR Shim Offset 1 field's offset in parser result.
SHIM_OFFSET_2_OFFSET_IN_PR Shim Offset 2 field's offset in parser result.
IP_1_PID_OFFSET_OFFSET_IN_PR First IP NH/protocol offset field's offset in parser result.
ETH_OFFSET_OFFSET_IN_PR Ethernet offset field's offset in parser result.
LLC_SNAP_OFFSET_OFFSET_IN_PR llc_snap offset field's offset in parser result
TCI1_OFFSET_OFFSET_IN_PR First VLAN's TCI offset field's offset in parser result.
TCIN_OFFSET_OFFSET_IN_PR Last VLAN's TCI offset field's offset in parser result.
LAST_ETYPE_OFFSET_OFFSET_IN_PR Last Ethertype offset field's offset in parser result.
PPPOE_OFFSET_OFFSET_IN_PR PPPoE offset field's offset in parser result.
MPLS_OFFSET_1_OFFSET_IN_PR First MPLS offset field's offset in parser result.
MPLS_OFFSET_N_OFFSET_IN_PR Last MPLS offset field's offset in parser result.
L3_OFFSET_OFFSET_IN_PR First IP or ARP offset field's offset in parser result.
IPN_OR_MINENCAP0_OFFSET_OFFSET_IN_PR Last IP or MinEncap offset field's offset in

parser result.
GRE_OFFSET_OFFSET_IN_PR GRE offset field's offset in parser result.
L4_OFFSET_OFFSET_IN_PR Layer 4 offset field's offset in parser result.
L5_OFFSET_OFFSET_IN_PR GTP/ESP/IPsec offset field's offset in parser result.
ROUTING_HDR_OFFSET_1_OFFSET_IN_PR Routing header offset of 1st frame field's offset

in parser result.
ROUTING_HDR_OFFSET_2_OFFSET_IN_PR Routing header offset of 2nd frame field's offset

in parser result.
NXT_HDR_OFFSET_OFFSET_IN_PR Next header offset field's offset in parser result.
IPV6_FRAG_OFFSET_OFFSET_IN_PR IPv6 fragmentable part offset field's offset in parser re-

sult.
NXT_HDR_BEFORE_IPV6_FRAG_OFFSET_OFFSET_IN_PR Next header field before IPv6

fragment extension offset field's offset in parser result.
IP_N_PID_OFFSET_OFFSET_IN_PR Last IP NH/protocol offset field's offset in parser result.
SOFT_PARSING_CONTEXT Soft parsing context.

NXP Semiconductors
AIOP Service Layer API Reference Manual

161

Accelerators APIs

1.3.5.3.2.3 enum kcr_builder_protocol_fecid

Key Composition Rule Builder Protocol FECID.

Enumerator

KEYGEN_KCR_GEC_FECID FECID of Generic Extraction Command.
KEYGEN_KCR_UDC_FECID FECID of User defined constant.
KEYGEN_KCR_VF_FECID FECID of Valid Field.
KEYGEN_KCR_MACDST_FECID FECID of MAC destination address.
KEYGEN_KCR_MACSRC_FECID FECID of MAC source address.
KEYGEN_KCR_VLANTCI_1_FECID FECID of VLAN TCI from the first Q-Tag in the frame.
KEYGEN_KCR_VLANTCI_N_FECID FECID of VLAN TCI from the last Q-Tag in the frame.
KEYGEN_KCR_ETYPE_FECID FECID of Ethernet Type field.
KEYGEN_KCR_PPPSID_FECID FECID of PPPoE Session ID Field.
KEYGEN_KCR_PPPPID_FECID FECID of PPP Protocol ID Field.
KEYGEN_KCR_MPLSL_1_FECID FECID of MPLS first label with TC.
KEYGEN_KCR_MPLSL_2_FECID FECID of MPLS second label with TC (present in the frame

if MPLSOffset_n-MPLSOffset_1>= 4)
KEYGEN_KCR_MPLSL_N_FECID FECID of MPLS last label with TC.
KEYGEN_KCR_ARP_OP_FECID FECID of ARP Operation.
KEYGEN_KCR_ARP_SPA_FECID FECID of ARP Sender protocol Address.
KEYGEN_KCR_ARP_TPA_FECID FECID of ARP Target protocol Address.
KEYGEN_KCR_ARP_SHA_FECID FECID of ARP Sender Hardware Address.
KEYGEN_KCR_ARP_THA_FECID FECID of ARP Target Hardware Address.
KEYGEN_KCR_IPSRC_1_FECID FECID of first (outer) IPv4/6 header Source Address.
KEYGEN_KCR_IPDST_1_FECID FECID of first (outer) IPv4/6 header Destination Address.
KEYGEN_KCR_PTYPE_1_FECID FECID of first (outer) IPv4 Protocol Type or IPv6 next header.

KEYGEN_KCR_IPTOS_TC_1_FECID FECID of first (outer) TOS (IPv4) or Traffic Class (IPv6)
KEYGEN_KCR_IPID_1_FECID FECID ofIP Identification for IP Reassembly (In IPv4 in I←↩

P header, in IPv6 in fragment extension)
KEYGEN_KCR_IPV6FL_1_FECID FECID of first (outer) IPv6 Flow Label.
KEYGEN_KCR_IPSRC_N_FECID FECID of last IP source / Min. Encap Source Address FECID

of last (inner) IPv4/6 Source Address or Min. Encap Source Address Field
KEYGEN_KCR_IPDST_N_FECID FECID of last IP dest / Min. Encap dest Address FECID of

last (inner) IPv4/6 Destination or Min. Encap Destination Address field
KEYGEN_KCR_PTYPE_N_FECID FECID of last IPv4 Protocol Type / IPv6 NH / Encap dest

Address FECID of IPv4 Protocol Type Field or IPv6 next header of the last (inner) IP header, or
Min. Encap protocol type

KEYGEN_KCR_IPTOS_TC_N_FECID FECID of last (inner) TOS (IPv4) or Traffic Class(IPv6)
KEYGEN_KCR_IPID_N_FECID FECID of IP Identification for IP Reassembly (In IPv4 in I←↩

P header, in IPv6 in fragment extension)
KEYGEN_KCR_IPV6FL_N_FECID FECID of IPv6 Flow Label of the last (inner) IP header.
KEYGEN_KCR_GREPTYPE_FECID FECID of GRE Protocol Type field.
KEYGEN_KCR_L4PSRC_FECID FECID of TCP or UDP or SCTP or DCCP source Port Field.

NXP Semiconductors
AIOP Service Layer API Reference Manual

162

Accelerators APIs

KEYGEN_KCR_L4PDST_FECID FECID of TCP or UDP or SCTP or DCCP destination Port
Field.

KEYGEN_KCR_TFLG_FECID FECID of 14th byte of the TCP header, contains TCP flags.
KEYGEN_KCR_IPSECSPI_FECID FECID of IPSec SPI field.
KEYGEN_KCR_IPSECNH_FECID FECID of IPSec (AH only) Next Header field.
KEYGEN_KCR_GTP_TEID_FECID FECID of GPRS Tunnel endpoint Identification.
KEYGEN_KCR_ICMP_TYPE_FECID FECID of ICMP type.
KEYGEN_KCR_ICMP_CODE_FECID FECID of ICMP code.
KEYGEN_KCR_NXT_HDR_FECID FECID of Next Header.

1.3.5.3.2.4 enum keygen_hw_accel_id

IDs of hardware table lookup accelerator.

Enumerator

KEYGEN_ACCEL_ID_MFLU MFLU accelerator ID.
KEYGEN_ACCEL_ID_CTLU CTLU accelerator ID.

1.3.5.4 KEYGEN Structures

1.3.5.4.1 Overview

Freescale AIOP KEYGEN Structures.

Data Structures

• struct kcr_builder
• struct kcr_builder_fec_single_mask
• struct kcr_builder_fec_mask

1.3.5.4.2 Data Structure Documentation

1.3.5.4.2.1 struct kcr_builder

Key Composition Rule (kcr) builder.

Data Fields

uint8_t kcr[KEYGE←↩
N_KCR_LE←↩
NGTH]

KCR as defined by CTLU must be initialized by keygen_kcr_←↩
builder_init() before use.

NXP Semiconductors
AIOP Service Layer API Reference Manual

163

Accelerators APIs

uint8_t kcr_length KCR length Number of bytes the FECs occupy.

1.3.5.4.2.2 struct kcr_builder_fec_single_mask

Key Composition Rule (kcr) builder FEC single mask.

Data Fields

uint8_t mask Bit-wise mask Applied to the extracted header at the correspond-
ing offset from its beginning. 0 - Corresponding bit is masked 1 -
Corresponding bit is not masked

uint8_t mask_offset Mask offset The offset from the beginning of the extracted header
where mask is applied (offset value can be between 0x00-0x0F).
It is up to the user to ensure that the offset is not larger than the
extracted header.

1.3.5.4.2.3 struct kcr_builder_fec_mask

Key Composition Rule (kcr) builder FEC mask array.

Data Fields

struct kcr_←↩
builder_fec_←↩

single_mask

single_mask[4] An array of up to 4 pairs of bit-wise masks and offsets. Masks are
applied to the extracted header at the corresponding offset from its
beginning

uint8_t num_of_masks Number of masks (1-4)

1.3.5.5 KEYGEN Functions

1.3.5.5.1 Overview

Freescale AIOP KEYGEN Functions.

Functions

• void keygen_kcr_builder_init (struct kcr_builder ∗kb)
• int keygen_kcr_builder_add_constant_fec (uint8_t constant, uint8_t num, struct kcr_builder ∗kb)
• int keygen_kcr_builder_add_input_value_fec (uint8_t offset, uint8_t extract_size, struct kcr_←↩

builder_fec_mask ∗mask, struct kcr_builder ∗kb)
• int keygen_kcr_builder_add_protocol_specific_field (enum kcr_builder_protocol_fecid protocol_←↩

fecid, struct kcr_builder_fec_mask ∗mask, struct kcr_builder ∗kb)
• int keygen_kcr_builder_add_protocol_based_generic_fec (enum kcr_builder_parse_result_offset

pr_offset, uint8_t extract_offset, uint8_t extract_size, struct kcr_builder_fec_mask ∗mask, struct
kcr_builder ∗kb)

• int keygen_kcr_builder_add_generic_extract_fec (uint8_t offset, uint8_t extract_size, enum kcr_←↩
builder_gec_source gec_source, struct kcr_builder_fec_mask ∗mask, struct kcr_builder ∗kb)

• int keygen_kcr_builder_add_valid_field_fec (uint8_t mask, struct kcr_builder ∗kb)
• int keygen_kcr_create (enum keygen_hw_accel_id acc_id, uint8_t ∗kcr, uint8_t ∗keyid)

NXP Semiconductors
AIOP Service Layer API Reference Manual

164

Accelerators APIs

• void keygen_kcr_replace (enum keygen_hw_accel_id acc_id, uint8_t ∗kcr, uint8_t keyid)
• int keygen_kcr_delete (enum keygen_hw_accel_id acc_id, uint8_t keyid)
• void keygen_kcr_query (enum keygen_hw_accel_id acc_id, uint8_t keyid, uint8_t ∗kcr)
• int keygen_gen_key (enum keygen_hw_accel_id acc_id, uint8_t keyid, uint64_t user_metadata,

void ∗key, uint8_t ∗key_size)
• int keygen_gen_hash (void ∗key, uint8_t key_size, uint32_t ∗hash)

1.3.5.5.2 Function Documentation

1.3.5.5.2.1 void keygen_kcr_builder_init (struct kcr_builder ∗ kb)

Initializes key composition rule (kcr).

This function should be called before any call to other functions from keygen_kcr_builder() function
family.

Parameters

in,out kb - kcr builder pointer. Must be located in the workspace. Must be aligned
to 16B boundary.

Returns

None.

1.3.5.5.2.2 int keygen_kcr_builder_add_constant_fec (uint8_t constant, uint8_t num, struct
kcr_builder ∗ kb)

Adds user defined constant Field Extract Command (FEC) for key composition rule (kcr).

Parameters

in constant - 1 bytes of user defined constant.
in num - Number of replications (1-16) of the constant in the key.

in,out kb - kcr builder pointer (located in the workspace).

Returns

0 on Success, or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

165

Accelerators APIs

Return values

0 - Success
EINVAL - KCR exceeds maximum KCR size (64 bytes).

1.3.5.5.2.3 int keygen_kcr_builder_add_input_value_fec (uint8_t offset, uint8_t extract_size,
struct kcr_builder_fec_mask ∗ mask, struct kcr_builder ∗ kb)

Adds Field Extract Command (FEC) to key composition rule (kcr) for extraction of an input value (user←↩
_metadata) supplied in keygen_gen_key.

Parameters

in offset - Offset in input value given in keygen_gen_key.
in extract_size - size of extraction. Please note that (offset + extract_size) must not

exceed 8.
in mask - a structure of up to 4 bitwise masks from defined offsets. If user is not

interested in mask for this FEC, this parameter should be NULL.
in,out kb - kcr builder pointer (located in the workspace).

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EINVAL - KCR exceeds maximum KCR size (64 bytes).

1.3.5.5.2.4 int keygen_kcr_builder_add_protocol_specific_field (enum kcr_builder_protocol_←↩
fecid protocol_fecid, struct kcr_builder_fec_mask ∗ mask, struct kcr_builder ∗ kb
)

Adds protocol specific Field Extract Command (FEC) for key composition rule.

Parameters

in protocol_fecid - User should choose one of the FECID's in: kcr_builder_protocol_fecid
in mask - a structure of up to 4 bitwise masks from defined offsets. If user is not

interested in mask for this FEC, this parameter should be NULL.

NXP Semiconductors
AIOP Service Layer API Reference Manual

166

Accelerators APIs

in,out kb - kcr builder pointer (located in the workspace).

Remarks

Note that extraction will take place only if there is no parsing error related to this fecid. In case
parsing error exists, the fec is considered invalid. The key composition places the value of "000..."
in the field (the number of 0s corresponds to the size of the field). The user can call keygen_kcr_←↩
builder_add_valid_field_fec function in order to get indications of which fec's are valid.

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EINVAL - KCR exceeds maximum KCR size (64 bytes).

1.3.5.5.2.5 int keygen_kcr_builder_add_protocol_based_generic_fec (enum
kcr_builder_parse_result_offset pr_offset, uint8_t extract_offset, uint8_t extract_size,
struct kcr_builder_fec_mask ∗ mask, struct kcr_builder ∗ kb)

Adds protocol based generic extraction Field Extract Command (FEC) for key composition rule (kcr).

Parameters

in pr_offset - offset in parser result to select the protocol specific offset. Field extrac-
tion starts from this offset. Please refer to kcr_builder_parse_result_←↩
offset.

in extract_offset - offset from the beginning of the protocol header. In Rev1: Must not
exceed 0xF.

in extract_size - size of extraction (1-16 bytes).
in mask - a structure of up to 4 bitwise masks from defined offsets. If user is not

interested in mask for this FEC, this parameter should be NULL.
in,out kb - kcr builder pointer (located in the workspace).

Remarks

Note that extraction (using keygen_gen_key) will take place only if all following conditions are met:
• The corresponding parse result offset is not 0xFF.
• The corresponding "Present condition in parser frame attribute flags" is met.
• The corresponding "Error condition in parser frame attribute flags" is NOT met (i.e. no errors).

If any condition is not met, the fec is considered invalid. The key composition places the value of "000..."
in the field (the number of 0s corresponds to the size of the field which does not meet the condition). The
user can call keygen_kcr_builder_add_valid_field_fec function in order to get indications of which fec's
are valid.

NXP Semiconductors
AIOP Service Layer API Reference Manual

167

Accelerators APIs

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EINVAL - KCR exceeds maximum KCR size (64 bytes).

1.3.5.5.2.6 int keygen_kcr_builder_add_generic_extract_fec (uint8_t offset, uint8_t extract_size,
enum kcr_builder_gec_source gec_source, struct kcr_builder_fec_mask ∗ mask,
struct kcr_builder ∗ kb)

Adds generic extraction Field Extract Command (FEC) for key composition rule (kcr).

This function adds to kcr a fec which will cause extraction of specified offset and size out of the frame or
the parse result.

Parameters

in offset - offset in frame or parse result. Please note that: in case of extraction
from frame offset must not exceed 0xFF. in case of extraction from parse
result offset must not exceed 0x3F.

in extract_size - size of extraction (1-16 bytes).
in gec_source - Please refer to kcr_builder_gec_source.
in mask - a structure of up to 4 bitwise masks from defined offsets. If user is not

interested in mask for this FEC, this parameter should be NULL.
in,out kb - kcr builder pointer (located in the workspace).

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EINVAL - KCR exceeds maximum KCR size (64 bytes).

1.3.5.5.2.7 int keygen_kcr_builder_add_valid_field_fec (uint8_t mask, struct kcr_builder ∗ kb)

Adds Field Extract Command (FEC) valid field for key composition rule.

This function adds to kcr a valid field (VF) fec, which includes valid bits for last 8 consecutive fec's in
the kcr. Each bit in the VF corresponds to one field which was extracted before VF. The bit is set if the
corresponding extracted field is valid. This can be used to distinguish between an field in the key which its

NXP Semiconductors
AIOP Service Layer API Reference Manual

168

Accelerators APIs

value is 0 - this can be either due to this field's real value in the frame (in this case valid bit = 1) or because
this field could not be extracted from the frame (e.g. due to parsing error) and therefore the value 0 was
placed in the key instead (in this case valid bit = 0)).

NXP Semiconductors
AIOP Service Layer API Reference Manual

169

Accelerators APIs

Parameters

in mask - 1 byte mask.
in,out kb - kcr builder pointer (located in the workspace).

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EINVAL - KCR exceeds maximum KCR size (64 bytes).

1.3.5.5.2.8 int keygen_kcr_create (enum keygen_hw_accel_id acc_id, uint8_t ∗ kcr, uint8_t ∗
keyid)

Creates key composition rule. Up to 256 rules are supported.

Parameters

in acc_id - Accelerator ID.
in kcr - Key composition rule. Must be aligned to 16B boundary. (part of struct

kcr_builder (located in the workspace)).
out keyid - Key ID (located in the workspace).

Returns

0 on Success, or negative value on error.

Return values

0 - Success
ENOSPC - No more KCR's are available (all 256 are taken).

Warning

In this function the task yields.

1.3.5.5.2.9 void keygen_kcr_replace (enum keygen_hw_accel_id acc_id, uint8_t ∗ kcr, uint8_t
keyid)

Replaces key composition rule of a specified keyid.

NXP Semiconductors
AIOP Service Layer API Reference Manual

170

Accelerators APIs

Parameters

in acc_id - Accelerator ID.
in kcr - Key composition rule. Must be aligned to 16B boundary. (part of struct

kcr_builder (located in the workspace)).
in keyid - Key ID.

Returns

None.

Warning

In this function the task yields.

1.3.5.5.2.10 int keygen_kcr_delete (enum keygen_hw_accel_id acc_id, uint8_t keyid)

Deletes key composition rule.

Parameters

in acc_id - Accelerator ID.
in keyid - Key ID (located in the workspace).

Returns

0 on Success, or negative value on error.

Return values

0 - Success
ENAVAIL - All KCR's are already deleted.

Warning

In this function the task yields.

1.3.5.5.2.11 void keygen_kcr_query (enum keygen_hw_accel_id acc_id, uint8_t keyid, uint8_t ∗
kcr)

Returns the key composition rule of a given key ID.

NXP Semiconductors
AIOP Service Layer API Reference Manual

171

Accelerators APIs

Parameters

in acc_id - Accelerator ID.
in keyid - The key ID (located in the workspace).
out kcr - Key composition rule. Must be aligned to 16B boundary. (part of struct

kcr_builder (located in the workspace)).

Returns

None.

Warning

In this function the task yields.

1.3.5.5.2.12 int keygen_gen_key (enum keygen_hw_accel_id acc_id, uint8_t keyid, uint64_t
user_metadata, void ∗ key, uint8_t ∗ key_size)

Extracts a key from a frame and returns it. The fields order in the key is according to the FECs order in
the Key Composition Rule that is related to the keyid.

Parameters

in acc_id - Accelerator ID.
in keyid - The key ID to be used for the key extraction.
in user_metadata - user_metadata field for key composition. (will be taken only if the

KCR includes keygen_kcr_builder_add_input_value_fec).
out key - The key. 128 bytes (regardless of actual key size) which should be

located in the workspace and must be aligned to 16B boundary.
out key_size - Key size in bytes.

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EIO - Extract Out Of Frame Header.

Warning

In this function the task yields. This function may result in a fatal error. Presented header address in
the workspace must be aligned to 16 bytes. In Rev1: Due to HW bug (ERR008450) the maximum
key size allowed is 80 bytes for CTLU and 48 bytes for MFLU.

NXP Semiconductors
AIOP Service Layer API Reference Manual

172

Accelerators APIs

1.3.5.5.2.13 int keygen_gen_hash (void ∗ key, uint8_t key_size, uint32_t ∗ hash)

Generates a hash value from a given key.

Parameters

in key - The key to generate hash from (located in the workspace). Must be
aligned to 16B boundary.

in key_size - Key size in bytes.
out hash - The hash result.

Returns

0 on Success.

Warning

In this function the task yields. This function may result in a fatal error.

1.3.6 TABLE

1.3.6.1 Overview

Freescale AIOP Table API.

Modules

• TABLE Macros
• TABLE Enumerations
• TABLE Structures
• TABLE Functions
• TABLE Typedefs

1.3.6.2 TABLE Macros

1.3.6.2.1 Overview

Freescale AIOP Table Macros.

Modules

• TABLE Attributes
• TABLE Results Types

NXP Semiconductors
AIOP Service Layer API Reference Manual

173

Accelerators APIs

• TABLE Rule Options
• TABLE Rule Key
• TABLE Lookup Flags
• Status returned to calling function

1.3.6.2.2 TABLE Attributes

1.3.6.2.2.1 Overview

Table Attributes.

The table attributes are composed of the following sub fields:

• Type field (Exact Match, Longest Prefix Match, etc..)
• Location (External/PEB/Internal) field
• Miss result options field

Modules

• TABLE Type Attribute
• TABLE Location Attribute
• TABLE Miss Result Attribute

1.3.6.2.2.2 TABLE Type Attribute

1.3.6.2.2.2.1 Overview

Table Type.

These macros specifies the table type sub field offset and mask and the available table types.
User should select one of the following defines (excluding mask and offset defines):

Macros

• #define TABLE_ATTRIBUTE_TYPE_EM
• #define TABLE_ATTRIBUTE_TYPE_LPM
• #define TABLE_ATTRIBUTE_TYPE_MFLU
• #define TABLE_ATTRIBUTE_TYPE_MASK
• #define TABLE_ATTRIBUTE_TYPE_OFFSET

1.3.6.2.2.2.2 Macro Definition Documentation

1.3.6.2.2.2.3 #define TABLE_ATTRIBUTE_TYPE_EM

Exact Match table
Not available for MFLU Table HW Accelerator.

1.3.6.2.2.2.4 #define TABLE_ATTRIBUTE_TYPE_LPM

Longest Prefix Match table
Not available for MFLU Table HW Accelerator.

NXP Semiconductors
AIOP Service Layer API Reference Manual

174

Accelerators APIs

1.3.6.2.2.2.5 #define TABLE_ATTRIBUTE_TYPE_MFLU

Multi Field Lookup (MFLU) Table
Not available for CTLU Table HW Accelerator.

1.3.6.2.2.2.6 #define TABLE_ATTRIBUTE_TYPE_MASK

Table type sub field mask.

1.3.6.2.2.2.7 #define TABLE_ATTRIBUTE_TYPE_OFFSET

Table type sub field offset.

1.3.6.2.2.3 TABLE Location Attribute

1.3.6.2.2.3.1 Overview

Table Location.

These macros specifies the table location sub field offset and mask and the available table locations.
User should select one of the following defines (excluding mask and offset defines):

Macros

• #define TABLE_ATTRIBUTE_LOCATION_PEB
• #define TABLE_ATTRIBUTE_LOCATION_DP_DDR
• #define TABLE_ATTRIBUTE_LOCATION_SYS_DDR
• #define TABLE_ATTRIBUTE_LOCATION_MASK
• #define TABLE_ATTRIBUTE_LOCATION_OFFSET

1.3.6.2.2.3.2 Macro Definition Documentation

1.3.6.2.2.3.3 #define TABLE_ATTRIBUTE_LOCATION_PEB

Packet Express Buffer table.

1.3.6.2.2.3.4 #define TABLE_ATTRIBUTE_LOCATION_DP_DDR

Data Path DDR.

Not available on LS1088

1.3.6.2.2.3.5 #define TABLE_ATTRIBUTE_LOCATION_SYS_DDR

System DDR.

1.3.6.2.2.3.6 #define TABLE_ATTRIBUTE_LOCATION_MASK

Table Location sub field mask.

NXP Semiconductors
AIOP Service Layer API Reference Manual

175

Accelerators APIs

1.3.6.2.2.3.7 #define TABLE_ATTRIBUTE_LOCATION_OFFSET

Table Location sub field offset.

1.3.6.2.2.4 TABLE Miss Result Attribute

1.3.6.2.2.4.1 Overview

Table Miss Result Options.

These macros specifies options of the table miss result plus mask and offset of the sub filed.
User should select one of the following defines (excluding mask and offset defines):

Macros

• #define TABLE_ATTRIBUTE_MR_NO_MISS
• #define TABLE_ATTRIBUTE_MR_MISS
• #define TABLE_ATTRIBUTE_MR_MASK
• #define TABLE_ATTRIBUTE_MR_OFFSET

1.3.6.2.2.4.2 Macro Definition Documentation

1.3.6.2.2.4.3 #define TABLE_ATTRIBUTE_MR_NO_MISS

Table without miss result.

1.3.6.2.2.4.4 #define TABLE_ATTRIBUTE_MR_MISS

Table with miss result.

1.3.6.2.2.4.5 #define TABLE_ATTRIBUTE_MR_MASK

Miss result options sub field mask.

1.3.6.2.2.4.6 #define TABLE_ATTRIBUTE_MR_OFFSET

Miss result options sub field offset.

1.3.6.2.3 TABLE Results Types

1.3.6.2.3.1 Overview

Table Results Types Defines.

Macros

• #define TABLE_RESULT_TYPE_OPAQUE

NXP Semiconductors
AIOP Service Layer API Reference Manual

176

Accelerators APIs

1.3.6.2.3.2 Macro Definition Documentation

1.3.6.2.3.2.1 #define TABLE_RESULT_TYPE_OPAQUE

Result is 17B of opaque data fields.

1.3.6.2.4 TABLE Rule Options

1.3.6.2.4.1 Overview

Modules

• TABLE Rule Timestamp Options

1.3.6.2.4.2 TABLE Rule Timestamp Options

1.3.6.2.4.2.1 Overview

Table Rule Timestamp Options.

User should select one of the following:

Macros

• #define TABLE_RULE_TIMESTAMP_NONE
• #define TABLE_RULE_TIMESTAMP_ENABLE

1.3.6.2.4.2.2 Macro Definition Documentation

1.3.6.2.4.2.3 #define TABLE_RULE_TIMESTAMP_NONE

Timestamp is disabled for this rule.

Rule's timestamp field is invalid.

1.3.6.2.4.2.4 #define TABLE_RULE_TIMESTAMP_ENABLE

Enables timestamp update per rule.

Initial value in microseconds of Rule's timestamp field is set when the rule is created or replaced. The rule's
timestamp field is updated to the current timestamp in microseconds, depending on the table's timestamp
accuracy settings, when the rule is matched during lookup command.

1.3.6.2.5 TABLE Rule Key

1.3.6.2.5.1 Overview

Macros

• #define TABLE_KEY_EXACT_MATCH_SIZE
• #define TABLE_KEY_EXACT_MATCH_RESERVED_SIZE

NXP Semiconductors
AIOP Service Layer API Reference Manual

177

Accelerators APIs

• #define TABLE_KEY_LPM_IPV4_SIZE
• #define TABLE_KEY_LPM_IPV4_RESERVED_SIZE
• #define TABLE_KEY_LPM_IPV6_SIZE
• #define TABLE_KEY_LPM_IPV6_RESERVED_SIZE
• #define TABLE_KEY_MFLU_SIZE
• #define TABLE_KEY_MFLU_MASK_SIZE
• #define TABLE_KEY_MFLU_PRIORITY_FIELD_SIZE
• #define TABLE_KEY_MFLU_RESERVED1_SIZE

1.3.6.2.5.2 Macro Definition Documentation

1.3.6.2.5.2.1 #define TABLE_KEY_EXACT_MATCH_SIZE

Exact Match maximum key size in bytes.

1.3.6.2.5.2.2 #define TABLE_KEY_EXACT_MATCH_RESERVED_SIZE

Exact Match Key Descriptor Reserved field size in bytes.

1.3.6.2.5.2.3 #define TABLE_KEY_LPM_IPV4_SIZE

IPv4 LPM key size.

1.3.6.2.5.2.4 #define TABLE_KEY_LPM_IPV4_RESERVED_SIZE

IPv4 LPM Key Descriptor Reserved field size in bytes.

1.3.6.2.5.2.5 #define TABLE_KEY_LPM_IPV6_SIZE

IPv6 LPM key size.

1.3.6.2.5.2.6 #define TABLE_KEY_LPM_IPV6_RESERVED_SIZE

IPv6 LPM Key Descriptor Reserved field size in bytes.

1.3.6.2.5.2.7 #define TABLE_KEY_MFLU_SIZE

MFLU maximum key size in bytes.

1.3.6.2.5.2.8 #define TABLE_KEY_MFLU_MASK_SIZE

MFLU key mask field size in bytes.

1.3.6.2.5.2.9 #define TABLE_KEY_MFLU_PRIORITY_FIELD_SIZE

MFLU priority field size in bytes.

1.3.6.2.5.2.10 #define TABLE_KEY_MFLU_RESERVED1_SIZE

MFLU Key Descriptor Reserved1 field size in bytes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

178

Accelerators APIs

1.3.6.2.6 TABLE Lookup Flags

1.3.6.2.6.1 Overview

Macros

• #define TABLE_LOOKUP_FLAG_SEG_NON_DEFAULT
• #define TABLE_LOOKUP_FLAG_PRA_NON_DEFAULT
• #define TABLE_LOOKUP_FLAG_FD_NON_DEFAULT
• #define TABLE_LOOKUP_FLAG_MTDT_NON_DEFAULT
• #define TABLE_LOOKUP_FLAG_NONE

1.3.6.2.6.2 Macro Definition Documentation

1.3.6.2.6.2.1 #define TABLE_LOOKUP_FLAG_SEG_NON_DEFAULT

Segment Address and Size Non Default - If set, the Segment given in the lookup function parameters is
used instead of the default segment.

1.3.6.2.6.2.2 #define TABLE_LOOKUP_FLAG_PRA_NON_DEFAULT

Parse Result Address Non Default - If set, the Parse Result Address given in the lookup function parame-
ters is used instead of the default address.

1.3.6.2.6.2.3 #define TABLE_LOOKUP_FLAG_FD_NON_DEFAULT

Frame Descriptor Address Non Default - If set, the Frame Descriptor Address given in the lookup function
parameters is used instead of the default address.

1.3.6.2.6.2.4 #define TABLE_LOOKUP_FLAG_MTDT_NON_DEFAULT

Metadata Non Default - If set, the metadata given in the lookup function parameters is used instead of the
default metadata which is zeroes.

1.3.6.2.6.2.5 #define TABLE_LOOKUP_FLAG_NONE

No Lookup Flags.

1.3.6.2.7 Status returned to calling function

1.3.6.2.7.1 Overview

Macros

• #define TABLE_STATUS_SUCCESS
• #define TABLE_STATUS_MISS
• #define TABLE_STATUS_MFLU_DIFF_PRIORITY

NXP Semiconductors
AIOP Service Layer API Reference Manual

179

Accelerators APIs

1.3.6.2.7.2 Macro Definition Documentation

1.3.6.2.7.2.1 #define TABLE_STATUS_SUCCESS

Command successful.

1.3.6.2.7.2.2 #define TABLE_STATUS_MISS

Miss Occurred.

This status is set when a matching rule is not found

1.3.6.2.7.2.3 #define TABLE_STATUS_MFLU_DIFF_PRIORITY

The MFLU rule was found with different priority.

1.3.6.3 TABLE Enumerations

1.3.6.3.1 Overview

Table Enumerations.

• enum table_hw_accel_id {
TABLE_ACCEL_ID_MFLU,
TABLE_ACCEL_ID_CTLU }

1.3.6.3.2 Enumeration Type Documentation

1.3.6.3.2.1 enum table_hw_accel_id

IDs of hardware table lookup accelerator.

Enumerator

TABLE_ACCEL_ID_MFLU MFLU accelerator ID.
TABLE_ACCEL_ID_CTLU CTLU accelerator ID.

1.3.6.4 TABLE Structures

1.3.6.4.1 Overview

Freescale AIOP Table Structures.

Data Structures

• struct table_result
• struct table_key_desc_em

NXP Semiconductors
AIOP Service Layer API Reference Manual

180

Accelerators APIs

• struct table_key_desc_lpm_ipv4
• struct table_key_desc_lpm_ipv6
• struct table_key_desc_mflu
• union table_key_desc
• struct table_rule
• struct table_lookup_result
• struct table_lookup_key_desc_lpm_ipv4
• struct table_lookup_key_desc_lpm_ipv6
• union table_lookup_key_desc
• struct table_create_params
• struct table_get_params_output
• struct table_lookup_non_default_params

1.3.6.4.2 Data Structure Documentation

1.3.6.4.2.1 struct table_result

Table Result.

This structure represents the table result. Some of the fields defined here are returned after lookup, see
fields specification for more details.

Data Fields

uint8_t type Result Type - Must be set to TABLE_RESULT_TYPE_OPAQUE.
uint16_t reserved Reserved for compliance with HW format. User should not access

this field.
uint8_t data2 Data field #2 - Returned as part of lookup result.

uint64_t data0 Data field #0 - Returned as part of lookup result.
uint64_t data1 Data field #1 - Returned as part of lookup result.

1.3.6.4.2.2 struct table_key_desc_em

Exact Match Key Descriptor Structure.

Data Fields

uint8_t key[TABLE_←↩
KEY_EXAC←↩
T_MATCH_←↩
SIZE]

Exact Match key.

uint8_t reserved[TA←↩
BLE_KEY_E←↩
XACT_MAT←↩
CH_RESER←↩
VED_SIZE]

Reserved for compliance with HW format. User should not access
this field.

1.3.6.4.2.3 struct table_key_desc_lpm_ipv4

LPM IPv4 Key Descriptor Structure.

NXP Semiconductors
AIOP Service Layer API Reference Manual

181

Accelerators APIs

The Table HW Accelerator searches for the LPM of the concatenation of {exact_match, full_ipv4_←↩
address}.

Data Fields

uint32_t exact_match Exact Match bytes.
uint32_t addr IPv4 Address.
uint8_t prefix_length IPv4 Address Prefix length. Must be > 0.
uint8_t reserved[TA←↩

BLE_KEY_L←↩
PM_IPV4_R←↩
ESERVED_S←↩
IZE]

Reserved for compliance with HW format. User should not access
this field.

1.3.6.4.2.4 struct table_key_desc_lpm_ipv6

LPM IPv6 Key Descriptor Structure.

The Table HW Accelerator searches for the LPM of the concatenation of {exact_match, full_ipv6_←↩
address}.

Data Fields

uint32_t exact_match Exact Match bytes.
uint64_t addr0 IPv6 Address (8 MSB)
uint64_t addr1 IPv6 Address (8 LSB)
uint8_t prefix_length IPv6 Address Prefix length. Must be > 0.
uint8_t reserved[TA←↩

BLE_KEY_L←↩
PM_IPV6_R←↩
ESERVED_S←↩
IZE]

Reserved for compliance with HW format. User should not access
this field.

1.3.6.4.2.5 struct table_key_desc_mflu

MFLU Key Structure.

Data Fields

uint8_t key[TABLE_←↩
KEY_MFLU←↩
_SIZE+TAB←↩
LE_KEY_M←↩
FLU_PRIOR←↩
ITY_FIELD_←↩
SIZE]

MFLU Lookup Key & Priority - This should contain concatenation
of the following fields (by the same order):

• Lookup Key - Size of this field must be within 1-56 byte.
• Priority - Priority determines the selection between two rule

that match in the MFLU lookup. 0x00000000 is the highest
priority. This field size is 4 bytes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

182

Accelerators APIs

uint32_t reserved0 Reserved for compliance with HW format. User should not access
this field.

uint8_t mask[TABL←↩
E_KEY_MF←↩
LU_MASK_←↩
SIZE]

Key mask -Each byte in the mask must have contiguous 1's in the
MSbits. Therefore there are 9 valid values for each byte in the
mask:

• 0x00: The entire byte is masked.
• 0x80: The MSbit in this byte is not masked.
• 0xC0: The 2 MSbits in this byte are not masked.
• ...
• 0xFE: The 7 MSbits in this byte are not masked.
• 0xFF: The entire byte is not masked.

uint8_t reserved1[TA←↩
BLE_KEY_←↩
MFLU_RES←↩
ERVED1_SI←↩
ZE]

Reserved for compliance with HW format. User should not access
this field.

1.3.6.4.2.6 union table_key_desc

Table Key Descriptor.

Data Fields

struct table_←↩
key_desc_em

em Exact Match Key Descriptor
Should only be used in an Exact Match table.

struct
table_key_←↩

desc_lpm_ipv4

lpm_ipv4 LPM IPv4 Key Descriptor
Should only be used in an IPv4 LPM table.

struct
table_key_←↩

desc_lpm_ipv6

lpm_ipv6 LPM IPv6 Key Descriptor
Should only be used in an IPv6 LPM table.

struct table_←↩
key_desc_mflu

mflu MFLU Key Descriptor
Should only be used in an MFLU table.

1.3.6.4.2.7 struct table_rule

Table Rule.

NXP Semiconductors
AIOP Service Layer API Reference Manual

183

Accelerators APIs

Data Fields

union
table_key_desc

key_desc Rule's key descriptor.

uint64_t reserved0 Reserved for compliance with HW format. User should not access
this field.

uint8_t options Table Rule Options - Please refer to TABLE Rule Options for more
details.

uint8_t reserved1[3] Reserved for compliance with HW format. User should not access
this field.

struct
table_result

result Table Rule Result.

1.3.6.4.2.8 struct table_lookup_result

Table Lookup Result.

This structure returned from the table accelerator upon a successful lookup.

Data Fields

volatile
uint64_t

data0 Data0 as been set in the table_result structure.

volatile
uint64_t

data1 Data1 as been set in the table_result structure.

uint16_t reserved0 Reserved for compliance with HW format. User should not access
this field.

uint8_t reserved1 Reserved for compliance with HW format. User should not access
this field.

volatile
uint8_t

data2 Data2 as been set in the table_result structure.

uint64_t reserved2 Reserved for compliance with HW format. User should not access
this field.

volatile
uint32_t

timestamp Timestamp in microseconds of the rule that was matched in the
lookup process. For this timestamp to be valid, suitable option
should be set in table_rule options field.

1.3.6.4.2.9 struct table_lookup_key_desc_lpm_ipv4

LPM IPv4 Lookup Key Descriptor Structure.

The CTLU searches for the LPM of the concatenation of {exact_match, full_ipv4_address}.

NXP Semiconductors
AIOP Service Layer API Reference Manual

184

Accelerators APIs

Data Fields

uint32_t exact_match Exact Match bytes.
uint32_t addr IPv4 Address.
uint8_t max_prefix Maximum Prefix - Defines the maximum IP address prefix length

for this search. The CTLU does not search for a prefix length larger
than max_prefix. For lookup on all prefixes prefix_length = 0xFF.
This field must be > 1

1.3.6.4.2.10 struct table_lookup_key_desc_lpm_ipv6

LPM IPv6 Key Descriptor Structure.

The CTLU searches for the LPM of the concatenation of {exact_match, full_ipv6_address}.

Data Fields

uint32_t exact_match Exact Match bytes.
uint64_t addr0 IPv6 Address (8 MSB)
uint64_t addr1 IPv6 Address (8 LSB)
uint8_t max_prefix Maximum Prefix - Defines the maximum IP address prefix length

for this search. The CTLU does not search for a prefix length larger
than max_prefix. For lookup on all prefixes prefix_length = 0xFF.
This field must be > 1

1.3.6.4.2.11 union table_lookup_key_desc

Table Lookup Key Descriptor.

Data Fields

void ∗ em_key Exact Match Key - Should only be used with CTLU Hardware Ta-
ble Accelerator and tables of type TABLE_ATTRIBUTE_TYPE←↩
_EM.

struct
table_lookup←↩

_key_desc_←↩
lpm_ipv4

∗

lpm_ipv4 LPM IPv4 Key Descriptor - Should only be used with CTLU Hard-
ware Table Accelerator and tables of type TABLE_ATTRIBUT←↩
E_TYPE_LPM that were defined with TABLE_KEY_LPM_IP←↩
V4_SIZE key size.

struct
table_lookup←↩

_key_desc_←↩
lpm_ipv6

∗

lpm_ipv6 LPM IPv6 Key Descriptor - Should only be used with CTLU Hard-
ware Table Accelerator and tables of type TABLE_ATTRIBUT←↩
E_TYPE_LPM that were defined with TABLE_KEY_LPM_IP←↩
V6_SIZE key size.

NXP Semiconductors
AIOP Service Layer API Reference Manual

185

Accelerators APIs

void ∗ mflu_key MFLU Lookup Key & Match Maximum Priority - This should
point on a memory location containing concatenation of the fol-
lowing fields (by the same order):

• Lookup Key - Size of this field must be within 1-56 byte.
• Maximum Priority - defines the maximum priority to be

matched in the lookup operation. Rules with lower priority
will not be matched. 0 is the lowest priority, 0xFFFFFFFF
is the highest priority. For lookup of all priorities assign 0 to
this field. This field size is 4 bytes.

Should only be used with MFLU Hardware Table Accelerator and
tables of type TABLE_ATTRIBUTE_TYPE_MFLU.

1.3.6.4.2.12 struct table_create_params

Create Table Parameters.
Data Fields

uint32_t committed_←↩
rules

The table committed number of rules, at any point in time the table
can contain at least this number of rules.

uint32_t max_rules The max number of rules this table can contain. This number is not
guaranteed in contrast to committed_rules.
Meaning, trying to add a rule to a table that already contains
committed_rules might fail.
NOTE: This field must not be 0.

struct
table_result

miss_result A default rule that is chosen when no match is found. Available
only for CTLU tables, This field should not be filled otherwise.

uint16_t attributes Table Attributes - Please refer to TABLE Attributes Table for more
details.

uint32_t timestamp_←↩
accuracy

Timestamp Accuracy in microseconds for the table rules. A rule's
timestamp will be updated if:

• Rule timestamp is enabled in the rule's options field.
• The system current timestamp difference from the rule times-

tamp in microseconds is greater than the timestamp accuracy.
Please note that timestamp_accurcy value will be round down to
the closest power of 2.
This field must be greater than zero.

NXP Semiconductors
AIOP Service Layer API Reference Manual

186

Accelerators APIs

uint8_t key_size Table Key Size in bytes (fixed per table). In a case of EM table key
size is limited to 1-124 Bytes In a case of LPM table:

• Should be set to TABLE_KEY_LPM_IPV4_SIZE for IPv4.
• Should be set to TABLE_KEY_LPM_IPV6_SIZE for IPv6.

In a case of MFLU table, size should not include the priority field.
Please note that this value is not returned through table_get_←↩
params() function.

1.3.6.4.2.13 struct table_get_params_output

Get Table Parameters Output.

Data Fields

uint32_t current_rules Table's current number of rules.
uint32_t committed_←↩

rules
The table committed number of rules, at any point in time the table
can contain at least this number of rules.

uint32_t max_rules The max number of rules this table can contain. This number is not
guaranteed in contrast to committed_rules.
Meaning, trying to add a rule to a table that already contains
committed_rules might fail.

uint16_t attributes Table Attributes - Please refer to TABLE Attributes for more de-
tails.

1.3.6.4.2.14 struct table_lookup_non_default_params

Table Lookup Non Default Parameters Structure.

Data Fields

uint16_t segment_addr Segment Address. This segment will usually contain the frame
header.

uint16_t segment_size Segment Size.
uint16_t parse_result_←↩

addr
Parse Result Address.

uint16_t reserved0 Reserved for compliance with HW format. User should not access
this field.

uint16_t fd_addr Frame Descriptor Address.
uint32_t reserved1 Reserved for compliance with HW format. User should not access

this field.
uint16_t reserved2 Reserved for compliance with HW format. User should not access

this field.

NXP Semiconductors
AIOP Service Layer API Reference Manual

187

Accelerators APIs

uint64_t metadata User Metadata - This can contain metadata for the key creation
process.

1.3.6.5 TABLE Functions

1.3.6.5.1 Overview

Freescale AIOP Table Functions.

Functions

• int table_create (enum table_hw_accel_id acc_id, struct table_create_params ∗tbl_params, t_tbl_id
∗table_id)

• void table_replace_miss_result (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct table_←↩
result ∗new_miss_result, struct table_result ∗replaced_miss_result)

• void table_get_params (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct table_get_←↩
params_output ∗tbl_params)

• void table_get_miss_result (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct table_result
∗miss_result)

• void table_delete (enum table_hw_accel_id acc_id, t_tbl_id table_id)
• int table_rule_create (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct table_rule ∗rule,

uint8_t key_size, t_rule_id ∗rule_id)
• int table_rule_create_or_replace (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct table←↩

_rule ∗rule, uint8_t key_size, t_rule_id ∗rule_id, struct table_result ∗replaced_result, uint8_←↩
t ∗replaced_options, uint32_t ∗timestamp)

• int table_rule_replace (enum table_hw_accel_id acc_id, t_tbl_id table_id, t_rule_id rule_id,
struct table_result ∗new_result, uint8_t new_options, struct table_result ∗replaced_result, uint8_t
∗replaced_options, uint32_t ∗timestamp)

• int table_rule_modify_priority (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct table_←↩
key_desc_mflu ∗key_desc, uint8_t key_size, uint32_t new_prioiry)

• int table_rule_query_get_result (enum table_hw_accel_id acc_id, t_tbl_id table_id, t_rule_id rule←↩
_id, struct table_result ∗result, uint8_t ∗options, uint32_t ∗timestamp)

• int table_rule_query_get_key_desc (enum table_hw_accel_id acc_id, t_tbl_id table_id, t_rule_id
rule_id, union table_key_desc ∗key_desc)

• int table_rule_delete (enum table_hw_accel_id acc_id, t_tbl_id table_id, t_rule_id rule_id, struct
table_result ∗result, uint8_t ∗options, uint32_t ∗timestamp)

• int table_lookup_by_key (enum table_hw_accel_id acc_id, uint16_t table_id, union table_lookup←↩
_key_desc key_desc, uint8_t key_size, struct table_lookup_result ∗lookup_result)

• int table_lookup_by_keyid_default_frame (enum table_hw_accel_id acc_id, t_tbl_id table_id,
uint8_t keyid, struct table_lookup_result ∗lookup_result)

• int table_lookup_by_keyid (enum table_hw_accel_id acc_id, t_tbl_id table_id, uint8_t keyid,
uint32_t flags, struct table_lookup_non_default_params ∗ndf_params, struct table_lookup_result
∗lookup_result)

• int table_rule_replace_by_key_desc (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct
table_rule ∗rule, uint8_t key_size, struct table_result ∗replaced_result)

• int table_rule_query_by_key_desc (enum table_hw_accel_id acc_id, t_tbl_id table_id, union table←↩
_key_desc ∗key_desc, uint8_t key_size, struct table_result ∗result, uint32_t ∗timestamp, uint32_t

NXP Semiconductors
AIOP Service Layer API Reference Manual

188

Accelerators APIs

∗priority, t_rule_id ∗rule_id)
• int table_rule_delete_by_key_desc (enum table_hw_accel_id acc_id, uint16_t table_id, union

table_key_desc ∗key_desc, uint8_t key_size, struct table_result ∗result)
• int table_get_next_ruleid (enum table_hw_accel_id acc_id, t_tbl_id table_id, t_rule_id rule_id_←↩

desc, t_rule_id ∗next_rule_id_desc)

1.3.6.5.2 Function Documentation

1.3.6.5.2.1 int table_create (enum table_hw_accel_id acc_id, struct table_create_params ∗
tbl_params, t_tbl_id ∗ table_id)

Creates a new table.
Parameters

in acc_id The ID of the Hardware Table Accelerator in which the the table will be
created.

in tbl_params The table parameters.
out table_id Table ID. A unique (per Hardware Table Accelerator) table identifica-

tion number to be used for future table references. Output is valid only
on was success.

Returns

0 on success, or negative value on error.

Return values

0 Success.
ENOMEM Error, Not enough memory is available.

Warning

In this function the task yields.

1.3.6.5.2.2 void table_replace_miss_result (enum table_hw_accel_id acc_id, t_tbl_id table_id,
struct table_result ∗ new_miss_result, struct table_result ∗ replaced_miss_result)

Replaces specific table miss result.

This function issues an ephemeral reference take command. TODO
Reference.

NXP Semiconductors
AIOP Service Layer API Reference Manual

189

Accelerators APIs

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in new_miss_←↩

result
A default result that is chosen when no match is found.

in,out replaced_←↩
miss_result

The replaced miss result. If null the replaced miss result will not be
returned. If not null, structure should be allocated by the caller to this
function. Output is valid only on success.

Returns

None.

Warning

Not available for MFLU table accelerator.
This function should only be called if the table was defined with a miss result (i.e. TABLE_ATT←↩
RIBUTE_MR_MISS was set in table attributes).
In this function the task yields.

1.3.6.5.2.3 void table_get_params (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct
table_get_params_output ∗ tbl_params)

A getter for the table parameters.

This function does not return the table miss result.
Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the query will be performed.

in table_id Table ID.
out tbl_params Table parameters. Structure should be allocated by the caller to this

function.

Returns

None.

Warning

In this function the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

190

Accelerators APIs

1.3.6.5.2.4 void table_get_miss_result (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct
table_result ∗ miss_result)

A getter for the table miss result.

This function issues an ephemeral reference take command. TODO
Reference.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the query will be performed.

in table_id Table ID.
out miss_result A default rule data that is chosen when no match is found. Structure

should be allocated by the caller to this function.

Returns

None.

Warning

Not available for MFLU table accelerator.
This function should only be called if the table was defined with a miss result (i.e. TABLE_ATT←↩
RIBUTE_MR_MISS was set in table attributes).
In this function the task yields.

1.3.6.5.2.5 void table_delete (enum table_hw_accel_id acc_id, t_tbl_id table_id)

Deletes a specified table.

When the function returns the table is logically deleted. It is not guaranteed that all the memory as-
sociated with the table is released when the function returns, as the process of releasing the memory may
take some time.
Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

NXP Semiconductors
AIOP Service Layer API Reference Manual

191

Accelerators APIs

in table_id Table ID.

Returns

None.

Warning

In this function the task yields.

1.3.6.5.2.6 int table_rule_create (enum table_hw_accel_id acc_id, t_tbl_id table_id, struct
table_rule ∗ rule, uint8_t key_size, t_rule_id ∗ rule_id)

Adds a rule to a specified table.

If the rule key descriptor already exists, the rule will not be added and a status will be returned.

This function issues an ephemeral reference take command. TODO Reference.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in rule The rule to be added. The structure pointed by this pointer must be in

the task's workspace and must be aligned to 16B boundary.
in key_size Key size in bytes. Should be equal to the key size the table was created

with except for the following remark:
• the key size should be added priority field size (4 Bytes) for M←↩

FLU tables.

out rule_id Rule ID of the rule that was created. This ID can be used as a reference
to this rule by other functions. Output is valid only on success.

Returns

0 on success, or negative value on error.

Return values

NXP Semiconductors
AIOP Service Layer API Reference Manual

192

Accelerators APIs

0 Success.
ENOMEM Error, Not enough memory is available.

EIO Error, A valid rule with the same key descriptor is found in the table. No
change was made to the table.

Warning

In this function the task yields.
If TABLE_ACCEL_ID_MFLU is used and the rule key descriptor already exists in the table with
different priority the exception path will be called.

1.3.6.5.2.7 int table_rule_create_or_replace (enum table_hw_accel_id acc_id, t_tbl_id table_id,
struct table_rule ∗ rule, uint8_t key_size, t_rule_id ∗ rule_id, struct table_result ∗
replaced_result, uint8_t ∗ replaced_options, uint32_t ∗ timestamp)

Adds/replaces a rule to/in a specified table.

If the rule key already exists, the rule will be replaced by the one specified in the function's parame-
ters. Else, a new rule will be created in the table.
NOTE: For MFLU tables, replace will occur also when priority is not identical.

This function issues an ephemeral reference take command. TODO Reference.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in rule The rule to be added. The structure pointed by this pointer must be in

the task's workspace and must be aligned to 16B boundary.
in key_size Key size in bytes.Should be equal to the key size the table was created

with except for the following remark:
• the key size should be added priority field size (4 Bytes) for M←↩

FLU tables.

NXP Semiconductors
AIOP Service Layer API Reference Manual

193

Accelerators APIs

out rule_id Rule ID of the rule that was created or replaced. This ID can be used
as a reference to this rule by other functions. Output is valid only on
success.

in,out replaced_result The result of the replaced rule. Valid only if replace took place. If set to
null the replaced rule's result will not be returned. If not null, structure
should be allocated by the caller to this function.

in,out replaced_←↩
options

The replaced rule's options. Valid only if replace took place. If null the
replaced rule's options will not be returned. If not null, structure should
be allocated by the caller to this function. (Please refer to TABLE Rule
Options for more details).

in,out timestamp The replaced rule's timestamp in microseconds. Valid only if replace
took place. If null the replaced rule's timestamp will not be returned. If
not null, structure should be allocated by the caller to this function.

Returns

0 or positive value on success. Negative value on error.

Return values

0 Success. A rule with the same key descriptor was found in the table. The
rule was replaced.

TABLE_STATUS_MISS Success, A rule with the same key descriptor was not found in the table. A
new rule is created.

ENOMEM Error, Not enough memory is available.

Warning

In this function the task yields.

1.3.6.5.2.8 int table_rule_replace (enum table_hw_accel_id acc_id, t_tbl_id table_id, t_rule_id
rule_id, struct table_result ∗ new_result, uint8_t new_options, struct table_result ∗
replaced_result, uint8_t ∗ replaced_options, uint32_t ∗ timestamp)

Replaces a specified rule's result and options, and updates the rule's timestamp.

Optionally, return the replaced result, options and the old timestamp. The rule's key is not modifiable.

To replace MFLU rule priority please use table_rule_modify_priority().

This function issues an ephemeral reference take command. TODO Reference.

NXP Semiconductors
AIOP Service Layer API Reference Manual

194

Accelerators APIs

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in rule_id Rule ID of the rule to be replaced.
in new_result Pointer to the rule new result. Must not be null.
in new_options The rule's new options (Please refer to TABLE Rule Options for more

details).
in,out replaced_result The replaced rule's result. If null the replaced rule's result will not be

returned. If not null, structure should be allocated by the caller to this
function. Output is valid only on success.

in,out replaced_←↩
options

The replaced rule's options. If null the replaced rule's options will not
be returned. If not null, structure should be allocated by the caller to
this function. (Please refer to TABLE Rule Options for more details).
Output is valid only on success.

in,out timestamp The replaced rule's timestamp in microseconds. If null the replaced
rule's timestamp will not be returned. If not null, structure should be
allocated by the caller to this function. Timestamp is not valid unless
the rule replaced was created with suitable options. Available through
replaced_options parameter. Output is valid only on success.

Returns

0 on success or negative value on error.

Return values

0 Success.
EIO Error, a rule with the same Rule ID is not found in the table.

Warning

In this function the task yields.

1.3.6.5.2.9 int table_rule_modify_priority (enum table_hw_accel_id acc_id, t_tbl_id table_id,
struct table_key_desc_mflu ∗ key_desc, uint8_t key_size, uint32_t new_prioiry)

Modifies a specified MFLU rule priority in a table.

NXP Semiconductors
AIOP Service Layer API Reference Manual

195

Accelerators APIs

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed. This must be set to TABLE_ACCE←↩
L_ID_MFLU.

in table_id Table ID.
in key_desc Contains the rule's MFLU key descriptor of the rule to be modified.

The key descriptor that must be equivalent on both key and mask and
priority. The key descriptor can be obtained using table_rule_query_←↩
get_key_desc() function.

in key_size Key size in bytes. Should be equal to the key size the table was created
plus priority field size (4 Bytes).

in new_prioiry The new priority to be assigned to the rule.

Returns

0 on success or negative value on error.

Return values

0 Success.
EIO Error, a rule with the same key descriptor is not found in the table.

Warning

In this function the task yields.

1.3.6.5.2.10 int table_rule_query_get_result (enum table_hw_accel_id acc_id, t_tbl_id table_id,
t_rule_id rule_id, struct table_result ∗ result, uint8_t ∗ options, uint32_t ∗ timestamp
)

Queries a rule in the table by its rule ID.

Optionally, return the queried rule result, options and its timestamp value. This function does not
update the matched rule timestamp.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the query will be performed.

NXP Semiconductors
AIOP Service Layer API Reference Manual

196

Accelerators APIs

in table_id Table ID.
in rule_id Rule ID of the rule to be queried.

in,out result The result of the query. If null the queried rule's result will not be re-
turned. If not null, structure should be allocated by the caller to this
function. Output is valid only on was success.

in,out options The queried rule's options. If null the queried rule's options will not
be returned. If not null, structure should be allocated by the caller to
this function. (Please refer to TABLE Rule Options for more details).
Output is valid only on success.

in,out timestamp Timestamp of the result in microseconds. If null the queried timestamp
result will not be returned. If not null, structure should be allocated
by the caller to this function. Timestamp is not valid unless the rule
queried for was created with suitable options. Available through options
parameter. Output is valid only on success.

Returns

0 on success, TABLE_STATUS_MISS on miss.

Return values

0 Success.
TABLE_STATUS_MISS A rule with the same Rule ID is not found in the table.

Warning

In this function the task yields.

1.3.6.5.2.11 int table_rule_query_get_key_desc (enum table_hw_accel_id acc_id, t_tbl_id
table_id, t_rule_id rule_id, union table_key_desc ∗ key_desc)

Retrieves the key descriptor for a given Rule ID and Table ID

This functions gets a Rule ID and returns the corresponding
Key descriptor.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

NXP Semiconductors
AIOP Service Layer API Reference Manual

197

Accelerators APIs

in table_id Table ID.
in rule_id Rule ID of the key descriptor to be retrieved.
out key_desc Key descriptor that corresponds to the input Rule ID. The structure

pointed by this pointer must be in the task's workspace and must be
aligned to 16B boundary. Output is valid only on success.

Returns

0 on success, TABLE_STATUS_MISS on miss.

Return values

0 Success.
TABLE_STATUS_MISS A rule with the same Rule ID is not found in the table.

Warning

In this function the task yields.

1.3.6.5.2.12 int table_rule_delete (enum table_hw_accel_id acc_id, t_tbl_id table_id, t_rule_id
rule_id, struct table_result ∗ result, uint8_t ∗ options, uint32_t ∗ timestamp)

Deletes a specified rule in the table.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in rule_id Rule ID of the rule to be deleted.

in,out result The result of the deleted rule. If null the deleted rule's result will not be
returned. If not null, structure should be allocated by the caller to this
function. Output is valid only on success. if delete was successful.

in,out options The deleted rule's options. If null the deleted rule's options will not be
returned. If not null, structure should be allocated by the caller to this
function. (Please refer to TABLE Rule Options for more details).Output
is valid only on success.

NXP Semiconductors
AIOP Service Layer API Reference Manual

198

Accelerators APIs

in,out timestamp Timestamp of the result in microseconds. If null the queried timestamp
result will not be returned. If not null, structure should be allocated by
the caller to this function. Timestamp is not valid unless the rule deleted
was created with suitable options. Available through options parameter.
Output is valid only on success.

Returns

0 on success or negative value on error.

Return values

0 Success.
EIO Error, a rule with the same Rule ID is not found in the table.

Warning

In this function the task yields.

1.3.6.5.2.13 int table_lookup_by_key (enum table_hw_accel_id acc_id, uint16_t table_id, union
table_lookup_key_desc key_desc, uint8_t key_size, struct table_lookup_result ∗
lookup_result)

Performs a lookup with a key built by the user.

This function updates the matched rule timestamp.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in key_desc Lookup Key Descriptor of the rule to be queried. This parameter is a

union of pointers. The memory address pointed by this pointer must be
in the task's workspace and must be aligned to 16B boundary.

in key_size Key size in bytes. Should be equal to the key size the table was created
with except for the following remark:

• the key size should be added priority field size (4 Bytes) for M←↩
FLU tables.

out lookup_result Points to a user preallocated memory to which the table lookup result
will be written. The structure pointed by this pointer must be in the
task's workspace and must be aligned to 16B boundary. Output is valid
only on success.

NXP Semiconductors
AIOP Service Layer API Reference Manual

199

Accelerators APIs

Returns

0 on success, TABLE_STATUS_MISS on miss.

Return values

0 Success.
TABLE_STATUS_MISS A match was not found during the lookup operation.

Warning

In this function the task yields.

1.3.6.5.2.14 int table_lookup_by_keyid_default_frame (enum table_hw_accel_id acc_id, t_tbl_id
table_id, uint8_t keyid, struct table_lookup_result ∗ lookup_result)

Performs a lookup with a predefined key and the default frame.

In this lookup process a lookup key will be built according to the Key Composition Rule associated
with the Key ID supplied as a parameter to this functions. The fields order in the key is according to the
FECs order in the Key Composition Rule that is related to the keyid. Default frame header (segment),
Parse Result address, and FD address parameters are used in the key creation process

This function updates the matched rule timestamp.

Implicit input parameters in Task Defaults: Segment Address, Segment Size, Frame Descriptor Address
and Parse Results.
Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in keyid A Key Composition Rule (KCR) ID for the table lookups (Key Com-

position Rule specifies how to build a key). The key built by this KCR
should fit table_lookup_key_desc union and it's size should be equal to
the key size the table was created with except for the following remark:

• the key size should be added priority field size (4 Bytes) for M←↩
FLU tables.

NXP Semiconductors
AIOP Service Layer API Reference Manual

200

Accelerators APIs

out lookup_result Points to a user preallocated memory to which the table lookup result
will be written. The structure pointed by this pointer must be in the
task's workspace and must be aligned to 16B boundary. Output is valid
only on success.

Returns

0 on success, TABLE_STATUS_MISS on miss or negative value if an error occurred.

Return values

0 Success.
TABLE_STATUS_MISS A match was not found during the lookup operation.

EIO Error, Key composition attempted to extract a field which is not in the
frame header either because it is placed beyond the first 256 bytes of the
frame, or because the frame is shorter than the index evaluated for the
extraction.

Warning

In this function the task yields.
Presented header address in the workspace must be aligned to 16 bytes.

1.3.6.5.2.15 int table_lookup_by_keyid (enum table_hw_accel_id acc_id, t_tbl_id table_id,
uint8_t keyid, uint32_t flags, struct table_lookup_non_default_params ∗
ndf_params, struct table_lookup_result ∗ lookup_result)

Performs a lookup with a predefined key, a frame, and user metadata.

In this lookup process a lookup key will be built according to the Key Composition Rule associated with
the Key ID supplied as a parameter to this functions. The fields order in the key is according to the FECs
order in the Key Composition Rule that is related to the keyid. Frame header (Segment), Parse result, FD
address and Metadata can explicitly be passed to this function for the key creation process.

This function updates the matched result timestamp.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

NXP Semiconductors
AIOP Service Layer API Reference Manual

201

Accelerators APIs

in table_id Table ID.
in keyid A Key Composition Rule (KCR) ID for the table lookups (Key Com-

position Rule specifies how to build a key). The key built by this KCR
should fit table_lookup_key_desc union and it's size should be equal to
the key size the table was created with except for the following remark:

• the key size should be added priority field size (4 Bytes) for M←↩
FLU tables.

in flags Specifies options to this function, please refer to TABLE Lookup Flags.
in ndf_params Non defaults inputs to the key creation process. See structure documen-

tation for more details. Some of the fields in this structures are only
valid if appropriate flags were set to this function. The structure pointed
by this pointer must be in the task's workspace and must be aligned to
16B boundary.

out lookup_result Points to a user preallocated memory to which the table lookup result
will be written. The structure pointed by this pointer must be in the
task's workspace and must be aligned to 16B boundary.

Returns

0 on success, TABLE_STATUS_MISS on miss or negative value if an error occurred.

Return values

0 Success.
TABLE_STATUS_MISS A match was not found during the lookup operation.

EIO Error, Key composition attempted to extract a field which is not in the
frame header either because it is placed beyond the first 256 bytes of the
frame, or because the frame is shorter than the index evaluated for the
extraction.

Warning

In this function the task yields.
Presented header address in the workspace must be aligned to 16 bytes.

1.3.6.5.2.16 int table_rule_replace_by_key_desc (enum table_hw_accel_id acc_id, t_tbl_id
table_id, struct table_rule ∗ rule, uint8_t key_size, struct table_result ∗
replaced_result)

Replaces a specified rule in the table.

The rule's key is not modifiable. Caller to this function supplies the key of the rule to be replaced.

To replace MFLU rule priority please use table_rule_modify_priority().

NXP Semiconductors
AIOP Service Layer API Reference Manual

202

Accelerators APIs

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in rule Table rule, contains the rule's key descriptor, with which the rule to be

replaced will be found and contain the rule result to be replaced. The
structure pointed by this pointer must be in the task's workspace and
must be aligned to 16B boundary.

in key_size Key size in bytes. Should be equal to the key size the table was created
with except for the following remark:

• the key size should be added priority field size (4 Bytes) for M←↩
FLU tables.

in,out replaced_result The result of the replaced rule. If null the replaced rule's result will not
be returned. If not null, structure should be allocated by the caller to this
function. Output is valid only on success.

Returns

0 on success or negative value on error.

Return values

0 Success.
EIO Error, a rule with the same key descriptor is not found in the table.

Warning

The key descriptor must be the exact same key descriptor that was used for the rule creation (not
including reserved fields).
In this function the task yields.

1.3.6.5.2.17 int table_rule_query_by_key_desc (enum table_hw_accel_id acc_id, t_tbl_id
table_id, union table_key_desc ∗ key_desc, uint8_t key_size, struct table_result ∗
result, uint32_t ∗ timestamp, uint32_t ∗ priority, t_rule_id ∗ rule_id)

Queries a rule in the table using key descriptor.

This function does not update the matched rule timestamp.

Note: For Exact Match tables, although functionality is somewhat similar to table_lookup_by_key()
since table_key_desc are and table_lookup_key_desc are similar, command rate of table_lookup_by_←↩
key() is superior.

NXP Semiconductors
AIOP Service Layer API Reference Manual

203

Accelerators APIs

Note: For non Exact Match tables behavior is different from table_lookup_by_key(). For example,
an MFLU table that contains a rule in the form of Key+Mask: 0x55∗∗5 can only be queried with a similar
table_key_desc, if using table_lookup_by_key() the rule can be matched with many keys such as 0x55115,
0x55555, etc... Alternatively, none of these keys can be matched to 0x55∗∗5 using table_lookup_by_key()
since there is already an MFLU rule in the same table in the form of 0x55∗∗∗ with a greater priority.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the query will be performed.

in table_id Table ID.
in key_desc Key Descriptor of the rule to be queried. The structure pointed by this

pointer must be in the task's workspace and must be aligned to 16B
boundary.

in key_size Key size in bytes. Should be equal to the key size the table was created
with except for the following remark:

• the key size should be added priority field size (4 Bytes) for M←↩
FLU tables.

out result The result of the query. Structure should be allocated by the caller to
this function. Output is valid only on success status or TABLE_STA←↩
TUS_MFLU_DIFF_PRIORITY status.

out timestamp Timestamp of the result in microseconds. Timestamp is not valid unless
the rule queried for was created with suitable options (Please refer to
TABLE Rule Options for more details). Must be allocated by the caller
to this function. Output is valid only on success or status TABLE_ST←↩
ATUS_MFLU_DIFF_PRIORITY.

out priority The priority of the found rule. Only valid if the returned status is TA←↩
BLE_STATUS_MFLU_DIFF_PRIORITY.

out rule_id Rule ID of the rule that was found. This ID can be used as a reference
to this rule by other functions. Valid only on success status or TABL←↩
E_STATUS_MFLU_DIFF_PRIORITY status.

Returns

0 on success, TABLE_STATUS_MISS on miss, TABLE_STATUS_MFLU_DIFF_PRIORITY on
MFLU rule found with different priority.

Return values

NXP Semiconductors
AIOP Service Layer API Reference Manual

204

Accelerators APIs

0 Success.
TABLE_STATUS_MISS A rule with the same key descriptor is not found in the table.

TABLE_STATUS_MFL←↩
U_DIFF_PRIORITY

An MFLU rule was found with different priority.

Warning

The key descriptor must be the exact same key descriptor that was used for the rule creation (not
including reserved/priority fields).
In this function the task yields.

1.3.6.5.2.18 int table_rule_delete_by_key_desc (enum table_hw_accel_id acc_id, uint16_t
table_id, union table_key_desc ∗ key_desc, uint8_t key_size, struct table_result ∗
result)

Deletes a specified rule in the table.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in key_desc Key Descriptor of the rule to be deleted. The structure pointed by this

pointer must be in the task's workspace and must be aligned to 16B
boundary.

in key_size Key size in bytes. Should be equal to the key size the table was created
with except for the following remark:

• the key size should be added priority field size (4 Bytes) for M←↩
FLU tables.

in,out result The result of the deleted rule. If null the deleted rule's result will not be
returned. If not null, structure should be allocated by the caller to this
function. Output is valid only on success.

Returns

0 on success or negative value on error.

Return values

NXP Semiconductors
AIOP Service Layer API Reference Manual

205

Accelerators APIs

0 Success.
EIO Error, a rule with the same key descriptor is not found in the table.

Warning

The key descriptor must be the exact same key descriptor that was used for the rule creation (not
including reserved/priority fields).
In this function the task yields.

1.3.6.5.2.19 int table_get_next_ruleid (enum table_hw_accel_id acc_id, t_tbl_id table_id,
t_rule_id rule_id_desc, t_rule_id ∗ next_rule_id_desc)

Retrieves the next Rule ID in a given table.

This functions may be used by applications to iterate over
CTLU/MFLU tables. The function returns a Rule ID value which
exists in the given table and is equal or greater than the
value that was passed to it.
To iterate over a table, application should initially call this
function with Rule ID = 0. For subsequent calls, application
should increment by 1 the Rule ID value that was returned in
a previous call and provide it as input to the function.
If there is no next Rule ID the function returns a miss and
this may be used by application to terminate the table iteration.
If the function returns the Rule ID 0xffffffff_ffffffff then this
Rule ID exists in the table and it is the last Rule ID.

Parameters

in acc_id ID of the Hardware Table Accelerator that contains the table on which
the operation will be performed.

in table_id Table ID.
in rule_id_desc A Rule ID. The function returns a Rule ID which is equal or greater than

this Rule ID.
out next_rule_id_←↩

desc
The next Rule ID descriptor.

Returns

0 on success or TABLE_STATUS_MISS if there is no next Rule ID.

NXP Semiconductors
AIOP Service Layer API Reference Manual

206

Accelerators APIs

Return values

0 Success.
TABLE_STATUS_MISS In this table there is no Rule ID value which is equal or greater than the

Rule ID value that was passed as input.

Warning

In this function the task yields.
This function may result in a fatal error.
In case that a rule is added or deleted (by another task) when this function is called, the Rule ID of
the added/deleted rule may or may not be returned by this function.

1.3.6.6 TABLE Typedefs

1.3.6.6.1 Overview

Table Typedefs.

Typedefs

• typedef uint16_t t_tbl_id
• typedef uint64_t t_rule_id

1.3.7 OSM

1.3.7.1 Overview

FSL AIOP OSM macros and functions.

Modules

• OSM Structures
• OSM Commands Flags
• OSM Functions

1.3.7.2 OSM Structures

1.3.7.2.1 Overview

Data Structures

• struct scope_status_params

NXP Semiconductors
AIOP Service Layer API Reference Manual

207

Accelerators APIs

Macros

• #define OSM_SCOPE_ID_STAGE_INCREMENT_MASK
• #define OSM_SCOPE_ID_LEVEL_INCREMENT_MASK

1.3.7.2.2 Data Structure Documentation

1.3.7.2.2.1 struct scope_status_params

Scope Status structure.

Includes information on the scope status structure.

Data Fields

uint8_t scope_level The current hierarchy scope level (0 to 4). 0 = The task isn't found
in any ordering scope (null scope_id).
1 = The task is in the top level of hierarchy (level 1).
2 = The task is in level 2 of hierarchy.
3 = The task is in level 3 of hierarchy.
4 = The task is in level 4 of hierarchy.

uint8_t scope_mode The current scope mode. Valid only if scope_level is not equal to
zero (null scope_id).
0 = Concurrent mode.
1 = Exclusive mode.

1.3.7.2.3 Macro Definition Documentation

1.3.7.2.3.1 #define OSM_SCOPE_ID_STAGE_INCREMENT_MASK

OSM ScopeID Stage and Level Increment Definitions.

Scope_id stage increment mask. The OSM_SCOPE_ID_STAGE_INCREMENT_MASK defines the O←↩
SM_STAGE_ID field (size and location) in the OSM_SCOPE_ID. The OSM_STAGE_ID is incremented
when a task calls to osm_scope_transition_to_exclusive_with_increment_scope_id() API and, as a result,
a new scope_id is automatically created. If more bits are allocated for this field, the user can call osm_←↩
scope_transition_to_concurrent_with_new_scope_id() API more times without actually modifying a new
scope_id (i.e. calling osm_scope_transition_to_exclusive_with_new_scope_id() API).

1.3.7.2.3.2 #define OSM_SCOPE_ID_LEVEL_INCREMENT_MASK

Scope_id hierarchical level increment mask.

The OSM_SCOPE_ID_LEVEL_INCREMENT_MASK defines the OSM_LEVEL_ID field (size and lo-
cation) in any OSM_SCOPE_ID. Since 4 hierarchy scope levels are supported, 2 bits must be allocated for
it. OSM_LEVEL_ID indicates the current hierarchy scope level and it is incremented when a task calls
osm_scope_enter() API.

NXP Semiconductors
AIOP Service Layer API Reference Manual

208

Accelerators APIs

1.3.7.3 OSM Commands Flags

1.3.7.3.1 Overview

OSM Commands Flags.

Modules

• Scope enter mode bits

1.3.7.3.2 Scope enter mode bits

1.3.7.3.2.1 Overview

Macros

• #define OSM_SCOPE_ENTER_CHILD_TO_CONCURENT
• #define OSM_SCOPE_ENTER_CHILD_TO_EXCLUSIVE
• #define OSM_SCOPE_ENTER_CHILD_SCOPE_INCREMENT
• #define OSM_SCOPE_ENTER_RELINQUISH_PARENT_EXCLUSIVITY

1.3.7.3.2.2 Macro Definition Documentation

1.3.7.3.2.2.1 #define OSM_SCOPE_ENTER_CHILD_TO_CONCURENT

"child" to XC scope mode.

Hierarchically enter to a "child" ordering scope to concurrent (XC) stage (scope_concurrent_child).

1.3.7.3.2.2.2 #define OSM_SCOPE_ENTER_CHILD_TO_EXCLUSIVE

"child" to XX scope mode.

Hierarchically enter to a "child" ordering scope to exclusive (XX) stage (scope_exclusive_child).

1.3.7.3.2.2.3 #define OSM_SCOPE_ENTER_CHILD_SCOPE_INCREMENT

"child" scope_id.

0 = The task is now associated with the specified "child" ordering queue (child_scope_id). The OSM_L←↩
EVEL_ID is updated automatically.
1 = The task is now associated with a "child" ordering queue that is derived automatically from its "parent"
ordering queue after the OSM_LEVEL_ID has been incremented by 1.

1.3.7.3.2.2.4 #define OSM_SCOPE_ENTER_RELINQUISH_PARENT_EXCLUSIVITY

"parent" scope mode.

0 = Proceed in the current ("parent") ordering scope XC or XX stage.
1 = Proceed from the current ("parent") ordering scope stage to XC stage (scope_concurrent_parent).

NXP Semiconductors
AIOP Service Layer API Reference Manual

209

Accelerators APIs

Another task may then enter the current ordering scope XX stage.

1.3.7.4 OSM Functions

1.3.7.4.1 Overview

AIOP OSM operations functions.

Functions

• void osm_scope_transition_to_exclusive_with_increment_scope_id (void)
• void osm_scope_transition_to_exclusive_with_new_scope_id (uint32_t scope_id)
• void osm_scope_transition_to_concurrent_with_increment_scope_id (void)
• void osm_scope_transition_to_concurrent_with_new_scope_id (uint32_t scope_id)
• void osm_scope_relinquish_exclusivity (void)
• void osm_scope_enter_to_exclusive_with_increment_scope_id (void)
• void osm_scope_enter_to_exclusive_with_new_scope_id (uint32_t child_scope_id)
• void osm_scope_enter (uint32_t scope_enter_flags, uint32_t child_scope_id)
• void osm_scope_exit (void)
• void osm_get_scope (struct scope_status_params ∗scope_status)

1.3.7.4.2 Function Documentation

1.3.7.4.2.1 void osm_scope_transition_to_exclusive_with_increment_scope_id (void)

Transition from the current ordering scope to exclusive (XX) stage.

The task is now associated with an incremental stage of the original scope_id (according to the OSM_S←↩
COPE_ID_STAGE_INCREMENT_MASK definition).

Code following this command is executed in exclusive mode according to the new incremental ordering
scope.

Returns

None.

Warning

In this function the task yields.
This function may result in a fatal error. Fatal error occurs if no order scope_id was specified for this
task (null scope_id) before calling this function.

NXP Semiconductors
AIOP Service Layer API Reference Manual

210

Accelerators APIs

1.3.7.4.2.2 void osm_scope_transition_to_exclusive_with_new_scope_id (uint32_t scope_id)

Transition from the current ordering scope to exclusive (XX) stage.

The task is now associated with the new specified scope_id.

Code following this command is executed in exclusive mode according to the new ordering scope.

Parameters

in scope_id

Returns

None.

Remarks

The OSM_STAGE_ID is automatically updated in the new scope_id according to the OSM_SCO←↩
PE_ID_LEVEL_INCREMENT_MASK definitions.

Warning

In this function the task yields.
This function may result in a fatal error. Fatal error occurs if no order scope_id was specified for this
task (null scope_id) before calling this function.

1.3.7.4.2.3 void osm_scope_transition_to_concurrent_with_increment_scope_id (void)

Transition from the current ordering scope to concurrent (XC) stage.

The task is now associated with an incremental stage of the original scope_id (according to the OSM_S←↩
COPE_ID_STAGE_INCREMENT_MASK definition).

No ordering restrictions are applied to the code following this command. Tasks in the same ordering scope
to run in parallel.

Returns

None.

Warning

In this function the task yields.
This function may result in a fatal error. Fatal error occurs if no order scope_id was specified for this
task (null scope_id) before calling this function.

NXP Semiconductors
AIOP Service Layer API Reference Manual

211

Accelerators APIs

1.3.7.4.2.4 void osm_scope_transition_to_concurrent_with_new_scope_id (uint32_t scope_id)

Transition from the current ordering scope to concurrent (XC) stage.

The task is now associated with the new specified scope_id.

No ordering restrictions are applied to the code following this command. Tasks in the same ordering scope
to run in parallel.

Parameters

in scope_id

Returns

None.

Remarks

The OSM_LEVEL_ID field is automatically updated in the new scope_id according to the OSM_←↩
SCOPE_ID_LEVEL_INCREMENT_MASK definitions.

Warning

In this function the task yields.
This function may result in a fatal error. Fatal error occurs if no order scope_id was specified for this
task (null scope_id) before calling this function.

1.3.7.4.2.5 void osm_scope_relinquish_exclusivity (void)

Proceed from exclusive (XX) to concurrent (XC) stage of the same ordering scope (relinquish exclusivity).

Another task may then enter the current ordering scope's XX stage.

No ordering restrictions are applied to the code following this command. Tasks in the same ordering scope
can run in parallel.

Returns

None.

Warning

None.

NXP Semiconductors
AIOP Service Layer API Reference Manual

212

Accelerators APIs

1.3.7.4.2.6 void osm_scope_enter_to_exclusive_with_increment_scope_id (void)

Enter the next level of ordering scope in the hierarchy ("child") to either exclusive (XX) stage.

Proceed from the current ("parent") ordering scope stage to XC stage.

The task is now associated with an incremental level of the parent scope_id (the OSM_LEVEL_ID is
automatically updated according to the OSM_SCOPE_ID_LEVEL_INCREMENT_MASK definition).

Returns

None.

Remarks

This function is a subset of the osm_scope_enter() function.
This function will be ignored if it is an attempt to enter a new scope when the maximum depth of
hierarchy level was reached.

Warning

In this function the task yields.
This function may result in a fatal error.

1.3.7.4.2.7 void osm_scope_enter_to_exclusive_with_new_scope_id (uint32_t child_scope_id)

Enter the next level of ordering scope in the hierarchy ("child") to either exclusive (XX) stage.

Proceed from the current ("parent") ordering scope stage to XC stage.

The task is now associated with a new specified "child" ordering queue (child_scope_id).

Parameters

in child_scope_id - "child" ordering scope_id.

Returns

None.

Remarks

This function is a subset of the osm_scope_enter() function.
This function will be ignored if it is an attempt to enter a new scope when the maximum depth of
hierarchy level was reached.

NXP Semiconductors
AIOP Service Layer API Reference Manual

213

Accelerators APIs

Warning

In this function the task yields.
This function may result in a fatal error.

1.3.7.4.2.8 void osm_scope_enter (uint32_t scope_enter_flags, uint32_t child_scope_id)

Enter the next level of ordering scope in the hierarchy ("child") to either exclusive (XX) or concurrent
(XC) stage, according to the flag OSM_SCOPE_ENTER_CHILD_TO_EXCLUSIVE parameter setting.

Proceed from the current ("parent") ordering scope stage to XC stage according to the flag OSM_SCOP←↩
E_ENTER_RELINQUISH_PARENT_EXCLUSIVITY parameter setting.

According to the OSM_SCOPE_ENTER_CHILD_SCOPE_INCREMENT parameter setting, The task is
now associated with one of the two following options:

1. The specified "child" ordering queue (child_scope_id)
2. An incremental level of the parent scope_id

In both options, the OSM_LEVEL_ID is automatically updated according to the OSM_SCOPE_ID_LE←↩
VEL_INCREMENT_MASK definition.

Software may require that the order of the captured tasks associated with the parent ordering scope will be
maintained also for the child cascade of ordering scopes. To achieve this, tasks must call osm_scope_←↩
enter() from the parent XX stage. If osm_scope_enter() is called from the XC stage, there is no guarantee
that the orders will match as the tasks are running in parallel when osm_scope_enter() is called.

However, when a task calls osm_scope_enter() from the parent XX stage, no other task may enter the
parent XX stage until the first task has completed executing the child cascade and called osm_scope_exit()
to return to the parent ordering scope.

In order to remove the above restriction so that tasks can enter the parent XX stage and still save the
order between the parent and child, the task has to enter the child from the parent XX stage but also
automatically proceed from the current (parent) ordering scope stage to XC. This feature can be achieved
by the flag OSM_SCOPE_ENTER_RELINQUISH_PARENT_EXCLUSIVITY parameter.

Note that the osm_scope_relinquish_exclusivity() API cannot be used instead because it is defined to
operate only on the current (child) ordering scope, not the parent.

Parameters

in scope_enter_←↩
flags

- Scope enter mode bits

in child_scope_id - "child" ordering scope_id. This parameter is relevant only if OSM_←↩
SCOPE_ENTER_CHILD_SCOPE_INCREMENT is not set.

Returns

None.

NXP Semiconductors
AIOP Service Layer API Reference Manual

214

Accelerators APIs

Remarks

This function will be ignored if it is an attempt to enter a new scope when the maximum depth of
hierarchy level was reached.

Warning

In this function the task yields.
This function may result in a fatal error.

1.3.7.4.2.9 void osm_scope_exit (void)

Exit the current ordering scope and return to its "parent" ordering scope. (it decreases ordering level by
one).

It can be made from either the XX or the XC stage of the current ordering scope.

If task is exited from the top level of hierarchy (level 1), then the task enters a special state in which it is
not in any ordering scope (null scope_id). In this case:

• It is illegal to call to osm_scope_exit() function.
• It is illegal to call to any of osm_scope_transition_to functions.
• It is illegal to call to osm_scope_relinquish_exclusivity() function.
• Tasks may call osm_scope_enter() function (OSM_SCOPE_ENTER_CHILD_SCOPE_INCREM←↩

ENT flag must be reset) to enter a level 1 ordering scope but the order will be arbitrary.

Returns

None.

Remarks

A task is removed from its ordering queue automatically when it terminates.

Warning

None.

1.3.7.4.2.10 void osm_get_scope (struct scope_status_params ∗ scope_status)

Returns the current scope status: Scope mode (i.e. concurrent or exclusive) and hierarchy level of the task
calling this function.

The scope status are automatically updated after any OSM function that returns without any failure.

NXP Semiconductors
AIOP Service Layer API Reference Manual

215

Accelerators APIs

Parameters

out scope_status - Get scope status

Returns

None.

Warning

None.

1.3.8 TMAN

1.3.8.1 Overview

AIOP TMAN functions macros and definitions.

Modules

• TMAN MACROS
• TMAN Data Structures
• TMAN Flags
• TMAN functions

Typedefs

• typedef uint64_t tman_arg_8B_t
• typedef uint16_t tman_arg_2B_t
• typedef void(∗ tman_cb_t) (tman_arg_8B_t arg1, tman_arg_2B_t arg2)

Enumerations

• enum e_tman_granularity {
TMAN_GRANULARITY_USEC,
TMAN_GRANULARITY_10_USEC,
TMAN_GRANULARITY_100_USEC,
TMAN_GRANULARITY_MSEC,
TMAN_GRANULARITY_10_MSEC,
TMAN_GRANULARITY_100_MSEC,
TMAN_GRANULARITY_SEC }

NXP Semiconductors
AIOP Service Layer API Reference Manual

216

Accelerators APIs

1.3.8.2 Typedef Documentation

1.3.8.2.1 typedef uint64_t tman_arg_8B_t

TMAN Timer expiration task arguments Type definition.

1.3.8.2.2 typedef void(∗ tman_cb_t) (tman_arg_8B_t arg1, tman_arg_2B_t arg2)

User callback function, called after ipr_delete_instance function has finished deleting the instance and
release all its recourses.

The user provides this function and the IPR process invokes it.

Parameters

in arg - Argument of the callback function.

1.3.8.3 Enumeration Type Documentation

1.3.8.3.1 enum e_tman_granularity

Defines the TMAN granularity.

Enumerator

TMAN_GRANULARITY_USEC 1 uSec timer ticks
TMAN_GRANULARITY_10_USEC 10 uSec timer ticks
TMAN_GRANULARITY_100_USEC 100 uSec timer ticks
TMAN_GRANULARITY_MSEC 1 mSec timer ticks
TMAN_GRANULARITY_10_MSEC 10 mSec timer ticks
TMAN_GRANULARITY_100_MSEC 100 mSec timer ticks
TMAN_GRANULARITY_SEC 1 Sec timer ticks

1.3.8.4 TMAN MACROS

1.3.8.4.1 Overview

AIOP TMAN Macros.

Macros

• #define TMAN_GET_MISSED_EXPIRATION(_fd)
• #define TMAN_GET_TIMER_HANDLE(_fd)

NXP Semiconductors
AIOP Service Layer API Reference Manual

217

Accelerators APIs

1.3.8.4.2 Macro Definition Documentation

1.3.8.4.2.1 #define TMAN_GET_MISSED_EXPIRATION(_fd)

Macro to get the number of missed expiration for periodic timers.

This macro may be called on the periodic timer expiration task.

1.3.8.4.2.2 #define TMAN_GET_TIMER_HANDLE(_fd)

Macro to get the timer handle.

This macro may be called on the timer expiration task or on the TMI confirmation task.

1.3.8.5 TMAN Data Structures

1.3.8.5.1 Overview

AIOP TMAN Data Structures.

Data Structures

• struct tman_tmi_params

1.3.8.5.2 Data Structure Documentation

1.3.8.5.2.1 struct tman_tmi_params

TMI Params Configuration.

Data Fields

uint32_t reserved0 Reserved for compliance with HW format. User should not access
this field.

uint32_t max_num_of←↩
_timers

Maximum number of timers associated with this instance.

uint64_t tmi_mem_←↩
base_addr

Address to the memory used for the timers associated with this
instance.

1.3.8.6 TMAN Flags

1.3.8.6.1 Overview

AIOP TMAN Flags.

NXP Semiconductors
AIOP Service Layer API Reference Manual

218

Accelerators APIs

Modules

• TMAN instance delete flags
• TMAN timer delete flags
• TMAN timer create flags

Enumerations

• enum e_tman_query_timer {
TMAN_TIMER_NON_ACTIVE,
TMAN_TIMER_NON_ACTIVE_WAIT_CONF,
TMAN_TIMER_RUNNING,
TMAN_TIMER_RUNNING_WAIT_CONF,
TMAN_TIMER_BEING_DELETED,
TMAN_TIMER_BEING_DELETED_WAIT_CONF }

1.3.8.6.2 Enumeration Type Documentation

1.3.8.6.2.1 enum e_tman_query_timer

Defines the TMAN query timer state.

Enumerator

TMAN_TIMER_NON_ACTIVE The timer is non active (in free timer list)
TMAN_TIMER_NON_ACTIVE_WAIT_CONF The timer is in non active and also waiting for call-

back confirmation.
TMAN_TIMER_RUNNING The timer is active.
TMAN_TIMER_RUNNING_WAIT_CONF The periodic timer is active. The timer has elapsed

and is also waiting for callback confirmation
TMAN_TIMER_BEING_DELETED The timer is being deleted.
TMAN_TIMER_BEING_DELETED_WAIT_CONF The periodic timer is being deleted and also

waiting for callback confirmation.

1.3.8.6.3 TMAN instance delete flags

1.3.8.6.3.1 Overview

Instance delete flags.

Macros

• #define TMAN_INS_DELETE_MODE_WO_EXPIRATION
• #define TMAN_INS_DELETE_MODE_FORCE_EXP

NXP Semiconductors
AIOP Service Layer API Reference Manual

219

Accelerators APIs

1.3.8.6.3.2 Macro Definition Documentation

1.3.8.6.3.2.1 #define TMAN_INS_DELETE_MODE_WO_EXPIRATION

If set, TMI active timers will be deleted without creating new expiration tasks.

1.3.8.6.3.2.2 #define TMAN_INS_DELETE_MODE_FORCE_EXP

If set, TMI active timers should be forced into the expiration queue although their expiration time was not
reached yet.

1.3.8.6.4 TMAN timer delete flags

1.3.8.6.4.1 Overview

Timer delete flags.

Macros

• #define TMAN_TIMER_DELETE_MODE_WO_EXPIRATION
• #define TMAN_TIMER_DELETE_MODE_FORCE_EXP
• #define TMAN_TIMER_DELETE_MODE_WAIT_EXP

1.3.8.6.4.2 Macro Definition Documentation

1.3.8.6.4.2.1 #define TMAN_TIMER_DELETE_MODE_WO_EXPIRATION

If set, the timer will be deleted without creating any expiration task.

1.3.8.6.4.2.2 #define TMAN_TIMER_DELETE_MODE_FORCE_EXP

If set, the timer will be forced into the expiration queue although its expiration time was not reached yet.

1.3.8.6.4.2.3 #define TMAN_TIMER_DELETE_MODE_WAIT_EXP

If set, the timer will be deleted after its next expiration.

Timer Id will be returned to free pool after callback completion confirmation.

1.3.8.6.5 TMAN timer create flags

1.3.8.6.5.1 Overview

Timer create flags.

0 - 2 3 4-5 6 - 7 8-10 11 12 13- 14- 15 0 - 15
Type AIOP_←↩

priority
TPRI Granularity

NXP Semiconductors
AIOP Service Layer API Reference Manual

220

Accelerators APIs

Macros

• #define TMAN_CREATE_TIMER_MODE_USEC_GRANULARITY
• #define TMAN_CREATE_TIMER_MODE_100_USEC_GRANULARITY
• #define TMAN_CREATE_TIMER_MODE_10_MSEC_GRANULARITY
• #define TMAN_CREATE_TIMER_MODE_SEC_GRANULARITY
• #define TMAN_CREATE_TIMER_MODE_10_USEC_GRANULARITY
• #define TMAN_CREATE_TIMER_MODE_MSEC_GRANULARITY
• #define TMAN_CREATE_TIMER_MODE_100_MSEC_GRANULARITY
• #define TMAN_CREATE_TIMER_MODE_TPRI
• #define TMAN_CREATE_TIMER_ONE_SHOT
• #define TMAN_CREATE_TIMER_MODE_HIGH_PRIORITY_TASK
• #define TMAN_CREATE_TIMER_MODE_MID_PRIORITY_TASK
• #define TMAN_CREATE_TIMER_MODE_LOW_PRIORITY_TASK

1.3.8.6.5.2 Macro Definition Documentation

1.3.8.6.5.2.1 #define TMAN_CREATE_TIMER_MODE_USEC_GRANULARITY

1 uSec timer ticks

1.3.8.6.5.2.2 #define TMAN_CREATE_TIMER_MODE_100_USEC_GRANULARITY

100 uSec timer ticks

1.3.8.6.5.2.3 #define TMAN_CREATE_TIMER_MODE_10_MSEC_GRANULARITY

10 mSec timer ticks

1.3.8.6.5.2.4 #define TMAN_CREATE_TIMER_MODE_SEC_GRANULARITY

1 Sec timer ticks

1.3.8.6.5.2.5 #define TMAN_CREATE_TIMER_MODE_10_USEC_GRANULARITY

10 uSec timer ticks

1.3.8.6.5.2.6 #define TMAN_CREATE_TIMER_MODE_MSEC_GRANULARITY

1 mSec timer ticks

1.3.8.6.5.2.7 #define TMAN_CREATE_TIMER_MODE_100_MSEC_GRANULARITY

100 mSec timer ticks

1.3.8.6.5.2.8 #define TMAN_CREATE_TIMER_MODE_TPRI

TMAN Priority.

If set, the timer would be treated with higher accuracy and delivered quicker to the expiration queue at the
relevant time tick

NXP Semiconductors
AIOP Service Layer API Reference Manual

221

Accelerators APIs

1.3.8.6.5.2.9 #define TMAN_CREATE_TIMER_ONE_SHOT

If set, the timer is a one-shot timer.

1.3.8.6.5.2.10 #define TMAN_CREATE_TIMER_MODE_HIGH_PRIORITY_TASK

High priority AIOP task.

1.3.8.6.5.2.11 #define TMAN_CREATE_TIMER_MODE_MID_PRIORITY_TASK

Middle priority AIOP task.

1.3.8.6.5.2.12 #define TMAN_CREATE_TIMER_MODE_LOW_PRIORITY_TASK

Low priority AIOP task.

1.3.8.7 TMAN functions

1.3.8.7.1 Overview

TMAN functions.

Functions

• int tman_create_tmi (uint64_t tmi_mem_base_addr, uint32_t max_num_of_timers, uint8_t ∗tmi_id)
• void tman_delete_tmi (tman_cb_t tman_confirm_cb, uint32_t flags, uint8_t tmi_id, tman_arg_8B←↩

_t conf_opaque_data1, tman_arg_2B_t conf_opaque_data2)
• int tman_query_tmi (uint8_t tmi_id, struct tman_tmi_params ∗output_ptr)
• int tman_create_timer (uint8_t tmi_id, uint32_t flags, uint16_t duration, tman_arg_8B_t opaque_←↩

data1, tman_arg_2B_t opaque_data2, tman_cb_t tman_timer_cb, uint32_t ∗timer_handle)
• int tman_delete_timer (uint32_t timer_handle, uint32_t flags)
• int tman_modify_timer (uint32_t timer_handle, enum e_tman_granularity granularity, uint16_t du-

ration)
• int tman_recharge_timer (uint32_t timer_handle)
• void tman_query_timer (uint32_t timer_handle, enum e_tman_query_timer ∗state)
• void tman_timer_completion_confirmation (uint32_t timer_handle)
• void tman_get_timestamp (uint64_t ∗timestamp)
• uint32_t tman_get_tmi_statistic (uint8_t tmi_id, enum tman_tmi_statistic stat)

1.3.8.7.2 Function Documentation

1.3.8.7.2.1 int tman_create_tmi (uint64_t tmi_mem_base_addr, uint32_t max_num_of_timers,
uint8_t ∗ tmi_id)

Creates an TMAN instance. Implicit input parameters: ICID, VA, PL and BDI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

222

Accelerators APIs

Parameters

in tmi_mem_←↩
base_addr

- address to memory used for the timers associated with this instance.
The size of the allocated memory should be 64∗(max_num_of_timers
+1) bytes. The allocated memory should be 64 byte aligned.

in max_num_of←↩
_timers

- maximum number of timers associated to this instance. This number
must be bigger than 4 and smaller than (2∧24)-1. This variable should
be 3 timers larger than the actual maximum number of timers needed in
this TMI.

out tmi_id - TMAN instance ID (TMI ID).

Returns

0 on success, or negative value on error.

Return values

ENOSPC - All TMIs are used. A TMI must be deleted before a new one can be
created.

Warning

This function performs a task switch. Please note that the total number of instances that are allowed
by the TMan is up to 252.

1.3.8.7.2.2 void tman_delete_tmi (tman_cb_t tman_confirm_cb, uint32_t flags, uint8_t tmi_id,
tman_arg_8B_t conf_opaque_data1, tman_arg_2B_t conf_opaque_data2)

Delete a specified TMAN instance. This function issues a TMAN instance delete request and returns
success in case the request was taken by the TMAN. Upon completion of instance deletion, a new task is
created (confirmation task). This latter starts running the function represented by the tman_confirm_cb.
All the timer expiration tasks that were already scheduled by the TMAN before this function was called
should be confirmed using the function tman_timer_completion_confirmation.

Parameters

in tman_confirm←↩
_cb

- A callback function used for the task created upon completion of the
delete tmi.

NXP Semiconductors
AIOP Service Layer API Reference Manual

223

Accelerators APIs

in flags - TMAN instance delete flags
in tmi_id - TMAN Instance ID. (TMI ID)
in conf_opaque←↩

_data1
- data to be associated with the confirmation task.

in conf_opaque←↩
_data2

- more data to be associated with the created task.

Returns

None.

Warning

This function performs a task switch.

1.3.8.7.2.3 int tman_query_tmi (uint8_t tmi_id, struct tman_tmi_params ∗ output_ptr)

Returns all the parameters associated with the specified instance.

Parameters

in tmi_id - TMAN Instance ID. (TMI ID)
in,out output_ptr - pointer to a TMI params structure where the instance's parameters

will be returned. The pointer must be a 16 Bytes aligned pointer to the
workspace memory.

Returns

0 on success, or negative value on error.

Return values

ENAVAIL - The TMI that was provided is a non active one.
EACCES - The provided TMI is currently being deletes or created.

Warning

This function performs a task switch.

1.3.8.7.2.4 int tman_create_timer (uint8_t tmi_id, uint32_t flags, uint16_t duration,
tman_arg_8B_t opaque_data1, tman_arg_2B_t opaque_data2, tman_cb_t
tman_timer_cb, uint32_t ∗ timer_handle)

Create a TMAN timer.

NXP Semiconductors
AIOP Service Layer API Reference Manual

224

Accelerators APIs

Parameters

in tmi_id - TMAN Instance ID. (TMI ID)
in flags - TMAN timer create flags
in duration - Timer duration time (the number of timer ticks). The duration must

have a value larger than 10 ticks and smaller than 2∧16-10 ticks.
in opaque_data1 - Data to be associated with to the created task.
in opaque_data2 - Data to be associated with to the created task.
in tman_timer_cb - A callback function used for the task created upon timer expiration.
out timer_handle - the handle of the timer for future reference. The handle includes the

tmi ID and timer ID values.

Returns

0 on success, or negative value on error.

Return values

ENOSPC - All timers are used. A timer must be deleted or elapse and confirmed
before a new one can be created. This error can occur when the SW has
missed a confirmation for a timer.

EBUSY - The timer was not created due to high TMAN and AIOP load.

Warning

This function performs a task switch.

1.3.8.7.2.5 int tman_delete_timer (uint32_t timer_handle, uint32_t flags)

Delete a TMAN timer. This function issues a TMAN timer delete request.

Parameters

in timer_handle - The handle of the timer to be deleted.
in flags - TMAN timer delete flags .

Returns

0 on success, or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

225

Accelerators APIs

Return values

ETIMEDOUT - The timer cannot be deleted. In case of periodic timer the tman_delete←↩
_timer should be called at the expiration routine to avoid this error. If this
error do happen for a periodic timer than it is consider as a fatal error (the
timer period is too short to handle the timer expiration callback function).

EACCES - The timer cannot be deleted. For one shot timer this error should be
treated as an ETIMEDOUT error. For a periodic timer this error should
be treated as a fatal error (a delete command was already issued for this
periodic timer).

Warning

This function performs a task switch. In case of periodic timer the tman_delete_timer should be
called at the expiration routine.

1.3.8.7.2.6 int tman_modify_timer (uint32_t timer_handle, enum e_tman_granularity granularity,
uint16_t duration)

Modify TMAN timer duration time.

Parameters

in timer_handle - The handle of the timer to be modified.
in granularity - new timer granularity e_tman_granularity.
in duration - new timer duration time (the number of timer ticks).

Returns

Success or Failure(tmi/timer is not existing or expired one-shot timer).

Return values

ETIMEDOUT - The timer cannot be modified as it deals with TO.
EACCES - The timer cannot be modified. For one shot timer this error should be

treated as an ETIMEDOUT error. For a periodic timer this error should
be treated as a fatal error (a delete command was already issued for this
periodic timer).

Warning

The value of duration must be: (10 < duration < 2∧16 - 10). In periodic timer, when the command
failed it may or may not change the duration of the timer.
This function performs a task switch.

NXP Semiconductors
AIOP Service Layer API Reference Manual

226

Accelerators APIs

1.3.8.7.2.7 int tman_recharge_timer (uint32_t timer_handle)

Re-start TMAN one-shot timer to the initial value.
Parameters

in timer_handle - The handle of the timer to be re-started.

Returns

0 on success, or negative value on error.

Return values

ETIMEDOUT - The timer cannot be modified as it deals with TO.
EACCES - The timer cannot be modified. For one shot timer this error should be

treated as an ETIMEDOUT error. For a periodic timer this error should
be treated as a fatal error (a delete command was already issued for this
periodic timer).

Warning

This function performs a task switch.

1.3.8.7.2.8 void tman_query_timer (uint32_t timer_handle, enum e_tman_query_timer ∗ state)

This function returns the state of the specified timer.

Parameters

in timer_handle - The handle of the timer.
out state - the state of the specified timer e_tman_query_timer.

Returns

None.

Warning

This function performs a task switch.

1.3.8.7.2.9 void tman_timer_completion_confirmation (uint32_t timer_handle)

This function acknowledges that the task which was created upon expiration was consumed. This function
should be invoked by any timer task. When a TMI is deleted this function should also be invoked in the
tmi delete callback function.

NXP Semiconductors
AIOP Service Layer API Reference Manual

227

Accelerators APIs

Parameters

in timer_handle - The handle of the timer. The handle can be obtained using the TM←↩
AN_GET_TIMER_HANDLE macro (this is true also for confirming a
TMI deletion).

Returns

None.

Warning

None.

1.3.8.7.2.10 void tman_get_timestamp (uint64_t ∗ timestamp)

This function returns the current TMAN timestamp value.

Parameters

out timestamp - The TMAN timestamp value expressed in micro seconds.

Returns

None.

Warning

The TMAN Timestamp cannot be used for time of day as it is not synchronized to the 1588 clock.
The TMAN Timestamp value is counted from the time TMAN was initialized (set the INIT bit in
the TMINIT register).

1.3.8.7.2.11 uint32_t tman_get_tmi_statistic (uint8_t tmi_id, enum tman_tmi_statistic stat)

This function returns the requested statistic for the specified Timer Instance (TMI).

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

228

Accelerators APIs

in tmi_id - Timer Instance ID (TMI ID)
in req_stat - requested statistic e_tman_tmi_statistic

Returns

The counter value of the requested statistic on the specified TMI.

1.3.9 STE (Statistics)

1.3.9.1 Overview

AIOP Statistics functions macros and definitions.

Modules

• Statistics flags
• Statistics Compound commands flags
• Statistics error registers addresses
• Statistics status register bits definitions
• Statistics control register bits definitions
• Statistics capture attributes definitions
• Statistics error macros
• Statistics functions

1.3.9.2 Statistics flags

1.3.9.2.1 Overview

Statistics flags.

Macros

• #define STE_MODE_SATURATE
• #define STE_MODE_32_BIT_CNTR_SIZE
• #define STE_MODE_64_BIT_CNTR_SIZE

1.3.9.2.2 Macro Definition Documentation

1.3.9.2.2.1 #define STE_MODE_SATURATE

Saturation - If overflow occurs, the counter doesn't perform a wrap and saturates to its maximum/minimum
value.

NXP Semiconductors
AIOP Service Layer API Reference Manual

229

Accelerators APIs

1.3.9.2.2.2 #define STE_MODE_32_BIT_CNTR_SIZE

Size - If set, the counter is 4 bytes long.

1.3.9.2.2.3 #define STE_MODE_64_BIT_CNTR_SIZE

Size - If set, the counter is 8 bytes long.

1.3.9.3 Statistics Compound commands flags

1.3.9.3.1 Overview

Statistics Compound commands flags.

Macros

• #define STE_MODE_COMPOUND_32_BIT_CNTR_SIZE
• #define STE_MODE_COMPOUND_64_BIT_CNTR_SIZE
• #define STE_MODE_COMPOUND_32_BIT_ACC_SIZE
• #define STE_MODE_COMPOUND_64_BIT_ACC_SIZE
• #define STE_MODE_COMPOUND_CNTR_SATURATE
• #define STE_MODE_COMPOUND_ACC_SATURATE

1.3.9.3.2 Macro Definition Documentation

1.3.9.3.2.1 #define STE_MODE_COMPOUND_32_BIT_CNTR_SIZE

Size - If set, the counter is 4 bytes long.

1.3.9.3.2.2 #define STE_MODE_COMPOUND_64_BIT_CNTR_SIZE

Size - If set, the counter is 8 bytes long.

1.3.9.3.2.3 #define STE_MODE_COMPOUND_32_BIT_ACC_SIZE

Size - If set, the accumulator is 4 bytes long.

1.3.9.3.2.4 #define STE_MODE_COMPOUND_64_BIT_ACC_SIZE

Size - If set, the accumulator is 8 bytes long.

1.3.9.3.2.5 #define STE_MODE_COMPOUND_CNTR_SATURATE

Saturation - If overflow occurs, the counter doesn't perform a wrap and saturates to its maximum/minimum
value.

NXP Semiconductors
AIOP Service Layer API Reference Manual

230

Accelerators APIs

1.3.9.3.2.6 #define STE_MODE_COMPOUND_ACC_SATURATE

Saturation - If overflow occurs, the accumulator doesn't perform a wrap and saturates to its maxi-
mum/minimum value.

1.3.9.4 Statistics error registers addresses

1.3.9.4.1 Overview

Statistics error registers addresses.

Macros

• #define STE_BASE_ADDRESS
• #define STE_STECR1_ADDRESS
• #define STE_STESR_ADDRESS
• #define STE_ERR_CAPT1_ADDRESS
• #define STE_ERR_CAPT2_ADDRESS
• #define STE_ERR_CAPT3_ADDRESS
• #define STE_ERR_CAPT4_ADDRESS

1.3.9.4.2 Macro Definition Documentation

1.3.9.4.2.1 #define STE_BASE_ADDRESS

STE Error Registers base address.

1.3.9.4.2.2 #define STE_STECR1_ADDRESS

STECR1 - Statistics Engine Control Register address.

1.3.9.4.2.3 #define STE_STESR_ADDRESS

STESR - Statistics Engine Status Register address.

1.3.9.4.2.4 #define STE_ERR_CAPT1_ADDRESS

STE_ERR_CAPT1R - Statistics Engine first capture register address.

1.3.9.4.2.5 #define STE_ERR_CAPT2_ADDRESS

STE_ERR_CAPT2R - Statistics Engine second capture register address.

1.3.9.4.2.6 #define STE_ERR_CAPT3_ADDRESS

STE_ERR_CAPT3R - Statistics Engine third capture register address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

231

Accelerators APIs

1.3.9.4.2.7 #define STE_ERR_CAPT4_ADDRESS

STE_ERR_CAPT4R - Statistics Engine fourth capture register address.

1.3.9.5 Statistics status register bits definitions

1.3.9.5.1 Overview

Statistics status register bits definitions.

Macros

• #define STE_ERR_STATUS_WRITE_ACCESS
• #define STE_ERR_STATUS_READ_ACCESS
• #define STE_ERR_STATUS_NON_16_BYTE_ALIGN
• #define STE_ERR_STATUS_UNRECOGNIZED_CMD
• #define STE_ERR_STATUS_BAD_AXI

1.3.9.5.2 Macro Definition Documentation

1.3.9.5.2.1 #define STE_ERR_STATUS_WRITE_ACCESS

AXI interconnect returned a write error response to DDR memory access.

1.3.9.5.2.2 #define STE_ERR_STATUS_READ_ACCESS

AXI interconnect returned a read error response to DDR memory access.

1.3.9.5.2.3 #define STE_ERR_STATUS_NON_16_BYTE_ALIGN

The command Descriptor contains a counter size that crosses a 16B boundary.

1.3.9.5.2.4 #define STE_ERR_STATUS_UNRECOGNIZED_CMD

STE received an unrecognized command code.

1.3.9.5.2.5 #define STE_ERR_STATUS_BAD_AXI

STE received a bad AXI Address, length or size attribute.

1.3.9.6 Statistics control register bits definitions

1.3.9.6.1 Overview

Statistics control register bits definitions.

NXP Semiconductors
AIOP Service Layer API Reference Manual

232

Accelerators APIs

Macros

• #define STE_CLEAR_CAP_ERROR

1.3.9.6.2 Macro Definition Documentation

1.3.9.6.2.1 #define STE_CLEAR_CAP_ERROR

Clear Errors captured in STE_ERR_CAPT registers.

1.3.9.7 Statistics capture attributes definitions

1.3.9.7.1 Overview

Statistics capture attributes definitions.

Macros

• #define STE_ERR_CAP_32_BIT_CNTR_SIZE
• #define STE_ERR_CAP_64_BIT_CNTR_SIZE
• #define STE_ERR_CAP_32_BIT_ACC_SIZE
• #define STE_ERR_CAP_64_BIT_ACC_SIZE
• #define STE_ERR_CAP_CNTR_SATURATE
• #define STE_ERR_CAP_ACC_SATURATE
• #define STE_ERR_TASK_ID_MASK
• #define STE_ERR_CAP_DCMD_MASK
• #define STE_ERR_CAP_EC_MASK

Enumerations

• enum e_ste_err_dcmd {
STE_ERR_CAP_CMDTYPE_SET,
STE_ERR_CAP_CMDTYPE_SYNC,
STE_ERR_CAP_CMDTYPE_ADD,
STE_ERR_CAP_CMDTYPE_SUB,
STE_ERR_CAP_CMDTYPE_INC_ADD,
STE_ERR_CAP_CMDTYPE_INC_SUB,
STE_ERR_CAP_CMDTYPE_DEC_ADD,
STE_ERR_CAP_CMDTYPE_DEC_SUB }

• enum e_ste_err_ec {
STE_ERR_CAP_AXI_CMD_DECODE,
STE_ERR_CAP_CMD_DESC,
STE_ERR_CAP_AXI_BAD_ALIGNMENT,
STE_ERR_CAP_AXI_READ,
STE_ERR_CAP_AXI_WRITE }

NXP Semiconductors
AIOP Service Layer API Reference Manual

233

Accelerators APIs

1.3.9.7.2 Macro Definition Documentation

1.3.9.7.2.1 #define STE_ERR_CAP_32_BIT_CNTR_SIZE

The counter on which the error occurred was 4 bytes long.

1.3.9.7.2.2 #define STE_ERR_CAP_64_BIT_CNTR_SIZE

The counter on which the error occurred was 8 bytes long.

1.3.9.7.2.3 #define STE_ERR_CAP_32_BIT_ACC_SIZE

The accumulator on which the error occurred was 4 bytes long.

1.3.9.7.2.4 #define STE_ERR_CAP_64_BIT_ACC_SIZE

The accumulator on which the error occurred was 8 bytes long.

1.3.9.7.2.5 #define STE_ERR_CAP_CNTR_SATURATE

The counter saturate mode was enabled when the error occurred.

1.3.9.7.2.6 #define STE_ERR_CAP_ACC_SATURATE

The accumulator saturate mode was enabled when the error occurred.

1.3.9.7.2.7 #define STE_ERR_TASK_ID_MASK

A Mask that should be applied on the STE_GET_ERR_CAP_ATTRIBUTES result in order get the task
id when the error occurred.

The task id field is valid only on a decode type error.

1.3.9.7.2.8 #define STE_ERR_CAP_DCMD_MASK

A Mask that should be applied on the STE_GET_ERR_CAP_ATTRIBUTES result in order to match to
the e_ste_err_dcmd value.

1.3.9.7.2.9 #define STE_ERR_CAP_EC_MASK

A Mask that should be applied on the STE_GET_ERR_CAP_ATTRIBUTES result in order to match to
the e_ste_err_dcmd value.

1.3.9.7.3 Enumeration Type Documentation

1.3.9.7.3.1 enum e_ste_err_dcmd

defines the statistics Descriptor Command Code of the captured error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

234

Accelerators APIs

1.3.9.7.3.2 enum e_ste_err_ec

defines the type of error (Error Code) of the captured error.

Enumerator

STE_ERR_CAP_AXI_CMD_DECODE AXI Command Decode Error, Bad Address/AWSIZ/A←↩
WLEN. This is a decode type error.

STE_ERR_CAP_CMD_DESC Command Descriptor Error, Bad Command Code. This is a decode
type error.

STE_ERR_CAP_AXI_BAD_ALIGNMENT AXI Outbound Address Error, Bad Alignment. This is
a processing type error.

STE_ERR_CAP_AXI_READ AXI Outbound Read Transfer Error. This is a processing type error.
STE_ERR_CAP_AXI_WRITE AXI Outbound Write Transfer Error. This is a processing type error.

1.3.9.8 Statistics error macros

1.3.9.8.1 Overview

Statistics error macros.

Macros

• #define STE_GET_STATUS_REGISTER()
• #define STE_GET_ERR_CAP_ATTRIBUTES()
• #define STE_GET_ERR_ACC_VALUE()
• #define STE_GET_ERR_MSB_COUNTER_ADDRESS()
• #define STE_GET_ERR_LSB_COUNTER_ADDRESS()
• #define STE_CLEAR_CAPTURED_ERROR()

1.3.9.8.2 Macro Definition Documentation

1.3.9.8.2.1 #define STE_GET_STATUS_REGISTER()

Macro to get the STE status register value.

The status register bits definitions can be found at Statistics status register bits definitions

1.3.9.8.2.2 #define STE_GET_ERR_CAP_ATTRIBUTES()

Macro to get the attributes of the STE command that caused the error.

The attribute definitions can be found at Statistics capture attributes definitions

1.3.9.8.2.3 #define STE_GET_ERR_ACC_VALUE()

Macro to get the accumulate value of the STE command that caused the error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

235

Accelerators APIs

1.3.9.8.2.4 #define STE_GET_ERR_MSB_COUNTER_ADDRESS()

Macro to get the counter address high portion of the STE command that caused the error.

1.3.9.8.2.5 #define STE_GET_ERR_LSB_COUNTER_ADDRESS()

Macro to get the counter address low portion of the STE command that caused the error.

1.3.9.8.2.6 #define STE_CLEAR_CAPTURED_ERROR()

Macro to clear the errors captured in STE_ERR_CAPTnR registers.

1.3.9.9 Statistics functions

1.3.9.9.1 Overview

Statistics functions.

Functions

• void ste_set_32bit_counter (uint64_t counter_addr, uint32_t value)
• void ste_set_64bit_counter (uint64_t counter_addr, uint64_t value)
• void ste_inc_counter (uint64_t counter_addr, uint32_t inc_value, uint32_t flags)
• void ste_dec_counter (uint64_t counter_addr, uint32_t dec_value, uint32_t flags)
• void ste_inc_and_acc_counters (uint64_t counter_addr, uint32_t acc_value, uint32_t flags)
• void ste_inc_and_sub_counters (uint64_t counter_addr, uint32_t acc_value, uint32_t flags)
• void ste_dec_and_acc_counters (uint64_t counter_addr, uint32_t acc_value, uint32_t flags)
• void ste_dec_and_sub_counters (uint64_t counter_addr, uint32_t acc_value, uint32_t flags)
• void ste_barrier ()

1.3.9.9.2 Function Documentation

1.3.9.9.2.1 void ste_set_32bit_counter (uint64_t counter_addr, uint32_t value)

This routine sets a given value to a 4 bytes statistics counter residing in the external memory. When
initializing an STE counter value this function must be used. CDMA HW/FDMA HW/AIOP core stores
should not be used to initialize counter values that are handled by the STE.

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in value - The value that should be stored to the counter.

NXP Semiconductors
AIOP Service Layer API Reference Manual

236

Accelerators APIs

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.

1.3.9.9.2.2 void ste_set_64bit_counter (uint64_t counter_addr, uint64_t value)

This routine sets a given value to a 8 bytes statistics counter residing in the external memory. When
initializing an STE counter value this function must be used. CDMA HW/FDMA HW/AIOP core stores
should not be used to initialize counter values that are handled by the STE.

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in value - The value that should be stored to the counter.

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.

1.3.9.9.2.3 void ste_inc_counter (uint64_t counter_addr, uint32_t inc_value, uint32_t flags)

This routine increments atomically a counter residing in the external memory by a given value.

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in inc_value - The value to be added to the counter.
in flags - Statistics flags .

NXP Semiconductors
AIOP Service Layer API Reference Manual

237

Accelerators APIs

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.

1.3.9.9.2.4 void ste_dec_counter (uint64_t counter_addr, uint32_t dec_value, uint32_t flags)

This routine decrements atomically a counter residing in the external memory by a given value.

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in dec_value - The value to be subtracted from the counter.
in flags - Statistics flags .

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.

1.3.9.9.2.5 void ste_inc_and_acc_counters (uint64_t counter_addr, uint32_t acc_value, uint32_t
flags)

This routine updates atomically a counter and an accumulator.
This function performs the next actions:
counter++;
accumulator+= acc_value;
The accumulator memory address should be:
counter_addr + sizeof(counter);

NXP Semiconductors
AIOP Service Layer API Reference Manual

238

Accelerators APIs

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in acc_value - The value to be added to the accumulator.
in flags - Statistics Compound flags .

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.
If the counter or the accumulator size is 8 byte the counter memory address should be 16 byte aligned.
If both counter and accumulator are 4 byte size than the counter memory should be 8 byte aligned.

1.3.9.9.2.6 void ste_inc_and_sub_counters (uint64_t counter_addr, uint32_t acc_value, uint32_t
flags)

This routine updates atomically a counter and an accumulator.
This function performs the next actions:
counter++;
accumulator-= acc_value;
The accumulator memory address should be:
counter_addr + sizeof(counter);

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in acc_value - The value to be subtracted from the accumulator.
in flags - Statistics Compound flags .

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.
If the counter or the accumulator size is 8 byte the counter memory address should be 16 byte aligned.
If both counter and accumulator are 4 byte size than the counter memory should be 8 byte aligned.

NXP Semiconductors
AIOP Service Layer API Reference Manual

239

Accelerators APIs

1.3.9.9.2.7 void ste_dec_and_acc_counters (uint64_t counter_addr, uint32_t acc_value,
uint32_t flags)

This routine updates atomically a counter and an accumulator.
This function performs the next actions:
counter–;
accumulator+= acc_value;
The accumulator memory address should be:
counter_addr + sizeof(counter);

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in acc_value - The value to be added to the accumulator.
in flags - Statistics Compound flags .

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.
If the counter or the accumulator size is 8 byte the counter memory address should be 16 byte aligned.
If both counter and accumulator are 4 byte size than the counter memory should be 8 byte aligned.

1.3.9.9.2.8 void ste_dec_and_sub_counters (uint64_t counter_addr, uint32_t acc_value,
uint32_t flags)

This routine updates atomically a counter and an accumulator.
This function performs the next actions:
counter–;
accumulator-= acc_value;
The accumulator memory address should be:
counter_addr + sizeof(counter);

NXP Semiconductors
AIOP Service Layer API Reference Manual

240

DPLIB

Parameters

in counter_addr - The counter external address (DDR, PEB and system L3 cache config-
ured as SRAM).

in acc_value - The value to be subtracted from the accumulator.
in flags - Statistics Compound flags .

Returns

None.

Warning

This is a fire and forget function. This means that the counter update that was issued by this function
may be executed after the this function returns.
If the counter or the accumulator size is 8 byte the counter memory address should be 16 byte aligned.
If both counter and accumulator are 4 byte size than the counter memory should be 8 byte aligned.

1.3.9.9.2.9 void ste_barrier ()

This service routine will flush all the counter updates that are pending in the statistics engine request
queue.
This function will act as a barrier command and return only after all the pending update requests have
completed.

Returns

None.

1.4 DPLIB
1.4.1 Overview

Management complex firmware provides datapath objects for initialization, configuration and manage-
ment of DPAA2 hardware resources. DPLIB functions enable AIOP developers to access these MC
firmware capabilities.

Modules

• DPCI DRV
• DPNI DRV
• EP
• Data Path Key Generator API

NXP Semiconductors
AIOP Service Layer API Reference Manual

241

DPLIB

1.4.2 DPCI DRV

1.4.2.1 Overview

Contains the API for DPCI devices which are used by command interface.

Modules

• DPCI Entry Point flags

Functions

• int dpci_drv_enable (uint32_t dpci_id)
• int dpci_drv_disable (uint32_t dpci_id)
• int dpci_drv_linkup (uint32_t dpci_id, int ∗up)
• int dpci_drv_get_initial_presentation (uint8_t flags, struct ep_init_presentation ∗const init_←↩

presentation)
• int dpci_drv_set_initial_presentation (uint8_t flags, const struct ep_init_presentation ∗const init_←↩

presentation)
• int dpci_drv_set_concurrent (uint8_t flags)
• int dpci_drv_set_exclusive (uint8_t flags)
• int dpci_drv_set_order_mode_none (uint8_t flags)

1.4.2.2 Function Documentation

1.4.2.2.1 int dpci_drv_enable (uint32_t dpci_id)

Enable the DPCI.

If the peer DPCI is already enabled then it will result in link up.

Parameters

in dpci_id - DPCI id of the AIOP side.

Returns

0 - on success, POSIX error code otherwise

1.4.2.2.2 int dpci_drv_disable (uint32_t dpci_id)

Disable the DPCI.

It will result in link down.

NXP Semiconductors
AIOP Service Layer API Reference Manual

242

DPLIB

Parameters

in dpci_id - DPCI id of the AIOP side.

Returns

0 - on success, POSIX error code otherwise

1.4.2.2.3 int dpci_drv_linkup (uint32_t dpci_id, int ∗ up)

Get linkup status.

Parameters

in dpci_id - DPCI id of the AIOP side.
out up - 1 if the link is up or 0 otherwise.

Returns

0 - on success, POSIX error code otherwise

1.4.2.2.4 int dpci_drv_get_initial_presentation (uint8_t flags, struct ep_init_presentation ∗const
init_presentation)

Function to get initial presentation settings from EPID table.

Parameters

in flags DPCI Entry Point flags
out init_←↩

presentation
Get initial presentation parameters Initial Presentation

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.2.2.5 int dpci_drv_set_initial_presentation (uint8_t flags, const struct ep_init_presentation
∗const init_presentation)

Function to set initial presentation settings in EPID table.

NXP Semiconductors
AIOP Service Layer API Reference Manual

243

DPLIB

Parameters

in flags DPCI Entry Point flags
in init_←↩

presentation
Set initial presentation parameters for given options and parameters Ini-
tial Presentation

Warning

1) Data Segment, PTA Segment, ASA Segment must not reside outside the bounds of the presenta-
tion area. i.e. They must not fall within the HWC, TLS or Stack areas. 2) There should not be any
overlap among the Segment, PTA & ASA. 3) Minimum presented segment size must be configured.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.2.2.6 int dpci_drv_set_concurrent (uint8_t flags)

Function to set the initial ordering mode to concurrent for for either command interface server or client

Parameters

in flags DPCI Entry Point flags

Warning

This method should be called in boot mode only.

Returns

'0' on Success;

1.4.2.2.7 int dpci_drv_set_exclusive (uint8_t flags)

Function to set the initial ordering mode to exclusive for for either command interface server or client

NXP Semiconductors
AIOP Service Layer API Reference Manual

244

DPLIB

Parameters

in flags DPCI Entry Point flags

Warning

This method should be called in boot mode only.

Returns

'0' on Success;

1.4.2.2.8 int dpci_drv_set_order_mode_none (uint8_t flags)

Function to set the initial ordering mode to none for for either command interface server or client

Parameters

in flags DPCI Entry Point flags

Warning

This method should be called in boot mode only.

Returns

'0' on Success;

1.4.2.3 DPCI Entry Point flags

1.4.2.3.1 Overview

Flags to get or set intial presentation of the client or server.

Macros

• #define DPCI_DRV_EP_SERVER
• #define DPCI_DRV_EP_CLIENT

1.4.2.3.2 Macro Definition Documentation

1.4.2.3.2.1 #define DPCI_DRV_EP_SERVER

Read or update server entry point.

NXP Semiconductors
AIOP Service Layer API Reference Manual

245

DPLIB

1.4.2.3.2.2 #define DPCI_DRV_EP_CLIENT

Read or update client asynchronous responses entry point.

1.4.3 DPNI DRV

1.4.3.1 Overview

Contains initialization APIs and runtime control APIs for DPNI.

Modules

• Order Scope options
• Link Options
• Buffer Layout modification options
• Number of Flow Steering entries per DPNIs
• Attributes DPNI Attributes
• options

Variables

• uint32_t dpni_drv_link_state::rate
• uint64_t dpni_drv_link_state::options
• int dpni_drv_link_state::up
• uint32_t dpni_drv_link_cfg::rate
• uint64_t dpni_drv_link_cfg::options
• uint32_t dpni_drv_buf_layout::options
• int dpni_drv_buf_layout::pass_timestamp
• int dpni_drv_buf_layout::pass_parser_result
• int dpni_drv_buf_layout::pass_frame_status
• uint16_t dpni_drv_buf_layout::private_data_size
• uint16_t dpni_drv_buf_layout::data_align
• uint16_t dpni_drv_buf_layout::data_head_room
• uint16_t dpni_drv_buf_layout::data_tail_room
• uint16_t dpni_drv_tx_checksum::l3_checksum_gen
• uint16_t dpni_drv_tx_checksum::l4_checksum_gen
• uint32_t dpni_drv_rx_tc_policing_cfg::options
• enum dpni_drv_policer_mode dpni_drv_rx_tc_policing_cfg::mode
• enum dpni_drv_policer_unit dpni_drv_rx_tc_policing_cfg::unit
• enum dpni_drv_policer_color dpni_drv_rx_tc_policing_cfg::default_color
• uint32_t dpni_drv_rx_tc_policing_cfg::cir
• uint32_t dpni_drv_rx_tc_policing_cfg::cbs
• uint32_t dpni_drv_rx_tc_policing_cfg::eir
• uint32_t dpni_drv_rx_tc_policing_cfg::ebs
• enum dpni_drv_tx_schedule_mode dpni_drv_tx_schedule::mode
• uint16_t dpni_drv_tx_schedule::delta_bandwidth
• struct dpni_drv_tx_schedule dpni_drv_tx_selection::tc_sched [DPNI_DRV_MAX_TC]
• uint32_t dpni_drv_tx_selection::prio_group_A
• uint32_t dpni_drv_tx_selection::prio_group_B
• uint8_t dpni_drv_tx_selection::separate_groups

NXP Semiconductors
AIOP Service Layer API Reference Manual

246

DPLIB

• uint32_t dpni_drv_tx_shaping::rate_limit
• uint16_t dpni_drv_tx_shaping::max_burst_size
• uint64_t dpni_drv_qos_tbl::key_cfg_iova
• uint8_t dpni_drv_qos_tbl::discard_on_miss
• uint8_t dpni_drv_qos_tbl::default_tc
• uint64_t dpni_drv_qos_rule::key_iova
• uint64_t dpni_drv_qos_rule::mask_iova
• uint8_t dpni_drv_qos_rule::key_size
• uint32_t dpni_drv_error_cfg::errors
• enum dpni_drv_error_action dpni_drv_error_cfg::error_action
• uint64_t dpni_drv_wred::max_threshold
• uint64_t dpni_drv_wred::min_threshold
• uint8_t dpni_drv_wred::drop_probability
• enum dpni_drv_early_drop_mode dpni_drv_early_drop_cfg::mode
• enum dpni_drv_congestion_unit dpni_drv_early_drop_cfg::units
• struct dpni_drv_wred dpni_drv_early_drop_cfg::green
• struct dpni_drv_wred dpni_drv_early_drop_cfg::yellow
• struct dpni_drv_wred dpni_drv_early_drop_cfg::red
• uint32_t dpni_drv_early_drop_cfg::tail_drop_threshold
• uint32_t dpni_drv_free_bufs::peb_bp_free_bufs
• uint32_t dpni_drv_free_bufs::backup_bp_free_bufs
• uint8_t dpni_drv_sparser_param::custom_header_first
• enum parser_starting_hxs_code dpni_drv_sparser_param::link_to_hard_hxs
• uint16_t dpni_drv_sparser_param::start_pc
• uint8_t ∗ dpni_drv_sparser_param::byte_code
• uint16_t dpni_drv_sparser_param::size
• uint8_t ∗ dpni_drv_sparser_param::param_array
• uint8_t dpni_drv_sparser_param::param_offset
• uint8_t dpni_drv_sparser_param::param_size
• uint8_t dpni_drv_taildrop::enable
• enum dpni_drv_congestion_unit dpni_drv_taildrop::units
• uint32_t dpni_drv_taildrop::threshold
• int16_t dpni_drv_taildrop::oal
• uint8_t dpni_drv_early_drop::enable
• enum dpni_drv_congestion_unit dpni_drv_early_drop::units
• struct dpni_drv_wred dpni_drv_early_drop::green
• struct dpni_drv_wred dpni_drv_early_drop::yellow
• struct dpni_drv_wred dpni_drv_early_drop::red
• enum dpni_drv_congestion_unit dpni_drv_congestion_notification_cfg::units
• uint32_t dpni_drv_congestion_notification_cfg::threshold_entry
• uint32_t dpni_drv_congestion_notification_cfg::threshold_exit
• uint16_t dpni_drv_congestion_notification_cfg::notification_mode

1.4.3.2 Variable Documentation

1.4.3.2.1 uint32_t dpni_drv_link_state::rate

Rate.

1.4.3.2.2 uint64_t dpni_drv_link_state::options

Mask of available options; use Link Options values.

NXP Semiconductors
AIOP Service Layer API Reference Manual

247

DPLIB

1.4.3.2.3 int dpni_drv_link_state::up

Link state; '0' for down, '1' for up.

1.4.3.2.4 uint32_t dpni_drv_link_cfg::rate

Rate.

1.4.3.2.5 uint64_t dpni_drv_link_cfg::options

Mask of available options; use Link Options values.

1.4.3.2.6 uint32_t dpni_drv_buf_layout::options

Flags representing the suggested modifications to the buffer layout; Use any combination of Buffer Layout
modification options.

1.4.3.2.7 int dpni_drv_buf_layout::pass_timestamp

Pass timestamp value.

1.4.3.2.8 int dpni_drv_buf_layout::pass_parser_result

Pass parser results.

1.4.3.2.9 int dpni_drv_buf_layout::pass_frame_status

Pass frame status.

1.4.3.2.10 uint16_t dpni_drv_buf_layout::private_data_size

Size kept for private data (in bytes)

1.4.3.2.11 uint16_t dpni_drv_buf_layout::data_align

Data alignment.

1.4.3.2.12 uint16_t dpni_drv_buf_layout::data_head_room

Data head room.

NXP Semiconductors
AIOP Service Layer API Reference Manual

248

DPLIB

1.4.3.2.13 uint16_t dpni_drv_buf_layout::data_tail_room

Data tail room.

NXP Semiconductors
AIOP Service Layer API Reference Manual

249

DPLIB

NXP Semiconductors
AIOP Service Layer API Reference Manual

250

DPLIB

1.4.3.2.14 uint16_t dpni_drv_tx_checksum::l3_checksum_gen

1.4.3.2.15 uint16_t dpni_drv_tx_checksum::l4_checksum_gen

1.4.3.2.16 uint32_t dpni_drv_rx_tc_policing_cfg::options

1.4.3.2.17 enum dpni_drv_policer_mode dpni_drv_rx_tc_policing_cfg::mode

1.4.3.2.18 enum dpni_drv_policer_unit dpni_drv_rx_tc_policing_cfg::unit

1.4.3.2.19 enum dpni_drv_policer_color dpni_drv_rx_tc_policing_cfg::default_color

1.4.3.2.20 uint32_t dpni_drv_rx_tc_policing_cfg::cir

1.4.3.2.21 uint32_t dpni_drv_rx_tc_policing_cfg::cbs

1.4.3.2.22 uint32_t dpni_drv_rx_tc_policing_cfg::eir

1.4.3.2.23 uint32_t dpni_drv_rx_tc_policing_cfg::ebs

1.4.3.2.24 enum dpni_drv_tx_schedule_mode dpni_drv_tx_schedule::mode

1.4.3.2.25 uint16_t dpni_drv_tx_schedule::delta_bandwidth

1.4.3.2.26 struct dpni_drv_tx_schedule dpni_drv_tx_selection::tc_sched[DPNI_DRV_MAX_TC]

1.4.3.2.27 uint32_t dpni_drv_tx_selection::prio_group_A

1.4.3.2.28 uint32_t dpni_drv_tx_selection::prio_group_B

1.4.3.2.29 uint8_t dpni_drv_tx_selection::separate_groups

1.4.3.2.30 uint32_t dpni_drv_tx_shaping::rate_limit

1.4.3.2.31 uint16_t dpni_drv_tx_shaping::max_burst_size

1.4.3.2.32 uint64_t dpni_drv_qos_tbl::key_cfg_iova

1.4.3.2.33 uint8_t dpni_drv_qos_tbl::discard_on_miss

1.4.3.2.34 uint8_t dpni_drv_qos_tbl::default_tc

1.4.3.2.35 uint64_t dpni_drv_qos_rule::key_iova

1.4.3.2.36 uint64_t dpni_drv_qos_rule::mask_iova

1.4.3.2.37 uint8_t dpni_drv_qos_rule::key_size

1.4.3.2.38 uint32_t dpni_drv_error_cfg::errors

1.4.3.2.39 enum dpni_drv_error_action dpni_drv_error_cfg::error_action

1.4.3.2.40 uint64_t dpni_drv_wred::max_threshold

1.4.3.2.41 uint64_t dpni_drv_wred::min_threshold

1.4.3.2.42 uint8_t dpni_drv_wred::drop_probability

1.4.3.2.43 enum dpni_drv_early_drop_mode dpni_drv_early_drop_cfg::mode

1.4.3.2.44 enum dpni_drv_congestion_unit dpni_drv_early_drop_cfg::units

1.4.3.2.45 struct dpni_drv_wred dpni_drv_early_drop_cfg::green

1.4.3.2.46 struct dpni_drv_wred dpni_drv_early_drop_cfg::yellow

1.4.3.2.47 struct dpni_drv_wred dpni_drv_early_drop_cfg::red

1.4.3.2.48 uint32_t dpni_drv_early_drop_cfg::tail_drop_threshold

1.4.3.2.49 uint32_t dpni_drv_free_bufs::peb_bp_free_bufs

1.4.3.2.50 uint32_t dpni_drv_free_bufs::backup_bp_free_bufs

1.4.3.2.51 uint8_t dpni_drv_sparser_param::custom_header_first

1.4.3.2.52 enum parser_starting_hxs_code dpni_drv_sparser_param::link_to_hard_hxs

1.4.3.2.53 uint16_t dpni_drv_sparser_param::start_pc

1.4.3.2.54 uint8_t∗ dpni_drv_sparser_param::byte_code

1.4.3.2.55 uint16_t dpni_drv_sparser_param::size

1.4.3.2.56 uint8_t∗ dpni_drv_sparser_param::param_array

1.4.3.2.57 uint8_t dpni_drv_sparser_param::param_offset

1.4.3.2.58 uint8_t dpni_drv_sparser_param::param_size

1.4.3.2.59 uint8_t dpni_drv_taildrop::enable

Enable/Disable taildrop.

NXP Semiconductors
AIOP Service Layer API Reference Manual

251

DPLIB

1.4.3.2.60 enum dpni_drv_congestion_unit dpni_drv_taildrop::units

Congestion units type.

1.4.3.2.61 uint32_t dpni_drv_taildrop::threshold

Taildrop threshold.

1.4.3.2.62 int16_t dpni_drv_taildrop::oal

Overhead accounting length (range -2048 to +2047)

1.4.3.2.63 uint8_t dpni_drv_early_drop::enable

Enable/Disable early drop.

1.4.3.2.64 enum dpni_drv_congestion_unit dpni_drv_early_drop::units

Congestion units type.

1.4.3.2.65 struct dpni_drv_wred dpni_drv_early_drop::green

WRED - 'green' configuration.

1.4.3.2.66 struct dpni_drv_wred dpni_drv_early_drop::yellow

WRED - 'yellow' configuration.

1.4.3.2.67 struct dpni_drv_wred dpni_drv_early_drop::red

WRED - 'red' configuration.

1.4.3.2.68 enum dpni_drv_congestion_unit dpni_drv_congestion_notification_cfg::units

Congestion units type.

1.4.3.2.69 uint32_t dpni_drv_congestion_notification_cfg::threshold_entry

Above this threshold we enter a congestion state.

NXP Semiconductors
AIOP Service Layer API Reference Manual

252

DPLIB

1.4.3.2.70 uint32_t dpni_drv_congestion_notification_cfg::threshold_exit

Below this threshold we exit the congestion state.

1.4.3.2.71 uint16_t dpni_drv_congestion_notification_cfg::notification_mode

Mask of available options; Use the following values: 'DPNI_CONG_OPT_NOTIFY_DEST_ON_ENT←↩
ER', 'DPNI_CONG_OPT_NOTIFY_DEST_ON_EXIT', 'DPNI_CONG_OPT_FLOW_CONTROL' (This
will have effect only if flow control is enabled with dpni_set_link_cfg())

1.4.3.3 Order Scope options

1.4.3.3.1 Overview

Set initial order scope to "No order scope".

Macros

• #define DPNI_DRV_NO_ORDER_SCOPE

1.4.3.4 Link Options

1.4.3.4.1 Overview

Available options to determine dpni link state.

Macros

• #define DPNI_DRV_LINK_OPT_AUTONEG
• #define DPNI_DRV_LINK_OPT_HALF_DUPLEX
• #define DPNI_DRV_LINK_OPT_PAUSE
• #define DPNI_DRV_LINK_OPT_ASYM_PAUSE
• #define DPNI_LINK_OPT_PFC_PAUSE

1.4.3.4.2 Macro Definition Documentation

1.4.3.4.2.1 #define DPNI_DRV_LINK_OPT_AUTONEG

Enable auto-negotiation.

1.4.3.4.2.2 #define DPNI_DRV_LINK_OPT_HALF_DUPLEX

Enable half-duplex mode.

NXP Semiconductors
AIOP Service Layer API Reference Manual

253

DPLIB

1.4.3.4.2.3 #define DPNI_DRV_LINK_OPT_PAUSE

Enable pause frames.

1.4.3.4.2.4 #define DPNI_DRV_LINK_OPT_ASYM_PAUSE

Enable a-symmetric pause frames.

1.4.3.4.2.5 #define DPNI_LINK_OPT_PFC_PAUSE

Enable pause frames transmission.

1.4.3.4.2.6 Buffer Layout modification options

1.4.3.4.2.6.1 Overview

buffer layout modification options

Macros

• #define DPNI_DRV_BUF_LAYOUT_OPT_TIMESTAMP
• #define DPNI_DRV_BUF_LAYOUT_OPT_PARSER_RESULT
• #define DPNI_DRV_BUF_LAYOUT_OPT_FRAME_STATUS
• #define DPNI_DRV_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE
• #define DPNI_DRV_BUF_LAYOUT_OPT_DATA_ALIGN
• #define DPNI_DRV_BUF_LAYOUT_OPT_DATA_HEAD_ROOM
• #define DPNI_DRV_BUF_LAYOUT_OPT_DATA_TAIL_ROOM

Enumerations

• enum dpni_drv_frame_annotation {
DPNI_DRV_FA_STATUS_AND_TS,
DPNI_DRV_FA_PARSER_RESULT }

1.4.3.4.2.6.2 Macro Definition Documentation

1.4.3.4.2.6.3 #define DPNI_DRV_BUF_LAYOUT_OPT_TIMESTAMP

Select to modify the time-stamp setting.

1.4.3.4.2.6.4 #define DPNI_DRV_BUF_LAYOUT_OPT_PARSER_RESULT

Select to modify the parser-result setting; not applicable for Tx.

1.4.3.4.2.6.5 #define DPNI_DRV_BUF_LAYOUT_OPT_FRAME_STATUS

Select to modify the frame-status setting.

1.4.3.4.2.6.6 #define DPNI_DRV_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE

Select to modify the private-data-size setting.

NXP Semiconductors
AIOP Service Layer API Reference Manual

254

DPLIB

1.4.3.4.2.6.7 #define DPNI_DRV_BUF_LAYOUT_OPT_DATA_ALIGN

Select to modify the data-alignment setting.

1.4.3.4.2.6.8 #define DPNI_DRV_BUF_LAYOUT_OPT_DATA_HEAD_ROOM

Select to modify the data-head-room setting.

1.4.3.4.2.6.9 #define DPNI_DRV_BUF_LAYOUT_OPT_DATA_TAIL_ROOM

!< Select to modify the data-tail-room setting

1.4.3.4.2.6.10 Enumeration Type Documentation

1.4.3.4.2.6.11 enum dpni_drv_frame_annotation

enum dpni_drv_request_frame_annotation - Frame annotation.

1.4.3.5 Number of Flow Steering entries per DPNIs

1.4.3.5.1 Overview

Number of Flow Steering entries per DPNI.

Macros

• #define DPNI_FS_TABLE_SIZE

1.4.3.6 Attributes DPNI Attributes

1.4.3.6.1 Overview

DPNI Driver Send Attributes.

Modules

• options
• Buffer Layout modification options

Data Structures

• struct dpni_drv_link_state
• struct dpni_drv_link_cfg
• struct dpni_drv_buf_layout
• struct dpni_drv_tx_checksum
• struct dpni_drv_rx_tc_policing_cfg
• struct dpni_drv_tx_schedule

NXP Semiconductors
AIOP Service Layer API Reference Manual

255

DPLIB

• struct dpni_drv_tx_selection
• struct dpni_drv_tx_shaping
• struct dpni_drv_qos_tbl
• struct dpni_drv_qos_rule
• struct dpni_drv_error_cfg
• struct dpni_drv_wred
• struct dpni_drv_early_drop_cfg
• struct dpni_drv_free_bufs
• struct dpni_drv_sparser_param
• struct dpni_drv_taildrop
• struct dpni_drv_early_drop
• struct dpni_drv_congestion_notification_cfg

Macros

• #define DPNI_DRIVER_SEND_MODE_ATTRIBUTE_MASK
• #define DPNI_DRV_POLICER_OPT_COLOR_AWARE
• #define DPNI_DRV_POLICER_OPT_DISCARD_RED
• #define DPNI_DRV_MAX_TC
• #define DPNI_DRV_EXTRACT_OUT_FRAME_HEADER_ERR
• #define DPNI_DRV_FRAME_LENGTH_ERR
• #define DPNI_DRV_ERROR_FRAME_PHYSICAL_ERR
• #define DPNI_DRV_PARSING_HEADER_ERR
• #define DPNI_DRV_L3_CHECKSUM_ERR
• #define DPNI_DRV_L4_CHECKSUM_ERR
• #define DPNI_DRV_ALL_ERR
• #define DPNI_DRV_PEB_FREE_BUFS
• #define DPNI_DRV_BACKUP_FREE_BUFS

Typedefs

• typedef struct dpni_pools_cfg dpni_drv_pools_cfg
• typedef union dpni_statistics dpni_drv_statistics
• typedef enum dpni_queue_type dpni_drv_queue_type
• typedef struct dpni_attr dpni_drv_attr
• typedef void(rx_cb_t) (void)

Enumerations

• enum dpni_enqueue_attributes {
DPNI_DRV_SEND_MODE_ORDERED,
DPNI_DRV_SEND_MODE_PRESTORE_ORDERED }

• enum dpni_drv_policer_mode {
DPNI_DRV_POLICER_MODE_NONE,
DPNI_DRV_POLICER_MODE_PASS_THROUGH,
DPNI_DRV_POLICER_MODE_RFC_2698,
DPNI_DRV_POLICER_MODE_RFC_4115 }

• enum dpni_drv_policer_unit {
DPNI_DRV_POLICER_UNIT_BYTES,
DPNI_DRV_POLICER_UNIT_PACKETS }

NXP Semiconductors
AIOP Service Layer API Reference Manual

256

DPLIB

• enum dpni_drv_policer_color {
DPNI_DRV_POLICER_COLOR_GREEN,
DPNI_DRV_POLICER_COLOR_YELLOW,
DPNI_DRV_POLICER_COLOR_RED }

• enum dpni_drv_tx_schedule_mode {
DPNI_DRV_TX_SCHED_STRICT_PRIORITY,
DPNI_DRV_TX_SCHED_WEIGHTED_A,
DPNI_DRV_TX_SCHED_WEIGHTED_B }

• enum dpni_drv_error_action {
DPNI_DRV_ERR_ACTION_DISCARD,
DPNI_DRV_ERR_ACTION_CONTINUE,
DPNI_DRV_ERR_ACTION_SEND_TO_ERR_QUEUE }

• enum dpni_drv_early_drop_mode {
DPNI_DRV_EARLY_DROP_MODE_NONE,
DPNI_DRV_EARLY_DROP_MODE_TAIL,
DPNI_DRV_EARLY_DROP_MODE_WRED }

• enum dpni_drv_congestion_unit {
DPNI_DRV_CONGESTION_UNIT_BYTES,
DPNI_DRV_CONGESTION_UNIT_FRAMES }

Functions

• int dpni_drv_register_rx_cb (uint16_t ni_id, rx_cb_t ∗cb)
• int dpni_drv_register_rx_cb_etype (uint16_t ni_id, rx_cb_t ∗cb, uint16_t etype)
• int dpni_drv_unregister_rx_cb (uint16_t ni_id)
• int dpni_drv_unregister_rx_cb_etype (uint16_t ni_id, uint16_t etype)
• int dpni_drv_enable (uint16_t ni_id)
• int dpni_drv_disable (uint16_t ni_id)
• uint16_t task_get_receive_niid (void)
• int task_set_send_niid (uint16_t niid)
• int task_get_send_niid (void)
• int dpni_drv_get_primary_mac_addr (uint16_t ni_id, uint8_t mac_addr[NET_HDR_FLD_ETH_←↩

ADDR_SIZE])
• int dpni_drv_set_primary_mac_addr (uint16_t ni_id, uint8_t mac_addr[NET_HDR_FLD_ETH_←↩

ADDR_SIZE])
• int dpni_drv_add_mac_addr (uint16_t ni_id, const uint8_t mac_addr[NET_HDR_FLD_ETH_AD←↩

DR_SIZE])
• int dpni_drv_remove_mac_addr (uint16_t ni_id, const uint8_t mac_addr[NET_HDR_FLD_ETH←↩

_ADDR_SIZE])
• int dpni_drv_set_max_frame_length (uint16_t ni_id, const uint16_t mfl)
• int dpni_drv_get_max_frame_length (uint16_t ni_id, uint16_t ∗mfl)
• int sl_prolog (void)
• int sl_prolog_with_ref_take (void)
• int sl_prolog_with_custom_header (uint16_t start_hxs)
• void sl_tman_expiration_task_prolog (uint16_t spid)
• int dpni_drv_send (uint16_t ni_id, uint32_t flags)
• int dpni_drv_explicit_send (uint16_t ni_id, struct ldpaa_fd ∗fd)
• int dpni_drv_set_multicast_promisc (uint16_t ni_id, int en)
• int dpni_drv_get_multicast_promisc (uint16_t ni_id, int ∗en)
• int dpni_drv_set_unicast_promisc (uint16_t ni_id, int en)

NXP Semiconductors
AIOP Service Layer API Reference Manual

257

DPLIB

• int dpni_drv_get_unicast_promisc (uint16_t ni_id, int ∗en)
• int dpni_drv_get_spid (uint16_t ni_id, uint16_t ∗spid)
• int dpni_drv_get_spid_ddr (uint16_t ni_id, uint16_t ∗spid_ddr)
• int dpni_drv_get_num_of_nis (void)
• int dpni_drv_set_concurrent (uint16_t ni_id)
• int dpni_drv_set_exclusive (uint16_t ni_id)
• int dpni_drv_set_concurrent_etype (uint16_t ni_id, uint16_t etype)
• int dpni_drv_set_exclusive_etype (uint16_t ni_id, uint16_t etype)
• int dpni_drv_get_ordering_mode (uint16_t ni_id)
• int dpni_drv_get_ordering_mode_etype (uint16_t ni_id, uint16_t etype)
• int dpni_drv_set_order_scope (uint16_t ni_id, struct dpkg_profile_cfg ∗key_cfg)
• int dpni_drv_enable_etype_fs (uint16_t ni_id, uint16_t etype)
• int dpni_drv_get_connected_ni (const int id, const char type[16], uint16_t ∗aiop_niid, int ∗state)
• int dpni_drv_get_connected_obj (const uint16_t aiop_niid, int ∗id, char type[16], int ∗state)
• int dpni_drv_set_rx_buffer_layout (uint16_t ni_id, const struct dpni_drv_buf_layout ∗layout)
• int dpni_drv_get_rx_buffer_layout (uint16_t ni_id, struct dpni_drv_buf_layout ∗layout)
• int dpni_drv_register_rx_buffer_layout_requirements (uint16_t head_room, uint16_t tail_room,

uint16_t private_data_size, uint32_t frame_anno)
• int dpni_drv_get_counter (uint16_t ni_id, enum dpni_drv_counter counter, uint64_t ∗value)
• int dpni_drv_get_qos_counter (uint16_t ni_id, uint8_t tc, enum dpni_drv_qos_counter counter,

uint64_t ∗value)
• int dpni_drv_get_statistics (uint16_t ni_id, uint8_t page, uint8_t param, dpni_drv_statistics ∗stat)
• int dpni_drv_reset_statistics (uint16_t ni_id)
• int dpni_drv_get_dpni_id (uint16_t ni_id, uint16_t ∗dpni_id)
• int dpni_drv_get_ni_id (uint16_t dpni_id, uint16_t ∗ni_id)
• int dpni_drv_get_link_state (uint16_t ni_id, struct dpni_drv_link_state ∗state)
• int dpni_drv_set_link_cfg (uint16_t ni_id, struct dpni_drv_link_cfg ∗cfg)
• int dpni_drv_clear_mac_filters (uint16_t ni_id, uint8_t unicast, uint8_t multicast)
• int dpni_drv_clear_vlan_filters (uint16_t ni_id)
• int dpni_drv_set_vlan_filters (uint16_t ni_id, int en)
• int dpni_drv_add_vlan_id (uint16_t ni_id, uint16_t vlan_id)
• int dpni_drv_remove_vlan_id (uint16_t ni_id, uint16_t vlan_id)
• int dpni_drv_get_initial_presentation (uint16_t ni_id, struct ep_init_presentation ∗const init_←↩

presentation)
• int dpni_drv_set_initial_presentation (uint16_t ni_id, const struct ep_init_presentation ∗const init←↩

_presentation)
• int dpni_drv_get_initial_presentation_etype (uint16_t ni_id, struct ep_init_presentation ∗const init←↩

_presentation, uint16_t etype)
• int dpni_drv_set_initial_presentation_etype (uint16_t ni_id, const struct ep_init_presentation ∗const

init_presentation, uint16_t etype)
• int dpni_drv_set_tx_checksum (uint16_t ni_id, const struct dpni_drv_tx_checksum ∗const tx_←↩

checksum)
• int dpni_drv_get_tx_checksum (uint16_t ni_id, struct dpni_drv_tx_checksum ∗const tx_checksum)
• int dpni_drv_set_rx_tc_policing (uint16_t ni_id, uint8_t tc_id, const struct dpni_drv_rx_tc_←↩

policing_cfg ∗cfg)
• int dpni_drv_get_rx_tc_policing (uint16_t ni_id, uint8_t tc_id, struct dpni_drv_rx_tc_policing_cfg
∗const cfg)

• int dpni_drv_set_tx_selection (uint16_t ni_id, const struct dpni_drv_tx_selection ∗cfg)
• int dpni_drv_set_tx_shaping (uint16_t ni_id, struct dpni_drv_tx_shaping ∗cr_cfg, struct dpni_drv←↩

_tx_shaping ∗er_cfg, uint8_t coupled)
• int dpni_drv_set_qos_table (uint16_t ni_id, const struct dpni_drv_qos_tbl ∗cfg)
• int dpni_drv_add_qos_entry (uint16_t ni_id, const struct dpni_drv_qos_rule ∗cfg, uint8_t tc_id,

uint16_t index)

NXP Semiconductors
AIOP Service Layer API Reference Manual

258

DPLIB

• int dpni_drv_remove_qos_entry (uint16_t ni_id, const struct dpni_drv_qos_rule ∗cfg)
• int dpni_drv_clear_qos_table (uint16_t ni_id)
• void dpni_drv_prepare_rx_tc_early_drop (const struct dpni_drv_early_drop_cfg ∗cfg, uint8_←↩

t ∗early_drop_buf)
• int dpni_drv_set_rx_tc_early_drop (uint16_t ni_id, uint8_t tc_id, uint64_t early_drop_iova)
• void task_set_tx_tc (uint8_t tc)
• uint8_t task_get_tx_tc (void)
• void task_switch_to_egress_parse_profile (uint16_t start_hxs)
• int dpni_drv_prepare_key_cfg (struct dpkg_profile_cfg ∗cfg, uint8_t ∗key_cfg_buf)
• int dpni_drv_get_num_free_bufs (uint32_t flags, struct dpni_drv_free_bufs ∗free_bufs)
• int dpni_drv_set_errors_behavior (uint16_t ni_id, const struct dpni_drv_error_cfg ∗cfg)
• int dpni_drv_enable_ingress_soft_parser (const struct dpni_drv_sparser_param ∗param)
• int dpni_drv_enable_egress_soft_parser (const struct dpni_drv_sparser_param ∗param)
• int dpni_drv_load_wriop_ingress_soft_parser (const struct dpni_drv_sparser_param ∗param)
• int dpni_drv_load_wriop_egress_soft_parser (const struct dpni_drv_sparser_param ∗param)
• int dpni_drv_enable_wriop_ingress_soft_parser (uint16_t ni_id, const struct dpni_drv_sparser_←↩

param ∗param)
• int dpni_drv_enable_wriop_egress_soft_parser (uint16_t ni_id, const struct dpni_drv_sparser_←↩

param ∗param)
• int dpni_drv_set_tx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗cfg)
• int dpni_drv_get_tx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗cfg)
• int dpni_drv_set_tx_early_drop (uint16_t ni_id, uint8_t tc, struct dpni_drv_early_drop ∗cfg)
• int dpni_drv_get_tx_early_drop (uint16_t ni_id, uint8_t tc, struct dpni_drv_early_drop ∗cfg)
• int dpni_drv_set_rx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗cfg)
• int dpni_drv_get_rx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗cfg)
• int dpni_drv_set_rx_early_drop (uint16_t ni_id, uint8_t tc, struct dpni_drv_early_drop ∗cfg)
• int dpni_drv_get_rx_early_drop (uint16_t ni_id, uint8_t tc, struct dpni_drv_early_drop ∗cfg)
• int dpni_drv_set_pools (uint16_t ni_id, dpni_drv_pools_cfg ∗cfg)
• int dpni_drv_set_congestion_notification (uint16_t ni_id, uint8_t tc, dpni_drv_queue_type qtype,

struct dpni_drv_congestion_notification_cfg ∗cfg)
• int dpni_drv_get_congestion_notification (uint16_t ni_id, uint8_t tc, dpni_drv_queue_type qtype,

struct dpni_drv_congestion_notification_cfg ∗cfg)
• int dpni_drv_set_rx_priorities (uint16_t ni_id)
• int dpni_drv_get_attributes (uint16_t ni_id, dpni_drv_attr ∗attr)

• enum dpni_drv_counter {

NXP Semiconductors
AIOP Service Layer API Reference Manual

259

DPLIB

DPNI_DRV_CNT_ING_FRAME,
DPNI_DRV_CNT_ING_BYTE,
DPNI_DRV_CNT_ING_FRAME_DROP,
DPNI_DRV_CNT_ING_FRAME_DISCARD,
DPNI_DRV_CNT_ING_MCAST_FRAME,
DPNI_DRV_CNT_ING_MCAST_BYTE,
DPNI_DRV_CNT_ING_BCAST_FRAME,
DPNI_DRV_CNT_ING_BCAST_BYTES,
DPNI_DRV_CNT_EGR_FRAME,
DPNI_DRV_CNT_EGR_BYTE,
DPNI_DRV_CNT_EGR_FRAME_DISCARD,
DPNI_DRV_CNT_EGR_MCAST_FRAME,
DPNI_DRV_CNT_EGR_MCAST_BYTE,
DPNI_DRV_CNT_EGR_BCAST_FRAME,
DPNI_DRV_CNT_EGR_BCAST_BYTES,
DPNI_DRV_CNT_ING_FRAME_NO_BUFF_DISCARD,
DPNI_DRV_CNT_EGR_CONF_FRAME }

• enum dpni_drv_qos_counter {
DPNI_DRV_QOS_CNT_EGR_TC_DEQUEUE_BYTE,
DPNI_DRV_QOS_CNT_EGR_TC_DEQUEUE_FRAME,
DPNI_DRV_QOS_CNT_EGR_TC_REJECT_BYTE,
DPNI_DRV_QOS_CNT_EGR_TC_REJECT_FRAME }

1.4.3.6.2 Data Structure Documentation

1.4.3.6.2.1 struct dpni_drv_link_state

Structure representing DPNI driver link state.

Data Fields

uint32_t rate Rate.
uint64_t options Mask of available options; use Link Options values.

int up Link state; '0' for down, '1' for up.

1.4.3.6.2.2 struct dpni_drv_link_cfg

Structure representing DPNI driver link configuration.

Data Fields

uint32_t rate Rate.

NXP Semiconductors
AIOP Service Layer API Reference Manual

260

DPLIB

uint64_t options Mask of available options; use Link Options values.

1.4.3.6.2.3 struct dpni_drv_buf_layout

Structure representing DPNI buffer layout.

Data Fields

uint32_t options Flags representing the suggested modifications to the buffer layout;
Use any combination of Buffer Layout modification options.

int pass_←↩
timestamp

Pass timestamp value.

int pass_parser_←↩
result

Pass parser results.

int pass_frame_←↩
status

Pass frame status.

uint16_t private_data_←↩
size

Size kept for private data (in bytes)

uint16_t data_align Data alignment.
uint16_t data_head_←↩

room
Data head room.

uint16_t data_tail_room Data tail room.

1.4.3.6.2.4 struct dpni_drv_tx_checksum

Structure representing DPNI ls_checksum.

Data Fields

uint16_t l3_checksum←↩
_gen

uint16_t l4_checksum←↩
_gen

1.4.3.6.2.5 struct dpni_drv_rx_tc_policing_cfg

Structure representing DPNI policer configuration.

Data Fields

uint32_t options
enum

dpni_drv_←↩
policer_mode

mode

NXP Semiconductors
AIOP Service Layer API Reference Manual

261

DPLIB

enum
dpni_drv_←↩
policer_unit

unit

enum
dpni_drv_←↩

policer_color

default_color

uint32_t cir
uint32_t cbs
uint32_t eir
uint32_t ebs

1.4.3.6.2.6 struct dpni_drv_tx_schedule

struct dpni_drv_tx_schedule - Structure representing Tx scheduling configuration.

Data Fields

enum
dpni_drv_tx_←↩
schedule_mode

mode

uint16_t delta_←↩
bandwidth

1.4.3.6.2.7 struct dpni_drv_tx_selection

struct dpni_drv_tx_selection - Structure representing transmission selection configuration.

Data Fields

struct
dpni_drv_tx_←↩

schedule

tc_sched[DP←↩
NI_DRV_M←↩
AX_TC]

uint32_t prio_group_A
uint32_t prio_group_B
uint8_t separate_←↩

groups

1.4.3.6.2.8 struct dpni_drv_tx_shaping

struct dpni_drv_tx_shaping - Structure representing DPNI tx shaping configuration.

Data Fields

uint32_t rate_limit

NXP Semiconductors
AIOP Service Layer API Reference Manual

262

DPLIB

uint16_t max_burst_size

1.4.3.6.2.9 struct dpni_drv_qos_tbl

struct dpni_drv_qos_tbl - Structure representing QOS table configuration.

Data Fields

uint64_t key_cfg_iova
uint8_t discard_on_←↩

miss
uint8_t default_tc

1.4.3.6.2.10 struct dpni_drv_qos_rule

struct dpni_drv_qos_tbl - Structure representing Rule configuration for table lookup.

Data Fields

uint64_t key_iova
uint64_t mask_iova
uint8_t key_size

1.4.3.6.2.11 struct dpni_drv_error_cfg

struct dpni_drv_error_cfg - Structure representing DPNI errors treatment.

Data Fields

uint32_t errors
enum

dpni_drv_←↩
error_action

error_action

1.4.3.6.2.12 struct dpni_drv_wred

struct dpni_drv_wred - Structure representing WRED configuration.

Data Fields

uint64_t max_threshold
uint64_t min_threshold
uint8_t drop_←↩

probability

1.4.3.6.2.13 struct dpni_drv_early_drop_cfg

struct dpni_drv_early_drop_cfg - Structure representing early-drop configuration.

NXP Semiconductors
AIOP Service Layer API Reference Manual

263

DPLIB

Data Fields

enum dpni_←↩
drv_early_←↩

drop_mode

mode

enum
dpni_drv_←↩

congestion_←↩
unit

units

struct
dpni_drv_wred

green

struct
dpni_drv_wred

yellow

struct
dpni_drv_wred

red

uint32_t tail_drop_←↩
threshold

1.4.3.6.2.14 struct dpni_drv_free_bufs

struct dpni_drv_free_bufs - Structure representing a snapshot of the current fill level (number of free
buffers) of the DPNI configured buffer pools.

Data Fields

uint32_t peb_bp_free_←↩
bufs

uint32_t backup_bp_←↩
free_bufs

1.4.3.6.2.15 struct dpni_drv_sparser_param

struct dpni_drv_sparser_param - Structure representing the information needed to activate(enable) a Soft
Parser.
Data Fields

uint8_t custom_←↩
header_first

enum parser_←↩
starting_hxs_←↩

code

link_to_hard←↩
_hxs

NXP Semiconductors
AIOP Service Layer API Reference Manual

264

DPLIB

uint16_t start_pc
uint8_t ∗ byte_code
uint16_t size
uint8_t ∗ param_array

uint8_t param_offset
uint8_t param_size

1.4.3.6.2.16 struct dpni_drv_taildrop

struct dpni_drv_taildrop - Structure representing tail-drop configuration.

Data Fields

uint8_t enable Enable/Disable taildrop.
enum

dpni_drv_←↩
congestion_←↩

unit

units Congestion units type.

uint32_t threshold Taildrop threshold.
int16_t oal Overhead accounting length (range -2048 to +2047)

1.4.3.6.2.17 struct dpni_drv_early_drop

struct dpni_drv_early_drop - Structure representing early drop configuration.

Data Fields

uint8_t enable Enable/Disable early drop.
enum

dpni_drv_←↩
congestion_←↩

unit

units Congestion units type.

struct
dpni_drv_wred

green WRED - 'green' configuration.

struct
dpni_drv_wred

yellow WRED - 'yellow' configuration.

struct
dpni_drv_wred

red WRED - 'red' configuration.

1.4.3.6.2.18 struct dpni_drv_congestion_notification_cfg

struct dpni_drv_congestion_notification_cfg - Structure representing congestion notification configura-
tion.

NXP Semiconductors
AIOP Service Layer API Reference Manual

265

DPLIB

Data Fields

enum
dpni_drv_←↩

congestion_←↩
unit

units Congestion units type.

uint32_t threshold_entry Above this threshold we enter a congestion state.
uint32_t threshold_exit Below this threshold we exit the congestion state.
uint16_t notification_←↩

mode
Mask of available options; Use the following values: 'DPNI_←↩
CONG_OPT_NOTIFY_DEST_ON_ENTER', 'DPNI_CONG_O←↩
PT_NOTIFY_DEST_ON_EXIT', 'DPNI_CONG_OPT_FLOW_←↩
CONTROL' (This will have effect only if flow control is enabled
with dpni_set_link_cfg())

1.4.3.6.3 Macro Definition Documentation

1.4.3.6.3.1 #define DPNI_DRV_EXTRACT_OUT_FRAME_HEADER_ERR

DPNI driver errors.

DPNI driver errors

1.4.3.6.3.2 #define DPNI_DRV_PEB_FREE_BUFS

Get PEB free buffers.

1.4.3.6.3.3 #define DPNI_DRV_BACKUP_FREE_BUFS

Get backup (DDR) free buffers.

1.4.3.6.4 Typedef Documentation

1.4.3.6.4.1 typedef struct dpni_pools_cfg dpni_drv_pools_cfg

dpni_drv_pools_cfg - Structure representing buffer pools configuration.

1.4.3.6.4.2 typedef union dpni_statistics dpni_drv_statistics

dpni_drv_statistics - Structure containing the statistics.

1.4.3.6.4.3 typedef enum dpni_queue_type dpni_drv_queue_type

dpni_drv_queue_type - Identifies a type of queue.

1.4.3.6.4.4 typedef struct dpni_attr dpni_drv_attr

dpni_drv_statistics - Structure representing DPNI attributes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

266

DPLIB

1.4.3.6.4.5 typedef void(rx_cb_t) (void)

Application Receive callback.

User provides this function. Driver invokes it when it gets a frame received on this interface.

Returns

OK on success; error code, otherwise.

1.4.3.6.5 Enumeration Type Documentation

1.4.3.6.5.1 enum dpni_enqueue_attributes

Enumerator

DPNI_DRV_SEND_MODE_ORDERED Add transition to exclusive with increment scope ID to
enqueue.

DPNI_DRV_SEND_MODE_PRESTORE_ORDERED Add prestore then transition to exclusive
with increment scope ID to FD enqueue.

1.4.3.6.5.2 enum dpni_drv_counter

AIOP DPNI driver counter types.

Enumerator

DPNI_DRV_CNT_ING_FRAME Counts ingress frames.
DPNI_DRV_CNT_ING_BYTE Counts ingress bytes.
DPNI_DRV_CNT_ING_FRAME_DROP Counts ingress frames dropped due to explicit 'drop' set-

ting.
DPNI_DRV_CNT_ING_FRAME_DISCARD Counts ingress frames discarded due to errors.
DPNI_DRV_CNT_ING_MCAST_FRAME Counts ingress multicast frames.
DPNI_DRV_CNT_ING_MCAST_BYTE Counts ingress multicast bytes.
DPNI_DRV_CNT_ING_BCAST_FRAME Counts ingress broadcast frames.
DPNI_DRV_CNT_ING_BCAST_BYTES Counts ingress broadcast bytes.
DPNI_DRV_CNT_EGR_FRAME Counts egress frames.
DPNI_DRV_CNT_EGR_BYTE Counts egress bytes.
DPNI_DRV_CNT_EGR_FRAME_DISCARD Counts egress frames discarded due to errors.
DPNI_DRV_CNT_EGR_MCAST_FRAME Counts egress multicast frames.
DPNI_DRV_CNT_EGR_MCAST_BYTE Counts egress multicast bytes.
DPNI_DRV_CNT_EGR_BCAST_FRAME Counts egress broadcast frames.
DPNI_DRV_CNT_EGR_BCAST_BYTES Counts egress broadcast bytes.
DPNI_DRV_CNT_ING_FRAME_NO_BUFF_DISCARD Counts ingress frames discarded due to

lack of buffers.
DPNI_DRV_CNT_EGR_CONF_FRAME Counts egress confirmed frames.

NXP Semiconductors
AIOP Service Layer API Reference Manual

267

DPLIB

1.4.3.6.5.3 enum dpni_drv_qos_counter

AIOP DPNI driver QoS counter types.

Enumerator

DPNI_DRV_QOS_CNT_EGR_TC_DEQUEUE_BYTE Counts egress bytes dequeued on a traffic
class.

DPNI_DRV_QOS_CNT_EGR_TC_DEQUEUE_FRAME Counts egress frames dequeued on a
traffic class.

DPNI_DRV_QOS_CNT_EGR_TC_REJECT_BYTE Counts egress bytes in all frames whose en-
queue was rejected, on a traffic class, due to either WRED or tail drop.

DPNI_DRV_QOS_CNT_EGR_TC_REJECT_FRAME Counts egress frame enqueues rejected, on
a traffic class, due to either WRED or tail drop.

1.4.3.6.5.4 enum dpni_drv_policer_mode

enum dpni_drv_policer_mode - selecting the policer mode

1.4.3.6.5.5 enum dpni_drv_policer_unit

enum dpni_drv_policer_unit - DPNI policer units (bytes/packets)

1.4.3.6.5.6 enum dpni_drv_policer_color

enum dpni_drv_policer_color - selecting the policer color

1.4.3.6.5.7 enum dpni_drv_tx_schedule_mode

enum dpni_drv_tx_schedule_mode - DPNI Tx scheduling mode

1.4.3.6.5.8 enum dpni_drv_error_action

enum dpni_drv_error_action - DPNI behavior for errors.

1.4.3.6.5.9 enum dpni_drv_early_drop_mode

enum dpni_drv_early_drop_mode - DPNI early drop mode.

1.4.3.6.5.10 enum dpni_drv_congestion_unit

enum dpni_drv_congestion_unit - DPNI congestion units.

1.4.3.6.6 Function Documentation

1.4.3.6.6.1 int dpni_drv_register_rx_cb (uint16_t ni_id, rx_cb_t ∗ cb)

NXP Semiconductors
AIOP Service Layer API Reference Manual

268

DPLIB

Attaches a pointer to a call back function to a NI ID.

The callback function will be called when the NI_ID receives a frame.

Parameters

in ni_id - The Network Interface ID
in cb - Callback function for Network Interface specified flow_id

Returns

OK on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.2 int dpni_drv_register_rx_cb_etype (uint16_t ni_id, rx_cb_t ∗ cb, uint16_t etype)

Attaches a pointer to a call back function to a NI ID for a certain protocol defined by EtherType. The
callback function will be called when the NI_ID receives a frame with the protocol defined by EtherType

Parameters

in ni_id - The Network Interface ID
in cb - Callback function for Network Interface specified flow_id
in etype - The etherType registered with dpni_drv_enable_etype_fs()

Warning

This method should be called only after dpni_drv_enable_etype_fs() for the same etherType

Returns

OK on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.3 int dpni_drv_unregister_rx_cb (uint16_t ni_id)

Unregisters a NI callback function by replacing it with a pointer to a discard callback. The discard callback
function will be called when the NI_ID receives a frame

NXP Semiconductors
AIOP Service Layer API Reference Manual

269

DPLIB

Parameters

in ni_id - The Network Interface ID

Returns

OK on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.4 int dpni_drv_unregister_rx_cb_etype (uint16_t ni_id, uint16_t etype)

Unregisters a NI callback function by replacing it with a pointer to a discard callback. The discard callback
function will be called when the NI_ID receives a frame with a certain protocol defined by EtherType

Parameters

in ni_id - The Network Interface ID
in etype - The etherType registered with dpni_drv_enable_etype_fs()

Warning

This method should be called only after dpni_drv_enable_etype_fs() for the same etherType

Returns

OK on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.5 int dpni_drv_enable (uint16_t ni_id)

Enable a NI_ID referenced by ni_id. Allows sending and receiving frames.

Parameters

in ni_id The Network Interface ID

Returns

OK on success; error code, otherwise.

1.4.3.6.6.6 int dpni_drv_disable (uint16_t ni_id)

Disables a NI_ID referenced by ni_id. Disallows sending and receiving frames

NXP Semiconductors
AIOP Service Layer API Reference Manual

270

DPLIB

Parameters

in ni_id The Network Interface ID

Returns

OK on success; error code, otherwise.

1.4.3.6.6.7 uint16_t task_get_receive_niid (void)

Get ID of NI on which the default packet arrived.

Returns

NI_IDs on which the default packet arrived.

1.4.3.6.6.8 int task_set_send_niid (uint16_t niid)

Set the NI ID on which the packet should be sent.

Parameters

in niid - The Network Interface ID

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.9 int task_get_send_niid (void)

Get ID of NI on which the default packet should be sent.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.10 int dpni_drv_get_primary_mac_addr (uint16_t ni_id, uint8_t
mac_addr[NET_HDR_FLD_ETH_ADDR_SIZE])

Get Primary MAC address of NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

271

DPLIB

Parameters

in ni_id - The Network Interface ID
out mac_addr - stores primary MAC address of the supplied NI.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.11 int dpni_drv_set_primary_mac_addr (uint16_t ni_id, uint8_t
mac_addr[NET_HDR_FLD_ETH_ADDR_SIZE])

Set Primary MAC address of NI.

Parameters

in ni_id - The Network Interface ID
in mac_addr - primary MAC address for given NI.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.12 int dpni_drv_add_mac_addr (uint16_t ni_id, const uint8_t
mac_addr[NET_HDR_FLD_ETH_ADDR_SIZE])

Adds unicast/multicast filter MAC address.
Parameters

in ni_id - The Network Interface ID
in mac_addr - MAC address to be added to NI unicast/multicast filter.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.13 int dpni_drv_remove_mac_addr (uint16_t ni_id, const uint8_t
mac_addr[NET_HDR_FLD_ETH_ADDR_SIZE])

Removes unicast/multicast filter MAC address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

272

DPLIB

Parameters

in ni_id - The Network Interface ID
in mac_addr - MAC address to be removed from NI unicast/multicast filter.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.14 int dpni_drv_set_max_frame_length (uint16_t ni_id, const uint16_t mfl)

Set the maximum received frame length.

Parameters

in ni_id - The Network Interface ID
in mfl - MFL length.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.15 int dpni_drv_get_max_frame_length (uint16_t ni_id, uint16_t ∗ mfl)

Get the maximum received frame length.

Parameters

in ni_id - The Network Interface ID
out ∗mfl - pointer to store MFL length.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.16 int sl_prolog (void)

Network Interface SL prolog function. It is recommended to call this function at the beginning of the upper
layer entry-point function, in this way it assures that HW presentation context is preserved (as needed for
OSM functionality and ni_id resolution). It is also recommended that user AIOP entry-point function is
declared with __declspec(entry_point) to assure it is not dead-stripped by the compiler.

NXP Semiconductors
AIOP Service Layer API Reference Manual

273

DPLIB

Return values

0 - Success. It is recommended that for any error value user should discard
the frame and terminate the task.

EIO - Parsing Error
ENOSPC - Parser Block Limit Exceeds.

1.4.3.6.6.17 int sl_prolog_with_ref_take (void)

Network Interface SL prolog function. It is recommended to call this function at the beginning of the upper
layer entry-point function, in this way it assures that HW presentation context is preserved (as needed for
OSM functionality and ni_id resolution). It is also recommended that user AIOP entry-point function is
declared with __declspec(entry_point) to assure it is not dead-stripped by the compiler.

Implied rcu_read_lock() on Rev2 platforms prior to accessing network interface parameters.

Return values

0 - Success. It is recommended that for any error value user should discard
the frame and terminate the task.

EIO - Parsing Error
ENOSPC - Parser Block Limit Exceeds.

1.4.3.6.6.18 int sl_prolog_with_custom_header (uint16_t start_hxs)

Network Interface SL prolog function. It is mandatory to call this function if the first header in the
packets arriving in AIOP must be parsed by a soft parser (custom header). This is supported only by the
Rev2 platforms. It is recommended to call this function at the beginning of the upper layer entry-point
function, in this way it assures that HW presentation context is preserved (as needed for OSM functionality
and ni_id resolution). It is also recommended that user AIOP entry-point function is declared with __←↩
declspec(entry_point) to assure it is not dead-stripped by the compiler.

Parameters

in start_hxs : The program counter of a soft parser loaded by the application in the
instructions memory of the AIOP Parser. The program counter must
be a value in the range 0x20..0x7fd. No checks are performed on the
provided value. On Rev1 platforms the start_hxs is reset (Ethernet hard
HXS).

NXP Semiconductors
AIOP Service Layer API Reference Manual

274

DPLIB

Return values

0 - Success. It is recommended that for any error value user should discard
the frame and terminate the task.

EIO - Parsing Error
ENOSPC - Parser Block Limit Exceeds.

1.4.3.6.6.19 void sl_tman_expiration_task_prolog (uint16_t spid)

Network Interface SL tman expiration task prolog function. This function initialize into WS the ICID as
taken from the SPID and clear starting HXS and PRPID. It should be called from the beginning of user's
timer expiration call-back function to assure that fdma create and fdma store functions will work properly.

Parameters

in spid - storage profile id.

1.4.3.6.6.20 int dpni_drv_send (uint16_t ni_id, uint32_t flags)

Network Interface send (AIOP store and enqueue) function. Store and enqueue the default Working Frame.

Parameters

in ni_id - The Network Interface ID flags - Flags for working frame enqueue,
see DPNI_DRV_SEND_MODE Implicit: Queuing Destination Priority
(qd_priority) in the TLS.

Return values

0 - Success. It is recommended that for any error value user should discard
the frame and terminate the task.

EBUSY - Enqueue failed due to congestion in QMAN or due to DPNI link down. It
is recommended calling fdma_discard_fd() afterwards and then terminate
task.

ENOMEM - Failed due to buffer pool depletion. It is recommended calling fdma_←↩
discard_default_frame() afterwards and then terminate task.

Warning

The frame to be enqueued must be open (presented) when calling this function

1.4.3.6.6.21 int dpni_drv_explicit_send (uint16_t ni_id, struct ldpaa_fd ∗ fd)

Network Interface explicit send (AIOP enqueue) function. Enqueue the explicit closed frame.

NXP Semiconductors
AIOP Service Layer API Reference Manual

275

DPLIB

Parameters

in ni_id - The Network Interface ID Implicit: Queuing Destination Priority (qd←↩
_priority) in the TLS.

in fd - pointer to the explicit FD.

Return values

0 - Success. It is recommended that for any error value user should discard
the frame and terminate the task.

EBUSY - Enqueue failed due to congestion in QMAN or due to DPNI link down. It
is recommended calling fdma_discard_fd() afterwards and then terminate
task.

Warning

The frame to be enqueued must be closed (stored) when calling this function

1.4.3.6.6.22 int dpni_drv_set_multicast_promisc (uint16_t ni_id, int en)

Enable/Disable multicast promiscuous mode

Parameters

in ni_id - The Network Interface ID
in en - '1' for enabling/'0' for disabling

Returns

'0' on Success; Error code otherwise.

1.4.3.6.6.23 int dpni_drv_get_multicast_promisc (uint16_t ni_id, int ∗ en)

Get multicast promiscuous mode

Parameters

in ni_id - The Network Interface ID
out en - '1' for enabled/'0' for disabled

Returns

'0' on Success; Error code otherwise.

NXP Semiconductors
AIOP Service Layer API Reference Manual

276

DPLIB

1.4.3.6.6.24 int dpni_drv_set_unicast_promisc (uint16_t ni_id, int en)

Enable/Disable unicast promiscuous mode

NXP Semiconductors
AIOP Service Layer API Reference Manual

277

DPLIB

Parameters

in ni_id - The Network Interface ID
in en - '1' for enabling/'0' for disabling

Returns

'0' on Success; Error code otherwise.

1.4.3.6.6.25 int dpni_drv_get_unicast_promisc (uint16_t ni_id, int ∗ en)

Get unicast promiscuous mode

Parameters

in ni_id - The Network Interface ID
out en - '1' for enabled/'0' for disabled

Returns

'0' on Success; Error code otherwise.

1.4.3.6.6.26 int dpni_drv_get_spid (uint16_t ni_id, uint16_t ∗ spid)

Function to receive PEB storage profile ID for specified NI.

Parameters

in ni_id The Network Interface ID
out spid - storage profile to use PEB buffer pool(for now using 1 byte).

Returns

'0' on Success;

1.4.3.6.6.27 int dpni_drv_get_spid_ddr (uint16_t ni_id, uint16_t ∗ spid_ddr)

Function to receive DDR storage profile ID for specified NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

278

DPLIB

Parameters

in ni_id The Network Interface ID
out spid_ddr - storage profile to use DDR buffer pool (for now using 1 byte).

Returns

'0' on Success;

1.4.3.6.6.28 int dpni_drv_get_num_of_nis (void)

Returns the number of NI_IDs in the system. Called by the AIOP applications to learn the maximum
number of available network interfaces.

Returns

Number of NI_IDs in the system

1.4.3.6.6.29 int dpni_drv_set_concurrent (uint16_t ni_id)

Function to set the initial ordering mode to concurrent for the given NI.

Parameters

in ni_id The Network Interface ID

Warning

This method should be called in boot mode only.

Returns

'0' on Success;

1.4.3.6.6.30 int dpni_drv_set_exclusive (uint16_t ni_id)

Function to set the initial ordering mode to exclusive for the given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

279

DPLIB

Parameters

in ni_id The Network Interface ID

Warning

This method should be called in boot mode only.

Returns

'0' on Success;

1.4.3.6.6.31 int dpni_drv_set_concurrent_etype (uint16_t ni_id, uint16_t etype)

Function to set the initial ordering mode to concurrent for the given NI for a certain protocol defined by
EtherType

Parameters

in ni_id The Network Interface ID
in etype The etherType registered with dpni_drv_enable_etype_fs()

Warning

This method should be called in boot mode only and after dpni_drv_enable_etype_fs() for the same
etherType

Returns

'0' on Success; -ENOENT - When the EtherType was not registered

1.4.3.6.6.32 int dpni_drv_set_exclusive_etype (uint16_t ni_id, uint16_t etype)

Function to set the initial ordering mode to exclusive for the given NI for a certain protocol defined by
EtherType

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

280

DPLIB

in ni_id The Network Interface ID
in etype The etherType registered with dpni_drv_enable_etype_fs()

Warning

This method should be called in boot mode only and after dpni_drv_enable_etype_fs() for the same
etherType

Returns

'0' on Success; -ENOENT - When the EtherType was not registered

1.4.3.6.6.33 int dpni_drv_get_ordering_mode (uint16_t ni_id)

Returns the configuration in epid table for ordering mode.

Parameters

in ni_id - Network Interface ID

Returns

Ordering mode for given NI 0 - Concurrent 1 - Exclusive

1.4.3.6.6.34 int dpni_drv_get_ordering_mode_etype (uint16_t ni_id, uint16_t etype)

Returns the configuration in epid table for ordering mode for a certain protocol defined by EtherType

Parameters

in ni_id - Network Interface ID
in etype - The etherType registered with dpni_drv_enable_etype_fs()

Warning

This method should be called only after dpni_drv_enable_etype_fs() for the same etherType

Returns

Ordering mode for given NI 0 - Concurrent 1 - Exclusive -ENOENT - When the EtherType was not
registered

1.4.3.6.6.35 int dpni_drv_set_order_scope (uint16_t ni_id, struct dpkg_profile_cfg ∗ key_cfg)

Function to set order scope source for the specified NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

281

DPLIB

Parameters

in ni_id The Network Interface ID
in key_cfg A structure for defining a full Key Generation profile (rule) To disable

order scope refer to Order Scope options

Warning

This method should be called in boot mode only.

Returns

OK on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.36 int dpni_drv_enable_etype_fs (uint16_t ni_id, uint16_t etype)

Function to add a Flow Steering entry for the specified NI for a certain protocol defined by EtherType. For
IPv4 see NET_ETH_ETYPE_IPV4 For IPv6 see NET_ETH_ETYPE_IPV6 For ARP see ARP_ETHE←↩
RTYPE
Parameters

in ni_id The Network Interface ID
in etype EtherType is a two-octet field in an Ethernet frame. It is used to indicate

which protocol is encapsulated in the payload of the frame

Warning

The flow steering table must be enabled for the NI ('DPNI_OPT_DIST_FS' option was set at DPNI
creation). This method should be called in boot mode only. In case dpni_drv_set_order_scope()
is called, dpni_drv_enable_etype_fs() must be called after it. Maximum number of Flow Steering
entries is min(Number of Flow Steering entries per DPNIs, fs_entries set at DPNI creation)

Returns

OK on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.37 int dpni_drv_get_connected_ni (const int id, const char type[16], uint16_t ∗
aiop_niid, int ∗ state)

Function to receive the connected AIOP NI ID for OBJ ID and type.

NXP Semiconductors
AIOP Service Layer API Reference Manual

282

DPLIB

Parameters

in id object ID to find connection.
in type The type of the give object ID ("dpni", dpmac").
out aiop_niid Connected NI ID.
out state link state on success: 1 - link is up, 0 - link is down;

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.38 int dpni_drv_get_connected_obj (const uint16_t aiop_niid, int ∗ id, char type[16],
int ∗ state)

Function to receive the connected OBJ ID and type.

Parameters

in aiop_niid The AIOP Network Interface ID
out id Connected object ID to the given NI ID
out type The type of the connected object for given NI.
out state link state on success: 1 - link is up, 0 - link is down;

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.39 int dpni_drv_set_rx_buffer_layout (uint16_t ni_id, const struct dpni_drv_buf_layout
∗ layout)

Function to change SPs attributes (specify how many headroom)

Parameters

in ni_id The AIOP Network Interface ID
in layout Structure representing DPNI buffer layout

Warning

Allowed only when DPNI is disabled

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

NXP Semiconductors
AIOP Service Layer API Reference Manual

283

DPLIB

1.4.3.6.6.40 int dpni_drv_get_rx_buffer_layout (uint16_t ni_id, struct dpni_drv_buf_layout ∗
layout)

Function to receive SPs attributes for RX buffer.
Parameters

in ni_id The AIOP Network Interface ID
out layout Structure representing DPNI buffer layout

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.41 int dpni_drv_register_rx_buffer_layout_requirements (uint16_t head_room, uint16_t
tail_room, uint16_t private_data_size, uint32_t frame_anno)

register a request for DPNI requirement.

Parameters

in head_room Requested head room.
in tail_room Requested tail room.
in private_data←↩

_size
Requested private data size.

in frame_anno Requested frame annotation. OR-ed combination of dpni_drv_request←↩
_frame_annotation enumeration values. Hardware annotations are re-
turned in the ASA presentation area as it follows :

• Status Word at 0x00, 8 bytes,
• Time Stamp at 0x08, 8 bytes,
• Parser Result at 0x10, 48 bytes.

Returns

0 - on success, -ENAVAIL - resource not available or not found, -ENOMEM - not enough memory.

1.4.3.6.6.42 int dpni_drv_get_counter (uint16_t ni_id, enum dpni_drv_counter counter, uint64_t
∗ value)

Function to receive DPNI counter.

NXP Semiconductors
AIOP Service Layer API Reference Manual

284

DPLIB

Parameters

in ni_id The AIOP Network Interface ID
in counter Type of DPNI counter.
out value Counter value for the requested type.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.43 int dpni_drv_get_qos_counter (uint16_t ni_id, uint8_t tc, enum
dpni_drv_qos_counter counter, uint64_t ∗ value)

Function to receive DPNI counter.
Parameters

in ni_id The AIOP Network Interface ID
in tc Traffic class.
in counter Type of DPNI QoS counter.
out value Counter value for the requested type.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.44 int dpni_drv_get_statistics (uint16_t ni_id, uint8_t page, uint8_t param,
dpni_drv_statistics ∗ stat)

Function to get DPNI statistics.

Parameters

in ni_id The AIOP Network Interface ID
in page Selects the statistics page to retrieve (0-3)
in param Custom parameter for some pages used to select a certain statistic

source, for example the TC

NXP Semiconductors
AIOP Service Layer API Reference Manual

285

DPLIB

in stat Structure containing the statistics

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.45 int dpni_drv_reset_statistics (uint16_t ni_id)

Function to clear DPNI statistics.
Parameters

in ni_id The AIOP Network Interface ID

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.46 int dpni_drv_get_dpni_id (uint16_t ni_id, uint16_t ∗ dpni_id)

Function to receive DPNI ID, known outside to AIOP.

Parameters

in ni_id The AIOP Network Interface ID.
out dpni_id DPNI ID known outside to AIOP.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.47 int dpni_drv_get_ni_id (uint16_t dpni_id, uint16_t ∗ ni_id)

Function to receive AIOP internal NI ID.
Parameters

in dpni_id DPNI ID known outside to AIOP.
out ni_id The AIOP Network Interface ID.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

NXP Semiconductors
AIOP Service Layer API Reference Manual

286

DPLIB

1.4.3.6.6.48 int dpni_drv_get_link_state (uint16_t ni_id, struct dpni_drv_link_state ∗ state)

Function to receive DPNI link state for given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

287

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
out state Returned link state.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.49 int dpni_drv_set_link_cfg (uint16_t ni_id, struct dpni_drv_link_cfg ∗ cfg)

Configures DPNI link for given NI.

Parameters

in ni_id The AIOP Network Interface ID.
in Link configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.50 int dpni_drv_clear_mac_filters (uint16_t ni_id, uint8_t unicast, uint8_t multicast)

Function to clear DPNI unicast or multicast addresses. The primary MAC address is not cleared by this
operation.

Parameters

in ni_id The AIOP Network Interface ID.
in unicast Set to '1' to clear unicast addresses.
in multicast Set to '1' to clear multicast addresses.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.51 int dpni_drv_clear_vlan_filters (uint16_t ni_id)

Function to clear VLAN filters for given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

288

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.52 int dpni_drv_set_vlan_filters (uint16_t ni_id, int en)

Function to set VLAN filters for given NI.

Parameters

in ni_id The AIOP Network Interface ID.
in en Set to '1' to enable; '0' to disable.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.53 int dpni_drv_add_vlan_id (uint16_t ni_id, uint16_t vlan_id)

Function to add VLAN filters for given NI.

Parameters

in ni_id The AIOP Network Interface ID.
in vlan_id VLAN ID to add to given NI.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.54 int dpni_drv_remove_vlan_id (uint16_t ni_id, uint16_t vlan_id)

Function to remove VLAN filters in given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

289

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
in vlan_id VLAN ID to remove in given NI.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.55 int dpni_drv_get_initial_presentation (uint16_t ni_id, struct ep_init_presentation
∗const init_presentation)

Function to get initial presentation settings from EPID table for given NI.

Parameters

in ni_id The AIOP Network Interface ID.
out init_←↩

presentation
Get initial presentation parameters Initial Presentation

Warning

PTA Presentation Address, ASA Presentation Address, ASA Presentation Offset, ASA Presentation
Size: Those fields are not exposed in PRC on rev 2 (Not copied from EPID), therefore it is not
recommended to use them in order to present PTA, ASA.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.56 int dpni_drv_set_initial_presentation (uint16_t ni_id, const struct
ep_init_presentation ∗const init_presentation)

Function to set initial presentation settings in EPID table for given NI.

Parameters

in ni_id The AIOP Network Interface ID.

NXP Semiconductors
AIOP Service Layer API Reference Manual

290

DPLIB

in init_←↩
presentation

Set initial presentation parameters for given options and parameters Ini-
tial Presentation

Warning

1) PTA Presentation Address, ASA Presentation Address, ASA Presentation Offset, ASA Presen-
tation Size: Those fields are not exposed in PRC on rev 2 (Not copied from EPID), therefore it is
not recommended to use them in order to present PTA, ASA. 2) Data Segment, PTA Segment, ASA
Segment must not reside outside the bounds of the presentation area. i.e. They must not fall within
the HWC, TLS or Stack areas. 3) There should not be any overlap among the Segment, PTA & ASA.
4) Minimum presented segment size must be configured.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.57 int dpni_drv_get_initial_presentation_etype (uint16_t ni_id, struct
ep_init_presentation ∗const init_presentation, uint16_t etype)

Function to get initial presentation settings from EPID table for given NI for a certain protocol defined by
EtherType

Parameters

in ni_id The AIOP Network Interface ID.
in etype The etherType registered with dpni_drv_enable_etype_fs()
out init_←↩

presentation
Get initial presentation parameters Initial Presentation

Warning

PTA Presentation Address, ASA Presentation Address, ASA Presentation Offset, ASA Presentation
Size: Those fields are not exposed in PRC on rev 2 (Not copied from EPID), therefore it is not
recommended to use them in order to present PTA, ASA. This method should be called only after
dpni_drv_enable_etype_fs() for the same etherType

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.58 int dpni_drv_set_initial_presentation_etype (uint16_t ni_id, const struct
ep_init_presentation ∗const init_presentation, uint16_t etype)

Function to set initial presentation settings in EPID table for given NI for a certain protocol defined by
EtherType

NXP Semiconductors
AIOP Service Layer API Reference Manual

291

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
in etype The etherType registered with dpni_drv_enable_etype_fs()
in init_←↩

presentation
Set initial presentation parameters for given options and parameters Ini-
tial Presentation

Warning

1) PTA Presentation Address, ASA Presentation Address, ASA Presentation Offset, ASA Presen-
tation Size: Those fields are not exposed in PRC on rev 2 (Not copied from EPID), therefore it is
not recommended to use them in order to present PTA, ASA. 2) Data Segment, PTA Segment, ASA
Segment must not reside outside the bounds of the presentation area. i.e. They must not fall within
the HWC, TLS or Stack areas. 3) There should not be any overlap among the Segment, PTA &
ASA. 4) Minimum presented segment size must be configured. This method should be called only
after dpni_drv_enable_etype_fs() for the same etherType

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.59 int dpni_drv_set_tx_checksum (uint16_t ni_id, const struct dpni_drv_tx_checksum
∗const tx_checksum)

Function to enable/disable l3/l4 check-sum for given NI.

Parameters

in ni_id The AIOP Network Interface ID.
in tx_checksum representing checksums to be enabled/disabled.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.60 int dpni_drv_get_tx_checksum (uint16_t ni_id, struct dpni_drv_tx_checksum
∗const tx_checksum)

Function to get status of l3/l4 check-sum for given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

292

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
out tx_checksum return the status for l3/l4 checksums.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.61 int dpni_drv_set_rx_tc_policing (uint16_t ni_id, uint8_t tc_id, const struct
dpni_drv_rx_tc_policing_cfg ∗ cfg)

Function to set RX TC policing for given NI.

Parameters

in ni_id The AIOP Network Interface ID.
in tc_id Traffic class selection (0-7)
in cfg Traffic class policing configuration

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.62 int dpni_drv_get_rx_tc_policing (uint16_t ni_id, uint8_t tc_id, struct
dpni_drv_rx_tc_policing_cfg ∗const cfg)

Function to get RX TC policing for given NI.

Parameters

in ni_id The AIOP Network Interface ID.
in tc_id Traffic class selection (0-7)
in cfg Traffic class policing configuration

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

NXP Semiconductors
AIOP Service Layer API Reference Manual

293

DPLIB

1.4.3.6.6.63 int dpni_drv_set_tx_selection (uint16_t ni_id, const struct dpni_drv_tx_selection ∗
cfg)

Sets the transmission priorities and the weighted scheduling mode for each traffic class of a given NI. All
TCs are in the same priority group. Bandwidth (TX opportunities) that is made available to a priority group
is fair shared among the TCs of that group in proportion to a configured "weight" value. The bandwidth
weight of a TC it's a value between 100 and 24800.

NXP Semiconductors
AIOP Service Layer API Reference Manual

294

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
in cfg Transmission selection configurations.

Warning

Allowed only when DPNI is disabled.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.64 int dpni_drv_set_tx_shaping (uint16_t ni_id, struct dpni_drv_tx_shaping ∗ cr_cfg,
struct dpni_drv_tx_shaping ∗ er_cfg, uint8_t coupled)

Set the transmit committed rate and excess rate shapers for a given NI. The shapers are token bucket based.
Each shaper has an individually configured rate limit and maximum burst size. The rate is expressed in
Mbps. The burst size is the maximum amount of data (in bytes) sent as a consecutive burst of back to back
frames on the network. Burst size may be up to 63487 bytes.

Parameters

in ni_id : The AIOP Network Interface ID.
in cr_cfg : TX committed rate shaper configuration.
in er_cfg : TX excess rate shaper configuration.
in coupled : Credits to the CR shaper in excess of its token bucket limit is credited

to the ER bucket.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.65 int dpni_drv_set_qos_table (uint16_t ni_id, const struct dpni_drv_qos_tbl ∗ cfg)

Function to set QoS mapping table for given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

295

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
in cfg QoS table configuration.

Warning

This function and all QoS-related functions require that 'max_tcs > 1' was set at DPNI creation.
Before calling this function, call dpni_drv_prepare_key_cfg() to prepare the key_cfg_iova parameter

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.66 int dpni_drv_add_qos_entry (uint16_t ni_id, const struct dpni_drv_qos_rule ∗ cfg,
uint8_t tc_id, uint16_t index)

Function to add QoS mapping entry for given NI and TC.

Parameters

in ni_id The AIOP Network Interface ID.
in cfg Rule configuration for table lookup.
in tc_id Traffic class selection (0-7)
in index Location in the QoS table where to insert the entry. Only relevant if

MASKING is enabled for QoS classification on this DPNI, it is ignored
for exact match. Not supported on LS1088A.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.67 int dpni_drv_remove_qos_entry (uint16_t ni_id, const struct dpni_drv_qos_rule ∗
cfg)

Function to remove QoS mapping entry for given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

296

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
in cfg Rule configuration for table lookup.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.68 int dpni_drv_clear_qos_table (uint16_t ni_id)

Function to clear all QoS mapping entries for given NI.

Parameters

in ni_id The AIOP Network Interface ID.

Warning

Following this function call, all frames are directed to the default traffic class (0)

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.69 void dpni_drv_prepare_rx_tc_early_drop (const struct dpni_drv_early_drop_cfg ∗
cfg, uint8_t ∗ early_drop_buf)

Function to prepare an early drop.

Parameters

in cfg Early-drop configuration.
out early_drop_buf Zeroed 256 bytes of memory before mapping it to DMA.

Warning

This function has to be called before dpni_drv_set_rx_tc_early_drop

1.4.3.6.6.70 int dpni_drv_set_rx_tc_early_drop (uint16_t ni_id, uint8_t tc_id, uint64_t
early_drop_iova)

Function to set Rx traffic class early-drop configuration for given NI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

297

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.
in tc_id Traffic class selection (0-7)
in early_drop_←↩

iova
I/O virtual address of 64 bytes;

Warning

Before calling this function, call dpni_drv_prepare_rx_tc_early_drop() to prepare the early_drop_←↩
iova parameter.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.71 void task_set_tx_tc (uint8_t tc)

Set task TX traffic class.
Parameters

in tc Traffic class.

1.4.3.6.6.72 uint8_t task_get_tx_tc (void)

Get task TX traffic class.

Returns

TX traffic class.

1.4.3.6.6.73 void task_switch_to_egress_parse_profile (uint16_t start_hxs)

Switch to the "egress" parse profile.

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

298

DPLIB

in start_hxs Starting soft/hard parsing HXS.

Returns

None.

1.4.3.6.6.74 int dpni_drv_prepare_key_cfg (struct dpkg_profile_cfg ∗ cfg, uint8_t ∗ key_cfg_buf
)

Function to prepare extract parameters.

Parameters

in cfg defining a full Key Generation profile (rule)
out key_cfg_buf Zeroed 256 bytes of memory before mapping it to DMA

Warning

This function has to be called before the following functions:
• dpni_drv_set_qos_table()

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.75 int dpni_drv_get_num_free_bufs (uint32_t flags, struct dpni_drv_free_bufs ∗
free_bufs)

Get a snapshot of the current fill level (number of free buffers) of the DPNI configured buffer pools.

Parameters

in flags : OR-ed flags selecting the pool : DPNI_DRV_PEB_FREE_BUFS, D←↩
PNI_DRV_BACKUP_FREE_BUFS.

out free_bufs : Structure containing the current fill level.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.76 int dpni_drv_set_errors_behavior (uint16_t ni_id, const struct dpni_drv_error_cfg ∗
cfg)

Get the ID of the Parse Profile configured on a DPNI. All AIOP belonging DPNIs share the same Parse
Profile.

NXP Semiconductors
AIOP Service Layer API Reference Manual

299

DPLIB

Parameters

in ni_id : The AIOP Network Interface ID.
out cfg : Errors configuration.

Returns

None

1.4.3.6.6.77 int dpni_drv_enable_ingress_soft_parser (const struct dpni_drv_sparser_param ∗
param)

Enable an AIOP "ingress" Soft Parser. The SP parameters (if exist) are stored in the Soft Examination
Parameter Array of the AIOP "ingress" Parse Profile. All AIOP belonging DPNIs share the same "ingress"
Parse Profile. The driver checks if the soft parse to be enabled is loaded and if its parameters (size and
offset) coincides with the loading time declared parameters.

Parameters

in param : Soft Parser activation parameters.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.78 int dpni_drv_enable_egress_soft_parser (const struct dpni_drv_sparser_param ∗
param)

Enable an AIOP "egress" Soft Parser. The SP parameters (if exist) are stored in the Soft Examination
Parameter Array of the AIOP "egress" Parse Profile. All AIOP belonging DPNIs share the same "egress"
Parse Profile. The driver checks if the soft parse to be enabled is loaded and if its parameters (size and
offset) coincides with the loading time declared parameters.

Parameters

in param : Soft Parser activation parameters.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.79 int dpni_drv_load_wriop_ingress_soft_parser (const struct
dpni_drv_sparser_param ∗ param)

Load a Soft Parser in the ingress WRIOP Parser instructions memory.

NXP Semiconductors
AIOP Service Layer API Reference Manual

300

DPLIB

Parameters

in param : Soft Parser loading parameters.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.80 int dpni_drv_load_wriop_egress_soft_parser (const struct dpni_drv_sparser_param
∗ param)

Load a Soft Parser in the egress WRIOP Parser instructions memory.

Parameters

in param : Soft Parser loading parameters.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.81 int dpni_drv_enable_wriop_ingress_soft_parser (uint16_t ni_id, const struct
dpni_drv_sparser_param ∗ param)

Enable a Soft Parser onto the ingress path of the WRIOP parser for all AIOP belonging DPNIs.

Parameters

in ni_id : The Network Interface ID
in param : Soft Parser enable parameters.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.82 int dpni_drv_enable_wriop_egress_soft_parser (uint16_t ni_id, const struct
dpni_drv_sparser_param ∗ param)

Enable a Soft Parser onto the egress path of the WRIOP parser for all AIOP belonging DPNIs.

NXP Semiconductors
AIOP Service Layer API Reference Manual

301

DPLIB

Parameters

in ni_id : The Network Interface ID
in param : Soft Parser enable parameters.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.83 int dpni_drv_set_tx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗
cfg)

Set Tx traffic class taildrop configuration for a given DPNI.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
in cfg : Structure representing taildrop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.84 int dpni_drv_get_tx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗
cfg)

Retrieve Tx traffic class taildrop configuration of a given DPNI.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
out cfg : Structure receiving the taildrop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.85 int dpni_drv_set_tx_early_drop (uint16_t ni_id, uint8_t tc, struct
dpni_drv_early_drop ∗ cfg)

Set Tx traffic class early drop configuration for a given DPNI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

302

DPLIB

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
in cfg : Structure representing early drop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.86 int dpni_drv_get_tx_early_drop (uint16_t ni_id, uint8_t tc, struct
dpni_drv_early_drop ∗ cfg)

Retrieve Tx traffic class early drop configuration of a given DPNI.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
out cfg : Structure receiving the early drop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.87 int dpni_drv_set_rx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗
cfg)

Set Rx traffic class taildrop configuration for a given DPNI.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
in cfg : Structure representing taildrop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.88 int dpni_drv_get_rx_taildrop (uint16_t ni_id, uint8_t tc, struct dpni_drv_taildrop ∗
cfg)

Retrieve Rx traffic class taildrop configuration of a given DPNI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

303

DPLIB

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
out cfg : Structure receiving the taildrop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.89 int dpni_drv_set_rx_early_drop (uint16_t ni_id, uint8_t tc, struct
dpni_drv_early_drop ∗ cfg)

Set Rx traffic class early drop configuration for a given DPNI.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
in cfg : Structure representing early drop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.90 int dpni_drv_get_rx_early_drop (uint16_t ni_id, uint8_t tc, struct
dpni_drv_early_drop ∗ cfg)

Retrieve Rx traffic class early drop configuration of a given DPNI.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
out cfg : Structure receiving the early drop configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.91 int dpni_drv_set_pools (uint16_t ni_id, dpni_drv_pools_cfg ∗ cfg)

Set buffer pools configuration of a given DPNI.

NXP Semiconductors
AIOP Service Layer API Reference Manual

304

DPLIB

Parameters

in ni_id : The Network Interface ID
in cfg : Buffer pools configuration.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.92 int dpni_drv_set_congestion_notification (uint16_t ni_id, uint8_t tc,
dpni_drv_queue_type qtype, struct dpni_drv_congestion_notification_cfg ∗ cfg)

Set traffic class congestion notification configuration.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
in qtype : Type of queue - Rx, Tx are supported
in cfg : Congestion notification configuration

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.93 int dpni_drv_get_congestion_notification (uint16_t ni_id, uint8_t tc,
dpni_drv_queue_type qtype, struct dpni_drv_congestion_notification_cfg ∗ cfg)

Get traffic class congestion notification configuration.

Parameters

in ni_id : The Network Interface ID
in tc : Traffic class
in qtype : Type of queue - Rx, Tx are supported
out cfg : Congestion notification configuration

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

NXP Semiconductors
AIOP Service Layer API Reference Manual

305

DPLIB

1.4.3.6.6.94 int dpni_drv_set_rx_priorities (uint16_t ni_id)

Sets the Rx priorities for each traffic class of a given NI. Lower index Rx TCs always take precedence
over higher index TCs. 4 strict priority levels: 0, 1, [2-5], [6-7]. A DPCON must be associated with AIOP
for the purpose of scheduling.

NXP Semiconductors
AIOP Service Layer API Reference Manual

306

DPLIB

Parameters

in ni_id The AIOP Network Interface ID.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.95 int dpni_drv_get_attributes (uint16_t ni_id, dpni_drv_attr ∗ attr)

Retrieve the attributes of a given NI.

Parameters

in ni_id The AIOP Network Interface ID.
out attr Object's attributes.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.4.3.6.6.96 options

1.4.3.6.6.96.1 Overview

Enqueue working frame modes bitmap values.

Macros

• #define DPNI_DRV_SEND_MODE_NONE
• #define DPNI_DRV_SEND_MODE_TERM
• #define DPNI_DRV_SEND_MODE_ATTRIBUTE
• #define DPNI_DRV_SEND_MODE_CONDTERM
• #define DPNI_DRV_SEND_MODE_RL

1.4.4 EP

1.4.4.1 Overview

Entry Point lookup table.

Modules

• Initial Presentation Options
• Initial Presentation

NXP Semiconductors
AIOP Service Layer API Reference Manual

307

DPLIB

1.4.4.2 Initial Presentation Options

1.4.4.2.1 Overview

initial presentation modification options

Macros

• #define EP_INIT_PRESENTATION_OPT_PTA
• #define EP_INIT_PRESENTATION_OPT_ASAPA
• #define EP_INIT_PRESENTATION_OPT_ASAPO
• #define EP_INIT_PRESENTATION_OPT_ASAPS
• #define EP_INIT_PRESENTATION_OPT_SPA
• #define EP_INIT_PRESENTATION_OPT_SPS
• #define EP_INIT_PRESENTATION_OPT_SPO
• #define EP_INIT_PRESENTATION_OPT_SR
• #define EP_INIT_PRESENTATION_OPT_NDS

1.4.4.2.2 Macro Definition Documentation

1.4.4.2.2.1 #define EP_INIT_PRESENTATION_OPT_PTA

Select to modify the PTA Presentation address.

1.4.4.2.2.2 #define EP_INIT_PRESENTATION_OPT_ASAPA

Select to modify the ASA presentation address.

1.4.4.2.2.3 #define EP_INIT_PRESENTATION_OPT_ASAPO

Select to modify the ASA presentation offset.

1.4.4.2.2.4 #define EP_INIT_PRESENTATION_OPT_ASAPS

Select to modify the ASA presentation size.

1.4.4.2.2.5 #define EP_INIT_PRESENTATION_OPT_SPA

Select to modify the segment presentation address.

1.4.4.2.2.6 #define EP_INIT_PRESENTATION_OPT_SPS

Select to modify the segment presentation size.

1.4.4.2.2.7 #define EP_INIT_PRESENTATION_OPT_SPO

Select to modify the segment presentation offset.

NXP Semiconductors
AIOP Service Layer API Reference Manual

308

NETF (Network Libraries)

1.4.4.2.2.8 #define EP_INIT_PRESENTATION_OPT_SR

Select to modify the segment reference bit.

1.4.4.2.2.9 #define EP_INIT_PRESENTATION_OPT_NDS

Select to modify no data segment bit.

1.4.4.3 Initial Presentation

1.4.4.3.1 Overview

Structure representing initial presentation settings.

1.4.5 Data Path Key Generator API

1.5 NETF (Network Libraries)

1.5.1 Overview

AIOP Accelerator APIs.

NETF provides various frame handling functions including IP reassembly, IP fragmentation and various
header modification functions.

Modules

• GENERAL
• IP
• L2
• L4
• NAT
• IPF
• IPR
• GSO
• GRO
• IPSEC
• Soft Parser Driver
• Protocol headers definitions
• CAPWAP

Macros

• #define TCP_GRO_SET_METADATA_SEG_SIZES_ADDR(_metadata_addr, _seg_sizes_addr)

NXP Semiconductors
AIOP Service Layer API Reference Manual

309

NETF (Network Libraries)

Typedefs

• typedef void(gro_timeout_cb_t) (uint64_t arg)

Variables

• Group FSL_AIOP_GRO GRO Description FSL_AIOP_GRO
• Group FSL_AIOP_GSO GSO Description FSL_AIOP_GSO

1.5.2 Macro Definition Documentation

1.5.2.1 #define TCP_GRO_SET_METADATA_SEG_SIZES_ADDR(_metadata_addr,
_seg_sizes_addr)

TCP GRO metadata segment sizes address setting macro.

_metadata_addr - address (in HW buffers) of the TCP GRO aggregation metadata structure, in which the
_seg_sizes_addr will be set. _seg_sizes_addr - segment sizes external address (in HW buffers) to be set.

1.5.3 Typedef Documentation

1.5.3.1 typedef void(gro_timeout_cb_t) (uint64_t arg)

User callback function, called after aggregation timeout is expired.

The user provides this function and the GRO process invokes it.

Parameters

in arg - Address (in HW buffers) of the argument to the callback function.

1.5.4 GENERAL

1.5.4.1 Overview

AIOP NETF general API.

Modules

• AIOP Frame Operations

NXP Semiconductors
AIOP Service Layer API Reference Manual

310

NETF (Network Libraries)

1.5.4.2 AIOP Frame Operations

1.5.4.2.1 Overview

FSL AIOP Frame Operations.

Modules

• Frame Operations Functions

1.5.4.2.2 Frame Operations Functions

1.5.4.2.2.1 Overview

Frame Operations Functions.

Functions

• int create_frame (struct ldpaa_fd ∗fd, void ∗data, uint16_t size, uint8_t spid, uint8_t ∗frame_handle)
• int create_fd (struct ldpaa_fd ∗fd, void ∗data, uint16_t size, uint8_t spid)
• int create_arp_request_broadcast (struct ldpaa_fd ∗fd, uint32_t local_ip, uint32_t target_ip, uint8_t

spid, uint8_t ∗frame_handle)
• int create_arp_request (struct ldpaa_fd ∗fd, uint32_t local_ip, uint32_t target_ip, uint8_t ∗target_←↩

eth, uint8_t spid, uint8_t ∗frame_handle)

1.5.4.2.2.2 Function Documentation

1.5.4.2.2.2.1 int create_frame (struct ldpaa_fd ∗ fd, void ∗ data, uint16_t size, uint8_t spid,
uint8_t ∗ frame_handle)

Create a frame from scratch and fill it with user specified data.

Implicit input parameters in Task Defaults: SPID (Storage Profile ID), task default AMQ attributes (ICID,
PL, VA, BDI).

Implicitly updated values in Task Defaults in case the FD address is located in the default FD address
(HWC_FD_ADDRESS): ASA size(zeroed), PTA address(zeroed), segment length(zeroed), segment off-
set(zeroed), segment handle, NDS bit(reset), frame handle.

In case this is the default frame, a default segment will be presented, task defaults segment address and seg-
ment length(max(size, DEFAULT_SEGMENT_SIZE)) will be implicitly updated, and the parse results
will be updated.

In case this is not the default frame, in order to present a data segment of this frame after the function
returns, fdma_present_frame_segment() should be called (opens a data segment of the frame).

NXP Semiconductors
AIOP Service Layer API Reference Manual

311

NETF (Network Libraries)

Parameters

in fd - Pointer to the workspace location of the frame descriptor of the created
frame ldpaa_fd. On a success return this pointer will point to a valid FD.

in data - A pointer to the workspace data to be inserted to the frame.
in size - data size. Must be greater than 0.
in spid - Storage profile ID to be used (Workaround for TKT285303).
out frame_handle - Pointer to the opened working frame handle.

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EIO - Parsing Error(Relevant in case this is the default frame). Recommenda-

tion is to discard the frame.
ENOSPC - Block Limit Exceeds (Frame Parsing reached the limit of 256 bytes be-

fore completing all parsing). (Relevant in case this is the default frame).
Recommendation is to discard the frame.

ENOMEM - Failed due to buffer pool depletion.

Warning

In this Service Routine the task yields.
The frame FD is overwritten in this function.
This function may result in a fatal error.

1.5.4.2.2.2.2 int create_fd (struct ldpaa_fd ∗ fd, void ∗ data, uint16_t size, uint8_t spid)

Create a frame from scratch and fill it with user specified data.

After filling the frame, it will be closed (i.e. - The working frame will be closed and the FD will be updated
in workspace).

Implicit input parameters in Task Defaults: SPID (Storage Profile ID), task default AMQ attributes (ICID,
PL, VA, BDI).

Implicitly updated values in Task Defaults in case the FD address is located in the default FD address
(HWC_FD_ADDRESS): ASA size(zeroed), PTA address(zeroed), segment length(zeroed), segment off-
set(zeroed), NDS bit(reset).

In case this is the default frame, in order to present a data segment of this frame after the function returns,
the presentation context values have to be modified prior to calling fdma_present_default_frame() (opens
the default frame and optionally present a segment).

NXP Semiconductors
AIOP Service Layer API Reference Manual

312

NETF (Network Libraries)

In case this is not the default frame, in order to present a data segment of this frame after the function
returns, fdma_present_frame() should be called (opens the frame and optionally present a segment).

NXP Semiconductors
AIOP Service Layer API Reference Manual

313

NETF (Network Libraries)

Parameters

in fd - Pointer to the workspace location of the frame descriptor of the created
frame ldpaa_fd. On a success return this pointer will point to a valid FD.

in data - A pointer to the workspace data to be inserted to the frame.
in size - data size. Must be greater than 0.
in spid - Storage profile ID to be used.

Returns

0 on Success, or negative value on error.

Return values

0 - Success.
ENOMEM - Failed due to buffer pool depletion.

Remarks

FD is updated.

Warning

In this Service Routine the task yields.
The frame FD is overwritten in this function.
This function may result in a fatal error.

1.5.4.2.2.2.3 int create_arp_request_broadcast (struct ldpaa_fd ∗ fd, uint32_t local_ip, uint32_t
target_ip, uint8_t spid, uint8_t ∗ frame_handle)

Create an ARP Request broadcast frame from scratch. This function creates a new frame with ETH +
ARP Request headers.

Implicit input parameters in Task Defaults: SPID (Storage Profile ID), task default AMQ attributes (ICID,
PL, VA, BDI).

Implicitly updated values in Task Defaults in case the FD address is located in the default FD address
(HWC_FD_ADDRESS): ASA size(zeroed), PTA address(zeroed), segment length(zeroed), segment off-
set(zeroed), segment handle, NDS bit(reset), frame handle.

In case this is the default frame, a default segment will be presented, and the parse results will be updated.

In case this is not the default frame, in order to present a data segment of this frame after the function
returns, fdma_present_frame_segment() should be called (opens a data segment of the frame).

NXP Semiconductors
AIOP Service Layer API Reference Manual

314

NETF (Network Libraries)

Parameters

in fd - Pointer to the workspace location of the frame descriptor of the created
frame ldpaa_fd. On a success return this pointer will point to a valid FD.

in local_ip - local IPv4 address.
in target_ip - destination IPv4 address.
in spid - Storage profile ID to be used (Workaround for TKT285303).
out frame_handle - Pointer to the opened working frame handle.

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EIO - Parsing Error(Relevant in case this is the default frame). Recommenda-

tion is to discard the frame.
ENOSPC - Block Limit Exceeds (Frame Parsing reached the limit of 256 bytes be-

fore completing all parsing). (Relevant in case this is the default frame).
Recommendation is to discard the frame.

Warning

In this Service Routine the task yields.
The frame FD is overwritten in this function.
This function may result in a fatal error.

1.5.4.2.2.2.4 int create_arp_request (struct ldpaa_fd ∗ fd, uint32_t local_ip, uint32_t target_ip,
uint8_t ∗ target_eth, uint8_t spid, uint8_t ∗ frame_handle)

Create an ARP Request frame from scratch. This function creates a new frame with ETH + ARP Request
headers. It can be used for creating a unicast or multicast frames.

Implicit input parameters in Task Defaults: SPID (Storage Profile ID), task default AMQ attributes (ICID,
PL, VA, BDI).

Implicitly updated values in Task Defaults in case the FD address is located in the default FD address
(HWC_FD_ADDRESS): ASA size(zeroed), PTA address(zeroed), segment length(zeroed), segment off-
set(zeroed), segment handle, NDS bit(reset), frame handle.

In case this is the default frame, a default segment will be presented, and the parse results will be updated.

In case this is not the default frame, in order to present a data segment of this frame after the function
returns, fdma_present_frame_segment() should be called (opens a data segment of the frame).

NXP Semiconductors
AIOP Service Layer API Reference Manual

315

NETF (Network Libraries)

Parameters

in fd - Pointer to the workspace location of the frame descriptor of the created
frame ldpaa_fd. On a success return this pointer will point to a valid FD.

in local_ip - local IPv4 address.
in target_ip - destination IPv4 address.
in target_eth - target MAC address.
in spid - Storage profile ID to be used (Workaround for TKT285303).
out frame_handle - Pointer to the opened working frame handle.

Returns

0 on Success, or negative value on error.

Return values

0 - Success
EIO - Parsing Error(Relevant in case this is the default frame). Recommenda-

tion is to discard the frame.
ENOSPC - Block Limit Exceeds (Frame Parsing reached the limit of 256 bytes be-

fore completing all parsing). (Relevant in case this is the default frame).
Recommendation is to discard the frame.

Warning

In this Service Routine the task yields.
The frame FD is overwritten in this function.
This function may result in a fatal error.

1.5.5 IP

1.5.5.1 Overview

AIOP IP related header modifications.

Modules

• IP Header Modification

1.5.5.2 IP Header Modification

1.5.5.2.1 Overview

AIOP IP related header modifications API.

NXP Semiconductors
AIOP Service Layer API Reference Manual

316

NETF (Network Libraries)

Modules

• HM IP Modes
• HM IP related functions

Macros

• #define NO_IP_ENCAPSULATION_FOUND_ERROR
• #define NO_IP_HDR_ERROR

1.5.5.2.2 Macro Definition Documentation

1.5.5.2.2.1 #define NO_IP_ENCAPSULATION_FOUND_ERROR

The frame contain only one IP header.

1.5.5.2.2.2 #define NO_IP_HDR_ERROR

No IP header was found.

1.5.5.2.3 HM IP Modes

1.5.5.2.3.1 Overview

IP Header Modification Modes.

Modules

• IPv4 header modification mode bits
• IPv4 header Mangle bits
• IPv6 header Mangle bits
• IPv6 header modification mode bits
• IPv4 header encapsulation mode bits
• IPv6 header encapsulation mode bits
• IP header decapsulation mode bits
• IP header checksum calculation mode bits
• IPv4 time-stamp options

1.5.5.2.3.2 IPv4 header modification mode bits

1.5.5.2.3.2.1 Overview

Macros

• #define IPV4_MODIFY_MODE_L4_CHECKSUM
• #define IPV4_MODIFY_MODE_IPTTL
• #define IPV4_MODIFY_MODE_IPTOS
• #define IPV4_MODIFY_MODE_IPID
• #define IPV4_MODIFY_MODE_IPSRC
• #define IPV4_MODIFY_MODE_IPDST

NXP Semiconductors
AIOP Service Layer API Reference Manual

317

NETF (Network Libraries)

1.5.5.2.3.2.2 Macro Definition Documentation

1.5.5.2.3.2.3 #define IPV4_MODIFY_MODE_L4_CHECKSUM

If set, update L4 checksum (if needed)

1.5.5.2.3.2.4 #define IPV4_MODIFY_MODE_IPTTL

If set, Time to Live field is decremented by 1.

1.5.5.2.3.2.5 #define IPV4_MODIFY_MODE_IPTOS

If set, the original IP TOS (8 bits of TOS field in the frame) will be replaced.

1.5.5.2.3.2.6 #define IPV4_MODIFY_MODE_IPID

If set, the original IP ID will be replaced.

1.5.5.2.3.2.7 #define IPV4_MODIFY_MODE_IPSRC

If set, the original IP Src address will be replaced.

1.5.5.2.3.2.8 #define IPV4_MODIFY_MODE_IPDST

If set, the original IP Dst address will be replaced.

1.5.5.2.3.3 IPv4 header Mangle bits

1.5.5.2.3.3.1 Overview

Macros

• #define IPV4_MANGLE_DSCP
• #define IPV4_MANGLE_TTL

1.5.5.2.3.3.2 Macro Definition Documentation

1.5.5.2.3.3.3 #define IPV4_MANGLE_DSCP

If set, set DSCP field.

1.5.5.2.3.3.4 #define IPV4_MANGLE_TTL

If set, set Time to Live field.

1.5.5.2.3.4 IPv6 header Mangle bits

1.5.5.2.3.4.1 Overview

Macros

• #define IPV6_MANGLE_DSCP

NXP Semiconductors
AIOP Service Layer API Reference Manual

318

NETF (Network Libraries)

• #define IPV6_MANGLE_HOP_LIMIT
• #define IPV6_MANGLE_FLOW_LABEL

1.5.5.2.3.4.2 Macro Definition Documentation

1.5.5.2.3.4.3 #define IPV6_MANGLE_DSCP

If set, set DSCP field.

1.5.5.2.3.4.4 #define IPV6_MANGLE_HOP_LIMIT

If set, set hop limit field.

1.5.5.2.3.4.5 #define IPV6_MANGLE_FLOW_LABEL

If set, set hop limit field.

1.5.5.2.3.5 IPv6 header modification mode bits

1.5.5.2.3.5.1 Overview

Macros

• #define IPV6_MODIFY_MODE_L4_CHECKSUM
• #define IPV6_MODIFY_MODE_IPHL
• #define IPV6_MODIFY_MODE_IPTC
• #define IPV6_MODIFY_MODE_FLOW_LABEL
• #define IPV6_MODIFY_MODE_IPSRC
• #define IPV6_MODIFY_MODE_IPDST

1.5.5.2.3.5.2 Macro Definition Documentation

1.5.5.2.3.5.3 #define IPV6_MODIFY_MODE_L4_CHECKSUM

If set, update L4 checksum (if needed)

1.5.5.2.3.5.4 #define IPV6_MODIFY_MODE_IPHL

If set, Hop Limit field is decremented by 1.

1.5.5.2.3.5.5 #define IPV6_MODIFY_MODE_IPTC

If set, the original IP TC (8 bits of Traffic Class field in the frame) will be replaced.

1.5.5.2.3.5.6 #define IPV6_MODIFY_MODE_FLOW_LABEL

If set, the original flow label field (20bits) will be replaced.

1.5.5.2.3.5.7 #define IPV6_MODIFY_MODE_IPSRC

If set, the original IP Src address will be replaced.

NXP Semiconductors
AIOP Service Layer API Reference Manual

319

NETF (Network Libraries)

1.5.5.2.3.5.8 #define IPV6_MODIFY_MODE_IPDST

If set, the original IP Dst address will be replaced.

1.5.5.2.3.6 IPv4 header encapsulation mode bits

1.5.5.2.3.6.1 Overview

Macros

• #define IPV4_ENCAP_MODE_TTL
• #define IPV4_ENCAP_MODE_TOS_DS
• #define IPV4_ENCAP_MODE_TOS_ECN
• #define IPV4_ENCAP_MODE_DF

1.5.5.2.3.6.2 Macro Definition Documentation

1.5.5.2.3.6.3 #define IPV4_ENCAP_MODE_TTL

If set, the TTL field is copied from the inner IP header.

1.5.5.2.3.6.4 #define IPV4_ENCAP_MODE_TOS_DS

If set, the TOS[DS] field (6 bits) is propagated from the inner IP header.

1.5.5.2.3.6.5 #define IPV4_ENCAP_MODE_TOS_ECN

If set, the TOS[ECN] field (2 bits) is propagated from the inner IP header.

1.5.5.2.3.6.6 #define IPV4_ENCAP_MODE_DF

If set, the DF bit is copied from the inner IP header.

1.5.5.2.3.7 IPv6 header encapsulation mode bits

1.5.5.2.3.7.1 Overview

Macros

• #define IPV6_ENCAP_MODE_HL
• #define IPV6_ENCAP_MODE_TC_DSCP
• #define IPV6_ENCAP_MODE_TC_ECN

1.5.5.2.3.7.2 Macro Definition Documentation

1.5.5.2.3.7.3 #define IPV6_ENCAP_MODE_HL

If set, the Hop Limit field is copied from the inner IP header.

1.5.5.2.3.7.4 #define IPV6_ENCAP_MODE_TC_DSCP

If set, the TC[DS] field (6 bits) is propagated from the inner IP header.

NXP Semiconductors
AIOP Service Layer API Reference Manual

320

NETF (Network Libraries)

1.5.5.2.3.7.5 #define IPV6_ENCAP_MODE_TC_ECN

If set, the TC[ECN] field (2 bits) is propagated from the inner IP header.

1.5.5.2.3.8 IP header decapsulation mode bits

1.5.5.2.3.8.1 Overview

Macros

• #define IP_DECAP_MODE_TTL_HL
• #define IP_DECAP_MODE_TOS_TC_DS
• #define IP_DECAP_MODE_TOS_TC_ECN

1.5.5.2.3.8.2 Macro Definition Documentation

1.5.5.2.3.8.3 #define IP_DECAP_MODE_TTL_HL

If set, the Hop Limit / TTL field is copied from the outer IP header.

1.5.5.2.3.8.4 #define IP_DECAP_MODE_TOS_TC_DS

If set, the TOS/TC[DS] field is propagated from the outer IP header.

1.5.5.2.3.8.5 #define IP_DECAP_MODE_TOS_TC_ECN

If set, the TOS/TC[ECN] field is propagated from the outer IP header.

1.5.5.2.3.9 IP header checksum calculation mode bits

1.5.5.2.3.9.1 Overview

Macros

• #define IP_CKSUM_CALC_MODE_NONE
• #define IP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA

1.5.5.2.3.9.2 Macro Definition Documentation

1.5.5.2.3.9.3 #define IP_CKSUM_CALC_MODE_NONE

No Mode bits.

1.5.5.2.3.9.4 #define IP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA

Don't Update FDMA mode bit If set, the SR will not call fdma_modify_default_segment_data to update
the FDMA engine with the frame header changes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

321

NETF (Network Libraries)

1.5.5.2.3.10 IPv4 time-stamp options

1.5.5.2.3.10.1 Overview

Macros

• #define IP_TS_OPT_INC_OVERFLOW

1.5.5.2.4 HM IP related functions

1.5.5.2.4.1 Overview

IP related Header Modification functions.

Functions

• int ipv4_header_modification (uint8_t flags, uint8_t tos, uint16_t id, uint32_t ip_src_addr, uint32_t
ip_dst_addr)

• void ipv4_mangle (uint8_t flags, uint8_t dscp, uint8_t ttl)
• void ipv4_dec_ttl_modification (void)
• int ipv4_ts_opt_modification (struct ipv4hdr ∗ipv4_hdr, uint8_t ∗ip_opt_ptr, uint32_t ip_address)
• int ipv6_header_modification (uint8_t flags, uint8_t tc, uint32_t flow_label, uint8_t ∗ip_src_addr,

uint8_t ∗ip_dst_addr)
• void ipv6_mangle (uint8_t flags, uint8_t dscp, uint8_t hop_limit, uint32_t flow_label)
• void ipv6_dec_hop_limit_modification (void)
• int ipv4_header_encapsulation (uint8_t flags, void ∗ipv4header, uint8_t ipv4_header_size)
• int ipv6_header_encapsulation (uint8_t flags, void ∗ipv6header, uint8_t ipv6_header_size)
• int ip_header_decapsulation (uint8_t flags)
• int ip_set_nw_src (uint32_t src_addr)
• int ip_set_nw_dst (uint32_t dst_addr)
• void ip_cksum_calculate (struct ipv4hdr ∗ipv4header, uint8_t flags)

1.5.5.2.4.2 Function Documentation

1.5.5.2.4.2.1 int ipv4_header_modification (uint8_t flags, uint8_t tos, uint16_t id, uint32_t
ip_src_addr, uint32_t ip_dst_addr)

Replace/update fields in the outer IPv4 header (if exists).

It automatically generates the IP checksum and optionally
can update the UDP/TCP checksum.

The function assumes the original UDP/TCP checksum to be valid.

If the incoming frame contains TCP/UDP (the original UDP
checksum!= 0), the following occur:
1- the UDP/TCP checksum is recalculated based on the original

checksum and the change in the relevant header fields.
2-The gross running sum of the frame becomes invalid after

calling this function.

NXP Semiconductors
AIOP Service Layer API Reference Manual

322

NETF (Network Libraries)

Implicit input parameters in task defaults: frame handle,
segment handle, parser_profile_id, parser_starting_hxs.

Implicitly updated values in task defaults: segment length,
segment address.

Parameters

in flags - IPv4 modification mode bits
in tos - TOS header to be replaced.
in id - Identification header to be replaced.
in ip_src_addr - Src address header to be replaced.
in ip_dst_addr - Dst address header to be replaced.

Returns

Success or Failure (There was no IPv4 header in the frame).

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

1.5.5.2.4.2.2 void ipv4_mangle (uint8_t flags, uint8_t dscp, uint8_t ttl)

Replace DSCP and/or TTL fields in the outer IPv4 header.

It automatically generates the IP checksum.

Implicit input parameters in task defaults: frame handle,
segment handle, parser_profile_id, parser_starting_hxs.

Implicitly updated values in task defaults: segment length,
segment address.

Parameters

in flags - IPv4 modification mode bits . At least one bit must be set in flags.
in dscp - dscp header to be replaced (6 bits).
in ttl - time to live field to be replaced.

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

323

NETF (Network Libraries)

1.5.5.2.4.2.3 void ipv4_dec_ttl_modification (void)

Decrement TTL in the outer IPv4 header.

It automatically generates the IP checksum.

The function assumes the original UDP/TCP checksum to be valid.

Implicit input parameters in task defaults: frame handle,
segment handle, parser_profile_id, parser_starting_hxs.

Implicitly updated values in task defaults: segment length,
segment address.

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

1.5.5.2.4.2.4 int ipv4_ts_opt_modification (struct ipv4hdr ∗ ipv4_hdr, uint8_t ∗ ip_opt_ptr,
uint32_t ip_address)

IPv4 header time stamp option modification. This function updates the time stamp in the time-stamp
option field and check for errors according to RFC 791.

It automatically generates the IP checksum.

The function assumes the original UDP/TCP checksum to be valid.

Implicit input parameters in task defaults: frame handle, segment handle, parser_profile_id, parser_←↩
starting_hxs. Implicitly updated values in task defaults: segment length, segment address.

Parameters

in ipv4_hdr - pointer to the ipv4 header in WRKS.
in ip_opt_ptr - pointer to the IPv4 time-stamp option in WRKS.
in ip_address - needed in case IP address and time-stamp needed to be updated to-

gether. (according to flag field)

Returns

0 on Success, positive for status or negative value on error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

324

NETF (Network Libraries)

Return values

0 - Success.
EIO - option length < 4.

ENOSPC - there is no enough room to insert time-stamp or pointer value is less than
5.

ENODEV - there is overflow on the overflow counter itself.
#IP_TS_OPT_INC_OV←↩

ERFLOW
- the overflow counter was incremented since opt.ptr<opt.length and no
time stamp was inserted.

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

1.5.5.2.4.2.5 int ipv6_header_modification (uint8_t flags, uint8_t tc, uint32_t flow_label, uint8_t
∗ ip_src_addr, uint8_t ∗ ip_dst_addr)

Replace/update fields in the outer IPv6 header (if exists).

This function supports only IPv6 frames without routing header.

If the incoming frame contains TCP/UDP, the following occur:
1- the UDP/TCP checksum is recalculated based on the original

checksum and the change in the relevant header fields.
2-The gross running sum of the frame becomes invalid after

calling this function.

Implicit input parameters in task defaults: frame handle,
segment handle, parser_profile_id, parser_starting_hxs.

Implicitly updated values in task defaults: segment length,
segment address.

Parameters

in flags - IPv6 modification mode bits
in tc - TC header to be replaced.
in flow_label - flow label header to be replaced.
in ip_src_addr - Points to the IP Src address header to be replaced (in internal memory).
in ip_dst_addr - Points to the IP Dst address header to be replaced (in internal memory).

Returns

Success or Failure (There was no IPv6 header in the frame).

Warning

The parse results must be updated before calling this operation.
In this function, the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

325

NETF (Network Libraries)

1.5.5.2.4.2.6 void ipv6_mangle (uint8_t flags, uint8_t dscp, uint8_t hop_limit, uint32_t
flow_label)

Replace any combination of DSCP/hop limit/flow_label fields in the outer IPv6 header).

It automatically generates the IP checksum.

Implicit input parameters in task defaults: frame handle, segment handle, parser_profile_id, parser_←↩
starting_hxs. Implicitly updated values in task defaults: segment length, segment address.

Parameters

in flags - IPv6 modification mode bits . At least one bit must be set in flags.
in dscp - dscp header to be replaced (6 bits).
in hop_limit - hop_limit field to be replaced.
in flow_label - flow_label field to be replaced (20 bits).

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

1.5.5.2.4.2.7 void ipv6_dec_hop_limit_modification (void)

Decrement hop limit in the outer IPv6 header.

It automatically generates the IP checksum.

The function assumes the original UDP/TCP checksum to be valid.

Implicit input parameters in task defaults: frame handle,
segment handle, parser_profile_id, parser_starting_hxs.

Implicitly updated values in task defaults: segment length,
segment address.

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

1.5.5.2.4.2.8 int ipv4_header_encapsulation (uint8_t flags, void ∗ ipv4header, uint8_t
ipv4_header_size)

NXP Semiconductors
AIOP Service Layer API Reference Manual

326

NETF (Network Libraries)

This HM operation encapsulates an IP header with an outer IPv4 header for tunneling. It can be applied
to frames with or without ETH header. The Ethernet type (or MPLS label) is updated if exists. The I←↩
Pv4 length field of the inserted header is updated. The IPv4 checksum is calculated and inserted by this
operation.

The checksum field in the inserted IPv4 header should be cleared by the user.

Few fields can be imported from the inner IP (v4 or v6) to the outer IPv4 header.

The parse results are updated (the parser is rerun) automatically at the end of this operation.

Implicit input parameters in task defaults: frame handle, segment handle, parser_profile_id, parser_←↩
starting_hxs. Implicitly updated values in task defaults: segment length, segment address.

Parameters

in ipv4header - Points to the new outer IPv4 header be inserted (in workspace mem-
ory).

in ipv4_header_←↩
size

- Size (in bytes) of the new outer IPv4 header.

in flags - IPv4 encapsulation mode bits

Returns

Success or Failure (There was no inner IP header in the frame).

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

1.5.5.2.4.2.9 int ipv6_header_encapsulation (uint8_t flags, void ∗ ipv6header, uint8_t
ipv6_header_size)

This HM operation encapsulates an IP header with an outer IPv6 header for tunneling. It can be applied
to frames with or without ETH header.

The Ethernet type (or MPLS label) is updated if exists. The IPv6 payload length field of the inserted
header is updated.

Few fields can be imported from the inner IP (v4 or v6) to the outer IPv6 header.

The parse results are updated (the parser is rerun) automatically at the end of this operation.

Implicit input parameters in task defaults: frame handle, segment handle, parser_profile_id, parser_←↩
starting_hxs. Implicitly updated values in task defaults: segment length, segment address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

327

NETF (Network Libraries)

Parameters

in ipv6header - Points to the new outer IPv6 header to be inserted (in workspace).
in ipv6_header_←↩

size
- Size (in bytes) of the new outer IPv6 header.

in flags - IPv6 encapsulation mode bits

Returns

Success or Failure (There was no inner IP header in the frame).

Warning

The parse results must be updated before calling this operation. In this function, the task yields.

1.5.5.2.4.2.10 int ip_header_decapsulation (uint8_t flags)

This HM operation de-capsulates an outer IP header (if exist). It can be applied to frames with or without
ETH header.

Few fields can be imported from the outer IP to the inner IP header.

The parse results are updated (the parser is rerun) automatically at the end of this operation.

Parameters

in flags - IP decapsulation mode bits

Returns

Success or Failure (There was no outer IP header in the frame).

Warning

The parse results must be updated before calling this operation.

1.5.5.2.4.2.11 int ip_set_nw_src (uint32_t src_addr)

Replace the outer IPv4 source address. The IP and UDP/TCP checksums are updated automatically.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

328

NETF (Network Libraries)

Parameters

in src_addr - the new IPv4 source address.

Returns

Success or Failure (There was no IPv4 header in the frame).

Warning

The parse results must be updated before calling this operation.
This function assumes the original IP checksum is valid.

1.5.5.2.4.2.12 int ip_set_nw_dst (uint32_t dst_addr)

Replace the outer IPv4 destination address. The IP and UDP/TCP checksums are updated automatically.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Parameters

in dst_addr - the new IPv4 destination address.

Returns

Success or Failure (There was no IPv4 header in the frame).

Warning

The parse results must be updated before calling this operation.
This function assumes the original IP checksum is valid.

1.5.5.2.4.2.13 void ip_cksum_calculate (struct ipv4hdr ∗ ipv4header, uint8_t flags)

Calculates and updates IPv4 header checksum.

This function calculates and updates IPv4 header checksum.
The IPv4 header must reside entirely in the default segment
(which must be open in the workspace).
The contents of the header must be updated, if needed, by FDMA
replace command before calling this function.

Implicit input parameters in Task Defaults: Segment Address,
Segment Offset and Frame Handle.

Implicitly updated values in Task Defaults: Parse Result[gross
running sum] field.

NXP Semiconductors
AIOP Service Layer API Reference Manual

329

NETF (Network Libraries)

Parameters

in ipv4header - pointer to ipv4 header.
in flags - IP Checksum calculation mode bits

Returns

None.

Warning

In this function the task yields.
This function invalidates the Parser Result Gross Running Sum field.

1.5.6 L2

1.5.6.1 Overview

AIOP L2 related API.

Modules

• L2 Header Modification

1.5.6.2 L2 Header Modification

1.5.6.2.1 Overview

AIOP L2 related header modifications API.

Modules

• HM L2 related functions

Macros

• #define NO_VLAN_ERROR
• #define MIN_SEGMENT_SIZE

1.5.6.2.2 Macro Definition Documentation

1.5.6.2.2.1 #define NO_VLAN_ERROR

No VLAN exists.

NXP Semiconductors
AIOP Service Layer API Reference Manual

330

NETF (Network Libraries)

1.5.6.2.2.2 #define MIN_SEGMENT_SIZE

Minimum Segment size.

1.5.6.2.3 HM L2 related functions

1.5.6.2.3.1 Overview

L2 related Header Modification functions.

Functions

• void l2_header_remove (void)
• int l2_vlan_header_remove (void)
• int l2_set_vlan_vid (uint16_t vlan_vid)
• int l2_set_vlan_pcp (uint8_t vlan_pcp)
• void l2_set_dl_src (uint8_t ∗src_addr)
• void l2_set_dl_dst (uint8_t ∗dst_addr)
• void l2_push_vlan (uint16_t ethertype)
• void l2_push_and_set_vlan (uint32_t vlan_tag)
• int l2_pop_vlan (void)
• void l2_push_and_set_mpls (uint32_t mpls_hdr, uint16_t etype)
• void l2_pop_mpls (void)
• void l2_mpls_header_remove (void)
• void l2_push_and_set_vxlan (uint8_t ∗vxlan_hdr, uint16_t size)
• void l2_pop_vxlan (void)
• void l2_set_vxlan_vid (uint32_t vxlan_vid)
• void l2_set_vxlan_flags (uint8_t flags)
• void l2_arp_response ()
• void l2_set_hw_src_dst (uint8_t ∗target_hw_addr)

1.5.6.2.3.2 Function Documentation

1.5.6.2.3.2.1 void l2_header_remove (void)

Remove Ethernet/802.3 MAC header.

If VLAN tags are present they are also removed. If MPLS header exists, it is also removed.

The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in task defaults: frame handle, segment handle, parser_profile_id, parser_←↩
starting_hxs. Implicitly updated values in task defaults: segment length, segment address, parser_←↩
starting_hxs.

Returns

None.

NXP Semiconductors
AIOP Service Layer API Reference Manual

331

NETF (Network Libraries)

Warning

• This function assumes that the ethernet header exists in the packet.
• The parse results must be updated before calling this operation.
• In this function, the task yields.

1.5.6.2.3.2.2 int l2_vlan_header_remove (void)

VLAN Header removal. Remove the stacked QTags if exists. (Unlimited stacked QTags).

This function assumes an Ethernet header is present.

The parse results are updated automatically at the end of this operation.

The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in task defaults: frame handle, segment handle, parser_profile_id, parser_←↩
starting_hxs. Implicitly updated values in task defaults: segment length, segment address,parser_starting←↩
_hxs.

Returns

0 - Success. HM_ERROR_NO_VLAN - There was no VLAN in the frame. HM_ERROR_NO_I←↩
P_HDR - There is no IP header after the stacked QTags.

Warning

The parse results must be updated before calling this operation. In this function, the task yields

1.5.6.2.3.2.3 int l2_set_vlan_vid (uint16_t vlan_vid)

Set the 802.1q outer VLAN id.

Parameters

in vlan_vid - VLAN Identifier (VID).

Returns

Success or Failure (There was no VLAN in the frame).

1.5.6.2.3.2.4 int l2_set_vlan_pcp (uint8_t vlan_pcp)

Set the 802.1q priority in the outer VLAN.

NXP Semiconductors
AIOP Service Layer API Reference Manual

332

NETF (Network Libraries)

Parameters

in vlan_pcp - VLAN Priority Code Point (PCP).

Returns

Success or Failure (There was no VLAN in the frame).

1.5.6.2.3.2.5 void l2_set_dl_src (uint8_t ∗ src_addr)

Replace the Ethernet source address

Parameters

in src_addr - Pointer to the new Ethernet source address.

Returns

None.

Warning

None.

1.5.6.2.3.2.6 void l2_set_dl_dst (uint8_t ∗ dst_addr)

Replace the Ethernet destination address

Parameters

in dst_addr - Pointer to the new Ethernet destination address.

Returns

None.

Warning

None.

NXP Semiconductors
AIOP Service Layer API Reference Manual

333

NETF (Network Libraries)

1.5.6.2.3.2.7 void l2_push_vlan (uint16_t ethertype)

Push a new outer VLAN tag.
This function assumes the presence of an Ethernet header.

The parse results are updated automatically at the end of this operation.

The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address. Implicit
output parameters in Task Defaults: parser_starting_hxs

Parameters

in ethertype - Indicates the Ethertype of the new tag.

Returns

None.

Warning

The parse results must be updated before calling this operation. If an ethernet header is present, it is
assumed to be located at the beginning of the segment (offset 0 from segment address). If there is no
ethernet header, the vlan is inserted at the beginning of the segment.

1.5.6.2.3.2.8 void l2_push_and_set_vlan (uint32_t vlan_tag)

Push and set a new outer VLAN tag.
This function assumes the presence of an Ethernet header.

The parse results are updated automatically at the end of this operation.

The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address. Implicit
output parameters in Task Defaults: parser_starting_hxs

Parameters

in vlan_tag - Indicates the vlan tag value.

Returns

None.

NXP Semiconductors
AIOP Service Layer API Reference Manual

334

NETF (Network Libraries)

Warning

The parse results must be updated before calling this operation. If an ethernet header is present, it is
assumed to be located at the beginning of the segment (offset 0 from segment address). If there is no
ethernet header, the vlan is inserted at the beginning of the segment.

1.5.6.2.3.2.9 int l2_pop_vlan (void)

Pop the outer VLAN tag. The parse results are updated automatically at the end of this operation.

The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Returns

Success or Failure (There was no VLAN in the frame).

Warning

The parse results must be updated before calling this operation. This function assumes the presence
of the ethernet header.

1.5.6.2.3.2.10 void l2_push_and_set_mpls (uint32_t mpls_hdr, uint16_t etype)

Push and set a new outer MPLS.
This function assumes the presence of an Ethernet header. The parse results are updated automatically at
the end of this operation. The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address. Implicit
output parameters in Task Defaults: parser_starting_hxs

Parameters

in mpls_hdr - indicates the MPLS header value.
in etype - indicates the EtherType of MPLS (0x8847 or 0x8848). needed in case

there is no MPLS header in frame, otherwise can be NULL.

Returns

None.

NXP Semiconductors
AIOP Service Layer API Reference Manual

335

NETF (Network Libraries)

Warning

In case there is no MPLS header in the frame, the user should set the S bit to 1. In addition the user
should insert label according to the IP version (IPv4 - 0, IPv6 - 2). incorrect user inputs can cause
parsing error.
The parse results must be updated before calling this operation. If an ethernet header is present, it is
assumed to be located at the beginning of the segment (offset 0 from segment address).

1.5.6.2.3.2.11 void l2_pop_mpls (void)

Pop the outer MPLS.

This function assumes Ethernet , MPLS and IP headers are presents. The parse results are updated auto-
matically at the end of this operation. The gross running sum of the frame becomes invalid after calling
this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Warning

The parse results must be updated before calling this operation.

1.5.6.2.3.2.12 void l2_mpls_header_remove (void)

MPLS Header removal. Remove the stacked MPLS if exists. (Unlimited stacked MPLS).

This function assumes Ethernet , MPLS and IP headers are presents. The parse results are updated auto-
matically at the end of this operation. The gross running sum of the frame becomes invalid after calling
this function.

Implicit input parameters in task defaults: frame handle, segment handle, parser_profile_id, parser_←↩
starting_hxs. Implicitly updated values in task defaults: segment length, segment address, parser_←↩
starting_hxs.

Warning

The parse results must be updated before calling this operation.

1.5.6.2.3.2.13 void l2_push_and_set_vxlan (uint8_t ∗ vxlan_hdr, uint16_t size)

Push and set a VxLAN headers.
This function assumes the presence of an Ethernet header. The parse results are updated automatically at
the end of this operation. The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address. Implicit
output parameters in Task Defaults: parser_starting_hxs

NXP Semiconductors
AIOP Service Layer API Reference Manual

336

NETF (Network Libraries)

Parameters

in vxlan_hdr - Pointer to VxLAN encapsulate headers: Ethernet, IP, UDP and VxLan.
in size - Indicate the size of VxLAN encapsulate headers.

Returns

None.

Warning

The parse results must be updated before calling this operation.

1.5.6.2.3.2.14 void l2_pop_vxlan (void)

Pop the VxLAN headers.

This function assumes Ethernet, IP, UDP and VxLAN headers are presents. The parse results are updated
automatically at the end of this operation. The gross running sum of the frame becomes invalid after
calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Returns

None.

Warning

The parse results must be updated before calling this operation.

1.5.6.2.3.2.15 void l2_set_vxlan_vid (uint32_t vxlan_vid)

Set the VxLAN id.

This function assumes VxLAN header is present. The gross running sum of the frame becomes invalid
after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

337

NETF (Network Libraries)

Parameters

in vxlan_vid - VxLAN Network identifier (3 LSB bytes).

Returns

None.

Warning

The parse results must be updated before calling this operation.

1.5.6.2.3.2.16 void l2_set_vxlan_flags (uint8_t flags)

Set the VxLAN flags.

This function assumes VxLAN header is present. The gross running sum of the frame becomes invalid
after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Parameters

in flags - VxLAN flags.

Returns

None.

Warning

The parse results must be updated before calling this operation.

1.5.6.2.3.2.17 void l2_arp_response ()

Creates an ARP Response frame from an ARP Request frame. This function Updates both ETH and ARP
header fields to create an ARP Response frame.

The function assumes the ARP Request source frame is the default frame, and that the parse results are
updated.

The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

338

NETF (Network Libraries)

Returns

None.

Warning

The parse results must be updated before calling this operation.
This function assumes the presence of the ETH header and ARP Request header.

1.5.6.2.3.2.18 void l2_set_hw_src_dst (uint8_t ∗ target_hw_addr)

Sets ETH HW source and destination addresses. The function assumes the ETH source frame is the default
frame, and that the parse results are updated.

The gross running sum of the frame becomes invalid after calling this function.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Parameters

in target_hw_←↩
addr

- Target MAC address.

Returns

None.

Warning

The parse results must be updated before calling this operation.
This function assumes the presence of the ETH header.

1.5.7 L4

1.5.7.1 Overview

AIOP L4 related API.

Modules

• L4 Header Modification

NXP Semiconductors
AIOP Service Layer API Reference Manual

339

NETF (Network Libraries)

1.5.7.2 L4 Header Modification

1.5.7.2.1 Overview

AIOP L4 related header modifications API.

Modules

• HM L4 Modes
• HM L4 related functions

1.5.7.2.2 HM L4 Modes

1.5.7.2.2.1 Overview

L4 Header Modification Modes.

Modules

• UDP header modification mode bits
• TCP header modification mode bits
• L4 UDP TCP Checksum Calculation mode bits

Macros

• #define NO_UDP_FOUND_ERROR
• #define NO_TCP_FOUND_ERROR
• #define NO_TCP_MSS_FOUND_ERROR
• #define NO_L4_FOUND_ERROR

1.5.7.2.2.2 Macro Definition Documentation

1.5.7.2.2.2.1 #define NO_UDP_FOUND_ERROR

The frame not contain a UDP header.

1.5.7.2.2.2.2 #define NO_TCP_FOUND_ERROR

No TCP header was found.

1.5.7.2.2.2.3 #define NO_TCP_MSS_FOUND_ERROR

No TCP MSS Option was found.

1.5.7.2.2.2.4 #define NO_L4_FOUND_ERROR

No TCP or UDP headers were found.

NXP Semiconductors
AIOP Service Layer API Reference Manual

340

NETF (Network Libraries)

1.5.7.2.2.3 UDP header modification mode bits

1.5.7.2.2.3.1 Overview

Macros

• #define L4_UDP_MODIFY_MODE_L4_CHECKSUM
• #define L4_UDP_MODIFY_MODE_UDPSRC
• #define L4_UDP_MODIFY_MODE_UDPDST

1.5.7.2.2.3.2 Macro Definition Documentation

1.5.7.2.2.3.3 #define L4_UDP_MODIFY_MODE_L4_CHECKSUM

If set, update L4 checksum.

1.5.7.2.2.3.4 #define L4_UDP_MODIFY_MODE_UDPSRC

If set, the original UDP Src port will be replaced.

1.5.7.2.2.3.5 #define L4_UDP_MODIFY_MODE_UDPDST

If set, the original UDP Dst port will be replaced.

1.5.7.2.2.4 TCP header modification mode bits

1.5.7.2.2.4.1 Overview

Macros

• #define L4_TCP_MODIFY_MODE_L4_CHECKSUM
• #define L4_TCP_MODIFY_MODE_TCPSRC
• #define L4_TCP_MODIFY_MODE_TCPDST
• #define L4_TCP_MODIFY_MODE_SEQNUM
• #define L4_TCP_MODIFY_MODE_ACKNUM
• #define L4_TCP_MODIFY_MODE_MSS

1.5.7.2.2.4.2 Macro Definition Documentation

1.5.7.2.2.4.3 #define L4_TCP_MODIFY_MODE_L4_CHECKSUM

If set, update L4 checksum.

1.5.7.2.2.4.4 #define L4_TCP_MODIFY_MODE_TCPSRC

If set, the original TCP Src port will be replaced.

1.5.7.2.2.4.5 #define L4_TCP_MODIFY_MODE_TCPDST

If set, the original TCP Dst port will be replaced.

NXP Semiconductors
AIOP Service Layer API Reference Manual

341

NETF (Network Libraries)

1.5.7.2.2.4.6 #define L4_TCP_MODIFY_MODE_SEQNUM

If set, the original acknowledgment number will be updated.

The tcp_seq_num_delta signed integer will be added/subtracted to/from the SeqNum value.

1.5.7.2.2.4.7 #define L4_TCP_MODIFY_MODE_ACKNUM

If set, the original acknowledgment number will be updated.

The tcp_seq_num_delta signed integer will be added/subtracted to/from the AckNum value.

1.5.7.2.2.4.8 #define L4_TCP_MODIFY_MODE_MSS

If set, the original maximum segment size will be replaced.

1.5.7.2.2.5 L4 UDP TCP Checksum Calculation mode bits

1.5.7.2.2.5.1 Overview

Macros

• #define L4_UDP_TCP_CKSUM_CALC_MODE_NONE
• #define L4_UDP_TCP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA

1.5.7.2.2.5.2 Macro Definition Documentation

1.5.7.2.2.5.3 #define L4_UDP_TCP_CKSUM_CALC_MODE_NONE

No Mode bits.

1.5.7.2.2.5.4 #define L4_UDP_TCP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA

Don't Update FDMA mode bit If set, the SR will not call fdma_modify_default_segment_data to update
the FDMA engine with the frame header changes.

1.5.7.2.3 HM L4 related functions

1.5.7.2.3.1 Overview

L4 related Header Modification functions.

Functions

• int l4_udp_header_modification (uint8_t flags, uint16_t udp_src_port, uint16_t udp_dst_port)
• int l4_tcp_header_modification (uint8_t flags, uint16_t tcp_src_port, uint16_t tcp_dst_port, int16_t

tcp_seq_num_delta, int16_t tcp_ack_num_delta, uint16_t tcp_mss)
• void l4_set_tcp_src (uint16_t src_port)
• void l4_set_tcp_dst (uint16_t dst_port)
• void l4_set_udp_src (uint16_t src_port)
• void l4_set_udp_dst (uint16_t dst_port)
• int l4_udp_tcp_cksum_calc (uint8_t flags)

NXP Semiconductors
AIOP Service Layer API Reference Manual

342

NETF (Network Libraries)

1.5.7.2.3.2 Function Documentation

1.5.7.2.3.2.1 int l4_udp_header_modification (uint8_t flags, uint16_t udp_src_port, uint16_t
udp_dst_port)

Replace addresses in the UDP header (if exist) of a frame. It optionally can update the UDP checksum.

If the original UDP checksum!= 0, the UDP checksum is recalculated based on original checksum and the
change in relevant header fields. In case the UDP checksum == 0 the checksum will be calculated from
scratch (a costly operation).

Parameters

in flags - UDP modification mode bits
in udp_src_port - The Src port header to be replaced.
in udp_dst_port - The Dst port header to be replaced.

Returns

Success or Failure (There was no UDP header in the frame).

Warning

The parse results must be updated before calling this operation.

1.5.7.2.3.2.2 int l4_tcp_header_modification (uint8_t flags, uint16_t tcp_src_port, uint16_t
tcp_dst_port, int16_t tcp_seq_num_delta, int16_t tcp_ack_num_delta, uint16_t
tcp_mss)

Replace fields in the TCP header (if exist) of a frame.

The TCP checksum is recalculated based on original checksum
and the change in relevant header fields.

This function takes care of wrapping around of seq/ack numbers.

Parameters

in flags - TCP modification mode bits

NXP Semiconductors
AIOP Service Layer API Reference Manual

343

NETF (Network Libraries)

in tcp_src_port - The Src port header to be replaced.
in tcp_dst_port - The Dst port header to be replaced.
in tcp_seq_num←↩

_delta
- This signed integer will be added/subtracted to/from the SeqNum
value.

in tcp_ack_num←↩
_delta

- This signed integer will be added/subtracted to/from the AckNum
value.

in tcp_mss - The MSS header to be replaced.

Returns

Success or Failure Failure in case:

1. There was no TCP header in the frame.

2. in case the MSS was needed to be replaced and no MSS was found an error will be returned.
In this case all the rest of the fields except the MSS will be replaced correctly and, if requested,
the TCP checksum will be calculated.

Warning

The parse results must be updated before calling this operation.

1.5.7.2.3.2.3 void l4_set_tcp_src (uint16_t src_port)

Replace TCP source port. The TCP checksum is updated automatically. This function assumes the pres-
ence of TCP header.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Parameters

in src_port - The new TCP source port.

Returns

None.

Warning

The parse results must be updated before calling this operation.
This function assumes the original TCP header checksum is valid.

NXP Semiconductors
AIOP Service Layer API Reference Manual

344

NETF (Network Libraries)

1.5.7.2.3.2.4 void l4_set_tcp_dst (uint16_t dst_port)

Replace TCP destination port. The TCP checksum is updated automatically. This function assumes the
presence of TCP header.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

345

NETF (Network Libraries)

Parameters

in dst_port - The new TCP destination port.

Returns

None.

Warning

The parse results must be updated before calling this operation.
This function assumes the original TCP header checksum is valid.

1.5.7.2.3.2.5 void l4_set_udp_src (uint16_t src_port)

Replace UDP source port. The UDP checksum is updated automatically. This function assumes the
presence of UDP header.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

Parameters

in src_port - The new UDP source port.

Returns

None.

Warning

The parse results must be updated before calling this operation.
This function assumes the original UDP header checksum is valid. In case that UDP checksum ==
0, the checksum will not update.

1.5.7.2.3.2.6 void l4_set_udp_dst (uint16_t dst_port)

Replace UDP destination port. The UDP checksum is updated automatically. This function assumes the
presence of UDP header.

Implicit input parameters in Task Defaults: frame handle, segment handle, segment address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

346

NETF (Network Libraries)

Parameters

in dst_port - The new UDP destination port.

Returns

None.

Warning

The parse results must be updated before calling this operation.
This function assumes the original UDP header checksum is valid. In case that UDP checksum ==
0, the checksum will not update.

1.5.7.2.3.2.7 int l4_udp_tcp_cksum_calc (uint8_t flags)

Calculates and updates frame's UDP/TCP checksum.

The UDP/TCP header must reside entirely in the default segment
(which must be open in the workspace).

Checksum field is always updated (also when UDP[checksum]
field is zero), unless an error occurred.

Implicit input parameters in Task Defaults: Segment Address,
Segment Offset, Frame Handle, Parser Result, Parser Profile ID
and Starting HXS.

Implicitly updated values in Task Defaults: Parse Result.

Parameters

in flags - Please refer to L4 UDP TCP Checksum Calculation mode bits

Returns

Success, FDMA failure or Parser failure.

Warning

In this function the task yields.
Parse Result (excluding Gross Running Sum field) must be valid. If Parse Result[Gross Running
Sum] field is not valid a significant performance degradation is expected. This function invalidates
the Parser Result Gross Running Sum field.

NXP Semiconductors
AIOP Service Layer API Reference Manual

347

NETF (Network Libraries)

1.5.8 NAT

1.5.8.1 Overview

AIOP NAT related API.

Modules

• NAT Header Modification

1.5.8.2 NAT Header Modification

1.5.8.2.1 Overview

AIOP NAT related header modifications API.

Modules

• HM NAT Modes
• HM NAT related functions

Macros

• #define NO_L4_IP_FOUND_ERROR

1.5.8.2.2 Macro Definition Documentation

1.5.8.2.2.1 #define NO_L4_IP_FOUND_ERROR

No IP or L4 (TCP/UDP) headers were found.

1.5.8.2.3 HM NAT Modes

1.5.8.2.3.1 Overview

NAT Header Modification Modes.

Modules

• NAT header modification mode bits

NXP Semiconductors
AIOP Service Layer API Reference Manual

348

NETF (Network Libraries)

1.5.8.2.3.2 NAT header modification mode bits

1.5.8.2.3.2.1 Overview

Macros

• #define NAT_MODIFY_MODE_L4_CHECKSUM
• #define NAT_MODIFY_MODE_IPSRC
• #define NAT_MODIFY_MODE_IPDST
• #define NAT_MODIFY_MODE_L4SRC
• #define NAT_MODIFY_MODE_L4DST
• #define NAT_MODIFY_MODE_TCP_SEQNUM
• #define NAT_MODIFY_MODE_TCP_ACKNUM

1.5.8.2.3.2.2 Macro Definition Documentation

1.5.8.2.3.2.3 #define NAT_MODIFY_MODE_L4_CHECKSUM

If set, update L4 checksum (if needed).

1.5.8.2.3.2.4 #define NAT_MODIFY_MODE_IPSRC

If set, the original IP Src address will be replaced.

1.5.8.2.3.2.5 #define NAT_MODIFY_MODE_IPDST

If set, the original IP Dst address will be replaced.

1.5.8.2.3.2.6 #define NAT_MODIFY_MODE_L4SRC

If set, the original L4 Src port will be replaced.

1.5.8.2.3.2.7 #define NAT_MODIFY_MODE_L4DST

If set, the original L4 Dst port will be replaced.

1.5.8.2.3.2.8 #define NAT_MODIFY_MODE_TCP_SEQNUM

If set, the original acknowledgment number will be updated.

The tcp_seq_num_delta signed integer will be added/subtracted to/from the SeqNum value.

1.5.8.2.3.2.9 #define NAT_MODIFY_MODE_TCP_ACKNUM

If set, the original acknowledgment number will be updated.

The tcp_seq_num_delta signed integer will be added/subtracted to/from the AckNum value.

NXP Semiconductors
AIOP Service Layer API Reference Manual

349

NETF (Network Libraries)

1.5.8.2.4 HM NAT related functions

1.5.8.2.4.1 Overview

NAT related Header Modification functions.

Functions

• int nat_ipv4 (uint8_t flags, uint32_t ip_src_addr, uint32_t ip_dst_addr, uint16_t l4_src_port,
uint16_t l4_dst_port, int16_t tcp_seq_num_delta, int16_t tcp_ack_num_delta)

• int nat_ipv6 (uint8_t flags, uint32_t ∗ip_src_addr, uint32_t ∗ip_dst_addr, uint16_t l4_src_port,
uint16_t l4_dst_port, int16_t tcp_seq_num_delta, int16_t tcp_ack_num_delta)

1.5.8.2.4.2 Function Documentation

1.5.8.2.4.2.1 int nat_ipv4 (uint8_t flags, uint32_t ip_src_addr, uint32_t ip_dst_addr,
uint16_t l4_src_port, uint16_t l4_dst_port, int16_t tcp_seq_num_delta, int16_t
tcp_ack_num_delta)

Replace/update fields in the outer IPv4 and UDP/TCP headers (if exist).

It automatically generates the IP checksum and optionally can update the UDP/TCP checksum.

If the incoming frame contains TCP/UDP (the original UDP checksum!= 0), the UDP/TCP checksum is
recalculated based on original checksum and the change in relevant header fields.

Parameters

in flags - NAT modification mode bits
in ip_src_addr - Src address header to be replaced.
in ip_dst_addr - Dst address header to be replaced.
in l4_src_port - The Src port header to be replaced.
in l4_dst_port - The Dst port header to be replaced.
in tcp_seq_num←↩

_delta
- This signed integer will be added/subtracted to/from the SeqNum
value.

in tcp_ack_num←↩
_delta

- This signed integer will be added/subtracted to/from the AckNum
value.

Returns

Success or Failure. Failure in case:

1. There was no IPv4 or L4 (TCP/UDP) header in the frame.

2. in case HM_NAT_MODIFY_MODE_TCP_SEQNUM or HM_NAT_MODIFY_MODE_T←↩
CP_ACKNUM were set and no TCP was found. In this case all the rest of the fields except the
above two will be replaced correctly and, if requested, the L4 checksum will be calculated.

NXP Semiconductors
AIOP Service Layer API Reference Manual

350

NETF (Network Libraries)

Warning

The parse results must be updated before calling this operation.

1.5.8.2.4.2.2 int nat_ipv6 (uint8_t flags, uint32_t ∗ ip_src_addr, uint32_t ∗ ip_dst_addr,
uint16_t l4_src_port, uint16_t l4_dst_port, int16_t tcp_seq_num_delta, int16_t
tcp_ack_num_delta)

Replace/update fields in the outer IPv6 and UDP/TCP headers (if exist).

It automatically generates the IP checksum and optionally can update the UDP/TCP checksum.

If the incoming frame contains TCP/UDP (the original UDP checksum!= 0), the UDP/TCP checksum is
recalculated based on original checksum and the change in relevant header fields.

Parameters

in flags - NAT modification mode bits
in ip_src_addr - Points to the IP Src address header to be replaced (in internal memory).
in ip_dst_addr - Points to the IP Dst address header to be replaced (in internal memory)
in l4_src_port - The Src port header to be replaced.
in l4_dst_port - The Dst port header to be replaced.
in tcp_seq_num←↩

_delta
- This signed integer will be added/subtracted to/from the SeqNum
value.

in tcp_ack_num←↩
_delta

- This signed integer will be added/subtracted to/from the AckNum
value.

Returns

Success or Failure (There was no IPv6/L4 header in the frame).

Warning

The parse results must be updated before calling this operation.

1.5.9 IPF

1.5.9.1 Overview

Freescale AIOP IP Fragmentation.

Modules

• IP Fragmentation Macros
• IPF Functions

NXP Semiconductors
AIOP Service Layer API Reference Manual

351

NETF (Network Libraries)

1.5.9.2 IP Fragmentation Macros

1.5.9.2.1 Overview

Modules

• IPF General Definitions
• IPF Flags
• IPF Return Status

1.5.9.2.2 IPF General Definitions

1.5.9.2.2.1 Overview

Macros

• #define IPF_CONTEXT_SIZE

Typedefs

• typedef uint8_t ipf_ctx_t[IPF_CONTEXT_SIZE]

1.5.9.2.2.2 Macro Definition Documentation

1.5.9.2.2.2.1 #define IPF_CONTEXT_SIZE

IPF context size definition.

1.5.9.2.2.3 Typedef Documentation

1.5.9.2.2.3.1 typedef uint8_t ipf_ctx_t[IPF_CONTEXT_SIZE]

IPF context definition.

Must be aligned to 32 Bytes.

1.5.9.2.3 IPF Flags

1.5.9.2.3.1 Overview

Flags for ipf_generate_frag() function.

Macros

• #define IPF_NO_FLAGS
• #define IPF_RESTORE_ORIGINAL_FRAGMENTS

NXP Semiconductors
AIOP Service Layer API Reference Manual

352

NETF (Network Libraries)

1.5.9.2.3.2 Macro Definition Documentation

1.5.9.2.3.2.1 #define IPF_NO_FLAGS

No flags indication.

1.5.9.2.3.2.2 #define IPF_RESTORE_ORIGINAL_FRAGMENTS

Restore Original Fragments.

When set, fragmentation restores the original fragments of a reassembled frame and ignores MTU.

1.5.9.2.4 IPF Return Status

1.5.9.2.4.1 Overview

ipf_generate_frag() return values

Macros

• #define IPF_GEN_FRAG_STATUS_DONE
• #define IPF_GEN_FRAG_STATUS_IN_PROCESS
• #define IPF_GEN_FRAG_STATUS_DF_SET

1.5.9.2.4.2 Macro Definition Documentation

1.5.9.2.4.2.1 #define IPF_GEN_FRAG_STATUS_DONE

Fragmentation process complete.

The last fragment was generated

1.5.9.2.4.2.2 #define IPF_GEN_FRAG_STATUS_IN_PROCESS

Fragmentation process didn't complete.

Fragment was generated and the user SHOULD call generate_frag() again to generate another fragment

1.5.9.2.4.2.3 #define IPF_GEN_FRAG_STATUS_DF_SET

Fragmentation not done due to Length > MTU but DF=1.

1.5.9.3 IPF Functions

1.5.9.3.1 Overview

AIOP IPF Functions.

NXP Semiconductors
AIOP Service Layer API Reference Manual

353

NETF (Network Libraries)

Functions

• int ipf_generate_frag (ipf_ctx_t ipf_context_addr)
• int ipf_discard_frame_remainder (ipf_ctx_t ipf_context_addr)
• void ipf_context_init (uint32_t flags, uint16_t mtu, ipf_ctx_t ipf_context_addr)

1.5.9.3.2 Function Documentation

1.5.9.3.2.1 int ipf_generate_frag (ipf_ctx_t ipf_context_addr)

This function generates a single IP fragment and locates it in the default frame location in the workspace.

Pre-condition - In the first iteration this function is called for a source packet, the source packet should be
located at the default frame location in workspace.

The remaining source frame is kept in the internal IPF structure, and remains open until fragmentation
process is complete (IPF_GEN_FRAG_STATUS_DONE).

This function should be called repeatedly until the returned status indicates fragmentation is complete
(IPF_GEN_FRAG_STATUS_DONE).

Ordering: For best performance it is recommended to work concurrently, and move to exclusive mode
only before enqueuing the last fragment. From this point transition to concurrent is not allowed. This
way fragments of different frames will be interleaved but ordering will be kept between the last fragments.
Alternately, user can move to exclusive mode before calling IPF init or before enqueuing the first fragment.
From this point transition to concurrent is not allowed. This way the whole fragmentation process will
be done exclusively and there will be no interleaving between fragments of different frames. However,
in case there is IPSec later in the flow, the ordering scope must be Exclusive before first fragment enters
IPSec.
Parameters

in ipf_context_←↩
addr

- Address to the IPF internal context. Must be initialized by ipf_←↩
context_init() prior to the first call.

Returns

Status. (IPF Return Status or negative value on error.)

Return values

ENOMEM - Received packet cannot be stored due to buffer pool depletion. Recom-
mendation is to discard the frame. The packet was not fragmented.

NXP Semiconductors
AIOP Service Layer API Reference Manual

354

NETF (Network Libraries)

EIO - Received packet FD contain errors (FD.err != 0). Recommendation is to
either force discard of the default frame (by calling fdma_force_discard←↩
_fd) or enqueue the default frame. The packet was not fragmented.

Warning

In the output fragment, ASA & PTA are not presented.
No support in IPv6 jumbograms.
It is assumed that the address of the presented segment is aligned to 16 bytes.
it is assumed that the segment presentation offset is set to 0.
Since during fragmentation process of an IPv6 frame, fragment extension (8 bytes) is added to the
header, 8 bytes will be removed from the tail of the presented segment.

1.5.9.3.2.2 int ipf_discard_frame_remainder (ipf_ctx_t ipf_context_addr)

This function discards the remainder of the frame being fragmented in case the user decides to stop
the fragmentation process before its completion (before IPF_GEN_FRAG_STATUS_DONE status is re-
turned).

Parameters

in ipf_context_←↩
addr

- Address to the IPF internal context.

Returns

Status of the operation (0 - Success).

Warning

Following this function no packet resides in the default frame location in the task defaults. This
function should only be called after IPF_GEN_FRAG_STATUS_IN_PROCESS status is returned
from ipf_generate_frag() function call.

1.5.9.3.2.3 void ipf_context_init (uint32_t flags, uint16_t mtu, ipf_ctx_t ipf_context_addr)

This function initializes the IPF context structure that is used for the IP fragmentation process.

NXP Semiconductors
AIOP Service Layer API Reference Manual

355

NETF (Network Libraries)

Parameters

in flags - Please refer to IPF Flags.
in mtu - Maximum Transmit Unit. In case IPF_RESTORE_ORIGINAL_FR←↩

AGMENTS flag is set, this parameter is ignored.
out ipf_context_←↩

addr
- Address to the IPF internal context structure located in the workspace
by the user. Internally used by IP Fragmentation functions.

Returns

None.

Warning

No support in IPv6 jumbograms.

1.5.10 IPR

1.5.10.1 Overview

AIOP IP reassembly functions macros and definitions.

Modules

• IPR Macros
• IPR Data Structures
• IPR Modes And Flags
• IPR functions

1.5.10.2 IPR Macros

1.5.10.2.1 Overview

IPR Macros.

Typedefs

• typedef uint64_t ipr_instance_handle_t
• typedef uint64_t ipr_del_arg_t
• typedef uint64_t ipr_timeout_arg_t
• typedef void(ipr_del_cb_t) (ipr_del_arg_t arg)
• typedef void(ipr_timeout_cb_t) (ipr_timeout_arg_t arg, uint32_t flags)

NXP Semiconductors
AIOP Service Layer API Reference Manual

356

NETF (Network Libraries)

1.5.10.2.2 Typedef Documentation

1.5.10.2.2.1 typedef uint64_t ipr_instance_handle_t

IPR Instance handle Type definition.

1.5.10.2.2.2 typedef void(ipr_del_cb_t) (ipr_del_arg_t arg)

User callback function, called after ipr_delete_instance function has finished deleting the instance and
release all its recourses.

The user provides this function and the IPR process invokes it.

Parameters

in arg - Argument of the callback function.

1.5.10.2.2.3 typedef void(ipr_timeout_cb_t) (ipr_timeout_arg_t arg, uint32_t flags)

User callback function, called after time out expired.

The user provides this function and the IPR process invokes it.

In case the first fragment (frag offset=0) was received, the first fragment will be set as the default frame.
Otherwise, another fragment will be set as the default frame. Default frame will be returned with no open
segment.

Parameters

in arg - Argument of the callback function.
in flags - IPR Time Out Callback flags ,

Warning

No task default parameters beside frame_handle will be valid (e.g parse result).

1.5.10.3 IPR Data Structures

1.5.10.3.1 Overview

AIOP IP reassembly Data Structures.

Data Structures

• struct ipr_params
• struct extended_stats_cntrs

NXP Semiconductors
AIOP Service Layer API Reference Manual

357

NETF (Network Libraries)

1.5.10.3.2 Data Structure Documentation

1.5.10.3.2.1 struct ipr_params

IPR Parameters.

NXP Semiconductors
AIOP Service Layer API Reference Manual

358

NETF (Network Libraries)

Data Fields

uint64_t extended_←↩
stats_addr

if extended_stat flag is set in IP reassembly flags , this is the address
to the statistics data structure extended_stats_cntrs. This structure
should be allocated in DDR.
If the extended_stat flag is reset, this parameter is invalid

uint32_t max_open_←↩
frames_ipv4

maximum concurrently IPv4 open frames.

uint32_t max_open_←↩
frames_ipv6

maximum concurrently IPv6 open frames

uint16_t max_reass_←↩
frm_size

uint16_t min_frag_←↩
size_ipv4

maximum reassembled frame size minimum fragment size allowed
for IPv4 frames

uint16_t min_frag_←↩
size_ipv6

minimum fragment size allowed for IPv6 frames

uint16_t timeout_←↩
value_ipv4

reass timeout value for ipv4. The value given here is in units of 10
ms

uint16_t timeout_←↩
value_ipv6

reass timeout value for ipv6. The value given here is in units of 10
ms

ipr_timeout_←↩
cb_t
∗

ipv4_timeout←↩
_cb

function to call upon Time Out occurrence for ipv4

ipr_timeout_←↩
cb_t
∗

ipv6_timeout←↩
_cb

function to call upon Time Out occurrence for ipv6

ipr_timeout_←↩
arg_t

cb_timeout_←↩
ipv4_arg

Argument to be passed upon invocation of the IPv4 callback func-
tion.

ipr_timeout_←↩
arg_t

cb_timeout_←↩
ipv6_arg

Argument to be passed upon invocation of the IPv6 callback func-
tion.

uint32_t flags IP reassembly flags
uint8_t tmi_id tmi id to be used for timers creations. This instance may use up to

(max_open_frames_ipv4+max_open_frames_ipv6+1) timers.

1.5.10.3.2.2 struct extended_stats_cntrs

IPR Statistics counters.
Data Fields

uint32_t valid_frags_←↩
cntr_ipv4

Counts the number of valid IPv4 fragments handled.

NXP Semiconductors
AIOP Service Layer API Reference Manual

359

NETF (Network Libraries)

uint32_t valid_frags_←↩
cntr_ipv6

Counts the number of valid IPv6 fragments handled.

uint32_t malformed_←↩
frags_cntr_←↩
ipv4

Counts the number of malformed IPv4 fragments handled mal-
formed fragments are:
-duplicate,
-overlap,
-short fragments (first or middle fragments with size < ipr_config←↩
::min_frag_size),
out of range fragments (fragment offset is beyond the end of the
last fragment),
-first or middle fragments whose IP payload size is not a multiple
of 8,
-middle or last fragments in which the fragment offset ∗ 8.

• fragment IP payload length + IP header length exceeds 64←↩
Kbytes,
-fragment which carries Not-ECT codepoint and any other
fragment of this IP packet to be reassembled has the C←↩
E codepoint set,
-fragment which carries CE codepoint set and any other frag-
ment of this IP packet to be reassembled has the Not-ECT
codepoint

NXP Semiconductors
AIOP Service Layer API Reference Manual

360

NETF (Network Libraries)

uint32_t malformed_←↩
frags_cntr_←↩
ipv6

Counts the number of malformed IPv6 fragments handled mal-
formed fragments are: -duplicate,
-overlap,
-short fragments (first or middle fragments with size < ipr_config←↩
::min_frag_size),
out of range fragments (fragment offset is beyond the end of the
last fragment),
-first or middle fragments whose IP payload size is not a multiple
of 8,
-middle or last fragments in which the fragment offset ∗ 8.

• fragment IP payload length + IP header length exceeds 64←↩
Kbytes,
-fragment which carries Not-ECT codepoint and any other
fragment of this IP packet to be reassembled has the C←↩
E codepoint set,
-fragment which carries CE codepoint set and any other frag-
ment of this IP packet to be reassembled has the Not-ECT
codepoint

uint32_t open_reass_←↩
frms_exceed←↩
_ipv4_cntr

Counts the number of times the re-assembly process can't start
since the number of open IPv4 reassembled frames has exceeded
the ipr_config::maximum_open_frames_ipv4.

uint32_t open_reass_←↩
frms_exceed←↩
_ipv6_cntr

Counts the number of times the re-assembly process can't start
since the number of open IPv6 reassembled frames has exceeded
the ipr_config::maximum_open_frames_ipv6.

uint32_t more_than←↩
_64_frags_←↩
ipv4_cntr

Counts the number of times the re-assembly process came up
against more than 64 fragments per IPv4 frame.

uint32_t more_than←↩
_64_frags_←↩
ipv6_cntr

Counts the number of times the re-assembly process came up
against more than 64 fragments per IPv6 frame.

uint32_t time_out_←↩
ipv4_cntr

Counts the number of times the re-assembly process of an IPv4
frame stopped due to Time Out occurrence.

uint32_t time_out_←↩
ipv6_cntr

Counts the number of times the re-assembly process of an IPv6
frame stopped due to time out occurrence.

1.5.10.4 IPR Modes And Flags

1.5.10.4.1 Overview

AIOP IP reassembly Modes and Flags.

NXP Semiconductors
AIOP Service Layer API Reference Manual

361

NETF (Network Libraries)

Modules

• IPR instance flags
• IPR stats flags
• IPR Update flags
• IPR functions return status
• IPR Time Out Callback flags

1.5.10.4.2 IPR instance flags

1.5.10.4.2.1 Overview

IP reassembly flags.

0 1 2 3 4-5 6 7-31
Extended IPv4 TO IPv6 TO Do not pre-

serve
Table TMI

statistics type type Fragments Location mngmt

Macros

• #define IPR_MODE_IPV4_TO_TYPE
• #define IPR_MODE_IPV6_TO_TYPE
• #define IPR_MODE_EXTENDED_STATS_EN
• #define IPR_MODE_TABLE_LOCATION_INT
• #define IPR_MODE_TABLE_LOCATION_PEB
• #define IPR_MODE_TABLE_LOCATION_EXT1
• #define IPR_MODE_TABLE_LOCATION_EXT2
• #define IPR_MODE_DO_NOT_PRESERVE_FRAGS
• #define IPR_MODE_TMI

1.5.10.4.2.2 Macro Definition Documentation

1.5.10.4.2.2.1 #define IPR_MODE_IPV4_TO_TYPE

If set, for IPv4 frames, Timeout limits the reassembly time from the first fragment (opening fragment).

If reset, Timeout limits the interval time between two consecutive fragments.

1.5.10.4.2.2.2 #define IPR_MODE_IPV6_TO_TYPE

If set, for IPv6 frames, Timeout limits the reassembly time from the first fragment (opening fragment).

If reset, Timeout limits the interval time between two consecutive fragments.

1.5.10.4.2.2.3 #define IPR_MODE_EXTENDED_STATS_EN

If set, extended statistics is enabled.

NXP Semiconductors
AIOP Service Layer API Reference Manual

362

NETF (Network Libraries)

1.5.10.4.2.2.4 #define IPR_MODE_TABLE_LOCATION_INT

Tables are located in dedicated RAM.

Not available for Rev1.

1.5.10.4.2.2.5 #define IPR_MODE_TABLE_LOCATION_PEB

Tables are located in Packet Express Buffer table.

1.5.10.4.2.2.6 #define IPR_MODE_TABLE_LOCATION_EXT1

Tables are located in DDR1.

1.5.10.4.2.2.7 #define IPR_MODE_TABLE_LOCATION_EXT2

Tables are located in DDR2.

1.5.10.4.2.2.8 #define IPR_MODE_DO_NOT_PRESERVE_FRAGS

Do not preserve reassembled packet fragments.

Use this flag if the reassembled packet is forwarded to the SEC engine, working in the buffer reuse mode,
for encryption/decryption.

Do not use this flag if the applications, in further processing, need to split the reassembled packet in the
original fragments.

1.5.10.4.2.2.9 #define IPR_MODE_TMI

IPR instance manages TMI creation/deletion.

In this case, there is no need to pass "tmi_id" to ipr_create_instance().

1.5.10.4.3 IPR stats flags

1.5.10.4.3.1 Overview

IPR Statistics flags.

Macros

• #define IPR_STATS_IP_VERSION

1.5.10.4.3.2 Macro Definition Documentation

1.5.10.4.3.2.1 #define IPR_STATS_IP_VERSION

If set, the returned value of the function is the IPv4 number of reassembled frames.

If reset, the returned value of the function is the IPv6 number of reassembled frames

NXP Semiconductors
AIOP Service Layer API Reference Manual

363

NETF (Network Libraries)

1.5.10.4.4 IPR Update flags

1.5.10.4.4.1 Overview

IPR Update flags.

Macros

• #define IPR_UPDATE_MAX_FRM_SIZE
• #define IPR_UPDATE_MIN_FRG_SIZE
• #define IPR_UPDATE_TO_VALUE_IPV4
• #define IPR_UPDATE_TO_VALUE_IPV6
• #define IPR_UPDATE_TO_MODE

1.5.10.4.4.2 Macro Definition Documentation

1.5.10.4.4.2.1 #define IPR_UPDATE_MAX_FRM_SIZE

If set, the maximum reassembled frame size is updated with a new value.

1.5.10.4.4.2.2 #define IPR_UPDATE_MIN_FRG_SIZE

If set, the minimium fragment size is updated with a new value.

1.5.10.4.4.2.3 #define IPR_UPDATE_TO_VALUE_IPV4

If set, the Time Out value for IPv4 frames is updated with a new value.

1.5.10.4.4.2.4 #define IPR_UPDATE_TO_VALUE_IPV6

If set, the Time Out value for IPv6 frames is updated with a new value.

1.5.10.4.4.2.5 #define IPR_UPDATE_TO_MODE

If set, the Time Out Type (see IPR_MODE_IPV4_TO_TYPE & IPR_MODE_IPV6_TO_TYPE) is
changed the other type.

1.5.10.4.5 IPR functions return status

1.5.10.4.5.1 Overview

IPR reassemble return values.

Macros

• #define IPR_REASSEMBLY_REGULAR
• #define IPR_REASSEMBLY_SUCCESS
• #define IPR_REASSEMBLY_NOT_COMPLETED
• #define IPR_ATOMIC_FRAG
• #define IPR_MALFORMED_MIN_SIZE_IPV4
• #define IPR_MALFORMED_MIN_SIZE_IPV6

NXP Semiconductors
AIOP Service Layer API Reference Manual

364

NETF (Network Libraries)

• #define IPR_MALFORMED_SIZE_M8
• #define IPR_MALFORMED_MAX_IP_SIZE
• #define IPR_MALFORMED_PAST_END
• #define IPR_MALFORMED_LAST_FRAG
• #define IPR_MALFORMED_OVERLAP_DUPLICATE
• #define IPR_MALFORMED_ECN
• #define IPR_MALFORMED_MAX_REASS_FRAME_SIZE

1.5.10.4.5.2 Macro Definition Documentation

1.5.10.4.5.2.1 #define IPR_REASSEMBLY_REGULAR

Frame was a regular frame.

1.5.10.4.5.2.2 #define IPR_REASSEMBLY_SUCCESS

Frame was correctly reassembled.

1.5.10.4.5.2.3 #define IPR_REASSEMBLY_NOT_COMPLETED

Reassembly isn't completed yet but fragment was successfully added to the partially reassembled frame.

1.5.10.4.5.2.4 #define IPR_ATOMIC_FRAG

Frame is recognized as an IPv6 atomic fragment and remains unchanged.

1.5.10.4.5.2.5 #define IPR_MALFORMED_MIN_SIZE_IPV4

Fragment has been recognized as malformed and wasn't added to the partially reassembled frame.

1.5.10.4.6 IPR Time Out Callback flags

1.5.10.4.6.1 Overview

IPR Time Out Callback flags.

Macros

• #define IPR_TO_CB_FIRST_FRAG

1.5.10.4.6.2 Macro Definition Documentation

1.5.10.4.6.2.1 #define IPR_TO_CB_FIRST_FRAG

If set, it indicates that the first fragment (frag offset=0) was received.

NXP Semiconductors
AIOP Service Layer API Reference Manual

365

NETF (Network Libraries)

1.5.10.5 IPR functions

1.5.10.5.1 Overview

IP reassembly functions.

Functions

• int ipr_early_init (uint32_t nbr_of_instances, uint32_t nbr_of_context_buffers)
• int ipr_create_instance (struct ipr_params ∗ipr_params_ptr, ipr_instance_handle_t ∗ipr_instance_←↩

ptr)
• int ipr_delete_instance (ipr_instance_handle_t ipr_instance_ptr, ipr_del_cb_t ∗confirm_delete_cb,

ipr_del_arg_t delete_arg)
• int ipr_reassemble (ipr_instance_handle_t ipr_instance)
• void ipr_modify_max_reass_frm_size (ipr_instance_handle_t ipr_instance, uint16_t max_reass_←↩

frm_size)
• void ipr_modify_min_frag_size_ipv4 (ipr_instance_handle_t ipr_instance, uint16_t min_frag_size)
• void ipr_modify_min_frag_size_ipv6 (ipr_instance_handle_t ipr_instance, uint16_t min_frag_size)
• void ipr_modify_timeout_value_ipv4 (ipr_instance_handle_t ipr_instance, uint16_t reasm_←↩

timeout_value_ipv4)
• void ipr_modify_timeout_value_ipv6 (ipr_instance_handle_t ipr_instance, uint16_t reasm_←↩

timeout_value_ipv6)
• void ipr_get_reass_frm_cntr (ipr_instance_handle_t ipr_instance, uint32_t flags, uint32_t ∗reass_←↩

frm_cntr)

1.5.10.5.2 Function Documentation

1.5.10.5.2.1 int ipr_early_init (uint32_t nbr_of_instances, uint32_t nbr_of_context_buffers)

Reserve the context buffers for all the IPR instances.

Parameters

in nbr_of_←↩
instances

- Number of IPR instances that will be created.

in nbr_of_←↩
context_buffers

- Number of context buffers to be allocated for all the instances.

Returns

0 - on success
-ENAVAIL - resource not available or not found
-ENOMEM - not enough memory for requested memory partition

NXP Semiconductors
AIOP Service Layer API Reference Manual

366

NETF (Network Libraries)

Warning

In this function, the task yields.

1.5.10.5.2.2 int ipr_create_instance (struct ipr_params ∗ ipr_params_ptr, ipr_instance_handle_t
∗ ipr_instance_ptr)

Creates an IPR instance.

Parameters

in ipr_params_ptr - pointer to IPR params structure ipr_params This pointer should points
within workspace.

out ipr_instance_←↩
ptr

- Pointer to the IPR Instance handle to be used by the caller to invoke IP
reassembly functions. This pointer should points within workspace.

Returns

Success

Warning

This function may result in a fatal error.
In this function, the task yields.

1.5.10.5.2.3 int ipr_delete_instance (ipr_instance_handle_t ipr_instance_ptr, ipr_del_cb_t ∗
confirm_delete_cb, ipr_del_arg_t delete_arg)

Delete a specified IPR instance.

The delete request has been registered and the deletion will be
performed gradually.

Parameters

in ipr_instance_←↩
ptr

- The IPR instance handle.

NXP Semiconductors
AIOP Service Layer API Reference Manual

367

NETF (Network Libraries)

in confirm_←↩
delete_cb

- The function to be used for confirmation after all resources associated
to the instance have been deleted.

in delete_arg - Argument of the confirm callback function.

Returns

Success

Warning

This function may result in a fatal error.
In this function, the task yields.

1.5.10.5.2.4 int ipr_reassemble (ipr_instance_handle_t ipr_instance)

Perform reassembly.
When called for a regular frame,no action is done.
When called for a non-closing fragment, the fragment is inserted to the partially reassembled frame.
When called for a closing fragment, reassembly is done.
The reassembled frame is returned to the caller.

The function returns with the same ordering scope mode it enters (exclusive or concurrent).

In case of completed reassembly, the reassembled frame is returned as default frame and segment is pre-
sented.
In case of malformed fragment, the presented fragment is returned.
In case of reassembly not completed, no open frame is returned, no segment is presented.
This function requires one of the four nested scope levels.

This functions assumes that at least 60 bytes are presented in the presentation area.

This function assumes there is an IP outer header.

It is assumed that the address of the presented segment is aligned to 16 bytes.

Implicitly updated values in task defaults: segment length, segment address, segment offset

Parameters

in ipr_instance - The IPR instance handle.

Returns

Status -
IP Reassembly Return status
ETIMEDOUT - Early Time out. Timeout occurred while this fragment is proceeded. No fragment
is returned.

NXP Semiconductors
AIOP Service Layer API Reference Manual

368

NETF (Network Libraries)

ENOSPC - Maximum open reassembled frames has been reached.
ENOTSUP - Maximum number of fragments per reassembly has been reached.
EIO - L4 checksum not valid.

Warning

This function may result in a fatal error.
It is forbidden to call this function when the task isn't found in any ordering scope (null scope_id).
If this function is called in concurrent mode, the scope_id is incremented.
If this function is called while the task is currently in exclusive mode, the scope_id is preserved.

1.5.10.5.2.5 void ipr_modify_max_reass_frm_size (ipr_instance_handle_t ipr_instance, uint16_t
max_reass_frm_size)

Update max_reass_frm_size parameter for the specified instance.

Parameters

in ipr_instance - The IPR instance handle.
in max_reass_←↩

frm_size
- New maximum reassembled frame size.

Returns

None

Warning

In this function, the task yields.

1.5.10.5.2.6 void ipr_modify_min_frag_size_ipv4 (ipr_instance_handle_t ipr_instance, uint16_t
min_frag_size)

Update min_frag_size parameter for IPv4 frames for the specified instance.

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

369

NETF (Network Libraries)

in ipr_instance - The IPR instance handle.
in min_frag_size - New minimum fragment size.

Returns

None

Warning

In this function, the task yields.

1.5.10.5.2.7 void ipr_modify_min_frag_size_ipv6 (ipr_instance_handle_t ipr_instance, uint16_t
min_frag_size)

Update min_frag_size parameter for IPv6 frames for the specified instance.

Parameters

in ipr_instance - The IPR instance handle.
in min_frag_size - New minimum fragment size.

Returns

None

Warning

In this function, the task yields.

1.5.10.5.2.8 void ipr_modify_timeout_value_ipv4 (ipr_instance_handle_t ipr_instance, uint16_t
reasm_timeout_value_ipv4)

Update reasm_timeout_value_ipv4 parameter for the specified instance.

Parameters

in ipr_instance - The IPR instance handle.

NXP Semiconductors
AIOP Service Layer API Reference Manual

370

NETF (Network Libraries)

in reasm_←↩
timeout_←↩
value_ipv4

- New reassembly timeout value for ipv4

Returns

None

Warning

In this function, the task yields.

1.5.10.5.2.9 void ipr_modify_timeout_value_ipv6 (ipr_instance_handle_t ipr_instance, uint16_t
reasm_timeout_value_ipv6)

Update reasm_timeout_value_ipv6 parameter for the specified instance.

Parameters

in ipr_instance - The IPR instance handle.
in reasm_←↩

timeout_←↩
value_ipv6

- New reassembly timeout value for ipv6

Returns

None

Warning

In this function, the task yields.

1.5.10.5.2.10 void ipr_get_reass_frm_cntr (ipr_instance_handle_t ipr_instance, uint32_t flags,
uint32_t ∗ reass_frm_cntr)

Returns the number of reassembled frames counter value of the given instance.

NXP Semiconductors
AIOP Service Layer API Reference Manual

371

NETF (Network Libraries)

Parameters

in ipr_instance - The IPR instance handle.
in flags - flags
out reass_frm_cntr - The number of IPv4/IPv6 reassembled frames for this instance. This

pointer should points within workspace.

Returns

None

Warning

None.

1.5.11 GSO

1.5.11.1 Overview

Modules

• GSO Macros
• GSO Functions

1.5.11.2 GSO Macros

1.5.11.2.1 Overview

Modules

• TCP GSO General Definitions
• TCP GSO Flags
• TCP GSO Statuses

1.5.11.2.2 TCP GSO General Definitions

1.5.11.2.3 TCP GSO Flags

1.5.11.2.3.1 Overview

Flags for tcp_gso_context_init() function.

Macros

• #define TCP_GSO_NO_FLAGS

NXP Semiconductors
AIOP Service Layer API Reference Manual

372

NETF (Network Libraries)

1.5.11.2.3.2 Macro Definition Documentation

1.5.11.2.3.2.1 #define TCP_GSO_NO_FLAGS

GSO no flags indication.

1.5.11.2.4 TCP GSO Statuses

1.5.11.2.4.1 Overview

tcp_gso_generate_seg() return values

Macros

• #define TCP_GSO_GEN_SEG_STATUS_DONE
• #define TCP_GSO_GEN_SEG_STATUS_IN_PROCESS
• #define TCP_GSO_GEN_SEG_STATUS_SYN_RST_SET

1.5.11.2.4.2 Macro Definition Documentation

1.5.11.2.4.2.1 #define TCP_GSO_GEN_SEG_STATUS_DONE

Segmentation process complete.

The last segment was generated.

1.5.11.2.4.2.2 #define TCP_GSO_GEN_SEG_STATUS_IN_PROCESS

Segmentation process did not complete.

Segment was generated and the user should call gso_generate_tcp_seg() again to generate another segment

1.5.11.2.4.2.3 #define TCP_GSO_GEN_SEG_STATUS_SYN_RST_SET

Segmentation process cannot start since the syn/rst flags are set.

1.5.11.3 GSO Functions

1.5.11.3.1 Overview

GSO Functions.

Functions

• int tcp_gso_generate_seg (tcp_gso_ctx_t tcp_gso_context_addr)
• int tcp_gso_discard_frame_remainder (tcp_gso_ctx_t tcp_gso_context_addr)
• void tcp_gso_context_init (uint32_t flags, uint16_t mss, tcp_gso_ctx_t tcp_gso_context_addr)

NXP Semiconductors
AIOP Service Layer API Reference Manual

373

NETF (Network Libraries)

1.5.11.3.2 Function Documentation

1.5.11.3.2.1 int tcp_gso_generate_seg (tcp_gso_ctx_t tcp_gso_context_addr)

This function generates a single TCP segment and locates it in the default frame location in the workspace.

Pre-condition - In the first iteration this function is called for a source packet, the source packet should be
located at the default frame location in workspace.

The remaining source frame is kept in the internal GSO structure.

This function should be called repeatedly until the returned status indicates segmentation is completed
(TCP_GSO_GEN_SEG_STATUS_DONE).

Ordering: To keep order between frames, user should move to exclusive mode before calling GSO init.
From this point transition to concurrent is not allowed, thus the whole segmentation process will be done
exclusively.

Parameters

in tcp_gso_←↩
context_addr

- Address to the TCP GSO internal context. Must be initialized by gso←↩
_context_init() prior to the first call. Must be aligned to Frame Descrip-
tor size.

Returns

GSO Status (TCP GSO Statuses), or negative value on error.

Return values

ENOMEM - Received packet cannot be stored due to buffer pool depletion. Recom-
mendation is to discard the frame (call fdma_discard_default_frame). The
packet was not segmented.

EIO - Received packet FD contain errors (FD.err != 0). Recommendation is to
either force discard of the default frame (by calling fdma_force_discard←↩
_fd) or enqueue the default frame. The packet was not segmented.

Warning

None.

1.5.11.3.2.2 int tcp_gso_discard_frame_remainder (tcp_gso_ctx_t tcp_gso_context_addr)

This function discard the remainder packet being segmented in case the user decides to stop the segmenta-
tion process before its completion (before a TCP_GSO_GEN_SEG_STATUS_DONE status is returned).

NXP Semiconductors
AIOP Service Layer API Reference Manual

374

NETF (Network Libraries)

Parameters

in tcp_gso_←↩
context_addr

- Address to the TCP GSO internal context. Must be aligned to Frame
Descriptor size.

Returns

0 - Success

Warning

Following this function no packet resides in the default frame location in the task defaults. This func-
tion should only be called after TCP_GSO_GEN_SEG_STATUS_IN_PROCESS status is returned
from gso_generate_tcp_seg() function call.

1.5.11.3.2.3 void tcp_gso_context_init (uint32_t flags, uint16_t mss, tcp_gso_ctx_t
tcp_gso_context_addr)

This function initializes the GSO context structure that is used for the TCP GSO process of the packet.

This function must be called once before each new packet segmentation process.

Parameters

in flags - Please refer to TCP GSO Flags.
in mss - Maximum Segment Size.
out tcp_gso_←↩

context_addr
- Address to the TCP GSO internal context structure located in the
workspace by the user. Internally used by TCP GSO functions.

Returns

None.

Warning

None.

1.5.12 GRO

1.5.12.1 Overview

Modules

• GRO Structures
• GRO Functions
• GRO Macros
• TCP GRO Timeout Granularity Flags

NXP Semiconductors
AIOP Service Layer API Reference Manual

375

NETF (Network Libraries)

1.5.12.2 GRO Structures

1.5.12.2.1 Overview

AIOP GRO Structures.

Data Structures

• struct tcp_gro_stats_cntrs
• struct tcp_gro_context_metadata
• struct gro_context_limits
• struct gro_context_timeout_params
• struct tcp_gro_context_params

1.5.12.2.2 Data Structure Documentation

1.5.12.2.2.1 struct tcp_gro_stats_cntrs

TCP GRO statistics counters.
Data Fields

uint32_t agg_num_cntr Counts the number of aggregated packets.
uint32_t seg_num_cntr Counts the number of aggregated segments.
uint32_t agg_timeout_←↩

cntr
Counts the number of aggregations due to timeout limit. This
counter is valid when extended statistics mode is enabled (TC←↩
P_GRO_EXTENDED_STATS_EN)

uint32_t agg_max_seg←↩
_num_cntr

Counts the number of aggregations due to segment count limit.
This counter is valid when extended statistics mode is enabled (T←↩
CP_GRO_EXTENDED_STATS_EN)

uint32_t agg_max_←↩
packet_size_←↩
cntr

Counts the number of aggregations due to max aggregated packet
size limit. This counter is valid when extended statistics mode is
enabled (TCP_GRO_EXTENDED_STATS_EN)

uint32_t unexpected_←↩
seq_num_cntr

Counts the number of segments in which the sequence number is
not expected. This counter is valid when extended statistics mode
is enabled (TCP_GRO_EXTENDED_STATS_EN)

uint32_t agg_flush_←↩
request_num←↩
_cntr

Counts the number of aggregations due to flush request. This
counter does not count cases when the flush is triggered due to
a TCP_GRO_FLUSH_NO_AGG status flag. This counter is valid
when extended statistics mode is enabled (TCP_GRO_EXTEND←↩
ED_STATS_EN)

NXP Semiconductors
AIOP Service Layer API Reference Manual

376

NETF (Network Libraries)

uint32_t agg_←↩
discarded←↩
_seg_num_cntr

Counts the number of discarded segments. This counter is valid
when extended statistics mode is enabled (TCP_GRO_EXTEND←↩
ED_STATS_EN)

1.5.12.2.2.2 struct tcp_gro_context_metadata

TCP GRO packet metadata.

Data Fields

uint64_t seg_sizes_addr Address (in HW buffers) for the segment sizes. This field will be
used by GRO only if TCP_GRO_METADATA_SEGMENT_S←↩
IZES is set. Upper SW should initialize this field at tcp_gro_←↩
context_params::metadata_addr (first 8 bytes) and GRO reads it
from that location. For each segment, upper SW should allocate
2 bytes (to support up to 64KB length segments) starting at this
address. E.g. If max segments per aggregation is 10 segments, 20
bytes per aggregation should be allocated starting at this address.
This field can be set by using TCP_GRO_SET_METADATA_S←↩
EG_SIZES_ADDR macro.

uint16_t seg_num Number of segments in the aggregation.
uint16_t max_seg_size Largest segment size.

1.5.12.2.2.3 struct gro_context_limits

GRO aggregation limits.

These limits are allowed to be changed per new session only.

Data Fields

uint16_t timeout_limit Timeout per packet aggregation limit. The timeout granularity is
specified at gro_context_timeout_params::granularity.

uint16_t packet_size_←↩
limit

Maximum aggregated packet size limit (The size refers to the
packet headers + payload). A single segment size cannot oversize
this limit.

uint8_t seg_num_limit Maximum aggregated segments per packet limit. 0/1 are an illegal
values.

1.5.12.2.2.4 struct gro_context_timeout_params

GRO aggregation Timeout Parameters.

These parameters are allowed to be changed per new session only.

NXP Semiconductors
AIOP Service Layer API Reference Manual

377

NETF (Network Libraries)

Data Fields

uint64_t gro_timeout_←↩
cb_arg

Address (in HW buffers) of the callback function parameter argu-
ment on timeout. On timeout, GRO will call upper layer callback
function with this parameter.

gro_timeout_←↩
cb_t
∗

gro_timeout_←↩
cb

Function to call upon Time Out occurrence. This function takes
one argument.

uint8_t granularity GRO timer granularity (TCP GRO Timeout Granularity Flags).
uint8_t tmi_id TMAN Instance ID.

1.5.12.2.2.5 struct tcp_gro_context_params

TCP GRO aggregation parameters.

Data Fields

struct
gro_context_←↩

timeout_←↩
params

timeout_←↩
params

TCP GRO aggregation timeout parameters.

struct gro_←↩
context_limits

limits Aggregated packet limits.

uint64_t metadata_addr Address (in HW buffers) of the TCP GRO aggregation metadata
buffer (tcp_gro_context_metadata) Upper layer SW should always
send a metadata buffer address to tcp_gro_aggregate_seg(). After
tcp_gro_aggregate_seg() returns TCP_GRO_METADATA_US←↩
ED bit in the status, the following call to tcp_gro_aggregate_seg()
should send an address to a new metadata buffer.

uint64_t stats_addr Address (in HW buffers) of the TCP GRO statistics counters (tcp←↩
_gro_stats_cntrs). The user should zero the statistics once it is al-
located.

1.5.12.3 GRO Functions

1.5.12.3.1 Overview

GRO Functions.

Functions

• int tcp_gro_aggregate_seg (uint64_t tcp_gro_context_addr, struct tcp_gro_context_params
∗params, uint32_t flags)

• int tcp_gro_flush_aggregation (uint64_t tcp_gro_context_addr)

NXP Semiconductors
AIOP Service Layer API Reference Manual

378

NETF (Network Libraries)

1.5.12.3.2 Function Documentation

1.5.12.3.2.1 int tcp_gro_aggregate_seg (uint64_t tcp_gro_context_addr, struct
tcp_gro_context_params ∗ params, uint32_t flags)

This function aggregates TCP segments to one TCP packet.

When the aggregation is completed the aggregated packet will be located at the default frame location in
the workspace.

Pre-condition - The segment to be aggregated should be located in the default frame location in workspace.

Implicit input parameters in Task Defaults: spid.

Parameters

in tcp_gro_←↩
context_addr

- Address (in HW buffers) of the TCP GRO internal context. The user
should allocate tcp_gro_ctx_t in this address.

in params - Pointer to the TCP GRO aggregation parameters tcp_gro_context_←↩
params.

in flags - Please refer to TCP GRO Aggregation Flags.

Returns

GRO Status, or negative value on error.

Return values

GRO Status - please refer to TCP GRO Aggregation Statuses.
EIO - Received segment FD contain errors (FD.err != 0). Recommendation is

to discard the frame or enqueue the frame. The frame was not aggregated.
ENOMEM - Received segment cannot be stored/aggregated due to buffer pool deple-

tion. Recommendation is to discard the frame. The frame was not aggre-
gated.

Remarks

When returning from this function, in case the aggregation is not done, no frame will be in the
default frame area. Only when an aggregation is done, the aggregated frame will be in the default
frame area.
It is assumed that the address of the presented segment is aligned to 16 bytes.

Warning

The user should zero the tcp_gro_ctx_t allocated space once a new session begins.
This function requires 1 CDMA mutex (out of 4 available per task).
This function requires 1 FDMA working frame (out of 6 available per task), and 1 FDMA segment
(out of 8 available per task).

NXP Semiconductors
AIOP Service Layer API Reference Manual

379

NETF (Network Libraries)

1.5.12.3.2.2 int tcp_gro_flush_aggregation (uint64_t tcp_gro_context_addr)

This function flush an open TCP packet aggregation.

The aggregated packet will reside at the default frame location when this function returns.

Implicitly updated values in Task Defaults: frame handle, segment handle, segment address, segment
offset, segment length.

Parameters

in tcp_gro_←↩
context_addr

- Address (in HW buffers) of the TCP GRO internal context. The user
should allocate tcp_gro_ctx_t in this address.

Returns

GRO Status - please refer to TCP GRO Flush Statuses.

Warning

No frame should reside at the default frame location in workspace before this function is called.
This function requires 1 CDMA mutex (out of 4 available per task).
This function requires 1 FDMA working frame (out of 6 available per task), and 1 FDMA segment
(out of 8 available per task).

1.5.12.4 GRO Macros

1.5.12.4.1 Overview

Modules

• GRO General Definitions
• GRO Flags
• TCP GRO Aggregation Flags
• TCP GRO Aggregation Statuses
• TCP GRO Flush Statuses

1.5.12.4.2 GRO General Definitions

1.5.12.4.3 GRO Flags

1.5.12.4.3.1 Overview

GRO Flags.

NXP Semiconductors
AIOP Service Layer API Reference Manual

380

NETF (Network Libraries)

Modules

• TCP GRO Aggregation Flags
• TCP GRO Timeout Granularity Flags

1.5.12.4.3.1.1 TCP GRO Aggregation Flags

1.5.12.4.3.1.2 Overview

Flags for tcp_gro_aggregate_seg() function.

The flags are allowed to be changed per new session only.

Macros

• #define TCP_GRO_NO_FLAGS
• #define TCP_GRO_EXTENDED_STATS_EN
• #define TCP_GRO_METADATA_SEGMENT_SIZES
• #define TCP_GRO_CALCULATE_TCP_CHECKSUM
• #define TCP_GRO_CALCULATE_IP_CHECKSUM
• #define TCP_GRO_USE_HWC_SPID

1.5.12.4.3.1.3 Macro Definition Documentation

1.5.12.4.3.1.4 #define TCP_GRO_NO_FLAGS

GRO no flags indication.

1.5.12.4.3.1.5 #define TCP_GRO_EXTENDED_STATS_EN

If set, extended statistics is enabled.

1.5.12.4.3.1.6 #define TCP_GRO_METADATA_SEGMENT_SIZES

If set, save the segment sizes in the metadata.

1.5.12.4.3.1.7 #define TCP_GRO_CALCULATE_TCP_CHECKSUM

If set, calculate TCP checksum.

1.5.12.4.3.1.8 #define TCP_GRO_CALCULATE_IP_CHECKSUM

If set, calculate IP checksum.

1.5.12.4.3.1.9 #define TCP_GRO_USE_HWC_SPID

If set, save HWC_SPID for later use.

NXP Semiconductors
AIOP Service Layer API Reference Manual

381

NETF (Network Libraries)

1.5.12.4.4 TCP GRO Aggregation Statuses

1.5.12.4.4.1 Overview

tcp_gro_aggregate_seg() return values

Macros

• #define TCP_GRO_SEG_AGG_DONE
• #define TCP_GRO_SEG_AGG_NOT_DONE
• #define TCP_GRO_SEG_AGG_DONE_AGG_OPEN
• #define TCP_GRO_AGG_DISCARDED
• #define TCP_GRO_FLUSH_REQUIRED
• #define TCP_GRO_SEG_AGG_TIMER_IN_PROCESS
• #define TCP_GRO_METADATA_USED
• #define TCP_GRO_TIMER_UNAVAIL
• #define TCP_GRO_SEG_DISCARDED

1.5.12.4.4.2 Macro Definition Documentation

1.5.12.4.4.2.1 #define TCP_GRO_SEG_AGG_DONE

A segment was aggregated and the aggregation is completed.

The aggregated frame is located in the default frame location.

1.5.12.4.4.2.2 #define TCP_GRO_SEG_AGG_NOT_DONE

A segment was aggregated and the aggregation is not completed.

1.5.12.4.4.2.3 #define TCP_GRO_SEG_AGG_DONE_AGG_OPEN

A segment has started new aggregation, and the previous aggregation is completed.

The aggregated frame is located in the default frame location.

1.5.12.4.4.2.4 #define TCP_GRO_AGG_DISCARDED

The aggregation was discarded due to buffer pool depletion.

(This status is returned only when there was no other option to continue processing the aggregated frame
due to the buffer pool depletion).

1.5.12.4.4.2.5 #define TCP_GRO_FLUSH_REQUIRED

A flush call (tcp_gro_flush_aggregation()) is required by the user when possible.

This status bit can be return as a stand alone status, or as part of a combined status with one of the above
statuses.

1.5.12.4.4.2.6 #define TCP_GRO_SEG_AGG_TIMER_IN_PROCESS

The aggregation timer has expired.

NXP Semiconductors
AIOP Service Layer API Reference Manual

382

NETF (Network Libraries)

The aggregation will be returned via timer callback. This status is return when a timer has expired but has
not yet got the gro context. Since the timer has already expired it is getting precedence in returning the
aggregation. This status bit can be return as a stand alone status (in this case no aggregated frame exists in
the default frame location), or as part of a combined status with one of the above statuses (in this case an
aggregated frame may exists in the default frame location (depends on the combined status), and another
frame exists, which will be flushed by the timeout callback).

1.5.12.4.4.2.7 #define TCP_GRO_METADATA_USED

A new aggregation has started with the current segment.

The metadata address was used by tcp_gro_aggregate_seg(). This status bit can be return only as part of a
combined status with one of the above statuses.

1.5.12.4.4.2.8 #define TCP_GRO_TIMER_UNAVAIL

The segment could not start an aggregation since no timers are available.

This status bit can be return only as part of a combined status with one of the above statuses.

1.5.12.4.4.2.9 #define TCP_GRO_SEG_DISCARDED

The segment was discarded due to buffer pool depletion.

This status bit can be return only as part of a combined status with one of the above statuses.

1.5.12.4.5 TCP GRO Flush Statuses

1.5.12.4.5.1 Overview

tcp_gro_flush_aggregation() return values

Macros

• #define TCP_GRO_FLUSH_AGG_DONE
• #define TCP_GRO_FLUSH_NO_AGG
• #define TCP_GRO_FLUSH_TIMER_IN_PROCESS

1.5.12.4.5.2 Macro Definition Documentation

1.5.12.4.5.2.1 #define TCP_GRO_FLUSH_AGG_DONE

The aggregation is flushed.

1.5.12.4.5.2.2 #define TCP_GRO_FLUSH_NO_AGG

No aggregation exists for the session.

NXP Semiconductors
AIOP Service Layer API Reference Manual

383

NETF (Network Libraries)

1.5.12.4.5.2.3 TCP GRO Timeout Granularity Flags

1.5.12.4.5.2.4 Overview

Flags for the timer granularity value.

The flags are allowed to be changed per new session only.

Macros

• #define TCP_GRO_CREATE_TIMER_MODE_USEC_GRANULARITY
• #define TCP_GRO_CREATE_TIMER_MODE_10_USEC_GRANULARITY
• #define TCP_GRO_CREATE_TIMER_MODE_100_USEC_GRANULARITY
• #define TCP_GRO_CREATE_TIMER_MODE_MSEC_GRANULARITY
• #define TCP_GRO_CREATE_TIMER_MODE_10_MSEC_GRANULARITY
• #define TCP_GRO_CREATE_TIMER_MODE_100_MSEC_GRANULARITY
• #define TCP_GRO_CREATE_TIMER_MODE_SEC_GRANULARITY

1.5.12.4.5.2.5 Macro Definition Documentation

1.5.12.4.5.2.6 #define TCP_GRO_CREATE_TIMER_MODE_USEC_GRANULARITY

1 uSec timer ticks

1.5.12.4.5.2.7 #define TCP_GRO_CREATE_TIMER_MODE_10_USEC_GRANULARITY

10 uSec timer ticks

1.5.12.4.5.2.8 #define TCP_GRO_CREATE_TIMER_MODE_100_USEC_GRANULARITY

100 uSec timer ticks

1.5.12.4.5.2.9 #define TCP_GRO_CREATE_TIMER_MODE_MSEC_GRANULARITY

1 mSec timer ticks

1.5.12.4.5.2.10 #define TCP_GRO_CREATE_TIMER_MODE_10_MSEC_GRANULARITY

10 mSec timer ticks

1.5.12.4.5.2.11 #define TCP_GRO_CREATE_TIMER_MODE_100_MSEC_GRANULARITY

100 mSec timer ticks

1.5.12.4.5.2.12 #define TCP_GRO_CREATE_TIMER_MODE_SEC_GRANULARITY

1 Sec timer ticks

NXP Semiconductors
AIOP Service Layer API Reference Manual

384

NETF (Network Libraries)

1.5.13 IPSEC

1.5.13.1 Overview

Freescale AIOP IPsec Functional Module API.

Modules

• IPsec Structures
• IPsec Macros
• IPsec Enumerations
• IPsec Functions

1.5.13.2 IPsec Structures

1.5.13.2.1 Overview

Forced timer expiration indicators are returned if an application request the timers expiration by calling
the ipsec_force_seconds_lifetime_expiry API function.

However, if the forced expiration request, coincides with the last expiration timer task, the non forced
indicator is returned.

Freescale IPsec Structures

Data Structures

• struct ipsec_encap_cbc_params
• struct ipsec_encap_ctr_params
• struct ipsec_encap_ccm_params
• struct ipsec_encap_gcm_params
• struct ipsec_encap_params
• struct ipsec_decap_ctr_params
• struct ipsec_decap_ccm_params
• struct ipsec_decap_gcm_params
• struct ipsec_decap_params
• struct alg_info
• struct ipsec_descriptor_params

1.5.13.2.2 Data Structure Documentation

1.5.13.2.2.1 struct ipsec_encap_cbc_params

IV field for IPsec CBC encapsulation.

NXP Semiconductors
AIOP Service Layer API Reference Manual

385

NETF (Network Libraries)

Data Fields

uint8_t iv[16]

1.5.13.2.2.2 struct ipsec_encap_ctr_params

Nonce and IV fields for IPsec CTR encapsulation.

Data Fields

uint8_t ctr_nonce[4]
uint64_t iv

1.5.13.2.2.3 struct ipsec_encap_ccm_params

Salt and IV fields for IPsec CCM encapsulation.

Data Fields

uint8_t salt[4] lower 24 bits are used
uint64_t iv

1.5.13.2.2.4 struct ipsec_encap_gcm_params

Salt and IV fields for IPsec GCM encapsulation.

Data Fields

uint8_t salt[4] lower 24 bits are used
uint64_t iv

1.5.13.2.2.5 struct ipsec_encap_params

Container for encapsulation parameters.

Data Fields

uint16_t options Options.
uint32_t seq_num_ext←↩

_hi
Extended sequence number.

uint32_t seq_num Initial sequence number.
uint32_t spi Security Parameter Index.
uint16_t ip_hdr_len IP header length in bytes. Should include additional 8 bytes if U←↩

DP encapsulation is enabled
uint32_t ∗ outer_hdr optional IP and UDP Header content

union ipsec_←↩
encap_params

__unnamed_←↩
_

NXP Semiconductors
AIOP Service Layer API Reference Manual

386

NETF (Network Libraries)

1.5.13.2.2.6 struct ipsec_decap_ctr_params

Salt and counter fields for IPsec CTR decapsulation.

NXP Semiconductors
AIOP Service Layer API Reference Manual

387

NETF (Network Libraries)

Data Fields

uint8_t ctr_nonce[4]

1.5.13.2.2.7 struct ipsec_decap_ccm_params

Salt, counter and flag fields for IPsec CCM decapsulation.

Data Fields

uint8_t salt[4]

1.5.13.2.2.8 struct ipsec_decap_gcm_params

Salt field for IPsec GCM decapsulation.

Data Fields

uint8_t salt[4]

1.5.13.2.2.9 struct ipsec_decap_params

Container for decapsulation parameters.

Data Fields

uint16_t options Options.
uint32_t seq_num_ext←↩

_hi
Extended sequence number.

uint32_t seq_num Sequence number.
union ipsec_←↩
decap_params

__unnamed_←↩
_

1.5.13.2.2.10 struct alg_info

Container for IPsec algorithm details.

Data Fields

uint32_t algtype Algorithm selector.
uint32_t keylen Length of the provided key, in bytes.
uint64_t key Address where algorithm key resides No alignment requirements.
uint32_t key_enc_flags Reserved. Set to 0.

enum
key_types

key_type Reserved.

NXP Semiconductors
AIOP Service Layer API Reference Manual

388

NETF (Network Libraries)

uint16_t algmode Reserved.

1.5.13.2.2.11 struct ipsec_descriptor_params

IPsec Descriptor Parameters.

Data Fields

int32_t direction Descriptor direction.
uint32_t flags Miscellaneous control flags.

union ipsec_←↩
descriptor_←↩

params

__unnamed_←↩
_

Enc/Dec Parameters.

struct alg_info cipherdata cipher algorithm information
struct alg_info authdata authentication algorithm information

uint64_t soft_←↩
kilobytes_limit

Lifetime Limits. Caution: hard limit value must be equal or greater
than soft limit value Soft Kilobytes limit, in bytes.

uint64_t hard_←↩
kilobytes_limit

Hard Kilobytes limit, in bytes.

uint64_t soft_packet_←↩
limit

Soft Packet count limit.

uint64_t hard_packet_←↩
limit

Hard Packet count limit.

uint32_t soft_seconds←↩
_limit

The seconds limit value must be larger than 10 seconds. Caution:
hard limit value must be equal or greater than soft limit value Soft
Seconds limit.

uint32_t hard_seconds←↩
_limit

Hard Second limit.

ipsec_←↩
lifetime_←↩
callback_t

∗

lifetime_←↩
callback

Callback function. Invoked when the Soft or Hard Seconds timer
reaches the limit value The function returns IPSEC_SOFT/HA←↩
RD_SEC_LIFETIME_EXPIRED Set to NULL to when not avail-
able

uint64_t callback_arg argument for callback function (SA address)
uint16_t spid Storage Profile ID of the SEC output frame.

1.5.13.3 IPsec Macros

1.5.13.3.1 Overview

Freescale IPsec Macros.

Macros

• #define IPSEC_FLG_TUNNEL_MODE
• #define IPSEC_FLG_TRANSPORT_PAD_CHECK

NXP Semiconductors
AIOP Service Layer API Reference Manual

389

NETF (Network Libraries)

• #define IPSEC_FLG_BUFFER_REUSE
• #define IPSEC_ENC_OPTS_NAT_EN
• #define IPSEC_ENC_OPTS_NUC_EN
• #define IPSEC_FLG_ENC_DSCP_SET
• #define IPSEC_FLG_LIFETIME_KB_CNTR_EN
• #define IPSEC_FLG_LIFETIME_PKT_CNTR_EN
• #define IPSEC_FLG_LIFETIME_SEC_CNTR_EN
• #define IPSEC_OPTS_ESP_ESN
• #define IPSEC_OPTS_ESP_IPVSN
• #define IPSEC_ENC_OPTS_IVSRC
• #define IPSEC_ENC_OPTS_DFC
• #define IPSEC_ENC_OPTS_DTTL
• #define IPSEC_ENC_OPTS_SNR_EN
• #define IPSEC_DEC_OPTS_ARSNONE
• #define IPSEC_DEC_OPTS_ARS32
• #define IPSEC_DEC_OPTS_ARS128
• #define IPSEC_DEC_OPTS_ARS64
• #define IPSEC_DEC_OPTS_TECN
• #define IPSEC_DEC_OPTS_DTTL
• #define IPSEC_DEC_OPTS_DSC
• #define IPSEC_CIPHER_DES_IV64
• #define IPSEC_CIPHER_DES
• #define IPSEC_CIPHER_3DES
• #define IPSEC_CIPHER_NULL
• #define IPSEC_CIPHER_AES_CBC
• #define IPSEC_CIPHER_AES_CTR
• #define IPSEC_CIPHER_AES_CCM8
• #define IPSEC_CIPHER_AES_CCM12
• #define IPSEC_CIPHER_AES_CCM16
• #define IPSEC_CIPHER_AES_GCM8
• #define IPSEC_CIPHER_AES_GCM12
• #define IPSEC_CIPHER_AES_GCM16
• #define IPSEC_CIPHER_AES_NULL_WITH_GMAC
• #define IPSEC_AUTH_HMAC_NULL
• #define IPSEC_AUTH_HMAC_MD5_96
• #define IPSEC_AUTH_HMAC_SHA1_96
• #define IPSEC_AUTH_AES_XCBC_MAC_96
• #define IPSEC_AUTH_HMAC_MD5_128
• #define IPSEC_AUTH_HMAC_SHA1_160
• #define IPSEC_AUTH_AES_CMAC_96
• #define IPSEC_AUTH_HMAC_SHA2_256_128
• #define IPSEC_AUTH_HMAC_SHA2_384_192
• #define IPSEC_AUTH_HMAC_SHA2_512_256
• #define IPSEC_STATUS_SOFT_KB_EXPIRED
• #define IPSEC_STATUS_HARD_KB_EXPIRED
• #define IPSEC_STATUS_SOFT_PACKET_EXPIRED
• #define IPSEC_STATUS_HARD_PACKET_EXPIRED
• #define IPSEC_STATUS_SOFT_SEC_EXPIRED
• #define IPSEC_STATUS_HARD_SEC_EXPIRED
• #define IPSEC_BUFFER_POOL_DEPLETION
• #define IPSEC_SEQ_NUM_OVERFLOW
• #define IPSEC_AR_LATE_PACKET
• #define IPSEC_AR_REPLAY_PACKET
• #define IPSEC_ICV_COMPARE_FAIL
• #define IPSEC_GEN_ENCR_ERR
• #define IPSEC_GEN_DECR_ERR

NXP Semiconductors
AIOP Service Layer API Reference Manual

390

NETF (Network Libraries)

• #define IPSEC_DECR_VALIDITY_ERR
• #define IPSEC_INTERNAL_ERR
• #define IPSEC_SOFT_SEC_LIFETIME_EXPIRED
• #define IPSEC_HARD_SEC_LIFETIME_EXPIRED
• #define IPSEC_FORCE_SOFT_SEC_LIFETIME_EXPIRED
• #define IPSEC_FORCE_HARD_SEC_LIFETIME_EXPIRED

Typedefs

• typedef uint64_t ipsec_handle_t
• typedef uint64_t ipsec_instance_handle_t
• typedef void(ipsec_lifetime_callback_t) (uint64_t callback_arg, uint8_t expiry_type)

1.5.13.3.2 Macro Definition Documentation

1.5.13.3.2.1 #define IPSEC_FLG_TUNNEL_MODE

IPsec general flags.

Use for ipsec_descriptor_params.flagsIPsec tunnel mode (transport mode if not set)

1.5.13.3.2.2 #define IPSEC_FLG_TRANSPORT_PAD_CHECK

Enable Transport mode ESP pad check (default = no check) Valid for transport mode decapsulation only.

Should not be set for tunnel mode (in tunnel mode pad check is always done) Only the default monolithic
incrementing padding values are supported (1,2,3,...) Caution: the presentation segment size must be large
enough to accommodate the entire ESP padding. Otherwise an error will be produced. Caution: enabling
this option has a performance degradation impact

1.5.13.3.2.3 #define IPSEC_FLG_BUFFER_REUSE

Reuse the input frame buffer.

If this bit is set, the input frame buffer is used for the output frame. Otherwise a new buffer is allocated
and the input buffer is released.

1.5.13.3.2.4 #define IPSEC_ENC_OPTS_NAT_EN

NAT UDP Encapsulation enable.

(IPv4 only)

1.5.13.3.2.5 #define IPSEC_ENC_OPTS_NUC_EN

NAT UDP checksum enable.

(IPv4 only) When set, the outer header UDP checksum is calculated. If not set, the the outer header UDP
checksum is zero.

NXP Semiconductors
AIOP Service Layer API Reference Manual

391

NETF (Network Libraries)

1.5.13.3.2.6 #define IPSEC_FLG_ENC_DSCP_SET

Set the differentiated services field in the outer IP header according to the value provided by the ipsec_←↩
encap_params.outer_hdr (tunnel mode only).

This is the 6 most-significant bits of the TOS field (IPv4) or Traffic-Class field (IPv6). If this flag is not
set, the DS field is copied from the inner header to the outer header. This flag must not be set for transport
mode.

1.5.13.3.2.7 #define IPSEC_FLG_LIFETIME_KB_CNTR_EN

Lifetime Counters These flags control if the lifetime counters status is checked.

Counting is always enabled regardless of the IPSEC_FLG_LIFETIME_KB_CNTR_EN, IPSEC_FLG←↩
_LIFETIME_PKT_CNTR_EN and IPSEC_FLG_LIFETIME_SEC_CNTR_EN flags Lifetime KiloByte
Counter Enable

1.5.13.3.2.8 #define IPSEC_FLG_LIFETIME_PKT_CNTR_EN

Lifetime Packet counter Enable.

1.5.13.3.2.9 #define IPSEC_FLG_LIFETIME_SEC_CNTR_EN

Lifetime Seconds counter Enable.

1.5.13.3.2.10 #define IPSEC_OPTS_ESP_ESN

General IPSec ESP encap/decap options.

Use for ipsec_encap/decap_params.optionsextended sequence included

1.5.13.3.2.11 #define IPSEC_OPTS_ESP_IPVSN

process an IPv6 header Valid for transport mode only

1.5.13.3.2.12 #define IPSEC_ENC_OPTS_IVSRC

IPSec ESP Encapsulation options.

Use for ipsec_encap_params.options Generate random initial vector before starting encapsulation If set,
the IV comes from an internal random generator

1.5.13.3.2.13 #define IPSEC_ENC_OPTS_DFC

Copy the DF bit from the inner IP header to the outer IP header.

1.5.13.3.2.14 #define IPSEC_ENC_OPTS_DTTL

Decrement TTL field (IPv4) or Hop-Limit field (IPv6) within inner IP header.

NXP Semiconductors
AIOP Service Layer API Reference Manual

392

NETF (Network Libraries)

1.5.13.3.2.15 #define IPSEC_ENC_OPTS_SNR_EN

Sequence Number Rollover control.

This control permits a Sequence Number Rollover If not set, a Sequence Number Rollover causes an error

1.5.13.3.2.16 #define IPSEC_DEC_OPTS_ARSNONE

IPSec ESP Decapsulation options.

Use for ipsec_decap_params.optionsAnti-replay window size. Use one of the following options no anti-
replay window

1.5.13.3.2.17 #define IPSEC_DEC_OPTS_ARS32

32-entry anti-replay window

1.5.13.3.2.18 #define IPSEC_DEC_OPTS_ARS128

128-entry anti-replay window

1.5.13.3.2.19 #define IPSEC_DEC_OPTS_ARS64

64-entry anti-replay window

1.5.13.3.2.20 #define IPSEC_DEC_OPTS_TECN

Enable Tunnel ECN according to RFC 6040 Valid for Tunnel mode only.

Not valid for transport mode

1.5.13.3.2.21 #define IPSEC_DEC_OPTS_DTTL

Decrement TTL field (IPv4) or Hop-Limit field (IPv6) within inner IP header.

1.5.13.3.2.22 #define IPSEC_DEC_OPTS_DSC

DiffServ Copy Copy the IPv4 TOS or IPv6 Traffic Class byte from the outer IP header to the inner IP
header.

1.5.13.3.2.23 #define IPSEC_CIPHER_DES_IV64

IPSec Cipher Algorithms.

Use for the ipsec_descriptor_params.cipherdata.algtype field

1.5.13.3.2.24 #define IPSEC_AUTH_HMAC_NULL

IPSec Authentication Algorithms.

Use for the ipsec_descriptor_params.authdata.algtype field

NXP Semiconductors
AIOP Service Layer API Reference Manual

393

NETF (Network Libraries)

1.5.13.3.2.25 #define IPSEC_STATUS_SOFT_KB_EXPIRED

AIOP IPsec Encryption/Decryption return codes.

Returned by ipsec_frame_encrypt (∗enc_status) or ipsec_frame_decrypt (∗dec_status) Multiple bits can
be set simultaneously.Reached Soft Lifetime Kilobyte Limit

1.5.13.3.2.26 #define IPSEC_STATUS_HARD_KB_EXPIRED

Reached Hard Lifetime Kilobyte Limit.

1.5.13.3.2.27 #define IPSEC_STATUS_SOFT_PACKET_EXPIRED

Reached Soft Lifetime Packet Limit.

1.5.13.3.2.28 #define IPSEC_STATUS_HARD_PACKET_EXPIRED

Reached Hard Lifetime Packet Limit.

1.5.13.3.2.29 #define IPSEC_STATUS_SOFT_SEC_EXPIRED

Reached Soft Lifetime Seconds Limit.

1.5.13.3.2.30 #define IPSEC_STATUS_HARD_SEC_EXPIRED

Reached Hard Lifetime Seconds Limit.

1.5.13.3.2.31 #define IPSEC_BUFFER_POOL_DEPLETION

Buffer pool depletion.

1.5.13.3.2.32 #define IPSEC_SEQ_NUM_OVERFLOW

Sequence Number overflow.

1.5.13.3.2.33 #define IPSEC_AR_LATE_PACKET

Anti Replay Check: Late packet.

1.5.13.3.2.34 #define IPSEC_AR_REPLAY_PACKET

Anti Replay Check: Replay packet.

1.5.13.3.2.35 #define IPSEC_ICV_COMPARE_FAIL

ICV comparison failed.

1.5.13.3.2.36 #define IPSEC_GEN_ENCR_ERR

General encryption error.

NXP Semiconductors
AIOP Service Layer API Reference Manual

394

NETF (Network Libraries)

1.5.13.3.2.37 #define IPSEC_GEN_DECR_ERR

General decryption error.

1.5.13.3.2.38 #define IPSEC_DECR_VALIDITY_ERR

Decryption validity error The frame after decyption is invalid due to checksum or other header error.

1.5.13.3.2.39 #define IPSEC_INTERNAL_ERR

Internal error.

1.5.13.3.2.40 #define IPSEC_SOFT_SEC_LIFETIME_EXPIRED

AIOP IPsec Seconds Lifetime Callback codes.

Soft timer expiration indicator

1.5.13.3.2.41 #define IPSEC_HARD_SEC_LIFETIME_EXPIRED

Hard timer expiration indicator.

1.5.13.3.2.42 #define IPSEC_FORCE_SOFT_SEC_LIFETIME_EXPIRED

Forced soft timer expiration indicator.

1.5.13.3.2.43 #define IPSEC_FORCE_HARD_SEC_LIFETIME_EXPIRED

Forced soft timer expiration indicator.

1.5.13.3.3 Typedef Documentation

1.5.13.3.3.1 typedef uint64_t ipsec_handle_t

IPSec handles Type definition.

1.5.13.3.3.2 typedef void(ipsec_lifetime_callback_t) (uint64_t callback_arg,uint8_t expiry_type)

Lifetime callback function type definition.

1.5.13.4 IPsec Enumerations

1.5.13.4.1 Overview

IPsec Enumerations.

NXP Semiconductors
AIOP Service Layer API Reference Manual

395

NETF (Network Libraries)

Enumerations

• enum ipsec_direction {
IPSEC_DIRECTION_INBOUND,
IPSEC_DIRECTION_OUTBOUND }

• enum ipsec_status_codes {
IPSEC_SUCCESS,
IPSEC_ERROR }

• enum key_types { RESERVED_KEY_TYPE }

1.5.13.4.2 Enumeration Type Documentation

1.5.13.4.2.1 enum ipsec_direction

IPSEC Inbound/Outbound (Decap/Encap) Direction.

Enumerator

IPSEC_DIRECTION_INBOUND Inbound Direction.
IPSEC_DIRECTION_OUTBOUND Outbound Direction.

1.5.13.4.2.2 enum ipsec_status_codes

AIOP IPsec Functional Module return status codes.

Enumerator

IPSEC_SUCCESS Success.

1.5.13.4.2.3 enum key_types

Key types.

Reserved.

1.5.13.5 IPsec Functions

1.5.13.5.1 Overview

/∗∗
Freescale AIOP IPsec Functions.

NXP Semiconductors
AIOP Service Layer API Reference Manual

396

NETF (Network Libraries)

Functions

• int ipsec_early_init (uint32_t total_instance_num, uint32_t total_committed_sa_num, uint32_←↩
t total_max_sa_num, uint32_t flags)

• int ipsec_drv_init (void)
• int ipsec_create_instance (uint32_t committed_sa_num, uint32_t max_sa_num, uint32_t instance←↩

_flags, uint8_t tmi_id, ipsec_instance_handle_t ∗instance_handle)
• int ipsec_delete_instance (ipsec_instance_handle_t instance_handle)
• int ipsec_add_sa_descriptor (struct ipsec_descriptor_params ∗params, ipsec_instance_handle_←↩

t instance_handle, ipsec_handle_t ∗ipsec_handle)
• int ipsec_del_sa_descriptor (ipsec_handle_t ipsec_handle)
• int ipsec_get_lifetime_stats (ipsec_handle_t ipsec_handle, uint64_t ∗bytes, uint64_t ∗packets,

uint64_t ∗dropped_pkts, uint32_t ∗sec)
• int ipsec_decr_lifetime_counters (ipsec_handle_t ipsec_handle, uint32_t bytes_decr_val, uint32_t

packets_decr_val, uint32_t dropped_pkts_decr_val)
• int ipsec_get_seq_num (ipsec_handle_t ipsec_handle, uint32_t ∗sequence_number, uint32_←↩

t ∗extended_sequence_number, uint32_t anti_replay_bitmap[4])
• int ipsec_frame_decrypt (ipsec_handle_t ipsec_handle, uint32_t ∗dec_status)
• int ipsec_frame_encrypt (ipsec_handle_t ipsec_handle, uint32_t ∗enc_status)
• int ipsec_force_seconds_lifetime_expiry (ipsec_handle_t ipsec_handle)

1.5.13.5.2 Function Documentation

1.5.13.5.2.1 int ipsec_early_init (uint32_t total_instance_num, uint32_t total_committed_sa_num,
uint32_t total_max_sa_num, uint32_t flags)

This function should be called at the AIOP "early init" stage, for declaring the amount of instances and
SAs which are going to be used throughout the application lifetime.

Parameters

in total_←↩
instance_num

- the maximum total number of IPsec instances that may be used. This
is the maximum number of instances that can be valid at a given time.

in total_←↩
committed_sa←↩

_num

- the total sum of all committed SAs of all IPsec instances that may be
used.

total_committed_sa_num = SUM(instance[1 .. total_instance_num].committed_sa_num)

Parameters

in total_max_sa←↩
_num

- the total sum of all maximum SAs number of all IPsec instances that
may be used.

total_max_sa_num = SUM(instance[1 .. total_instance_num].max_sa_num)

NXP Semiconductors
AIOP Service Layer API Reference Manual

397

NETF (Network Libraries)

Parameters

in flags - control flags. Set to 0.

Returns

Status 0 - on success ENAVAIL - resource not available or not found, ENOMEM - not enough
memory for requested memory partition

1.5.13.5.2.2 int ipsec_drv_init (void)

Function fills the IPsec dedicated BP, if that is requested in the application. It is called from the AIO←↩
P initialization task, in the global initialization stage. Note : The application requests the dedicated BP
creation by setting the "IPSEC_BUFFER_ALLOCATE_ENABLE" application configuration flag.

Returns

- 0 in case of success
• ENOMEM in case of not enough memory
• other error code otherwise

1.5.13.5.2.3 int ipsec_create_instance (uint32_t committed_sa_num, uint32_t max_sa_num,
uint32_t instance_flags, uint8_t tmi_id, ipsec_instance_handle_t ∗ instance_handle
)

This function creates an instance for an IPsec application. It should be called once when the application
goes up. All SAs belonging to this instance should be called with the returned instance handle.

Parameters

in committed_sa←↩
_num

- committed number of SAs for this instance. Resources for this num-
ber of SAs are preallocated, and respective ipsec_add_sa_descriptor()
cannot fail on depletion.

in max_sa_num - maximum number of SAs to be used by this instance. Resources for
additional SAs are allocated at run time on, and respective ipsec_add←↩
_sa_descriptor() may fail on depletion.

NXP Semiconductors
AIOP Service Layer API Reference Manual

398

NETF (Network Libraries)

in tmi_id - TMAN Instance ID to be used for timers creation
in instance_flags - control flags. Set to 0.
out instance_←↩

handle
- instance handle

Returns

IPSEC_SUCCESS -ENOMEM : not enough memory for partition -ENOSPC : unable to allocate
due to depletion

1.5.13.5.2.4 int ipsec_delete_instance (ipsec_instance_handle_t instance_handle)

This function deletes an instance of an IPsec application. It should be called once, only after all SA
descriptors belonging to this instance were deleted.

Parameters

out instance_←↩
handle

- instance handle

Returns

IPSEC_SUCCESS -ENAVAIL : instance does not exist -EPERM : trying to delete an instance before
deleting all SAs

1.5.13.5.2.5 int ipsec_add_sa_descriptor (struct ipsec_descriptor_params ∗ params,
ipsec_instance_handle_t instance_handle, ipsec_handle_t ∗ ipsec_handle)

This function performs add SA for encapsulation: creating the IPsec flow context and the Shared Descrip-
tor.

Implicit Input: BPID in the SRAM (internal usage).

Parameters

in params - pointer to descriptor parameters
in instance_←↩

handle
- IPsec instance handle achieved with ipsec_create_instance()

NXP Semiconductors
AIOP Service Layer API Reference Manual

399

NETF (Network Libraries)

out ipsec_handle - IPsec handle to the descriptor database

Returns

IPSEC_SUCCESS -ENOSPC : unable to allocate resources due to memory depletion, or seconds
lifetime timer resources depletion -EPERM : trying to allocate more than maximum SAs for instance
-ENAVAIL : unable to create SA descriptor -EBUSY : Unable to allocate resources for seconds
lifetime timer

1.5.13.5.2.6 int ipsec_del_sa_descriptor (ipsec_handle_t ipsec_handle)

This function performs buffer deallocation of the IPsec handler.

Implicit Input: BPID in the SRAM (internal usage).

Parameters

in ipsec_handle - descriptor handle.

Returns

IPSEC_SUCCESS -ENAVAIL : SA/Instance not found -EPERM : trying to delete SA descriptor
from empty instance

1.5.13.5.2.7 int ipsec_get_lifetime_stats (ipsec_handle_t ipsec_handle, uint64_t ∗ bytes,
uint64_t ∗ packets, uint64_t ∗ dropped_pkts, uint32_t ∗ sec)

This function returns the SA lifetime counters: bytes, packets, dropped packets and seconds.

Note: the counters are always enabled regardless of the IPSEC_FLG_LIFETIME_KB_CNTR_EN, IPS←↩
EC_FLG_LIFETIME_PKT_CNTR_EN and IPSEC_FLG_LIFETIME_SEC_CNTR_EN flags

Parameters

in ipsec_handle - IPsec handle.
out bytes - number of bytes processed by this SA.
out packets - number of packets processed by this SA.
out dropped_pkts - number of dropped packets by this SA.

NXP Semiconductors
AIOP Service Layer API Reference Manual

400

NETF (Network Libraries)

out sec - number of seconds passed since this SA was created.

Returns

Status

1.5.13.5.2.8 int ipsec_decr_lifetime_counters (ipsec_handle_t ipsec_handle, uint32_t
bytes_decr_val, uint32_t packets_decr_val, uint32_t dropped_pkts_decr_val)

This function decrements the SA lifetime counters: bytes, packets and dropped packets.

Parameters

in ipsec_handle - IPsec handle.
in bytes_decr_val - number of bytes to decrement from the bytes counter of this SA.
in packets_decr←↩

_val
- number of packets to decrement from the packets counter of this SA.

in dropped_pkts←↩
_decr_val

- number of dropped packets to decrement from the dropped packets
counter of this SA.

Returns

Status

1.5.13.5.2.9 int ipsec_get_seq_num (ipsec_handle_t ipsec_handle, uint32_t ∗ sequence_number,
uint32_t ∗ extended_sequence_number, uint32_t anti_replay_bitmap[4])

This function returns the following information:

• Sequence number.
• Extended sequence number (if exists).
• Anti-replay bitmap (scorecard) (if exists).

Parameters

in ipsec_handle - IPsec handle.
out sequence_←↩

number
- Sequence number.

NXP Semiconductors
AIOP Service Layer API Reference Manual

401

NETF (Network Libraries)

out extended_←↩
sequence_←↩

number

- Extended sequence number.

out anti_replay_←↩
bitmap

- Anti-replay bitmap. 4 words. For 32-entry only the first 32 bit word
is valid. For 64-entry only the first two 32 bit words are valid. For
128-entry all four words are valid.

Warning

anti_replay_bitmap is relevant for inbound (decapsulation) only, and should be ignored for outbound
(encapsulation).

For decapsulation, the sequence_number is valid only if an anti-replay window is enabled.

Returns

Status

1.5.13.5.2.10 int ipsec_frame_decrypt (ipsec_handle_t ipsec_handle, uint32_t ∗ dec_status)

This function performs the decryption and the required IPsec protocol changes (according to RFC4303).
This function also handles UDP encapsulated IPsec packets according to RFC3948. Both Tunnel and
Transport modes are supported. Tunneling of IPv4/IPv6 packets (either with (up to 64 Bytes) or without
Ethernet L2) within IPv4/IPv6 is supported. The function also updates the decrypted frame parser result
and checks the inner UDP checksum (if available).

Parameters

in ipsec_handle - IPsec handle.
out dec_status - decryption operation return status, including indication of kilo-

byte/packet lifetime limit crossing

Returns

General status

Warning

User should note the following:
• In this function the task yields.
• This function preserves the Order Scope mode of the task. If the Order Scope is of mode

concurrent, the Order Scope ID is incremented by 1.
• It is assumed that IPv6 ESP extension is the last IPv6 extension in the packet.
• This function does not support input frames which are IPv6 jumbograms.

• It is assumed that the address of the presented segment is aligned to 16 bytes.

NXP Semiconductors
AIOP Service Layer API Reference Manual

402

NETF (Network Libraries)

1.5.13.5.2.11 int ipsec_frame_encrypt (ipsec_handle_t ipsec_handle, uint32_t ∗ enc_status)

This function performs the encryption and the required IPsec protocol changes (according to RFC4303).
This function enables UDP encapsulation of the IPsec packets according to RFC3948. Both Tunnel and
Transport modes are supported. Tunneling of IPv4/IPv6 packets (either with (up to 64 Bytes) or without
Ethernet L2) within IPv4/IPv6 is supported. The function also updates the encrypted frame parser result.

Parameters

in ipsec_handle - IPsec handle.
out enc_status - encryption operation return status, including indication of kilo-

byte/packet lifetime limit crossing

Returns

General status

Warning

User should note the following:
• In this function the task yields.
• This function preserves the Order Scope mode of the task. If the Order Scope is of mode

concurrent, the Order Scope ID is incremented by 1.
• In a flow doing IP fragmentation (IPF) before encrypting the fragments with IPsec, the ordering

scope must be Exclusive before the first fragment enters IPSec.
• This function does not support encrypted frames which are IPv6 jumbograms.
• It is assumed that the address of the presented segment is aligned to 16 bytes.

1.5.13.5.2.12 int ipsec_force_seconds_lifetime_expiry (ipsec_handle_t ipsec_handle)

This function forces expiry of the soft and hard seconds lifetime timers, and if a user callback function is
available invokes a function call.
Parameters

in ipsec_handle - IPsec handle.

Returns

General status

Warning

User should note the following:
• In this function the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

403

NETF (Network Libraries)

1.5.14 Soft Parser Driver

1.5.14.1 Overview

Contains APIs for :

• Soft Parser loading
• Get/Set Parse Cycle Limit register value
• Dump AIOP Parser registers (debug)
• Dump AIOP Parser instructions memory (debug)

Modules

• AIOP/WRIOP Parser instructions memory
• Parsing Cycle Limits register

Data Structures

• struct sparser_info

Enumerations

• enum sparser_preloaded { sp_compute_running_sum }

Functions

• int sparser_drv_load_ingress_parser (struct sparser_info ∗sp)
• int sparser_drv_load_egress_parser (struct sparser_info ∗sp)
• uint32_t sparser_drv_get_pclim (void)
• void sparser_drv_set_pclim (uint32_t limit)
• void parser_enable_ipv6_atomic_frag_detection (void)

1.5.14.2 Data Structure Documentation

1.5.14.2.1 struct sparser_info

Structure representing the information needed load a Soft Parser or to get information about a loaded Soft
Parser.
Data Fields

uint16_t pc

NXP Semiconductors
AIOP Service Layer API Reference Manual

404

NETF (Network Libraries)

uint16_t size
uint8_t ∗ byte_code

uint8_t param_size
uint8_t param_off

1.5.14.3 Enumeration Type Documentation

1.5.14.3.1 enum sparser_preloaded

enum sparser_preloaded - Pre-loaded Soft Parsers

This enumeration contains the soft parsers defined by AIOP SL and loaded into the AIOP Parser instruc-
tions memory in the early initialization phase of the soft parser driver. Applications may call a soft parser
if it is a routine or jump to a soft parser if it is a soft HXS.

The pre-loaded soft parsers are loaded to the bottom of the instructions memory. Application defined soft
parsers may be loaded into the memory staring with the 0x020 PC address. The size of all application
defined soft parsers can't exceed : 2 ∗ (0x73c - 0x20) = 3640 bytes

1.5.14.4 Function Documentation

1.5.14.4.1 int sparser_drv_load_ingress_parser (struct sparser_info ∗ sp)

Load a soft parser into the internal instructions memory of the AIOP Parser. The driver checks the over-
lapping conditions of the soft parser code. The driver checks the overlapping conditions of the soft parser
parameters, if any, in the Parameter Array of the "ingress" parse profile.

Parameters

in sp : Soft parser information.

Returns

0 on success, -1 on failure. Prints error messages, showing what error occurred.

1.5.14.4.2 int sparser_drv_load_egress_parser (struct sparser_info ∗ sp)

Load a soft parser into the internal instructions memory of the AIOP Parser. The driver checks the over-
lapping conditions of the soft parser code. The driver checks the overlapping conditions of the soft parser
parameters, if any, in the Parameter Array of the "egress" parse profile.

NXP Semiconductors
AIOP Service Layer API Reference Manual

405

NETF (Network Libraries)

Parameters

in sp : Soft parser information.

Returns

0 on success, -1 on failure. Prints error messages, showing what error occurred.

1.5.14.4.3 uint32_t sparser_drv_get_pclim (void)

Get the parsing cycle limit value.

Returns

Current parsing cycle limit value.

1.5.14.4.4 void sparser_drv_set_pclim (uint32_t limit)

Set PCLIM register value.

Parameters

in limit : Limit value. In order to disable the parsing cycle limit verification,
set it to PARSER_CYCLE_LIMIT_DISABLE. Maximum value of the
limit is : PARSER_CYCLE_LIMIT_MAX

Returns

None

1.5.14.4.5 void parser_enable_ipv6_atomic_frag_detection (void)

Enables ipv6 atomic fragment detection.

Returns

None.

NXP Semiconductors
AIOP Service Layer API Reference Manual

406

NETF (Network Libraries)

1.5.14.5 AIOP/WRIOP Parser instructions memory

1.5.14.5.1 Overview

Define the range of values for the Parser program counter.

Macros

• #define PARSER_MIN_PC
• #define PARSER_MAX_PC

1.5.14.5.2 Macro Definition Documentation

1.5.14.5.2.1 #define PARSER_MIN_PC

Minimum value of program counter.

1.5.14.5.2.2 #define PARSER_MAX_PC

Maximum value of program counter.

1.5.14.6 Parsing Cycle Limits register

1.5.14.6.1 Overview

Define the range of values for the PCLIM register.

Macros

• #define PARSER_CYCLE_LIMIT_MAX
• #define PARSER_CYCLE_LIMIT_DISABLE

1.5.14.6.2 Macro Definition Documentation

1.5.14.6.2.1 #define PARSER_CYCLE_LIMIT_MAX

Maximum value of PCLIM.

1.5.14.6.2.2 #define PARSER_CYCLE_LIMIT_DISABLE

Minimum value of PCLIM (Disable PCLIM verification)

NXP Semiconductors
AIOP Service Layer API Reference Manual

407

NETF (Network Libraries)

1.5.15 Protocol headers definitions

1.5.15.1 Overview

common and general netcomm headers definitions.

Data Structures

• struct mplshdr
• struct vxlanhdr
• struct vlanhdr
• struct ethernethdr
• struct ipv4hdr
• struct ipv6hdr
• struct ipv6fraghdr
• struct udphdr
• struct tcphdr
• struct arphdr
• struct capwaphdr

Macros

• #define NET_HDR_FLD_PPP_PID
• #define NET_HDR_FLD_PPP_COMPRESSED
• #define NET_HDR_FLD_PPP_ALL_FIELDS
• #define NET_HDR_FLD_PPPOE_VER
• #define NET_HDR_FLD_PPPOE_TYPE
• #define NET_HDR_FLD_PPPOE_CODE
• #define NET_HDR_FLD_PPPOE_SID
• #define NET_HDR_FLD_PPPOE_LEN
• #define NET_HDR_FLD_PPPOE_SESSION
• #define NET_HDR_FLD_PPPOE_PID
• #define NET_HDR_FLD_PPPOE_ALL_FIELDS
• #define NET_HDR_FLD_PPPMUX_PID
• #define NET_HDR_FLD_PPPMUX_CKSUM
• #define NET_HDR_FLD_PPPMUX_COMPRESSED
• #define NET_HDR_FLD_PPPMUX_ALL_FIELDS
• #define NET_HDR_FLD_PPPMUX_SUBFRAME_PFF
• #define NET_HDR_FLD_PPPMUX_SUBFRAME_LXT
• #define NET_HDR_FLD_PPPMUX_SUBFRAME_LEN
• #define NET_HDR_FLD_PPPMUX_SUBFRAME_PID
• #define NET_HDR_FLD_PPPMUX_SUBFRAME_USE_PID
• #define NET_HDR_FLD_PPPMUX_SUBFRAME_ALL_FIELDS
• #define NET_HDR_FLD_ETH_DA
• #define NET_HDR_FLD_ETH_SA
• #define NET_HDR_FLD_ETH_LENGTH
• #define NET_HDR_FLD_ETH_TYPE
• #define NET_HDR_FLD_ETH_FINAL_CKSUM
• #define NET_HDR_FLD_ETH_PADDING
• #define NET_HDR_FLD_ETH_ALL_FIELDS
• #define NET_HDR_FLD_ETH_ADDR_SIZE
• #define NET_HDR_FLD_VLAN_VPRI

NXP Semiconductors
AIOP Service Layer API Reference Manual

408

NETF (Network Libraries)

• #define NET_HDR_FLD_VLAN_CFI
• #define NET_HDR_FLD_VLAN_VID
• #define NET_HDR_FLD_VLAN_LENGTH
• #define NET_HDR_FLD_VLAN_TYPE
• #define NET_HDR_FLD_VLAN_ALL_FIELDS
• #define NET_HDR_FLD_VLAN_TCI
• #define NET_HDR_FLD_IP_VER
• #define NET_HDR_FLD_IP_DSCP
• #define NET_HDR_FLD_IP_ECN
• #define NET_HDR_FLD_IP_PROTO
• #define NET_HDR_FLD_IP_SRC
• #define NET_HDR_FLD_IP_DST
• #define NET_HDR_FLD_IP_TOS_TC
• #define NET_HDR_FLD_IP_ID
• #define NET_HDR_FLD_IP_ALL_FIELDS
• #define NET_HDR_FLD_IP_PROTO_SIZE
• #define NET_HDR_FLD_IPv4_VER
• #define NET_HDR_FLD_IPv4_HDR_LEN
• #define NET_HDR_FLD_IPv4_TOS
• #define NET_HDR_FLD_IPv4_TOTAL_LEN
• #define NET_HDR_FLD_IPv4_ID
• #define NET_HDR_FLD_IPv4_FLAG_D
• #define NET_HDR_FLD_IPv4_FLAG_M
• #define NET_HDR_FLD_IPv4_OFFSET
• #define NET_HDR_FLD_IPv4_TTL
• #define NET_HDR_FLD_IPv4_PROTO
• #define NET_HDR_FLD_IPv4_CKSUM
• #define NET_HDR_FLD_IPv4_SRC_IP
• #define NET_HDR_FLD_IPv4_DST_IP
• #define NET_HDR_FLD_IPv4_OPTS
• #define NET_HDR_FLD_IPv4_OPTS_COUNT
• #define NET_HDR_FLD_IPv4_ALL_FIELDS
• #define NET_HDR_FLD_IPv4_ADDR_SIZE
• #define NET_HDR_FLD_IPv4_PROTO_SIZE
• #define NET_HDR_FLD_IPv6_VER
• #define NET_HDR_FLD_IPv6_TC
• #define NET_HDR_FLD_IPv6_SRC_IP
• #define NET_HDR_FLD_IPv6_DST_IP
• #define NET_HDR_FLD_IPv6_NEXT_HDR
• #define NET_HDR_FLD_IPv6_FL
• #define NET_HDR_FLD_IPv6_HOP_LIMIT
• #define NET_HDR_FLD_IPv6_ID
• #define NET_HDR_FLD_IPv6_ALL_FIELDS
• #define NET_HDR_FLD_IPv6_ADDR_SIZE
• #define NET_HDR_FLD_IPv6_NEXT_HDR_SIZE
• #define NET_HDR_FLD_ICMP_TYPE
• #define NET_HDR_FLD_ICMP_CODE
• #define NET_HDR_FLD_ICMP_CKSUM
• #define NET_HDR_FLD_ICMP_ID
• #define NET_HDR_FLD_ICMP_SQ_NUM
• #define NET_HDR_FLD_ICMP_ALL_FIELDS
• #define NET_HDR_FLD_ICMP_CODE_SIZE
• #define NET_HDR_FLD_ICMP_TYPE_SIZE
• #define NET_HDR_FLD_IGMP_VERSION
• #define NET_HDR_FLD_IGMP_TYPE
• #define NET_HDR_FLD_IGMP_CKSUM

NXP Semiconductors
AIOP Service Layer API Reference Manual

409

NETF (Network Libraries)

• #define NET_HDR_FLD_IGMP_DATA
• #define NET_HDR_FLD_IGMP_ALL_FIELDS
• #define NET_HDR_FLD_TCP_PORT_SRC
• #define NET_HDR_FLD_TCP_PORT_DST
• #define NET_HDR_FLD_TCP_SEQ
• #define NET_HDR_FLD_TCP_ACK
• #define NET_HDR_FLD_TCP_OFFSET
• #define NET_HDR_FLD_TCP_FLAGS
• #define NET_HDR_FLD_TCP_WINDOW
• #define NET_HDR_FLD_TCP_CKSUM
• #define NET_HDR_FLD_TCP_URGPTR
• #define NET_HDR_FLD_TCP_OPTS
• #define NET_HDR_FLD_TCP_OPTS_COUNT
• #define NET_HDR_FLD_TCP_ALL_FIELDS
• #define NET_HDR_FLD_TCP_PORT_SIZE
• #define NET_HDR_FLD_TCP_FLAGS_FIN
• #define NET_HDR_FLD_TCP_FLAGS_SYN
• #define NET_HDR_FLD_TCP_FLAGS_RST
• #define NET_HDR_FLD_TCP_FLAGS_PSH
• #define NET_HDR_FLD_TCP_FLAGS_ACK
• #define NET_HDR_FLD_TCP_FLAGS_URG
• #define NET_HDR_FLD_TCP_FLAGS_ECE
• #define NET_HDR_FLD_TCP_FLAGS_CWR
• #define NET_HDR_FLD_TCP_DATA_OFFSET_OFFSET
• #define NET_HDR_FLD_TCP_DATA_OFFSET_SHIFT_VALUE
• #define NET_HDR_FLD_TCP_DATA_OFFSET_MASK
• #define NET_HDR_FLD_UDP_PORT_SRC
• #define NET_HDR_FLD_UDP_PORT_DST
• #define NET_HDR_FLD_UDP_LEN
• #define NET_HDR_FLD_UDP_CKSUM
• #define NET_HDR_FLD_UDP_ALL_FIELDS
• #define NET_HDR_FLD_UDP_PORT_SIZE
• #define NET_HDR_FLD_UDP_LITE_PORT_SRC
• #define NET_HDR_FLD_UDP_LITE_PORT_DST
• #define NET_HDR_FLD_UDP_LITE_ALL_FIELDS
• #define NET_HDR_FLD_UDP_LITE_PORT_SIZE
• #define NET_HDR_FLD_UDP_ENCAP_ESP_PORT_SRC
• #define NET_HDR_FLD_UDP_ENCAP_ESP_PORT_DST
• #define NET_HDR_FLD_UDP_ENCAP_ESP_LEN
• #define NET_HDR_FLD_UDP_ENCAP_ESP_CKSUM
• #define NET_HDR_FLD_UDP_ENCAP_ESP_SPI
• #define NET_HDR_FLD_UDP_ENCAP_ESP_SEQUENCE_NUM
• #define NET_HDR_FLD_UDP_ENCAP_ESP_ALL_FIELDS
• #define NET_HDR_FLD_UDP_ENCAP_ESP_PORT_SIZE
• #define NET_HDR_FLD_UDP_ENCAP_ESP_SPI_SIZE
• #define NET_HDR_FLD_SCTP_PORT_SRC
• #define NET_HDR_FLD_SCTP_PORT_DST
• #define NET_HDR_FLD_SCTP_VER_TAG
• #define NET_HDR_FLD_SCTP_CKSUM
• #define NET_HDR_FLD_SCTP_ALL_FIELDS
• #define NET_HDR_FLD_SCTP_PORT_SIZE
• #define NET_HDR_FLD_DCCP_PORT_SRC
• #define NET_HDR_FLD_DCCP_PORT_DST
• #define NET_HDR_FLD_DCCP_ALL_FIELDS
• #define NET_HDR_FLD_DCCP_PORT_SIZE
• #define NET_HDR_FLD_IPHC_CID

NXP Semiconductors
AIOP Service Layer API Reference Manual

410

NETF (Network Libraries)

• #define NET_HDR_FLD_IPHC_CID_TYPE
• #define NET_HDR_FLD_IPHC_HCINDEX
• #define NET_HDR_FLD_IPHC_GEN
• #define NET_HDR_FLD_IPHC_D_BIT
• #define NET_HDR_FLD_IPHC_ALL_FIELDS
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_TYPE
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_FLAGS
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_LENGTH
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_TSN
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_STREAM_ID
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_STREAM_SQN
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_PAYLOAD_PID
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_UNORDERED
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_BEGGINING
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_END
• #define NET_HDR_FLD_SCTP_CHUNK_DATA_ALL_FIELDS
• #define NET_HDR_FLD_L2TPv2_TYPE_BIT
• #define NET_HDR_FLD_L2TPv2_LENGTH_BIT
• #define NET_HDR_FLD_L2TPv2_SEQUENCE_BIT
• #define NET_HDR_FLD_L2TPv2_OFFSET_BIT
• #define NET_HDR_FLD_L2TPv2_PRIORITY_BIT
• #define NET_HDR_FLD_L2TPv2_VERSION
• #define NET_HDR_FLD_L2TPv2_LEN
• #define NET_HDR_FLD_L2TPv2_TUNNEL_ID
• #define NET_HDR_FLD_L2TPv2_SESSION_ID
• #define NET_HDR_FLD_L2TPv2_NS
• #define NET_HDR_FLD_L2TPv2_NR
• #define NET_HDR_FLD_L2TPv2_OFFSET_SIZE
• #define NET_HDR_FLD_L2TPv2_FIRST_BYTE
• #define NET_HDR_FLD_L2TPv2_ALL_FIELDS
• #define NET_HDR_FLD_L2TPv3_CTRL_TYPE_BIT
• #define NET_HDR_FLD_L2TPv3_CTRL_LENGTH_BIT
• #define NET_HDR_FLD_L2TPv3_CTRL_SEQUENCE_BIT
• #define NET_HDR_FLD_L2TPv3_CTRL_VERSION
• #define NET_HDR_FLD_L2TPv3_CTRL_LENGTH
• #define NET_HDR_FLD_L2TPv3_CTRL_CONTROL
• #define NET_HDR_FLD_L2TPv3_CTRL_SENT
• #define NET_HDR_FLD_L2TPv3_CTRL_RECV
• #define NET_HDR_FLD_L2TPv3_CTRL_FIRST_BYTE
• #define NET_HDR_FLD_L2TPv3_CTRL_ALL_FIELDS
• #define NET_HDR_FLD_L2TPv3_SESS_TYPE_BIT
• #define NET_HDR_FLD_L2TPv3_SESS_VERSION
• #define NET_HDR_FLD_L2TPv3_SESS_ID
• #define NET_HDR_FLD_L2TPv3_SESS_COOKIE
• #define NET_HDR_FLD_L2TPv3_SESS_ALL_FIELDS
• #define NET_HDR_FLD_LLC_DSAP
• #define NET_HDR_FLD_LLC_SSAP
• #define NET_HDR_FLD_LLC_CTRL
• #define NET_HDR_FLD_LLC_ALL_FIELDS
• #define NET_HDR_FLD_NLPID_NLPID
• #define NET_HDR_FLD_NLPID_ALL_FIELDS
• #define NET_HDR_FLD_SNAP_OUI
• #define NET_HDR_FLD_SNAP_PID
• #define NET_HDR_FLD_SNAP_ALL_FIELDS
• #define NET_HDR_FLD_LLC_SNAP_TYPE
• #define NET_HDR_FLD_LLC_SNAP_ALL_FIELDS

NXP Semiconductors
AIOP Service Layer API Reference Manual

411

NETF (Network Libraries)

• #define NET_HDR_FLD_ARP_HTYPE
• #define NET_HDR_FLD_ARP_PTYPE
• #define NET_HDR_FLD_ARP_HLEN
• #define NET_HDR_FLD_ARP_PLEN
• #define NET_HDR_FLD_ARP_OPER
• #define NET_HDR_FLD_ARP_SHA
• #define NET_HDR_FLD_ARP_SPA
• #define NET_HDR_FLD_ARP_THA
• #define NET_HDR_FLD_ARP_TPA
• #define NET_HDR_FLD_ARP_ALL_FIELDS
• #define NET_HDR_FLD_CAPWAP_HLEN_OFFSET
• #define NET_HDR_FLD_CAPWAP_FRAG_OFFSET_OFFSET
• #define NET_HDR_FLD_CAPWAP_HLEN_MASK
• #define NET_HDR_FLD_CAPWAP_F
• #define NET_HDR_FLD_CAPWAP_L
• #define NET_HDR_FLD_CAPWAP_FRAG_OFFSET_MASK
• #define NET_HDR_FLD_RFC2684_LLC
• #define NET_HDR_FLD_RFC2684_NLPID
• #define NET_HDR_FLD_RFC2684_OUI
• #define NET_HDR_FLD_RFC2684_PID
• #define NET_HDR_FLD_RFC2684_VPN_OUI
• #define NET_HDR_FLD_RFC2684_VPN_IDX
• #define NET_HDR_FLD_RFC2684_ALL_FIELDS
• #define NET_HDR_FLD_USER_DEFINED_SRCPORT
• #define NET_HDR_FLD_USER_DEFINED_PCDID
• #define NET_HDR_FLD_USER_DEFINED_ALL_FIELDS
• #define NET_HDR_FLD_PAYLOAD_BUFFER
• #define NET_HDR_FLD_PAYLOAD_SIZE
• #define NET_HDR_FLD_MAX_FRM_SIZE
• #define NET_HDR_FLD_MIN_FRM_SIZE
• #define NET_HDR_FLD_PAYLOAD_TYPE
• #define NET_HDR_FLD_FRAME_SIZE
• #define NET_HDR_FLD_PAYLOAD_ALL_FIELDS
• #define NET_HDR_FLD_GRE_TYPE
• #define NET_HDR_FLD_GRE_ALL_FIELDS
• #define NET_HDR_FLD_MINENCAP_SRC_IP
• #define NET_HDR_FLD_MINENCAP_DST_IP
• #define NET_HDR_FLD_MINENCAP_TYPE
• #define NET_HDR_FLD_MINENCAP_ALL_FIELDS
• #define NET_HDR_FLD_IPSEC_AH_SPI
• #define NET_HDR_FLD_IPSEC_AH_NH
• #define NET_HDR_FLD_IPSEC_AH_ALL_FIELDS
• #define NET_HDR_FLD_IPSEC_ESP_SPI
• #define NET_HDR_FLD_IPSEC_ESP_SEQUENCE_NUM
• #define NET_HDR_FLD_IPSEC_ESP_ALL_FIELDS
• #define NET_HDR_FLD_IPSEC_ESP_SPI_SIZE
• #define NET_HDR_FLD_MPLS_LABEL_STACK
• #define NET_HDR_FLD_MPLS_LABEL_STACK_ALL_FIELDS
• #define NET_HDR_FLD_MACSEC_SECTAG
• #define NET_HDR_FLD_MACSEC_ALL_FIELDS
• #define NET_HDR_FLD_GTP_TEID
• #define NET_HDR_OPT_ETH_BROADCAST
• #define NET_HDR_OPT_ETH_MULTICAST
• #define NET_HDR_OPT_ETH_UNICAST
• #define NET_HDR_OPT_ETH_BPDU
• #define NET_HDR_OPT_VLAN_CFI

NXP Semiconductors
AIOP Service Layer API Reference Manual

412

NETF (Network Libraries)

• #define NET_HDR_OPT_IPV4_UNICAST
• #define NET_HDR_OPT_IPV4_MULTICAST
• #define NET_HDR_OPT_IPV4_BROADCAST
• #define NET_HDR_OPT_IPV4_OPTION
• #define NET_HDR_OPT_IPV4_FRAG
• #define NET_HDR_OPT_IPV4_INITIAL_FRAG
• #define NET_HDR_OPT_IPV6_UNICAST
• #define NET_HDR_OPT_IPV6_MULTICAST
• #define NET_HDR_OPT_IPV6_OPTION
• #define NET_HDR_OPT_IPV6_FRAG
• #define NET_HDR_OPT_IPV6_INITIAL_FRAG
• #define NET_HDR_OPT_IP_FRAG
• #define NET_HDR_OPT_IP_INITIAL_FRAG
• #define NET_HDR_OPT_IP_OPTION
• #define NET_HDR_OPT_MINENCAP_SRC_ADDR_PRESENT
• #define NET_HDR_OPT_GRE_ROUTING_PRESENT
• #define NET_HDR_OPT_TCP_OPTIONS
• #define NET_HDR_OPT_TCP_CONTROL_HIGH_BITS
• #define NET_HDR_OPT_TCP_CONTROL_LOW_BITS
• #define NET_HDR_OPT_CAPWAP_DTLS
• #define NET_IPV4_PROT_IPV4
• #define NET_IPV4_PROT_IPV6
• #define NET_ETH_ETYPE_IPV4
• #define NET_ETH_ETYPE_IPV6
• #define NET_MPLS_LABEL_IPV4
• #define NET_MPLS_LABEL_IPV6
• #define ARPHDR_ETHER_PRO_TYPE
• #define ARPHDR_IPV4_PRO_TYPE
• #define ARP_ETHERTYPE
• #define IPV4_EOOL_OPTION_TYPE
• #define IPV4_NOP_OPTION_TYPE
• #define IPV4_RECORD_ROUTE_OPTION_TYPE
• #define IPV4_TIMESTAMP_OPTION_TYPE
• #define IPV4_SCURITY_OPTION_TYPE
• #define IPV4_LSRR_OPTION_TYPE
• #define IPV4_STREAM_IDENTIFIER_TYPE
• #define IPV4_SSRR_OPTION_TYPE

Typedefs

• typedef uint16_t net_hdr_fld_t
• typedef uint16_t net_hdr_fld_ppp_t
• typedef uint16_t net_hdr_fld_pppoe_t
• typedef uint16_t net_hdr_fld_eth_t
• typedef uint16_t net_hdr_fld_vlan_t
• typedef uint16_t net_hdr_fld_ip_t
• typedef uint16_t net_hdr_fld_ipv4_t
• typedef uint16_t net_hdr_fld_ipv6_t
• typedef uint16_t net_hdr_fld_tcp_t
• typedef uint16_t net_hdr_fld_udp_t
• typedef uint16_t net_hdr_fld_udp_lite_t
• typedef uint16_t net_hdr_fld_udp_encap_esp_t
• typedef uint16_t net_hdr_fld_sctp_t
• typedef uint16_t net_hdr_fld_dccp_t
• typedef uint16_t net_hdr_fld_llc_t

NXP Semiconductors
AIOP Service Layer API Reference Manual

413

NETF (Network Libraries)

• typedef uint16_t net_hdr_fld_snap_t
• typedef uint16_t net_hdr_fld_llc_snap_t
• typedef uint16_t net_hdr_fld_gre_t
• typedef uint16_t net_hdr_fld_minencap_t
• typedef uint16_t net_hdr_fld_ipsec_ah_t
• typedef uint16_t net_hdr_fld_ipsec_esp_t
• typedef uint16_t net_hdr_fld_mpls_t
• typedef uint16_t net_hdr_fld_macsec_t
• typedef uint16_t net_hdr_fld_gtp_t
• typedef uint8_t net_hdr_option_t

NXP Semiconductors
AIOP Service Layer API Reference Manual

414

NETF (Network Libraries)

Enumerations

• enum net_prot {
NET_PROT_NONE,
NET_PROT_PAYLOAD,
NET_PROT_ETH,
NET_PROT_VLAN,
NET_PROT_IPv4,
NET_PROT_IPv6,
NET_PROT_IP,
NET_PROT_TCP,
NET_PROT_UDP,
NET_PROT_UDP_LITE,
NET_PROT_IPHC,
NET_PROT_SCTP,
NET_PROT_SCTP_CHUNK_DATA,
NET_PROT_PPPOE,
NET_PROT_PPP,
NET_PROT_PPPMUX,
NET_PROT_PPPMUX_SUBFRAME,
NET_PROT_L2TPv2,
NET_PROT_L2TPv3_CTRL,
NET_PROT_L2TPv3_SESS,
NET_PROT_LLC,
NET_PROT_LLC_SNAP,
NET_PROT_NLPID,
NET_PROT_SNAP,
NET_PROT_MPLS,
NET_PROT_IPSEC_AH,
NET_PROT_IPSEC_ESP,
NET_PROT_UDP_IPSEC_ESP,
NET_PROT_MACSEC,
NET_PROT_GRE,
NET_PROT_MINENCAP,
NET_PROT_DCCP,
NET_PROT_ICMP,
NET_PROT_IGMP,
NET_PROT_ARP,
NET_PROT_CAPWAP_DATA,
NET_PROT_CAPWAP_CTRL,
NET_PROT_RFC2684,
NET_PROT_ICMPV6,
NET_PROT_FCOE,
NET_PROT_FIP,
NET_PROT_ISCSI,
NET_PROT_GTP,
NET_PROT_USER_DEFINED_L2,
NET_PROT_USER_DEFINED_L3,
NET_PROT_USER_DEFINED_L4,
NET_PROT_USER_DEFINED_L5,
NET_PROT_USER_DEFINED_SHIM1,
NET_PROT_USER_DEFINED_SHIM2,
NET_PROT_USER_DEFINED_SHIM3,
NET_PROT_USER_DEFINED_SHIM4,
NET_PROT_USER_DEFINED_SHIM5,
NET_PROT_USER_DEFINED_SHIM6,
NET_PROT_USER_DEFINED_SHIM7,
NET_PROT_USER_DEFINED_SHIM8,

NXP Semiconductors
AIOP Service Layer API Reference Manual

415

NETF (Network Libraries)

NET_PROT_DUMMY_LAST }

1.5.15.2 Data Structure Documentation

1.5.15.2.1 struct mplshdr

MPLS structure.
Data Fields

uint32_t label:20 Label value.
uint32_t exp:3 Experimental use.
uint32_t s:1 Bottom of stack.
uint32_t ttl:8 Time to live.

1.5.15.2.2 struct vxlanhdr

VxLAN structure.
Data Fields

uint8_t flags Validation.
uint8_t reserved_1[3] reserved 24 bits
uint8_t vnid[3] vxlan Network Identifier
uint8_t reserved_2 reserved 8 bits

1.5.15.2.3 struct vlanhdr

VLAN structure.
Data Fields

uint16_t tpid Tag Protocol Identifier.
uint16_t tci Tag Control Information.

1.5.15.2.4 struct ethernethdr

Ethernet structure.
Data Fields

uint8_t dst_addr[6] MAC Destination Address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

416

NETF (Network Libraries)

uint8_t src_addr[6] MAC Source Address.
uint16_t ether_type Length or Ethertype.

1.5.15.2.5 struct ipv4hdr

IPv4 structure.

Please refer to RFC 791 for more details.
Data Fields

uint8_t vsn_and_ihl IP version and header length.
uint8_t tos Type of service.

uint16_t total_length Total length.
uint16_t id Identificaiton.
uint16_t flags_and_←↩

offset
IP Flags and Fragment Offset.

uint8_t ttl Time To Live.
uint8_t protocol Next Protocol.

uint16_t hdr_cksum Header Checksum.
uint32_t src_addr Source Address.
uint32_t dst_addr Destination Address.

1.5.15.2.6 struct ipv6hdr

IPv6 structure.

Please refer to RFC 2460 for more details.
Data Fields

uint32_t vsn_traffic_←↩
flow

IP ver,traffic class,flow label.

uint16_t payload_length
uint8_t next_header
uint8_t hop_limit

uint32_t src_addr[4] Source Address.
uint32_t dst_addr[4] Destination Address.

1.5.15.2.7 struct ipv6fraghdr

IPv6 Fragment Header.

Please refer to RFC 2460 for more details.

NXP Semiconductors
AIOP Service Layer API Reference Manual

417

NETF (Network Libraries)

Data Fields

uint8_t next_header
uint8_t reserved

uint16_t offset_and_←↩
flags

uint32_t id

1.5.15.2.8 struct udphdr

UDP structure.

Please refer to RFC 768 for more details.
Data Fields

uint16_t src_port Source port.
uint16_t dst_port Destination port.
uint16_t length Length.
uint16_t checksum Checksum.

1.5.15.2.9 struct tcphdr

TCP structure.

Please refer to RFC 793 for more details.
Data Fields

uint16_t src_port Source port.
uint16_t dst_port Destination port.
uint32_t sequence_←↩

number
Sequence number.

uint32_t acknowledgment←↩
_number

Acknowledgment number.

uint8_t data_offset_←↩
reserved

Data offset, reserved fields.

uint8_t flags TCP control bits.
uint16_t window_size Window size.
uint16_t checksum Checksum.
uint16_t urgent_pointer Urgent pointer.

1.5.15.2.10 struct arphdr

ARP header structure.

NXP Semiconductors
AIOP Service Layer API Reference Manual

418

NETF (Network Libraries)

Data Fields

uint16_t hw_type
uint16_t pro_type
uint8_t hw_addr_len
uint8_t pro_addr_len

uint16_t operation
uint8_t src_hw_←↩

addr[6]
uint32_t src_pro_addr
uint8_t dst_hw_←↩

addr[6]
uint32_t dst_pro_addr

1.5.15.2.11 struct capwaphdr

CAPWAP Header structure.

Please refer to RFC 5415 for more details.
Data Fields

uint8_t preamble
uint16_t hlen_rid_←↩

wbid_t
uint8_t bits_flags

uint16_t frag_id
uint16_t offset_rsvd

1.5.15.3 Macro Definition Documentation

1.5.15.3.1 #define IPV4_EOOL_OPTION_TYPE

End of Option List.

1.5.15.3.2 #define IPV4_NOP_OPTION_TYPE

No Operation.

1.5.15.3.3 #define IPV4_RECORD_ROUTE_OPTION_TYPE

Record Route.

NXP Semiconductors
AIOP Service Layer API Reference Manual

419

NETF (Network Libraries)

1.5.15.3.4 #define IPV4_TIMESTAMP_OPTION_TYPE

Internet Timestamp.

1.5.15.3.5 #define IPV4_SCURITY_OPTION_TYPE

Security option.

1.5.15.3.6 #define IPV4_LSRR_OPTION_TYPE

Loose Source & Record Route.

1.5.15.3.7 #define IPV4_STREAM_IDENTIFIER_TYPE

Stream Identifier.

1.5.15.3.8 #define IPV4_SSRR_OPTION_TYPE

Strict Source & Record Route.

1.5.16 CAPWAP

1.5.16.1 Overview

This section has Control And Provisioning of Wireless Access Points (CAPWAP) protocol APIS.

Modules

• CAPWAP DTLS
• CAPWAP Fragmentation
• CAPWAP Reassembly

1.5.16.2 CAPWAP DTLS

1.5.16.2.1 Overview

/∗∗
AIOP CAPWAP DTLS API functions macros and definitions.

/∗

NXP Semiconductors
AIOP Service Layer API Reference Manual

420

NETF (Network Libraries)

Data Structures

• struct cwap_dtls_sa_descriptor_params
• union cwap_dtls_sa_descriptor_params.pdb

Typedefs

• typedef uint64_t cwap_dtls_sa_handle_t
• typedef uint64_t cwap_dtls_instance_handle_t

Functions

• int cwap_dtls_drv_init (void)
• int cwap_dtls_early_init (uint32_t total_instance_num, uint32_t total_committed_sa_num, uint32←↩

_t total_max_sa_num)
• int cwap_dtls_create_instance (uint32_t committed_sa_num, uint32_t max_sa_num, cwap_dtls_←↩

instance_handle_t ∗instance_handle)
• int cwap_dtls_delete_instance (cwap_dtls_instance_handle_t instance_handle)
• int cwap_dtls_add_sa_descriptor (struct cwap_dtls_sa_descriptor_params ∗params, cwap_dtls_←↩

instance_handle_t instance_handle, cwap_dtls_sa_handle_t ∗sa_handle)
• int cwap_dtls_del_sa_descriptor (cwap_dtls_sa_handle_t sa_handle)
• void cwap_dtls_get_ar_info (cwap_dtls_sa_handle_t sa_handle, uint64_t ∗sequence_number,

uint32_t anti_replay_bitmap[4])
• int cwap_dtls_frame_decrypt (cwap_dtls_sa_handle_t sa_handle)
• int cwap_dtls_frame_encrypt (cwap_dtls_sa_handle_t sa_handle)

1.5.16.2.2 Data Structure Documentation

1.5.16.2.2.1 struct cwap_dtls_sa_descriptor_params

CAPWAP DTLS Descriptor Parameters.

Data Fields

uint32_t flags CAPWAP DTLS SA flags.
struct protcmd protcmd DTLS direction, cipher suite.

union
cwap_dtls_sa←↩
descriptor←↩

params

pdb DTLS protocol data block.

NXP Semiconductors
AIOP Service Layer API Reference Manual

421

NETF (Network Libraries)

struct alginfo cipherdata cipher algorithm information; alginfo.algtype must be filled even
though protcmd.protinfo indicates the DTLS cipher suite

struct alginfo authdata authentication algorithm information; alginfo.algtype must be
filled even though protcmd.protinfo indicates the DTLS cipher
suite

uint16_t spid Storage Profile ID of the CAPWAP DTLS output frame.

1.5.16.2.2.2 union cwap_dtls_sa_descriptor_params.pdb

DTLS protocol data block.

Data Fields

struct
tls_block_pdb

cbc

struct
tls_gcm_pdb

gcm

1.5.16.2.3 Typedef Documentation

1.5.16.2.3.1 typedef uint64_t cwap_dtls_sa_handle_t

CAPWAP DTLS handles type definition.

1.5.16.2.4 Function Documentation

1.5.16.2.4.1 int cwap_dtls_drv_init (void)

Function fills the CWAP/DTLS dedicated BP, if that is requested in the application. It is called from the
AIOP initialization task, in the global initialization stage. Note : The application requests the dedicated
BP creation by setting the "CWAP_DTLS_BUFFER_ALLOCATE_ENABLE" application configuration
flag.

Returns

0 - success -ENOMEM - not enough memory -other error code - otherwise

1.5.16.2.4.2 int cwap_dtls_early_init (uint32_t total_instance_num, uint32_t
total_committed_sa_num, uint32_t total_max_sa_num)

This function should be called at the AIOP "early init" stage, for declaring the amount of instances and
SAs which are going to be used throughout the application lifetime.

NXP Semiconductors
AIOP Service Layer API Reference Manual

422

NETF (Network Libraries)

Parameters

in total_←↩
instance_num

- the maximum total number of CAPWAP DTLS instances that may be
used. This is the maximum number of instances that can be valid at a
given time.

in total_←↩
committed_sa←↩

_num

- the total sum of all committed SAs of all CAPWAP DTLS instances
that may be used. total_committed_sa_num = SUM(instance[1 .. total←↩
_instance_num].committed_sa_num)

in total_max_sa←↩
_num

- the total sum of all maximum SAs number of all CAPWAP DTL←↩
S instances that may be used. total_max_sa_num = SUM(instance[1 ..
total_instance_num].max_sa_num)

Returns

0 - success -ENAVAIL - resource not available or not found, -ENOMEM - not enough memory for
requested memory partition

1.5.16.2.4.3 int cwap_dtls_create_instance (uint32_t committed_sa_num, uint32_t max_sa_num,
cwap_dtls_instance_handle_t ∗ instance_handle)

This function creates an instance for a CAPWAP DTLS application. It should be called once when the
application goes up. All SAs belonging to this instance should be called with the returned instance handle.

Parameters

in committed_sa←↩
_num

- committed number of SAs for this instance. Resources for this number
of SAs are preallocated, thus cwap_dtls_add_sa_descriptor() cannot fail
on depletion.

in max_sa_num - maximum number of SAs to be used by this instance. Resources for
additional SAs are allocated at run time on, thus cwap_dtls_add_sa_←↩
descriptor() may fail on depletion.

out instance_←↩
handle

- instance handle

Returns

0 - success -ENOMEM - not enough memory for partition -ENOSPC - unable to allocate due to
depletion

1.5.16.2.4.4 int cwap_dtls_delete_instance (cwap_dtls_instance_handle_t instance_handle)

This function deletes an instance of a CAPWAP DTLS application. It should be called once, only after all
SA descriptors belonging to this instance were deleted.

NXP Semiconductors
AIOP Service Layer API Reference Manual

423

NETF (Network Libraries)

Parameters

out instance_←↩
handle

- instance handle

Returns

0 - success -ENAVAIL - instance does not exist -EPERM - trying to delete an instance before
deleting all SAs

1.5.16.2.4.5 int cwap_dtls_add_sa_descriptor (struct cwap_dtls_sa_descriptor_params ∗
params, cwap_dtls_instance_handle_t instance_handle, cwap_dtls_sa_handle_t ∗
sa_handle)

This function configures the internal SA management structures: the CAPWAP DTLS flow context, the
SEC Shared Descriptor etc. Implicit input: BPID in the SRAM (internal usage).

Parameters

in params - pointer to descriptor parameters
in instance_←↩

handle
- CAPWAP DTLS instance handle achieved with cwap_dtls_create_←↩
instance()

out sa_handle - CAPWAP DTLS SA handle

Returns

0 - success -ENOSPC - unable to allocate resources due to memory depletion -EPERM - trying to
allocate more than maximum SAs for instance -ENAVAIL - unable to create SA descriptor

1.5.16.2.4.6 int cwap_dtls_del_sa_descriptor (cwap_dtls_sa_handle_t sa_handle)

This function performs SA resource deallocation. Implicit input: BPID in the SRAM (internal usage).

Parameters

in sa_handle - CAPWAP DTLS SA handle

Returns

0 - success -ENAVAIL - SA/Instance not found -EPERM - trying to delete SA descriptor from empty
instance

NXP Semiconductors
AIOP Service Layer API Reference Manual

424

NETF (Network Libraries)

1.5.16.2.4.7 void cwap_dtls_get_ar_info (cwap_dtls_sa_handle_t sa_handle, uint64_t ∗
sequence_number, uint32_t anti_replay_bitmap[4])

This function returns anti-replay related information:

• DTLS sequence number and epoch
• Anti-replay bitmap (scorecard) (if applicable)

Parameters

in sa_handle - CAPWAP DTLS SA handle
out sequence_←↩

number
- 64-bit value consisting of DTLS epoch (upper 16 bits) and sequence
number (lower 48 bits).

out anti_replay_←↩
bitmap

- Anti-replay bitmap (4 words): For 1-entry ARS, only the first word
is valid For 2-entry ARS, only the first two words are valid For 4-entry
ARS, all four words are valid

Warning

anti_replay_bitmap is relevant for inbound (decapsulation) only, and should be ignored for outbound
(encapsulation).

1.5.16.2.4.8 int cwap_dtls_frame_decrypt (cwap_dtls_sa_handle_t sa_handle)

This function performs DTLS decryption, according to RFC4347 for DTLS 1.0, RFC6347 for DTLS 1.2.
The function also updates the decrypted frame parser result. Default frame is used as input frame.

Parameters

in sa_handle - CAPWAP DTLS SA handle

Returns

Status -
CAPWAP DTLS return status

Warning

User should note the following:
• In this function the task yields. TODO: add more details here once implementation is complete.

NXP Semiconductors
AIOP Service Layer API Reference Manual

425

NETF (Network Libraries)

1.5.16.2.4.9 int cwap_dtls_frame_encrypt (cwap_dtls_sa_handle_t sa_handle)

This function performs DTLS encryption, according to RFC4347 for DTLS 1.0, RFC6347 for DTLS 1.2.
The function also updates the encrypted frame parser result. Default frame is used as input frame.

NXP Semiconductors
AIOP Service Layer API Reference Manual

426

NETF (Network Libraries)

Parameters

in sa_handle - CAPWAP DTLS SA handle

Returns

Status -
CAPWAP DTLS return status

Warning

User should note the following:
• In this function the task yields. TODO: add more details here once implementation is complete.

1.5.16.3 CAPWAP Fragmentation

1.5.16.3.1 Overview

AIOP CAPWAP Fragmentation functions macros and definitions.

Macros

• #define CWAPF_CONTEXT_SIZE
• #define CWAPF_GET_CAPWAP_HDR_OFFSET()
• #define CWAPF_GET_CAPWAP_HDR_LENGTH(capwap_hdr)
• #define CWAPF_GEN_FRAG_STATUS_DONE
• #define CWAPF_GEN_FRAG_STATUS_IN_PROCESS
• #define CWAPF_GEN_FRAG_STATUS_NOT_CAPWAP

Typedefs

• typedef uint8_t cwapf_ctx_t[CWAPF_CONTEXT_SIZE]

Functions

• int cwapf_generate_frag (cwapf_ctx_t cwapf_context_addr)
• int cwapf_discard_frame_remainder (cwapf_ctx_t cwapf_context_addr)
• void cwapf_context_init (uint16_t mtu, cwapf_ctx_t cwapf_context_addr)

1.5.16.3.2 Macro Definition Documentation

1.5.16.3.2.1 #define CWAPF_CONTEXT_SIZE

CWAPF context size definition.

NXP Semiconductors
AIOP Service Layer API Reference Manual

427

NETF (Network Libraries)

1.5.16.3.2.2 #define CWAPF_GEN_FRAG_STATUS_DONE

Fragmentation process complete.

The last fragment was generated

1.5.16.3.2.3 #define CWAPF_GEN_FRAG_STATUS_IN_PROCESS

Fragmentation process didn't complete.

Fragment was generated and the user SHOULD call generate_frag() again to generate another fragment

1.5.16.3.2.4 #define CWAPF_GEN_FRAG_STATUS_NOT_CAPWAP

Fragmentation was attempted on a non-CAPWAP frame.

1.5.16.3.3 Typedef Documentation

1.5.16.3.3.1 typedef uint8_t cwapf_ctx_t[CWAPF_CONTEXT_SIZE]

CWAPF context definition.

Must be aligned to 32 Bytes.

1.5.16.3.4 Function Documentation

1.5.16.3.4.1 int cwapf_generate_frag (cwapf_ctx_t cwapf_context_addr)

This function generates a single CAPWAP fragment and locates it in the default frame location in the
workspace.

Pre-condition - In the first iteration this function is called for a source packet, the source packet should be
located at the default frame location in workspace.

The remaining source frame is kept in the internal CWAPF structure, and remains open until fragmentation
process is complete (CWAPF_GEN_FRAG_STATUS_DONE).

This function should be called repeatedly until the returned status indicates fragmentation is complete
(CWAPF_GEN_FRAG_STATUS_DONE).

Ordering: For best performance it is recommended to work concurrently, and move to exclusive mode
only before enqueuing the last fragment. From this point transition to concurrent is not allowed. This
way fragments of different frames will be interleaved but ordering will be kept between the last fragments.
Alternately, user can move to exclusive mode before calling CWAPF init or before enqueuing the first
fragment. From this point transition to concurrent is not allowed. This way the whole fragmentation
process will be done exclusively and there will be no interleaving between fragments of different frames
However, in case there is IPSec later in the flow, the ordering scope must be Exclusive before first fragment
enters IPSec.

NXP Semiconductors
AIOP Service Layer API Reference Manual

428

NETF (Network Libraries)

Parameters

in cwapf_←↩
context_addr

- Address to the CWAPF internal context. Must be initialized by
cwapf_context_init() prior to the first call.

Returns

Status. (CWAPF_GENERATE_FRAG_STATUS or negative value on error.)

Return values

ENOMEM - Received packet cannot be stored due to buffer pool depletion. Recom-
mendation is to discard the frame. The packet was not fragmented.

EIO - Received packet FD contain errors (FD.err != 0). Recommendation is to
either force discard of the default frame (by calling fdma_force_discard←↩
_fd) or enqueue the default frame. The packet was not fragmented.

Warning

In the output fragment, ASA & PTA are not presented.
It is assumed that the address of the presented segment is aligned to 16 bytes.
As part of a workaround to ticket TKT260685 in REV1 this function requires one of the four nested
scope levels.

1.5.16.3.4.2 int cwapf_discard_frame_remainder (cwapf_ctx_t cwapf_context_addr)

This function discards the remainder of the frame being fragmented in case the user decides to stop the
fragmentation process before its completion (before CWAPF_GEN_FRAG_STATUS_DONE status is
returned).

Parameters

in cwapf_←↩
context_addr

- Address to the CWAPF internal context.

Returns

Status of the operation (0 - Success).

Warning

Following this function no packet resides in the default frame location in the task defaults. This func-
tion should only be called after CWAPF_GEN_FRAG_STATUS_IN_PROCESS status is returned
from cwapf_generate_frag() function call.

NXP Semiconductors
AIOP Service Layer API Reference Manual

429

NETF (Network Libraries)

1.5.16.3.4.3 void cwapf_context_init (uint16_t mtu, cwapf_ctx_t cwapf_context_addr)

This function initializes the CWAPF context structure that is used for the CAPWAP fragmentation pro-
cess.
Parameters

in mtu - Maximum Transmit Unit.
out cwapf_←↩

context_addr
- Address to the CWAPF internal context structure located in the
workspace by the user. Internally used by CAPWAP Fragmentation
functions.

Returns

None.

1.5.16.4 CAPWAP Reassembly

1.5.16.4.1 Overview

AIOP CAPWAP Reassembly functions macros and definitions.

/∗

Data Structures

• struct cwapr_params
• struct cwapr_stats_cntrs

Typedefs

• typedef uint64_t cwapr_instance_handle_t
• typedef uint64_t cwapr_del_arg_t
• typedef uint64_t cwapr_timeout_arg_t
• typedef void(cwapr_del_cb_t) (cwapr_del_arg_t arg)
• typedef void(cwapr_timeout_cb_t) (cwapr_timeout_arg_t arg, uint32_t flags)

Functions

• brief _linebr CAPWAP reassembly functions int cwapr_early_init (uint32_t num_of_instances,
uint32_t num_of_context_buffers)

• int cwapr_create_instance (struct cwapr_params ∗params, cwapr_instance_handle_t ∗cwapr_←↩
instance_handle)

• int cwapr_delete_instance (cwapr_instance_handle_t cwapr_instance_handle, cwapr_del_cb_←↩
t ∗confirm_delete_cb, cwapr_del_arg_t delete_arg)

• int cwapr_reassemble (cwapr_instance_handle_t cwapr_instance_handle, uint64_t tunnel_id)

NXP Semiconductors
AIOP Service Layer API Reference Manual

430

NETF (Network Libraries)

• void cwapr_modify_max_reass_frm_size (cwapr_instance_handle_t cwapr_instance_handle,
uint16_t max_reass_frm_size)

• void cwapr_modify_timeout_value (cwapr_instance_handle_t cwapr_instance_handle, uint16_←↩
t timeout_value)

• void cwapr_get_reass_frm_cntr (cwapr_instance_handle_t cwapr_instance_handle, uint32_←↩
t ∗reass_frm_cntr)

1.5.16.4.2 Data Structure Documentation

1.5.16.4.2.1 struct cwapr_params

CWAPR Parameters.
Data Fields

uint32_t flags CAPWAP reassembly flags
uint32_t max_open_←↩

frames
maximum number of frames which can be reassembled concur-
rently

uint16_t max_reass_←↩
frm_size

maximum reassembled frame size

uint16_t timeout_value timeout value expressed in units of 10 ms
cwapr_←↩

timeout_cb_t
∗

timeout_cb callback function invoked upon timeout occurrence

cwapr_←↩
timeout_arg_t

cb_timeout_arg argument for timeout callback function

uint64_t extended_←↩
stats_addr

if extended_stat flag is set in CAPWAP reassembly flags , this
is the address to the statistics data structure extended_stats_cntrs.
This structure should be allocated in DDR.
If the extended_stat flag is reset, this parameter is invalid

uint8_t tmi_id TMAN instance ID to be used for timers creation. This instance
may use up to max_open_frames+1 timers

1.5.16.4.2.2 struct cwapr_stats_cntrs

CWAPR Statistics counters.
Data Fields

uint32_t valid_frags_←↩
cntr

Counts the number of valid CAPWAP fragments handled.

uint32_t malformed_←↩
frags_cntr

Counts the number of malformed CAPWAP fragments handled.

NXP Semiconductors
AIOP Service Layer API Reference Manual

431

NETF (Network Libraries)

uint32_t open_reass_←↩
frms_exceed←↩
_cntr

Counts the number of times the re-assembly process can't start
since the number of open CAPWAP reassembled frames has ex-
ceeded the max_open_frames.

uint32_t exceed_max_←↩
reass_frm_size

Counts the number of times that a successful reassembled frame
length exceeds max_reass_frm_size value.

uint32_t more_than_←↩
64_frags_cntr

Counts the number of times the re-assembly process came up
against more than 64 fragments per CAPWAP frame.

uint32_t time_out_cntr Counts the number of times the re-assembly process of a CAPW←↩

AP frame stopped due to Time Out occurrence.

1.5.16.4.3 Typedef Documentation

1.5.16.4.3.1 typedef uint64_t cwapr_instance_handle_t

CWAPR Instance handle Type definition.

1.5.16.4.3.2 typedef void(cwapr_del_cb_t) (cwapr_del_arg_t arg)

User callback function, called after cwapr_delete_instance function has finished deleting the instance and
release all its recourses.

The user provides this function and the CWAPR process invokes it.

Parameters

in arg - Argument of the callback function.

1.5.16.4.3.3 typedef void(cwapr_timeout_cb_t) (cwapr_timeout_arg_t arg, uint32_t flags)

User callback function, called after time out expired.

The user provides this function and the CWAPR process invokes it.

In case the first fragment (frag offset=0) was received, the first fragment will be set as the default frame.
Otherwise, another fragment will be set as the default frame. Default frame will be returned with no open
segment.

Parameters

in arg - Argument of the callback function.
in flags - CWAPR Time Out Callback flags ,

NXP Semiconductors
AIOP Service Layer API Reference Manual

432

NETF (Network Libraries)

Warning

No task default parameters beside frame_handle will be valid (e.g parse result).

1.5.16.4.4 Function Documentation

1.5.16.4.4.1 brief _linebr CAPWAP reassembly functions int cwapr_early_init (uint32_t
num_of_instances, uint32_t num_of_context_buffers)

Reserve the context buffers for all the CWAPR instances.

Parameters

in num_of_←↩
instances

- Number of CWAPR instances that will be created.

in num_of_←↩
context_buffers

- Number of context buffers to be allocated for all the instances.

Returns

0 - on success
-ENAVAIL - resource not available or not found
-ENOMEM - not enough memory for requested memory partition

Warning

In this function, the task yields.

1.5.16.4.4.2 int cwapr_create_instance (struct cwapr_params ∗ params,
cwapr_instance_handle_t ∗ cwapr_instance_handle)

Creates a CWAPR instance.

Parameters

in params - pointer to CWAPR params structure cwapr_params The structure
pointed by this pointer must be in the task's workspace.

NXP Semiconductors
AIOP Service Layer API Reference Manual

433

NETF (Network Libraries)

out cwapr_←↩
instance_←↩

handle

- Pointer to the CWAPR Instance handle to be used by the caller to in-
voke CAPWAP reassembly functions. This pointer should points within
workspace.

Returns

Success

Warning

This function may result in a fatal error.
In this function, the task yields.

1.5.16.4.4.3 int cwapr_delete_instance (cwapr_instance_handle_t cwapr_instance_handle,
cwapr_del_cb_t ∗ confirm_delete_cb, cwapr_del_arg_t delete_arg)

Delete a specified CWAPR instance.

The delete request has been registered and the deletion will be
performed gradually.

Parameters

in cwapr_←↩
instance_←↩

handle

- The CWAPR instance handle.

in confirm_←↩
delete_cb

- The function to be used for confirmation after all resources associated
to the instance have been deleted.

in delete_arg - Argument of the confirm callback function.

Returns

Success

Warning

This function may result in a fatal error.
In this function, the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

434

NETF (Network Libraries)

1.5.16.4.4.4 int cwapr_reassemble (cwapr_instance_handle_t cwapr_instance_handle, uint64_t
tunnel_id)

Perform reassembly.
When called for a regular frame,no action is done.
When called for a non-closing fragment, the fragment is inserted to the partially reassembled frame.
When called for a closing fragment, reassembly is done.
The reassembled frame is returned to the caller.

The function returns with the same ordering scope mode it enters (exclusive or concurrent).

In case of completed reassembly, the reassembled frame is returned as default frame and segment is pre-
sented.
In case of malformed fragment, the presented fragment is returned.
In case of reassembly not completed, no open frame is returned, no segment is presented.
This function requires one of the four nested scope levels.

It is assumed that the address of the presented segment is aligned to 16 bytes.

Implicitly updated values in task defaults: segment length, segment address, segment offset

Parameters

in cwapr_←↩
instance

- The CWAPR instance handle.

in tunnel_id - ID used to uniquely identify a CAPWAP tunnel

Returns

Status -
CAPWAP Reassembly Return status
ETIMEDOUT - Early Time out. Timeout occurred while this fragment is proceeded. No fragment
is returned.
ENOSPC - Maximum open reassembled frames has been reached.
ENOTSUP - Maximum number of fragments per reassembly has been reached.
EIO - L4 checksum not valid.

Warning

This function may result in a fatal error.
As part of a workaround to ticket TKT260685 in REV1 this function requires an additional nested
scope levels, meaning that this function requires two of the four nested scope levels.
It is forbidden to call this function when the task isn't found in any ordering scope (null scope_id).
If this function is called in concurrent mode, the scope_id is incremented.
If this function is called while the task is currently in exclusive mode, the scope_id is preserved.
In this function, the task yields.

NXP Semiconductors
AIOP Service Layer API Reference Manual

435

NETF (Network Libraries)

1.5.16.4.4.5 void cwapr_modify_max_reass_frm_size (cwapr_instance_handle_t
cwapr_instance_handle, uint16_t max_reass_frm_size)

Update max_reass_frm_size parameter for the specified instance.

Parameters

in cwapr_←↩
instance

- The CWAPR instance handle.

in max_reass_←↩
frm_size

- New maximum reassembled frame size.

Returns

None

Warning

In this function, the task yields.

1.5.16.4.4.6 void cwapr_modify_timeout_value (cwapr_instance_handle_t
cwapr_instance_handle, uint16_t timeout_value)

Update timeout value for the specified instance.

Parameters

in cwapr_←↩
instance_←↩

handle

- The CWAPR instance handle.

in timeout_value - New reassembly timeout value

Returns

None

Warning

In this function, the task yields.

1.5.16.4.4.7 void cwapr_get_reass_frm_cntr (cwapr_instance_handle_t cwapr_instance_handle,
uint32_t ∗ reass_frm_cntr)

Returns the number of reassembled frames counter value of the given instance.

NXP Semiconductors
AIOP Service Layer API Reference Manual

436

Utilities

Parameters

in cwapr_←↩
instance_←↩

handle

- The CWAPR instance handle.

out reass_frm_cntr - The number of reassembled frames for this instance. This pointer
should points within workspace.

Returns

None

Warning

None.

1.6 Utilities

1.6.1 Overview

Modules

• AIOP Service Layer Network Utilities
• Debug Utilities
• Accessor API
• Error Handling
• Time Queries
• FSL OS Interface (System call hooks)
• Checksum
• Utility Library Application Programming Interface
• Storage Profile Driver

1.6.2 AIOP Service Layer Network Utilities

1.6.2.1 Overview

The AIOP Service Layer Network Utilities group provides standard network manipulation functions.

Macros

• #define AF_INET
• #define AF_INET6
• #define AF_MAX

NXP Semiconductors
AIOP Service Layer API Reference Manual

437

Utilities

Functions

• int inet_pton (int af, const char ∗src, void ∗dst)
• const char ∗ inet_ntop (int af, const void ∗src, char ∗dst, size_t size)
• uint16_t htons (uint16_t hostshort)
• uint16_t ntohs (uint16_t netshort)
• uint32_t htonl (uint32_t hostlong)
• uint32_t ntohl (uint32_t netlong)

1.6.2.2 Macro Definition Documentation

1.6.2.2.1 #define AF_INET

Internet IPv4 Protocol.

1.6.2.2.2 #define AF_INET6

Internet IPv6 Protocol.

1.6.2.2.3 #define AF_MAX

Maximal number of supported address families.

1.6.2.3 Function Documentation

1.6.2.3.1 int inet_pton (int af, const char ∗ src, void ∗ dst)

This function converts the character string src into a network address structure in the af address family,
then copies the network address structure to dst. The af argument must be either AF_INET or AF_INET6.

Parameters

in af - The following address families are currently supported AF_INET -
src points to a character string containing an IPv4 network address in
dotted-decimal format, AF_INET6 - src points to a character string con-
taining an IPv6 network address.

NXP Semiconductors
AIOP Service Layer API Reference Manual

438

Utilities

in src - char string cotaing a network address
out dst - pointer to network address structure

Returns

error or success value as defined below 1 on success (network address was successfully converted) 0
is returned if src doesn't contain a character string representing valid network address in the specified
address family. -1 if af does not contain a valid address family

1.6.2.3.2 const char∗ inet_ntop (int af, const void ∗ src, char ∗ dst, size_t size)

This function converts the network address structure src in the af address family into a character string.
The resulting string is copied to the buffer pointed to by dst, which must be a non-NULL pointer. The
caller specifies the number of bytes available in this buffer in the argument size.

Parameters

in af - The following address families are currently supported AF_INET -
src points to a character string containing an IPv4 network address in
dotted-decimal format, AF_INET - src points to a character string con-
taining an IPv6 network address.

in src - network address structure
out dst - char string address
in size - number of buffers available in dst buffer

Returns

error or success value as defined below non-NULL pointer to destination is returned on success
NULL is returned if size is not big enough or if af does not contain a valid address family

1.6.2.3.3 uint16_t htons (uint16_t hostshort)

This function converts the unsigned short integer hostshort from host byte order to network byte order.

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

439

Utilities

in hostshort - Host short value to be converted.

Returns

Converted unsigned short value between host and network

1.6.2.3.4 uint16_t ntohs (uint16_t netshort)

This function converts the unsigned short integer netshort from network byte order to host byte order.

Parameters

in netshort - Network short value to be converted.

Returns

Converted unsigned short value between network and host

1.6.2.3.5 uint32_t htonl (uint32_t hostlong)

This function converts the unsigned integer hostlong from host byte order to network byte order.

Parameters

in hostlong - Host long value to be converted.

Returns

Converted unsigned long value between host and network

1.6.2.3.6 uint32_t ntohl (uint32_t netlong)

This function converts the unsigned integer netlong from network byte order to host byte order.

NXP Semiconductors
AIOP Service Layer API Reference Manual

440

Utilities

Parameters

in netlong - Network long value to be converted.

Returns

Converted unsigned long value between network and host

1.6.3 Debug Utilities

1.6.3.1 Overview

FSL AIOP debug macros.

Macros

• #define PRINT_FORMAT
• #define PRINT_FMT_PARAMS
• #define ASSERT_COND(_cond)
• #define ASSERT_COND_LIGHT(_cond)
• #define pr_debug(...)
• #define pr_info(...)
• #define pr_warn(...)
• #define pr_err(...)
• #define pr_crit(...)
• #define dbg_get_core_id()
• #define dbg_get_num_of_cores()
• #define dbg_get_max_num_of_cores()

Debug Levels for Errors and Events

The level description refers to errors only.

For events, classification is done by the user.

• #define REPORT_LEVEL_CRITICAL
• #define REPORT_LEVEL_MAJOR
• #define REPORT_LEVEL_MINOR
• #define REPORT_LEVEL_WARNING
• #define REPORT_LEVEL_INFO
• #define REPORT_LEVEL_TRACE
• #define EVENT_DISABLED

1.6.3.2 Macro Definition Documentation

1.6.3.2.1 #define REPORT_LEVEL_CRITICAL

Crasher: Incorrect flow, NULL pointers/handles.

NXP Semiconductors
AIOP Service Layer API Reference Manual

441

Utilities

1.6.3.2.2 #define REPORT_LEVEL_MAJOR

Cannot proceed: Invalid operation, parameters or configuration.

1.6.3.2.3 #define REPORT_LEVEL_MINOR

Recoverable problem: a repeating call with the same parameters may be successful.

1.6.3.2.4 #define REPORT_LEVEL_WARNING

Something is not exactly right, yet it is not an error.

1.6.3.2.5 #define REPORT_LEVEL_INFO

Messages which may be of interest to user/programmer.

1.6.3.2.6 #define REPORT_LEVEL_TRACE

Program flow messages.

1.6.3.2.7 #define EVENT_DISABLED

Disabled event (not reported at all)

1.6.3.2.8 #define ASSERT_COND(_cond)

Assertion macro.
Parameters

in _cond - The condition being checked, in positive form; Failure of the condition
triggers the assert.

1.6.3.2.9 #define ASSERT_COND_LIGHT(_cond)

Assertion macro, without printing an error message.

NXP Semiconductors
AIOP Service Layer API Reference Manual

442

Utilities

Parameters

in _cond - The condition being checked, in positive form; Failure of the condition
triggers the assert.

1.6.3.2.10 #define pr_debug(...)

Macro to add level trace, CPU number and other parameters to the print. used to print debug info. Debug
Levels for Errors and Events are attached to the print.

Parameters

in ... string with arguments to print.

1.6.3.2.11 #define pr_info(...)

Macro to add level trace, CPU number and other parameters to the print. used to print info messages.
Debug Levels for Errors and Events are attached to the print.

Parameters

in ... string with arguments to print.

1.6.3.2.12 #define pr_warn(...)

Macro to add level trace, CPU number and other parameters to the print. used to print warnings info.
Debug Levels for Errors and Events are attached to the print.

Parameters

in ... string with arguments to print.

1.6.3.2.13 #define pr_err(...)

Macro to add level trace, CPU number and other parameters to the print. used to print errors info. Debug
Levels for Errors and Events are attached to the print.

NXP Semiconductors
AIOP Service Layer API Reference Manual

443

Utilities

Parameters

in ... string with arguments to print.

1.6.3.2.14 #define pr_crit(...)

Macro to add level trace, CPU number and other parameters to the print. used to print critical debug info.
Debug Levels for Errors and Events are attached to the print.

Parameters

in ... string with arguments to print.

1.6.3.2.15 #define dbg_get_core_id()

Returns the core ID in the system.

Returns

Core ID.

1.6.3.2.16 #define dbg_get_num_of_cores()

Returns the number of active cores in the system.

Returns

number of active cores.

1.6.3.2.17 #define dbg_get_max_num_of_cores()

Returns the number of existing cores in the system.

Returns

number of existing cores.

NXP Semiconductors
AIOP Service Layer API Reference Manual

444

Utilities

1.6.4 Accessor API

1.6.4.1 Overview

Little-Endian Conversion Macros.

Endian Conversion functions to read/write with endianess treatment.

These macros convert given parameters to or from Little-Endian format. Use these macros when you want
to read or write a specific Little-Endian value in memory, without a-priori knowing the CPU byte order.

These macros use the byte-swap routines. For conversion of constants in initialization structures, you may
use the CONST versions of these macros (see below), which are using the byte-swap macros instead.

Macros

• #define CPU_TO_LE16(val)
• #define CPU_TO_LE32(val)
• #define CPU_TO_LE64(val)
• #define CPU_TO_BE16(val)
• #define CPU_TO_BE32(val)
• #define CPU_TO_BE64(val)
• #define LE16_TO_CPU(val)
• #define LE32_TO_CPU(val)
• #define LE64_TO_CPU(val)
• #define BE16_TO_CPU(val)
• #define BE32_TO_CPU(val)
• #define BE64_TO_CPU(val)

Functions

• static uint8_t ioread8 (const volatile uint8_t ∗addr)
• static uint16_t ioread16 (const volatile uint16_t ∗addr)
• static uint16_t ioread16be (const volatile uint16_t ∗addr)
• static uint32_t ioread32 (const volatile uint32_t ∗addr)
• static uint32_t ioread32be (const volatile uint32_t ∗addr)
• static uint64_t ioread64 (const volatile uint64_t ∗addr)
• static uint64_t ioread64be (const volatile uint64_t ∗addr)
• static void iowrite8 (uint8_t val, volatile uint8_t ∗addr)
• static void iowrite8_wt (uint8_t val, volatile uint8_t ∗addr)
• static void iowrite16 (uint16_t val, volatile uint16_t ∗addr)
• static void iowrite16_wt (uint16_t val, volatile uint16_t ∗addr)
• static void iowrite16be (uint16_t val, volatile uint16_t ∗addr)
• static void iowrite16be_wt (uint16_t val, volatile uint16_t ∗addr)
• static void iowrite32 (uint32_t val, volatile uint32_t ∗addr)
• static void iowrite32_wt (uint32_t val, volatile uint32_t ∗addr)
• static void iowrite32be (uint32_t val, volatile uint32_t ∗addr)
• static void iowrite32be_wt (uint32_t val, volatile uint32_t ∗addr)
• static void iowrite64 (uint64_t val, volatile uint64_t ∗addr)
• static void iowrite64_wt (uint64_t val, volatile uint64_t ∗addr)
• static void iowrite64be (uint64_t val, volatile uint64_t ∗addr)
• static void iowrite64be_wt (uint64_t val, volatile uint64_t ∗addr)

NXP Semiconductors
AIOP Service Layer API Reference Manual

445

Utilities

1.6.4.2 Function Documentation

1.6.4.2.1 static uint8_t ioread8 (const volatile uint8_t ∗ addr) [static]

Function to read from supplied address pointer.

Parameters

in addr - address pointer to read from.

Returns

value from the supplied address pointer.

1.6.4.2.2 static uint16_t ioread16 (const volatile uint16_t ∗ addr) [static]

Function to read from supplied address pointer with endianess treatment using little endianess.

Parameters

in addr - address pointer to read from.

Returns

value from the supplied address pointer.

1.6.4.2.3 static uint16_t ioread16be (const volatile uint16_t ∗ addr) [static]

Function to read from supplied address pointer with endianess treatment using big endianess.

Parameters

in addr - address pointer to read from.

Returns

value from the supplied address pointer.

1.6.4.2.4 static uint32_t ioread32 (const volatile uint32_t ∗ addr) [static]

Function to read from supplied address pointer with endianess treatment using little endianess.

NXP Semiconductors
AIOP Service Layer API Reference Manual

446

Utilities

Parameters

in addr - address pointer to read from.

Returns

value from the supplied address pointer.

1.6.4.2.5 static uint32_t ioread32be (const volatile uint32_t ∗ addr) [static]

Function to read from supplied address pointer with endianess treatment using big endianess.

Parameters

in addr - address pointer to read from.

Returns

value from the supplied address pointer.

1.6.4.2.6 static uint64_t ioread64 (const volatile uint64_t ∗ addr) [static]

Function to read from supplied address pointer with endianess treatment using little endianess.

Parameters

in addr - address pointer to read from.

Returns

value from the supplied address pointer.

1.6.4.2.7 static uint64_t ioread64be (const volatile uint64_t ∗ addr) [static]

Function to read from supplied address pointer with endianess treatment using big endianess.

NXP Semiconductors
AIOP Service Layer API Reference Manual

447

Utilities

Parameters

in addr - address pointer to read from.

Returns

value from the supplied address pointer.

1.6.4.2.8 static void iowrite8 (uint8_t val, volatile uint8_t ∗ addr) [static]

Function to write the supplied value to address pointer.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.9 static void iowrite8_wt (uint8_t val, volatile uint8_t ∗ addr) [static]

Function to write the supplied value to address pointer. Store with Writethrough.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.10 static void iowrite16 (uint16_t val, volatile uint16_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using little endian.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.11 static void iowrite16_wt (uint16_t val, volatile uint16_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using little endian. Store
with Writethrough.

NXP Semiconductors
AIOP Service Layer API Reference Manual

448

Utilities

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.12 static void iowrite16be (uint16_t val, volatile uint16_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using big endian.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.13 static void iowrite16be_wt (uint16_t val, volatile uint16_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using big endian. Store
with Writethrough.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.14 static void iowrite32 (uint32_t val, volatile uint32_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using little endian.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.15 static void iowrite32_wt (uint32_t val, volatile uint32_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using little endian. Store
with Writethrough.

NXP Semiconductors
AIOP Service Layer API Reference Manual

449

Utilities

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.16 static void iowrite32be (uint32_t val, volatile uint32_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using big endian.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.17 static void iowrite32be_wt (uint32_t val, volatile uint32_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using big endian. Store
with Writethrough.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.18 static void iowrite64 (uint64_t val, volatile uint64_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using little endian.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.19 static void iowrite64_wt (uint64_t val, volatile uint64_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using little endian. Store
with Writethrough.

NXP Semiconductors
AIOP Service Layer API Reference Manual

450

Utilities

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.20 static void iowrite64be (uint64_t val, volatile uint64_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using big endian.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.4.2.21 static void iowrite64be_wt (uint64_t val, volatile uint64_t ∗ addr) [static]

Function to write the supplied value to address pointer with endianess treatment using big endian. Store
with Writethrough.

Parameters

in val - value to write.
in addr - address pointer write to.

1.6.5 Error Handling

1.6.5.1 Overview

Error return defines.

Macros

• #define EPERM
• #define EIO
• #define ENOMEM
• #define EACCES
• #define EFAULT
• #define EBUSY
• #define EEXIST
• #define ENODEV
• #define EINVAL
• #define ENOSPC
• #define ENOTSUP

NXP Semiconductors
AIOP Service Layer API Reference Manual

451

Utilities

• #define ETIMEDOUT
• #define ENAVAIL

1.6.5.2 Macro Definition Documentation

1.6.5.2.1 #define EPERM

Permission denied, no privileges.

1.6.5.2.2 #define EIO

Input/output error.

1.6.5.2.3 #define ENOMEM

Out of memory.

1.6.5.2.4 #define EACCES

Illegal access, or invalid device state.

1.6.5.2.5 #define EFAULT

Bad address detected.

1.6.5.2.6 #define EBUSY

Device or resource is busy.

1.6.5.2.7 #define EEXIST

Resource already exists.

1.6.5.2.8 #define ENODEV

No such device, or device not configured.

1.6.5.2.9 #define EINVAL

Invalid argument, or conflicting arguments.

NXP Semiconductors
AIOP Service Layer API Reference Manual

452

Utilities

1.6.5.2.10 #define ENOSPC

No space left (resource is full)

1.6.5.2.11 #define ENOTSUP

Operation not supported.

1.6.5.2.12 #define ETIMEDOUT

Operation timed out.

1.6.5.2.13 #define ENAVAIL

Resource not available, or not found.

1.6.6 Time Queries

1.6.6.1 Overview

The AIOP Service Layer Time Queries group provides standard time queries functions.

Functions

• int fsl_get_time_ms (uint32_t ∗time)
• int fsl_get_time_since_epoch_ms (uint64_t ∗time)

1.6.6.2 Function Documentation

1.6.6.2.1 int fsl_get_time_ms (uint32_t ∗ time)

Function returns the time as the number of milliseconds since midnight (UTC).

Parameters

out time - if not null, time is filled with milliseconds since midnight UTC.

Returns

standard POSIX error code. For error posix refer to Error Handling

NXP Semiconductors
AIOP Service Layer API Reference Manual

453

Utilities

1.6.6.2.2 int fsl_get_time_since_epoch_ms (uint64_t ∗ time)

returns the time as the number of milliseconds since epoch, 1970-01-01 00:00:00 +0000 (UTC).

Parameters

out time - if not null, time is filled with milliseconds since epoch UTC.

Returns

standard POSIX error code. For error posix refer to Error Handling

1.6.7 FSL OS Interface (System call hooks)

1.6.7.1 Overview

Prototypes, externals and typedefs for system-supplied (external) routines.

Functions

• void fsl_print (char ∗str,...)
• uint32_t fsl_rand (void)

1.6.7.2 Function Documentation

1.6.7.2.1 void fsl_print (char ∗ str, ...)

Print formatted string with arguments received with it. The print function is limited to 1024 bytes of the
formatted string length during the boot and 80 bytes during run time mode. This function has two modes
of operation. It automatically toggles between the two modes depending on whether the function is called
during initialization or at run time.

Initialization stage - During AIOP initialization the full formatting feature set is used, similar to printf
from the C standard library.

Run time stage - in this stage the AIOP uses a lite print and supports only a subset of the formatting
features as follows:

• %c - Prints a char.
• %d - Prints an integer in decimal form
• %x - Prints an integer in hexadecimal form
• %s - Prints a string
• %l - Prints unsigned 32 bit value.

NXP Semiconductors
AIOP Service Layer API Reference Manual

454

Utilities

• %ll - Prints unsigned 64 bit value.
• %lx - Prints a 32 bit value in hexadecimal form
• %llx - Prints a 64 bit value in hexadecimal form

Note

No support for special settings like %02x, etc at runtime.

Parameters

in str - string to print.

Returns

none

1.6.7.2.2 uint32_t fsl_rand (void)

returns random number

Returns

pseudo random number (uint32)

1.6.8 Checksum

1.6.8.1 Overview

AIOP Checksum utilities.

Functions

• uint16_t cksum_ones_complement_sum16 (uint16_t arg1, uint16_t arg2)
• uint16_t cksum_ones_complement_dec16 (uint16_t arg1, uint16_t arg2)
• void cksum_update_uint32 (register uint16_t ∗cs_ptr, register uint32_t old_val, register uint32_t

new_val)
• uint16_t cksum_accumulative_update_uint32 (register uint16_t cksum, register uint32_t old_val,

register uint32_t new_val)

1.6.8.2 Function Documentation

1.6.8.2.1 uint16_t cksum_ones_complement_sum16 (uint16_t arg1, uint16_t arg2)

Calculates a 1's complement sum of two 16 bit arguments.

NXP Semiconductors
AIOP Service Layer API Reference Manual

455

Utilities

Parameters

in arg1 - first argument.
in arg2 - second argument.

Returns

1's complement sum of the two 16 bit arguments.

Warning

None

1.6.8.2.2 uint16_t cksum_ones_complement_dec16 (uint16_t arg1, uint16_t arg2)

Calculates a 1's complement subtraction of two 16 bit arguments.

Parameters

in arg1 - first argument.
in arg2 - second argument to be subtracted from the first argument.

Returns

1's complement subtraction of the two 16 bit arguments.

Warning

None

1.6.8.2.3 void cksum_update_uint32 (register uint16_t ∗ cs_ptr, register uint32_t old_val,
register uint32_t new_val)

Updates the IPv4/UDP/TCP CS after updating 4 consecutive bytes in the IPv4/UDP/TCP header. The
update is being done directly to the workspace memory.

NXP Semiconductors
AIOP Service Layer API Reference Manual

456

Utilities

Parameters

in cs_ptr - Pointer to the IPv4/UDP/TCP CheckSum.
in old_val - The original value of the 4 bytes changed in the header.
in new_val - The new value of the 4 bytes changed in the header.

Returns

None.

Warning

Replace of the segment is not performed in this SR. In order to update the frame in external memory
there is a need to use FDMA SRs.

1.6.8.2.4 uint16_t cksum_accumulative_update_uint32 (register uint16_t cksum, register
uint32_t old_val, register uint32_t new_val)

Updates the IPv4/UDP/TCP CS after updating 4 consecutive bytes in the IPv4/UDP/TCP header. The
update is being done to the cksum parameter.

Parameters

in cksum - The initial checksum value to be updated.
in old_val - The original value of the 4 bytes changed in the header.
in new_val - The new value of the 4 bytes changed in the header.

Returns

The updated cksum value.

Warning

None.

1.6.9 Utility Library Application Programming Interface

1.6.9.1 Overview

Interface.

External routines.

NXP Semiconductors
AIOP Service Layer API Reference Manual

457

Utilities

Data Structures

• struct list_t

Macros

• #define LIST_FIRST(lst)
• #define LIST_LAST(lst)
• #define LIST_NEXT
• #define LIST_PREV
• #define LIST_INIT(lst)
• #define LIST(list_name)
• #define INIT_LIST(lst)
• #define MEMBER_OFFSET(type, member)
• #define LIST_OBJECT(lst, type, member)
• #define LIST_FOR_EACH(pos, head)
• #define LIST_FOR_EACH_SAFE(pos, tmp_pos, head)
• #define LIST_FOR_EACH_OBJECT_SAFE(pos, tmp_pos, head, type, member)
• #define LIST_FOR_EACH_OBJECT(pos, type, head, member)

Functions

• static void list_add (list_t ∗p_new, list_t ∗head)
• static void list_add_to_tail (list_t ∗p_new, list_t ∗head)
• static void list_del (list_t ∗entry)
• static void list_del_and_init (list_t ∗entry)
• static void list_move (list_t ∗entry, list_t ∗head)
• static void list_move_to_tail (list_t ∗entry, list_t ∗head)
• static int list_is_empty (list_t ∗lst)
• void list_append (list_t ∗new_lst, list_t ∗head)
• int list_num_of_objs (list_t ∗lst)

1.6.9.2 Data Structure Documentation

1.6.9.2.1 struct list_t

List structure.
Data Fields

struct list ∗ next A pointer to the next list object.
struct list ∗ prev A pointer to the previous list object.

1.6.9.3 Macro Definition Documentation

1.6.9.3.1 #define LIST_FIRST(lst)

Macro to get first/last/next/previous entry in a list.

NXP Semiconductors
AIOP Service Layer API Reference Manual

458

Utilities

Parameters

in lst - A pointer to a list.

1.6.9.3.2 #define LIST_INIT(lst)

Macro for initialization of a list struct.
Parameters

in lst - The t_List object to initialize.

1.6.9.3.3 #define LIST(list_name)

Macro to declare of a list.
Parameters

in listName - The list object name.

1.6.9.3.4 #define INIT_LIST(lst)

Macro to initialize a list pointer.

Parameters

in lst - The list pointer.

1.6.9.3.5 #define MEMBER_OFFSET(type, member)

Macro to get the struct (object) for this entry.

Parameters

in type - The type of the struct (object) this list is embedded in.

NXP Semiconductors
AIOP Service Layer API Reference Manual

459

Utilities

in member - The name of the t_List object within the struct.

Returns

The structure pointer for this entry.

1.6.9.3.6 #define LIST_FOR_EACH(pos, head)

Macro to iterate over a list.
Parameters

in pos - A pointer to a list to use as a loop counter.
in head - A pointer to the head for your list pointer.

Warning

You can't delete items with this routine. For deletion use LIST_FOR_EACH_SAFE().

1.6.9.3.7 #define LIST_FOR_EACH_SAFE(pos, tmp_pos, head)

Macro to iterate over a list safe against removal of list entry.

Parameters

in pos - A pointer to a list to use as a loop counter.
in tmp_pos - Another pointer to a list to use as temporary storage.
in head - A pointer to the head for your list pointer.

1.6.9.3.8 #define LIST_FOR_EACH_OBJECT_SAFE(pos, tmp_pos, head, type, member)

Macro to iterate over list of given type safely.

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

460

Utilities

in pos - A pointer to a list to use as a loop counter.
in tmp_pos - Another pointer to a list to use as temporary storage.
in type - The type of the struct this is embedded in.
in head - A pointer to the head for your list pointer.
in member - The name of the list_struct within the struct.

Warning

You can't delete items with this routine. For deletion use LIST_FOR_EACH_SAFE().

1.6.9.3.9 #define LIST_FOR_EACH_OBJECT(pos, type, head, member)

Macro to iterate over list of given type.

Parameters

in pos - A pointer to a list to use as a loop counter.
in type - The type of the struct this is embedded in.
in head - A pointer to the head for your list pointer.
in member - The name of the list_struct within the struct.

Warning

You can't delete items with this routine. For deletion use LIST_FOR_EACH_SAFE().

1.6.9.4 Function Documentation

1.6.9.4.1 static void list_add (list_t ∗ p_new, list_t ∗ head) [static]

Add a new entry to a list.

Insert a new entry after the specified head.
This is good for implementing stacks.

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

461

Utilities

in p_new - A pointer to a new list entry to be added.
in head - A pointer to a list head to add it after.

Returns

none.

1.6.9.4.2 static void list_add_to_tail (list_t ∗ p_new, list_t ∗ head) [static]

Add a new entry to a list.

Insert a new entry before the specified head.
This is useful for implementing queues.

Parameters

in p_new - A pointer to a new list entry to be added.
in head - A pointer to a list head to add it before.

Returns

none.

1.6.9.4.3 static void list_del (list_t ∗ entry) [static]

Deletes entry from a list.

Parameters

in entry - A pointer to the element to delete from the list.

Returns

none.

Warning

LIST_is_Empty() on entry does not return true after this, the entry is in an undefined state.

1.6.9.4.4 static void list_del_and_init (list_t ∗ entry) [static]

Deletes entry from list and reinitialize it.

NXP Semiconductors
AIOP Service Layer API Reference Manual

462

Utilities

Parameters

in entry - A pointer to the element to delete from the list.

Returns

none.

1.6.9.4.5 static void list_move (list_t ∗ entry, list_t ∗ head) [static]

Delete from one list and add as another's head.
Parameters

in entry - A pointer to the list entry to move.
in head - A pointer to the list head that will precede our entry.

Returns

none.

1.6.9.4.6 static void list_move_to_tail (list_t ∗ entry, list_t ∗ head) [static]

Delete from one list and add as another's tail.
Parameters

in entry - A pointer to the entry to move.
in head - A pointer to the list head that will follow our entry.

Returns

none.

1.6.9.4.7 static int list_is_empty (list_t ∗ lst) [static]

Tests whether a list is empty.

NXP Semiconductors
AIOP Service Layer API Reference Manual

463

Utilities

Parameters

in lst - A pointer to the list to test.

Returns

1 if the list is empty, 0 otherwise.

1.6.9.4.8 void list_append (list_t ∗ new_lst, list_t ∗ head)

Join two lists.
Parameters

in new_lst - A pointer to the new list to add.
in head - A pointer to the place to add it in the first list.

Returns

none.

1.6.9.4.9 int list_num_of_objs (list_t ∗ lst)

Counts number of objects in the list

Parameters

in lst - A pointer to the list which objects are to be counted.

Returns

Number of objects in the list.

1.6.10 Storage Profile Driver

1.6.10.1 Overview

Contains initialization and runtime control APIs for Storage Profiles management.

It's not recommended to call any of the API functions on the packet processing data-path.

NXP Semiconductors
AIOP Service Layer API Reference Manual

464

Utilities

Application reserves a number of Storage profiles by setting the value of the "spid_count" count in the
"aiop_app_init_info" global structure. Up to 256 storage profiles may be reserved. Be aware for each
DPNI belonging to the AIOP, one or two storage profiles are reserved. AIOP initialization fails if the
"spid_count" value exceeds the number of available storage profiles. The driver manages an array of
reserved storage profiles with indexes up to spid_count - 1. In order to get the SPID of a storage profile
use sp_drv_get_spid() API function.

On each SP one may configure 1 or 2 buffer pools. To do that one should call the sp_drv_register_bp_←↩
requirements() once or twice in the early stage of the application initialization. AIOP initialization fails if
there are no sufficient buffer pools objects declared in the AIOP resources container of the DPL or there
is not enough space left in the memory partitions used for buffer pools allocation.

When a SP is initialized the following defaults are used :

1. AIOP specific storage profile information
• ICID is set with the value of the AIOP context ICID,
• PL bit is set,
• BDI bit is set. Use : sp_drv_set_aiop_icid(), sp_drv_set_aiop_pl(), sp_drv_set_aiop_bdi(),

API functions to change the defaults.
2. Storage profile frame format and data placement controls

• FF(Frame Format), VA(Virtual Address), PTAR(Pass Through Annotation Room), SGH←↩
R(Scatter/Gather HeadRoom) and ASAR(Accelerator Specific Annotation Room) fields are
cleared,

• DHR(Data Head Room) is set to 256 bytes. DL(Data Length), BS(Buffer Source) and DL←↩
C(Data Length Control) fields are not used (cleared). Use : sp_drv_set_ff(), sp_drv_set_va(),
sp_drv_set_ptar(), sp_drv_set_sghr(), sp_drv_set_asar(), sp_drv_set_dhr(), API functions to
change the defaults.

3. SP Buffer Pool controls
• BMT(Bypass Memory Translation) is set with the value of the AIOP BMT bit in each config-

ured BP,
• BPV(Buffer Pool Valid) is set in each configured BP.
• SR(Scarce Resource) is cleared,
• BP(Backup Pool) is cleared. BDP(Buffer Depletion Pause) field is not used (cleared). Use :

sp_drv_set_bp_sr(), sp_drv_set_bp_bp(), API functions to change the defaults.

Note: If two BPs are configured on a SP, the setting of a BP bit associated with the second pool, configures
the buffer selection policy for the profile as either "best fit" or "back-up only". Use the sp_drv_set_bp_bp()
API in order to change the default 0 value of the BP bit as application needs.

• Best fit: With each allocation FDMA tries to use the first buffer pool (which for this policy must
contain smaller buffers than the second). If the smaller buffers of the first pool can be used to store
the full/remaining data then it will be used. If not, then the second buffer pool is used. Both buffer
pool must have their BP bit cleared to be in this mode.

• Backup Pool Only: With each allocation first buffer pool is used unless it is exhausted. Otherwise the
second buffer pool will be used. To be in this mode, the first buffer pool must have BP cleared and
the second buffer pool must have BP set. This mode could be used for high performance when the
first buffer pool is using PEB and the second buffer pool is using external system memory buffers.

NXP Semiconductors
AIOP Service Layer API Reference Manual

465

Utilities

Macros

• #define sp_dump(_a)

Functions

• int sp_drv_register_bp_requirements (uint8_t sp_idx, uint32_t buffer_cnt, uint16_t buffer_size,
uint16_t alignment, enum memory_partition_id mem_pid)

• int sp_drv_get_spid (uint8_t sp_idx, uint8_t ∗spid)
• int sp_drv_get_bpid (uint8_t sp_idx, uint8_t bp_idx, uint16_t ∗bpid)
• int sp_drv_set_aiop_icid (uint8_t sp_idx, uint16_t icid)
• int sp_drv_set_aiop_pl (uint8_t sp_idx, uint8_t pl)
• int sp_drv_set_aiop_bdi (uint8_t sp_idx, uint8_t bdi)
• int sp_drv_set_dhr (uint8_t sp_idx, uint16_t dhr)
• int sp_drv_set_ff (uint8_t sp_idx, enum sp_frame_format ff)
• int sp_drv_set_va (uint8_t sp_idx, uint8_t va)
• int sp_drv_set_ptar (uint8_t sp_idx, uint8_t ptar)
• int sp_drv_set_sghr (uint8_t sp_idx, uint8_t sghr)
• int sp_drv_set_asar (uint8_t sp_idx, uint8_t asar)
• int sp_drv_set_bp_sr (uint8_t sp_idx, uint8_t bp_idx, uint8_t sr)
• int sp_drv_set_bp_bp (uint8_t sp_idx, uint8_t bp_idx, uint8_t bp)

• enum sp_frame_format {
SP_FF_SINGLE_OR_SG_BUFFER,
SP_FF_SINGLE_BUFFER }

1.6.10.2 Enumeration Type Documentation

1.6.10.2.1 enum sp_frame_format

Storage Profile driver frame format types.

Enumerator

SP_FF_SINGLE_OR_SG_BUFFER Single buffer or SG buffer.
SP_FF_SINGLE_BUFFER Single buffer.

1.6.10.3 Function Documentation

1.6.10.3.1 int sp_drv_register_bp_requirements (uint8_t sp_idx, uint32_t buffer_cnt, uint16_t
buffer_size, uint16_t alignment, enum memory_partition_id mem_pid)

Register the Storage Profile requirements of the application. An application may configure up to 2 Buffer
Pools on each SP. On the first call the parameters are registered for the Buffer Pool #1, on the second one
for the BP #2. Notes :

1. Application should call this function on its "early initialization" phase.

NXP Semiconductors
AIOP Service Layer API Reference Manual

466

Utilities

2. Application initialization fails if the requested resources are not available. Resources are allocated
and the BPs are seed in the initialization phase of the SP driver.

Parameters

in sp_idx : Index of a reserved SP(0 to spid_count).
in buffer_cnt : Number of packet buffers to be populated in a SP BMan Buffer Pool.
in buffer_size : Size of the buffers to be populated in a SP BMan Buffer Pool. It is

recommended a 64 bytes multiple value.
in alignment : Required alignment for the packet buffer.
in mem_pid : Memory partition for the packet buffers. The following partition are

allowed on all platforms : MEM_PART_SYSTEM_DDR, MEM_PA←↩
RT_PEB. The MEM_PART_DP_DDR partition is not allowed on L←↩
S1088A platforms.

Returns

0 : Success. Function returns success when application reserved no storage profiles (spid_count =
0). -EINVAL : Wrong parameter(s)

1.6.10.3.2 int sp_drv_get_spid (uint8_t sp_idx, uint8_t ∗ spid)

Gets the Storage Profile ID. In order to use this SPID one should require one on more BPs for this SP.

Parameters

in sp_idx : Index of a reserved SP (0 to spid_count).
out spid : Pointer to the Storage Profile ID value

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0

1.6.10.3.3 int sp_drv_get_bpid (uint8_t sp_idx, uint8_t bp_idx, uint16_t ∗ bpid)

Gets the Buffer Pool ID of a BMan pool configured on a SP.

NXP Semiconductors
AIOP Service Layer API Reference Manual

467

Utilities

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in bp_idx : Index of a configured BP (0 or 1).
out bpid : Pointer to the Buffer Pool ID value

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.4 int sp_drv_set_aiop_icid (uint8_t sp_idx, uint16_t icid)

Sets the AIOP specific Isolation Context ID value in the selected storage profile.

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in icid : ICID value on at most 15 bits.

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.5 int sp_drv_set_aiop_pl (uint8_t sp_idx, uint8_t pl)

Sets the AIOP specific Privilege Level bit in the selected storage profile.

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in pl : PL value (0 or 1).

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.6 int sp_drv_set_aiop_bdi (uint8_t sp_idx, uint8_t bdi)

Sets the AIOP specific Bypass Data-path Isolation bit in the selected storage profile.

NXP Semiconductors
AIOP Service Layer API Reference Manual

468

Utilities

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in bdi : BDI value (0 or 1).

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.7 int sp_drv_set_dhr (uint8_t sp_idx, uint16_t dhr)

Sets the AIOP specific Data Head-room value in the selected storage profile.

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in dhr : DHR value on at most 12 bits.

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.8 int sp_drv_set_ff (uint8_t sp_idx, enum sp_frame_format ff)

Sets the Frame Format value in the selected storage profile.

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in ff : FF value (one of the enumerated values).

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.9 int sp_drv_set_va (uint8_t sp_idx, uint8_t va)

Sets the Virtual Address bit in the selected storage profile.

NXP Semiconductors
AIOP Service Layer API Reference Manual

469

Utilities

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in va : VA value (0 or 1).

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.10 int sp_drv_set_ptar (uint8_t sp_idx, uint8_t ptar)

Sets the Pass Through Annotation Room bit in the selected storage profile.

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in ptar : PTAR value (0 or 1). The pass through annotation room is encoded

in terms of 64-byte and its value is used to optionally generate an ad-
ditional space of 64 bytes for an anticipated pass through annotation in
the front of the frame.

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.11 int sp_drv_set_sghr (uint8_t sp_idx, uint8_t sghr)

Sets the Scatter/Gather HeadRoom bit in the selected storage profile.

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in sghr : SGHR value (0 or 1). The scatter/gather head-room is encoded in

terms of 64-byte and its value is used to optionally generate an addi-
tional space of 64 bytes for anticipated SG table growth in the front of
the frame.

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

NXP Semiconductors
AIOP Service Layer API Reference Manual

470

Utilities

1.6.10.3.12 int sp_drv_set_asar (uint8_t sp_idx, uint8_t asar)

Sets the Accelerator Specific Annotation Room value in the selected storage profile.

NXP Semiconductors
AIOP Service Layer API Reference Manual

471

Utilities

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in asar : ASAR value on at most 4 bits. The accelerator specific annotation

room control field is encoded in terms of 64-byte increments and its
value is used to generate HW annotation space in the frame.

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.13 int sp_drv_set_bp_sr (uint8_t sp_idx, uint8_t bp_idx, uint8_t sr)

Sets the Scarce Resource bit in the selected buffer pool of a selected storage profile.

Parameters

in sp_idx : Index of the a reserved SP (0 to spid_count).
in bp_idx : Index of a configured BP (0 or 1).
in sr : SR value (0 or 1). If the SR bit is set the amount of memory consumed

by the buffer need to be reflected in the FD[MEM] encoding and FDs
conveying such buffers need to set the SL bit in FD[FMT], reduce the
FD[LENGTH] encoding to 18 bit and make room for a 12 bit FD[M←↩
EM] encoding. If the buffer is utilized in an SG FD the SGE entry's SL
bit in SGE[FMT] and the SGE[SR] bit must be set.

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.6.10.3.14 int sp_drv_set_bp_bp (uint8_t sp_idx, uint8_t bp_idx, uint8_t bp)

Sets the Backup Pool bit in the selected buffer pool of a selected storage profile.

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

472

Kernel

in sp_idx : Index of the a reserved SP (0 to spid_count).
in bp_idx : Index of a configured BP (0 or 1).
in bp : BP value (0 or 1).

Returns

0 : Success; -EINVAL : Wrong parameter(s) or spid_count = 0 -EIO : No buffer pool on this SP

1.7 Kernel

1.7.1 Overview

Modules

• Memory Management
• Synchronization
• Event Manager
• Command Interface
• Isolation Context
• RCU

1.7.2 Memory Management

1.7.2.1 Overview

Modules

• Dynamic Memory Allocation
• SLAB
• Shared Buffer Pool
• System Memory Management Service

1.7.2.2 Dynamic Memory Allocation

1.7.2.2.1 Overview

Prototypes, externals and typedefs for system memory management.

NXP Semiconductors
AIOP Service Layer API Reference Manual

473

Kernel

Enumerations

• enum e_memory_partition_id {
MEM_PART_DP_DDR,
MEM_PART_SYSTEM_DDR,
MEM_PART_SH_RAM,
MEM_PART_PEB,
MEM_PART_MC_PORTALS,
MEM_PART_CCSR,
MEM_PART_LAST }

Functions

• void ∗ fsl_malloc (size_t size, uint32_t alignment)
• void fsl_free (void ∗mem)
• int fsl_get_mem (uint64_t size, int mem_partition_id, uint64_t alignment, uint64_t ∗paddr)
• void fsl_put_mem (uint64_t paddr)
• int fsl_mem_exists (int mem_partition_id)

1.7.2.2.2 Enumeration Type Documentation

1.7.2.2.2.1 enum e_memory_partition_id

Memory Partition Identifiers.

Used as a parameter for fsl_get_mem(). Note that not all memory partitions are supported by all platforms.
Every platform may select which memory partitions to support.

Enumerator

MEM_PART_DP_DDR Primary DDR memory partition.
MEM_PART_SYSTEM_DDR Secondary DDR memory partition.
MEM_PART_SH_RAM Shared-SRAM memory.
MEM_PART_PEB Packet-Express-Buffer memory partition.
MEM_PART_MC_PORTALS MC portals for cmdif memory partition.
MEM_PART_CCSR SoC CCSR memory partition.
MEM_PART_LAST Invalid memory partition.

1.7.2.2.3 Function Documentation

1.7.2.2.3.1 void∗ fsl_malloc (size_t size, uint32_t alignment)

Allocates contiguous block of memory from shared ram.

NXP Semiconductors
AIOP Service Layer API Reference Manual

474

Kernel

Parameters

in size Number of bytes to allocate.
in alignment Required memory alignment (in bytes). Should be a power of 2 (4, 8,

16 etc.)

Returns

A 32 bit address of the newly allocated block on success, NULL on failure.

1.7.2.2.3.2 void fsl_free (void ∗ mem)

frees the memory block pointed to by "mem" in shared ram. Applicable only for memory allocated by
fsl_malloc().

Parameters

in mem A pointer to the memory block.

1.7.2.2.3.3 int fsl_get_mem (uint64_t size, int mem_partition_id, uint64_t alignment, uint64_t ∗
paddr)

Allocates contiguous block of memory with the specified alignment and from the specified memory parti-
tion.
Parameters

in size Number of bytes to allocate.
in mem_←↩

partition_id
Memory partition ID, Valid values: MEM_PART_DP_DDR,MEM_P←↩
ART_PEB,MEM_PART_SYSTEM_DDR

in alignment Required memory alignment (in bytes). Should be a power of 2 (4, 8,
16 etc.)

out paddr A valid allocated physical address(64 bit) if success, in case of failure
(non_zero return value), this value is undefined and should not be used.

Returns

0 on success, -ENOMEM (not enough memory to allocate)or -EINVAL (invalid memory partition
) on failure.

1.7.2.2.3.4 void fsl_put_mem (uint64_t paddr)

Frees the memory block pointed to by "paddr". paddr should be allocated by fsl_get_mem()

NXP Semiconductors
AIOP Service Layer API Reference Manual

475

Kernel

Parameters

in paddr An address to be freed.

1.7.2.2.3.5 int fsl_mem_exists (int mem_partition_id)

Returns if the provided memory partition exists

Parameters

in mem_←↩
partition_id

A memory partition id

Returns

1 if exists, 0 if does not exist

1.7.2.3 SLAB

1.7.2.3.1 Overview

Slab Memory Manager module functions and definitions.

Data Structures

• struct slab_debug_info
• struct bman_debug_info

Macros

• #define SLAB_DDR_MANAGEMENT_FLAG
• #define SLAB_OPTIMIZE_MEM_UTILIZATION_FLAG
• #define SLAB_CDMA_REFCOUNT_DECREMENT_TO_ZERO

Typedefs

• typedef void(slab_release_cb_t) (uint64_t)

Functions

• int slab_create (uint32_t committed_buffs, uint32_t max_buffs, uint16_t buff_size, uint16_t align-
ment, enum memory_partition_id mem_partition_id, uint32_t flags, slab_release_cb_t ∗release_cb,
struct slab ∗∗slab)

• int slab_free (struct slab ∗∗slab)
• int slab_acquire (struct slab ∗slab, uint64_t ∗buff)

NXP Semiconductors
AIOP Service Layer API Reference Manual

476

Kernel

• int slab_release (struct slab ∗slab, uint64_t buff)
• void slab_refcount_incr (uint64_t buff)
• int slab_refcount_decr (uint64_t buff)
• int slab_debug_info_get (struct slab ∗slab, struct slab_debug_info ∗slab_info)
• int slab_bman_debug_info_get (uint16_t bpid, struct bman_debug_info ∗bman_info)
• int slab_register_context_buffer_requirements (uint32_t committed_buffs, uint32_t max_buffs,

uint16_t buff_size, uint16_t alignment, enum memory_partition_id mem_pid, uint32_t flags,
uint32_t num_ddr_pools)

1.7.2.3.2 Data Structure Documentation

1.7.2.3.2.1 struct slab_debug_info

Available debug information about every slab pool.

Data Fields

uint32_t buff_size Maximal buffer size.
uint32_t committed_←↩

buffs
The number of available buffers.

uint32_t max_buffs Maximal number of buffers inside this pool.
uint16_t pool_id Hardware BP (Buffer pool ID-BPID) of which this slab pool is part

of.
uint16_t alignment Alignment of buffers in slab pool configured by application.
uint16_t mem_pid Memory partition.
uint32_t allocated_buffs Number of allocated buffers in the slab pool (buffers in

use/acquired)
uint32_t num_failed_←↩

allocs
Number of failures to allocate a buffer in slab pool.

uint32_t num_buff_free Number of free (available) buffers in slab pool. Is difference be-
tween max number of buffers and number of allocated buffers

1.7.2.3.2.2 struct bman_debug_info

Available debug information about every hardware BMAN pool.

NXP Semiconductors
AIOP Service Layer API Reference Manual

477

Kernel

Data Fields

uint16_t bpid Buffer Pool ID (HW pool ID)
uint32_t num_buffs_←↩

alloc
Number of allocated buffers in BMAN pool. This should be equal
to sum of allocated_buffs

uint32_t num_buffs_←↩
free

Number of free buffers in BMAN pool. This should be equal to
sum of all free buffers available in all slab pools from app

uint32_t total_num_←↩
buffs

Total number of allocated buffers in BMAN pool.

uint32_t num_failed_←↩
allocs

Number of failures to allocate in BMAN pool. This should be equal
to sum of all failures to allocate buffers in all slab pools from app

uint16_t size Buffer size excluding 8 bytes for HW metadata. Buffer alignment
uint16_t alignment Memory Partition Identifier.

e_memory_←↩
partition_id

mem_pid

1.7.2.3.3 Macro Definition Documentation

1.7.2.3.3.1 #define SLAB_DDR_MANAGEMENT_FLAG

Flag to use for requesting slab managed in DDR (lower performance)

1.7.2.3.3.2 #define SLAB_OPTIMIZE_MEM_UTILIZATION_FLAG

Flag to disable default alignment set of 128 for buffer size.

1.7.2.3.3.3 #define SLAB_CDMA_REFCOUNT_DECREMENT_TO_ZERO

Decrement reference count caused the reference count to go to zero.

(not an error)

1.7.2.3.4 Typedef Documentation

1.7.2.3.4.1 typedef void(slab_release_cb_t) (uint64_t)

Type of the function callback to be called on release of buffer into pool.

1.7.2.3.5 Function Documentation

1.7.2.3.5.1 int slab_create (uint32_t committed_buffs, uint32_t max_buffs, uint16_t buff_size,
uint16_t alignment, enum memory_partition_id mem_partition_id, uint32_t flags,
slab_release_cb_t ∗ release_cb, struct slab ∗∗ slab)

NXP Semiconductors
AIOP Service Layer API Reference Manual

478

Kernel

Create a new buffers pool.

NXP Semiconductors
AIOP Service Layer API Reference Manual

479

Kernel

Parameters

in committed_←↩
buffs

Number of buffers in new pool.

in max_buffs Maximal number of buffers that can be allocated by this new pool;
max_buffs >= committed_buffs.

in buff_size Size of buffers in pool, actual buffer size will be 8 bytes larger, to ac-
commodate for metadata.

in alignment Requested alignment for buffer in bytes.
in mem_←↩

partition_id
Memory partition ID for allocation. AIOP: HW pool supports only PEB
and DPAA DDR.

in flags Set it to 0 for default slab creation. For extra pools managed in DDR
with lower performance set: SLAB_DDR_MANAGEMENT_FLAG

in release_cb Function to be called on release of buffer
out slab Handle to new pool is returned through here.

Warning

The alignment starts from data field and must be a power of 2. Buffer size + 8 bytes HW metadata
and alignment should match (not higher than) the inputs that were pre-registered in: slab_register←↩
_context_buffer_requirements() function.

Returns

0 - on success, -ENAVAIL - resource not available or not found, -ENOMEM - not enough memory
for mem_partition_id

1.7.2.3.5.2 int slab_free (struct slab ∗∗ slab)

Free a specific pool and all it's buffers.

Parameters

in slab - Handle to memory pool.

Returns

0 - on success, -EBUSY - this slab can't be freed -EINVAL - not a valid slab handle

1.7.2.3.5.3 int slab_acquire (struct slab ∗ slab, uint64_t ∗ buff)

Get a buffer of memory from a pool; AIOP HW pool buffer reference counter will be set to 1.

NXP Semiconductors
AIOP Service Layer API Reference Manual

480

Kernel

Parameters

in slab - Handle to memory pool.
out buff - The acquired buffer from HW pool.

Returns

0 - on success, -ENOMEM - no buffer available, -EINVAL - not a valid slab handle

1.7.2.3.5.4 int slab_release (struct slab ∗ slab, uint64_t buff)

Return the buffer back to a pool; AIOP HW pool buffer reference counter must be 0, it is NOT decre-
mented.
Parameters

in slab - Handle to memory pool.
in buff - The buffer to return.

Returns

0 - on success, -EINVAL - not a valid slab handle -EFAULT - bad address, trying to release to wrong
slab

1.7.2.3.5.5 void slab_refcount_incr (uint64_t buff)

Increment buffer reference counter
Parameters

in buff - The buffer for which to increment reference counter.

1.7.2.3.5.6 int slab_refcount_decr (uint64_t buff)

Decrement buffer reference counter; The buffer is not released if reference counter is drops to 0. Use
slab_release() to release the buffer.

Parameters

in buff - The buffer for which to decrement reference counter.

Returns

0 - on success, SLAB_CDMA_REFCOUNT_DECREMENT_TO_ZERO - On success and the ref-
erence counter is 0.

NXP Semiconductors
AIOP Service Layer API Reference Manual

481

Kernel

1.7.2.3.5.7 int slab_debug_info_get (struct slab ∗ slab, struct slab_debug_info ∗ slab_info)

Get debug information about a SLAB memory pool from a BMAN buffer pool

Parameters

in slab - Handle to memory pool.
out slab_info - The pointer to place the debug information.

Returns

0 - on success, -EINVAL - invalid parameter.

1.7.2.3.5.8 int slab_bman_debug_info_get (uint16_t bpid, struct bman_debug_info ∗ bman_info
)

Get debug information about hardware BMAN buffer pool

Parameters

out slab_info - The pointer to place the debug information.

Returns

0 - on success, -EINVAL - invalid parameter.

1.7.2.3.5.9 int slab_register_context_buffer_requirements (uint32_t committed_buffs, uint32_t
max_buffs, uint16_t buff_size, uint16_t alignment, enum memory_partition_id
mem_pid, uint32_t flags, uint32_t num_ddr_pools)

register a request for buffers requirement.

NXP Semiconductors
AIOP Service Layer API Reference Manual

482

Kernel

Parameters

in committed_←↩
buffs

Number of buffers needed for the app.

in max_buffs Maximal number of buffers that can be allocated by the app; max_buffs
>= committed_buffs;

in buff_size Size of buffers in pool, actual buffer size will be 8 bytes larger, to ac-
commodate for metadata.

in alignment Requested alignment for buffer in bytes.
in mem_pid Memory partition ID for allocation. AIOP: HW pool supports only PEB

and DPAA DDR.
in flags Set it to 0 for default.
in num_ddr_pools Number of pools needed in the future (managed in DDR - slow perfor-

mance).

Warning

Max buffer size supported - 32760 Byte. Actual buffer size will be 8 bytes larger, to accommodate
for metadata (32768). Buffer size must be higher than 0. Max alignment supported 32768 Byte
(minimum is 0). 0 <= Alignment <= Buffer size + Meta data. The alignment starts from data field
and must be a power of 2. max_buffs is considered as the maximum number of buffers needed for
apps.

Returns

0 - on success, -ENAVAIL - resource not available or not found, -ENOMEM - not enough memory
for requested memory partition

1.7.2.4 Shared Buffer Pool

1.7.2.4.1 Overview

API to be used for shared buffer pool.

Functions

• uint64_t shbp_acquire (uint64_t shbp, struct icontext ∗ic)
• int shbp_release (uint64_t shbp, uint64_t buf, struct icontext ∗ic)

1.7.2.4.2 Function Documentation

1.7.2.4.2.1 uint64_t shbp_acquire (uint64_t shbp, struct icontext ∗ ic)

Get buffer from shared pool; Use icontext_dma_read(), icontext_dma_write() to access the data.

NXP Semiconductors
AIOP Service Layer API Reference Manual

483

Kernel

Parameters

in shbp - Buffer pool handle as received from host
in ic - Pointer to isolation context for shared pool

Returns

Address on Success; or NULL code otherwise

1.7.2.4.2.2 int shbp_release (uint64_t shbp, uint64_t buf, struct icontext ∗ ic)

Return buffer into shared pool.

Parameters

in shbp - Buffer pool handle as received from host
in buf - Buffer address
in ic - Pointer to isolation context for shared pool

Returns

0 on Success; or error code otherwise

1.7.2.5 System Memory Management Service

1.7.2.5.1 Overview

Bare-board system interface for memory management.

Data Structures

• struct initial_mem_mng
• struct t_mem_mng_phys_addr_alloc_info
• struct t_mem_mng_partition_info
• struct t_mem_mng_phys_addr_alloc_partition
• struct t_mem_mng_partition
• struct t_mem_mng

Macros

• #define SYS_DEFAULT_HEAP_PARTITION
• #define MEM_PART_SYSTEM_DDR1_BOOT_MEM_MNG
• #define MEMORY_PARTITIONS

Functions

• uint64_t sys_virt_to_phys (void ∗virt_addr)

NXP Semiconductors
AIOP Service Layer API Reference Manual

484

Kernel

• void ∗ sys_phys_to_virt (uint64_t phy_addr)
• uint64_t sys_fast_virt_to_phys (void ∗vaddr, e_memory_partition_id id)
• void ∗ sys_fast_phys_to_virt (uint64_t phy_addr, e_memory_partition_id id)
• void ∗ sys_shram_alloc (uint32_t size, uint32_t alignment, char ∗info, char ∗filename, int line)
• void sys_shram_free (void ∗mem)
• int sys_register_phys_addr_alloc_partition (int partition_id, uint64_t base_paddress, uint64_t size,

uint32_t attributes, char name[])
• int sys_register_mem_partition (int partition_id, uintptr_t base_address, uint64_t size, uint32_←↩

t attributes, char name[], int enable_debug)
• int sys_unregister_mem_partition (int partition_id)
• int sys_get_phys_addr_alloc_partition_info (int partition_id, t_mem_mng_phys_addr_alloc_info
∗partition_info)

• int sys_get_mem_partition_info (int partition_id, t_mem_mng_partition_info ∗partition_info)
• int sys_get_phys_mem (uint64_t size, int mem_partition_id, uint64_t alignment, uint64_t ∗paddr)
• void sys_put_phys_mem (uint64_t paddr)
• int sys_mem_exists (int mem_partition_id)
• void sys_mem_partitions_init_complete ()
• int boot_get_mem (struct initial_mem_mng ∗boot_mem_mng, const uint64_t size, uint64_←↩

t ∗paddr)
• int boot_get_mem_virt (struct initial_mem_mng ∗boot_mem_mng, const uint64_t size, uint32_t
∗vaddr)

Variables

• const uint32_t g_boot_mem_mng_size

Memory Attributes

Various attributes of memory partitions. These values may be
or’ed together to create a mask of all memory attributes.

• #define MEMORY_ATTR_NONE
• #define MEMORY_ATTR_CACHEABLE
• #define MEMORY_ATTR_NON_CACHEABLE
• #define MEMORY_ATTR_MALLOCABLE
• #define MEMORY_ATTR_PHYS_ALLOCATION
• #define MEM_MNG_MAX_PARTITION_NAME_LEN

1.7.2.5.2 Data Structure Documentation

1.7.2.5.2.1 struct initial_mem_mng

Initial Memory management, used for allocations during boot.

NXP Semiconductors
AIOP Service Layer API Reference Manual

485

Kernel

Data Fields

uint64_t lock
uint64_t base_paddress
uint32_t base_vaddress
uint64_t size
uint64_t curr_ptr

1.7.2.5.2.2 struct t_mem_mng_phys_addr_alloc_info

Memory partition information for physical address allocation.

Data Fields

char name[MEM_←↩
MNG_MAX←↩
_PARTITIO←↩
N_NAME_L←↩
EN]

uint64_t base_paddress
uint64_t size
uint32_t attributes

1.7.2.5.2.3 struct t_mem_mng_partition_info

Memory partition information.

Data Fields

char name[MEM_←↩
MNG_MAX←↩
_PARTITIO←↩
N_NAME_L←↩
EN]

uint64_t base_address
uint64_t size
uint32_t attributes

1.7.2.5.2.4 struct t_mem_mng_phys_addr_alloc_partition

Memory management partition control structure.

NXP Semiconductors
AIOP Service Layer API Reference Manual

486

Kernel

Data Fields

int id Partition ID.
uint64_t h_mem_←↩

manager
Memory manager handle.

t_mem_mng_←↩
phys_addr_←↩

alloc_info

info Partition information.

uint64_t ∗ lock
int was_initialized

1.7.2.5.2.5 struct t_mem_mng_partition

Memory management partition control structure.

Data Fields

int id Partition ID.
uint64_t h_mem_←↩

manager
Memory manager handle.

int enable_debug '1' to track malloc/free operations
int was_initialized

list_t mem_debug_←↩
list

List of allocation entries (for debug)

list_t node
t_mem_mng_←↩

partition_info
info Partition information.

uint64_t ∗ lock

1.7.2.5.2.6 struct t_mem_mng

Memory management module internal parameters.

Data Fields

t_mem_mng_←↩
partition

mem_←↩
partitions←↩
_array[PLAT←↩
FORM_MA←↩
X_MEM_IN←↩
FO_ENTRIES]

List of partition control structures.

NXP Semiconductors
AIOP Service Layer API Reference Manual

487

Kernel

t_mem_mng_←↩
phys_addr_←↩

alloc_partition

phys_←↩
allocation←↩
mem←↩
partitions_←↩
array[PLATF←↩
ORM_MAX←↩
_MEM_INF←↩
O_ENTRIES]

List of partition for fsl_get_mem function() control structures.

uint32_t mem_←↩
partitions←↩
_initialized

void ∗ h_boot_mem←↩
_mng

struct
buffer_pool

slob_bf_pool

1.7.2.5.3 Macro Definition Documentation

1.7.2.5.3.1 #define MEMORY_ATTR_NONE

< No memory attribute

Memory is cacheable

1.7.2.5.3.2 #define MEMORY_ATTR_CACHEABLE

Memory is non-cacheable.

1.7.2.5.3.3 #define MEMORY_ATTR_NON_CACHEABLE

It is possible to make dynamic memory allocation.

1.7.2.5.3.4 #define MEMORY_ATTR_MALLOCABLE

Memory partition for physical address allocation through fsl_get_mem()

1.7.2.5.3.5 #define SYS_DEFAULT_HEAP_PARTITION

Partition ID for default heap.

1.7.2.5.4 Function Documentation

1.7.2.5.4.1 uint64_t sys_virt_to_phys (void ∗ virt_addr)

Translate virtual address to physical one.

NXP Semiconductors
AIOP Service Layer API Reference Manual

488

Kernel

Parameters

in virt_addr - Virtual address

Returns

Physical address; INVALID_PHY_ADDR on failure.

1.7.2.5.4.2 void∗ sys_phys_to_virt (uint64_t phy_addr)

Translate physical address to virtual one.

Parameters

in phy_addr - Physical address

Returns

Virtual address; NULL on failure.

1.7.2.5.4.3 uint64_t sys_fast_virt_to_phys (void ∗ vaddr, e_memory_partition_id id)

Fast translation of virtual address to physical one. There is no error checking. The assumption is that the
virtual address is valid for the memory partition.

Parameters

in vaddr - Virtual address
in id - Memory Partition Identifier

Returns

Physical address; INVALID_PHY_ADDR on failure.

1.7.2.5.4.4 void∗ sys_fast_phys_to_virt (uint64_t phy_addr, e_memory_partition_id id)

Fast translation of physical address to virtual one. There is no error checking. The assumption is that the
physical address is valid for the memory partition.

NXP Semiconductors
AIOP Service Layer API Reference Manual

489

Kernel

Parameters

in phy_addr - Physical address
in id - Memory Partition Identifier

Returns

Virtual address; NULL on failure.

1.7.2.5.4.5 void∗ sys_shram_alloc (uint32_t size, uint32_t alignment, char ∗ info, char ∗
filename, int line)

Allocate a memory block from shared ram and with specific attributes.

Parameters

in size - Requested memory size
in alignment - Requested memory alignment
in info - Allocation information string (for debug)
in filename - Caller file name (for debug)
in line - Caller line number (for debug)

Returns

Pointer to allocated memory; NULL on failure.

1.7.2.5.4.6 void sys_shram_free (void ∗ mem)

Free a memory block that was previously allocated using the sys_shram_alloc() routine.

Parameters

in mem - Pointer to the memory block

Returns

None.

1.7.2.5.4.7 int sys_register_phys_addr_alloc_partition (int partition_id, uint64_t base_paddress,
uint64_t size, uint32_t attributes, char name[])

Register a new memory partition to the system's memory manager.

NXP Semiconductors
AIOP Service Layer API Reference Manual

490

Kernel

Note that if \c f_UserMalloc and \c f_UserFree are not NULL,
the system will not manage the partition, but only record
allocations and de-allocations for debug purposes (providing
that \c enableDebug is set to ’1’).

Parameters

in partitionId - Memory partition ID
in baseAddress - Base address of memory partition
in size - Size (in bytes) of memory partition
in attributes - Memory attributes mask (a combination of MEMORY_ATTR_x flags)
in name - Memory partition name (up to 32 bytes).
in f_UserMalloc - User's memory allocation routine, for bypassing the default memory

manager; Set to NULL for default operation.
in f_UserFree - User's memory freeing routine, for bypassing the default memory man-

ager; Set to NULL for default operation.
in enableDebug - '1' to enable memory leaks debug; '0' to disable.

Returns

Pointer to allocated memory; NULL on failure.

1.7.2.5.4.8 int sys_register_mem_partition (int partition_id, uintptr_t base_address, uint64_t
size, uint32_t attributes, char name[], int enable_debug)

Register a new memory partition to the system's memory manager.

Note that if \c f_UserMalloc and \c f_UserFree are not NULL,
the system will not manage the partition, but only record
allocations and de-allocations for debug purposes (providing
that \c enableDebug is set to ’1’).

Parameters

in partitionId - Memory partition ID
in baseAddress - Base address of memory partition
in size - Size (in bytes) of memory partition
in attributes - Memory attributes mask (a combination of MEMORY_ATTR_x flags)
in name - Memory partition name (up to 32 bytes).

NXP Semiconductors
AIOP Service Layer API Reference Manual

491

Kernel

in f_UserMalloc - User's memory allocation routine, for bypassing the default memory
manager; Set to NULL for default operation.

in f_UserFree - User's memory freeing routine, for bypassing the default memory man-
ager; Set to NULL for default operation.

in enableDebug - '1' to enable memory leaks debug; '0' to disable.

Returns

Pointer to allocated memory; NULL on failure.

1.7.2.5.4.9 int sys_unregister_mem_partition (int partition_id)

Unregister a specific memory partition.

Note that if \c f_UserMalloc and \c f_UserMalloc are not NULL,
the system will not manage the partition, but only record
allocations and de-allocations for debug purposes (providing
that \c enableDebug is set to ’1’).

Parameters

in partitionId - Memory partition ID

Returns

0 on success; Error code otherwise.

1.7.2.5.4.10 int sys_get_phys_addr_alloc_partition_info (int partition_id,
t_mem_mng_phys_addr_alloc_info ∗ partition_info)

Retrieves memory partition details of a given memory partition.

Parameters

in partitionId - Memory partition ID
out partition_info - Info about given partition.

Returns

0 on success; Error code otherwise.

1.7.2.5.4.11 int sys_get_mem_partition_info (int partition_id, t_mem_mng_partition_info ∗
partition_info)

Retrieves memory partition details of a given memory partition.

NXP Semiconductors
AIOP Service Layer API Reference Manual

492

Kernel

Parameters

in partitionId - Memory partition ID
out partition_info - Info about given partition.

Returns

0 on success; Error code otherwise.

1.7.2.5.4.12 int sys_get_phys_mem (uint64_t size, int mem_partition_id, uint64_t alignment,
uint64_t ∗ paddr)

Allocates contiguous block of memory with the specified alignment and from the specified memory parti-
tion.
Parameters

in mem_←↩
partition_id

Memory partition ID; The value zero must be mapped to the default
heap partition.

in alignment Required memory alignment (in bytes).
out paddr A valid allocated physical address if success, NULL if failure.

Returns

0 on success, -ENOMEM (not enough memory to allocate)or -EINVAL (invalid memory partition
) on failure.

1.7.2.5.4.13 void sys_put_phys_mem (uint64_t paddr)

Frees the memory block pointed to by "paddr". paddr should be allocated by fsl_get_mem()

Parameters

in paddr An address to be freed.

1.7.2.5.4.14 int sys_mem_exists (int mem_partition_id)

Returns if the provided memory partition exists

NXP Semiconductors
AIOP Service Layer API Reference Manual

493

Kernel

Parameters

in mem_←↩
partition_id

A memory partition id

Returns

1 if exists, 0 if does not exist

1.7.3 Synchronization

1.7.3.1 Overview

System synchronization macros and functions.

Modules

• Spin-lock functions
• Atomic operations

1.7.3.2 Spin-lock functions

1.7.3.2.1 Overview

AIOP Spin-lock operations functions.

Functions

• void lock_spinlock (register uint64_t ∗spinlock)
• void unlock_spinlock (uint64_t ∗spinlock)

1.7.3.2.2 Function Documentation

1.7.3.2.2.1 void lock_spinlock (register uint64_t ∗ spinlock)

Lock the spinlock. Lock 1 double word in internal shared memory. Needed for locking of critical code
sections across the flows where the critical sections cannot be protected using ordering flow locks. Can be
use also for synchronization between tasks.

The user has to allocate one double word (in the shared memory) per spinlock. This double word has to
be initialized to "0" or "1" ("unlocked" or "locked" respectively).

NXP Semiconductors
AIOP Service Layer API Reference Manual

494

Kernel

If the lock is available, the "locked" double word is set and the code continues into the critical subsection.
If, instead, the lock has been taken by other task, the code goes into loop where it repeatedly checks the
lock until it becomes available.

NXP Semiconductors
AIOP Service Layer API Reference Manual

495

Kernel

Parameters

in spinlock - Pointer to a single double word ("locked" double word) in the shared
memory.

Returns

None.

Warning

It is not allowed to yield if the task holds a lock.
Every lock_spinlock function must be followed by an unlock_spinlock function to release the mem-
ory locking.
The spinlock must be aligned to a double word boundary otherwise an alignment exception will
occur.

1.7.3.2.2.2 void unlock_spinlock (uint64_t ∗ spinlock)

Unlock the spinlock. Unlock 1 double word in internal shared memory. The spinlock "locked" double
word is atomically unlocked.

Parameters

in spinlock - Pointer to a single double word ("locked" double word) in the shared
memory.

Returns

None.

Warning

Every lock_spinlock function must be followed by an unlock_spinlock function to release the mem-
ory locking

1.7.3.3 Atomic operations

1.7.3.3.1 Overview

atomic increment / decrement operations

NXP Semiconductors
AIOP Service Layer API Reference Manual

496

Kernel

Functions

• void atomic_incr64 (int64_t ∗var, int64_t value)
• void atomic_decr64 (int64_t ∗var, int64_t value)

1.7.3.3.2 Function Documentation

1.7.3.3.2.1 void atomic_incr64 (int64_t ∗ var, int64_t value)

Atomic increment macro for 64 bit variable.
Parameters

in,out var - pointer to the variable to increment.
in value - increment value.

Returns

None.

Warning

The variable must be aligned to a double word boundary otherwise an alignment exception will
occur.

1.7.3.3.2.2 void atomic_decr64 (int64_t ∗ var, int64_t value)

Atomic decrement macro for 64 bit variable.
Parameters

in,out var - pointer to the variable to decrement.
in value - decrement value.

Returns

None.

Warning

The variable must be aligned to a double word boundary otherwise an alignment exception will
occur.

NXP Semiconductors
AIOP Service Layer API Reference Manual

497

Kernel

1.7.4 Event Manager

1.7.4.1 Overview

EVMNG API for registration to application and service layer events and the ability to raise application
events by priority.

Modules

• Events provided by AIOPSL
• AIOPSL Generator ID

Typedefs

• typedef int(∗ evmng_cb) (uint8_t generator_id, uint8_t event_id, uint64_t app_ctx, void ∗event_←↩
data)

Functions

• int evmng_register (uint8_t generator_id, uint8_t event_id, uint8_t priority, uint64_t app_ctx,
evmng_cb cb)

• int evmng_unregister (uint8_t generator_id, uint8_t event_id, uint8_t priority, uint64_t app_ctx,
evmng_cb cb)

• int evmng_raise_event (uint8_t generator_id, uint8_t event_id, void ∗event_data)

1.7.4.2 Typedef Documentation

1.7.4.2.1 typedef int(∗ evmng_cb) (uint8_t generator_id, uint8_t event_id, uint64_t app_ctx, void
∗event_data)

Prototype of event manager callback function.

An application provides a callback function of this prototype if it wants to listen for specific events.

Parameters

in generator_id Identifier of the application/SL generating the event
in event_id Identifier of the event specific to the application generating event. The

value can range from 0 to MAX_EVENT_ID -1. Events provided by
AIOPSL

NXP Semiconductors
AIOP Service Layer API Reference Manual

498

Kernel

in app_ctx App/SL data saved during registration and passed to CB function when
raising event.

in event_data A pointer to data specific for event

Returns

The return code is not interpreted by event manager. However callback function should return 0.

1.7.4.3 Function Documentation

1.7.4.3.1 int evmng_register (uint8_t generator_id, uint8_t event_id, uint8_t priority, uint64_t
app_ctx, evmng_cb cb)

This function is to register a callback function to listen for specific events.

Parameters

in generator_id Identifier of the application/SL generating the event
in event_id Identifier of the event specific to the application generating event. The

value can range from 0 to MAX_EVENT_ID -1. Events provided by
AIOPSL. To use application defined events, the provided event id must
be in range of [NUM_OF_SL_DEFINED_EVENTS , MAX_EVENT←↩
_ID -1]

in priority priority number of the callback function. This value ranges from 1 -
127. The lesser value is considered as higher priority. For example, a
callback function registered with priority 10 will be invoked before a
callback function registered with priority 20.

in app_ctx App data that can be passed to CB function when raising event.
in cb Callback function to be invoked.

Warning

The application can register for event only in app_init or at runtime.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.7.4.3.2 int evmng_unregister (uint8_t generator_id, uint8_t event_id, uint8_t priority, uint64_t
app_ctx, evmng_cb cb)

This function is to unregister previously callback function.

NXP Semiconductors
AIOP Service Layer API Reference Manual

499

Kernel

Parameters

in generator_id Identifier of the application/SL generating the event
in event_id Identifier of the event specific to the application generating event. The

value can range from 0 to MAX_EVENT_ID -1. Events provided by
AIOPSL

in priority priority number of the callback function. This value ranges from 1 -
127. The lesser value is considered as higher priority. For example, a
callback function registered with priority 10 will be invoked before a
callback function registered with priority 20.

in app_ctx App data that can be passed to CB function when raising event.
in cb Callback function to be invoked.

Warning

The application can unregister from event only in app_init or at runtime.

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.7.4.3.3 int evmng_raise_event (uint8_t generator_id, uint8_t event_id, void ∗ event_data)

This function raises a specific event and launches the callback functions registered to it.

Parameters

in generator_id Identifier of the application/SL generating the event
in event_id Identifier of the event specific to the application generating event. The

value can range from NUM_OF_SL_DEFINED_EVENTS to MAX_←↩
EVENT_ID -1. Events provided by AIOPSL

in event_data A pointer to data specific for event

Returns

0 on success; error code, otherwise. For error posix refer to Error Handling

1.7.4.4 Events provided by AIOPSL

1.7.4.4.1 Overview

EVMNG events for application use.

NXP Semiconductors
AIOP Service Layer API Reference Manual

500

Kernel

Enumerations

• enum evm_event_types {
DPNI_EVENT_ADDED,
DPNI_EVENT_REMOVED,
DPNI_EVENT_LINK_UP,
DPNI_EVENT_LINK_DOWN,
DPCI_EVENT_ADDED,
DPCI_EVENT_REMOVED,
DPCI_EVENT_LINK_UP,
DPCI_EVENT_LINK_DOWN,
NUM_OF_SL_DEFINED_EVENTS }

1.7.4.5 AIOPSL Generator ID

1.7.4.5.1 Overview

Generator ID for AIOPSL events.

Macros

• #define EVMNG_GENERATOR_AIOPSL

1.7.4.5.2 Macro Definition Documentation

1.7.4.5.2.1 #define EVMNG_GENERATOR_AIOPSL

AIOP service layer generator ID (0 means the entry is empty)

1.7.5 Command Interface

1.7.5.1 Overview

Modules

• Command Interface - Client
• Command Interface - Server

1.7.5.2 Command Interface - Client

1.7.5.2.1 Overview

API to be used and implemented by Client side only.

NXP Semiconductors
AIOP Service Layer API Reference Manual

501

Kernel

Modules

• Send Attributes

Data Structures

• struct cmdif_desc

Macros

• #define CMDIF_OPEN_SIZE

Typedefs

• typedef int(cmdif_cb_t) (void ∗async_ctx, int err, uint16_t cmd_id, uint32_t size, void ∗data)

Functions

• int cmdif_open (struct cmdif_desc ∗cidesc, const char ∗module_name, uint8_t instance_id, void
∗data, uint32_t size)

• int cmdif_close (struct cmdif_desc ∗cidesc)
• int cmdif_send (struct cmdif_desc ∗cidesc, uint16_t cmd_id, uint32_t size, int priority, uint64_t

data, cmdif_cb_t ∗async_cb, void ∗async_ctx)
• int cmdif_resp_read (struct cmdif_desc ∗cidesc, int priority)

1.7.5.2.2 Data Structure Documentation

1.7.5.2.2.1 struct cmdif_desc

Command interface descriptor.

Data Fields

void ∗ regs Pointer to transport layer device for sending commands; On GPP
the user should pass NADK device On AIOP the user should pass
dpci_id as known by GPP SW context Must be set by the user.

void ∗ dev Opaque handle for the use of the command interface; user should
not modify it.

1.7.5.2.3 Macro Definition Documentation

1.7.5.2.3.1 #define CMDIF_OPEN_SIZE

cmdif_open() default size

NXP Semiconductors
AIOP Service Layer API Reference Manual

502

Kernel

1.7.5.2.4 Typedef Documentation

1.7.5.2.4.1 typedef int(cmdif_cb_t) (void ∗async_ctx, int err, uint16_t cmd_id, uint32_t size, void
∗data)

Command callback.

User provides this function. Driver invokes it for all asynchronous commands that had been sent through
cidesc.
Parameters

in async_ctx User context that was setup during cmdif_open()
in err Error as returned by server
in cmd_id Id of command
in size Size of the data. On the AIOP side use PRC_GET_SEGMENT_LEN←↩

GTH() to determine the size of presented data.
in data Data of the command. On the AIOP side it is the pointer to segment pre-

sentation address; use fdma_modify_default_segment_data() if needed.
On GPP side it should be virtual address that belongs to current SW
context.

Returns

OK on success; error code, otherwise.

Warning

Please make sure to modify only size bytes of the data. Automatic expansion of the buffer is not
available.

1.7.5.2.5 Function Documentation

1.7.5.2.5.1 int cmdif_open (struct cmdif_desc ∗ cidesc, const char ∗ module_name, uint8_t
instance_id, void ∗ data, uint32_t size)

Open command interface device for the specified module

NXP Semiconductors
AIOP Service Layer API Reference Manual

503

Kernel

Parameters

in cidesc Command interface descriptor, cmdif device will be returned inside this
descriptor. Sharing of the same cidesc by multiple threads requires locks
outside CMDIF API, as an alternative each thread can open it's own
session by calling cmdif_open(). Only cidesc.regs must be set by user
see struct cmdif_desc.

in module_name Module name, up to 8 characters.
in instance_id Instance id which will be passed to open_cb_t
in data 8 bytes aligned buffer for internal use of the command interface. This

address should be accessible by Server and Client. This buffer can be
freed only after cmdif_close(). On AIOP, set data as NULL. On GPP it
must be from Write-Back Cacheable and Outer Shareable memory.

in size Size of the data buffer. If the size is not enough cmdif_open() will return
-ENOMEM. On AIOP, set it to 0. By default, set it to CMDIF_OPEN←↩
_SIZE bytes.

Returns

0 on success; error code, otherwise.

1.7.5.2.5.2 int cmdif_close (struct cmdif_desc ∗ cidesc)

Close this command interface device and free this instance entry on the Server.

It's not yet supported by the AIOP client.

Parameters

in cidesc Command interface descriptor which was setup by cmdif_open().

Returns

0 on success; error code, otherwise.

1.7.5.2.5.3 int cmdif_send (struct cmdif_desc ∗ cidesc, uint16_t cmd_id, uint32_t size, int
priority, uint64_t data, cmdif_cb_t ∗ async_cb, void ∗ async_ctx)

Send command to the module device that was created during cmdif_open().

This function may be activated in synchronous and asynchronous mode, see Send Attributes. Note, AIOP
client supports only asynchronous commands see CMDIF_ASYNC_CMD.

NXP Semiconductors
AIOP Service Layer API Reference Manual

504

Kernel

Parameters

in cidesc Command interface descriptor which was setup by cmdif_open().
in cmd_id Id which represent command on the module that was registered on

Server; Application may use bits 11-0. See Send Attributes.
in size Size of the data including extra 16 bytes for cmdif_cb_t in case of C←↩

MDIF_ASYNC_CMD.
in priority High or low priority queue. See Send Attributes.
in data Data of the command or buffer allocated by user which will be used in-

side command. This address should be accessible by Server and Client.
It should be virtual address that belongs to current SW context. In case
of asynchronous command last 16 bytes must be reserved for cmdif us-
age. On GPP it must be from Write-Back Cacheable and Outer Share-
able memory.

in async_cb Callback to be called on response of asynchronous command.
in async_ctx Context to be received with asynchronous command response inside

async_cb().

Returns

0 on success; error code, otherwise.

1.7.5.2.5.4 int cmdif_resp_read (struct cmdif_desc ∗ cidesc, int priority)

Check the response queue for new responses, de-queue and activate the callback function for each response

This function is not blocking; if nothing was found it will return error code. Note, this functionality is not
relevant for AIOP client.
Parameters

in cidesc Command interface descriptor which was setup by cmdif_open().
in priority High or low priority queue to be checked.

Returns

0 on success; error code, if no responses have been found.

1.7.5.2.6 Send Attributes

1.7.5.2.6.1 Overview

The attributes to be used with cmdif_send()

NXP Semiconductors
AIOP Service Layer API Reference Manual

505

Kernel

Macros

• #define CMDIF_PRI_LOW
• #define CMDIF_PRI_HIGH
• #define CMDIF_ASYNC_CMD
• #define CMDIF_NORESP_CMD

1.7.5.2.6.2 Macro Definition Documentation

1.7.5.2.6.2.1 #define CMDIF_PRI_LOW

Low Priority.

1.7.5.2.6.2.2 #define CMDIF_PRI_HIGH

High Priority.

1.7.5.2.6.2.3 #define CMDIF_ASYNC_CMD

Bit to be used for cmd_id to identify asynchronous commands.

1.7.5.2.6.2.4 #define CMDIF_NORESP_CMD

Bit to be used for commands that don't need response.

1.7.5.3 Command Interface - Server

1.7.5.3.1 Overview

API to be used and implemented by Server side only.

Data Structures

• struct cmdif_module_ops

Macros

• #define CMDIF_SESSION_OPEN_SIZE

Typedefs

• typedef int(open_cb_t) (uint8_t instance_id, void ∗∗dev)
• typedef int(close_cb_t) (void ∗dev)
• typedef int(ctrl_cb_t) (void ∗dev, uint16_t cmd, uint32_t size, void ∗data)

Functions

• int cmdif_register_module (const char ∗module_name, struct cmdif_module_ops ∗ops)

NXP Semiconductors
AIOP Service Layer API Reference Manual

506

Kernel

• int cmdif_unregister_module (const char ∗module_name)
• int cmdif_session_open (struct cmdif_desc ∗cidesc, const char ∗m_name, uint8_t inst_id, uint32_t

size, void ∗v_data, void ∗send_dev, uint16_t ∗auth_id)
• int cmdif_session_close (struct cmdif_desc ∗cidesc, uint16_t auth_id, uint32_t size, void ∗v_data,

void ∗send_dev)
• int cmdif_srv_cb (int pr, void ∗send_dev)

1.7.5.3.2 Data Structure Documentation

1.7.5.3.2.1 struct cmdif_module_ops

Function pointers to be supplied during module registration.

Data Fields

open_cb_t ∗ open_cb Open callback to be activated after client calls cmdif_open()
close_cb_t ∗ close_cb Close callback to be activated after client calls cmdif_close()

ctrl_cb_t ∗ ctrl_cb Control callback to be activated on each command.

1.7.5.3.3 Macro Definition Documentation

1.7.5.3.3.1 #define CMDIF_SESSION_OPEN_SIZE

cmdif_session_open() default size

1.7.5.3.4 Typedef Documentation

1.7.5.3.4.1 typedef int(open_cb_t) (uint8_t instance_id, void ∗∗dev)

Open callback.

User provides this function. Server invokes it when it gets open instance command.

Parameters

in instance_id - Instance id to be specified by client on cmdif_open().
out dev - device handle.

Returns

Handle to instance object, or NULL for Failure.

1.7.5.3.4.2 typedef int(close_cb_t) (void ∗dev)

De-init callback.

User provides this function. Driver invokes it when it gets close instance command.

NXP Semiconductors
AIOP Service Layer API Reference Manual

507

Kernel

Parameters

in dev - A handle of the device.

Returns

OK on success; error code, otherwise.

1.7.5.3.4.3 typedef int(ctrl_cb_t) (void ∗dev, uint16_t cmd, uint32_t size, void ∗data)

Control callback.

User provides this function. Driver invokes it for all runtime commands

Parameters

in dev - A handle of the device which was returned after module open callback
in cmd - Id of command
in size - Size of the data. On the AIOP side use PRC_GET_SEGMENT_LE←↩

NGTH() to determine the size of presented data.
in data - Data of the command. AIOP server will pass here address to the start

of presentation segment - physical address is the same as virtual. On
AIOP use fdma_modify_default_segment_data() if needed. On GPP, it
should be virtual address that belongs to current SW context.

Returns

OK on success; error code, otherwise.

1.7.5.3.5 Function Documentation

1.7.5.3.5.1 int cmdif_register_module (const char ∗ module_name, struct cmdif_module_ops ∗
ops)

Registration of a module to the server.

For AIOP, use this API during AIOP boot.

Each module needs to register to the command interface by supplying the following:

Parameters

NXP Semiconductors
AIOP Service Layer API Reference Manual

508

Kernel

in module_name - Module name, it should be a valid string of up to 8 characters.
in ops - A structure with 3 callbacks described above for open, close and con-

trol

Returns

0 on success; error code, otherwise.

1.7.5.3.5.2 int cmdif_unregister_module (const char ∗ module_name)

Cancel the registration of a module on the server and free the module id acquired during registration

For AIOP, use this API during AIOP boot.

Parameters

in module_name - Module name, up to 8 characters.

Returns

0 on success; error code, otherwise.

1.7.5.3.5.3 int cmdif_session_open (struct cmdif_desc ∗ cidesc, const char ∗ m_name, uint8_t
inst_id, uint32_t size, void ∗ v_data, void ∗ send_dev, uint16_t ∗ auth_id)

Open session on server and notify client about it.

This functionality is relevant only for GPP.

Parameters

in cidesc - Already open connection descriptor towards the second side
in m_name - Name of the module as registered by cmdif_register_module()
in inst_id - Instance id which will be passed to open_cb_t
in size - Size of v_data buffer. By default, set it to CMDIF_SESSION_OPE←↩

N_SIZE bytes.
in v_data - 8 byte aligned buffer allocated by user. If not NULL this buffer will

carry all the information of this session. The buffer can be freed after
cmdif_session_close().

NXP Semiconductors
AIOP Service Layer API Reference Manual

509

Kernel

in send_dev - Transport device to be used for server (nadk device). Device used for
send and receive of frame descriptor.

out auth_id - Session id as returned by server.

Returns

0 on success; error code, otherwise.

1.7.5.3.5.4 int cmdif_session_close (struct cmdif_desc ∗ cidesc, uint16_t auth_id, uint32_t size,
void ∗ v_data, void ∗ send_dev)

Close session on server and notify client about it.

This functionality is relevant only for GPP but it's not yet supported by the GPP server.

Parameters

in cidesc - Already open connection descriptor towards second side
in size - Size of v_data buffer
in auth_id - Session id as returned by server.
in v_data - Buffer allocated by user. If not NULL this buffer will carry all the

information of this session.
in send_dev - Transport device used for server (nadk device). Device used for send

and receive of frame descriptor.

Returns

0 on success; error code, otherwise.

1.7.5.3.5.5 int cmdif_srv_cb (int pr, void ∗ send_dev)

Server callback to be called on every frame command

This functionality is relevant only for GPP.

Parameters

in pr - Priority
in send_dev - Device used for send and receive of frame descriptor

Returns

0 on success; error code, otherwise.

NXP Semiconductors
AIOP Service Layer API Reference Manual

510

Kernel

1.7.6 Isolation Context

1.7.6.1 Overview

API to be used for memory and BMAN pool accesses using the specific isolation context attributes.

Data Structures

• struct icontext

Macros

• #define ICONTEXT_INVALID

Functions

• void icontext_cmd_get (struct icontext ∗ic)
• void icontext_aiop_get (struct icontext ∗ic)
• int icontext_get (uint16_t dpci_id, struct icontext ∗ic)
• int icontext_dma_read (struct icontext ∗ic, uint16_t size, uint64_t src, void ∗dest)
• int icontext_dma_write (struct icontext ∗ic, uint16_t size, void ∗src, uint64_t dest)
• int icontext_acquire (struct icontext ∗ic, uint16_t bpid, uint64_t ∗addr)
• int icontext_release (struct icontext ∗ic, uint16_t bpid, uint64_t addr)
• void icontext_ws_set (struct icontext ∗ic)

1.7.6.2 Data Structure Documentation

1.7.6.2.1 struct icontext

Isolation context structure.

Do not modify the content of this structure, it must be set by icontext_get().

Data Fields

uint32_t dma_flags Flags that will be used for DMA.
uint32_t bdi_flags Flags that will be used for BMAN pool.
uint16_t icid Isolation context id that will be used for DMA and BMAN pool If

icid = ICONTEXT_INVALID the values are not valid.

1.7.6.3 Macro Definition Documentation

1.7.6.3.1 #define ICONTEXT_INVALID

Isolation context is not valid.

NXP Semiconductors
AIOP Service Layer API Reference Manual

511

Kernel

1.7.6.4 Function Documentation

1.7.6.4.1 void icontext_cmd_get (struct icontext ∗ ic)

Copy isolation context parameters for current command.

Parameters

out ic - Isolation context structure to be used with icontext dependent API.

1.7.6.4.2 void icontext_aiop_get (struct icontext ∗ ic)

Copy isolation context parameters for AIOP.

Parameters

out ic - Isolation context structure to be used with icontext dependent API.

1.7.6.4.3 int icontext_get (uint16_t dpci_id, struct icontext ∗ ic)

Copy isolation context parameters for DPCI id.

Parameters

in dpci_id - ID of DPCI device or its peer ID.
out ic - Isolation context structure to be used with icontext dependent API.

Returns

0 - on success, -ENAVAIL - DPCI id was not found.

Warning

This API must be called after cmdif_open() was triggered by GPP otherwise it will result in empty
icontext structure.

1.7.6.4.4 int icontext_dma_read (struct icontext ∗ ic, uint16_t size, uint64_t src, void ∗ dest)

DMA read into workspace location.

NXP Semiconductors
AIOP Service Layer API Reference Manual

512

Kernel

Parameters

in ic - Isolation context structure to be used with icontext dependent API.
in src - System memory source for DMA data.
in size - The number of bytes to be copied into dest buffer.
out dest - Pointer to workspace location to where data should be copied.

Returns

0 - on success, POSIX error otherwise.

1.7.6.4.5 int icontext_dma_write (struct icontext ∗ ic, uint16_t size, void ∗ src, uint64_t dest)

DMA write from workspace location.

Parameters

in ic - Isolation context structure to be used with icontext dependent API.
in src - Pointer to workspace location from where data should be copied.
in size - The number of bytes to be copied into dest buffer.
out dest - System memory target address for DMA data.

Returns

0 - on success, POSIX error otherwise.

1.7.6.4.6 int icontext_acquire (struct icontext ∗ ic, uint16_t bpid, uint64_t ∗ addr)

Acquire buffer from BMAN pool.

Parameters

in ic - Isolation context structure to be used with icontext dependent API.
in bpid - BMAN pool id that matches ic->icid.
out addr - Buffer address as returned by BMAN pool.

Returns

0 - on success, POSIX error otherwise.

NXP Semiconductors
AIOP Service Layer API Reference Manual

513

Kernel

1.7.6.4.7 int icontext_release (struct icontext ∗ ic, uint16_t bpid, uint64_t addr)

Release buffer into BMAN pool.

NXP Semiconductors
AIOP Service Layer API Reference Manual

514

Kernel

Parameters

in ic - Isolation context structure to be used with icontext dependent API.
in bpid - BMAN pool id that matches ic->icid.
in addr - Address to be released into BMAN pool.

Returns

0 - on success, POSIX error otherwise.

1.7.6.4.8 void icontext_ws_set (struct icontext ∗ ic)

Update the Additional Dequeue Context that has been copied to the workspace with the new isolation
context.

It is useful if you must close the command default frame and reopen it again:

• icontext_ws_set(&cmd_ic);
• fdma_present_default_frame();
• icontext_ws_set(&aiop_ic);
• continue working with command as usual

Parameters

in ic - Isolation context to be set in the workspace.

1.7.7 RCU

1.7.7.1 Overview

Contains the API for RCU synchronize functionality.

Functions

• int rcu_synchronize ()
• void rcu_read_unlock ()
• void rcu_read_lock ()

1.7.7.2 Function Documentation

1.7.7.2.1 int rcu_synchronize ()

NXP Semiconductors
AIOP Service Layer API Reference Manual

515

Kernel

Wait until all the tasks that are holding resources are done; Use rcu_read_lock() to declare your task as a
resource holder.

This is a blocking function. When this function is called, the RCU lock is automatically released for this
task.

Returns

0 on succees, POSIX error code otherwise Error Handling

Warning

In this function the task yields

1.7.7.2.2 void rcu_read_unlock ()

Remove task from readers list.

When task terminates,
the RCU lock is automatically released for this task.

Warning

This function should only be called if the calling task does not need any resources(e.g. allocated
buffers, DP objects). Once this function is called, there is no guarantee that these resources will
remain valid.

1.7.7.2.3 void rcu_read_lock ()

Add the task back to the readers list.

Warning

AIOP task needs to call rcu_read_lock() deliberately in order to declare that is uses some of the
resources (e.g. allocated buffers, DP objects).
This function may result in a fatal error. Do not call it from the AIOP initialization task.

NXP Semiconductors
AIOP Service Layer API Reference Manual

516

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP
assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. NXP does
not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address:
nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, Layerscape, and
QorIQ are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. Arm, Cortex, and TrustZone
are registered trademarks of Arm Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved.

© 2018 NXP B.V.

http://www.nxp.com

http://www.nxp.com/support

http://www.nxp.com/SalesTermsandConditions

		Chapter 1 AIOP Service Layer API

		Overview

		AIOP General

		Overview

		Function Documentation

		fsl_read_external_data

		AIOP SL General Definitions

		Overview

		Enumeration Type Documentation

		aiop_bus_transaction

		aiop_cache_allocate_policy

		LDPAA API

		Overview

		Data Structure Documentation

		struct ldpaa_fd

		LDPAA FD Definitions

		Overview

		Macro Definition Documentation

		FD_LENGTH_MASK

		FD_LENGTH_MEM_MASK

		FD_MEM_MASK

		FD_BMT_MASK

		FD_IVP_MASK

		FD_BPID_MASK

		FD_SL_MASK

		FD_FMT_MASK

		FD_OFFSET_MASK

		FD_VA_MASK

		FD_CBMT_MASK

		FD_ASAL_MASK

		FD_PTV2_MASK

		FD_PTV1_MASK

		FD_PTA_MASK

		FD_DROPP_MASK

		FD_SC_MASK

		FD_DD_MASK

		FD_CS_MASK

		FD_DS_MASK

		FD_AS_MASK

		FD_FLC_STASH_MASK

		FD_FLC_NO_STASH_MASK

		FD_ADDR_OFFSET

		FD_MEM_LENGTH_OFFSET

		FD_BPID_OFFSET

		FD_BMT_IVP_OFFSET

		FD_OFFSET_OFFSET

		FD_SL_FMT_OFFSET

		FD_FRC_OFFSET

		FD_ERR_OFFSET

		FD_CBMT_VA_OFFSET

		FD_PTA_PVT_ASA_OFFSET

		FD_DD_SC_DROPP_OFFSET

		FD_FLC_DS_AS_CS_OFFSET

		FD_MEM_SHIFT

		FD_IVP_SHIFT

		FD_BMT_SHIFT

		FD_FMT_SHIFT

		FD_SL_SHIFT

		FD_VA_SHIFT

		FD_CBMT_SHIFT

		FD_PTV2_SHIFT

		FD_PTV1_SHIFT

		FD_PTA_SHIFT

		FD_SC_SHIFT

		FD_DD_SHIFT

		FD_AS_SHIFT

		FD_DS_SHIFT

		LDPAA FD GETTER/SETTER MACROs

		Overview

		Macro Definition Documentation

		LDPAA_FD_GET_ADDR

		LDPAA_FD_GET_LENGTH

		LDPAA_FD_GET_MEM

		LDPAA_FD_GET_BPID

		LDPAA_FD_GET_IVP

		LDPAA_FD_GET_BMT

		LDPAA_FD_GET_OFFSET

		LDPAA_FD_GET_FMT

		LDPAA_FD_GET_SL

		LDPAA_FD_GET_FRC

		LDPAA_FD_GET_ERR

		LDPAA_FD_GET_VA

		LDPAA_FD_GET_CBMT

		LDPAA_FD_GET_ASAL

		LDPAA_FD_GET_PTV2

		LDPAA_FD_GET_PTV1

		LDPAA_FD_GET_PTA

		LDPAA_FD_GET_DROPP

		LDPAA_FD_GET_SC

		LDPAA_FD_GET_DD

		LDPAA_FD_GET_CS

		LDPAA_FD_GET_AS

		LDPAA_FD_GET_DS

		LDPAA_FD_GET_FLC

		LDPAA_FD_SET_ADDR

		LDPAA_FD_SET_LENGTH

		LDPAA_FD_SET_MEM

		LDPAA_FD_SET_BPID

		LDPAA_FD_SET_IVP

		LDPAA_FD_SET_BMT

		LDPAA_FD_SET_OFFSET

		LDPAA_FD_SET_FMT

		LDPAA_FD_SET_SL

		LDPAA_FD_SET_FRC

		LDPAA_FD_SET_ERR

		LDPAA_FD_SET_VA

		LDPAA_FD_SET_ASAL

		LDPAA_FD_SET_CBMT

		LDPAA_FD_SET_PTV2

		LDPAA_FD_SET_PTV1

		LDPAA_FD_SET_PTA

		LDPAA_FD_SET_DROPP

		LDPAA_FD_SET_SC

		LDPAA_FD_SET_DD

		LDPAA_FD_SET_CS

		LDPAA_FD_SET_AS

		LDPAA_FD_SET_DS

		LDPAA_FD_SET_FLC

		AIOP Return Status

		Overview

		Macro Definition Documentation

		SUCCESS

		BASE_SW_MODULES_STATUS_ID

		HM_MODULE_STATUS_ID

		IPR_MODULE_STATUS_ID

		IPF_MODULE_STATUS_ID

		TCP_GSO_MODULE_STATUS_ID

		TCP_GRO_MODULE_STATUS_ID

		DPNI_DRV_MODULE_STATUS_ID

		CWAPR_MODULE_STATUS_ID

		CWAPF_MODULE_STATUS_ID

		CWAP_DTLS_MODULE_STATUS_ID

		AIOP HWC Definitions

		Overview

		AIOP HWC General Definitions

		Overview

		Macro Definition Documentation

		HWC_SIZE

		HWC_FD_SIZE

		HWC_ADC_SIZE

		HWC_PRC_SIZE

		HWC_SPID_ADDRESS

		HWC_ACC_IN_ADDRESS

		HWC_ACC_IN_ADDRESS2

		HWC_ACC_IN_ADDRESS3

		HWC_ACC_IN_ADDRESS4

		HWC_ACC_OUT_ADDRESS

		HWC_ACC_OUT_ADDRESS2

		HWC_ACC_RESERVED1

		HWC_ACC_RESERVED2

		HWC_ADC_ADDRESS

		HWC_PRC_ADDRESS

		HWC_FD_ADDRESS

		HWC_PARSE_RES_ADDRESS

		GET_DEFAULT_SPID

		SET_DEFAULT_SPID

		AIOP ADC Definitions

		Overview

		Data Structure Documentation

		struct frame_queue_context

		struct additional_dequeue_context

		Macro Definition Documentation

		ADC_CHANNEL_MASK

		ADC_FQID_MASK

		ADC_PL_MASK

		ADC_ICID_MASK

		ADC_WQID_MASK

		ADC_PRI_MASK

		ADC_FDSRC_MASK

		ADC_VA_MASK

		ADC_FCF_MASK

		ADC_BDI_MASK

		ADC_FQD_CTX_OFFSET

		ADC_CHANNEL_FQID_OFFSET

		ADC_PL_ICID_OFFSET

		ADC_WQID_PRI_OFFSET

		ADC_FDSRC_VA_FCA_BDI_OFFSET

		AIOP ADC Getters

		Overview

		Macro Definition Documentation

		ADC_GET_ICID

		AIOP PRC Definitions

		Overview

		Data Structure Documentation

		struct presentation_context

		Macro Definition Documentation

		PRC_NDS_MASK

		PRC_OSRC_MASK

		PRC_OEP_MASK

		PRC_OSEL_MASK

		PRC_OSRM_MASK

		PRC_SR_BIT_OFFSET

		PRC_NDS_BIT_OFFSET

		PRC_OSRC_BIT_OFFSET

		PRC_OEP_BIT_OFFSET

		PRC_OSEL_BIT_OFFSET

		PTA_NOT_LOADED_ADDRESS

		AIOP PRC Getters

		Overview

		Macro Definition Documentation

		PRC_GET_PARAMETER

		PRC_GET_SEGMENT_ADDRESS

		PRC_GET_SEGMENT_LENGTH

		PRC_GET_SEGMENT_OFFSET

		PRC_GET_SR_BIT

		PRC_GET_NDS_BIT

		PRC_GET_FRAME_HANDLE

		PRC_GET_SEGMENT_HANDLE

		PRC_GET_OSM_SOURCE_VALUE

		PRC_GET_OSM_EXECUTION_PHASE_VALUE

		PRC_GET_OSM_SELECT_VALUE

		PRC_GET_OSM_ORDER_SCOPE_RANGE_MASK_VALUE

		PRC_GET_ISV_VALUE

		AIOP Default Task Params

		Overview

		Data Structure Documentation

		struct aiop_default_task_params

		Read external data bits definitions

		Overview

		Macro Definition Documentation

		READ_DATA_USING_FDMA

		READ_DATA_USING_CDMA

		Accelerators APIs

		Overview

		FDMA

		Overview

		FDMA General Definitions

		Overview

		Macro Definition Documentation

		FDMA_PTA_SEG_HANDLE

		FDMA_ASA_SEG_HANDLE

		DEFAULT_SEGMENT_HEADROOM_SIZE

		DEFAULT_SEGMENT_SIZE

		FDMA Enumerations

		Overview

		Enumeration Type Documentation

		fdma_st_options

		fdma_cfa_options

		fdma_split_psa_options

		fdma_enqueue_tc_options

		fdma_replace_sa_options

		fdma_dma_data_access_options

		fdma_pta_size_type

		FDMA Commands Flags

		Overview

		FDMA Present Frame Flags

		Overview

		Macro Definition Documentation

		FDMA_INIT_NO_FLAGS

		FDMA_INIT_NDS_BIT

		FDMA_INIT_SR_BIT

		FDMA_INIT_AS_BIT

		FDMA_INIT_VA_BIT

		FDMA_INIT_PL_BIT

		FDMA_INIT_BDI_BIT

		FDMA PRES Flags

		Overview

		Macro Definition Documentation

		FDMA_PRES_NO_FLAGS

		FDMA_PRES_SR_BIT

		FDMA EXT Flags

		Overview

		Macro Definition Documentation

		FDMA_EXT_NO_FLAGS

		FDMA_EXT_ST_BIT

		FDMA ENWF Flags

		Overview

		Macro Definition Documentation

		FDMA_ENWF_NO_FLAGS

		FDMA_ENWF_TC

		FDMA_ENWF_PS_BIT

		FDMA_ENWF_RL_BIT

		FDMA ENF Flags

		Overview

		Macro Definition Documentation

		FDMA_ENF_NO_FLAGS

		FDMA_ENF_TC

		FDMA_ENF_PS_BIT

		FDMA_ENF_BDI_BIT

		FDMA_ENF_AS_BIT

		FDMA_ENF_RL_BIT

		FDMA Discard WF Flags

		Overview

		Macro Definition Documentation

		FDMA_DIS_NO_FLAGS

		FDMA_DIS_WF_TC_BIT

		FDMA Replicate Flags

		Overview

		Macro Definition Documentation

		FDMA_REPLIC_NO_FLAGS

		FDMA_REPLIC_ENQ_BIT

		FDMA_REPLIC_DSF_BIT

		FDMA_REPLIC_PS_BIT

		FDMA_REPLICATE_CFA

		FDMA_REPLIC_RL_BIT

		FDMA Concatenate Flags

		Overview

		Macro Definition Documentation

		FDMA_CONCAT_NO_FLAGS

		FDMA_CONCAT_SF_BIT

		FDMA_CONCAT_FS1_BIT

		FDMA_CONCAT_FS2_BIT

		FDMA_CONCAT_PCA_BIT

		FDMA Split Flags

		Overview

		Macro Definition Documentation

		FDMA_SPLIT_NO_FLAGS

		FDMA_SPLIT_CFA

		FDMA_SPLIT_PSA

		FDMA_SPLIT_SM_BIT

		FDMA_SPLIT_SR_BIT

		FDMA Replace Flags

		Overview

		Macro Definition Documentation

		FDMA_REPLACE_NO_FLAGS

		FDMA_REPLACE_SA

		FDMA Copy Flags

		Overview

		Macro Definition Documentation

		FDMA_COPY_NO_FLAGS

		FDMA_COPY_SM_BIT

		FDMA_COPY_DM_BIT

		FDMA ACQUIRE BUFFER Flags

		Overview

		Macro Definition Documentation

		FDMA_ACQUIRE_NO_FLAGS

		FDMA_ACQUIRE_BDI_BIT

		FDMA RELEASE BUFFER Flags

		Overview

		Macro Definition Documentation

		FDMA_RELEASE_NO_FLAGS

		FDMA_RELEASE_BDI_BIT

		FDMA ISOLATION ATTRIBUTES Flags

		Overview

		Macro Definition Documentation

		FDMA_ICID_CONTEXT_VA

		FDMA_ICID_CONTEXT_eVA

		FDMA_ICID_CONTEXT_PL

		FDMA_ICID_CONTEXT_BDI

		FDMA Status

		Overview

		Macro Definition Documentation

		FDMA_STATUS_UNABLE_PRES_DATA_SEG

		FDMA_STATUS_UNABLE_PRES_ASA_SEG

		FDMA Structures

		Overview

		Data Structure Documentation

		struct fdma_amq

		struct fdma_present_frame_params

		struct fdma_present_segment_params

		struct fdma_queueing_destination_params

		struct fdma_concatenate_frames_params

		struct fdma_split_frame_params

		struct fdma_insert_segment_data_params

		struct fdma_delete_segment_data_params

		FDMA Functions

		Overview

		Function Documentation

		fdma_present_default_frame

		fdma_present_frame

		fdma_present_default_frame_without_segments

		fdma_present_frame_without_segments

		fdma_present_default_frame_segment

		fdma_present_frame_segment

		fdma_read_default_frame_asa

		fdma_read_default_frame_pta

		fdma_extend_default_segment_presentation

		fdma_store_default_frame_data

		fdma_store_frame_data

		fdma_store_and_enqueue_default_frame_fqid

		fdma_store_and_enqueue_frame_fqid

		fdma_store_and_enqueue_default_frame_qd

		fdma_store_and_enqueue_frame_qd

		fdma_enqueue_default_fd_fqid

		fdma_enqueue_fd_fqid

		fdma_enqueue_default_fd_qd

		fdma_enqueue_fd_qd

		fdma_discard_default_frame

		fdma_discard_frame

		fdma_discard_fd

		fdma_force_discard_fd

		fdma_terminate_task

		fdma_replicate_frame_fqid

		fdma_replicate_frame_qd

		fdma_concatenate_frames

		fdma_split_frame

		fdma_trim_default_segment_presentation

		fdma_modify_default_segment_data

		fdma_modify_default_segment_full_data

		fdma_insert_default_segment_data

		fdma_insert_segment_data

		fdma_delete_default_segment_data

		fdma_delete_segment_data

		fdma_close_default_segment

		fdma_close_segment

		fdma_replace_default_asa_segment_data

		fdma_replace_default_pta_segment_data

		fdma_calculate_default_frame_checksum

		get_frame_length

		get_default_amq_attributes

		set_default_amq_attributes

		get_concatenate_amq_attributes

		fdma_present_default_frame_default_segment

		fdma_replace_default_segment_data

		fdma_copy_data

		fdma_dma_data

		fdma_set_data_write_attributes

		fdma_set_data_read_attributes

		fdma_set_sru_write_attributes

		fdma_set_sru_read_attributes

		FDMA Discard Frame Flags

		Overview

		Macro Definition Documentation

		FDMA_DIS_FRAME_NO_FLAGS

		FDMA_DIS_VA_BIT

		FDMA_DIS_AS_BIT

		FDMA_DIS_PL_BIT

		FDMA_DIS_BDI_BIT

		FDMA_DIS_FRAME_TC_BIT

		FDMA Concatenate AMQ Flags

		Overview

		Macro Definition Documentation

		FDMA_CONCAT_AMQ_VA1

		FDMA_CONCAT_AMQ_PL1

		FDMA_CONCAT_AMQ_BDI1

		FDMA_CONCAT_AMQ_VA2

		FDMA_CONCAT_AMQ_PL2

		FDMA_CONCAT_AMQ_BDI2

		CDMA

		Overview

		CDMA Commands Flags

		Overview

		CDMA DMA MUTEX ModeBits

		Overview

		Macro Definition Documentation

		CDMA_DMA_NO_MUTEX_LOCK

		CDMA_PREDMA_MUTEX_READ_LOCK

		CDMA_PREDMA_MUTEX_WRITE_LOCK

		CDMA_POSTDMA_MUTEX_RM_BIT

		CDMA MUTEX ModeBits

		Overview

		Macro Definition Documentation

		CDMA_MUTEX_READ_LOCK

		CDMA_MUTEX_WRITE_LOCK

		CDMA Functions

		Overview

		Function Documentation

		cdma_refcount_decrement_and_release

		cdma_acquire_context_memory

		cdma_release_context_memory

		cdma_read

		cdma_write

		cdma_mutex_lock_take

		cdma_mutex_lock_release

		cdma_read_with_mutex

		cdma_write_with_mutex

		cdma_ws_memory_init

		cdma_refcount_get

		cdma_set_data_write_attributes

		cdma_set_data_read_attributes

		PARSER

		Overview

		PARSER Macros

		Overview

		Frame Attributes Extension Masks

		Overview

		Macro Definition Documentation

		PARSER_ATT_UD_SOFT_PARSER_BIT_0

		PARSER_ATT_UD_SOFT_PARSER_BIT_1

		PARSER_ATT_UD_SOFT_PARSER_BIT_2

		PARSER_ATT_UD_SOFT_PARSER_BIT_3

		PARSER_ATT_UD_SOFT_PARSER_BIT_4

		PARSER_ATT_UD_SOFT_PARSER_BIT_5

		PARSER_ATT_UD_SOFT_PARSER_BIT_6

		PARSER_ATT_UD_SOFT_PARSER_BIT_7

		Frame Attributes Masks 1

		Overview

		Macro Definition Documentation

		PARSER_ATT_IPV6_ROUTING_HDR_2_MASK

		PARSER_ATT_GTP_PRIMED_MASK

		PARSER_ATT_VLAN_PRIORITY_MASK

		PARSER_ATT_PTP_MASK

		PARSER_ATT_VXLAN_MASK

		PARSER_ATT_ETH_SLOW_PROTOCOL_MASK

		PARSER_ATT_IKE_MASK

		PARSER_ATT_ETH_MAC_MASK

		PARSER_ATT_ETH_MAC_UNICAST_MASK

		PARSER_ATT_ETH_MAC_MULTICAST_MASK

		PARSER_ATT_ETH_MAC_BROADCAST_MASK

		PARSER_ATT_BPDU_MASK

		PARSER_ATT_FCOE_MASK

		PARSER_ATT_FCOE_INIT_PROTOCOL_MASK

		PARSER_ATT_LLC_SNAP_MASK

		PARSER_ATT_UNKOWN_LLC_OUI_MASK

		PARSER_ATT_VLAN_1_MASK

		PARSER_ATT_VLAN_N_MASK

		PARSER_ATT_CFI_IN_VLAN_MASK

		PARSER_ATT_PPPOE_PPP_MASK

		PARSER_ATT_MPLS_1_MASK

		PARSER_ATT_MPLS_N_MASK

		PARSER_ATT_ARP_MASK

		Frame Attributes Error Masks 1

		Overview

		Macro Definition Documentation

		PARSER_ATT_VXLAN_PARSING_ERROR_MASK

		PARSER_ATT_SHIM_SOFT_PARSING_ERROR_MASK

		PARSER_ATT_PARSING_ERROR_MASK

		PARSER_ATT_ETH_PARSING_ERROR_MASK

		PARSER_ATT_LLC_SNAP_PARSING_ERROR_MASK

		PARSER_ATT_VLAN_PARSING_ERROR_MASK

		PARSER_ATT_PPPOE_PPP_PARSING_ERROR_MASK

		PARSER_ATT_MPLS_PARSING_ERROR_MASK

		PARSER_ATT_ARP_PARSING_ERROR_MASK

		Frame Attributes Masks 2

		Overview

		Macro Definition Documentation

		PARSER_ATT_L2_UNKOWN_PROTOCOL_MASK

		PARSER_ATT_IPV4_1_MASK

		PARSER_ATT_IPV4_1_UNICAST_MASK

		PARSER_ATT_IPV4_1_MULTICAST_MASK

		PARSER_ATT_IPV4_1_BROADCAST_MASK

		PARSER_ATT_IPV4_N_MASK

		PARSER_ATT_IPV4_N_UNICAST_MASK

		PARSER_ATT_IPV4_N_MULTICAST_MASK

		PARSER_ATT_IPV4_N_BROADCAST_MASK

		PARSER_ATT_IPV6_1_MASK

		PARSER_ATT_IPV6_1_UNICAST_MASK

		PARSER_ATT_IPV6_1_MULTICAST_MASK

		PARSER_ATT_IPV6_N_MASK

		PARSER_ATT_IPV6_N_UNICAST_MASK

		PARSER_ATT_IPV6_N_MULTICAST_MASK

		PARSER_ATT_IP_1_OPTIONS_MASK

		PARSER_ATT_IP_1_UNKNOWN_PROTOCOL_MASK

		PARSER_ATT_IP_1_IS_FRAGMENT_MASK

		PARSER_ATT_IP_1_IS_INIT_FRAGMENT_MASK

		PARSER_ATT_IP_N_OPTIONS_MASK

		PARSER_ATT_IP_N_UNKNOWN_PROTOCOL_MASK

		PARSER_ATT_IP_N_IS_FRAGMENT_MASK

		PARSER_ATT_IP_N_IS_INIT_FRAGMENT_MASK

		PARSER_ATT_ICMP_MASK

		PARSER_ATT_IGMP_MASK

		PARSER_ATT_ICMPV6_MASK

		PARSER_ATT_UDP_LITE_MASK

		PARSER_ATT_MIN_ENCAP_MASK

		PARSER_ATT_MIN_ENCAP_S_FLAG_MASK

		Frame Attributes Error Masks 2

		Overview

		Macro Definition Documentation

		PARSER_ATT_L2_SOFT_PARSING_ERROR_MASK

		PARSER_ATT_IP_1_PARSING_ERROR_MASK

		PARSER_ATT_IP_N_PARSING_ERROR_MASK

		Frame Attributes Masks 3

		Overview

		Macro Definition Documentation

		PARSER_ATT_GRE_MASK

		PARSER_ATT_GRE_R_BIT_SET_MASK

		PARSER_ATT_L3_UNKOWN_PROTOCOL_MASK

		PARSER_ATT_UDP_MASK

		PARSER_ATT_TCP_MASK

		PARSER_ATT_TCP_OPTIONS_MASK

		PARSER_ATT_TCP_CONTROLS_6_11_SET_MASK

		PARSER_ATT_TCP_CONTROLS_3_5_SET_MASK

		PARSER_ATT_IPSEC_MASK

		PARSER_ATT_IPSEC_ESP_MASK

		PARSER_ATT_IPSEC_AH_MASK

		PARSER_ATT_SCTP_MASK

		PARSER_ATT_DCCP_MASK

		PARSER_ATT_L4_UNKOWN_PROTOCOL_MASK

		PARSER_ATT_GTP_MASK

		PARSER_ATT_ESP_OVER_UDP_MASK

		PARSER_ATT_ISCSI_MASK

		PARSER_ATT_CAPWAP_CONTROL_MASK

		PARSER_ATT_CAPWAP_DATA_MASK

		PARSER_ATT_IPV6_ROUTING_HDR_1

		Frame Attributes Error Masks 3

		Overview

		Macro Definition Documentation

		PARSER_ATT_MIN_ENCAP_PARSING_ERROR_MASK

		PARSER_ATT_GRE_PARSING_ERROR_MASK

		PARSER_ATT_L3_SOFT_PARSING_ERROR_MASK

		PARSER_ATT_UDP_PARSING_ERROR_MASK

		PARSER_ATT_TCP_PARSING_ERROR_MASK

		PARSER_ATT_IPSEC_PARSING_ERROR_MASK

		PARSER_ATT_SCTP_PARSING_ERROR_MASK

		PARSER_ATT_DCCP_PARSING_ERROR_MASK

		PARSER_ATT_L4_SOFT_PARSING_ERROR_MASK

		PARSER_ATT_GTP_PARSING_ERROR_MASK

		PARSER_ATT_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_MASK

		PARSER_ATT_L5_SOFT_PARSING_ERROR_MASK

		PARSER Error Codes

		Overview

		Macro Definition Documentation

		PARSER_FRAME_TRUNCATION

		PARSER_ETH_802_3_TRUNCATION

		PARSER_PPPOE_TRUNCATION

		PARSER_PPPOE_MTU_VIOLATED

		PARSER_PPPOE_VERSION_INVALID

		PARSER_PPPOE_TYPE_INVALID

		PARSER_PPPOE_CODE_INVALID

		PARSER_PPPOE_SESSION_ID_INVALID

		PARSER_IPV4_PACKET_TRUNCATION

		PARSER_IPV4_CHECKSUM_ERROR

		PARSER_IPV4_VERSION_ERROR

		PARSER_IPV4_MIN_FRAG_SIZE_ERROR

		PARSER_IPV4_HEADER_LENGTH_ERROR

		PARSER_IPV6_PACKET_TRUNCATION

		PARSER_IPV6_EXTENSION_HEADER_VIOLATION

		PARSER_IPV6_VERSION_ERROR

		PARSER_IPV6_ROUTING_HEADER_ERROR

		PARSER_GRE_VERSION_ERROR

		PARSER_MINENC_CHECKSUM_ERROR

		PARSER_TCP_INVALID_OFFSET

		PARSER_TCP_PACKET_TRUNCATION

		PARSER_TCP_CHECKSUM_ERROR

		PARSER_TCP_BAD_FLAGS

		PARSER_UDP_LENGTH_ERROR

		PARSER_UDP_CHECKSUM_ZERO

		PARSER_UDP_CHECKSUM_ERROR

		PARSER_SCTP_PORT_0_DETECTED

		PARSER_GTP_UNSUPPORTED_VERSION

		PARSER_GTP_INVALID_PROTOCOL_TYPE

		PARSER_GTP_INVALID_L_BIT_ERROR

		Parse Result Error Queries

		Overview

		Macro Definition Documentation

		PARSER_IS_VXLAN_PARSING_ERROR_DEFAULT

		PARSER_IS_SHIM_SOFT_PARSING_ERROR_DEFAULT

		PARSER_IS_PARSING_ERROR_DEFAULT

		PARSER_IS_ETH_PARSING_ERROR_DEFAULT

		PARSER_IS_LLC_SNAP_PARSING_ERROR_DEFAULT

		PARSER_IS_VLAN_PARSING_ERROR_DEFAULT

		PARSER_IS_PPPOE_PPP_PARSING_ERROR_DEFAULT

		PARSER_IS_MPLS_PARSING_ERROR_DEFAULT

		PARSER_IS_ARP_PARSING_ERROR_DEFAULT

		PARSER_IS_L2_SOFT_PARSING_ERROR_DEFAULT

		PARSER_IS_OUTER_IP_PARSING_ERROR_DEFAULT

		PARSER_IS_INNER_IP_PARSING_ERROR_DEFAULT

		PARSER_IS_LAST_IP_PARSING_ERROR_DEFAULT

		PARSER_IS_MIN_ENCAP_PARSING_ERROR_DEFAULT

		PARSER_IS_GRE_PARSING_ERROR_DEFAULT

		PARSER_IS_L3_SOFT_PARSING_ERROR_DEFAULT

		PARSER_IS_UDP_PARSING_ERROR_DEFAULT

		PARSER_IS_TCP_PARSING_ERROR_DEFAULT

		PARSER_IS_IPSEC_PARSING_ERROR_DEFAULT

		PARSER_IS_SCTP_PARSING_ERROR_DEFAULT

		PARSER_IS_DCCP_PARSING_ERROR_DEFAULT

		PARSER_IS_L4_SOFT_PARSING_ERROR_DEFAULT

		PARSER_IS_GTP_PARSING_ERROR_DEFAULT

		PARSER_IS_ESP_OR_IKE_OVER_UDP_PARSING_ERROR_DEFAULT

		PARSER_IS_L5_SOFT_PARSING_ERROR_DEFAULT

		Parse Result Attributes Queries

		Overview

		Macro Definition Documentation

		PARSER_IS_UD_SOFT_PARSER_BIT_0_SET

		PARSER_IS_UD_SOFT_PARSER_BIT_1_SET

		PARSER_IS_UD_SOFT_PARSER_BIT_2_SET

		PARSER_IS_UD_SOFT_PARSER_BIT_3_SET

		PARSER_IS_UD_SOFT_PARSER_BIT_4_SET

		PARSER_IS_UD_SOFT_PARSER_BIT_5_SET

		PARSER_IS_UD_SOFT_PARSER_BIT_6_SET

		PARSER_IS_UD_SOFT_PARSER_BIT_7_SET

		PARSER_IS_ROUTING_HDR_IN_2ND_IPV6_HDR_DEFAULT

		PARSER_IS_GTP_PRIMED_DEFAULT

		PARSER_IS_VLAN_PRIORITY_DEFAULT

		PARSER_IS_PTP_DEFAULT

		PARSER_IS_ETH_SLOW_PROTOCOL_DEFAULT

		PARSER_IS_ETH_MAC_DEFAULT

		PARSER_IS_ETH_MAC_UNICAST_DEFAULT

		PARSER_IS_ETH_MAC_MULTICAST_DEFAULT

		PARSER_IS_ETH_MAC_BROADCAST_DEFAULT

		PARSER_IS_BPDU_DEFAULT

		PARSER_IS_FCOE_DEFAULT

		PARSER_IS_FCOE_INIT_PROTOCOL_DEFAULT

		PARSER_IS_LLC_SNAP_DEFAULT

		PARSER_IS_UNKNOWN_LLC_OUI_DEFAULT

		PARSER_IS_ONE_VLAN_DEFAULT

		PARSER_IS_MORE_THAN_ONE_VLAN_DEFAULT

		PARSER_IS_CFI_IN_VLAN_DEFAULT

		PARSER_IS_PPPOE_PPP_DEFAULT

		PARSER_IS_ONE_MPLS_DEFAULT

		PARSER_IS_MORE_THAN_ONE_MPLS_DEFAULT

		PARSER_IS_ARP_DEFAULT

		PARSER_IS_L2_UNKNOWN_PROTOCOL_DEFAULT

		PARSER_IS_IP_DEFAULT

		PARSER_IS_OUTER_IPV4_DEFAULT

		PARSER_IS_OUTER_IPV4_UNICAST_DEFAULT

		PARSER_IS_OUTER_IPV4_MULTICAST_DEFAULT

		PARSER_IS_OUTER_IPV4_BROADCAST_DEFAULT

		PARSER_IS_TUNNELED_IP_DEFAULT

		PARSER_IS_INNER_IPV4_DEFAULT

		PARSER_IS_INNER_IPV4_UNICAST_DEFAULT

		PARSER_IS_INNER_IPV4_MULTICAST_DEFAULT

		PARSER_IS_INNER_IPV4_BROADCAST_DEFAULT

		PARSER_IS_OUTER_IPV6_DEFAULT

		PARSER_IS_OUTER_IPV6_UNICAST_DEFAULT

		PARSER_IS_OUTER_IPV6_MULTICAST_DEFAULT

		PARSER_IS_INNER_IPV6_DEFAULT

		PARSER_IS_INNER_IPV6_UNICAST_DEFAULT

		PARSER_IS_INNER_IPV6_MULTICAST_DEFAULT

		PARSER_IS_OUTER_IP_OPTIONS_DEFAULT

		PARSER_IS_OUTER_IP_UNKNOWN_PROTOCOL_DEFAULT

		PARSER_IS_OUTER_IP_FRAGMENT_DEFAULT

		PARSER_IS_OUTER_IP_INIT_FRAGMENT_DEFAULT

		PARSER_IS_INNER_IP_OPTIONS_DEFAULT

		PARSER_IS_INNER_IP_UNKNOWN_PROTOCOL_DEFAULT

		PARSER_IS_INNER_IP_FRAGMENT_DEFAULT

		PARSER_IS_INNER_IP_INIT_FRAGMENT_DEFAULT

		PARSER_IS_ICMP_DEFAULT

		PARSER_IS_IGMP_DEFAULT

		PARSER_IS_ICMPV6_DEFAULT

		PARSER_IS_UDP_LITE_DEFAULT

		PARSER_IS_MIN_ENCAP_DEFAULT

		PARSER_IS_MIN_ENCAP_S_FLAG_DEFAULT

		PARSER_IS_GRE_DEFAULT

		PARSER_IS_GRE_R_BIT_SET_DEFAULT

		PARSER_IS_L3_UNKOWN_PROTOCOL_DEFAULT

		PARSER_IS_UDP_DEFAULT

		PARSER_IS_TCP_DEFAULT

		PARSER_IS_TCP_OR_UDP_DEFAULT

		PARSER_IS_TCP_OPTIONS_DEFAULT

		PARSER_IS_TCP_CONTROLS_6_11_SET_DEFAULT

		PARSER_IS_TCP_CONTROLS_3_5_SET_DEFAULT

		PARSER_IS_IPSEC_DEFAULT

		PARSER_IS_IPSEC_ESP_DEFAULT

		PARSER_IS_IPSEC_AH_DEFAULT

		PARSER_IS_SCTP_DEFAULT

		PARSER_IS_DCCP_DEFAULT

		PARSER_IS_L4_UNKOWN_PROTOCOL_DEFAULT

		PARSER_IS_GTP_DEFAULT

		PARSER_IS_IKE_OVER_UDP_DEFAULT

		PARSER_IS_ESP_OVER_UDP_DEFAULT

		PARSER_IS_ISCSI_DEFAULT

		PARSER_IS_CAPWAP_CONTROL_DEFAULT

		PARSER_IS_CAPWAP_DATA_DEFAULT

		PARSER_IS_ROUTING_HDR_IN_1ST_IPV6_HDR_DEFAULT

		Parse Result Getters

		Overview

		Macro Definition Documentation

		PARSER_GET_NEXT_HEADER_DEFAULT

		PARSER_GET_SHIM1_OFFSET_DEFAULT

		PARSER_GET_SHIM2_OFFSET_DEFAULT

		PARSER_GET_OUTER_IP_PID_OFFSET_DEFAULT

		PARSER_GET_ETH_OFFSET_DEFAULT

		PARSER_GET_LLC_SNAP_OFFSET_DEFAULT

		PARSER_GET_FIRST_VLAN_TCI_OFFSET_DEFAULT

		PARSER_GET_LAST_VLAN_TCI_OFFSET_DEFAULT

		PARSER_GET_LAST_ETYPE_OFFSET_DEFAULT

		PARSER_GET_PPPOE_OFFSET_DEFAULT

		PARSER_GET_FIRST_MPLS_OFFSET_DEFAULT

		PARSER_GET_LAST_MPLS_OFFSET_DEFAULT

		PARSER_GET_OUTER_IP_OFFSET_DEFAULT

		PARSER_GET_ARP_OFFSET_DEFAULT

		PARSER_GET_FCOE_OFFSET_DEFAULT

		PARSER_GET_FIP_OFFSET_DEFAULT

		PARSER_GET_INNER_IP_OFFSET_DEFAULT

		PARSER_GET_MINENCAP_OFFSET_DEFAULT

		PARSER_GET_GRE_OFFSET_DEFAULT

		PARSER_GET_L4_OFFSET_DEFAULT

		PARSER_GET_L5_OFFSET_DEFAULT

		PARSER_GET_1ST_IPV6_ROUTING_HDR_OFFSET_DEFAULT

		PARSER_GET_2ND_IPV6_ROUTING_HDR_OFFSET_DEFAULT

		PARSER_GET_NEXT_HEADER_OFFSET_DEFAULT

		PARSER_GET_IPV6_FRAG_HEADER_OFFSET_DEFAULT

		PARSER_GET_GROSS_RUNNING_SUM_CODE_DEFAULT

		PARSER_GET_RUNNING_SUM_DEFAULT

		PARSER_GET_PARSE_ERROR_CODE_DEFAULT

		PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_OFFSET_DEFAULT

		PARSER_GET_IP_N_PID_OFFSET_DEFAULT

		Pointer in Frame Getters

		Overview

		Macro Definition Documentation

		PARSER_GET_SHIM1_POINTER_DEFAULT

		PARSER_GET_SHIM2_POINTER_DEFAULT

		PARSER_GET_OUTER_IP_PID_POINTER_DEFAULT

		PARSER_GET_ETH_POINTER_DEFAULT

		PARSER_GET_LLC_SNAP_POINTER_DEFAULT

		PARSER_GET_FIRST_VLAN_TCI_POINTER_DEFAULT

		PARSER_GET_LAST_VLAN_TCI_POINTER_DEFAULT

		PARSER_GET_LAST_ETYPE_POINTER_DEFAULT

		PARSER_GET_PPPOE_POINTER_DEFAULT

		PARSER_GET_FIRST_MPLS_POINTER_DEFAULT

		PARSER_GET_LAST_MPLS_POINTER_DEFAULT

		PARSER_GET_OUTER_IP_POINTER_DEFAULT

		PARSER_GET_ARP_POINTER_DEFAULT

		PARSER_GET_FCOE_POINTER_DEFAULT

		PARSER_GET_FIP_POINTER_DEFAULT

		PARSER_GET_INNER_IP_POINTER_DEFAULT

		PARSER_GET_MINENCAP_POINTER_DEFAULT

		PARSER_GET_GRE_POINTER_DEFAULT

		PARSER_GET_L4_POINTER_DEFAULT

		PARSER_GET_L5_POINTER_DEFAULT

		PARSER_GET_1ST_IPV6_ROUTING_HDR_POINTER_DEFAULT

		PARSER_GET_2ND_IPV6_ROUTING_HDR_POINTER_DEFAULT

		PARSER_GET_NEXT_HEADER_POINTER_DEFAULT

		PARSER_GET_IPV6_FRAG_HEADER_POINTER_DEFAULT

		PARSER_GET_NXT_HDR_BEFORE_IPV6_FRAG_EXT_POINTER_DEFAULT

		PARSER_GET_IP_N_PID_POINTER_DEFAULT

		PARSER Setters

		Overview

		Macro Definition Documentation

		PARSER_SET_PRPID

		PARSER_SET_STARTING_HXS

		Flags for parse_result_generate function

		Overview

		Macro Definition Documentation

		PARSER_NO_FLAGS

		PARSER_VALIDATE_L3_CHECKSUM

		PARSER_VALIDATE_L4_CHECKSUM

		PARSER_VALIDATE_L3_L4_CHECKSUM

		PARSER HXS configuration in parse profile defines

		Overview

		Macro Definition Documentation

		PARSER_PRP_HXS_CONFIG_EN

		PARSER_PRP_HXS_CONFIG_ERM

		PARSER_PRP_PPP_HXS_CONFIG_EMC

		PARSER_PRP_MPLS_HXS_CONFIG_LIE

		PARSER_PRP_IPV6_HXS_CONFIG_RHE

		PARSER_PRP_TCP_UDP_HXS_CONFIG_SPPR

		PARSER Enumerations

		Overview

		Enumeration Type Documentation

		parser_starting_hxs_code

		PARSER Structures

		Overview

		Data Structure Documentation

		struct parse_result

		struct vlan_hxs_configuration

		struct mpls_hxs_configuration

		struct parse_profile_record

		struct parse_profile_input

		PARSER Functions

		Overview

		Function Documentation

		parser_profile_create

		parser_profile_replace

		parser_profile_delete

		parser_profile_query

		parse_result_generate_checksum

		parse_result_generate_default

		parse_result_generate

		parse_result_generate_basic

		parser_pop_vlan_update

		parser_push_vlan_update

		KEYGEN

		Overview

		KEYGEN Macros

		Overview

		Key Composition Rule Attributes

		Overview

		Macro Definition Documentation

		KEYGEN_KCR_LENGTH

		KEYGEN Enumerations

		Overview

		Enumeration Type Documentation

		kcr_builder_gec_source

		kcr_builder_parse_result_offset

		kcr_builder_protocol_fecid

		keygen_hw_accel_id

		KEYGEN Structures

		Overview

		Data Structure Documentation

		struct kcr_builder

		struct kcr_builder_fec_single_mask

		struct kcr_builder_fec_mask

		KEYGEN Functions

		Overview

		Function Documentation

		keygen_kcr_builder_init

		keygen_kcr_builder_add_constant_fec

		keygen_kcr_builder_add_input_value_fec

		keygen_kcr_builder_add_protocol_specific_field

		keygen_kcr_builder_add_protocol_based_generic_fec

		keygen_kcr_builder_add_generic_extract_fec

		keygen_kcr_builder_add_valid_field_fec

		keygen_kcr_create

		keygen_kcr_replace

		keygen_kcr_delete

		keygen_kcr_query

		keygen_gen_key

		keygen_gen_hash

		TABLE

		Overview

		TABLE Macros

		Overview

		TABLE Attributes

		Overview

		TABLE Type Attribute

		Overview

		Macro Definition Documentation

		TABLE_ATTRIBUTE_TYPE_EM

		TABLE_ATTRIBUTE_TYPE_LPM

		TABLE_ATTRIBUTE_TYPE_MFLU

		TABLE_ATTRIBUTE_TYPE_MASK

		TABLE_ATTRIBUTE_TYPE_OFFSET

		TABLE Location Attribute

		Overview

		Macro Definition Documentation

		TABLE_ATTRIBUTE_LOCATION_PEB

		TABLE_ATTRIBUTE_LOCATION_DP_DDR

		TABLE_ATTRIBUTE_LOCATION_SYS_DDR

		TABLE_ATTRIBUTE_LOCATION_MASK

		TABLE_ATTRIBUTE_LOCATION_OFFSET

		TABLE Miss Result Attribute

		Overview

		Macro Definition Documentation

		TABLE_ATTRIBUTE_MR_NO_MISS

		TABLE_ATTRIBUTE_MR_MISS

		TABLE_ATTRIBUTE_MR_MASK

		TABLE_ATTRIBUTE_MR_OFFSET

		TABLE Results Types

		Overview

		Macro Definition Documentation

		TABLE_RESULT_TYPE_OPAQUE

		TABLE Rule Options

		Overview

		TABLE Rule Timestamp Options

		Overview

		Macro Definition Documentation

		TABLE_RULE_TIMESTAMP_NONE

		TABLE_RULE_TIMESTAMP_ENABLE

		TABLE Rule Key

		Overview

		Macro Definition Documentation

		TABLE_KEY_EXACT_MATCH_SIZE

		TABLE_KEY_EXACT_MATCH_RESERVED_SIZE

		TABLE_KEY_LPM_IPV4_SIZE

		TABLE_KEY_LPM_IPV4_RESERVED_SIZE

		TABLE_KEY_LPM_IPV6_SIZE

		TABLE_KEY_LPM_IPV6_RESERVED_SIZE

		TABLE_KEY_MFLU_SIZE

		TABLE_KEY_MFLU_MASK_SIZE

		TABLE_KEY_MFLU_PRIORITY_FIELD_SIZE

		TABLE_KEY_MFLU_RESERVED1_SIZE

		TABLE Lookup Flags

		Overview

		Macro Definition Documentation

		TABLE_LOOKUP_FLAG_SEG_NON_DEFAULT

		TABLE_LOOKUP_FLAG_PRA_NON_DEFAULT

		TABLE_LOOKUP_FLAG_FD_NON_DEFAULT

		TABLE_LOOKUP_FLAG_MTDT_NON_DEFAULT

		TABLE_LOOKUP_FLAG_NONE

		Status returned to calling function

		Overview

		Macro Definition Documentation

		TABLE_STATUS_SUCCESS

		TABLE_STATUS_MISS

		TABLE_STATUS_MFLU_DIFF_PRIORITY

		TABLE Enumerations

		Overview

		Enumeration Type Documentation

		table_hw_accel_id

		TABLE Structures

		Overview

		Data Structure Documentation

		struct table_result

		struct table_key_desc_em

		struct table_key_desc_lpm_ipv4

		struct table_key_desc_lpm_ipv6

		struct table_key_desc_mflu

		union table_key_desc

		struct table_rule

		struct table_lookup_result

		struct table_lookup_key_desc_lpm_ipv4

		struct table_lookup_key_desc_lpm_ipv6

		union table_lookup_key_desc

		struct table_create_params

		struct table_get_params_output

		struct table_lookup_non_default_params

		TABLE Functions

		Overview

		Function Documentation

		table_create

		table_replace_miss_result

		table_get_params

		table_get_miss_result

		table_delete

		table_rule_create

		table_rule_create_or_replace

		table_rule_replace

		table_rule_modify_priority

		table_rule_query_get_result

		table_rule_query_get_key_desc

		table_rule_delete

		table_lookup_by_key

		table_lookup_by_keyid_default_frame

		table_lookup_by_keyid

		table_rule_replace_by_key_desc

		table_rule_query_by_key_desc

		table_rule_delete_by_key_desc

		table_get_next_ruleid

		TABLE Typedefs

		Overview

		OSM

		Overview

		OSM Structures

		Overview

		Data Structure Documentation

		struct scope_status_params

		Macro Definition Documentation

		OSM_SCOPE_ID_STAGE_INCREMENT_MASK

		OSM_SCOPE_ID_LEVEL_INCREMENT_MASK

		OSM Commands Flags

		Overview

		Scope enter mode bits

		Overview

		Macro Definition Documentation

		OSM_SCOPE_ENTER_CHILD_TO_CONCURENT

		OSM_SCOPE_ENTER_CHILD_TO_EXCLUSIVE

		OSM_SCOPE_ENTER_CHILD_SCOPE_INCREMENT

		OSM_SCOPE_ENTER_RELINQUISH_PARENT_EXCLUSIVITY

		OSM Functions

		Overview

		Function Documentation

		osm_scope_transition_to_exclusive_with_increment_scope_id

		osm_scope_transition_to_exclusive_with_new_scope_id

		osm_scope_transition_to_concurrent_with_increment_scope_id

		osm_scope_transition_to_concurrent_with_new_scope_id

		osm_scope_relinquish_exclusivity

		osm_scope_enter_to_exclusive_with_increment_scope_id

		osm_scope_enter_to_exclusive_with_new_scope_id

		osm_scope_enter

		osm_scope_exit

		osm_get_scope

		TMAN

		Overview

		Typedef Documentation

		tman_arg_8B_t

		tman_cb_t

		Enumeration Type Documentation

		e_tman_granularity

		TMAN MACROS

		Overview

		Macro Definition Documentation

		TMAN_GET_MISSED_EXPIRATION

		TMAN_GET_TIMER_HANDLE

		TMAN Data Structures

		Overview

		Data Structure Documentation

		struct tman_tmi_params

		TMAN Flags

		Overview

		Enumeration Type Documentation

		e_tman_query_timer

		TMAN instance delete flags

		Overview

		Macro Definition Documentation

		TMAN_INS_DELETE_MODE_WO_EXPIRATION

		TMAN_INS_DELETE_MODE_FORCE_EXP

		TMAN timer delete flags

		Overview

		Macro Definition Documentation

		TMAN_TIMER_DELETE_MODE_WO_EXPIRATION

		TMAN_TIMER_DELETE_MODE_FORCE_EXP

		TMAN_TIMER_DELETE_MODE_WAIT_EXP

		TMAN timer create flags

		Overview

		Macro Definition Documentation

		TMAN_CREATE_TIMER_MODE_USEC_GRANULARITY

		TMAN_CREATE_TIMER_MODE_100_USEC_GRANULARITY

		TMAN_CREATE_TIMER_MODE_10_MSEC_GRANULARITY

		TMAN_CREATE_TIMER_MODE_SEC_GRANULARITY

		TMAN_CREATE_TIMER_MODE_10_USEC_GRANULARITY

		TMAN_CREATE_TIMER_MODE_MSEC_GRANULARITY

		TMAN_CREATE_TIMER_MODE_100_MSEC_GRANULARITY

		TMAN_CREATE_TIMER_MODE_TPRI

		TMAN_CREATE_TIMER_ONE_SHOT

		TMAN_CREATE_TIMER_MODE_HIGH_PRIORITY_TASK

		TMAN_CREATE_TIMER_MODE_MID_PRIORITY_TASK

		TMAN_CREATE_TIMER_MODE_LOW_PRIORITY_TASK

		TMAN functions

		Overview

		Function Documentation

		tman_create_tmi

		tman_delete_tmi

		tman_query_tmi

		tman_create_timer

		tman_delete_timer

		tman_modify_timer

		tman_recharge_timer

		tman_query_timer

		tman_timer_completion_confirmation

		tman_get_timestamp

		tman_get_tmi_statistic

		STE (Statistics)

		Overview

		Statistics flags

		Overview

		Macro Definition Documentation

		STE_MODE_SATURATE

		STE_MODE_32_BIT_CNTR_SIZE

		STE_MODE_64_BIT_CNTR_SIZE

		Statistics Compound commands flags

		Overview

		Macro Definition Documentation

		STE_MODE_COMPOUND_32_BIT_CNTR_SIZE

		STE_MODE_COMPOUND_64_BIT_CNTR_SIZE

		STE_MODE_COMPOUND_32_BIT_ACC_SIZE

		STE_MODE_COMPOUND_64_BIT_ACC_SIZE

		STE_MODE_COMPOUND_CNTR_SATURATE

		STE_MODE_COMPOUND_ACC_SATURATE

		Statistics error registers addresses

		Overview

		Macro Definition Documentation

		STE_BASE_ADDRESS

		STE_STECR1_ADDRESS

		STE_STESR_ADDRESS

		STE_ERR_CAPT1_ADDRESS

		STE_ERR_CAPT2_ADDRESS

		STE_ERR_CAPT3_ADDRESS

		STE_ERR_CAPT4_ADDRESS

		Statistics status register bits definitions

		Overview

		Macro Definition Documentation

		STE_ERR_STATUS_WRITE_ACCESS

		STE_ERR_STATUS_READ_ACCESS

		STE_ERR_STATUS_NON_16_BYTE_ALIGN

		STE_ERR_STATUS_UNRECOGNIZED_CMD

		STE_ERR_STATUS_BAD_AXI

		Statistics control register bits definitions

		Overview

		Macro Definition Documentation

		STE_CLEAR_CAP_ERROR

		Statistics capture attributes definitions

		Overview

		Macro Definition Documentation

		STE_ERR_CAP_32_BIT_CNTR_SIZE

		STE_ERR_CAP_64_BIT_CNTR_SIZE

		STE_ERR_CAP_32_BIT_ACC_SIZE

		STE_ERR_CAP_64_BIT_ACC_SIZE

		STE_ERR_CAP_CNTR_SATURATE

		STE_ERR_CAP_ACC_SATURATE

		STE_ERR_TASK_ID_MASK

		STE_ERR_CAP_DCMD_MASK

		STE_ERR_CAP_EC_MASK

		Enumeration Type Documentation

		e_ste_err_dcmd

		e_ste_err_ec

		Statistics error macros

		Overview

		Macro Definition Documentation

		STE_GET_STATUS_REGISTER

		STE_GET_ERR_CAP_ATTRIBUTES

		STE_GET_ERR_ACC_VALUE

		STE_GET_ERR_MSB_COUNTER_ADDRESS

		STE_GET_ERR_LSB_COUNTER_ADDRESS

		STE_CLEAR_CAPTURED_ERROR

		Statistics functions

		Overview

		Function Documentation

		ste_set_32bit_counter

		ste_set_64bit_counter

		ste_inc_counter

		ste_dec_counter

		ste_inc_and_acc_counters

		ste_inc_and_sub_counters

		ste_dec_and_acc_counters

		ste_dec_and_sub_counters

		ste_barrier

		DPLIB

		Overview

		DPCI DRV

		Overview

		Function Documentation

		dpci_drv_enable

		dpci_drv_disable

		dpci_drv_linkup

		dpci_drv_get_initial_presentation

		dpci_drv_set_initial_presentation

		dpci_drv_set_concurrent

		dpci_drv_set_exclusive

		dpci_drv_set_order_mode_none

		DPCI Entry Point flags

		Overview

		Macro Definition Documentation

		DPCI_DRV_EP_SERVER

		DPCI_DRV_EP_CLIENT

		DPNI DRV

		Overview

		Variable Documentation

		rate

		options

		up

		rate

		options

		options

		pass_timestamp

		pass_parser_result

		pass_frame_status

		private_data_size

		data_align

		data_head_room

		data_tail_room

		l3_checksum_gen

		l4_checksum_gen

		options

		mode

		unit

		default_color

		cir

		cbs

		eir

		ebs

		mode

		delta_bandwidth

		tc_sched

		prio_group_A

		prio_group_B

		separate_groups

		rate_limit

		max_burst_size

		key_cfg_iova

		discard_on_miss

		default_tc

		key_iova

		mask_iova

		key_size

		errors

		error_action

		max_threshold

		min_threshold

		drop_probability

		mode

		units

		green

		yellow

		red

		tail_drop_threshold

		peb_bp_free_bufs

		backup_bp_free_bufs

		custom_header_first

		link_to_hard_hxs

		start_pc

		byte_code

		size

		param_array

		param_offset

		param_size

		enable

		units

		threshold

		oal

		enable

		units

		green

		yellow

		red

		units

		threshold_entry

		threshold_exit

		notification_mode

		Order Scope options

		Overview

		Link Options

		Overview

		Macro Definition Documentation

		DPNI_DRV_LINK_OPT_AUTONEG

		DPNI_DRV_LINK_OPT_HALF_DUPLEX

		DPNI_DRV_LINK_OPT_PAUSE

		DPNI_DRV_LINK_OPT_ASYM_PAUSE

		DPNI_LINK_OPT_PFC_PAUSE

		Buffer Layout modification options

		Overview

		Macro Definition Documentation

		DPNI_DRV_BUF_LAYOUT_OPT_TIMESTAMP

		DPNI_DRV_BUF_LAYOUT_OPT_PARSER_RESULT

		DPNI_DRV_BUF_LAYOUT_OPT_FRAME_STATUS

		DPNI_DRV_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE

		DPNI_DRV_BUF_LAYOUT_OPT_DATA_ALIGN

		DPNI_DRV_BUF_LAYOUT_OPT_DATA_HEAD_ROOM

		DPNI_DRV_BUF_LAYOUT_OPT_DATA_TAIL_ROOM

		Enumeration Type Documentation

		dpni_drv_frame_annotation

		Number of Flow Steering entries per DPNIs

		Overview

		Attributes DPNI Attributes

		Overview

		Data Structure Documentation

		struct dpni_drv_link_state

		struct dpni_drv_link_cfg

		struct dpni_drv_buf_layout

		struct dpni_drv_tx_checksum

		struct dpni_drv_rx_tc_policing_cfg

		struct dpni_drv_tx_schedule

		struct dpni_drv_tx_selection

		struct dpni_drv_tx_shaping

		struct dpni_drv_qos_tbl

		struct dpni_drv_qos_rule

		struct dpni_drv_error_cfg

		struct dpni_drv_wred

		struct dpni_drv_early_drop_cfg

		struct dpni_drv_free_bufs

		struct dpni_drv_sparser_param

		struct dpni_drv_taildrop

		struct dpni_drv_early_drop

		struct dpni_drv_congestion_notification_cfg

		Macro Definition Documentation

		DPNI_DRV_EXTRACT_OUT_FRAME_HEADER_ERR

		DPNI_DRV_PEB_FREE_BUFS

		DPNI_DRV_BACKUP_FREE_BUFS

		Typedef Documentation

		dpni_drv_pools_cfg

		dpni_drv_statistics

		dpni_drv_queue_type

		dpni_drv_attr

		rx_cb_t

		Enumeration Type Documentation

		dpni_enqueue_attributes

		dpni_drv_counter

		dpni_drv_qos_counter

		dpni_drv_policer_mode

		dpni_drv_policer_unit

		dpni_drv_policer_color

		dpni_drv_tx_schedule_mode

		dpni_drv_error_action

		dpni_drv_early_drop_mode

		dpni_drv_congestion_unit

		Function Documentation

		dpni_drv_register_rx_cb

		dpni_drv_register_rx_cb_etype

		dpni_drv_unregister_rx_cb

		dpni_drv_unregister_rx_cb_etype

		dpni_drv_enable

		dpni_drv_disable

		task_get_receive_niid

		task_set_send_niid

		task_get_send_niid

		dpni_drv_get_primary_mac_addr

		dpni_drv_set_primary_mac_addr

		dpni_drv_add_mac_addr

		dpni_drv_remove_mac_addr

		dpni_drv_set_max_frame_length

		dpni_drv_get_max_frame_length

		sl_prolog

		sl_prolog_with_ref_take

		sl_prolog_with_custom_header

		sl_tman_expiration_task_prolog

		dpni_drv_send

		dpni_drv_explicit_send

		dpni_drv_set_multicast_promisc

		dpni_drv_get_multicast_promisc

		dpni_drv_set_unicast_promisc

		dpni_drv_get_unicast_promisc

		dpni_drv_get_spid

		dpni_drv_get_spid_ddr

		dpni_drv_get_num_of_nis

		dpni_drv_set_concurrent

		dpni_drv_set_exclusive

		dpni_drv_set_concurrent_etype

		dpni_drv_set_exclusive_etype

		dpni_drv_get_ordering_mode

		dpni_drv_get_ordering_mode_etype

		dpni_drv_set_order_scope

		dpni_drv_enable_etype_fs

		dpni_drv_get_connected_ni

		dpni_drv_get_connected_obj

		dpni_drv_set_rx_buffer_layout

		dpni_drv_get_rx_buffer_layout

		dpni_drv_register_rx_buffer_layout_requirements

		dpni_drv_get_counter

		dpni_drv_get_qos_counter

		dpni_drv_get_statistics

		dpni_drv_reset_statistics

		dpni_drv_get_dpni_id

		dpni_drv_get_ni_id

		dpni_drv_get_link_state

		dpni_drv_set_link_cfg

		dpni_drv_clear_mac_filters

		dpni_drv_clear_vlan_filters

		dpni_drv_set_vlan_filters

		dpni_drv_add_vlan_id

		dpni_drv_remove_vlan_id

		dpni_drv_get_initial_presentation

		dpni_drv_set_initial_presentation

		dpni_drv_get_initial_presentation_etype

		dpni_drv_set_initial_presentation_etype

		dpni_drv_set_tx_checksum

		dpni_drv_get_tx_checksum

		dpni_drv_set_rx_tc_policing

		dpni_drv_get_rx_tc_policing

		dpni_drv_set_tx_selection

		dpni_drv_set_tx_shaping

		dpni_drv_set_qos_table

		dpni_drv_add_qos_entry

		dpni_drv_remove_qos_entry

		dpni_drv_clear_qos_table

		dpni_drv_prepare_rx_tc_early_drop

		dpni_drv_set_rx_tc_early_drop

		task_set_tx_tc

		task_get_tx_tc

		task_switch_to_egress_parse_profile

		dpni_drv_prepare_key_cfg

		dpni_drv_get_num_free_bufs

		dpni_drv_set_errors_behavior

		dpni_drv_enable_ingress_soft_parser

		dpni_drv_enable_egress_soft_parser

		dpni_drv_load_wriop_ingress_soft_parser

		dpni_drv_load_wriop_egress_soft_parser

		dpni_drv_enable_wriop_ingress_soft_parser

		dpni_drv_enable_wriop_egress_soft_parser

		dpni_drv_set_tx_taildrop

		dpni_drv_get_tx_taildrop

		dpni_drv_set_tx_early_drop

		dpni_drv_get_tx_early_drop

		dpni_drv_set_rx_taildrop

		dpni_drv_get_rx_taildrop

		dpni_drv_set_rx_early_drop

		dpni_drv_get_rx_early_drop

		dpni_drv_set_pools

		dpni_drv_set_congestion_notification

		dpni_drv_get_congestion_notification

		dpni_drv_set_rx_priorities

		dpni_drv_get_attributes

		options

		Overview

		EP

		Overview

		Initial Presentation Options

		Overview

		Macro Definition Documentation

		EP_INIT_PRESENTATION_OPT_PTA

		EP_INIT_PRESENTATION_OPT_ASAPA

		EP_INIT_PRESENTATION_OPT_ASAPO

		EP_INIT_PRESENTATION_OPT_ASAPS

		EP_INIT_PRESENTATION_OPT_SPA

		EP_INIT_PRESENTATION_OPT_SPS

		EP_INIT_PRESENTATION_OPT_SPO

		EP_INIT_PRESENTATION_OPT_SR

		EP_INIT_PRESENTATION_OPT_NDS

		Initial Presentation

		Overview

		Data Path Key Generator API

		NETF (Network Libraries)

		Overview

		Macro Definition Documentation

		TCP_GRO_SET_METADATA_SEG_SIZES_ADDR

		Typedef Documentation

		gro_timeout_cb_t

		GENERAL

		Overview

		AIOP Frame Operations

		Overview

		Frame Operations Functions

		Overview

		Function Documentation

		create_frame

		create_fd

		create_arp_request_broadcast

		create_arp_request

		IP

		Overview

		IP Header Modification

		Overview

		Macro Definition Documentation

		NO_IP_ENCAPSULATION_FOUND_ERROR

		NO_IP_HDR_ERROR

		HM IP Modes

		Overview

		IPv4 header modification mode bits

		Overview

		Macro Definition Documentation

		IPV4_MODIFY_MODE_L4_CHECKSUM

		IPV4_MODIFY_MODE_IPTTL

		IPV4_MODIFY_MODE_IPTOS

		IPV4_MODIFY_MODE_IPID

		IPV4_MODIFY_MODE_IPSRC

		IPV4_MODIFY_MODE_IPDST

		IPv4 header Mangle bits

		Overview

		Macro Definition Documentation

		IPV4_MANGLE_DSCP

		IPV4_MANGLE_TTL

		IPv6 header Mangle bits

		Overview

		Macro Definition Documentation

		IPV6_MANGLE_DSCP

		IPV6_MANGLE_HOP_LIMIT

		IPV6_MANGLE_FLOW_LABEL

		IPv6 header modification mode bits

		Overview

		Macro Definition Documentation

		IPV6_MODIFY_MODE_L4_CHECKSUM

		IPV6_MODIFY_MODE_IPHL

		IPV6_MODIFY_MODE_IPTC

		IPV6_MODIFY_MODE_FLOW_LABEL

		IPV6_MODIFY_MODE_IPSRC

		IPV6_MODIFY_MODE_IPDST

		IPv4 header encapsulation mode bits

		Overview

		Macro Definition Documentation

		IPV4_ENCAP_MODE_TTL

		IPV4_ENCAP_MODE_TOS_DS

		IPV4_ENCAP_MODE_TOS_ECN

		IPV4_ENCAP_MODE_DF

		IPv6 header encapsulation mode bits

		Overview

		Macro Definition Documentation

		IPV6_ENCAP_MODE_HL

		IPV6_ENCAP_MODE_TC_DSCP

		IPV6_ENCAP_MODE_TC_ECN

		IP header decapsulation mode bits

		Overview

		Macro Definition Documentation

		IP_DECAP_MODE_TTL_HL

		IP_DECAP_MODE_TOS_TC_DS

		IP_DECAP_MODE_TOS_TC_ECN

		IP header checksum calculation mode bits

		Overview

		Macro Definition Documentation

		IP_CKSUM_CALC_MODE_NONE

		IP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA

		IPv4 time-stamp options

		Overview

		HM IP related functions

		Overview

		Function Documentation

		ipv4_header_modification

		ipv4_mangle

		ipv4_dec_ttl_modification

		ipv4_ts_opt_modification

		ipv6_header_modification

		ipv6_mangle

		ipv6_dec_hop_limit_modification

		ipv4_header_encapsulation

		ipv6_header_encapsulation

		ip_header_decapsulation

		ip_set_nw_src

		ip_set_nw_dst

		ip_cksum_calculate

		L2

		Overview

		L2 Header Modification

		Overview

		Macro Definition Documentation

		NO_VLAN_ERROR

		MIN_SEGMENT_SIZE

		HM L2 related functions

		Overview

		Function Documentation

		l2_header_remove

		l2_vlan_header_remove

		l2_set_vlan_vid

		l2_set_vlan_pcp

		l2_set_dl_src

		l2_set_dl_dst

		l2_push_vlan

		l2_push_and_set_vlan

		l2_pop_vlan

		l2_push_and_set_mpls

		l2_pop_mpls

		l2_mpls_header_remove

		l2_push_and_set_vxlan

		l2_pop_vxlan

		l2_set_vxlan_vid

		l2_set_vxlan_flags

		l2_arp_response

		l2_set_hw_src_dst

		L4

		Overview

		L4 Header Modification

		Overview

		HM L4 Modes

		Overview

		Macro Definition Documentation

		NO_UDP_FOUND_ERROR

		NO_TCP_FOUND_ERROR

		NO_TCP_MSS_FOUND_ERROR

		NO_L4_FOUND_ERROR

		UDP header modification mode bits

		Overview

		Macro Definition Documentation

		L4_UDP_MODIFY_MODE_L4_CHECKSUM

		L4_UDP_MODIFY_MODE_UDPSRC

		L4_UDP_MODIFY_MODE_UDPDST

		TCP header modification mode bits

		Overview

		Macro Definition Documentation

		L4_TCP_MODIFY_MODE_L4_CHECKSUM

		L4_TCP_MODIFY_MODE_TCPSRC

		L4_TCP_MODIFY_MODE_TCPDST

		L4_TCP_MODIFY_MODE_SEQNUM

		L4_TCP_MODIFY_MODE_ACKNUM

		L4_TCP_MODIFY_MODE_MSS

		L4 UDP TCP Checksum Calculation mode bits

		Overview

		Macro Definition Documentation

		L4_UDP_TCP_CKSUM_CALC_MODE_NONE

		L4_UDP_TCP_CKSUM_CALC_MODE_DONT_UPDATE_FDMA

		HM L4 related functions

		Overview

		Function Documentation

		l4_udp_header_modification

		l4_tcp_header_modification

		l4_set_tcp_src

		l4_set_tcp_dst

		l4_set_udp_src

		l4_set_udp_dst

		l4_udp_tcp_cksum_calc

		NAT

		Overview

		NAT Header Modification

		Overview

		Macro Definition Documentation

		NO_L4_IP_FOUND_ERROR

		HM NAT Modes

		Overview

		NAT header modification mode bits

		Overview

		Macro Definition Documentation

		NAT_MODIFY_MODE_L4_CHECKSUM

		NAT_MODIFY_MODE_IPSRC

		NAT_MODIFY_MODE_IPDST

		NAT_MODIFY_MODE_L4SRC

		NAT_MODIFY_MODE_L4DST

		NAT_MODIFY_MODE_TCP_SEQNUM

		NAT_MODIFY_MODE_TCP_ACKNUM

		HM NAT related functions

		Overview

		Function Documentation

		nat_ipv4

		nat_ipv6

		IPF

		Overview

		IP Fragmentation Macros

		Overview

		IPF General Definitions

		Overview

		Macro Definition Documentation

		IPF_CONTEXT_SIZE

		Typedef Documentation

		ipf_ctx_t

		IPF Flags

		Overview

		Macro Definition Documentation

		IPF_NO_FLAGS

		IPF_RESTORE_ORIGINAL_FRAGMENTS

		IPF Return Status

		Overview

		Macro Definition Documentation

		IPF_GEN_FRAG_STATUS_DONE

		IPF_GEN_FRAG_STATUS_IN_PROCESS

		IPF_GEN_FRAG_STATUS_DF_SET

		IPF Functions

		Overview

		Function Documentation

		ipf_generate_frag

		ipf_discard_frame_remainder

		ipf_context_init

		IPR

		Overview

		IPR Macros

		Overview

		Typedef Documentation

		ipr_instance_handle_t

		ipr_del_cb_t

		ipr_timeout_cb_t

		IPR Data Structures

		Overview

		Data Structure Documentation

		struct ipr_params

		struct extended_stats_cntrs

		IPR Modes And Flags

		Overview

		IPR instance flags

		Overview

		Macro Definition Documentation

		IPR_MODE_IPV4_TO_TYPE

		IPR_MODE_IPV6_TO_TYPE

		IPR_MODE_EXTENDED_STATS_EN

		IPR_MODE_TABLE_LOCATION_INT

		IPR_MODE_TABLE_LOCATION_PEB

		IPR_MODE_TABLE_LOCATION_EXT1

		IPR_MODE_TABLE_LOCATION_EXT2

		IPR_MODE_DO_NOT_PRESERVE_FRAGS

		IPR_MODE_TMI

		IPR stats flags

		Overview

		Macro Definition Documentation

		IPR_STATS_IP_VERSION

		IPR Update flags

		Overview

		Macro Definition Documentation

		IPR_UPDATE_MAX_FRM_SIZE

		IPR_UPDATE_MIN_FRG_SIZE

		IPR_UPDATE_TO_VALUE_IPV4

		IPR_UPDATE_TO_VALUE_IPV6

		IPR_UPDATE_TO_MODE

		IPR functions return status

		Overview

		Macro Definition Documentation

		IPR_REASSEMBLY_REGULAR

		IPR_REASSEMBLY_SUCCESS

		IPR_REASSEMBLY_NOT_COMPLETED

		IPR_ATOMIC_FRAG

		IPR_MALFORMED_MIN_SIZE_IPV4

		IPR Time Out Callback flags

		Overview

		Macro Definition Documentation

		IPR_TO_CB_FIRST_FRAG

		IPR functions

		Overview

		Function Documentation

		ipr_early_init

		ipr_create_instance

		ipr_delete_instance

		ipr_reassemble

		ipr_modify_max_reass_frm_size

		ipr_modify_min_frag_size_ipv4

		ipr_modify_min_frag_size_ipv6

		ipr_modify_timeout_value_ipv4

		ipr_modify_timeout_value_ipv6

		ipr_get_reass_frm_cntr

		GSO

		Overview

		GSO Macros

		Overview

		TCP GSO General Definitions

		TCP GSO Flags

		Overview

		Macro Definition Documentation

		TCP_GSO_NO_FLAGS

		TCP GSO Statuses

		Overview

		Macro Definition Documentation

		TCP_GSO_GEN_SEG_STATUS_DONE

		TCP_GSO_GEN_SEG_STATUS_IN_PROCESS

		TCP_GSO_GEN_SEG_STATUS_SYN_RST_SET

		GSO Functions

		Overview

		Function Documentation

		tcp_gso_generate_seg

		tcp_gso_discard_frame_remainder

		tcp_gso_context_init

		GRO

		Overview

		GRO Structures

		Overview

		Data Structure Documentation

		struct tcp_gro_stats_cntrs

		struct tcp_gro_context_metadata

		struct gro_context_limits

		struct gro_context_timeout_params

		struct tcp_gro_context_params

		GRO Functions

		Overview

		Function Documentation

		tcp_gro_aggregate_seg

		tcp_gro_flush_aggregation

		GRO Macros

		Overview

		GRO General Definitions

		GRO Flags

		Overview

		TCP GRO Aggregation Flags

		Overview

		Macro Definition Documentation

		TCP_GRO_NO_FLAGS

		TCP_GRO_EXTENDED_STATS_EN

		TCP_GRO_METADATA_SEGMENT_SIZES

		TCP_GRO_CALCULATE_TCP_CHECKSUM

		TCP_GRO_CALCULATE_IP_CHECKSUM

		TCP_GRO_USE_HWC_SPID

		TCP GRO Aggregation Statuses

		Overview

		Macro Definition Documentation

		TCP_GRO_SEG_AGG_DONE

		TCP_GRO_SEG_AGG_NOT_DONE

		TCP_GRO_SEG_AGG_DONE_AGG_OPEN

		TCP_GRO_AGG_DISCARDED

		TCP_GRO_FLUSH_REQUIRED

		TCP_GRO_SEG_AGG_TIMER_IN_PROCESS

		TCP_GRO_METADATA_USED

		TCP_GRO_TIMER_UNAVAIL

		TCP_GRO_SEG_DISCARDED

		TCP GRO Flush Statuses

		Overview

		Macro Definition Documentation

		TCP_GRO_FLUSH_AGG_DONE

		TCP_GRO_FLUSH_NO_AGG

		TCP GRO Timeout Granularity Flags

		Overview

		Macro Definition Documentation

		TCP_GRO_CREATE_TIMER_MODE_USEC_GRANULARITY

		TCP_GRO_CREATE_TIMER_MODE_10_USEC_GRANULARITY

		TCP_GRO_CREATE_TIMER_MODE_100_USEC_GRANULARITY

		TCP_GRO_CREATE_TIMER_MODE_MSEC_GRANULARITY

		TCP_GRO_CREATE_TIMER_MODE_10_MSEC_GRANULARITY

		TCP_GRO_CREATE_TIMER_MODE_100_MSEC_GRANULARITY

		TCP_GRO_CREATE_TIMER_MODE_SEC_GRANULARITY

		IPSEC

		Overview

		IPsec Structures

		Overview

		Data Structure Documentation

		struct ipsec_encap_cbc_params

		struct ipsec_encap_ctr_params

		struct ipsec_encap_ccm_params

		struct ipsec_encap_gcm_params

		struct ipsec_encap_params

		struct ipsec_decap_ctr_params

		struct ipsec_decap_ccm_params

		struct ipsec_decap_gcm_params

		struct ipsec_decap_params

		struct alg_info

		struct ipsec_descriptor_params

		IPsec Macros

		Overview

		Macro Definition Documentation

		IPSEC_FLG_TUNNEL_MODE

		IPSEC_FLG_TRANSPORT_PAD_CHECK

		IPSEC_FLG_BUFFER_REUSE

		IPSEC_ENC_OPTS_NAT_EN

		IPSEC_ENC_OPTS_NUC_EN

		IPSEC_FLG_ENC_DSCP_SET

		IPSEC_FLG_LIFETIME_KB_CNTR_EN

		IPSEC_FLG_LIFETIME_PKT_CNTR_EN

		IPSEC_FLG_LIFETIME_SEC_CNTR_EN

		IPSEC_OPTS_ESP_ESN

		IPSEC_OPTS_ESP_IPVSN

		IPSEC_ENC_OPTS_IVSRC

		IPSEC_ENC_OPTS_DFC

		IPSEC_ENC_OPTS_DTTL

		IPSEC_ENC_OPTS_SNR_EN

		IPSEC_DEC_OPTS_ARSNONE

		IPSEC_DEC_OPTS_ARS32

		IPSEC_DEC_OPTS_ARS128

		IPSEC_DEC_OPTS_ARS64

		IPSEC_DEC_OPTS_TECN

		IPSEC_DEC_OPTS_DTTL

		IPSEC_DEC_OPTS_DSC

		IPSEC_CIPHER_DES_IV64

		IPSEC_AUTH_HMAC_NULL

		IPSEC_STATUS_SOFT_KB_EXPIRED

		IPSEC_STATUS_HARD_KB_EXPIRED

		IPSEC_STATUS_SOFT_PACKET_EXPIRED

		IPSEC_STATUS_HARD_PACKET_EXPIRED

		IPSEC_STATUS_SOFT_SEC_EXPIRED

		IPSEC_STATUS_HARD_SEC_EXPIRED

		IPSEC_BUFFER_POOL_DEPLETION

		IPSEC_SEQ_NUM_OVERFLOW

		IPSEC_AR_LATE_PACKET

		IPSEC_AR_REPLAY_PACKET

		IPSEC_ICV_COMPARE_FAIL

		IPSEC_GEN_ENCR_ERR

		IPSEC_GEN_DECR_ERR

		IPSEC_DECR_VALIDITY_ERR

		IPSEC_INTERNAL_ERR

		IPSEC_SOFT_SEC_LIFETIME_EXPIRED

		IPSEC_HARD_SEC_LIFETIME_EXPIRED

		IPSEC_FORCE_SOFT_SEC_LIFETIME_EXPIRED

		IPSEC_FORCE_HARD_SEC_LIFETIME_EXPIRED

		Typedef Documentation

		ipsec_handle_t

		ipsec_lifetime_callback_t

		IPsec Enumerations

		Overview

		Enumeration Type Documentation

		ipsec_direction

		ipsec_status_codes

		key_types

		IPsec Functions

		Overview

		Function Documentation

		ipsec_early_init

		ipsec_drv_init

		ipsec_create_instance

		ipsec_delete_instance

		ipsec_add_sa_descriptor

		ipsec_del_sa_descriptor

		ipsec_get_lifetime_stats

		ipsec_decr_lifetime_counters

		ipsec_get_seq_num

		ipsec_frame_decrypt

		ipsec_frame_encrypt

		ipsec_force_seconds_lifetime_expiry

		Soft Parser Driver

		Overview

		Data Structure Documentation

		struct sparser_info

		Enumeration Type Documentation

		sparser_preloaded

		Function Documentation

		sparser_drv_load_ingress_parser

		sparser_drv_load_egress_parser

		sparser_drv_get_pclim

		sparser_drv_set_pclim

		parser_enable_ipv6_atomic_frag_detection

		AIOP/WRIOP Parser instructions memory

		Overview

		Macro Definition Documentation

		PARSER_MIN_PC

		PARSER_MAX_PC

		Parsing Cycle Limits register

		Overview

		Macro Definition Documentation

		PARSER_CYCLE_LIMIT_MAX

		PARSER_CYCLE_LIMIT_DISABLE

		Protocol headers definitions

		Overview

		Data Structure Documentation

		struct mplshdr

		struct vxlanhdr

		struct vlanhdr

		struct ethernethdr

		struct ipv4hdr

		struct ipv6hdr

		struct ipv6fraghdr

		struct udphdr

		struct tcphdr

		struct arphdr

		struct capwaphdr

		Macro Definition Documentation

		IPV4_EOOL_OPTION_TYPE

		IPV4_NOP_OPTION_TYPE

		IPV4_RECORD_ROUTE_OPTION_TYPE

		IPV4_TIMESTAMP_OPTION_TYPE

		IPV4_SCURITY_OPTION_TYPE

		IPV4_LSRR_OPTION_TYPE

		IPV4_STREAM_IDENTIFIER_TYPE

		IPV4_SSRR_OPTION_TYPE

		CAPWAP

		Overview

		CAPWAP DTLS

		Overview

		Data Structure Documentation

		struct cwap_dtls_sa_descriptor_params

		union cwap_dtls_sa_descriptor_params.pdb

		Typedef Documentation

		cwap_dtls_sa_handle_t

		Function Documentation

		cwap_dtls_drv_init

		cwap_dtls_early_init

		cwap_dtls_create_instance

		cwap_dtls_delete_instance

		cwap_dtls_add_sa_descriptor

		cwap_dtls_del_sa_descriptor

		cwap_dtls_get_ar_info

		cwap_dtls_frame_decrypt

		cwap_dtls_frame_encrypt

		CAPWAP Fragmentation

		Overview

		Macro Definition Documentation

		CWAPF_CONTEXT_SIZE

		CWAPF_GEN_FRAG_STATUS_DONE

		CWAPF_GEN_FRAG_STATUS_IN_PROCESS

		CWAPF_GEN_FRAG_STATUS_NOT_CAPWAP

		Typedef Documentation

		cwapf_ctx_t

		Function Documentation

		cwapf_generate_frag

		cwapf_discard_frame_remainder

		cwapf_context_init

		CAPWAP Reassembly

		Overview

		Data Structure Documentation

		struct cwapr_params

		struct cwapr_stats_cntrs

		Typedef Documentation

		cwapr_instance_handle_t

		cwapr_del_cb_t

		cwapr_timeout_cb_t

		Function Documentation

		cwapr_early_init

		cwapr_create_instance

		cwapr_delete_instance

		cwapr_reassemble

		cwapr_modify_max_reass_frm_size

		cwapr_modify_timeout_value

		cwapr_get_reass_frm_cntr

		Utilities

		Overview

		AIOP Service Layer Network Utilities

		Overview

		Macro Definition Documentation

		AF_INET

		AF_INET6

		AF_MAX

		Function Documentation

		inet_pton

		inet_ntop

		htons

		ntohs

		htonl

		ntohl

		Debug Utilities

		Overview

		Macro Definition Documentation

		REPORT_LEVEL_CRITICAL

		REPORT_LEVEL_MAJOR

		REPORT_LEVEL_MINOR

		REPORT_LEVEL_WARNING

		REPORT_LEVEL_INFO

		REPORT_LEVEL_TRACE

		EVENT_DISABLED

		ASSERT_COND

		ASSERT_COND_LIGHT

		pr_debug

		pr_info

		pr_warn

		pr_err

		pr_crit

		dbg_get_core_id

		dbg_get_num_of_cores

		dbg_get_max_num_of_cores

		Accessor API

		Overview

		Function Documentation

		ioread8

		ioread16

		ioread16be

		ioread32

		ioread32be

		ioread64

		ioread64be

		iowrite8

		iowrite8_wt

		iowrite16

		iowrite16_wt

		iowrite16be

		iowrite16be_wt

		iowrite32

		iowrite32_wt

		iowrite32be

		iowrite32be_wt

		iowrite64

		iowrite64_wt

		iowrite64be

		iowrite64be_wt

		Error Handling

		Overview

		Macro Definition Documentation

		EPERM

		EIO

		ENOMEM

		EACCES

		EFAULT

		EBUSY

		EEXIST

		ENODEV

		EINVAL

		ENOSPC

		ENOTSUP

		ETIMEDOUT

		ENAVAIL

		Time Queries

		Overview

		Function Documentation

		fsl_get_time_ms

		fsl_get_time_since_epoch_ms

		FSL OS Interface (System call hooks)

		Overview

		Function Documentation

		fsl_print

		fsl_rand

		Checksum

		Overview

		Function Documentation

		cksum_ones_complement_sum16

		cksum_ones_complement_dec16

		cksum_update_uint32

		cksum_accumulative_update_uint32

		Utility Library Application Programming Interface

		Overview

		Data Structure Documentation

		struct list_t

		Macro Definition Documentation

		LIST_FIRST

		LIST_INIT

		LIST

		INIT_LIST

		MEMBER_OFFSET

		LIST_FOR_EACH

		LIST_FOR_EACH_SAFE

		LIST_FOR_EACH_OBJECT_SAFE

		LIST_FOR_EACH_OBJECT

		Function Documentation

		list_add

		list_add_to_tail

		list_del

		list_del_and_init

		list_move

		list_move_to_tail

		list_is_empty

		list_append

		list_num_of_objs

		Storage Profile Driver

		Overview

		Enumeration Type Documentation

		sp_frame_format

		Function Documentation

		sp_drv_register_bp_requirements

		sp_drv_get_spid

		sp_drv_get_bpid

		sp_drv_set_aiop_icid

		sp_drv_set_aiop_pl

		sp_drv_set_aiop_bdi

		sp_drv_set_dhr

		sp_drv_set_ff

		sp_drv_set_va

		sp_drv_set_ptar

		sp_drv_set_sghr

		sp_drv_set_asar

		sp_drv_set_bp_sr

		sp_drv_set_bp_bp

		Kernel

		Overview

		Memory Management

		Overview

		Dynamic Memory Allocation

		Overview

		Enumeration Type Documentation

		e_memory_partition_id

		Function Documentation

		fsl_malloc

		fsl_free

		fsl_get_mem

		fsl_put_mem

		fsl_mem_exists

		SLAB

		Overview

		Data Structure Documentation

		struct slab_debug_info

		struct bman_debug_info

		Macro Definition Documentation

		SLAB_DDR_MANAGEMENT_FLAG

		SLAB_OPTIMIZE_MEM_UTILIZATION_FLAG

		SLAB_CDMA_REFCOUNT_DECREMENT_TO_ZERO

		Typedef Documentation

		slab_release_cb_t

		Function Documentation

		slab_create

		slab_free

		slab_acquire

		slab_release

		slab_refcount_incr

		slab_refcount_decr

		slab_debug_info_get

		slab_bman_debug_info_get

		slab_register_context_buffer_requirements

		Shared Buffer Pool

		Overview

		Function Documentation

		shbp_acquire

		shbp_release

		System Memory Management Service

		Overview

		Data Structure Documentation

		struct initial_mem_mng

		struct t_mem_mng_phys_addr_alloc_info

		struct t_mem_mng_partition_info

		struct t_mem_mng_phys_addr_alloc_partition

		struct t_mem_mng_partition

		struct t_mem_mng

		Macro Definition Documentation

		MEMORY_ATTR_NONE

		MEMORY_ATTR_CACHEABLE

		MEMORY_ATTR_NON_CACHEABLE

		MEMORY_ATTR_MALLOCABLE

		SYS_DEFAULT_HEAP_PARTITION

		Function Documentation

		sys_virt_to_phys

		sys_phys_to_virt

		sys_fast_virt_to_phys

		sys_fast_phys_to_virt

		sys_shram_alloc

		sys_shram_free

		sys_register_phys_addr_alloc_partition

		sys_register_mem_partition

		sys_unregister_mem_partition

		sys_get_phys_addr_alloc_partition_info

		sys_get_mem_partition_info

		sys_get_phys_mem

		sys_put_phys_mem

		sys_mem_exists

		Synchronization

		Overview

		Spin-lock functions

		Overview

		Function Documentation

		lock_spinlock

		unlock_spinlock

		Atomic operations

		Overview

		Function Documentation

		atomic_incr64

		atomic_decr64

		Event Manager

		Overview

		Typedef Documentation

		evmng_cb

		Function Documentation

		evmng_register

		evmng_unregister

		evmng_raise_event

		Events provided by AIOPSL

		Overview

		AIOPSL Generator ID

		Overview

		Macro Definition Documentation

		EVMNG_GENERATOR_AIOPSL

		Command Interface

		Overview

		Command Interface - Client

		Overview

		Data Structure Documentation

		struct cmdif_desc

		Macro Definition Documentation

		CMDIF_OPEN_SIZE

		Typedef Documentation

		cmdif_cb_t

		Function Documentation

		cmdif_open

		cmdif_close

		cmdif_send

		cmdif_resp_read

		Send Attributes

		Overview

		Macro Definition Documentation

		CMDIF_PRI_LOW

		CMDIF_PRI_HIGH

		CMDIF_ASYNC_CMD

		CMDIF_NORESP_CMD

		Command Interface - Server

		Overview

		Data Structure Documentation

		struct cmdif_module_ops

		Macro Definition Documentation

		CMDIF_SESSION_OPEN_SIZE

		Typedef Documentation

		open_cb_t

		close_cb_t

		ctrl_cb_t

		Function Documentation

		cmdif_register_module

		cmdif_unregister_module

		cmdif_session_open

		cmdif_session_close

		cmdif_srv_cb

		Isolation Context

		Overview

		Data Structure Documentation

		struct icontext

		Macro Definition Documentation

		ICONTEXT_INVALID

		Function Documentation

		icontext_cmd_get

		icontext_aiop_get

		icontext_get

		icontext_dma_read

		icontext_dma_write

		icontext_acquire

		icontext_release

		icontext_ws_set

		RCU

		Overview

		Function Documentation

		rcu_synchronize

		rcu_read_unlock

		rcu_read_lock

NXP Semiconductors Document Number: AIOP User Manual

Rev. 8, 12/2017

Advanced I/O Processor User Manual

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale,
the Freescale logo are trademarks of NXP B.V. All other product or service names are the
property of their respective owners.

All other product or service names are the property of their respective owners. Arm, Cortex,
and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2018 NXP B.V.

Information in this document is provided solely to enable system and software implementers

to use NXP products. There are no express or implied copyright licenses granted hereunder

to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products

for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be

provided in NXP data sheets and/or specifications can and do vary in different applications,

and actual performance may vary over time. All operating parameters, including “typicals,”

must be validated for each customer application by customer's technical experts. NXP does

not convey any license under its patent rights nor the rights of others. NXP sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: nxp.com/

AIOP User Manual
Rev. 8, 12/2017

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Contents
Paragraph
Number Title

Page
Number

Chapter 1 Introduction

1.1 Intended audience .. 1-1
1.2 Definitions and acronyms .. 1-1

Chapter 2 Overview

2.1 Function ... 2-1
2.2 Use of DPAA2 objects ... 2-1
2.3 AIOP as a packet engine: an example ... 2-2
2.4 AIOP Software Sources ... 2-3

Chapter 3 AIOP Hardware Summary

3.1 Purpose of AIOP.. 3-1
3.2 A high-level view of AIOP hardware .. 3-2
3.3 Tasks, Jobs, and scheduling ... 3-4

Chapter 4 Service Layer Concept

4.1 Service Layer Framework.. 4-1
4.2 Service Layer API.. 4-1
4.3 Multi-Core Support.. 4-1
4.4 Isolation and Virtualization.. 4-1
4.5 Network interfaces ... 4-2
4.5.1 General... 4-2
4.5.1.1 Feature List .. 4-2
4.5.1.2 Terms & Concepts ... 4-2
4.5.1.3 Basic Functionality .. 4-2
4.5.2 Functions Supplied by the Service Layer .. 4-3
4.5.3 Usage Information ... 4-3
4.5.4 Status and Errors .. 4-3
4.6 Command Interface (AIOP-GPP Communication) ... 4-3
4.6.1 General... 4-4
4.6.1.1 Feature List .. 4-4
4.6.1.2 Terms & Concepts ... 4-4
4.6.1.3 Basic Functionality .. 4-4
4.6.2 Functions Supplied by the Service Layer .. 4-5
4.6.3 Usage Information ... 4-5

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

4.6.4 Status and Errors .. 4-7
4.7 Shared Buffer Pool... 4-7
4.7.1 General... 4-7
4.7.1.1 Feature List .. 4-7
4.7.1.2 Terms & Concepts ... 4-7
4.7.1.3 Basic Functionality .. 4-7
4.7.2 Functions Supplied by the Service Layer .. 4-8
4.7.3 Usage Information ... 4-8
4.7.4 Status and Errors .. 4-10
4.8 Event Manager ... 4-10
4.8.1 General... 4-10
4.8.1.1 Feature List .. 4-10
4.8.1.2 Terms & Concepts ... 4-11
4.8.1.3 Basic Functionality .. 4-11
4.8.2 Functions Supplied by the Service Layer .. 4-11
4.8.3 Usage Information ... 4-11
4.8.4 Status and Errors .. 4-11
4.9 Memory Management.. 4-11
4.9.1 General... 4-11
4.9.1.1 Feature List .. 4-11
4.9.1.2 Terms & Concepts ... 4-11
4.9.1.3 Basic Functionality .. 4-12
4.9.2 Functions Supplied by the Service Layer .. 4-12
4.9.3 Usage Information ... 4-12
4.9.4 Status and Errors .. 4-12
4.10 RCU Synchronize .. 4-13
4.10.1 General... 4-13
4.10.1.1 Feature List .. 4-13
4.10.1.2 Terms & Concepts ... 4-13
4.10.1.3 Basic Functionality .. 4-13
4.10.2 Functions Supplied by the Service Layer .. 4-13
4.10.3 Usage Information ... 4-13
4.10.4 Status and Errors .. 4-14
4.11 Console I/O .. 4-14
4.11.1 General... 4-14
4.11.1.1 Feature List .. 4-14
4.11.1.2 PTerms & Concepts ... 4-14
4.11.1.3 Basic Functionality .. 4-14
4.12 Spinlocks.. 4-14
4.12.1 General... 4-14
4.12.1.1 Feature List .. 4-14

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 3

Contents
Paragraph
Number Title

Page
Number

4.12.1.2 Terms & Concepts ... 4-14
4.12.1.3 Basic Functionality .. 4-15
4.12.2 Functions Supplied by the Service Layer .. 4-15
4.12.3 Usage Information ... 4-15
4.12.4 Status and Errors .. 4-15
4.13 Utilities... 4-15
4.13.1 General... 4-15
4.13.1.1 Feature List .. 4-15
4.14 Service Routines .. 4-15
4.14.1 FDMA.. 4-16
4.14.1.1 General... 4-16
4.14.1.1.1 Feature List .. 4-16
4.14.1.1.2 Terms & Concepts ... 4-16
4.14.1.1.3 Basic Functionality .. 4-18
4.14.1.2 Service Layer Supplied Functions ... 4-18
4.14.1.3 Usage Information ... 4-18
4.14.1.3.1 Implicit and explicit functions... 4-19
4.14.1.3.2 Code Samples .. 4-19
4.14.1.4 Status and Errors.. 4-21
4.14.2 Context DMA (CDMA)... 4-22
4.14.2.1 General... 4-22
4.14.2.1.1 Feature list ... 4-22
4.14.2.1.2 Terms & Concepts ... 4-22
4.14.2.1.3 Basic Functionality .. 4-22
4.14.2.2 Service Layer Supplied Functions ... 4-24
4.14.2.3 Usage Information ... 4-25
4.14.2.4 Status and Errors.. 4-25
4.14.3 Parser ... 4-25
4.14.3.1 General... 4-26
4.14.3.1.1 Feature list ... 4-26
4.14.3.1.2 Terms & Concepts ... 4-26
4.14.3.1.3 Basic Functionality .. 4-27
4.14.3.2 Service Layer Supplied Functions ... 4-27
4.14.3.3 Usage Information ... 4-27
4.14.3.4 Status and Errors.. 4-29
4.14.4 KeyGen .. 4-30
4.14.4.1 General... 4-30
4.14.4.1.1 Feature list ... 4-30
4.14.4.1.2 Terms & Concepts ... 4-30
4.14.4.1.3 Basic Functionality .. 4-31
4.14.4.2 Functions Supplied by the Service Layer .. 4-31

AIOP User Manual, Rev. 8, 12/2017

4 NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

4.14.4.3 Usage Information ... 4-32
4.14.5 Table... 4-33
4.14.5.1 General... 4-33
4.14.5.1.1 Feature List .. 4-33
4.14.5.1.2 Terms & Concepts ... 4-33
4.14.5.1.3 Basic Functionality .. 4-35
4.14.5.2 Functions Supplied by the Service Layer .. 4-36
4.14.5.3 Usage Information ... 4-36
4.14.5.3.1 Exact Match... 4-36
4.14.5.3.2 Longest Prefix Match .. 4-39
4.14.6 Ordering Scope Manager (OSM)... 4-41
4.14.6.1 General... 4-42
4.14.6.1.1 Feature list ... 4-42
4.14.6.1.2 Terms & Concepts ... 4-42
4.14.6.1.3 Basic Functionality .. 4-43
4.14.6.1.4 Changing Order Scope... 4-44
4.14.6.2 Functions Supplied by the Service Layer .. 4-45
4.14.6.3 Usage Information ... 4-45
4.14.6.4 Code example: ... 4-45
4.14.6.5 Status and Errors.. 4-46
4.14.7 Timer Manager Engine (TMan)... 4-46
4.14.7.1 General... 4-46
4.14.7.1.1 Feature List .. 4-46
4.14.7.1.2 Terms & Concepts ... 4-47
4.14.7.1.3 Basic Functionality .. 4-48
4.14.7.2 Functions Supplied by the Service Layer .. 4-48
4.14.7.3 Usage Information ... 4-49
4.14.7.4 Status and Errors.. 4-52
4.14.8 Statistics Engine (STE).. 4-52
4.14.8.1 General... 4-52
4.14.8.1.1 Feature List .. 4-52
4.14.8.1.2 Basic Functionality .. 4-52
4.14.8.2 Functions Supplied by the Service Layer .. 4-52
4.14.8.3 Usage Information ... 4-53
4.14.8.4 Status and Errors.. 4-54
4.15 Functional Modules ... 4-54
4.15.1 IP Reassembly module... 4-54
4.15.1.1 General... 4-54
4.15.1.1.1 Feature List .. 4-54
4.15.1.1.2 Terms & Concept... 4-55
4.15.1.1.3 Basic Functionality .. 4-55

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 5

Contents
Paragraph
Number Title

Page
Number

4.15.1.2 Service Layer functions ... 4-56
4.15.1.3 Usage Information ... 4-56
4.15.1.3.1 Usage example for ipr create instance ... 4-56
4.15.1.3.2 Usage example for calling reassemble function .. 4-57
4.15.1.4 Status and Errors.. 4-57
4.15.2 IP Fragmentation.. 4-58
4.15.2.1 General... 4-58
4.15.2.1.1 Feature List .. 4-58
4.15.2.1.2 Basic Functionality .. 4-58
4.15.2.2 Functions Supplied by the Service Layer .. 4-58
4.15.2.3 Usage Information ... 4-58
4.15.2.3.1 Fragmentation According to MTU .. 4-59
4.15.2.3.2 Fragment Restored Fragments... 4-59
4.15.2.3.3 Ordering... 4-60

Chapter 5 Order scope manager: hardware overview

5.1 Discussion of the ordering scope manager .. 5-1
5.1.1 Purpose of ordering scopes .. 5-1
5.1.2 Terminology and textual conventions.. 5-2
5.1.3 Diagram view of ordering scopes .. 5-7
5.1.4 Ordering scope stages .. 5-7
5.1.5 Ordering scope name space ... 5-8
5.1.6 Ordering scope operations versus software API.. 5-9
5.1.7 Ordering scope behavior.. 5-11
5.1.8 Per-task state .. 5-12
5.1.8.1 Task’s initial ordering scope .. 5-14
5.1.9 Behavior within a hierarchy level.. 5-14
5.1.9.1 Transition to an ordering scope and internal arcs 1 and 2 5-14
5.1.9.2 WX stage and internal Arc 3 ... 5-15
5.1.9.3 XX stage and internal arcs 4 and 5 .. 5-15
5.1.9.4 XC stage and internal arc 6.. 5-15
5.1.9.5 WT stage and external Arc 11 ... 5-15
5.1.9.6 An example of ordering scope behavior .. 5-16
5.1.9.7 Hierarchical Ordering Scope Behavior.. 5-20
5.1.9.8 Hierarchical ordering scope use rules.. 5-20
5.1.9.9 Order capture on entry to child cascade .. 5-21
5.1.9.10 Scope entry from stages XX and XC, arcs 9 and 10 ... 5-22
5.1.9.11 Scope exit from stages XX and XC, arcs 7 and 8.. 5-22
5.1.10 Task Exit from Level 1 and Intentionally Losing Order.. 5-24
5.1.11 Maintaining order .. 5-24

AIOP User Manual, Rev. 8, 12/2017

6 NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

5.1.12 Impact of Task Termination within Ordering Scopes .. 5-25

Chapter 6 AIOP loading and running images

6.1 Code Placement ... 6-1

Chapter 7 AIOP debugging

7.1 Level Sensitive Messages .. 7-1
7.1.1 General... 7-1
7.1.1.1 Feature List .. 7-1
7.1.1.2 Terms & Concepts ... 7-1
7.1.1.3 Basic Functionality .. 7-1
7.1.2 Functions Supplied by the Service Layer .. 7-1
7.1.3 Usage Information ... 7-1
7.1.4 Status and Errors .. 7-2
7.2 Stack Overflow Detection.. 7-2
7.2.1 General... 7-2
7.2.1.1 Feature List .. 7-2
7.2.1.2 Terms & Concepts ... 7-2
7.2.1.3 Basic Functionality .. 7-3
7.2.2 Functions Supplied by the Service Layer .. 7-3
7.2.3 Usage Information ... 7-3

Introduction

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Chapter 1 Introduction
This document provides an overview of the Advanced I/O Processor (AIOP) hardware, an optional
component of the DPAA2 architecture. The AIOP is a C-programmable engine that enables power
efficient packet-oriented processing by using a single-threaded per flow model; this model allows for the
simple use of the AIOP’s tightly coupled accelerators. This is a software-oriented document, in that it
provides a high-level description of the AIOP hardware, but focuses most deeply on the architecture
exposed to software running on the AIOP that is called the AIOP Service Layer. This document also
describes how the AIOP works with and relates to the DPAA2 object architecture.

1.1 Intended audience

This document is intended for software developers and architects who want to develop software for
DPAA2 SoCs that contain the AIOP hardware. It is assumed that readers are familiar with the C
programming language, general concepts of computer programming and computer science, and with the
basic principles of networking.

1.2 Definitions and acronyms
• AIOP: Advanced I/O Processor hardware

• DPAA2: Data Path Acceleration Architecture, second version.

• GPP: General Purpose Processor

• MC: Management Complex

• OSM: Ordering Scope Manager, a component of AIOP that assists in ordering packet processing
and providing exclusive processing of flows.

• PEB: Packet Express Buffer

• QBMan: Queue Manager and Buffer Manager hardware

• SEC: Security Engine hardware

• WRIOP: Wire Rate I/O Processor hardware

Introduction

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

Overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Chapter 2 Overview

2.1 Function

The AIOP is a C programmable engine designed for power-efficient packet processing. DPAA2 objects
provide the AIOP software with various types of interfaces, such as network and command interfaces as
is shown in Figure 2-1.

Figure 2-1. AIOP with interfaces

Figure 1 shows example packet paths; the AIOP software can originate packets, terminate them, forward
them using network interfaces, and transform them. Network interfaces can be connected to SoC
components using the DPAA2 object architecture including:

• Ethernet MACs, for connections off of the SoC

• DPAA2 switches

• Other DPAA2 network interfaces used by software on the general purpose processing cores

• And many others

Think of AIOP as an engine with network interfaces, therefore it is an SoC network node. Command
interfaces facilitate the control of AIOP software’s processing; this control is provided by software running
on general purpose processing cores.

2.2 Use of DPAA2 objects

Figure 2-2 highlights the fact that the AIOP’s interfaces are provided by DPAA2 objects that are connected
to other DPAA2 objects. For example, DPNI objects are the essential component of network interfaces and
DPCI objects provide command interfaces.

The figure shows an AIOP with a network interface connected directly to a MAC, and also a network
interface connected to a switch that is provided by a DPSW object.

In the DPAA2 architecture, both general purpose processing (GPP) cores and AIOP use DPAA2 objects to
form interfaces. GPP and AIOP cores are the location in which software runs. Software uses the interfaces.

AIOP
(packet engine)

net interface

net interface

net interface

net interface

cmd interface

cmd interface

Used by software
on general purpose
processing cores

example packet flows

Overview

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

Figure 2-2. AIOP interfaces are provided by DPAA2 objects

2.3 AIOP as a packet engine: an example

Loading a specific software image onto an AIOP causes that AIOP to perform a specific function-- the
function defined by the software image.

Figure 2-3 shows an example set in a complete system context. The AIOP is running an application that
performs IPSEC encapsulation and decapsulation.

Figure 2-3. A specific AIOP application

• Software on the general purpose processing cores sends plain text packets via the GPP cores’
network interface (based on a DPNI object). This network interface is connected point-to-point to
a network interface on the AIOP.

• The AIOP receives the packet, encrypts it, adds IPSEC headers, and sends the cipher text IPSEC
encapsulated packets out of the SoC via its second network interface.

• The ingress direction follows similar steps.

• General purpose processing core software sets keys and other IPSEC session attributes using the
AIOP’s command interface. This implies a command/control API on the GPP cores. This API, of
course, is specific to the AIOP application.

DPMAC DPSW

DPMAC DPNI
DPCI Used by software

on general purpose
processing coresDPCIDPNI

AIOP

(packet engine)

Ethernet

Ethernet

DPNI

Used by software
on general purpose
processing cores

General Purpose
Processing Cores

DPCI
AIOP

(packet engine)

IPSEC application

DPMAC DPNI
Ethernet

DPNI DPNI
encap

decap

tx

rx

command &
configure

Network interfaces used by AIOP application Network interface used by GPP software

Overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 3

2.4 AIOP Software Sources

The AIOP provides an open software programming environment, and NXP customers can create their own
programs to run on the AIOP. NXP also offers a set of customer-ready AIOP images that can be used
“out-of-the-box” or as the basis for additional custom development.

The set of programs will expand over time, but the initial set includes:

• Basic Networking and Security (BNS) Package

— IPv4 forwarding

— IPv5 forwarding

— IPSEC

— Firewall

— Shaping

• Switch Supplementary (SS) Package

— Many BNS functions

— Netflow/IPFIX

— Eth-OAM

— BFD

— ARP/ICMP v4/v6 response

Each image consists of a set of “network functions” and each network function has a GPP core based API
for configuration and control. See Figure 2-4. Examples of network functions include fire walling and IP
forwarding.

Figure 2-4. Structure of a Network Function/API Program

The total configuration and control API for the program is essentially the union of the APIs for the network
functions.

The DPCI is the transport hardware that allows commands and responses to them to travel between the
GPP cores and the AIOP. The APIs are specific and are layered on top of this transport.

Overview

AIOP User Manual, Rev. 8, 12/2017

4 NXP Semiconductors

Thus GPP core software uses both I/O interfaces for packets and command APIs via the DPCI and its
drivers.

AIOP Hardware Summary

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Chapter 3 AIOP Hardware Summary
The following figure contains an AIOP hardware block diagram.

Figure 3-1. AIOP hardware

This section discusses AIOP hardware from a software perspective.

3.1 Purpose of AIOP

The AIOP is a fully-programmable engine optimized for networking applications, specifically
frame-by-frame processing. AIOP hardware support for high-performance frame processing includes:

• The software to process a frame is automatically initiated by the arrival of the frame; input
operations are implicit.

• Supports ordinary C language programming.

• Frame presentation hardware provides low-latency access to packet headers and other contents,
and also to hardware and software generated packet metadata.

• The frame presentation hardware allows linear frame data processing even if the underlying
storage is in a scatter/gather structure.

• Provides a memory subsystem optimized for frame processing.

• Supports hardware acceleration that is easy to use; accelerator invocations appear as
straightforward C function calls to the AIOP and the hardware automatically hides any accelerator
latency.

e200 VLE Core

wks memtaskwks memtask * * *

I‐cache

e200 VLE Core

wks memtaskwks memtask * * *

I‐cache

*
 *
 *

entry point
table

Scheduling
Support

shared instruction memory

accelerators

CDMA

TLU

FDMA

SEC Connect
*
 *
 *

shared data memory

Frame
Interfaces

Command
Interface

system DDR

pkt express mem(optional)

data path DDR (optional)

AIOP Hardware (Abstracted Architecture View)

Stats
Order

Scope Mgr

SEC

APPU‐SEC
Interface

Job
Rings

QMan

AIOP Hardware Summary

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

• Provides direct hardware support for networking-oriented selective execution exclusivity and
ordering to support frame parallel processing, but maintains the frame input to output order.

3.2 A high-level view of AIOP hardware

An SoC may contain multiple AIOP hardware instances; these instances are independent of each other. For
example, one AIOP instance may not access the internal memory, or other resources, of another AIOP
instance. Key points regarding the AIOP hardware architecture are summarized below:

• Each AIOP contains one or more e200 32-bit cores; they execute only the VLE (variable length
encoded) instructions from the Power instruction set. They do not contain an MMU or a data cache.

• Each AIOP e200 core contains hardware support for one or more “tasks”, and tasks are contexts
for execution threads. Only one task can execute at a time on a core. The core keeps state
information for multiple execution threads to allow it to quickly switch among them; this switching
aids in hiding latencies as will be explained below. The concept is similar to coarse-grain
simultaneous multi-threading, but there are AIOP software actions associated with accelerator
invocation that cause task context switches. It is also possible for the AIOP software to explicitly
yield; this can be important because AIOP hardware scheduling is not preemptive.

• The AIOP software runs on the AIOP e200 cores, but programmers should not focus on the cores.
Instead, think of the AIOP software as running in the tasks; therefore, the association between tasks
and cores is not very important in the programming model. Much of the following sections will
discuss the tasks in which the software runs.

• Each task contains a private. non-shared, memory called the work space memory. This memory
appears at the same address in every task's address map. It is not possible for a task to access
another task's work space memory.

• The number of tasks per core is configurable, and typical implementations allow the AIOP to be
configured to support 1, 2, 4, 8, or 16 tasks per core. The number of threads per core is functionally
transparent to the software running on the AIOP in the sense that the tasks do not explicitly or
directly manage other tasks. Task interactions are indirect and done using ordering scopes and
locks; AIOP implementations are permitted wide latitude in the number of tasks per core that they
allow.

• Implementations typically have a fixed amount of work space memory per core, which means that
the size of a task's work space memory depends on the configured number of tasks per core. Typical
work space memory sizes per task will vary between 2 and 32 KiB, depending on the configured
number of tasks per core; increasing the configured number of tasks per core reduces the size of
the work space for each task.

• The number of tasks per core is configured prior to the start of the AIOP, and cannot be changed
while the it is executing.

• Reducing the configured number of tasks per core reduces the chance that a task will be available
to run in parallel with an accelerator; there is a relationship between increasing the work space size
and potential parallelism. Configuring a single task per core only make sense if there is negligible
accelerator use, and this is unlikely.

• Specific AIOP software images are built expecting a fixed work space size that is the same for all
task instances.

AIOP Hardware Summary

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 3

• Work space memory is used for data only, such as the task's stack, frame presentation,
communication to accelerators, and other items like per-task static data according to the software's
discretion.

• The number of AIOP e200 cores is transparent to the AIOP software; implementations are allowed
wide latitude in the number of e200 cores per AIOP. A typical implementation might have 16 cores
with up to 16 tasks per core.

• The AIOP contains high-performance instruction memory that is shared by all tasks on all cores in
the AIOP instance. Implementations are allowed to implement this “shared” memory with multiple
instances of instruction memory that are devoted to subsets of the AIOP cores to enhance
performance. This permitted implementation is transparent to the software running on the AIOP
because:

— All instruction memory instances must be the same size.

— All instruction memory instances must contain exactly the same software.

— Instruction memory may not be written by the software running on the AIOP; AIOP programs
are loaded onto the AIOP from other processors on the SoC.

In summary, the AIOP architecture calls for an instruction memory that appears to the AIOP
software to be a single shared memory. The size of the instruction memory architecturally is the
size of this apparent memory, and not the sum of any separate instruction memory instances.
Typical instruction memory sizes are 64 or 128 KB.

• The instruction memory appears at the same address in every task's address map.

• Each AIOP contains an I-cache. These caches are functionally transparent to the software, so AIOP
implementations are not required to cache access to the shared instruction memory. The I-cache
exists because AIOP instructions may also be located in memories outside of the AIOP (e.g. DDR),
and fetches to these memories will be cached. Even with the I-cache, the effective performance of
memories outside of the AIOP will probably be significantly lower than the performance of the
shared instruction memory. Code placed in memories outside of the AIOP must not be
performance-critical.

• The AIOP contains a data memory that is shared by all tasks on all cores. This memory is, of
course, writable and is a single shared memory. The typical size of this shared data memory is 64
KiB. This memory is intended to hold data that is shared between tasks, and to which task software
directly loads and stores; it appears at the same location in every task's address map.

• The AIOP provides a number of different types of hardware-based accelerators, and some typical
accelerators include table lookup and DMA engines for various types. AIOP software uses these
accelerators through simple synchronous APIs. Accelerators are discussed at greater length in
following sections, and their usage and behavior is best described in terms of their software APIs
that are part of the AIOP service layer.

• The AIOP contains hardware support for creating, managing, and scheduling tasks in response to
events such as the arrival of a frame for processing or the expiration of a timer; this hardware is
shown in a very abstract form in the figure. The key item to understand is that the software running
on the AIOP does not explicitly or directly create, schedule, or manage tasks and instead the special
hardware handles these items; in a sense, this special hardware plays the role of an operating
system and provides those services. This architecture provides significant advantages in that it
makes the AIOP easy to program, and provides AIOP program portability amongst AIOP

AIOP Hardware Summary

AIOP User Manual, Rev. 8, 12/2017

4 NXP Semiconductors

implementations. AIOP software running in a task does not, and should not, be aware of the
number of other active AIOP tasks. In fact, the software should not be directly aware of the
existence of other AIOP tasks; tasks may take locks and use execution ordering functions, but they
are not directly aware of the other tasks doing the same thing even though one task's actions may
impact the execution of the other tasks.

• The AIOP contains interfaces to send and receive network frames, and possibly other data at
software's discretion. These interfaces use the SoCs hardware-based queue manager. As mentioned
above, the arrival of a frame on one of these interfaces is an event that triggers the creation of an
AIOP task running AIOP software.

• The AIOP also contains an interface to receive both hardware- and software-defined commands
from other processors on the SoC. The arrival of these commands is another type of event that
triggers the creation of a task running AIOP software.

• The AIOP contains a hardware table called an Entry Point ID (EPID) table. This table plays a key
role in creating tasks in response to these events. Each event must provide an entry point ID to the
AIOP in a hardware-supported manner. This ID is used as an index into the entry point table; the
entry table contains parameters used to create tasks, and the most important one is the address of
the software to start running in the task. The software entry point is defined by means of a C
function.

3.3 Tasks, Jobs, and scheduling

The previous section mentioned that the AIOP e200 cores contain hardware to support tasks, and that
software runs in the tasks. This point is key and requires additional explanation via an example that
contains high-level pseudo code. Two C functions are shown, func1() and func2(). Assume that the arrival
of a frame (e.g. an IP packet) causes the AIOP to start a task running the software function func1(). The
arrival of another frame causes the AIOP to start a task running func2).

The example shows the software functions performing computations and invoking accelerators; function
accel1() invokes an accelerator of one type, and function accel2() invokes an accelerator of some other
type. The detail of what is being accelerated is not important in this abstract example, but as background
accelerator type 1 might be an exact-match table lookup. The function send_frame() causes a frame to be
sent out some interface that is not shown.

The labels in comments (A, B, etc.) serve to identify computations and accelerator invocations for
discussion below; the labels are not part of the programming model.

_entry void func1() { _entry void func2() {
 compute_something; /* A */ compute_something; /* D */
 accel1(..); /* A */ accel2(..); /* D */
 compute_something; /* B */ compute_something; /* E */
 accel2(..); /* B */ send_frame(..); /* E */
 compute_something; /* C */ }
 send_frame(..); /* C */
}

An AIOP task is a sequence of jobs defined by ordinary C control flow, beginning at the entry point
function; each job must be executed on an appropriate execution engine:

AIOP Hardware Summary

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 5

• Ordinary computation must be done by an AIOP e200 core using the task states it keeps. For
example, whatever computation is represented by "compute_something /* A */" is on an execution
unit of type “core”.

• Accelerator invocations represent jobs that must be executed on the appropriate type of accelerator.
For example, a table lookup must be performed on a table lookup engine; every type of
hardware-based accelerator represents a particular execution unit type.

• Sending a frame is also a hardware interaction similar to an accelerator.

Figure 3-2 shows a graphical representation of "compute_something; /* A */" in the program text that
defines func1().

Figure 3-2. Graphical representation of a job

Figure 3-3 shows functions func1() and func2() and the job sequences they use.

Figure 3-3. Two tasks and their jobs

It should be clear from the example that the software control flow, and the accelerator invocations it causes,
determine the task job sequence.

The fact that a task is a sequence of jobs contributes greatly to making the AIOP easy to program; each
task represents exactly one sequential thread of execution even though accelerators with potentially large
latencies are used.

Invoking an accelerator notifies a hardware scheduler that a job is now ready for execution, and it takes
care of causing it to be executed. As Figure 3-4 shows, this permits good utilization of hardware execution
units, such as cores and accelerators, because cores and accelerators can execute jobs in parallel.The figure
shows a hypothetical single-core AIOP to focus on parallelism between cores and accelerators; in practice,
AIOPs will contain more than one core, and this allows “core” jobs to be executed in parallel with respect
to each other.

A
J core

func1: J core ‐> Jaccel1 ‐> Jcore ‐> Jaccel2 ‐> Jcore ‐> Jsend
A B C

func2: J core ‐> Jaccel1 ‐> Jcore ‐> Jsend
D ED E

A B C
Suitable
Execution
Units

Hardware
Scheduler

AIOP Hardware Summary

AIOP User Manual, Rev. 8, 12/2017

6 NXP Semiconductors

Figure 3-4. Execution of jobs in time

A single core might execute the tasks for both func1() and func2(); the core does computations for func1(),
while func2() is using an accelerator and vice-versa. The AIOP's cores can continue processing tasks when
other tasks, from a core point of view, are waiting for accelerators to complete.

A task is defined as being “in flight” if it is active because some event caused it to be created, and its jobs
are being executed by the AIOP's execution units. Clearly, the AIOP's performance is related to the
utilization rates of its execution units. The AIOP depends on having enough tasks in flight to keep its
execution units busy. In the networking domain, each frame causes a task to be in flight; when a system is
under load, many frames arrive per second so many tasks are in flight.

It is true that tasks cannot always proceed in parallel, because the software may dictate that two tasks
cannot execute at the same time, perhaps because of a lock. Also, sometimes one task must complete
before another in order to meet system ordering requirements. Such restrictions on the parallelism of tasks
in flight are needed for functional correctness as defined by the software, and the AIOP provides
mechanisms to achieve this goal and they will be discussed in later chapters.

The AIOP execution unit utilization rate may be reduced when the software dictates that restrictions are
needed. In networking, most of the time workloads restrictions are not needed, and this fact makes
networking workloads good candidates for parallel systems such as AIOP.

To conclude this section, it is important to note that the AIOP architecture does not place restrictions on
which instance of a particular execution unit type may execute a job; however, implementations may
impose restrictions. Such restrictions are transparent to the AIOP software, but may reduce the execution
unit utilization rate; this reduction does not necessary reduce AIOP performance. For example, the
migration of a task from one e200 core to another requires execution units, but certain implementations
may choose not to perform such a migration.

The AIOP hardware is abstracted using a layer of software called the AIOP Service Layer. For example,
accelerators are invoked via C language calls into the service layer. This software and its interfaces are the
subject of section 4.

Jsend
C

J core
E

J core
D

Execution
Units

A
J core J core

C

Jaccel1
A

Jaccel1
D

B
Jaccel2

Jsend
E

Core

Accel1

Accel2

Enq

B
J core

Time

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Chapter 4 Service Layer Concept

4.1 Service Layer Framework

The AIOP Service Layer provides a framework that applications are plugged into. The framework includes
boot, runtime and shutdown services. Application code can be plugged into any of these stages by
providing callback functions. In addition, applications can control the amount of resources allocated to the
AIOP using compile-time options.

4.2 Service Layer API

The AIOP Service Layer provides an API with access to application layer software; this access is needed
because these APIs provide the AIOP application interfaces used to access many AIOP hardware (and
some software) features. In a sense, the service layer is the AIOP’s operating system, even though the
hardware performs more of the functions than it does on general purpose processing cores.

All APIs intended for application software is documented in the AIOP Service Layer API Reference
Manual, and is located in the src/include/ directory of the AIOP Service Layer source tree. All other API
header files in the source tree are intended for internal use by the Service Layer, and may be modified
without notice.

4.3 Multi-Core Support

AIOP multi-core support spans many service layer modules and is documented in the individual relevant
sections as follows:

• Multi-core boot is described in the AIOP Load section

• Spinlock primitives are described in the Spinlocks section

• Mutex primitives are described in the CDMA Service Routines section

• Atomic operations and described in the AIOP Service Layer API Reference Manual

• The multi-core ready service layer modules are described within each module section.

4.4 Isolation and Virtualization

Every entity of the LS2 architecture has an isolation context id (ICID) and isolation context attributes
(BMT, BDI, PL, VA) which are used in order to access memory and DPAA resources.

All the DPAA resources and memories are virtualized. Different isolation context ids can have access to
the same virtual space which will be mapped to a different physical space according to the isolation context
id.

The AIOP like the rest of the LS2 peripherals has a default isolation context which is used in order to
access AIOP private DPAA resources and memories. For example, the CDMA module uses the AIOP
default isolation context in order to access the AIOP memory and the QBMAN pools.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

Sometimes AIOP applications act on behalf of the GPP SW context which requires access to GPP
resources. For example, a command that is sent from the GPP to the AIOP or from the AIOP to the GPP.
Therefore, AIOP SL provides the following isolation context dependent API:

• Get isolation context of current command

• Get isolation context of a GPP SW context that is connected to the AIOP through a DP object

• Read DDR memory to workspace using an application provided isolation context

• Write to DDR memory from workspace using an application provided isolation context

• Acquire a buffer from a QBMAN pool using an application provided isolation context

• Release a buffer to a QBMAN pool using an application provided isolation context

For more details please see the Isolation Context chapter at AIOP Service Layer API Reference Manual.

4.5 Network interfaces

The role of the network interfaces is to deliver packets to the AIOP from an external or GPP network
interface, and to send packets from the AIOP to an external or GPP network interface.

4.5.1 General

4.5.1.1 Feature List

The full feature list of the network interface is described in the DPAA2 User Manual. The AIOP provides
the following additional features:

• Automatic network interface discovery and enablement during AIOP initialization
• Association of application entry points to network interfaces
• Ability to send a packet to a network interface
• Network interface configuration
• Network interface queries

4.5.1.2 Terms & Concepts

DPNI - Network interface object, created by the management complex.

4.5.1.3 Basic Functionality

Packets arrive at the AIOP through a network interface. Before a packet is delivered to the AIOP, it is
copied to new buffers, allowing the AIOP to modify the packet without impacting its source
representation. Similarly, when a packet is sent from the AIOP, it is copied to new buffers before it is
delivered to its next destination. Frame buffer pools are configured by the application. For improved
performance, the AIOP “private copy” should be placed in memory close to the AIOP (e.g. PEB). The
AIOP “private copy” buffers are allocated and deallocated automatically by the network interface object,
as configured by the user.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 3

Each network interface is represented by a network interface object (DPNI) that belongs to the AIOP
container. The DPNI object and its creation, configuration, and realization is described in the DPAA2 User
Manual.

4.5.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides a software interface for network interfaces through the following
functions:

• Application registration/deregistration
• Getters/setters of DPNI attributes
• Sending a packet

4.5.3 Usage Information

In order to use the network interfaces, the corresponding DPNI objects must be created using the methods
offered by the MC. During AIOP initialization, DPNI objects belonging to the AIOP are discovered but
not enabled. AIOP applications may subscribe to the DPNI add event in order to receive add events for
each DPNI in the AIOP container. It is up to the application to register an entry point function and enable
the DPNI once it is ready to receive frames. Once a packet arrives on a DPNI, the registered function is
invoked. Once packet processing is complete and applications want to send the packet, the network
interface may be used; a simple usage example called “app_process_packet” is included with the service
layer and provide a network interface usage example.

The DPNI API can be found at AIOP Service Layer API Reference Manual.

4.5.4 Status and Errors

The Service Layer API return codes follow the POSIX standard. All status and error information is
included in the source code documentation and AIOP Service Layer API Reference Manual.

4.6 Command Interface (AIOP-GPP Communication)

The Command Interface module (CMDIF) enables communication between the GPP and the AIOP.
Commands can be sent to and from the GPP and the AIOP, and it is the service layer that provides the
mechanism to send commands and responses. However, the specific command contents, meaning, and
respective responses are defined and implemented by the application layer.

Each Command Interface channel is represented by a pair of Command Interface objects (DPCIs), one of
which belongs to the AIOP container and one of which belongs to a GPP container. The DPCI object is
described in the DPAA2 User Manual.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

4 NXP Semiconductors

4.6.1 General

4.6.1.1 Feature List

• Communication is based on a client-server design pattern using the DPCI object created by the
MC.

• Commands directions:

— from GPP to AIOP

— from AIOP to GPP

• Different kinds of commands: synchronous, asynchronous, no response

4.6.1.2 Terms & Concepts

• Server: a software entity that is responsible for command activation for the specific module
according to the command received from the client.

• Client: a software entity that sends commands to a server. Each command targets one of the
registered modules on the server.

• Command: comprised of the following attributes: module, command ID, priority, data, and size of
data.

• Registration on server: activity that must be performed by every module that wants to add server
commands. The client can trigger specific module commands on a server only after the module has
registered.

• Session: represents the client-server connection established to send commands to the specific
module. Each module on a server may have several open sessions that come from different clients.

• DPCI: the Command Interface object created by the MC. Each Command Interface channel is
represented by two connected DPCI objects.

4.6.1.3 Basic Functionality

A Command Interface Server supplies the following functionality:

• Module registration and deregistration

• Allocation of a session ID

• Multiple sessions per registered module

• Application callback activation per registered module

• Response data is placed into the same buffer that is supplied by the client to store the command

• Application management of memory and buffers allocation and deallocation

• Handling of synchronous, asynchronous, no response commands

• Multi-task support

A Command Interface Client supplies the following functionality:

• Creation of the session handle used for sending commands

• Sending synchronous, asynchronous, no response commands

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 5

• Activation of application asynchronous response callback

• The command and response data is placed into the same buffer that is supplied when the command
is sent

• Sharing of the same session by multiple tasks

During AIOP initialization, all DPCI objects belonging to the AIOP are discovered but not enabled. AIOP
applications may subscribe to the DPCI add events in order to receive add event for every DPCI in the
AIOP container. It is up to the application to enable the AIOP side DPCI once it is ready to receive the
commands. The AIOP side DPCI API can be found at AIOP Service Layer Reference Manual.

4.6.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides a SW interface using the following functions:

Client side:

• Opening and closing communication sessions

• Sending commands and receiving responses

Server functionality:

• Server module callback registration and deregistration

• Receiving commands and sending responses

• Opening and closing GPP Server sessions with the AIOP (relevant only for AIOP client
connections)

4.6.3 Usage Information

Separate channels and sessions need to be created for the GPP-Client to AIOP-Server communication, and
for the AIOP-Client to GPP-Server communication. Before the AIOP-Client to GPP-Server
communication can begin, the GPP-Client to AIOP-Server communication must be established. The
following paragraphs first describe the GPP-Client to AIOP-Server communication, and then the
AIOP-Client to GPP-Server communication.

The following sequence describes messaging from a GPP Client to an AIOP Server; session creation is
triggered by the GPP Client.

1. An AIOP application registers a callback function associated with the application (e.g. “IPSEC”)

2. A GPP application creates a communication channel based on a DPCI object (e.g. a NADK device)

3. The GPP application initiates a communication session with the AIOP, and receives a handle with
a session ID.

4. The GPP application sends its command to the AIOP using the handle. The command includes the
handle, command ID, command size, command priority, and application data.

5. The AIOP application receives the command through the preregistered callback.

See Figure 1 and Figure 2 to compare GPP to AIOP and AIOP to GPP communication.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

6 NXP Semiconductors

The following sequence describes messaging from an AIOP client to a GPP Server; session creation is
triggered by the GPP Server. The server opens all sessions in advance and notifies the AIOP Client:

1. A GPP application creates a communication channel based on a DPCI object (e.g. a NADK device)

2. The GPP application registers a callback function associated with the application (e.g. “IPSEC”)

3. The GPP application initiates a communication session with the AIOP. See step 3 above.

4. The GPP application creates new server sessions and sends the following to the AIOP: the
application name (e.g. “IPSEC”), the communication channel ID to use for the AIOP to GPP
communication and session ID.
NOTE: At this stage, the GPP sends this information using one of the already established sessions
for GPP to AIOP communications as defined in Step 3.

5. The AIOP application attempts to communicate with its GPP counterpart. The AIOP application
passes the following to the CMDIF API: application name (e.g. “IPSEC”) and communication
channel ID to be used for the AIOP to GPP communication. The AIOP application receives back:
a handle to use for sending commands to the GPP (or it receives an error if the GPP did not initiate
the communication session).

6. The AIOP application sends its command to the GPP using the handle

7. The AIOP application sends the following: handle, command ID, command size, command
priority, application data.

8. The GPP application receives the command through the preregistered callback.

(***) The data buffer allocation that can be sent by the AIOP client to the GPP Server can be done by using
the Shared Buffer Pool functionality.

See Figure 1 and Figure 2 to compare GPP to AIOP and AIOP to GPP communication.

Figure 1. GPP to AIOP Communication

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 7

Figure 2. AIOP to GPP Communication

4.6.4 Status and Errors

All Command Interface module status and error information is included in the source code documentation
and AIOP Service Layer API Reference Manual. Applications using the Command Interface module may
pass status, or any other error information, inside the data buffer that is sent with the command.

4.7 Shared Buffer Pool

This section describes the software buffer pools that can be shared between different programmable
entities such as the AIOP and GPP.

4.7.1 General

4.7.1.1 Feature List

The Service Layer Shared Buffer Pool supports the following features:

• Software buffer pool that can be shared by AIOP and GPP

• Shared Buffer Pool that is lock free between AIOP and GPP

4.7.1.2 Terms & Concepts

• Host: a software entity that is responsible for creation of the pool and filling it with the buffers. As
of today it is always the GPP side.

• Peer: a software entity that shares the pool with the host. It is usually the AIOP side.

• SHBP: Shared Buffer Pool handle.

4.7.1.3 Basic Functionality

• Every shared pool has two sides: the host and its peer.

• GPP is always the creator and the host of the shared pool.

• Only the host (GPP) can destroy the shared pool.

• Shared pools are lock free between the host (GPP) and its peer (AIOP).

• The Shared pool API is multicore and multithread protected.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

8 NXP Semiconductors

• Buffers that are freed by the AIOP will become available for acquiring only after calling the refill
function by the GPP.

• Each pool can be created using the following modes:

— The Host is the allocation master. Only the Host can acquire buffers from this shared pool. Both
the Host and the Peer can release buffers to the pool.

— The Host is not the allocation master. Only the Peer can acquire buffers from this shared pool.
Both the Peer and the Host can release buffers to the pool.

4.7.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides a SW interface using the following functions:

• Host side only: Create and destroy the shared pool.

• Peer and Host side: Acquire and release buffers from the specific shared pool.

• Host side only: Refill the shared pool by making the buffers that are freed by the peer (AIOP),
available for acquiring.

4.7.3 Usage Information

The following sequence describes a SHBP usage example for AIOP to GPP communication:

1. The GPP application creates the SHBP and designates the AIOP as the allocation master.

2. The GPP sends the SHBP handle to the AIOP by sending a command with the SHBP handle inside
the data of the command.

3. The AIOP application keeps the SHBP handle.

4. The AIOP application uses the SHBP handle to acquire a buffer using the isolation context of the
host (GPP).

5. The AIOP application writes to the buffer using the isolation context of the host.

6. The AIOP application sends a command using this buffer data.

7. The GPP receives the command and reads the data. If it is a no response command then the GPP
releases the buffer into the SHBP. In case of an asynchronous command, the buffer is released by
the AIOP.

8. The GPP refills the SHBP by moving the AIOP released buffers into the allocation queue.

See Figure 3 for an illustration of the SHBP functionality when AIOP is the allocation master.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 9

Figure 3. AIOP is the allocation master of SHBP

The following sequence describes SHBP usage example for GPP to AIOP communication:

1. The GPP application creates the SHBP and designates the GPP as the allocation master”.

2. The GPP application acquires a buffer from the SHBP.

3. The GPP application writes some data to the buffer including the SHBP handle.

4. The GPP sends a command to the AIOP server using the buffer as the data of the command.

5. The AIOP server handles the command and activates the AIOP application callback.

6. The AIOP application reads the data and handles the command. If it is a no response command then
AIOP releases the buffer into the SHBP that is sent as part of the data of the command. In case of
a synchronous or asynchronous command the buffer is released by the GPP.

7. The GPP refills the SHBP by moving the AIOP released buffers into the allocation queue.

See Figure 4 for an illustration of the SHBP functionality when GPP is the allocation master.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

10 NXP Semiconductors

Figure 4. GPP is the allocation master of SHBP

4.7.4 Status and Errors

All Shared Buffer Pool module status and error information is included in the source code documentation
and AIOP Service Layer API Reference Manual.

4.8 Event Manager

The Event Manager responds to events that are raised by the Management Complex or by AIOP SW and
invokes callback functions that were pre-registered to these events.

4.8.1 General

4.8.1.1 Feature List

The following features are supported by the Event Manager:

• Built-in and application-defined events

• Registration/de-registration to events

• Registration of multiple callbacks to the same event and control over order of invocation

• Applications may raise application-level events

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 11

4.8.1.2 Terms & Concepts

An event is a change in system state such as a the addition/removal of a DP object or a link state change.

4.8.1.3 Basic Functionality

The Event Manager listens to all system-level and application-level events and triggers the pre-registered
callbacks when an event occurs.

4.8.2 Functions Supplied by the Service Layer

The Event Manager supports functions to register/de-register to an event and to raise application-defined
events.

4.8.3 Usage Information

API for registering/de-registering and for raising events can be found in the source code documentation
and AIOP Service Layer API Reference Manual.

4.8.4 Status and Errors

The Service Layer API return codes follow the POSIX standard. All status and error information is
included in the source code documentation and AIOP Service Layer API Reference Manual.

4.9 Memory Management

This section describes the AIOP Memory Management services made available to the application layer.

4.9.1 General

4.9.1.1 Feature List

The Service Layer Memory Management supports the following features:

• User-defined memory allocation required by the AIOP applications.

• Dynamic memory allocation/deallocation from multiple memory regions (malloc/free)

• Pool-based memory allocation/deallocation from multiple memory regions (slab)

• Reference count management (pool-based allocation only)

4.9.1.2 Terms & Concepts

Reference Count - counter associated with a buffer and represents the number of “users” currently using
the buffer. The buffer must not be deallocated while the counter is greater than zero.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

12 NXP Semiconductors

4.9.1.3 Basic Functionality

The amount of memory required by AIOP applications is defined by the application developers in the
apps.h header file. Upon AIOP load, MC allocates the requested amount of memory to the AIOP.

The AIOP Service Layer provides malloc/free functions as well as pool-based allocation functions. While
malloc/free are suitable during initialization/shutdown, pool-based allocations should be used at runtime,
to achieve better performance.

Malloc/free functions are provided separately for internal memory allocation and external memory
allocation. Internal memory allocation returns a 32bit address that is directly accessible by the AIOP cores.
External memory allocation returns a 64bit address that is accessible only through DMA.

Pool-based allocation (slab) may be used to allocate memory only in external memories available to the
AIOP (i.e. System DDR, DP-DDR, PEB, but not Shared SRAM.) Pool-based allocation is based on the
AIOP CDMA/BMan HW blocks and may be used in conjunction with other services offered by the CDMA
Service Routines. For optimal performance and memory utilization buffer sizes should be 8 bytes less than
a multiple of 64 and buffer alignment should be 64.

Pool-based allocation relies on HW pools that are prefilled with buffers based on buffer requirements
declared by applications during initialization. Applications declare their expected buffer needs by defining
a committed and max number of buffers. At run time, the AIOP SL guarantees availability of buffers up
to the committed number. Buffers beyond the committed number may be shared with other pools and
therefore availability can not be guaranteed.

Pool-based buffers come with reference count management suitable for AIOP’s multi-core multi-task
environment. Applications accessing such buffers should increment the reference count prior to accessing
it and should decrement the reference count after access is completed. Buffers should be released by
applications only once the reference count reaches zero.

4.9.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides functions as follows:

• Malloc/free from various target memories

• Slab creation/free from various target memories

• Buffer acquire/release from existing slab

• Slab reference count increment/decrement

4.9.3 Usage Information

Malloc and slab usage is fully documented in the AIOP Service Layer API Reference Manual and source
documentation.

4.9.4 Status and Errors

All status and error information is included in the source code documentation and in the AIOP Service
Layer API Reference Manual.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 13

4.10 RCU Synchronize

This section describes the RCU synchronize services made available to the application layer.

4.10.1 General

4.10.1.1 Feature List

The RCU module supports the following features:

• Activate the callback after all the active AIOP tasks which are holding resources are done

• Non blocking RCU synchronize functionality, the user callback is called within a separate rcu task

• RCU synchronize function gathers all the requests into a list and handles it in batches; meaning one
rcu task may activate several user callbacks

• Every AIOP task is considered as holding resources until it says otherwise

• Declare the task as not holding any resources

• Application defines the initialization parameters of the RCU module: maximal and committed for
the rcu jobs list, rcu timeout delay that is used for batching

4.10.1.2 Terms & Concepts

RCU - Read Copy Update synchronization mechanism that allows wait-free resource readers. The
resource is freed only after all the readers are done.

4.10.1.3 Basic Functionality

The RCU functionality is intended to protect against removing a resource while it is still in use by another
task. The resource can be a buffer that needs to be freed or a DP object that is going down. In order to safely
remove the resource, applications must first ensure that no new references to the resource can be attained.
Once this is ensured, applications must wait for all active tasks (that may already be holding references to
the resource) to terminate. This is done using the RCU synchronization function.

4.10.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides functions for locking/unlocking RCU as well as a function that waits
for all active tasks to terminate, before activating a user-provided callback.

4.10.3 Usage Information

Fully documented in the AIOP Service Layer API Reference Manual and source documentation.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

14 NXP Semiconductors

4.10.4 Status and Errors

All status and error information is included in the source code documentation and in the AIOP Service
Layer API Reference Manual.

4.11 Console I/O

This section describes the Console I/O features.

4.11.1 General

4.11.1.1 Feature List

The AIOP Service Layer supports the following features:

• Printing through semi-hosting

• Printing through UART - single core and multi-core

• “Light” print capabilities suitable for the AIOP runtime environment

4.11.1.2 PTerms & Concepts

“Light” Printing - printing with reduced formatting and smaller print buffer size.

4.11.1.3 Basic Functionality

The AIOP Service Layer supports the standard printf API for printing to different output targets. The AIOP
Service Layer automatically toggles between boot and runtime mode; at runtime, a “light” printing
function is triggered, in order to reduce program stack usage.

(***) Application configurable output targets will be supported in future AIOP Service Layer releases.

4.12 Spinlocks

This section describes the spinlock feature.

4.12.1 General

4.12.1.1 Feature List

• Ability to lock/unlock a memory location

• Requires 1 byte per lock

4.12.1.2 Terms & Concepts

Spinlock - repeatedly attempt to lock a memory location until successful.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 15

4.12.1.3 Basic Functionality

The spinlock module enables applications to lock/unlock a 1 byte memory location in order to synchronize
accesses with other cores. In the AIOP, spinlocks are applicable to the shared SRAM memory.

4.12.2 Functions Supplied by the Service Layer

The Service Layer provides a lock and an unlock function.

4.12.3 Usage Information

Spinlock usage by applications is highly discouraged as it may lead to deadlocks; spinlocks should only
be used for very short-term locks. Applications must never be suspended while holding a lock, and
therefore must never call any hardware accelerators while holding a lock.

4.12.4 Status and Errors

All status and error information is included in the source code documentation and in the AIOP Service
Layer API Reference Manual.

4.13 Utilities

This section describes various utilities provided by the AIOP Service Layer.

4.13.1 General

4.13.1.1 Feature List

The AIOP Service Layer supports the following utilities:

• Random number generation (pseudo-random)

• Time queries

• Endian swap functions

• Network address format conversion

All functions, status, and error information is included in the source code documentation and in the AIOP
Service Layer API Reference Manual.

4.14 Service Routines

Service routines provide user services; the service routines use hardware accelerators, and therefore
provide performance-oriented routines and functionality. The following sections provide service routine
module information. For more detailed service routine API information, refer to the AIOP Service Layer
API Reference Manual.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

16 NXP Semiconductors

4.14.1 FDMA

The Frame DMA module (FDMA) provides frame operation acceleration.

4.14.1.1 General

4.14.1.1.1 Feature List

The FDMA provides the following capabilities:

• Presentation of frame data, data manipulations (add, delete and modify frame data), and frame
enqueue to QMAN Manager.

• Frame replication, concatenation, and split.

• Store frame data in external memory, or discard the frame.

• Frame checksum calculation.

• Data copy operations between task work space/shared-RAM to task work space/shared-RAM.

• Task termination.

4.14.1.1.2 Terms & Concepts

Task work space

The task work space is used as the task private memory area. Different AIOP configuration may choose to
use different numbers of tasks per core, and the task work space size varies according to the number of
simultaneous tasks per core. Each core has 32KB of task RAM; therefore, a task work space memory can
vary between 2KB (16 task per core) to 32KB (1 task per core). The task work space is used by the task
for hardware context and frame presentation data, and stack.

FDMA Internal SRAM

The FDMA internal memory module that holds FDMA internal structures, frame presented data, and
frame modified data to be stored back to external memory.

Working Frame

A working frame is a frame that is presented by the FDMA in the task work space; a task may have up to
six working frames at a given time.

Frame Handle

When a frame is presented, the FDMA creates a frame handle. The frame handle identifies the FD and its
working frame. The frame handle is used in any FDMA operation, and is valid as long as the frame is a
working frame. When processing is completed, the frame handle must be released back to the FDMA by
a store/enqueue frame command. Up to six open FDs are supported per task, so up to six frames can be
presented in the work space at a time.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 17

Segment Handle

The FDMA supports up to eight portion (segment) presentations of a given frame or multiple frames.
When a segment is presented, the FDMA creates a segment handle that identifies the presented segment.
A segment handle is associated with the frame handle of the frame from which it was presented. The
segment handle is used in any FDMA operation on the segment, and is valid as long as the frame is a
working frame and the segment is presented. When segment processing is complete, the segment handle
must be released back to the FDMA; releasing the segment handle can be done by several fdma SRs (refer
to API).

Task Defaults

Task defaults are a set of parameters and context location in the task’s work space; this context is associ-
ated with a task resulting from frame arrival. When a task is created upon frame arrival the following
information is available as part of the task context:

• Frame descriptor

• Additional dequeue context - frame queue context: queue information on the frame that was
dequeued

• Presentation context - information on which part of the frame is currently presented, frame handle,
and segment handle

• Presented frame - usually the frame header is available, according to the presentation context
information

• Parse result

Some of the fields are shared by hardware and software, and therefore are part of the hardware context
structure. Other fields are known only to the software, and therefore are maintained in a software struc-
ture. As the frame is processed, this information is updated to reflect the most up-to-date frame state.

All hardware context fields, including the parse result, are valid and reflect up-to-date values with
the following exceptions:

• FD fields that are kept up-to-date are the frame length, ASA length, and PTA valid-bits. The FD is
fully updated only during a FDMA store command.

• Running sum and gross running sum fields in the parse result

• Additional dequeue context reflects the arriving frame’s frame queue context.

The task defaults are associated with the arriving frame when the task is created. This frame, called the
“default frame”, can be changed during the software flow so that a different frame can become the
‘default frame’ and associated with the task default information. When doing this association the soft-
ware must ensure all the task default context is updated with the new default frame; it must locate the new
FD in the default FD location, present a frame with the fdma_present_default_frame() FDMA function,
and run the parser on that frame.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

18 NXP Semiconductors

4.14.1.1.3 Basic Functionality

The Frame DMA (FDMA) module performs functions associated with frame presentation, storage,
replication, data manipulations, task termination, and enqueuing of frames to the Queue Manager. The
FDMA performs autonomous initial frame presentation, as a per user configuration, into the task work
space when frames arrive at the AIOP from the Queue Manager and are assigned to tasks by the work
scheduler. This gives the task software that is stored locally in the task work space a contiguous view of
the frame data for examination and modification.

If modifications are made to a working frame, then most of the original frame descriptor in the work space
is no longer valid. If the working frame is stored in external memory and then re-presented, then the frame
descriptor becomes valid again. In order for the modifications to have an effect, the FDMA internal
memory must first be updated, and then the external memory updated. FDMA internal memory can be
updated using FDMA modification commands.

Once the software is done examining and modifying the frame, in order to update external memory it can
either:

• Enqueue the frame to the Queue Manager.

• Store the frame and save the frame descriptor for future use.

• Discard the frame.

4.14.1.2 Service Layer Supplied Functions

The AIOP Service Layer provides a software interface for FDMA through the followings functions:

• Frame data presentation

• Frame data modification

• Storage of frame data to external memory.

• Discard a frame - release the BMan buffer resources associated with the frame.

• Concatenate two frames into one.

• Split a frame into two frames.

• Enqueue a frame.

• Frame modification - add, delete, or modify frame data.

• Replicate a frame.

• Frame checksum calculation.

• Copy data from the task work space/Shared RAM to task work space/Shared RAM.

• Task termination.

4.14.1.3 Usage Information

The FDMA performs autonomous initial frame presentation, as per the user configuration, into the task
work space when frames arrive at the AIOP from the Queue Manager; they are assigned to tasks by the
work scheduler. Task software can have up to six frames presented in its work space at a time, including
the default frame. The default frame can be changed during the software flow so that a different frame can

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 19

be the default frame, and it will be associated with the task default information. The software can examine
each one of the presented frame headers (/data), and modify the frame headers with FDMA functions.

AIOP software can directly access and modify the frame work space copy using standard ‘C’ code, or use
FDMA modification commands (replace, modify, insert and delete commands). In order for modifications
to have an effect, the FDMA internal memory must be updated using frame data modification commands,
and the external memory updated using the frame store or enqueue commands.

Once the software finishes examining and modifying the frame, it can either:

• Enqueue the frame to the Queue Manager.

• Store the frame, and save the frame descriptor for future use.

• Discard the frame and release the BMan buffer resources associated with the frame.

For better performance, during the lifetime of a task, modifications should be made to the work space and
FDMA internal cache only. The frame should be stored to external memory only when necessary, for
example. when enqueuing the frame.

For ease-of-programming and cleaner interfaces, the task work space and FDMA internal memory should
be kept in sync whenever the software module boundaries are crossed, for example when a function returns
to its caller, or when a function calls another function. It is possible to modify the task work space and then
update the FDMA internal memory using FDMA modification commands. It is also possible to modify the
FDMA internal memory using FDMA modification commands, and then to update the task work space by
representing the headers/data.

4.14.1.3.1 Implicit and explicit functions

The Service Layer provides two sets of FDMA service routines: implicit and explicit. The implicit
functions work on the default frame associated with the task, and they require less parameters; these
functions cover the most common FDMA service routine usage. The explicit functions work on task
presented frames that are not the default frame; these functions do not make any assumptions about the
frame or segment to work on, and they require all parameters identifying the frame/segment to be passed
explicitly.

4.14.1.3.2 Code Samples

The following sections provide a high-level functional description of common service layer functions,
followed by a code sample. These sections are provided as examples to help illustrate the descriptions.

Examine, modify and enqueue the default frame

Description:
1. Examine the frame’s IP header.

2. Based to the results, decide whether to modify the IP header, enqueue the frame and terminate task,
or discard the frame.

Preconditions:
1. A task started with autonomous default frame presentation.

2. Parse results are updated.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

20 NXP Semiconductors

Code sample:

void examine_modify_enqueue(uint32_t fqid)

{

struct ipv4hdr *ipv4 = (struct ipv4hdr *)PARSER_GET_OUTER_IP_POINTER_DEFAULT();

/* In case the IP address is expected, forward the frame to a new address.

 * Otherwise, discard the frame. */

if (ipv4‐>dst_addr == 0xAAAAAAAA) {

ipv4‐>dst_addr = 0xBBBBBBBB;

/* Modify destination address */

fdma_modify_default_segment_data(

(uint16_t)(PARSER_GET_OUTER_IP_OFFSET_DEFAULT() +

offsetof(struct ipv4hdr, dst_addr)),

(uint16_t)sizeof(ipv4‐>dst_addr));

/* Store and Enqueue the frame according to a fqid.

 * Terminate task. */

fdma_store_and_enqueue_default_frame_fqid(fqid, FDMA_EN_TC_TERM_BITS);

} else {

/* Discard the frame.

 * Terminate task. */

fdma_discard_default_frame(FDMA_DIS_NO_FLAGS);

fdma_terminate_task();

}

}

Insert data into the default frame, represent, update the parse results

Description:

1. Insert data at the beginning of the default frame.

2. Represent the frame with the new data in order to have a sequential frame data presentation in the
task work space; this can be used in order to run the parser on the updated frame data.

3. Update the parse results with the new data.

4. Return to the user with an updated default frame.

Preconditions:
1. A task started with autonomous default frame presentation.

2. The presentation is from the beginning of the frame.

Code sample (on next page):

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 21

void insert_data_to_frame(void *data)

{

/* Insert 4 bytes at the beginning of the default frame.

 * Represent the frame with the new data. */

fdma_insert_default_segment_data(0, data, 4, FDMA_REPLACE_SA_REPRESENT_BIT);

/* Update parse results. */

parse_result_generate_default(PARSER_NO_FLAGS);

/* Return to the user with an updated default frame. */

}

Switch the default frame, and create a new ARP request frame as the default frame

Description:
1. Store the default frame and save its FD.

2. Create a new ARP request frame as the default frame.

3. Send the ARP request.

4. Return the original frame FD to the user.

Preconditions:
1. A task started with autonomous default frame presentation.

Code sample:

void switch_default_frame_with_new_created_ARP_frame(uint32_t fqid, struct ldpaa_fd *fd)

{

uint8_t frame_handle;

struct ipv4hdr *ipv4 = (struct ipv4hdr *)PARSER_GET_OUTER_IP_POINTER_DEFAULT();

/* Store default frame. */

fdma_store_default_frame_data();

/* Save default frame descriptor to return to the user. */

*fd = *((struct ldpaa_fd *)HWC_FD_ADDRESS);

/* Create a new ARP frame as the default frame */

create_arp_request_broadcast((struct ldpaa_fd *)HWC_FD_ADDRESS, ipv4‐>src_addr,

ipv4‐>dst_addr, &frame_handle);

/* Store and Enqueue the frame ‐ Send the ARP request according to a fqid. */

fdma_store_and_enqueue_default_frame_fqid(fqid, FDMA_EN_TC_RET_BITS);

/* Return to the user with the original frame frame‐descriptor. */

}

4.14.1.4 Status and Errors

FDMA functions return a status that indicates whether the function was executed successfully. In case the
function was not executed successfully, an error/status is returned as specified in the FDMA API. Errors
will be documented in a later phase.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

22 NXP Semiconductors

4.14.2 Context DMA (CDMA)

This module performs the functions associated with context memory presentation, storage, and Mutex
lock.

4.14.2.1 General

4.14.2.1.1 Feature list

• DMA to/from external memory to/from work space memory

• Mutex lock/release

• Memory initialization

4.14.2.1.2 Terms & Concepts

Context Memories

Context memories are external buffers associated with the SLAB. Context memories are objects used by
the AIOP software to store state, variables, statistics, and any other information that must be preserved
beyond the duration of a task.

Mutex Lock

Mutexes are used for different tasks using the same resource, for example updating the same memory
structures in external memory.

Write Lock

Write access is obtained if tasks are not reading or writing; a single reader-writer lock.

Read Lock

Read access is obtained if tasks are not writing, and no tasks requested write access; multiple readers /
single-writer lock.

4.14.2.1.3 Basic Functionality

The CDMA block implements functionality related to the management and the reading and writing of
context memory:

• DMA reads from context memory to the work space memory

• DMA writes from work space memory to the context memory

• Memory initialization

• Mutex write lock

• Mutex read lock

• Mutex release lock

DMA operations can bring data into the work space from the external context memories, and back again.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 23

Figure 5. DMA READ/WRITE

The memory initialization command is used to write a provided pattern into a range of work space mem-
ory. Mutexes are used to prevent race conditions between different tasks using the same resource, for
example when updating the same memory structures in external memory. Mutex allows only one task to
be executed in an exclusive section of code. A Mutex lock can be performed on a 64-bit Mutex ID, or on
any pointer to the internal/external memory such as DDR/PEB/shared SRAM. Each task can have a max-
imum of four simultaneous active Mutex locks. When a task is terminated, the CDMA releases any active
Mutex locks that are associated with the task to avoid a Mutex lock leak.

A write lock allows only the holder to read and write, and the other tasks have no access. The write lock
is granted when there are no preceding active locks for read or write, or pending locks on the same
address; a single reader-writer lock.

A read lock allows several readers in a mutually exclusive section so that only one writer is allowed. It
can improve parallelization in cases where some tasks need to read data, and some need to update the
same data. The read lock is granted when there are no preceding active write locks, or pending locks on
the same address; multiple readers / single-writer lock.

A Mutex lock, for read or write, for a task must be released, using a release lock, by the same task.
The following figure illustrates a Mutex read and write lock; four tasks are trying to lock, a read or write
lock, the same Mutex ID.

Context Memories

Work Space Memory.

DMA READ

DMA WRITE

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

24 NXP Semiconductors

Figure 6. Mutex Lock

4.14.2.2 Service Layer Supplied Functions

The AIOP service layer provides a CDMA software interface using the following functions:

Task #1

WL Request

WL Release

Task #2

WL Request

WL Obtained

WL Obtained

WL Release

Task #3

RL Request

Task #4

RL Request

RL Obtained

RL Release

RL Obtained

RL Release

WL = Write Lock
RL = Read Lock

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 25

• DMA read/write
• Memory initialization.
• Mutex lock (read/write/release).
• Combo functions for DMA read/write and Mutex lock (read/write/release).

4.14.2.3 Usage Information

This section describes how to use the CDMA functions.

Mutex

Mutexes allow only one task to execute in an exclusive section of code:

cdma_get_mutex_lock(0x1234);
//do something in mutual exclusive way
cdma_release_mutex_lock(0x1234);

The code between Mutex calls is executed by one core only.

Mutex Write/Read Lock

The following code example illustrates how to use read and write locks. In the example, one counter is
counting frames, and another counter is counting the number of bytes; one task is updating the counters
and other tasks just read them.

cdma_get_mutex_lock(0x1234, WRITE_LOCK);
frame_cnt++;
bytes_cnt += bytes_in_frame;
cdma_release_mutex_lock(0x1234, WRITE_LOCK);
cdma_get_mutex_lock(0x1234, READ_LOCK);
number_of_bytes_per_frame = frame_cnt/bytes_cnt;
cdma_release_mutex_lock(0x1234, READ_LOCK);

The task that updates the counters uses a “write lock” to make sure that no other tasks can read or write to
these counters at the same time. However, the other tasks that use the “read lock” are allowed to read the
counters in parallel and are protected from unexpected counter changes that can be done by the first task.

4.14.2.4 Status and Errors

The CDMA functions do not return errors or status, but may have a fatal error. Errors will be documented
in a later phase.

4.14.3 Parser

The parser performs a series of functions on a stream of frame headers, including detection and valida-
tion.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

26 NXP Semiconductors

4.14.3.1 General

4.14.3.1.1 Feature list

• Parsing and validation of protocols in packet headers, as described in the API.

• Parsing the frame portion presented in the work space; up to 256 bytes can be parsed.

• Parsing can start from any header/layer or offset, from the beginning of the frame.

• Parsing capabilities optionally supplemented with user programmed parse functions, “soft”
parsing, to support protocols not supported by the hard-wired functionality including proprietary
protocols and “shim” headers inserted between otherwise well-known protocols.

NOTE:

The soft parser is outside the scope of this section.

4.14.3.1.2 Terms & Concepts

HXS

The parsing functions are implemented using header examination sequences (HXSs). Each HXS does the
following:

— Works within a protocol layer, presuming a certain type of header

— Confirms header validity (e.g. checksums)

— Extracts attributes and offsets

— Identifies header boundaries

— Determines the next HXS to examine outside of the current header

The set of HXSs, and their ability to invoke each other effectively, implements a parse tree that supports a
multitude of networks scenarios involving common Layer 2-4 protocols.

Parse Profile

The parse profile is a data structure that provides a configurable set of parsing actions that can be taken for
each HXS, including a soft-sequence index attached to the current HXS. Up to 64 parse profiles can be
defined in the system.

Unknown Protocols and “Other Shells”

When the parser parses the frame, it uses the header information to determine the next HXS to be executed.
In case the parser does not recognize the next protocol, for example the next header protocol field value is
not included in the list of recognized HXS protocols, the next header will be considered an unknown type
and the next HXS to be executed is the next layer “other shell”.

For instance, the PPPoE+PPP HXS uses the information stored in the PPP protocol field to determine the
next HXS to be executed. If the PPP protocol field is set to a value other than 0x0021 (IPv4) or 0x0057
(IPv6), the next header is considered an unknown type, the L2 unknown protocol indication is set, and the
next HXS to be executed is the “Other L3 shell”.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 27

4.14.3.1.3 Basic Functionality

The parser block performs frame parsing of frame header data for the purpose of:

• Detecting and validating the frame structure according to its inherent knowledge of standard
protocols

• Determine the frame characteristics; these are extracted as a vector of binary flags called Frame
Attribute Flags (e.g. frame type))

• Extract various header offsets

Parsing instructions may be added, perform “soft parsing”, that extends the protocols supported and/or
extract additional attributes or frame header values.

Parsing is directed through parse profiles that provide a template of the parsing actions to take. The parsing
operation is implemented through the HXSs that form a standard parse tree that covers many common
network protocol headers; parsing normally progresses from the lower to the upper layers.

The starting point for HXS within the parse tree, and the offset within the presented frame header where
parsing should start, may be provided through the functions API. This provides, on a per parse profile
basis, the ability to begin the frame examination at a different offset within the frame with a different
presumption of the first header type.

4.14.3.2 Service Layer Supplied Functions

The AIOP service layer provides a parser software interface using the following functions:

• Parse profile creation, replacement, and deletion.

• Parse the frame, and generate a parse result.

• Parse result attributes queries, and return a non-zero value in case a specified protocol was found
in the frame.

• Parse result getters, and return the requested parser result field.

• Protocols pointer getters that return the pointer to the specified protocol in the frame.

• Setters for PRPID and for starting HXS.

4.14.3.3 Usage Information

This section describes how to use the parser functions.

Parse Profile

Before parsing any frames, create a suitable parse profile. In order to create a parse profile, which is usually
completed during system initialization, the user should allocate a structure of parse_profile_record and
configure it; see the structure explanation. Next, the parser_profile_create() function should be called
and it returns a parse profile ID once a creation is complete.

The following code example shows a basic parse profile configuration with no soft sequence extension for
examination, and no mask on error reporting. This is the default parse profile configured during system
initialization, and is available as part of the task default parameters; a detailed explanation of each
parameter can be found in the API.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

28 NXP Semiconductors

int parser_profile_init(uint8_t *prpid)

{

struct parse_profile_record parse_profile __attribute__((aligned(16)));;

int i;

parse_profile.eth_hxs_config = 0x0;

parse_profile.llc_snap_hxs_config = 0x0;

parse_profile.vlan_hxs_config.en_erm_soft_seq_start = 0x0;

parse_profile.vlan_hxs_config.configured_tpid_1 = 0x0;

parse_profile.vlan_hxs_config.configured_tpid_2 = 0x0;

/* No MTU checking */

parse_profile.pppoe_ppp_hxs_config = 0x0;

parse_profile.mpls_hxs_config.en_erm_soft_seq_start= 0x0;

/* Frame Parsing advances to MPLS Default Next Parse (IP HXS) */

parse_profile.mpls_hxs_config.lie_dnp = PARSER_PRP_MPLS_HXS_CONFIG_LIE;

parse_profile.arp_hxs_config = 0x0;

parse_profile.ip_hxs_config = 0x0;

parse_profile.ipv4_hxs_config = 0x0;

/* Routing header is ignored and the destination address from main header is used instead */

parse_profile.ipv6_hxs_config = PARSER_PRP_IPV6_HXS_CONFIG_RHE;

parse_profile.gre_hxs_config = 0x0;

parse_profile.minenc_hxs_config = 0x0;

parse_profile.other_l3_shell_hxs_config= 0x0;

/* In short Packet, padding is removed from Checksum calculation */

parse_profile.tcp_hxs_config = PARSER_PRP_TCP_UDP_HXS_CONFIG_SPPR;

/* In short Packet, padding is removed from Checksum calculation */

parse_profile.udp_hxs_config = PARSER_PRP_TCP_UDP_HXS_CONFIG_SPPR;

parse_profile.ipsec_hxs_config = 0x0;

parse_profile.sctp_hxs_config = 0x0;

parse_profile.dccp_hxs_config = 0x0;

parse_profile.other_l4_shell_hxs_config = 0x0;

parse_profile.gtp_hxs_config = 0x0;

parse_profile.esp_hxs_config = 0x0;

parse_profile.l5_shell_hxs_config = 0x0;

parse_profile.final_shell_hxs_config = 0x0;

/* Assuming no soft examination parameters */

for (i=0; i<16; i++)

parse_profile.soft_examination_param_array[i] = 0x0;

/* Create the parse_profile and get an id */

return parser_profile_create(&parse_profile, prpid);

}

In case the application wants to call a parser with a different parse profile, it needs to configure it as
detailed above, and update the task default PRPID using the following macro: PARSER_SET_PRPID(_val):

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 29

int parse_with_another_parser_profile(void)

{

struct parse_profile_input parse_profile1 __attribute__((aligned(16)));

uint8_t prpid;

int i;

<configure parse_profile1>

/* Create the parse_profile and get an id */

parser_profile_create(&(parse_profile1), &prpid);

PARSER_SET_PRPID((uint16_t)(prpid));

return parse_result_generate_default(0);

}

Parser Result Generation

The following code sample illustrates the generation of a parse result that provides a starting HXS and
offset.

void * get_udp_ptr(void* udp_ptr)

{

/* Start parsing from offset 14 of the presented header and from IP protocol HXS.

Validate L3 and L4 checksum during parsing */

parse_result_generate(PARSER_IP_STARTING_HXS, 0xe,

(PARSER_VALIDATE_L3_CHECKSUM | PARSER_VALIDATE_L4_CHECKSUM));

if (PARSER_IS_UDP_DEFAULT()) {

udp_ptr = PARSER_GET_L4_POINTER_DEFAULT();

return udp_ptr;

}

}

4.14.3.4 Status and Errors

There are a few parser error reporting mechanisms.

1. Status returned from the parser function call as described in the API.

2. Error code field in the parse result; applications can get it using the
PARSER_GET_PARSE_ERROR_CODE_DEFAULT() macro.

3. “Parsing error” flag in the parse result frame attribute flags; applications can examine it using the
PARSER_IS_PARSING_ERROR_DEFAULT() macro.

4. Protocol specific error flags in the parse result frame attribute flags in the parse result; applications
can examine it using various macros, such as PARSER_IS_ETH_PARSING_ERROR_DEFAULT()).

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

30 NXP Semiconductors

If an error is encountered during parsing, both the “parsing error” flag and the relevant error flags in the
frame attribute flags are set; these flags indicate the protocol header where the parser discovered the error.
The specific error is reported in the “error code” field in the parse result. (The error codings are priority
based, and therefore regardless of which error is found first the more severe are reported). Getters are
provided for all these indications.

4.14.4 KeyGen

4.14.4.1 General

The KeyGen extracts various frame fields and other data structures (as described below), and concatenates
them to form the lookup key for a table lookup.

4.14.4.1.1 Feature list

The KeyGen is able to extract the following:

• Protocol specific - extraction of specific protocol headers from the frame header.

• Generic extraction - in this mode, the offset and size for extraction are specified.
Two modes are available:

— Protocol based generic extraction. In this mode generic extraction starting from protocol
specific fields.

— Generic extraction from the beginning of structure (frame, parse result etc.).

• Valid field (VF) - indicates whether previous fields extractions were done successfully.

4.14.4.1.2 Terms & Concepts

Field Extract Command (FEC)

Field extract command (FEC) controls the extraction of one field of contiguous bytes from one of the
sources which the extraction is performed. There is also an option to mask some bits of the extracted
bytes.

Key Composition Rule (KCR)

The KeyGen receives its directives from ‘key composition rules’. Each key composition rule is composed
of one or more FECs. A key composition rule is identified with a ‘key composition rule ID’. Up to 255
rules can exist in the system.

Valid Field (VF)

Given a rule which extracts a specific header field in the frame, the Valid Field is used to distinguish
between frames which do not have the requested header field at all, and frame which have the header and
its value equals to zero (note that in both cases the extracted key has a zero in the corresponding field).

The Valid Field FEC includes valid bits for the last 8 consecutive FECs in the KCR. (If more than 8 FECs

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 31

exists in the KCR, such FEC will have to be placed after the first 8 and then again at the end). Each bit in
the VF corresponds to one field which was extracted before VF. The bit is set if the corresponding
extracted field is valid.

For instance, assuming IPsrc was requested in the KCR to be extracted:

• If the KCR does not include VF field:

— If there is IPsrc in the frame it will be extracted.

— If there is no IPsrc in the frame, 0x0 will be placed in the key instead.

• If the KCR includes VF field, the Valid field will be added to the key in this way:

— If IPsrc exists in the frame and is extracted successfully, the corresponding bit in VF will be set
(unless it is masked).

— If IPsrc does not exist in the frame, 0x0 will be placed in the key instead and the corresponding
bit in VF will be clear.

4.14.4.1.3 Basic Functionality

In order to perform table lookups according to a key a ‘lookup key’ is composed. In order to compose a
lookup key, there is a need for a Key Composition Rule (KCR) that describes how to build the key. Each
KCR is composed of one or more Field Extract Commands (FECs). The order of the FECs defines the
order of fields in the lookup key. Each KCR is associated with a unique ID (KeyID).

The key composition is built of extraction commands, which extract fields from the following structures
to generate a lookup key:

• Frame

• Parse result (including frame attribute flags)

• Per-frame user defined value (user metadata)

• Per-key composition-rule user defined value

The following figure depicts the terms described above.

Figure 7. Key composition rule

4.14.4.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides a SW interface for the KeyGen through the followings functions:

• Function for KCR initialization.

• Functions for adding FECs to the KCR.

• Functions for KCR create, delete, replace and query.

• Function for key generation.

FEC1 FEC2 FECnFEC3

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

32 NXP Semiconductors

• Function for generation of Hash value from a given key.

4.14.4.3 Usage Information

This section describes how the KeyGen functions should be used.

In order to create a KCR:
1. the keygen_kcr_builder_init() function should be called.

2. One of the functions for adding FEC to the KCR should be called for each extraction to add to the
KCR. Up to 4 bit-wise mask bytes can be applied for each FEC.

3. keygen_kcr_create() function should be called in order to create the KCR and get the KeyID that
is assigned to it.

4. A key can be extracted using keygen_gen_key() function.

The following code sample illustrates how to build a KCR for a 5-tuple key, including a valid field, with
first byte of IP source masked.

void extract_5tupple(void)

{

struct kcr_builder kb __attribute__((aligned(16)));

struct kcr_builder_fec_mask mask_ipsrc_1;

uint8_t key_id;

uint8_t key[128] __attribute__((aligned(16)));

uint8_t key_size;

/* Prepare mask for the first byte on ipsrc_1 */

mask_ipsrc_1.single_mask[0].mask = 0x0;

mask_ipsrc_1.single_mask[0].mask_offset = 0x0;

mask_ipsrc_1.num_of_masks = 1;

/* Initialize the key composition rule (kcr) */

keygen_kcr_builder_init(&kb);

/* Add extraction of ipsrc_1 with mask to the kcr */

keygen_kcr_builder_add_protocol_specific_field(KEYGEN_KCR_IPSRC_1_FECID, &mask_ipsrc_1,

&kb);

/* Add extraction of ipdst_1 without mask to the kcr */

keygen_kcr_builder_add_protocol_specific_field(KEYGEN_KCR_IPDST_1_FECID, NULL, &kb);

/* Add extraction of L4 src without mask to the kcr */

keygen_kcr_builder_add_protocol_specific_field(KEYGEN_KCR_L4PSRC_FECID, NULL, &kb);

/* Add extraction of L4 dst without mask to the kcr */

keygen_kcr_builder_add_protocol_specific_field(KEYGEN_KCR_L4PDST_FECID, NULL, &kb);

/* Add extraction of IP PTYPE without mask to the kcr */

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 33

keygen_kcr_builder_add_protocol_specific_field(KEYGEN_KCR_PTYPE_1_FECID, NULL, &kb);

/* Add VF (Valid Field) for the previous extracted fields.

The required validity indication in this example is only on L4 source and L4 destination.

Therefore in the mask (first parameter of the function) only bits 2 & 3 are set. */

keygen_kcr_builder_add_valid_field_fec(0x30, &kb);

/* Get a key_id for this kcr */

keygen_kcr_create(KEYGEN_ACCEL_ID_CTLU, (uint8_t*)&kb.kcr, &key_id);

/* Extract the key from the default frame */

keygen_gen_key(KEYGEN_ACCEL_ID_CTLU, key_id, 0, (union ctlu_key*)&key, &key_size);

}

4.14.5 Table

The table module provides table management functions, and fast table lookup.

4.14.5.1 General

4.14.5.1.1 Feature List

• Exact Match (EM) Table management and Table lookup.

• Longest Prefix Match (LPM) Table management and Table lookup for both IPv4 and IPv6.

•

• Time stamping of table rules during creation, replacement or a Lookup hit.

• Default rule per table (Miss Rule) as described in the API.

• Reference count increment of context buffers upon a Lookup hit.

• Table storage in various memory locations as described in the API.

4.14.5.1.2 Terms & Concepts

Table (or Lookup Table)

Table is a data structure that provides fast search (lookup) operations. Each table has a unique table
identifier - Table ID (generated at table creation), contains a set of data elements called Rules and a has a
set of properties that are specified in more details in the table API.

Rule

A Rule is a table data element that is composed of a Key Descriptor, a Result and Rule Options field.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

34 NXP Semiconductors

Key Descriptor

A Key Descriptor (not to be confused with a Lookup Key Descriptor) describes a pattern for the matching
process. The description format is different per table type. For example, LPM Key Descriptors require
prefix length, while EM table Key Descriptors do not.

Reference Pointer

A pointer to a Slab acquired buffer. These buffers have a reference counter.

Result

A Result (Not to be confused with a Lookup Result) contains the main part of the data returned when a
Lookup match (hit) occurs or when a lookup miss occurs and the table is configured with a default result
(Miss Result).

A result could be of the following types:

• Opaque data.

• Opaque data and a Reference Pointer. Some of the Table module functions increment the reference
counter of the Slab/CDMA buffer. An API function that increments the reference counter specifies
it in its documentation.

Miss Result

A default Result that is configurable per table, returned after the Lookup process as part of the Lookup
Result if no match occurred.

Lookup Key Descriptor

A Lookup Key Descriptor (not to be confused with a Key Descriptor) describes a pattern for the Lookup
matching process. The description format is different per table type. For example, LPM Lookup Key
Descriptors require maximum prefix length for the lookup, while EM table Lookup Key Descriptors do
not.

Table Lookup

Lookup is the matching process of Lookup Key Descriptor against the table’s rules Key Descriptor. The
matching criteria depends on the type of the table. If a match occurs, or a miss occurs and a miss result
exists in the table the relevant result is returned.

Lookup Result

A Lookup Result is the lookup process result returned if a match was found; if a match was not found and
the table was configured, a Miss Result is returned. It contains the matched Rule’s Result, or the table Miss
Result, but can also contain additional fields (e.g. timestamp if enabled).

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 35

4.14.5.1.3 Basic Functionality

The table module allows the user to manage tables, manage the rules within the tables, and perform fast
lookup operations on the rules in the tables.

Exact Match Lookup

In Exact Match tables both Rules’ Key Descriptor and Lookup Key Descriptor are composed of a single
key which is a strict sequence of bytes (no wild cards allowed). A lookup match occurs when the key
described in the Lookup Key Descriptor matches exactly a key that is described in Rule’s Key Descriptor.

In case none of the Rules in the table matches the key Described in the Lookup Key Descriptor, the Miss
Result, if exists, is returned with a miss indication. If the Miss Result does not exist an indication of a miss
is returned.

Longest Prefix Match Lookup

In Longest Prefix Match (LPM) tables the Rules’ Key Descriptor (RKD) is composed of a:

• IPv4/IPv6 Address (IPaddr).

• Prefix Length (applies to the IPv4/IPv6 address).

• 4 Bytes of Exact Match Value (EM). (usage examples: IPv4 TOS, IPv6 Traffic Class)

The Lookup Key Descriptor (LKD) is composed of a:

• IPv4/IPv6 Address (IPaddr).

• Maximum Prefix Length (which applies to the IPv4/IPv6 address).

• 4 Bytes of Exact Match Value (EM). (usage examples: IPv4 TOS, IPv6 Traffic Class)

A Rule would be considered as the Lookup match if:

• LKD[EM] == RKD[EM]

• LKD[Maximum Prefix Length] >= RKD[Prefix Length]

• (LKD[IPaddr] & (0xFFF...FF << RKD[Prefix Length])) == (RKD[IPaddr] & (0xFFF...FF <<
RKD[Prefix Length]))

• There is no Rule that matches the above conditions and has a longer prefix.

In case none of the Rules in the table matches the key Described in the Lookup Key Descriptor, the Miss
Result, if exists, is returned with a miss indication. If the Miss Result does not exist an indication of a miss
is returned.

Timestamp

Table operations supports time stamping of Rules during Lookup hits, Rule creation and rule Replacement.
This feature can be enabled per rule through the Table API for all table types. The four byte timestamp is
taken from a sliding window over an eight byte timestamp of the TMAN module. The offset of the sliding
window is configured per by the Management Complex.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

36 NXP Semiconductors

Lookup by Key and Lookup by KeyID

The Lookup Key Descriptor, that is used in the Lookup process can be passed in one of two ways:

• Explicit pointer to the Lookup Key Descriptor structure located in the task’s work space.

• A KCR KeyID (refer to the Keygen section for more details) that suits the required Lookup Key
Descriptor can be passed causing the table module to generate the required Lookup Key Descriptor
and to perform the Lookup with it.

Reference Count Increment

The Table module supports reference count increment of buffers pointed by Reference Pointers stored in
Results. This is to avoid race conditions (e.g. buffer was deleted before the Reference Pointer reached the
Lookup initiator). To enable this option for a Result the result type should be set accordingly. The API
specifies which functions can perform this increment.

4.14.5.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides a SW interface for the Table operations through the followings
functions:

• Functions for Table creation, deletion and query.

• Functions for Miss Result replacement and query.

• Functions for Rule creation, replacement, deletion and query.

• Functions for Lookup by an explicit key.

• Functions for Lookup by a KeyID (Please refer to Keygen chapter for more information about
KeyID)

4.14.5.3 Usage Information

4.14.5.3.1 Exact Match

The following is an example for EM usage:

int table_exact_match_example()

{

uint16_t table_id;

uint8_t keysize = TABLE_EXAMPLE_EM_KEY_SIZE;

struct table_create_params table_params;

struct table_rule rule1 __attribute__((aligned(16)));

union table_lookup_key_desc lkup_key_desc;

uint8_t em_key[TABLE_EXAMPLE_EM_KEY_SIZE] __at‐

tribute__((aligned(16)));

struct table_lookup_result lookup_res __attribute__((aligned(16)));

uint8_t keyid;

uint8_t *kcr;

struct kcr_builder kc_builder __attribute__((aligned(16)));

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 37

/* KCR building, Please refer to Keygen section*/

keygen_kcr_builder_init(&kc_builder);

if (keygen_kcr_builder_add_constant_fec(SOME_CONSTANT,

TABLE_EXAMPLE_EM_KEY_SIZE,

&kc_builder)) {

/* Error Handling */

return ‐1;

}

kcr = kc_builder.kcr;

/* KCR creation, refer to Keygen section */

if (keygen_kcr_create(KEYGEN_ACCEL_ID_CTLU, kcr, &keyid)) {

/*Error handling */

}

/* Table Parameter Initialization

 * External (located in DDR) Exact Match Table, with a miss result, a

 * guaranteed number of 1000 rules and a maximum number of 2000 rules.

 * */

table_params.attributes = TABLE_ATTRIBUTE_TYPE_EM |

TABLE_ATTRIBUTE_LOCATION_EXT1 |

TABLE_ATTRIBUTE_MR_MISS;

table_params.committed_rules = 1000;

table_params.max_rules = 2000;

table_params.key_size = keysize;

/* Table Miss Result initialization ‐ Type Opaque */

table_params.miss_result.type = TABLE_RESULT_TYPE_OPAQUES;

table_params.miss_result.op0_rptr_clp.opaque0 = EIGHT_BYTE_USER_DATA_1;

table_params.miss_result.opaque1 = EIGHT_BYTE_USER_DATA_2;

table_params.miss_result.opaque2 = ONE_BYTE_USER_DATA_1;

/* Table Creation */

if(table_create(TABLE_ACCEL_ID_CTLU, &table_params,&table_id)) {

/* Error handling */

return ‐1;

}

/* Initialize a new table rule ‐ Type Opaque */

/* Rule's key generation. Please refer to Keygen section.*/

if(keygen_gen_key(KEYGEN_ACCEL_ID_CTLU,

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

38 NXP Semiconductors

 keyid,

 0,

 &(rule1.key_desc.em.key),

 &keysize)) {

/* Error handling */

return ‐1;

}

/* Rule Result Initialization */

rule1.result.type = TABLE_RESULT_TYPE_OPAQUES;

rule1.result.op0_rptr_clp.opaque0 = EIGHT_BYTE_USER_DATA_3;

rule1.result.opaque1 = EIGHT_BYTE_USER_DATA_4;

rule1.result.opaque2 = ONE_BYTE_USER_DATA_2;

rule1.options = TABLE_RULE_TIMESTAMP_NONE;

/* Add the rule to the table */

if(table_rule_create(TABLE_ACCEL_ID_CTLU, table_id, &rule1, keysize)) {

/* Error handling */

return ‐1;

}

/* Initialize a Lookup Key Descriptor*/

if(keygen_gen_key(KEYGEN_ACCEL_ID_CTLU,

 keyid,

 0,

 em_key,

 &keysize)) {

/* Error handling */

return ‐1;

}

lkup_key_desc.em_key = em_key;

/* Perform a lookup */

if(table_lookup_by_key(TABLE_ACCEL_ID_CTLU,

 table_id,

 lkup_key_desc,

 keysize,

 &lookup_res)) {

/* Error handling */

return ‐1;

}

/* It is expected that after the lookup:

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 39

 * lookup_res.opaque0_or_reference == rule1.result.op0_rptr_clp.opaque0

 * lookup_res.opaque1 == rule1.result.opaque1

 * lookup_res.opaque2 == rule1.result.opaque2

 * */

return 0;

}

4.14.5.3.2 Longest Prefix Match

The following is an example for LPM usage:

int table_longest_prefix_match_example()

{

uint16_t table_id;

struct table_create_params table_params;

struct table_rule rule1 __attribute__((aligned(16)));

uint8_t keyid;

struct table_lookup_result lookup_res __attribute__((aligned(16)));

uint8_t *kcr;

struct kcr_builder kc_builder __attribute__((aligned(16)));

/* KCR building, Please refer to Keygen section*/

keygen_kcr_builder_init(&kc_builder);

if (/* Fills the LPM exact match field with zeros */

 keygen_kcr_builder_add_constant_fec(0x00,

4,

&kc_builder)

 /* Extract the first IP header source address */

 || keygen_kcr_builder_add_protocol_specific_field(

KEYGEN_KCR_IPSRC_1_FECID,

NULL,

&kc_builder)

 /* Fills the maximum prefix so a lookup on all prefixes will be

 * performed */

 || keygen_kcr_builder_add_constant_fec(0xFF,

1,

&kc_builder)) {

/* Error Handling */

return ‐1;

}

kcr = kc_builder.kcr;

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

40 NXP Semiconductors

/* KCR creation, refer to Keygen section */

if (keygen_kcr_create(KEYGEN_ACCEL_ID_CTLU, kcr, &keyid)) {

/*Error handling */

}

/* Table Parameter Initialization

 * PEB (Packet Express Buffer Memory) LPM Table, without a miss result,

 * with a guaranteed number of 1000 rules and a maximum number of 2000

 * rules.

 * */

table_params.attributes = TABLE_ATTRIBUTE_TYPE_LPM |

 TABLE_ATTRIBUTE_LOCATION_PEB |

 TABLE_ATTRIBUTE_MR_NO_MISS;

table_params.committed_rules = 1000;

table_params.max_rules = 2000;

table_params.key_size = TABLE_KEY_LPM_IPV6_SIZE;

/* Table Creation */

if(table_create(TABLE_ACCEL_ID_CTLU, &table_params,&table_id)) {

/* Error handling */

return ‐1;

}

/* Initialize a new table rule with 2620:0000:0861:0001::/64 */

rule1.key_desc.lpm_ipv6.exact_match = 0x0;

rule1.key_desc.lpm_ipv6.prefix_length = 64;

rule1.key_desc.lpm_ipv6.addr0 = 0x2620000008610001;

rule1.key_desc.lpm_ipv6.addr1 = 0x0000000000000000;

rule1.result.type = TABLE_RESULT_TYPE_OPAQUES;

/* REMOVE COMMENT AND CHANGE COLOR */

rule1.result.op0_rptr_clp.opaque0 = EIGHT_BYTE_USER_DATA_1;

rule1.result.opaque1 = EIGHT_BYTE_USER_DATA_2;

rule1.result.opaque2 = ONE_BYTE_USER_DATA_1;

rule1.options = TABLE_RULE_TIMESTAMP_ENABLE;

/* Add a rule to the table */

if(table_rule_create(TABLE_ACCEL_ID_CTLU,

 table_id,

 &rule1,

 TABLE_KEY_LPM_IPV6_SIZE)) {

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 41

/* Error handling */

return ‐1;

}

/* Check if packet is IPv6 */

if (!PARSER_IS_OUTER_IPV6_DEFAULT()) {

/* Error handling */

return ‐1;

}

/* Perform a lookup */

if(table_lookup_by_keyid(TABLE_ACCEL_ID_CTLU,

 table_id,

 keyid,

 TABLE_LOOKUP_FLAG_NONE,

 NULL,

 &lookup_res)) {

/* Error handling */

return ‐1;

}

/* It is expected that after the lookup, if the frame suits

 * 2620:0000:0861:0001::/64, the following will be true:

 * lookup_res.opaque0_or_reference == rule1.result.op0_rptr_clp.opaque0

 * lookup_res.opaque1 == rule1.result.opaque1

 * lookup_res.opaque2 == rule1.result.opaque2

 * lookup_res.timestamp is filled with the timestamp

 * */

return 0;

}

4.14.6 Ordering Scope Manager (OSM)

The order scope manager (OSM) tracks the order scope of active tasks in the AIOP. It preforms mecha-
nism that supports task ordering and atomicity to meet specific software requirements. A task is always
part of at least one order scope unless no ordering is required.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

42 NXP Semiconductors

4.14.6.1 General

4.14.6.1.1 Feature list

• Order definition

• Executing exclusively

• Executing concurrently

• Order restoration

• Changing Order Scope

• Enter to a hierarchy of order scopes.

4.14.6.1.2 Terms & Concepts

Child

A child (cascade) is a cascade that is entered from a parent ordering scope when task software in the parent
calls osm_scope_enter().

Current Ordering Scope

The current ordering scope for a task is the deepest in hierarchy (max level) ordering scope that a task is
in at a given moment.

Concurrent Mode

Concurrent mode means that all tasks in the same ordering scope can run in parallel.

Exclusivity

A task executes exclusively in a context when only one task at a time may execute at the same time in that
context.

Flow

A flow is a unidirectional sequence of related packets. The relationship is defined by the packets having
the same values for some set of packet headers.

ID (ordering scope)

An ordering scope ID is a 32-bit value that uniquely identifies an ordering scope to the ordering scope
manager hardware in the AIOP.

Initial ordering scope

An initial ordering scope is the ordering scope that a task is automatically in when the task is created on
the AIOP. When a task is created because of a packet arrival, the ordering scope ID is normally defined in
part by a flow ID and the ingress order of the packet is captured in the initial ordering scope.

Level

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 43

Level is a state variable containing the position of an ordering scope in an ordering scope hierarchy. The
outermost ordering scope is at level 1.

Parent

When task software calls osm_scope_enter() from an ordering scope, that ordering scope becomes the
parent of a cascade that begins with the ordering scope named in the osm_scope_enter() call.

Transition

A task transitions from one ordering scope to another by means of the osm_scope_transition_to() function
call. A transition moves a task from one ordering scope to another at the same level in ordering scope
hierarchy.

4.14.6.1.3 Basic Functionality

When packets have a dependency then the order in which they are processed is important. For example,
packets of a flow (the same source/destination address, same source/destination port number, and same
protocol) must egress in the same order as ingress. There may be state information shared across these
dependent packets requiring not only order but exclusive access to shared state variables. Order Scopes
are the means to manage order and exclusive access requirements for packet processing.
Order scopes are represented by a value or scope ID that can be any unsigned 32bit number. The intent of
a Scope ID is to uniquely identify a flow more compactly than the packet header values from which it is
derived and hence is usually a hash on these values.
The value itself has no special meaning to the system except that tasks with the same scope ID must prog-
ress through its states according to ordering rules.
The progression is as follows:

order_definition --> wait_for_exclusive --> running_with_exclusive --> running_concurrent
--> waiting_for_transition --> order_restoration

Figure 8. Order Scope

Order definition (ODL) captures arriving packet order in a given order scope and defines the ordering for
following steps.
Waiting for exclusive (WX) is a waiting point within an order scope. Tasks that request to execute ini-
tially in the exclusive state block here waiting to enter executing exclusive state in the order which was

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

44 NXP Semiconductors

captured at the order definition line.
Executing exclusively (XX) is a state where the task can safely access shared variables. Note, exclusivity
is like a critical section in more familiar terms where the software convention is a safe zone for accessing
shared variables in a multi-programmed environment.The system assures only one task will be in this
state inside of any single order scope.
Executing concurrently (XC) is a state where a task either skips exclusivity or releases exclusivity and it
can continue to run but may not access shared variables. Any number of tasks may be in this state and no
order should be assumed.
Waiting for transition (WT) is a state where tasks wait before they are allowed to transition to another
order scope. Tasks block here waiting to transition to a new scope in the order which was captured at the
order definition line.
Order restoration (ORL) restores tasks to the order defined at the arrival into the order scope. Consider it
a line that restores the captured order.

4.14.6.1.4 Changing Order Scope

Order scope transition, moving from one order scope to another, is used by the task design to distinguish
and define necessary packet processing. Tasks may transition to the same or different subsequent order
scopes. For example, packets of an even number maybe distinguished from packets of an odd number by
transitioning them through different order scopes. Even packets would continue to be processed in order
relative to even packets but lose order with respect to odd packets. Below is an example method of a task
requesting to transition order scopes.

hash = classify_even_odd (packet) ;
osm_scope_transition_to_exclusive_with_new_scope_id (hash) ;

Order scope Enter/Exit is another method of changing order scope as a task proceeds. However on enter
the system remembers the previous order scope and returns there on exit. In other words the task may
enter a hierarchy of order scopes and its order will be preserved in each of its parent's order scope. Think
of it as a place holder in the parent order scope while some additional processing takes place in the child
order scope(s).
One note regarding the enter/exit. A task enters a child order scope from an executing phase in the parent
order scope. It is up to the task designer to use carefully the parent state of exclusive or concurrent execu-
tion. The safest bet is to enter a new order scope with exclusivity in the child requested, from the exclu-
sive state in the parent order scope, and at the same time release exclusivity in the parent order scope
(example of such below). This will maintain relative order in the child and parent order scopes.

osm_scope_enter_to_exclusive_with_increment_scope_id();

Notice that in the above API example, the current scope ID is incremented automatically so specifying a
new scope ID, is not needed.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 45

4.14.6.2 Functions Supplied by the Service Layer

The AIOP Service Layer provides a SW interface for the OSM through the followings functions:

• Functions for transition to exclusive.

• Functions for transition to concurrent.

• Functions for changing order scope.

• Functions for Enter/Exit to/from a hierarchy of order scopes.

• Function for getting current scope status.

4.14.6.3 Usage Information

This section describes how the OSM functions should be used.

4.14.6.4 Code example:

The following pseudocode illustrates the OSM transition/enter/exit functions/features summarized above.
The Initial ordering scope are actually defined via system configuration (Scope_ID=X).
First example: Transition from the current ordering scope to exclusive, concurrent and back to exclusive.

Figure 9. Transition commands example

void osm_transitions(void)

{

osm_scope_transition_to_exclusive_with_new_scope_id(A); /* Scope_ID=A */

/* Only one task (per scope_id) at a time may execute. */

/* Do some work */

osm_scope_relinquish_exclusivity(); /* Scope_ID=A */

/* All tasks in the same ordering scope can run in parallel. */

/* Do some work */

osm_scope_transition_to_exclusive_with_new_scope_id(B); /* Scope_ID=B */
/* Only one task (per scope_id) at a time may execute. */

/* Do some work */

}

ODL

WX
SID=A

XX

ORL

WT XXXC
SID=B

ORL

WT
SID=X

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

46 NXP Semiconductors

Second example: Enter to the next level of ordering scope in the hierarchy.

Figure 10. Enter/Exit commands example

void osm_enter_exit(void)

{

osm_scope_transition_to_exclusive_with_new_scope_id(A); /* Scope_ID=A */

/* Only one task (per scope_id) at a time may execute. */

/* Do some work */

osm_scope_enter_to_exclusive_with_new_scope_id(C); /* Scope_ID=C */

/* Only one task (per scope_id) at a time may execute. */

/* Do some work */

osm_scope_exit();

/* Now continue doing work in Scope_ID=A */

}

4.14.6.5 Status and Errors

The OSM functions don’t return any error or but may result in a fatal error. The scope status (i.e. concur-

rent or exclusive) and hierarchy level of the task is returned by osm_get_scope function. Errors will be

documented in a later phase.

4.14.7 Timer Manager Engine (TMan)

The TMAN is an module providing timers functionality.

4.14.7.1 General

4.14.7.1.1 Feature List

• Supports up to 252 TMI (timer Instances).

• Supports up 10M timers.

• Number of timers per TMI is configurable.

• Supports two types of timers:

ODL

WX
SID=A

XX

SID=C
XX

XC
SID=ASID=X

ODL

WX

ORL

WT

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 47

— One shot timer

— Periodic timer

• Timer granularity varies from micro-seconds to seconds.

• Supports timer query.

• TMI Features:

— Determine the maximum number of timers that can be created for this instance.

— Delete TMI results in deletion of all timers of this instance. At the end of the deletion process
a user function is called.

• 64 bit timestamp value counting in micro seconds.

4.14.7.1.2 Terms & Concepts

TMI - Timer Instance

TMI (Timer Instance) is a group of timers. TMI determines the maximum of timers that can be created for
this TMI.

Timer Granularity

Defines the time quanta of the timer tick. The accuracy of the timer is influenced by the value of the timer
granularity (E.g. a timer with a 1milli second granularity will be around 1000 times more accurate than a
timer with 1 second granularity).

Timer Duration

The number of timer ticks till the timer is expired.

Timer Free Pool

Timer free pool is a pool of free timers maintained for each TMI. Allocation of timers is done per TMI.
Each TMI maintains a free timer pool from which the new timers are allocated. Timers return to the free
pool upon timer delete or expiration for the last time and confirmed by the SW using a confirmation
command.

One Shot Timer

A type of timer that expires only one time. When one shot timer elapses, the timer is automatically marked
as deleted. The timer needs to be confirmed in order to move to the timer free pool.

Periodic Timer

A type of timer that expires each time its period elapses. A confirmation command should be called on
each timer expiration event. The periodic timer does not expire again until it is confirmed.

Expiration task

When a timer expires the TMAN will initiate a new AIOP task. This task is called the expiration task.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

48 NXP Semiconductors

Confirmation Command

When timer expires and an expiration task is generated, the expiration task must send a confirmation
command for this timer. The confirmation command indicates to the TMAN that the timer expiration event
was received and handled and that the timer can be freed to the timer free list (in case of a one shot timers)
or to get another expiration event (in case of periodic timers).

and that the timer expiration event was received and handled.

Confirmation command for TMI is needed after TMI deletion in order to free the TMI to the TMI free list.

4.14.7.1.3 Basic Functionality

The TMAN offloads the management of timers. The TMan manages the timers, and automatically initiates
AIOP tasks when timers expire. TMan timers may count in different granularities (microsecond - second)
and may have different properties as duration, priority, single-shot/periodic and other programmable
attributes.

When creating a timer the user must specify a callback function that is called upon the timer expiration.
This callback passes two parameters (an 8 byte parameter that contains a context pointer and a two byte
parameter). The callback function is called on a new task that is generated by the work scheduler. The
expiration task does not have a presented frame as it was not created due to packet reception but from a
timer expiration event.

TMan timers are associated to timer instances (TMIs). Each TMI may have multiple timers associated with
it. Each TMI has protection mechanisms (e.g. isolation context ID - ICID), to allow for the partitioning of
the timer resources within the system.

4.14.7.2 Functions Supplied by the Service Layer

The service layer provides a way to perform all the available timer and TMI operations:

• TMI Creation.

• TMI deletion.

• TMI Query.

• Timer creation.

• Timer deletion.

• Query timer.

• Confirming a timer expiration.

• Automatic registration of a timer expiration task to a callback function.

• Returning the number of missed expirations and timer handle while running in the timer expiration
task.

• Returning the TMAN timestamp value.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 49

4.14.7.3 Usage Information

Using The TMAN Timestamp Value

The TMAN TimeStamp (TS) value can be read using the function tman_get_timestamp. This function
returns a 64 bit value representing the number of microseconds passed from the time the TMAN was
initialized (by writing to TMan Initialization Register). As the initialization is done by the MC
(Management Complex) at boot time this time represents system up time.

Creating and handling a Timer Instance (TMI)

Before creating a timer there is a need to create a TMI which timer is associated to. This TMI enables the
application to control the number of timers and to delete all the associated timers upon the application
termination. The TMAN supports up to 252 TMIs.

TMI create uses an external memory buffer that is preallocated with the size of 64*max_num_of_timers.
This memory buffer address should be 64 byte aligned.

Upon TMI delete, all the associated timers are deleted then a new AIOP task is created and a user callback
function is called. The TMI delete operation is costly and may take a lot of time to perform.

Creating a timer

Timer is always associated with a TMI. Upon timer creation the following parameters are provided:

• Timer granularity.

• Timer duration, specified in the requested granularity scale. Note that the minimum duration that
can be configured to a timer is 11 and the maximum is (2^16)-11 (E.g. 1 mSec timer granularity
can have duration between 11 mSec to 65,525 mSec).

• Timer type (one shot/periodic)

• AIOP task priority (APRI) that should be given to the expiration task. This parameter is sent to the
AIOP core task scheduler and will determine the expiration task priority.

• TMAN priority (TPRI) that should be given to this timer. This value determines which of the
expired timers (in the same granularity that have already expired) will be sent to the work scheduler
first thus create an expiration task earlier.

• Callback function that should be called when the timer is expired.

• Two arguments that will be sent to the expiration callback function.

Timer create function returns a timer handle upon success. this handle is used, from now on, identify and
manage this timer.

The accuracy of a timer is defined by the granularity of the timer. E.g. if a 1 mSec granularity is chosen,
the accuracy will be ±2 mSec. Accuracy is affected upon the following:

• There is a heavy load on the AIOP cores and there are no available tasks to handle the expiration
tasks the accuracy will be affected.

• There are more than 4 timer expirations in the same 1 micro second.

Below is an example for choosing timer parameters for specific requirements:

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

50 NXP Semiconductors

Requirements:

• One shot timer.

• Time-out mechanism with a 1 minute time-out time.

• Accuracy of less than 1% of the timer duration.

Timer Parameters:

• One shot timer type should be chosen.

• Granularity should be set to 10 mSec.

• Duration should be set to 6000

• Task priority (APRI) to a mid priority (should have the same priority as the main process)

• A callback function to delete the frame’s context (for example) and arguments to the callback such
as a pointer to the relevant context.

Callback Completion Confirmation

The tman_timer_completion_confirmation function should be called at the end of each of the timer
expiration task. This function signals the TMAN block that the SW has processed the timer task. When
this signal is sent the TMAN will do the following:

• One shot timer - The TMAN will mark the timer as free to be reallocated to another use.

• Periodic timer - If an expiration task was created and the callback confirmation was not send, no
new expiration task will be created for this timer. The callback confirmation is a way for the TMAN
to lower the load on the AIOP cores by not overloading the system with expiration tasks.

Handling one shot timers

One shot timers are timers which expires only one time. When a timer elapses and a timer task is created
the user should call tman_timer_completion_confirmation function to inform the TMAN that the timer can
be signaled as free and can be reallocated.

In case the expiration task uses a context buffer and the timer should be deleted and the buffer should be
deallocated the user must follow the next guidelines:

Control task for timer deletion:

{

...
cdma_read_with_mutex(buff_address, CDMA_PREDMA_MUTEX_WRITE_LOCK, buff, size);
if (buff.valid){

status = tman_delete_timer(timer_handle, TMAN_TIMER_DELETE_MODE_WO_EXPIRATION);
if (status == success){

//close session code E.g. delete table entry
//The below line decrement the reference count and release only if the ref
//count reached zero.
slab_release(slab,buff_address);

}
//the below commented line is needed in case the buff_address came from a TLU lookup

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 51

//slab_release(slab,buff_address);
cdma_mutex_lock_release(buff_address);

}
else {

slab_release(slab,buff_address);
cdma_mutex_lock_release(buff_address);

}

Timer task code:

{

...
cdma_read_with_mutex(buff_address, CDMA_PREDMA_MUTEX_WRITE_LOCK, &buff, size);
//close session code E.g. delete table entry
buff.valid = 0;
cdma_write_with_mutex(buff_address, CDMA_POSTDMA_MUTEX_RM_BIT, &buff, size);
slab_release(slab,buff_address);
tman_timer_completion_confirmation(buff.timer_id);

}

Handling periodic timers

The period of periodic timer is defined by duration and granularity.

Deleting a periodic timer must be called only at the expiration task and after a completion confirmation
was sent to this timer.

In periodic timers there is a situation where processing the expiration task takes more time than the timer
period. In this case in the next expiration the user gets an indication that more than one expiration event
has happened. The counter that indicates how many missed expirations happened can be read in the
expiration task using get_tman_missed_expirations macro.

The bellow figure depicts the above mentioned scenario:

Figure 11. Periodic Timer expiration example with short timer duration

When the above scenario occurs and the delete timer function is called, the delete may fail as the timer is
waiting for confirmation (when using the force expiration delete option) or it is currently processing the
timer and it cannot delete it. In this case the delete need to be re-issued in the next timer expiration.

Time

TMAN

AIOP SW

Timer EX1

Task

Timer Expires

Timer is created by
issuing a command

Timer Timer is active and
counting

MISSED EXP CNT=0

Timer EX2

Timer Expires

Timer is active and
counting

Timer is active and
counting

CB1

Timer EX3

Timer Expires

Task

MISSED EXP CNT=1

‘Missed expiration’ : No
task is initated since EX1
has not received call
back completion

Timer period Timer period Timer period

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

52 NXP Semiconductors

4.14.7.4 Status and Errors

Errors will be documented in a later phase.

4.14.8 Statistics Engine (STE)

The Statistics Engine (STE) is a module that provide atomic operation to update statistics counters (32 and
64 bit counters) residing in external memory, PEB memory and System L3 Cache configured as SRAM.
STE enables counters to be updated by several tasks at the same time.

4.14.8.1 General

4.14.8.1.1 Feature List

• Support 32 and 64 bit counters.

• Supporting counters that reside in DDR, PEB and system L3 cache configured as SRAM.

• Counter saturation or wrap around modes.

• Setting a value to a counter.

• Atomically Incrementing and decrementing counters.

• Atomically incrementing a counter and an accumulator with a single command.

• Barrier command.

• Merging commands that are targeting the same 16 byte memory address.

4.14.8.1.2 Basic Functionality

STE commands are done in a fire and forget manner. This means that:

1. There is no task switch as a result of the update.

2. The counter update is a non-blocking operation (the core is not stalled until the update has
occurred).

An update of counters can be also done using regular memory locking mechanisms (given by the CDMA
module) but the simplicity of the STE commands and the fire and forget manner gives them an advantage
over a regular memory locking mechanism.

4.14.8.2 Functions Supplied by the Service Layer

The STE supports four types of commands:

1. Set commands that enable to set a specific value in a counter.

2. An increment/decrement commands that adds or subtracts a specific value from a counter.

3. A compound command that updates two counters, the first counter is incriminated/decremented by
one and the other counter (accumulator) that is added/subtracted by a given value.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 53

4. A barrier command. This command will flush all the STE commands that are currently pending in
the STE module.

4.14.8.3 Usage Information

For DDR performance optimization the following is recommended:

1. Location of counters that are updated by a single application flow are recommended to be in the
same DDR line.

2. Update counters located in the same DDR line in adjacent code lines. The command will return
only after all the pending update requests have completed.

When using the STE compound commands (changing two counters in a single command) the two counters
must be located in the same 16 byte boundary (i.e. the first counter is located in a 16 Byte aligned address).

Read the counter value is done with CDMA module, in this case the CDMA module fetches a snapshot of
the counter. Since STE counter is updated in a fire and forget manner and CDMA and STE modules are
not synchronized, CDMA fetches the value that is currently stored in the memory (not necessarily the most
updated value).

Barrier command is used prior to deallocation of an application context which includes STE counters. This
command flushes all pending STE commands to make sure that there is no additional access to the context.
Before calling the barrier command the user makes sure that all tasks using this context have ended.

Example:

Updating two counters, the first counts the total number of received packets and the second the total
number of bytes in these packets (including Ethernet and IP headers). The first counter is a 32 bit counter
and the second one is a 64 bit counter. Both counters will not wrap around when they will reach their
maximum number.
ste_inc_and_acc_counters((app_context_addr + offsetof(struct app_context, total_in_pkts)),
LDPAA_FD_GET_LENGTH(HWC_FD_ADDRESS), STE_MODE_COMPOUND_32_BIT_CNTR_SIZE |
STE_MODE_COMPOUND_64_BIT_ACC_SIZE);

Where

The macro LDPAA_FD_GET_LENGTH(HWC_FD_ADDRESS) returns the number of bytes in the
frame.
struct app_context{
...
 uint64_t total_in_pkts; /* In rcvd pkts */
 uint64_t total_in_bytes; /* In rcvd bytes */
...
};

For more information on each of the STE commands see the STE API documentation.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

54 NXP Semiconductors

4.14.8.4 Status and Errors

As the STE works in a fire and forget manner the STE commands does not return status. Errors will be
described in a later version.

4.15 Functional Modules

functional modules are a set of modules providing a full functionality for a specific function or RFC.

4.15.1 IP Reassembly module

The IP Reassembly functional module is a set of functions enabling the reassembly of IPv4 or IPv6
fragments into one IP packet (according to RFC 791 and RFC 2460).
The fragmentation divides the data of a long datagram into fragments on 8 octet (64 bits) boundary and
the IP Reassembly module rebuilds the original IP frame based on the IP fragments.

4.15.1.1 General

4.15.1.1.1 Feature List

• Reassembly of IPv4 and IPv6 fragments.

• Support of multiple IPR instances.

• IP fragments may be received in order or out-of-order.

• Maintains order between reassembled frames and regular frames received on the same ordering
scope.

• IP Reassembly supports a maximum of 64 fragments per frame.

• IP Reassembly supports input Scatter/Gather fragments.

• Error handling for malformed fragments.

• Minimum size of First/Middle fragment is limited according to user configuration.

• User configurable reassembly timeout.

• Provides SF (Start of Fragment) indications within the reassembled frame which indicates the
original fragments boundaries.

• The reassembly of fragments does not lose indication of congestion.

• Statistics. There are two sort of counters:

a) Generic counters which are always maintained. These counters are handled internally per
instance and can be read only by calling the statistics function.

b) Optional counters. These counters are handled only if the extended statistics flags is set. In this
case, these counters are maintained consecutively from the statistics address provided upon
instance creation.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 55

4.15.1.1.2 Terms & Concept

IPR Instance

IPR instance maintains parameters and memory allocation related to an instance.

Open Reassembled frame

Frame which started reassembly process, meaning that at least one fragment of this frame was handled and
the reassembly of the frame is not finished, waiting for other fragments.

Opening fragment

First handled fragment of a frame (not necessary the fragment with frag offset=0)

Closing fragment

Last handled fragment of a frame; this fragment completes the frame, no more fragments are expected for
the reassembly of the frame.

4.15.1.1.3 Basic Functionality

The reassemble function gathers fragments belonging to the same original IP frame and returns the
reassembled frame once the reassembly is completed.

The reassemble function handles IPv4 and IPv6 frames if enabled upon the instance creation. User
provides the number of maximum expected concurrent reassembled frames for IPv4 and IPv6. In addition
user controls the memory location for the tables used in the IP reassembly process; as PEB memory, DDR1
memory or DDR2 memory.

The reassembly of fragments does not lose indication of congestion. This means that if any fragment of an
IP packet to be reassembled has the CE code point set, then the CE code point is set on the reassembled
packet. However, this will not occur if any of the other fragments contributing to this reassembly carries
the Not-ECT code point. In this case an error is returned to the caller.

Ordering scope

The reassembly function should be invoked for every IP fragment that should be reassembled.
Regular frames belonging to the same ordering scope as IP fragments that should be reassembled, should
also invoke the reassembly function. Invoking this function can be done when the task is currently working
in concurrent mode or in exclusive mode. All the fragments belonging to the same reassembled frame
should be associated to the same ordering scope and should enter the reassembly function in the same
ordering scope mode (concurrent or exclusive).

Due to performance optimization, the reassemble function can work concurrently on several reassembly
frames. In order to get parallelism, fragments should enter the reassemble function in concurrent mode and
2 hierarchal levels of ordering scope should be free. In this case, the reassemble function increments the
ordering scope by 1. In case there is not enough free hierarchical levels of ordering scope, the reassembly
is done serially and an indication is returned to the caller.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

56 NXP Semiconductors

In case the fragments enter the reassemble function in exclusive mode, the reassembly is done serially and
the ordering scope is kept intact.

When returning from this function, the task returns to the same ordering scope mode (exclusive or
concurrent) in which it entered to the function.

4.15.1.2 Service Layer functions

The IP Reassembly API includes the following functions:

3. Creating, deleting and updating an instance.

4. Reassembly of a fragment into its reassembled frame.

5. Statistics.

4.15.1.3 Usage Information

The following functions should be used for creating a reassembled frame.

1. ipr_create_instance() should be called once per application registration. This function allocates
buffers needed for the ipr processing. It also creates IPv4 and IPv6 tables according to number of con-
current reassembled frames and table memory location. User also provides time-out parameters.

2. ipr_delete_instance() should be used when application is unregistered. This function releases
tables and allocated buffers related to the instance.

3. ipr_reassemble() should be called for any frame (both regular and fragment). This is required for
ordering maintenance.

4. ipr_get_reass_frm_cntr() should be used for retrieving the number of reassembled frames per
instance.

4.15.1.3.1 Usage example for ipr create instance

static void instance_creation()

{

struct ipr_params ipr_demo_params;

ipr_instance_handle_t ipr_instance = 0;

ipr_instance_handle_t *ipr_instance_ptr = &ipr_instance;

fsl_os_print("Running app_init()\n");

ipr_demo_params.max_open_frames_ipv4 = 0x10;

ipr_demo_params.max_open_frames_ipv6 = 0x10;

ipr_demo_params.max_reass_frm_size = 0x1000;

ipr_demo_params.min_frag_size_ipv4 = 0x40;

ipr_demo_params.min_frag_size_ipv6 = 0x40;

ipr_demo_params.timeout_value_ipv4 = 0x1000;

ipr_demo_params.timeout_value_ipv6 = 0x1000;

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 57

ipr_demo_params.ipv4_timeout_cb = 0;

ipr_demo_params.ipv6_timeout_cb = 0;

ipr_demo_params.cb_timeout_ipv4_arg = 0;

ipr_demo_params.cb_timeout_ipv6_arg = 0;

ipr_demo_params.flags = IPR_MODE_TABLE_LOCATION_PEB;

ipr_demo_params.tmi_id = 0;

fsl_os_print("ipr_demo: Creating IPR instance\n");

err = ipr_create_instance(&ipr_demo_params, ipr_instance_ptr);

if (err)

fsl_os_print("ERROR: ipr_create_instance() failed\n");

}

4.15.1.3.2 Usage example for calling reassemble function

static void process_packet_flow0 ()

{

int reassemble_status;

if (PARSER_IS_IP_DEFAULT())

{

reassemble_status = ipr_reassemble(ipr_instance_val);

if (reassemble_status == IPR_REASSEMBLY_SUCCESS)

{

/* continue processing */

}

}

fdma_terminate_task();

}

4.15.1.4 Status and Errors

Status

Please refer to the API.

IPR errors and timeout will be documented in a later phase.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

58 NXP Semiconductors

4.15.2 IP Fragmentation

The IP Fragmentation module is a set of functions enabling the fragmentation of IPv4 or IPv6 frames
(according to RFC 791 and RFC 2460).

4.15.2.1 General

4.15.2.1.1 Feature List

• Support 2 modes of fragmentation on the outer IP header:

— Fragment a frame according to a given MTU

— Restoring the original fragments of a reassembled frame (which has SF (Start Fragment)
indications indicating the fragments boundaries).

• IPv4 fragments ID is copied from the original frame.
IPv6 ID is randomly generated for each frame, and this ID is copied to each of the frame’s
fragments.

• Support fragmentation of IPv4 fragments.

4.15.2.1.2 Basic Functionality

IP fragmentation function creates a single fragment out of the source frame and locates it in the default
frame location in the workspace. During fragmentation of an IPv4 frame, the whole IPv4 header, including
options, is copied to each fragment (regardless of the copy bit in each option header). During
fragmentation of an IPv6 frame, the unfragmentable part (according to RFC 2460) is copied to each
fragment and a fragment extension is added. The remaining source frame remains open until fragmentation
process is complete. Fragmentation is done either according to MTU, or by restoring the IP payload of a
reassembled frame (the original headers are not restored. Instead, the reassembled frame’s header is
inserted to each fragment). The latter mode can work only if the input frame has SF (Start Fragment)
indications set in some of its SGEs, indicating the fragments boundaries.

4.15.2.2 Functions Supplied by the Service Layer

The IP Fragmentation API includes the following functions:

1. Function for initialization of IP fragmentation context per frame.

2. Function for generation of a single IP fragment.

3. Function for discarding the remainder of the frame being fragmented in case the user decides to
stop the fragmentation process before its completion. This function is needed since the user cannot
access the remainder of the fragmeted frame

4.15.2.3 Usage Information

When a frame’s IP Length exceeds the MTU and fragment should be generated the following functions
should be called:

1. ipf_context_init() in order to initialize the frame’s ip fragmentation context.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 59

2. ipf_generate_frag() in order to create a single fragment.
This function should be called repeatedly until fragmentation process is complete.

4.15.2.3.1 Fragmentation According to MTU

The following example shows a case in which IP Fragmentation module is used to fragment a frame
according to MTU.

void fragmet_a_frame()

{

uint16_t mtu = 1024;

ipf_ctx_t ipf_context_addr;

int ipf_status;

/* Check if ip length > MTU */

if ((LDPAA_FD_GET_LENGTH(HWC_FD_ADDRESS) ‐ PARSER_GET_OUTER_IP_OFFSET_DEFAULT())> mtu)

{

/* Initialization of IPF context structure that is used for the

IP fragmentation process */

ipf_context_init(IPF_NO_FLAGS, mtu, ipf_context_addr);

do{

ipf_status = ipf_generate_frag(ipf_context_addr);

/* The fragment that was generated is now the defult frame of the task */

continue processing of the fragment...

.

.

end flow (e..g. fdma_store_and_enqueue_default_frame_fqid();)

} while (ipf_status == IPF_GEN_FRAG_STATUS_IN_PROCESS);

} /* Note that at this point the task doesn’t have any open frame */
}

4.15.2.3.2 Fragment Restored Fragments

The following example shows a case in which IP Fragmentation module is used to restore the original
fragments, and used again in order to fragment each restored fragment according to a new MTU.

void fragmet_a_fragment()
{

uint16_t mtu = 1024;

ipf_ctx_t ipf_context_addr1, ipf_context_addr2;

int ipf_status1, ipf_status2;

/* Initialization of IPF context structure that is used for the

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

60 NXP Semiconductors

IP fragmentation process */

ipf_context_init(IPF_RESTORE_ORIGINAL_FRAGMENTS, 0, ipf_context_addr1);

do{

ipf_status1 = ipf_generate_frag(ipf_context_addr1);

continue processing of the fragment...

.

.

/* Check if frame length > MTU */

if ((LDPAA_FD_GET_LENGTH(HWC_FD_ADDRESS) ‐

PARSER_GET_OUTER_IP_OFFSET_DEFAULT())> mtu) {

ipf_context_init(IPF_NO_FLAGS, mtu, ipf_context_addr2);

do{

ipf_status2 = ipf_generate_frag(ipf_context_addr2);

continue processing of the fragment...

end flow (e.g.

fdma_store_and_enqueue_default_frame_fqid();)

} while (ipf_status2 == IPF_GEN_FRAG_STATUS_IN_PROCESS);

}

} while (ipf_status1 == IPF_GEN_FRAG_STATUS_IN_PROCESS);

/* Note that at this point the task doesn’t have any open frame */

}

4.15.2.3.3 Ordering

IPF module is not aware of ordering and does not change the order scope. Ordering should be handled by
the application according to the following recommendations:

• For best performance it is recommended to work concurrently, and move to exclusive mode before
enqueuing the last fragment (also regular frame should move to exclusive mode before enqueue).
From this point transition to concurrent is not allowed, thus the whole segmentation process will
be done exclusively. This way fragments of different frames will be interleaved but ordering will
be kept between the last fragments of different frames and between regular frames.

For example: Given 3 frames A, B, C (received in AIOP in this order).
Frames A & C should be fragmented, frame B is a regular frame.
After IPF process, enqueue may be done in the following order:
A1, A2, C1, A3, B, C2, C3.

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 61

Figure 4-1. Exclusive Mode Transition on Last Fragment

• Alternately, in case there are mixture of very long and very short frames in the system, interleaving
may cause timeout on the receiver side. In order to prevent this, user can move to exclusive mode
before calling IPF init (also regular frame of the same flow will move to exclusive at this point).
From this point transition to concurrent is not allowed, thus the whole segmentation process will
be done exclusively. This way the whole fragmentation process will be done exclusively and there
will be no interleaving between fragments.

For example: Given 3 frames A, B, C (received in AIOP in this order).
Frames A & C should be fragmented, frame B is a regular frame.
After IPF process, enqueue will be done in the following order:
A1, A2, A3, B, C1, C2, C3.

Figure 4-2. Exclusive Mode Transition Before Fragmentation

Service Layer Concept

AIOP User Manual, Rev. 8, 12/2017

62 NXP Semiconductors

• Note that in case IPSec resides later in the flow, the latter must be used, meaning - user should move
to exclusive mode before calling IPF init. (This is due to IPSec limitation).

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Chapter 5 Order scope manager: hardware overview

5.1 Discussion of the ordering scope manager

This section defines the AIOP hardware feature called ordering scopes. The ordering scope manager
(OSM) is a hardware component within the AIOP that provides ordering scopes that assist in ordering
packet processing, and also can provide for exclusive packet “flow” processing. It is best to think of this
section as being software-oriented, and a more abstract explanation of the material. It is intentionally
written to be simple and accessible; this section describes ordering scopes largely in terms of abstractions
(operations) that are closely related to the ordering scope APIs.

The purpose of this section is to present and explain a procedural model that defines ordering scopes and
their behavior. It does not intend to describe ordering scope hardware implementation. As an example, an
implementation may optimize task movement from stage to stage. A task leaving the XC stage with
trans_order equal to 0 need not go to the WT stage, even though it is functionally correct for it to do so as
this document describes. The purpose of this section is simple definition of behavior, not implementation
optimization.

5.1.1 Purpose of ordering scopes

This section describes the purpose of ordering scopes in systems that process network packets in parallel.

Packet Order and Flows

Networking systems receive, process, and send packets. It is often required that packets be sent in the same
order in which they were received. Also, it is sometimes helpful if some of the packet processing is done
on packets in ingress order. These requirements are in conflict with uncontrolled parallel processing of
packets; for example, suppose packet A arrived and then packet B, but both are processed in parallel. It is
possible that B’s processing completes first and then B might be sent before A.

These difficulties can be reduced by taking advantage of the fact that packets are often not related to each
other; this means that a “flow” is a unidirectional sequence of packets that are related. Packets that are part
of the same flow must be correctly ordered. However, it is often acceptable that order is not maintained
between packets of different flows. This is very helpful because it permits packets from different flows to
be processed in parallel with little or no order control or other interactions. Parallelism can be greatly
enhanced if the network traffic being processed contains packets from many flows.

As an example of flows, consider TCP sessions. Packets that are part of the same TCP session are part of
the same flow. System designers determine the relationship between packets that define flows. In many
cases, packets can be classified according to a standard 5-tuple of packet headers:

• Protocol (UDP, TCP and more)

• IP source address

• IP destination address

• Source port

• Destination port

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

Packets with the same 5-tuple are part of the same flow in this example.

Accessing Flow State

The observation that network traffic may be divided into flows raises another topic. Quite often, the
processing of packets requires the maintenance of state information on a per-flow basis. For example,
processing may need to keep track of the TCP state machine for each TCP flow.

The problem is that two packets from the same flow may be processed in parallel. If they both update their
flow state in parallel, the update can be inconsistent. The requirement is that the updates are done
atomically and perhaps in ingress order; the update for one packet must be started and completed before
the update for the other packet is started.

Ordering Scopes

Ordering scopes are a hardware-supported mechanism available in AIOP. They assist the software in
meeting the ordering and atomicity requirements presented above. Ordering scopes:

• Allow control of packet ordering on a flow basis.

• Permit packets, even from the same flow, to be processed in parallel without permanently
abandoning packet ordering; packets are allowed to complete a processing step out of order, but
then enter another step in order.

• Support enforcement of a restriction that packets from the same flow cannot perform a processing
step in parallel; this supports atomicity.

5.1.2 Terminology and textual conventions

Before defining ordering scopes, it is useful to define some terms that describe how ordering scopes relate
to tasks. Tasks are almost always in at least one ordering scope; see section 5.1.10 for the exception. Tasks
can invoke ordering scope operations to move from ordering scope to ordering scope; Figure 5-1 is an
example that depicts the ordering scopes that a task might use during its life cycle. Note that the description
is very AIOP task centric, and the diagram labels in red (current, parent, and so on) refer to one task's place
at a given moment in its traversal of the ordering scopes during its lifetime.

Figure 5-1. Cascade

This diagram allows several observations and term definitions. There are four ordering scopes.

• Ordering scopes have IDs: “w”, “x”, “y”, and “z” in the diagram. The IDs are 32-bit integers.

• Tasks are created in an initial ordering scope, “w” in diagram.

currentpreceding subsequent

now

cascade

transition transition transition
w x y z

initial

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 3

• Tasks can move from ordering scope to ordering scope in sequence using an operation called a
“transition”.

• The ordering scope that a task is in at a given moment is that task's “current” ordering scope, “x”
in the diagram. At this moment, the task could transition to y, and “y” would become its current
ordering scope.

• A task transitions from the current ordering scope to the “subsequent” ordering scope. The old
current ordering scope then becomes the new “preceding” ordering scope.

• For a task, a sequence of ordering scopes connected using the transition operation is called a
“cascade” of ordering scopes. A cascade is ordered. In Figure 5-1, “w, x, y, z” is a cascade. In
Figure 5-2 below “t, u” is a cascade and so is “w, x, y, z”.

A task may use ordering scopes hierarchically. Hierarchy is the means by which a task can be “in” more
than one ordering scope at the same time. Figure 5-2 shows an example and allows more observations and
definitions.

Figure 5-2. Another example

• The diagram shows a cascade “t, u” at level 1 in the task's ordering scope hierarchy.

• The “enter” operation allows a task to enter the next level of hierarchy.

• The “enter” operation is performed from a specific ordering scope (“u” in the diagram) that
becomes the “parent” ordering scope of the next level in the hierarchy.

• After “entering” a new level in the ordering scope hierarchy, the task can transition and form a
cascade, “w, x, y, z” in the diagram. This cascade is at level 2 in the diagram.

• The diagram refines the notion of the task's “current” ordering scope. At any given moment, the
ordering scope that a task is in at the deepest level is the current ordering scope, or “x” in the
diagram.

• At the moment shown in the diagram, the task is in ordering scope “u” and ordering scope “x” at
the same time, but “x” is still current.

• The “exit” operation allows a task to leave a level in the hierarchy. The ordering scope in which an
exit is done ends the “child cascade”. Parents are ordering scopes; children are cascades. This is a
bit of a technicality that is motivated by the fact that it is strange to think of ordering scope “x” to
be a child of ordering scope “u” because the task did not get to “x” directly from “u”. Think of
“enter” as causing entry to a child cascade. The child cascade may of length 1.

transition transition transition

transition
t u

w x y z

initial

current

now

enter

exit

cascade

For the task, ordering
scope “u” is the parent
of the cascade.

parent

level 2

level 1

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

4 NXP Semiconductors

• The exit operation leaves the current child cascade. In the diagram, the exit is done from ordering
scope “z”. It is tempting to think of the “exit” as returning the task to ordering scope “u” but this
is wrong. The task was in “u” all along. Remember that hierarchy allows tasks to be in more than
ordering scope at the same time. This detail is very important to understanding how ordering scope
hierarchy impacts order preservation. This will be explained below after ordering scopes are fully
defined.

• It is correct that the “exit” causes ordering scope “u” to become current again.

Summary of order scope manager operations

The section above introduced three operations on ordering scopes.

1. scope_transition_to: transition: move from one ordering scope to another at the same level in a
hierarchy.

2. scope_enter: enter a new ordering scope one level deeper in a hierarchy.

3. scope_exit: leave a level in a hierarchy.

These and one additional operation will be fully defined below.

4. relinquish_exclusivity: allow concurrent tasks in an ordering scope.

Code blocks

In this document “code blocks” are used for two purposes:

• Pseudo code examples of task processing and task calls to ordering scope operations.

• Pseudo code that defines ordering scope behavior using a procedural model.

At this point a code block can show the sequence of ordering scope operations that would take a task
through the ordering scopes shown in Figure 5-2. Ellipses hide operation parameters that have not been
described yet. Code blocks are shown in the font below:

initial ordering scope: t, ..; // Initial ordering scope are actually
// defined via system configuration

scope_transition_to(u, ..);
// Do some work

scope_enter(.., w, ..);
// Do some work

scope_transition_to(x, ..);
// This is "now" in the figure. Some work is done.

scope_transition_to(y, ..);
// Do some work

scope_transition_to(z, ..);
// Do some work;

scope_exit();
// Now continue doing work in "u"

Ordering scope hierarchy supports more than two levels. See Figure 5-3.

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 5

Figure 5-3. Three-level example

At moment “now”, the ordering scope “r” is current. The task is in ordering scopes “p”, “q”, and “r” at the
same time. The enterprising reader could:

• Give IDs to the rest of the ordering scopes in the figure.

• Identify 4 cascades in the figure.

• Write the pseudo code that would take a task through the ordering scopes in the figure even though
ordering scopes have not been fully defined yet!

The term “encompassing”

Hardware documentation may use the term “encompassing” in reference to ordering scopes. For a task, an
encompassing ordering scope is an ordering scope that a task is in but at a level above (lower value of level)
than the current ordering scope. For example, in Figure 5-3 “r” is current for the task, and “q” and “p” are
both encompassing.

The term is intended to emphasize the following.

• A task can enter a child cascade only by calling scope_enter() from an ordering scope that will
become the parent. The call (by definition) can only be made from a progressing stage (XX or XC)
of the parent.

• From an ordering scope within the cascade, the task may call scope_exit() to leave the cascade. The
task will then be executing (progressing) in either the XX or the XC stage of the parent. There is
no other choice.

Pseudo code conventions

As mentioned above, operations involving ordering scopes will be defined using pseudo code. In the text,
blocks of pseudo code are shown in a special font. Also, assume that all actions in pseudo code blocks are
performed atomically on a per-task basis, i.e. two tasks cannot make the updates shown in pseudo code
blocks at the same time. Keep in mind that this document describes a model that defines the behavior of
ordering scopes. It does not describe the implementation of ordering scopes in hardware.
this_os.level = 0; // This is an arbitrary example of some
this_os.trans_order = 0; // pseudo code.

transition transition transition

transition
p

r

q

initial

enter

exit

parent

transition transition

current

enter

exittransition transition

enter

exit

now

parentlevel 2

level 1

level 3

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

6 NXP Semiconductors

See table 5-2 and table 5-3 for variables and conventions in pseudo code and its descriptions.

In the pseudo code, C language operators such as

• “-” post-decrement

• “++” post-increment

• “..” is sometimes used to indicate that the value of a parameter is not material to an example.

are used.

Table 5-1. Terms and definitions

Term Definition

cascade A cascade of ordering scopes is a sequence of ordering scopes at the same level that tasks travel
through by means of transition operations.

child A child (cascade) is a cascade that is entered from a parent ordering scope when task software in
the parent calls scope_enter().

current The current ordering scope for a task is the deepest in hierarchy (max level) ordering scope that a
task is in at a given moment.

entry A task enters a child cascade by means of the scope_enter() function. An ordering scope entry
increases level by one.

exclusivity A task executes exclusively in a context when only one task at a time may execute at the same time
in that context. In this document, the “context” is always the XX stage of an ordering scope.

exit A task exits a child cascade by means of the scope_exit() function. An ordering scope exit
decreases level by one.

flow A flow is a unidirectional sequence of related packets. The relationship is defined by the packets
having the same values for some set of packet headers.

flow hash A flow hash is a hash formed from a key that is in turn formed by concatenating the set of packet
headers that define a flow.

ID (ordering
scope)

An ordering scope ID is a 32-bit value that uniquely identifies an ordering scope to the ordering
scope manager hardware in the AIOP.

initial ordering
scope

An initial ordering scope is the ordering scope that a task is automatically in when the task is
created on the AIOP. When a task is created because of a packet arrival, the ordering scope ID is
normally defined in part by a flow ID and the ingress order of the packet is captured in the initial
ordering scope.

level Level is a state variable containing the position of an ordering scope in an ordering scope hierarchy.
The outermost ordering scope is at level 1.

parent When task software calls scope_entry() from an ordering scope, that ordering scope becomes the
parent of a cascade that begins with the ordering scope named in the scope_entry() call.

this_os In pseudo code, this_os refers to the current ordering scope.

transition A task transitions from one ordering scope to another by means of the scope_transition_to()
function call. A transition moves a task from one ordering scope to another at the same level in
ordering scope hierarchy.

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 7

5.1.3 Diagram view of ordering scopes

One can represent ordering scopes diagrammatically as a box. The horizontal dimension of the box
represents temporal progress though the ordering scope. See Figure 5-4.

In the diagram, time flows from left to right. When a task enters or transitions to an ordering scope, it
comes into it across the left edge in the diagram. The order in which tasks come into the ordering scope is
captured at this point. Tasks then move into a stage within the ordering scope as described below.

Figure 5-4. Ordering scope diagram

Tasks move from stage to stage from left to right, but need not progress through all of the stages.

Figure 5-4 shows 3 tasks in the ordering scope's WX stage, one in the XX stage (at most one task can be
in this stage), two in the XC stage (running concurrently) and one on the WT stage.

5.1.4 Ordering scope stages

This section defines the stages that exist within an ordering scope.

Waiting for Exclusivity (WX)

Tasks that request exclusivity enter the WX stage. It exists to control order of entry into the XX
stage. The WX stage is “waiting” stage in that task software is not progressing while the task is in
the stage.

Executing Exclusively (XX)

At most one task may be in an ordering scope's XX stage at one time. This state exists to provide
a mechanism for tasks to execute exclusively (one at a time) within an ordering scope. This also
assists in controlling the order in which accelerator calls is made. The XX stage is a “progressing”
stage meaning that task software is progressing, i.e. running normally. The task is not waiting.

Executing Concurrently (XC)

Tasks that do not request exclusivity move immediately to the XC stage.

Any number of tasks may be in an ordering scope's XC stage at one time. This stage exists to allow
tasks in the same ordering scope to run in parallel. The XC stage is a “progressing” stage.

Waiting to Transition (WT)

Waiting for
Exclusivity (WX)

Executing
Exclusively

(XX)

Executing
Concurrently

(XC)

Waiting to
Transition

(WT)

Time

T T T T

T

T
T

Progressing Stage Progressing Stage Waiting StageWaiting Stage

Order Capture
Point

Tasks arrive on
the left edge

TT

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

8 NXP Semiconductors

Tasks move to the WT stage when task software requests an ordering scope transition operation.
The WT stage exists to control the order in which tasks transition to a new ordering scope at the
same hierarchy level as the current ordering scope.

Tasks in the WT stage await their turn to transition in the order that was captured at the start (left
edge) of the ordering scope. The WT stage is a “waiting” stage in that task software is not
progressing while the task is in the stage.

Stages XX and XC are “progressing” stages. This means that the ordering scope manager permits but does
not require task software to execute in these stages. Thus, being in a progressing stage does not imply that
task software actually runs the whole time the task is in the stage. For the task may have an invoked an
AIOP accelerator and be awaiting a result from it.

5.1.5 Ordering scope name space

Ordering scopes have IDs that are 32-bit values and are global within an AIOP instance. Thus, the name
space of ordering scope IDs is the set of integers from 0 to 232 - 1.

For the most part the OSM hardware does not assign any meaning to the bits of an ordering scope ID.
Instead, software is expected to manage the ordering scope IDs to achieve goals. It is a very common use
case to choose many of the bits of an ordering scope ID to have a value that is a hash of the packet header
fields that define a flow. Other bits distinguish level (L) in the hierarchy (scope_enter/scope_exit) and still
other bits (S) distinguish the ordering scopes in a cascade (scope_transition_to). See Figure 5-5.

Figure 5-5. Ordering scope ID management

The OSM hardware allows bit fields L (level) and S (stage) to be defined via a bit mask because it supports
creation of a new order scope ID by incrementing the value L for scope_enter or S for scope_transition_to.
See Figure 5-6 for an example of a transition operation with a stage increment.

Figure 5-6. Transition with stage (S) increment

In this case, the ID of the new ordering scope is determined by the OSM hardware by incrementing the S
field of the current ordering scope ID. Software has the option of simply choosing the new ordering scope
ID directly. Using a stage increment is an optional off load. It causes the OSM to choose the new ordering

Order Scope ID (32 bits)

Stage fieldLevel fieldOther bits in the ID– might be a hash of
packet headers that define a flow.

L S

current subsequent

now
transition

id =0x11223301 id=0x11223302

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 9

scope ID according to a simple and predictable rule. The IDs of the ordering scopes in a cascade are formed
by incrementing the S field.

The same concept applies to enter operations, but it uses the level (L) field. Figure 5-7 shows an example.

Figure 5-7. Enter with level (L) increment

The new ordering scope ID is formed by incrementing the L field.

It must be emphasized that the OSM hardware does not interpret the bits of an ordering scope ID in any
deep way. It simply supports incrementing the L and S fields as an off load to software. Software has the
option of directly supplying the new ordering scope ID, it can allow the OSM hardware to form it via
increment.

5.1.6 Ordering scope operations versus software API

At this point, a more complete summary of ordering scope operations is possible. These operations have
the appearance of a software API, but they are not the software API. The operations define the behavior
of the ordering scope manager.

OSM Operations

void scope_transition_to (uint32_t scope_id, bool request_exclusivity);

Transition from the current ordering scope to the ordering scope with ID scope_id. If
request_exclusivity is false, then proceed directly to the XC stage of the new ordering scope. The
hierarchy level is not changed.

If scope_id is equal to SCOPE_ID_INCREMENT, then use the ID of the current ordering scope
plus 1 as the ID of the new ordering scope.

void scope_relinquish_exclusivity (void);

Proceed from the XX stage to the XC stage of the current ordering scope. A task makes this call to
relinquish its exclusivity. Another task may then enter the current ordering scope's XX stage.

void scope_enter (bool relinquish_exclusivity_parent, uint32_t scope_id, bool request_exclusivity);

If relinquish_exclusivity_parent is true then proceed from the current (parent) ordering scope XX
stage to its XC stage and also hierarchically enter the child ordering scope with ID scope_id,
proceeding directly to its XC stage if request_exclusivity is false.

current

subsequent

now

enter

id =0x11223302

id=0x11223312

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

10 NXP Semiconductors

When this function is called with relinquish_exclusivity_parent equal to true, then the both the
stage change in the parent ordering scope and the entry to the child ordering scope are done
atomically. This causes tasks to enter the child ordering scope in the same order they entered the
parent ordering scope.

If this function is called with relinquish_exclusivity_parent equal to true while in XC stage of the
parent ordering scope, no stage change in the parent ordering scope is done and no useful order is
preserved from the parent to the child stage.

void scope_exit (void);

Exit the current ordering scope and return to its parent ordering scope.

OSM AIOP service layer API

Section 4 describes the AIOP service layer-- which includes the service layer API for the ordering scope
manager. The OSM service layer API is a thin abstraction on top of the hardware which is defined in terms
of the OSM operations. The text below summarized the service layer API functionality in terms of the
operations each OSM service layer function performs. Keep in mind that the operations define the
behavior of the OSM hardware unit. The API is what AIOP software actually calls. They are closely
related.
/* OSM AIOP Service Layer API */

#define OSM_SCOPE_ENTER_CHILD_TO_CONCURENT 0x00
#define OSM_SCOPE_ENTER_CHILD_TO_EXCLUSIVE 0x01
#define OSM_SCOPE_ENTER_CHILD_SCOPE_INCREMENT 0x02
#define OSM_SCOPE_ENTER_RELINQUISH_PARENT_EXCLUSIVITY 0x04

int osm_scope_transition_to_exclusive_with_increment_scope_id(void);

Actions:

 scope_transition_to(stage_incr(this_os.os_id), true);

int osm_scope_transition_to_exclusive_with_new_scope_id(uint32_t scope_id);

Actions:

 scope_transition_to(scope_id, true);

int osm_scope_transition_to_concurrent_with_increment_scope_id(void);

Actions:

 scope_transition_to(stage_incr(this_os.os_id), false);

int osm_scope_transition_to_concurrent_with_new_scope_id(uint32_t scope_id);

Actions:

 scope_transition_to(scope_id, false);

void osm_scope_relinquish_exclusivity(void);

Actions:

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 11

 scope_relinquish_exclusivity();

int osm_scope_enter_to_exclusive_with_increment_scope_id(void);

Actions:

 scope_enter(true, level_incr(this_os.os_id), true);

int osm_scope_enter_to_exclusive_with_new_scope_id(uint32_t child_scope_id);

Actions:

 scope_enter(true, child_scope_id, true);

int osm_scope_enter(uint32_t scope_enter_flags, uint32_t child_scope_id);

Actions:

 temporary uint32_t = child_scope_id;

 if (scope_enter_flags & OSM_SCOPE_ENTER_CHILD_SCOPE_INCREMENT) {
 new_os_id = level_incr(this_os.os_id);
 } else {
 new_os_id = child_scope_id);
 }

 scope_enter(scope_enter_flags & OSM_SCOPE_ENTER_RELINQUISH_PARENT_EXCLUSIVITY,
 new_os_id,
 scope_enter_flags & OSM_SCOPE_ENTER_CHILD_TO_EXCLUSIVE);

void osm_scope_exit(void);

 scope_exit();

See also section 4.14.6.

5.1.7 Ordering scope behavior

As was mentioned above, tasks move from stage to stage within an ordering scope. They can also transition
from one ordering scope to another at the same level in the ordering scope hierarchy, they can
hierarchically enter a new (child) ordering scope, and they can hierarchically exit to the parent ordering
scope. Figure 5-8 shows all of these cases.

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

12 NXP Semiconductors

Figure 5-8. Ordering scope inter-stage movement

Red arcs show valid movement within an ordering scope. These arcs are “internal” to an ordering scope.

The blue arc shows a transition from one ordering scope to another. The new ordering scope is not shown
in the diagram. Entry is to its WX stage. The level in the hierarchy is not changed.

Green arcs show the hierarchical entry and exit cases. Entry to a new child ordering scope is always to its
WX stage.

The conditions under which arcs are taken are defined by both ordering scope operations and also some
ordering scope state variables.

Software can perform OSM operations only in stages in which task software is running. The figure above
shows the association of operations to arcs.

These conditions and actions that occur when an arc is taken will be fully defined below and arcs will be
identified by the numbers shown purple in the figure. This figure plays an essential role in the precise
definition of ordering scope behavior.

The detailed definition will be presented in two parts:

1. Section 5.1.9 covers behavior within a single ordering scope hierarchy level, the red and blue arcs
in Figure 5

2. Section 5.1.9.7 covers ordering scope hierarchy behavior, the green arcs in Figure 5-8.

5.1.8 Per-task state

As mentioned above, AIOP hardware maintains ordering scope state variables. Some state variables are
per-task, meaning separate copies of them are kept for each task. Additional state variables must be kept
for each level in the ordering scope hierarchy for each task. Both per-task and per-task-and-level state
variables are in Figure 5-9.

Waiting for
Exclusivity (WX)

Executing
Exclusively (XX)

Executing
Concurrently (XC)

Waiting to
Transition (WT)

(WX) (XX) (XC) (WT)

scope_enter() scope_enter()

scope_exit() scope_exit()

scope_transition_to()

scope_relinquish_
exclusivity()

scope_transition_to()

3
4

5
6

7 8

9 10

Order
Capture

req_excl == t

req_excl == f

1

2

11

xx_order == 0

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 13

Figure 5-9. Per-task state

Every AIOP implementation will have a fixed limit value for “N” for the maximum depth in an ordering
scope hierarchy. The value of N is expected to be in the range of 2 to 4, inclusive. The value 4 is best for
software.

The following tables show the ordering scope state variables, i.e. the contents of the boxes in Figure 5-9.

Table 5-2. Per-task state variables

Type Variable Purpose

uint32_t level Current level of task in ordering scope hierarchy

Table 5-3. Per-task-and-level state variables

Type Variable Purpose

uint32_t os_id ID of current ordering scope at this level.

enum stage WX, XX, XC or WT.

uint32_t xx_order Order in which task may move to XX stage (0 may move now).

uint32_t trans_order Order in which task may transition to new ordering scope (0 may transition now).

Per‐Level Ordering
Scope State Variables

Per‐Level Ordering
Scope State Variables

Per‐Level Ordering
Scope State Variables

* * *

Level 1

Level 2

Level N

Initial ordering scopes are always
at this level

One level deeper

Per‐Task Ordering Scope State

Task Ordering Scope
State Variables

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

14 NXP Semiconductors

5.1.8.1 Task’s initial ordering scope

Tasks enter an initial ordering scope when they are created. This initial ordering scope will always be at
level 1, the top of the ordering scope hierarchy. The initial ordering scope value is a property of the AIOP’s
EPID table.

5.1.9 Behavior within a hierarchy level

This section describes ordering scope behavior within a single level in the ordering scope hierarchy.

5.1.9.1 Transition to an ordering scope and internal arcs 1 and 2

This section describes order capture and selection of initial stage when tasks “come into” and ordering
scope without changing their level in the ordering scope hierarchy.

One can visualize this as a task crossing the “left edge” of the ordering scope. See Figure 5-8.

There are two mechanisms by which this happens:

1. A task is created and the ordering scope is the initial ordering scope.

2. Task software calls scope_transition_to () from a previous ordering scope at the same hierarchy
level.

In each case, the same actions take place, and these actions take place atomically. Only one task can “come
into” an ordering scope at a time. The actions are described into the following pseudo code.

Up to two task ordering are captured when tasks come into an ordering scope:

1. The trans_order determines the order in which tasks will be allowed to transition to a new ordering
scope at the same hierarchy level.

2. The xx_order determines the order in which exclusivity will be granted to tasks.

Both captured orders are defined by the order in which tasks “come into” the ordering scope.

Ingress to egress ordering is maintained by a chain of order preservations from ordering scope to ordering
scope. The order in which tasks enter their initial ordering scope captures packet ingress order since packet
arrival causes the creation of tasks.

Finally, the initial stage of the task in the ordering scope must be selected.

If the tasks requests exclusivity, it moves to stage WX (arc 1 in Figure 5-8). If it does not, it moves to stage
XC (arc 2 in Figure 5-8).

The following pseudo code defines the actions summarized above.
this_os.os_id = set from scope_transition_to() Operation parameter or as initial
 ordering scope ID;
this_os.request_exclusivity = set from scope_transition_to() Operation parameter or as
 initial ordering scope parameter;

this_os.trans_order = number of tasks already in this ordering scope;

if (this_os.request_exclusivity) {
 xx_order = number of tasks already in the WX or XX states of this ordering scope;

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 15

this_os.stage = WX; // move to WX stage
} else {

this_os.stage = XC; // OK to move to XC stage in any order
}

5.1.9.2 WX stage and internal Arc 3

The WX or “Waiting for Exclusivity” stage exists to control entry into the XX stage. Only one task at a
time is allowed into the XX stage, and tasks must enter it in order.

The actions performed within the WX state are:
await (this_os.xx_order == 0);
this_os.stage = XX; // move to XX stage

When the task's xx_order is zero, it moves to the XX stage. This is arc 3 in Figure 5-8.

5.1.9.3 XX stage and internal arcs 4 and 5

In the XX stage, task software is running. At most one task at a time is allowed to be in the XX stage of
an ordering scope. Tasks leave the XX stage by performing an OSM operation.

• Tasks call scope_transition_to () if they wish to skip this ordering scope's concurrent stage (XC)
and instead transition to another ordering scope at the same hierarchy level. This is arc 4 of Figure
5.

• Tasks call scope_relinquish_exclusivity () if they wish to leave the exclusive (XX) stage of the
ordering scope and move to its concurrent stage (XC). This is arc 5 of Figure 5.

The task action in the XX stage depends on which OSM operation was performed to leave the XX stage.
for all other tasks t in this_os {
 if (t.stage == WX) t.xx_order--;// Allow next in XX
}

if (scope_relinquish_exclusivity () was called) this_os.stage = XC;
if (scope_transition_to () was called) this_os.stage = WT;

5.1.9.4 XC stage and internal arc 6

Task SW runs in the Execute Concurrently stage (XC). More than one task is allowed to execute
concurrently in this stage.

Tasks leave the XC stage by performing an OSM scope_transition_to operation. This is arc 6 in Figure 5-8.

The only action on arc 6 is the stage change to WT.
this_os.stage = WT; // Move to WT stage (in any order)

Note that tasks can enter the WT stage in an order that is different from the order in which tasks entered
this ordering scope but order is still maintained in transitions to the next ordering scope.

5.1.9.5 WT stage and external Arc 11

Tasks enter the Wait to Transition (WT) stage when they will transition to a new ordering scope at the same
hierarchy level. The purpose of the WT stage is to ensure that tasks “come into” the new ordering scope

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

16 NXP Semiconductors

in the same order they came into the current ordering scope. This order was captured by state variable
trans_order;

The movement from the current ordering scope to the next ordering scope is, of course, atomic.

The ID of the next ordering scope and the value for its request_exclusivity variable come from OSM
parameters for the scope_transition_to operation as described in section 5.1.6.

The action on arc 11 follows.
await (this_os.trans_order == 0);

for all other tasks t in this_os {
 t.trans_order--;
}

this_os.os_id = id of new ordering scope from operation parameter;

// At this point, the task crosses into the new ordering scope. The actions of
// Section 9.1 are done of the new ordering scope.

5.1.9.6 An example of ordering scope behavior

This section provides an example of ordering scope behavior with a single hierarchy level. The example
will show

• How tasks that request exclusivity are granted it in order

• How tasks transition to the next ordering scope in the same order they came into the current
ordering scope.

See below the code for four tasks: A, B, C, and D. The code shows both the task source code and also the
initial ordering scope of each task.
 Task A Task B
---------------------------------- ------------------------------------
initial ordering scope: 5000, false; initial ordering scope: 5000, true;
do_some_work_a (); do_some_work_b1 ();
scope_transition_to (6000, false); scope_relinquish_exclusivity ();

do_some_work_b2();
scope_transition_to (6000, false);

 Task C Task D
---------------------------------- ------------------------------------
initial ordering scope: 5000, true; initial ordering scope: 5000, false;
do_some_work_c1 (); do_some_work_d ();
scope_relinquish_exclusivity (); scope_transition_to (6000, false);
do_some_work_c2 ();
scope_transition_to (6000, false);

By itself, this code says little about the order in which events occur within the AIOP. To create an example,
one must make assumptions and then show the resulting behavior. The text below will assume an event
order and show the behavior the events cause using diagrams like the one below.

One can read the step-by-step example below and note how the ordering scope actions defined in this
document are carried out at each step.

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 17

The diagram shows the ordering scope with ID 5000, the initial ordering scope of each of the tasks A, B,
C, and D. The state of the ordering scope is the state of the tasks within the ordering scope. This state is
defined by the values of the task ordering scope state variables at the current level of the ordering scope
hierarchy. For this example, one can assume that level = 1. The notation in the diagram shows

• The name of the task.

• The value of request_exclusivity for the task.

• The value of xx_order for the task, where “-”means that the value does not matter. The value “does
not matter” when request_exclusivity is false or after the task has progressed beyond the XX stage
of the current ordering scope.

• The value of trans_order.

Other ordering scope state variables exist, but they are not needed for this example or its explanation.

The diagram above shows ordering scope 5000 right after task A has been created. Note that trans_order
has been set to value 0 because no other tasks were in the ordering scope when A was created.

The example will now proceed with additional events for tasks A, B, C, and D.

In step 2, task A moves to the XC stage because its request_exclusivity is false.

In step 3, task B is created. Note that xx_order is 0 because B is the first task in this ordering scope for
which request_exclusivity is true. Also, trans_order is 1 because one other task, A, is already present.

In step 4, B moves to the XX stage because its xx_order is 0.

In step 5, task C is created. Like B, it requests exclusivity. Note that xx_order is 1 because of B and
trans_order is 2 because of A and B.

WX

A[f, ‐, 0]

XX XC WT

Task “A” req_excl xx_order: does not matter trans_order: 0

1

OS 5000

WX

A[f, ‐, 0]

XX XC WT

2

WX

A[f, ‐, 0]

XX XC WT

B[t, 0, 1]3

WX

A[f, ‐, 0]

XX XC WT

B[t, 0, 1]4

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

18 NXP Semiconductors

In step 6, task D is created. It does not request exclusivity so xx_order is “-”. Its trans_order is 3 because
of A, B, and C.

In step 7, D progresses to XC because it does not request exclusivity. Now, A, B, and D are all running
in parallel. B is the only task executing in this ordering scope's XX stage. This is consistent with the
purpose of the XX stage. Note that D was allowed to enter XC ahead of B, and C.

In step 8, D complete its work and calls scope_transition_to(). This causes it to move to WT, but it cannot
transition to ordering scope 6000 yet because its trans_order is not 0.

In step 9, B completes it work in the XX stage and then calls scope_relinquish_exclusivity() to indicate
that it no longer needs to be in the XX stage. It moves to the XC stage. Its value of xx_order no longer
matters. Note, however, that xx_order for C was decremented and is now zero.

In step 10, C begins executing in the XX stage because its xx_order is now 0.

WX

A[f, ‐, 0]

XX XC WT

B[t, 0, 1]C[t, 1, 2]5

WX

A[f, ‐, 0]

XX XC WT

B[t, 0, 1]C[t, 1, 2]

D[f, ‐, 3]
6

WX

A[f, ‐, 0]

XX XC WT

B[t, 0, 1]C[t, 1, 2]

D[f, ‐, 3]
7

WX

A[f, ‐, 0]

XX XC WT

B[t, 0, 1]C[t, 1, 2] D[f, ‐, 3]8

WX

A[f, ‐, 0]

XX XC WT

B[t, ‐, 1]

C[t, 0, 2] D[f, ‐, 3]
9

WX

A[f, ‐, 0]

XX XC WT

B[t, ‐, 1]

C[t, 0, 2] D[f, ‐, 3]
10

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 19

In step 11, A completes its work and calls scope_transition_to(). It moves to WT.

It step 12, A transitions from ordering scope 5000 to ordering scope 6000. It does this because its
trans_order is 0. Notice that A was the first task to come into ordering scope 5000. This order has been
preserved in ordering scope 60000. Also, trans_order for the remaining tasks in ordering scope 5000 has
been decremented. Task D must continue to wait in WT because its trans_order is still not 0.

This example will not detail further progress in ordering scope 6000 but rather continues its focus on
ordering scope 5000.

In step 13, C completes its work in the XX stage and thus calls scope_relinquish_exclusivity() and moves
to XC and executes in parallel with B in that stage.

In step 14, B completes its work and calls scope_transition_to().

In step 15, B transitions to ordering scope 6000 (in order, of course). It does this because its trans_order
was 0. Values of trans_order for C and D are decremented.

In step 16, C completes its work, calls scope_transition_to() and moves to WT.

WX

A[f, ‐, 0]

XX XC WT

B[t, ‐, 1]

C[t, 0, 2] D[f, ‐, 3]
11

WX

A[f, ‐, 0]

XX XC WT

B[t, ‐, 0]

C[t, 0, 1] D[f, ‐, 2]

WX

12

WX

A[f, ‐, 0]

XX XC WT

B[t, ‐, 0]

C[t, ‐, 1] D[f, ‐, 2]

WX

13

WX

A[f, ‐, 0]

XX XC WT

B[t, ‐, 0]

C[t, ‐, 1] D[f, ‐, 2]

WX

14

WX

A[f, ‐, 0]

XX XC WT

B[f, ‐, 1]

C[t, ‐, 0] D[f, ‐, 1]

WX

15

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

20 NXP Semiconductors

In step 17, C transitions to ordering scope 6000, and trans_order for D is decremented.

In step 18, D transitions to ordering scope 6000. The example is complete. Note how trans_order for all of
the tasks in ordering scope 6000 is correct.

5.1.9.7 Hierarchical Ordering Scope Behavior

This section continues the definition of ordering scope behavior that was begun in the previous section. It
focuses on ordering scope hierarchy and thus arcs 7, 8, 9, and 10 in Figure 5-8.

With hierarchical ordering scopes, tasks may be in more than one ordering scope at the same time, with
each of the ordering scopes at a different level in the hierarchy. Refer to Figure 5-3 for an example and to
Section 5.1.2 for terminology.

In summary, a parent ordering scope calls scope_enter () to enter the first ordering scope in a child
cascade of ordering scopes. The task will be in only one of the ordering scopes in the child cascade at a
time. It is acceptable for a cascade to be of length one, i.e. to consist of only one ordering scope.

A task enters a new child (level + 1) cascade by calling a scope_enter OSM operation. This may be done
from either the XX or the XC stage of the parent (level + 0) ordering scope.

The scope_enter operation can be done from either the XX or the XC stage of the parent ordering scope.

5.1.9.8 Hierarchical ordering scope use rules

Hierarchy in ordering scopes necessitates some rules for their correct usage.

WX

A[f, ‐, 0]

XX XC WT

B[f, ‐, 1]C[t, ‐, 0]

D[f, ‐, 1]

WX

16

WX

A[f, ‐, 0]

XX XC WT

B[f, ‐, 1]

C[t, ‐, 2]

D[f, ‐, 0]

WX

17

WX

A[f, ‐, 0]

XX XC WT

B[f, ‐, 1]

C[f, ‐, 2]

D[f, ‐, 3]

WX

18

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 21

• A task may not enter the same ordering scope (ordering scope with the same ID) more than once
at the same time hierarchically. In other words, ordering scopes may not be used recursively.

• Software must adopt a strategy to avoid deadlock.

For example, the following code for two tasks can cause a deadlock.
Task A Task B
scope_transition_to (5000, true); scope_transition_to (6000, true);
scope_enter (false, 6000, true); scope_enter (false, 5000, true);

Task A can be exclusive in ordering scope 5000 and waiting to be exclusive in inner ordering scope 6000.
Task B can be exclusive in ordering scope 6000 and waiting to be exclusive in inner ordering scope 5000.
The result is deadlock.

5.1.9.9 Order capture on entry to child cascade

Software may desire that the order that was captured when tasks moved into the parent ordering scope also
be the order in which tasks enter a child cascade of ordering scopes. See Figure 5-10.

Figure 5-10. Order capture

For this to be the case, tasks must call scope_enter() from the parent's XX stage. If scope_enter() is called
from the XC stage there is no guarantee that the orders will match because the tasks are running in parallel
when scope_enter() is called. For example, the second task to enter the parent ordering scope may get
ahead of the first.

However, when a task calls scope_enter() from the parent XX stage, no other task may enter the parent's
XX stage until the first task has complete executing the child cascade and called scope_exit() to return to
the parent ordering scope. While this behavior may be desired in some applications, some mechanism
must be provided to allow both

1. The two orders to match and

2. other tasks to be able to enter the parent's XX stage.

This is why the scope_enter OSM operation has parameter “relinquish_exclusivity_parent”. When it has
value true, the task enters the child from the parent XX stage but also atomically relinquishes exclusion in
the parent XX stage. Note that the scope_relinquish_exclusivity operation cannot be used instead because
it is defined to operate only on the current ordering scope, not the parent.

u

w

enter

parentIf order captured here
is to match
order captured here,

scope_enter() must be
called from parent’s XX
stage. 1st in child

cascade

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

22 NXP Semiconductors

5.1.9.10 Scope entry from stages XX and XC, arcs 9 and 10

Entering a new child ordering scope cascade is done via OSM operation call scope_enter. This operation
can be done from either the XX stage (arc 9 of Figure 5-8) or the XC stage (arc 10 of Figure 5-8) of the
current (soon to be parent) ordering scope. Entering an ordering scope is very much like transitioning to
an ordering scope, except the ordering scope variables are updated one level down in the ordering scope
hierarchy. If relinquish_exclusivity_parent is true, the effect is the same as that of the
scope_relinquish_exclusivity OSM operation except the actions are performed in the parent ordering
scope.

The action associated with scope_enter() follow.
this_os.relinquish_exclusivity_parent = set from scope_enter operation parameter;

// First impact the parent ordering scope if relinquish_exclusivity_parent is true
// and the parent is in the XX stage

if (this_os.relinquish_exclusivity_parent == true && this_os.stage == XX) {

 for all other tasks t in this_os {
 if (t.stage == WX) {
 t.xx_order--;// Allow next in XX
 }
 }

 this_os.stage = XC;
}

// Now actions at the child level
this_os.level++;

this_os.os_id = set from scope_enter operation parameter;
this_os.request_exclusivity = set from scope_enter operation parameter;

this_os.trans_order = number of tasks already in this ordering scope;

if (this_os.request_exclusivity) {
 xx_order = number of tasks already in the WX or XX states in this ordering
 scope;
 this_os.stage = WX;
} else {
 this_os.stage = XC;
}

5.1.9.11 Scope exit from stages XX and XC, arcs 7 and 8

Exiting an ordering scope hierarchy is done by task software performing an OSM scope_exit operation.
The operation may be done from either the XX or the XC stage of the current ordering scope (by definition
within the child ordering scope cascade).

There is no need for tasks to exit a child ordering scope cascade in the same order in which they entered
it. This is because the order that matters in the parent ordering scope is the order that was captured in the
parent ordering scope, and this order is still maintained in the parent. Thus, there is nothing like the WT
stage for the exit operation. Tasks exit in the order in which they call scope_exit().

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 23

A task exiting from a child cascade can still impact ordering for the tasks that remain in the same ordering
scope from which the task exits in the child cascade.

The actions associated with scope_exit() (arcs 7 and 8 in Figure 5-8) are as follows.
if (this_os.stage == XX) {
 // Called scope_exit() from XX stage
 for all tasks t in this_os {
 if (t.stage == WX) t.xx_order--;
 }
}

for all tasks t in this_os {
 if (t.trans_order > this_os.trans_order) t.trans_order--;
}

this_oc.level--; // exit to parent ordering scope

An example may be helpful. Suppose some tasks will enter a cascade but some will exit from the first
ordering scope in the cascade (orange path in Figure 5-11) while others will transition to x and then exit
from there (red path in Figure 5-11).

Figure 5-11. Order and a child cascade

Let's further refine the example and focus on ordering scope w in Figure 5-11 and assume that three tasks
have entered it and are executing in parallel in its XC stage. By happenstance, the task with trans_order
value 1 calls scope_exit() (yellow path) before the tasks with trans_order value 0 and 2 call
scope_transition_to() (red path). The situation is shown in Figure 5-12.

Figure 5-12. Task w

The action for the yellow path task's exit changes trans_order for the remaining red path tasks to 0 and 1
and show in Figure 5-13. The “0” was left alone and the “2” became “1”.

u

w x

parentOrder is captured here
So packets emerge in order here

even if they do not exit from the
cascade in order

0

1

2

w

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

24 NXP Semiconductors

Figure 5-13. Task W at end

Note that this is correct to allow the remaining red path tasks to transition to x in the same order they
entered w.

5.1.10 Task Exit from Level 1 and Intentionally Losing Order

This section discusses what happens when task SW invokes scope_exit() from level 1 (the top level of
hierarchy) and why task software might do it.

• It is legal for task SW to call scope_exit() from level 1.

• In this case, the task enters a special state in which it is not in any ordering scope.

• It is not legal to scope_exit() from this state.

• It is not legal to call scope_transition_to() from this state.

• It is not legal to call scope_relinquish_exclusivity() from this state, nor would it be meaningful.

• There is no exclusivity in this state. All tasks in it are always allowed to execute concurrently.

• Tasks may call scope_enter() to enter a level 1 ordering scope.

• The order captured on entry to the level 1 ordering scope will be arbitrary precisely because tasks
execute concurrently when not in an ordering scope.

• No task order is maintained when a task is not in an ordering scope.

In summary, if task software executes the following code from a level 1 ordering scope then
scope_exit();
scope_enter(.., u, ..);

that task “discards” ingress order and enters level 1 ordering scope “u” in arbitrary order. Software may
choose to do this when an application has no need to maintain end-to-end order and does not want to bear
the cost of tasks waiting in the WT stage of an ordering scope for no reason.

5.1.11 Maintaining order

Packets will egress in ingress order provided the following conditions are true:

• Their tasks all travel through the exact same sequence of ordering scopes at level 1.

• None use an exit/enter sequence to intentionally lose order. See Section Figure 5.1.10.

• Packets are queued for egress from the AIOP within the same exclusive ordering scope region.

• Packets are sent for egress on the same network interface.

0

1

w

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 25

• QMan features are not used to intentionally reorder packets before final transmission. (This would
normally be done as part of some networking QoS involving packet prioritization.)

Note that packets do not have to travel through the same sequence of ordering scopes to retain order; they
only have to travel through the same sequence at level 1. One can think of the cascade at level 1 as being
an envelope for packet processing the preserves order. Lower-level cascades need not be traversed in order.
Tasks need not even traverse the same lower level cascades. See Figure 5-11 above.

5.1.12 Impact of Task Termination within Ordering Scopes

AIOP tasks terminate when they have completed processing. When the task terminates, it will be in at least
one ordering scope.

The AIOP hardware automatically exits the task from all of the ordering scopes it is in when the task
terminates for any reason. The effect of this is the same as task software calling scope_exit() for every level
of ordering scope hierarchy that the task is in.

As an example, if a task terminates while in the XX stages of two hierarchical ordering scopes, other tasks
will automatically be let into those XX stages when the task terminates.

Order scope manager: hardware overview

AIOP User Manual, Rev. 8, 12/2017

26 NXP Semiconductors

AIOP loading and running images

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Chapter 6 AIOP loading and running images
Upon a request from the GPP, MC loads the AIOP image into the AIOP and kicks the AIOP cores. The
AIOP cores perform their boot sequence and the boot core also performs global AIOP initializations
including:

• Memory Management

• Console IO

• Network Interfaces

• Command Interfaces

Once Service Layer initialization is completed, the application initialization functions are triggered.
During application initialization, applications may register entry point functions with each of the AIOP
Network Interfaces. Once all applications initialization is completed, the AIOP is ready to accept packets.
A simple usage example called “app_process_packet” is delivered with the Service Layer and illustrates
how to plug application initialization functions into the AIOP initialization sequence and how to register
application entry point functions.

When packets arrive, the pre-registered application entry point functions associated with the
corresponding Network Interfaces are triggered.

6.1 Code Placement

The AIOP image can be loaded into multiple locations, as defined by the application:

• Functions marked as ‘hot’ are loaded into internal AIOP memory (internal iRAM).

• Functions marked as ‘cold’ are loaded into external memory.

• Functions marked as ‘warm’ are loaded into the Shared SRAM.

• All other functions are loaded into a default location as defined by the Linker Control File (LCF).

AIOP loading and running images

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

AIOP debugging

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 1

Chapter 7 AIOP debugging

7.1 Level Sensitive Messages

The AIOP Service layer supports several debug levels generating debug level sensitive messages.

7.1.1 General

7.1.1.1 Feature List

• Message generation based on user configured debug level

• Configurable message destination: console and/or memory

7.1.1.2 Terms & Concepts

Debug Level - the higher the level, the more debug information will be available

7.1.1.3 Basic Functionality

There are two configurable parameters that control debug message availability. Both are configurable at
compile time:

• Coarse grain: debug messages can be completely turned ON or OFF

• Fine grain: if debug messages are ON, then the amount of debug messages can be further controlled
using a debug level.

There are two log message destinations that can be configured:

• Console

• Memory

Messages can be directed to both destinations, one destination or neither. This is user controlled via Linux.

7.1.2 Functions Supplied by the Service Layer

The Service Layer provides functions for printing different types of messages: informational messages,
warnings, errors and critical errors. Each type of message can be enabled/disabled based on the configured
debug level.

In addition, the Service Layer provides debug device query functions such as getting the current core ID,
the number of enabled cores and the total number of cores in the device.

7.1.3 Usage Information

To enable level-sensitive message control, the Service Layer’s pr_xxx() functions should be used by
applications (See fsl_dbg.h) and the debug level should be modified as follows:

DEBUG_ERRORS:

AIOP debugging

AIOP User Manual, Rev. 8, 12/2017

2 NXP Semiconductors

• 0 - all debug level sensitive messages are disabled

• 1 - debug level sensitive messages are enabled according to DEBUG_LEVEL

DEBUG_LEVEL:

• 0 - warnings pr_warn() and higher

• 1 - information pr_info() and higher

• 2 - debug pr_debug() and higher, all debug level sensitive messages are enabled

Related Service Layer files:

• build_flags.h - This is service layer file that creates debug utilities based on the DEBUG_LEVEL
macro that should be set outside this file. This file can’t be modified.

• dflags_dbg.h - This is service layer default file that is used for debug. The DEBUG_LEVEL macro
inside this file can be modified to a different debug level. This file is used inside the preprocessor
settings of the aiopsl library.

• fsl_dbg.h - This file includes DEBUG_LEVEL dependent utilities like debug sensitive printing
functions. Setting DEBUG_ERRORS to 0 will remove all debug level sensitive messages.

Note: The DEBUG_LEVEL used for application must be the same as for aiopsl library. Therefore the same
dflags_dbg.h should be used for both.

7.1.4 Status and Errors

All status and error information is included in the source code documentation and API book.

7.2 Stack Overflow Detection

7.2.1 General

Each AIOP task has a very limited program stack whose exact size depends on the number of
tasks-per-core that are configured. It is possible to monitor the stack size statically by running the stack
estimation tool on the application sources. If a stack overflow still occurs during runtime then the Service
Layer will detect the overflow condition, and issue an appropriate error message.

7.2.1.1 Feature List

• Stack overflow detection and halt.

• Error message notifying of the stack overflow.

7.2.1.2 Terms & Concepts

Stack overflow occurs when the stack pointer exceeds the stack bounds.

AIOP debugging

AIOP User Manual, Rev. 8, 12/2017

NXP Semiconductors 3

7.2.1.3 Basic Functionality

Upon stack overflow or underflow the core will print an error message and halt, allowing developers to
examine the program stack.

7.2.2 Functions Supplied by the Service Layer

(***) In future releases the stack limit event will be handled by an exception handler which will result in
a more user friendly way to retrieve debug information.

7.2.3 Usage Information

Upon stack overflow, the core will halt and the MCSR and MCSRR0 registers will contain the following
information:

• MCSR is updated to reflect the source(s) of a machine check.

• MCSR[STACK_ERR] will be set in case of a stack violation.

• MCSRR0 stores the PC of the instruction that caused the exception (best effort).

Note: In order to benefit from all Service Layer features including stack overflow detection, the startup
and main files supplied by the Service Layer must be used as-is and the aiopsl library should be used. A
simple example called “app_process_packet” is delivered with the Service Layer and illustrates the
correct method for building an application.

AIOP debugging

AIOP User Manual, Rev. 8, 12/2017

4 NXP Semiconductors

		Advanced I/O Processor User Manual

		Chapter 1 Introduction

		1.1 Intended audience

		1.2 Definitions and acronyms

		Chapter 2 Overview

		2.1 Function

		Figure 2-1. AIOP with interfaces

		2.2 Use of DPAA2 objects

		Figure 2-2. AIOP interfaces are provided by DPAA2 objects

		2.3 AIOP as a packet engine: an example

		Figure 2-3. A specific AIOP application

		2.4 AIOP Software Sources

		Figure 2-4. Structure of a Network Function/API Program

		Chapter 3 AIOP Hardware Summary

		Figure 3-1. AIOP hardware

		3.1 Purpose of AIOP

		3.2 A high-level view of AIOP hardware

		3.3 Tasks, Jobs, and scheduling

		Figure 3-2. Graphical representation of a job

		Figure 3-3. Two tasks and their jobs

		Figure 3-4. Execution of jobs in time

		Chapter 4 Service Layer Concept

		4.1 Service Layer Framework

		4.2 Service Layer API

		4.3 Multi-Core Support

		4.4 Isolation and Virtualization

		4.5 Network interfaces

		4.5.1 General

		4.5.1.1 Feature List

		4.5.1.2 Terms & Concepts

		4.5.1.3 Basic Functionality

		4.5.2 Functions Supplied by the Service Layer

		4.5.3 Usage Information

		4.5.4 Status and Errors

		4.6 Command Interface (AIOP-GPP Communication)

		4.6.1 General

		4.6.1.1 Feature List

		4.6.1.2 Terms & Concepts

		4.6.1.3 Basic Functionality

		4.6.2 Functions Supplied by the Service Layer

		4.6.3 Usage Information

		Figure 1. GPP to AIOP Communication

		Figure 2. AIOP to GPP Communication

		4.6.4 Status and Errors

		4.7 Shared Buffer Pool

		4.7.1 General

		4.7.1.1 Feature List

		4.7.1.2 Terms & Concepts

		4.7.1.3 Basic Functionality

		4.7.2 Functions Supplied by the Service Layer

		4.7.3 Usage Information

		Figure 3. AIOP is the allocation master of SHBP

		Figure 4. GPP is the allocation master of SHBP

		4.7.4 Status and Errors

		4.8 Event Manager

		4.8.1 General

		4.8.1.1 Feature List

		4.8.1.2 Terms & Concepts

		4.8.1.3 Basic Functionality

		4.8.2 Functions Supplied by the Service Layer

		4.8.3 Usage Information

		4.8.4 Status and Errors

		4.9 Memory Management

		4.9.1 General

		4.9.1.1 Feature List

		4.9.1.2 Terms & Concepts

		4.9.1.3 Basic Functionality

		4.9.2 Functions Supplied by the Service Layer

		4.9.3 Usage Information

		4.9.4 Status and Errors

		4.10 RCU Synchronize

		4.10.1 General

		4.10.1.1 Feature List

		4.10.1.2 Terms & Concepts

		4.10.1.3 Basic Functionality

		4.10.2 Functions Supplied by the Service Layer

		4.10.3 Usage Information

		4.10.4 Status and Errors

		4.11 Console I/O

		4.11.1 General

		4.11.1.1 Feature List

		4.11.1.2 PTerms & Concepts

		4.11.1.3 Basic Functionality

		4.12 Spinlocks

		4.12.1 General

		4.12.1.1 Feature List

		4.12.1.2 Terms & Concepts

		4.12.1.3 Basic Functionality

		4.12.2 Functions Supplied by the Service Layer

		4.12.3 Usage Information

		4.12.4 Status and Errors

		4.13 Utilities

		4.13.1 General

		4.13.1.1 Feature List

		4.14 Service Routines

		4.14.1 FDMA

		4.14.1.1 General

		4.14.1.1.1 Feature List

		4.14.1.1.2 Terms & Concepts

		4.14.1.1.3 Basic Functionality

		4.14.1.2 Service Layer Supplied Functions

		4.14.1.3 Usage Information

		4.14.1.3.1 Implicit and explicit functions

		4.14.1.3.2 Code Samples

		4.14.1.4 Status and Errors

		4.14.2 Context DMA (CDMA)

		4.14.2.1 General

		4.14.2.1.1 Feature list

		4.14.2.1.2 Terms & Concepts

		4.14.2.1.3 Basic Functionality

		Figure 5. DMA READ/WRITE

		Figure 6. Mutex Lock

		4.14.2.2 Service Layer Supplied Functions

		4.14.2.3 Usage Information

		4.14.2.4 Status and Errors

		4.14.3 Parser

		4.14.3.1 General

		4.14.3.1.1 Feature list

		4.14.3.1.2 Terms & Concepts

		4.14.3.1.3 Basic Functionality

		4.14.3.2 Service Layer Supplied Functions

		4.14.3.3 Usage Information

		4.14.3.4 Status and Errors

		4.14.4 KeyGen

		4.14.4.1 General

		4.14.4.1.1 Feature list

		4.14.4.1.2 Terms & Concepts

		4.14.4.1.3 Basic Functionality

		Figure 7. Key composition rule

		4.14.4.2 Functions Supplied by the Service Layer

		4.14.4.3 Usage Information

		4.14.5 Table

		4.14.5.1 General

		4.14.5.1.1 Feature List

		4.14.5.1.2 Terms & Concepts

		4.14.5.1.3 Basic Functionality

		4.14.5.2 Functions Supplied by the Service Layer

		4.14.5.3 Usage Information

		4.14.5.3.1 Exact Match

		4.14.5.3.2 Longest Prefix Match

		4.14.6 Ordering Scope Manager (OSM)

		4.14.6.1 General

		4.14.6.1.1 Feature list

		4.14.6.1.2 Terms & Concepts

		4.14.6.1.3 Basic Functionality

		Figure 8. Order Scope

		4.14.6.1.4 Changing Order Scope

		4.14.6.2 Functions Supplied by the Service Layer

		4.14.6.3 Usage Information

		4.14.6.4 Code example:

		Figure 9. Transition commands example

		Figure 10. Enter/Exit commands example

		4.14.6.5 Status and Errors

		4.14.7 Timer Manager Engine (TMan)

		4.14.7.1 General

		4.14.7.1.1 Feature List

		4.14.7.1.2 Terms & Concepts

		4.14.7.1.3 Basic Functionality

		4.14.7.2 Functions Supplied by the Service Layer

		4.14.7.3 Usage Information

		Figure 11. Periodic Timer expiration example with short timer duration

		4.14.7.4 Status and Errors

		4.14.8 Statistics Engine (STE)

		4.14.8.1 General

		4.14.8.1.1 Feature List

		4.14.8.1.2 Basic Functionality

		4.14.8.2 Functions Supplied by the Service Layer

		4.14.8.3 Usage Information

		4.14.8.4 Status and Errors

		4.15 Functional Modules

		4.15.1 IP Reassembly module

		4.15.1.1 General

		4.15.1.1.1 Feature List

		4.15.1.1.2 Terms & Concept

		4.15.1.1.3 Basic Functionality

		4.15.1.2 Service Layer functions

		4.15.1.3 Usage Information

		4.15.1.3.1 Usage example for ipr create instance

		4.15.1.3.2 Usage example for calling reassemble function

		4.15.1.4 Status and Errors

		4.15.2 IP Fragmentation

		4.15.2.1 General

		4.15.2.1.1 Feature List

		4.15.2.1.2 Basic Functionality

		4.15.2.2 Functions Supplied by the Service Layer

		4.15.2.3 Usage Information

		4.15.2.3.1 Fragmentation According to MTU

		4.15.2.3.2 Fragment Restored Fragments

		4.15.2.3.3 Ordering

		Figure 4-1. Exclusive Mode Transition on Last Fragment

		Figure 4-2. Exclusive Mode Transition Before Fragmentation

		Chapter 5 Order scope manager: hardware overview

		5.1 Discussion of the ordering scope manager

		5.1.1 Purpose of ordering scopes

		5.1.2 Terminology and textual conventions

		Figure 5-1. Cascade

		Figure 5-2. Another example

		Figure 5-3. Three-level example

		Table 5-1. Terms and definitions

		5.1.3 Diagram view of ordering scopes

		Figure 5-4. Ordering scope diagram

		5.1.4 Ordering scope stages

		5.1.5 Ordering scope name space

		Figure 5-5. Ordering scope ID management

		Figure 5-6. Transition with stage (S) increment

		Figure 5-7. Enter with level (L) increment

		5.1.6 Ordering scope operations versus software API

		5.1.7 Ordering scope behavior

		Figure 5-8. Ordering scope inter-stage movement

		5.1.8 Per-task state

		Figure 5-9. Per-task state

		Table 5-2. Per-task state variables

		Table 5-3. Per-task-and-level state variables

		5.1.8.1 Task’s initial ordering scope

		5.1.9 Behavior within a hierarchy level

		5.1.9.1 Transition to an ordering scope and internal arcs 1 and 2

		5.1.9.2 WX stage and internal Arc 3

		5.1.9.3 XX stage and internal arcs 4 and 5

		5.1.9.4 XC stage and internal arc 6

		5.1.9.5 WT stage and external Arc 11

		5.1.9.6 An example of ordering scope behavior

		5.1.9.7 Hierarchical Ordering Scope Behavior

		5.1.9.8 Hierarchical ordering scope use rules

		5.1.9.9 Order capture on entry to child cascade

		Figure 5-10. Order capture

		5.1.9.10 Scope entry from stages XX and XC, arcs 9 and 10

		5.1.9.11 Scope exit from stages XX and XC, arcs 7 and 8

		Figure 5-11. Order and a child cascade

		Figure 5-12. Task w

		Figure 5-13. Task W at end

		5.1.10 Task Exit from Level 1 and Intentionally Losing Order

		5.1.11 Maintaining order

		5.1.12 Impact of Task Termination within Ordering Scopes

		Chapter 6 AIOP loading and running images

		6.1 Code Placement

		Chapter 7 AIOP debugging

		7.1 Level Sensitive Messages

		7.1.1 General

		7.1.1.1 Feature List

		7.1.1.2 Terms & Concepts

		7.1.1.3 Basic Functionality

		7.1.2 Functions Supplied by the Service Layer

		7.1.3 Usage Information

		7.1.4 Status and Errors

		7.2 Stack Overflow Detection

		7.2.1 General

		7.2.1.1 Feature List

		7.2.1.2 Terms & Concepts

		7.2.1.3 Basic Functionality

		7.2.2 Functions Supplied by the Service Layer

		7.2.3 Usage Information

1 Overview
This application note describes how to debug an AIOP SDK
application with CodeWarrior for APP. The application
targeted by this document is AIOP Packet reflector.

AIOP packet reflector provides an entry-level demonstration
about how to use and program an AIOP. It has no predefined
Freescale infrastructure that is required to be used by the end
user. It uses the AIOP SL-Service Layer routines only.

The purpose of this sample application is to demonstrate a
simple application data path on AIOP. The application is
available in these two flavors:

• A basic reflector for every IPv4 frame (further
referenced as Reflector). It works much like the NADK
Packet Reflector application, except that it runs on
AIOP.

• The second one applies an extra classification and only
accepted frames are further reflected (further referenced
as Reflector-Classifier).

For more details about this application, see the AIOP ‘packet
reflector’ sample application chapter of the LS2085 SDK
Quick Start Guide.

This application note focuses on the Reflector flavor.

An updated version of the Application Note is available on
CodeWarrior Development Studio for Advanced Packet
Processing Product Summary Page.

NXP Semiconductors Document Number: AN5165

Application Note Rev. 11/2016

AIOP SDK Applications Debug

Contents

1 Overview..1

2 Prerequisites...2

3 Building AIOP reflector APP.................................... 2

4 Hardware setup............................3

5 Importing and building AIOP reflector
project... 6

6 Debugging AIOP APP using
CodeWarrior..8

6.1 Debugging AIOP from system
entry point...11

6.2 Debugging AIOP from application
entry point...13

7 Collecting hardware trace................ 15

7.1 GCov code coverage................ 17

8 Simulator setup............................18

8.1 Configuring and starting
simulator...................................... 19

8.2 GCov code coverage................ 19

8.3 Point to Point Profiler................ 20

http://www.nxp.com/products/software-and-tools/software-development-tools/codewarrior-development-tools/suite-for-networked-applications/codewarrior-development-studio-for-advanced-packet-processing:CW-SW-APP?fpsp=1&tab=Documentation_Tab

http://www.nxp.com/products/software-and-tools/software-development-tools/codewarrior-development-tools/suite-for-networked-applications/codewarrior-development-studio-for-advanced-packet-processing:CW-SW-APP?fpsp=1&tab=Documentation_Tab

2 Prerequisites
Before you debug an AIOP SDK application on CodeWarrior for App, ensure the following prerequisites.

NOTE
The references used in this application note are from a Linux 64-bit host machine for
simulator. For hardware, you can use either Linux or Windows.

The table below shows the requisite components.

Component Version

CodeWarrior for APP 10.2.0 or later

SDK EAR6.0 or later

3 Building AIOP reflector APP
To get the AIOP APP source files, follow these steps:

1. Install the SDK .iso image from here on a 64-bits machine using the commands listed below:
a. mount -o loop <image>.iso dir_to_mount
b. cd <dir_to_mount>
c. ./install
d. cd <install_dir>
e. ./poky/scripts/host-prepare.sh
f. source ./poky/fsl-setup-poky -m <target>

Where target can be ls2085ardb or ls2085a-simu, in case you want to use a hardware board or a simulator,
respectively.

2. Build the images needed by AIOP reflector as follows:
a. bitbake fsl-image-kernelitb
b. bitbake dpl-examples

NOTE
Before building fsl-image-kernelitb, make sure gdbserver is included in
rootfs. Check if gdbserver is included in fsl-image-core.bb.

IMAGE_INSTALL_append = " \

packagegroup-fsl-tools-core \

packagegroup-fsl-benchmark-core \

packagegroup-fsl-networking-core \

gdbserver \

"`

3. AIOP reflector images which are already built and sources can be found under: <yocto_path>/
build_<target>_release\tmp\work\aarch64-fsl-linux\aiopsl

Prerequisites

AIOP SDK Applications Debug, Rev. 11/2016

2 NXP Semiconductors

http://linux.freescale.net/labDownload2/viewDownloads.php?Filter=LS2085A+Preliminary+SDK&field=PL&Action=Filter

4 Hardware setup
To demonstrate the reflected traffic, you can use only one board with two ports connected back-to-back, as the following
figure shows (in the example below, the copper ports 5 and 6 are connected):

Figure 1. Hardware setup using one board with two ports connected back-to-back

The Linux container role is played by the port 5 and the AIOP container role is played by the port 6.

LINUX AIOP
dpni.0 <-> dpmac.5 <-------------------------------> dpmac.6 <-> dpni.1
(ni0)

After you get a U-Boot prompt on the board, use these commands:

Bring up the board via tftp from U-Boot (or you can write the images to the flash using the flash programmer from
CodeWarrior for ARMv8).

setenv filesize; setenv myaddr 0x580100000; tftp 0x80000000 u-boot-nor.bin; protect off
$myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on
$myaddr +$filesize

setenv filesize; setenv myaddr 0x580000000; tftp 0x80000000 PBL.bin; protect off $myaddr +
$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on $myaddr +
$filesize

Hardware setup

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 3

setenv filesize; setenv myaddr 0x580300000; tftp 0x80000000 mc.itb; protect off $myaddr +
$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on $myaddr +
$filesize

setenv filesize; setenv myaddr 0x580700000; tftp 0x80000000 dpl-eth.0x2A_0x41.dtb; protect
off $myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect
on $myaddr +$filesize

setenv filesize; setenv myaddr 0x580800000; tftp 0x80000000 dpc-0x2a41.dtb; protect off
$myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on
$myaddr +$filesize

Prepare target for AIOP application

fsl_mc start mc 580300000 580800000 && fsl_mc apply dpl 580700000
tftp a0000000 kernel-ls2085ardb.itb
bootm a0000000

NOTE
bootargs needs to contains minimal parameters in order to have a correct setup for AIOP
application. Make sure bootargs=console=ttyS1,115200 root=/dev/ram0
earlycon=uart8250,mmio,0x21c0600 ramdisk_size=0x2000000
default_hugepagesz=2m hugepagesz=2m hugepages=256

Configure the ni0 interface and create a static ARP entry. Set the destination MAC as the ARP hardware address for all the IP
flows on which the packet needs to be sent:

$ ifconfig ni0 6.6.6.1 up
$ arp –s 6.6.6.10 000000000006

Prepare the AIOP container using the following steps:
1. Run the following script on the linux target.

<yocto_path>/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/aiopapp-refapp/scripts/
dynamic_aiop_root.sh

2. Delete the lines between 205 and 225 and update DPMAC1="dpmac.6".
3. Copy the script and the aiop_reflector.elf on the linux target using scp from the linux host and the eth0

(connected to e1000#0 PCI card) interface.

On the linux target:

$ ifconfig eth0 192.168.1.2 up

On the linux host:

$ ifconfig eth0 192.168.1.1 up
$ scp <yocto_path>/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/aiopapp-refapp/
scripts/dynamic_aiop_root.sh root@192.168.1.2:.
$ scp <yocto_path>/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/aiopapp-refapp/demos/
reflector/out/aiop_reflector.elf root@192.168.1.2:.

On the linux target:

root@ls2085ardb:~# chmod +x dynamic_aiop_root_test.sh
root@ls2085ardb:~# ./dynamic_aiop_root_test.sh
Creating AIOP Container
Assigned dpbp.1 to dprc.2
Assigned dpbp.2 to dprc.2
Assigned dpbp.3 to dprc.2
Assigned dpni.1 to dprc.2
Connecting dpni.1<------->dpmac.6
AIOP Container dprc.2 created
----- Contents of AIOP Container: dprc.2 -----
dprc.2 contains 4 objects:
object label plugged-state
dpni.1 plugged

Hardware setup

AIOP SDK Applications Debug, Rev. 11/2016

4 NXP Semiconductors

dpbp.3 plugged
dpbp.2 plugged
dpbp.1 plugged

==
Creating AIOP Tool Container
Assigned dpaiop.0 to dprc.3
Assigned dpmcp.22 to dprc.3
AIOP Tool Container dprc.3 created
----- Contents of AIOP Tool Container: dprc.3 -----
dprc.3 contains 2 objects:
object label plugged-state
dpaiop.0 plugged
dpmcp.22 plugged

==
Performing VFIO mapping for AIOP Tool Container (dprc.3)
Performing vfio [234.804575] vfio-fsl-mc dprc.3: Binding with vfio-fsl_mc driver
mapping for dprc.3
[234.814384] vfio-fsl-mc dpaiop.0: Binding with vfio-fsl_mc driver
[234.821209] vfio-fsl-mc dpmcp.22: Binding with vfio-fsl_mc driver
========== Summary =================================
 AIOP Container: dprc.2
 AIOP Tool Container: dprc.3
==

Load the AIOP application using aiop_tool.

Initiate ping on the interface to forward packets to the Reflector application running on the AIOP container board. Basically,
this is a ping from ni0 interface (dpni.0 – dpmac.5) to dpni.1 – dpmac.6.

$ aiop_tool load -f aiop_reflector.elf -g dprc.3
AIOP Image (aiop_reflector.elf) loaded successfully.
$ ping 6.6.6.10

To check if the AIOP reflector application loaded successfully, execute the following command in the Linux command shell:

$ root@ls2085ardb:~# cat /dev/fsl_aiop_console

The command output displays the number of DPNIs that are successfully configured, together with the DPNIs that are
provided to the AIOP Reflector Application:

REFLECTOR : Successfully configured ni0 (dpni.1)
REFLECTOR : dpni.1 <---connected---> dpmac.6 (MAC addr: 00:00:00:00:00:06)
> TRACE [CPU 0, dpci_drv.c:524 dpci_event_handle_removed_objects]: Exit
> INFO [CPU 0, init.c:289 core_ready_for_tasks]: AIOP core 0 completed boot sequence
> INFO [CPU 0, init.c:295 core_ready_for_tasks]: AIOP boot finished; ready for tasks...

The AIOP Logger prints a brief information about every frame that is reflected, as listed below. You can also view these logs
in the CodeWarrior IDE in a simple manner using the Debug Print feature. For more information about the Debug Print
feature, see the Debug Print Application Note.

$ root@ls2085ardb:~# tail -f /dev/fsl_aiop_console

RX on DPNI 1 | CORE:15
 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

RX on DPNI 1 | CORE:15
 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

RX on DPNI 1 | CORE:15
 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

RX on DPNI 1 | CORE:15

Hardware setup

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 5

 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

5 Importing and building AIOP reflector project
To import and build the AIOP reflector project, follow these steps:

Importing and building AIOP reflector project

AIOP SDK Applications Debug, Rev. 11/2016

6 NXP Semiconductors

1. Start the CodeWarrior and create a new workspace.
2. Import (File > Import > General > Existing Projects Into Workspace) the reflector and aiop_sl projects from this

location: <yocto_path>/build_<target>_release\tmp\work\aarch64-fsl-linux\aiopsl

Figure 2. Import dialog - Import Projects page
3. The aiop reflector project (aiop_reflector.elf) is already built by Yocto, but if you want you can edit the sources

and build the project directly from the CodeWarrior. To do this, right-click on the project in the CodeWarrior
Projects view and select Build Project. The IDE also rebuilds the aiop_sl library project that is linked to the
reflector project. It is recommended to use –O0 level optimization for improved debugging. To access Optimization
Level, select Project Properties > C/C++ Build > Settings > Compiler > Optimization > Optimization Level.

Importing and building AIOP reflector project

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 7

Figure 3. Properties for reflector project - Settings window

Figure 4. CodeWarrior Projects view - Build Project option

6 Debugging AIOP APP using CodeWarrior
To debug the AIOP using the CodeWarrior for APP IDE, follow these steps:

1. Copy the new aiop_reflector.elf just compiled with CodeWarrior or yocto to the linux board. To locate the elf,
expand the Binaries group from reflector project, right click on the aiop_app.elf and select Show in Windows
Explorer for Windows, or Show in File Manager for Linux.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 11/2016

8 NXP Semiconductors

Figure 5. Show in Windows Explorer option
2. Select Run > Debug Configurations from the IDE menu bar.

The Debug Configuration dialog appears.

3. Select the reflector project.
4. Select aiop_dbg launch configuration from the left panel.
5. Click Edit from Connection.
6. Specify the Hostname/IP.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 9

Figure 6. Properties for <connection> dialog - Hostname/IP option
7. Click OK.
8. Ensure that the AIOP OS awareness is enabled. To do this, open the Debugger > OS Awareness tabs and ensure that

the AIOP is selected in the Target OS group.

Figure 7. Selecting AIOP Target OS
9. Click Debug for attaching to the AIOP.

Figure 8. Debug view - Attaching AIOP

You can debug the AIOP APP using the following two methods:
• Debugging AIOP from system entry point
• Debugging AIOP from application entry point

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 11/2016

10 NXP Semiconductors

6.1 Debugging AIOP from system entry point

1. To access the very first AIOP instruction (the entry point), you need to control the entire system booting process (U-
Boot/GPP > MC > AIOP) and have run-control on the GPP core side.

2. Click Reset.

Figure 9. Debug view showing Reset button

The AIOP debugging halts.

Figure 10. Debug view
3. Open the CodeWarrior for APP IDE.
4. Set a breakpoint at __sys_start.

NOTE
This is possible from both the source file and the Debugger Shell view. The
breakpoint from the __sys_start init hits just after the AIOP tool loads the
AIOP application.

Figure 11. CodeWarrior for APP - Editor view

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 11

Figure 12. CodeWarrior for APP - Debugger Shell view
5. Click Resume to boot the entire eco-system (u-boot/GPP > MC > Linux > AIOP) using the Debugger Shell view.

Write the following command in the Debugger Shell view <protocol ccs::run_core 288>

Figure 13. CodeWarrior for APP - Debug Shell view
6. The debugger hits the break point __sys_start after the aiop_tool loads the AIOP application from the linux

target. For more details, see Hardware setup.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 11/2016

12 NXP Semiconductors

Figure 14. CodeWarrior for APP - Debug perspective

6.2 Debugging AIOP from application entry point

The entry point function executed by a triggered AIOP task is app_reflector. A breakpoint in this function hits when you
generate a traffic using the ping command (see Hardware setup). To debug AIOP from the application entry point, follow the
steps below:

1. Set up a breakpoint at app_reflector symbol using either the source file or the Debugger Shell view.

Figure 15. Setting breakpoint using source file

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 13

Figure 16. Setting breakpoint using Debugger Shell view
2. Click Resume from the Debug view.

The figure below shows the AIOP task suspended in core_ready_for_tasks() function.

Figure 17. Debug view displaying core_ready_for_tasks() function
3. The core finishes to boot and waits for the tasks to be triggered.
4. Now, follow the AIOP reflector demonstration steps listed in the Hardware setup chapter.

NOTE
You need to load the kernel via the tftp and bootm commands. Sending the
packets (with ping) to the AIOP interfaces generate tasks that can be observed/
debugged in the System Browser view and also hits the breakpoint from the
app_reflector symbol. For full debugging capabilities of the System Browser
and the AIOP Task Aware features, see the AIOP Task Aware Debug (document
AN5044) application note.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 11/2016

14 NXP Semiconductors

Figure 18. Debug view - app_reflector breakpoint

Figure 19. System Browser view

7 Collecting hardware trace
To collect the hardware trace, follow the steps listed below:

Collecting hardware trace

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 15

1. Open Run > Debug Configurations > Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox. For customizing the trace options, click Edit.

Figure 20. Trace and Profile tab
3. Click Debug.

The trace gets collected between the two suspended events.

NOTE
After the attach is completed, it is mandatory for the task to process the suspend
operation first.

4. Ensure that you set up the breakpoints in the app_reflector entry point.
5. Click Resume.
6. Send the ping traffic as suggested in the Hardware setup chapter.
7. The debugger hits the breakpoint.
8. Click Resume again for executing the entry point function and for generating the trace for your entry point function.
9. The debugger hits the breakpoint again.

10. Click Upload Trace to collect the trace.

Figure 21. Debug view - Collect Trace option
11. The collected trace appears in the Analysis Results view.

Figure 22. Analysis Results view
12. It is mandatory to open the Trace item first for letting the CodeWarrior IDE to decoding the gathered hardware trace.

Collecting hardware trace

AIOP SDK Applications Debug, Rev. 11/2016

16 NXP Semiconductors

Figure 23. Hardware trace

For the rest of the items, ensure that you select the last task because the app reflector is enabling the tasks in a round-robin
manner starting from the last task.

Figure 24. Call Tree view

Figure 25. Selecting task

Figure 26. Collected trace

7.1 GCov code coverage

To enable GCov code coverage for reflector, follow the steps below:

1. Enable the Generate Code Coverage File option from the Project > Properties > Settings > Tool Settings >
Compiler > Processor and re-build the project.

Collecting hardware trace

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 17

Figure 27. Generate Code Coverage File option
2. Follow the steps from Collecting hardware trace section to have the gcov results.

For more details, see the section 6.3 GCov of the CodeWarrior Development Studio for Advanced Packet Processing
Targeting Manual (document CWAPPTM).

Figure 28. gcov view

Figure 29. Editor view - reflector.c file

8 Simulator setup

Simulator setup

AIOP SDK Applications Debug, Rev. 11/2016

18 NXP Semiconductors

To setup the LS software simulator, you have to:
• Complete the CSAM registration (only for the Freescale internal users)
• Configure and start the simulator

This section explains the following:
• Configuring and starting simulator
• GCov code coverage
• Point to Point Profiler

8.1 Configuring and starting simulator

To configure and start the simulator, perform these steps:
1. If you are running the CodeWarrior on a Linux machine, the simulator is available unpacked under Common/CCSSim

folder, therefore, you may skip to step 4.
2. For running CodeWarrior software on a Windows machine, the simulator is available in the CodeWarrior layout at this

location: <CW_Layout>/Common/CCSSim/LS_SIM_RELEASE_0_x_0_xxxx_xxxxxx.tgz
3. Copy the file to the Linux x86_64 machine and untar it.
4. To enable the AIOP debug in parallel with the u-boot/Linux option, follow the steps listed below:

a. On top of the simulator start-up scripts, there is a package consisting of a set of SDK binary images (U-Boot,
Linux kernel) and a start-up script run-sim.sh, which loads all the mentioned images and begins execution on
the primary GPP core. For details, see Using ls2-sim-support scripts (run-sim.sh) and CodeWarrior section of the
Layerscape Simulator User Guide.

b. If you have your custom SDK images, copy all of them in the images folder from ls2-sim-support package (see
step 1 Debugging AIOP APP using CodeWarrior)

c. In a console, set the LS2_SIM_BASE_DIR variable to the simulator path <Layout>/Common/CCSSim/
d. In the same console, navigate to the ls2-sim-support folder and run the command listed below (using this

command you can debug only the APP – AIOP side and triggers the U-boot to boot up)

./run-sim.sh -G -i images/aiop_reflector.elf -d images/dpl-reflector.dtb
e. If you also need to see the MC firmware and AIOPAPP consoles during booting, you can use this command:

./run-sim.sh -G -m -a-i images/aiop_reflector.elf -d images/dpl-reflector.dtb
f. If you need a custom debugging port (a set up in CodeWarrior Connection settings), you can use -e ‘-port

xxxxx’. Also, you can change the default tio port (very useful for example when multiple users are using the
same Linux machine) as listed below, using the -p option:

 ./run_sim.sh -p 47178 -G -e '-port 41976' -i images/aiop_reflector.elf -d images/
dpl-reflector.dtb

g. For closing the simulator during the booting, press Ctrl+D followed by Ctrl+C.
h. For more details about run-sim.sh parameters, use the ./run-sim.sh -h command.

8.2 GCov code coverage

The CodeWarrior for APP also supports the GCov code coverage for the simulator side. To gather the gcov information, you
need to execute the steps listed in the GCov code coverage and enable the Enable Code Coverage option from the Trace
and Profile tab.

Simulator setup

AIOP SDK Applications Debug, Rev. 11/2016

NXP Semiconductors 19

Figure 30. Enable Code Coverage option

8.3 Point to Point Profiler

Point to Point Profiler is a user-friendly and flexible way to gather the statistics and visualize reports in the CodeWarrior IDE
for the supported AIOP counters. For more details, see section 6.4 Point to Point Profiler of the CodeWarrior Development
Studio for Advanced Packet Processing Targeting Manual (document CWAPPTM).

The Point to Point Profiler markers are employed to gather the statistics for certain regions of the code. These markers are
added by the user into the code and are taken into account by the compiler only if the –perfmarks flag is set. To enable the
flag in a project, select the Enable user-defined performance markers option in the Properties > Settings > Tool Settings
> Compiler > Processor page and re-build the poject.

Also, you need to enable the Enable Point to Point Profiler option in the Trace and Profile tab for sending the simulator
trace back to the CodeWarrior host.

Figure 31. Enable Point to Point Profiler option

Simulator setup

AIOP SDK Applications Debug, Rev. 11/2016

20 NXP Semiconductors

NXP, the NXP logo, Freescale, the Freescale logo, CodeWarrior, Layerscape, PowerQUICC,
QorIQ, CoreNet, and QUICC Engine are trademarks of NXP B.V. All other product or service
names are the property of their respective owners. Arm, Cortex, and TrustZone are
registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All
rights reserved.

© 2018 NXP B.V.

Information in this document is provided solely to enable system and software implementers

to use NXP products. There are no express or implied copyright licenses granted hereunder

to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products

for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be

provided in NXP data sheets and/or specifications can and do vary in different applications,

and actual performance may vary over time. All operating parameters, including “typicals,”

must be validated for each customer application by customer's technical experts. NXP does

not convey any license under its patent rights nor the rights of others. NXP sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: nxp.com/

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Document Number: AN5165
Rev. 11/2016

		Overview

		Prerequisites

		Building AIOP reflector APP

		Hardware setup

		Importing and building AIOP reflector project

		Debugging AIOP APP using CodeWarrior

		Debugging AIOP from system entry point

		Debugging AIOP from application entry point

		Collecting hardware trace

		GCov code coverage

		Simulator setup

		Configuring and starting simulator

		GCov code coverage

		Point to Point Profiler

NXP Semiconductors

Document Number: DPAA2UM
Rev 10, 12/2017

DPAA2 User Manual
(Compatible with MC firmware v10.6.x)

NXP, the NXP logo, Freescale, the Freescale logo, CodeWarrior, Layerscape, PowerQUICC,

QorIQ, CoreNet, and QUICC Engine are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. Arm, Cortex, and TrustZone are

registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All

rights reserved.

© 2015–2018 NXP B.V.

Information in this document is provided solely to enable system and software implementers

to use NXP products. There are no express or implied copyright licenses granted hereunder

to design or fabricate any integrated circuits based on the information in this document.

NXP reserves the right to make changes without further notice to any products herein. NXP

makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages.“Typical” parameters that may be provided in

NXP data sheets and/or specifications can and do vary in different applications, and actual

performance may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customer’s technical experts. NXP does not

convey any license under its patent rights nor the rights of others. NXP sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: nxp.com/SalesTermsandConditions.

DPAA2UM
Rev 10, 12/2017

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -iii

Contents
Paragraph
Number Title

Page
Number

Contents

Chapter 1 Introduction

1.1 Intended audience .. 1-2
1.2 Definitions and acronyms .. 1-2

Chapter 2 Overview

2.1 Introduction to DPAA2 objects.. 2-1
2.1.1 Network objects ... 2-2
2.1.1.1 Data Path Network Interface (DPNI) .. 2-2
2.1.1.2 Data Path MAC (DPMAC).. 2-2
2.1.1.3 Data Path Switch (DPSW)... 2-2
2.1.1.4 Data Path Demux (DPDMUX).. 2-3
2.1.1.5 Data Path Link Aggregator (DPLAG)... 2-3
2.1.2 DPAA2 infrastructure objects .. 2-4
2.1.2.1 Data Path Buffer Pool (DPBP) .. 2-4
2.1.2.2 Data Path I/O Portal (DPIO).. 2-4
2.1.2.3 Data Path Concentrator (DPCON)... 2-4
2.1.3 Accelerator interfaces .. 2-5
2.1.3.1 Data Path Security Interface (DPSECI)... 2-5
2.1.3.2 Data Path De/Compression Interface (DPDCEI) .. 2-5
2.1.3.3 Data Path DMA Interface (DPDMAI)... 2-6
2.1.4 Management and control objects ... 2-6
2.1.4.1 Data Path Communication Interface (DPCI)... 2-6
2.1.4.2 Data Path Resource Container (DPRC)... 2-7
2.1.4.3 Data Path MC Portal (DPMCP)... 2-7
2.1.5 DPAA2 object support per platform .. 2-8
2.2 Objects topology and inter-connect ... 2-8
2.2.1 Connection and link state... 2-10
2.2.2 Typical object connections... 2-10
2.2.3 How and when to connect.. 2-12

Chapter 3 Boot and Initialization Process

3.1 Loading the MC firmware ... 3-1
3.2 Data Path Configuration (DPC)... 3-1
3.3 Data Path Layout (DPL) .. 3-1
3.4 Starting MC.. 3-2

DPAA2UM, Rev 10, 12/2017

-iv NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

Chapter 4 MC Firmware Versions

4.1 MC global firmware versions .. 4-1
4.2 DPAA2 Object versions ... 4-1
4.3 DPAA2 Object Commands .. 4-1
4.4 Recommended user verification .. 4-2
4.5 Firmware command reference ... 4-3
4.5.1 DPMNG_GET_VERSION.. 4-3
4.5.2 DPMNG_GET_SOC_VERSION .. 4-5

Chapter 5 Management Command Portals

5.1 Overview of command portals... 5-1
5.2 Command portal usage .. 5-1
5.3 Creating and destroying DPAA2 objects ... 5-2
5.4 Command portals memory map... 5-3
5.5 Management command portal definition ... 5-4
5.6 MC General Command Portals command reference ... 5-6
5.6.1 DPMNG_GET_CONT_ID .. 5-6

Chapter 6 DPRC: Data Path Resource Container

6.1 DPRC features ... 6-1
6.2 DPRC functional description ... 6-2
6.2.1 Resource container creation... 6-2
6.2.2 Objects assignment .. 6-2
6.2.3 Objects discovery... 6-2
6.3 DPRC command reference .. 6-3
6.3.1 DPRC_OPEN... 6-3
6.3.2 DPRC_CLOSE .. 6-4
6.3.3 DPRC_CREATE_CONTAINER ... 6-5
6.3.4 DPRC_DESTROY_CONTAINER.. 6-7
6.3.5 DPRC_RESET_CONTAINER.. 6-8
6.3.6 DPRC_SET_IRQ... 6-9
6.3.7 DPRC_GET_IRQ .. 6-10
6.3.8 DPRC_SET_IRQ_ENABLE ... 6-12
6.3.9 DPRC_GET_IRQ_ENABLE... 6-13
6.3.10 DPRC_SET_IRQ_MASK ... 6-15
6.3.11 DPRC_GET_IRQ_MASK... 6-16
6.3.12 DPRC_GET_IRQ_STATUS.. 6-18
6.3.13 DPRC_CLEAR_IRQ_STATUS... 6-20

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -v

Contents
Paragraph
Number Title

Page
Number

6.3.14 DPRC_GET_ATTRIBUTES ... 6-21
6.3.15 DPRC_SET_RES_QUOTA... 6-23
6.3.16 DPRC_GET_RES_QUOTA .. 6-24
6.3.17 DPRC_ASSIGN... 6-26
6.3.18 DPRC_UNASSIGN... 6-27
6.3.19 DPRC_GET_POOL_COUNT... 6-28
6.3.20 DPRC_GET_POOL... 6-30
6.3.21 DPRC_GET_OBJ_COUNT .. 6-32
6.3.22 DPRC_GET_OBJ .. 6-34
6.3.23 DPRC_GET_OBJ_DESC.. 6-36
6.3.24 DPRC_GET_RES_COUNT .. 6-38
6.3.25 DPRC_GET_RES_IDS ... 6-40
6.3.26 DPRC_GET_OBJ_REGION... 6-42
6.3.27 DPRC_SET_OBJ_LABEL.. 6-44
6.3.28 DPRC_SET_OBJ_IRQ.. 6-45
6.3.29 DPRC_GET_OBJ_IRQ ... 6-46
6.3.30 DPRC_CONNECT .. 6-48
6.3.31 DPRC_DISCONNECT.. 6-49
6.3.32 DPRC_GET_CONNECTION ... 6-50
6.3.33 DPRC_GET_API_VERSION ... 6-52

Chapter 7 DPNI: Data Path Network Interface

7.1 DPNI features .. 7-1
7.2 DPNI functional description .. 7-3
7.2.1 Ingress frame processing ... 7-3
7.2.2 Egress frame processing .. 7-4
7.2.3 Relationship with DPIO and DPCON objects ... 7-5
7.2.4 Relationship with DPBP objects.. 7-6
7.2.5 Ingress QoS.. 7-6
7.2.6 Ingress distribution .. 7-7
7.2.7 Flow control... 7-8
7.2.7.1 Flow control configuration .. 7-8
7.2.7.2 Priority flow control configuration.. 7-8
7.3 DPNI command reference ... 7-10
7.3.1 DPNI_CREATE... 7-10
7.3.2 DPNI_DESTROY.. 7-14
7.3.3 DPNI_OPEN.. 7-15
7.3.4 DPNI_CLOSE ... 7-16
7.3.5 DPNI_ENABLE .. 7-17
7.3.6 DPNI_DISABLE ... 7-18

DPAA2UM, Rev 10, 12/2017

-vi NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

7.3.7 DPNI_IS_ENABLED.. 7-19
7.3.8 DPNI_RESET.. 7-21
7.3.9 DPNI_SET_IRQ_ENABLE .. 7-22
7.3.10 DPNI_GET_IRQ_ENABLE.. 7-23
7.3.11 DPNI_SET_IRQ_MASK... 7-25
7.3.12 DPNI_GET_IRQ_MASK.. 7-26
7.3.13 DPNI_GET_IRQ_STATUS ... 7-28
7.3.14 DPNI_CLEAR_IRQ_STATUS.. 7-30
7.3.15 DPNI_GET_ATTRIBUTES .. 7-31
7.3.16 DPNI_SET_POOLS .. 7-35
7.3.17 DPNI_SET_ERRORS_BEHAVIOR ... 7-37
7.3.18 DPNI_SET_BUFFER_LAYOUT.. 7-39
7.3.19 DPNI_GET_BUFFER_LAYOUT ... 7-42
7.3.20 DPNI_SET_OFFLOAD... 7-44
7.3.21 DPNI_GET_OFFLOAD.. 7-45
7.3.22 DPNI_GET_QDID .. 7-47
7.3.23 DPNI_GET_SP_INFO... 7-50
7.3.24 DPNI_GET_TX_DATA_OFFSET .. 7-52
7.3.25 DPNI_GET_STATISTICS... 7-54
7.3.26 DPNI_RESET_STATISTICS .. 7-57
7.3.27 DPNI_SET_LINK_CFG.. 7-58
7.3.28 DPNI_GET_LINK_STATE ... 7-60
7.3.29 DPNI_SET_TX_SHAPING .. 7-62
7.3.30 DPNI_SET_MAX_FRAME_LENGTH.. 7-64
7.3.31 DPNI_GET_MAX_FRAME_LENGTH ... 7-65
7.3.32 DPNI_SET_MULTICAST_PROMISC... 7-67
7.3.33 DPNI_GET_MULTICAST_PROMISC .. 7-68
7.3.34 DPNI_SET_UNICAST_PROMISC .. 7-70
7.3.35 DPNI_GET_UNICAST_PROMISC ... 7-71
7.3.36 DPNI_SET_PRIMARY_MAC_ADDR... 7-73
7.3.37 DPNI_GET_PRIMARY_MAC_ADDR.. 7-74
7.3.38 DPNI_ADD_MAC_ADDR... 7-76
7.3.39 DPNI_REMOVE_MAC_ADDR... 7-77
7.3.40 DPNI_CLEAR_MAC_FILTERS .. 7-78
7.3.41 DPNI_GET_PORT_MAC_ADDRESS... 7-79
7.3.42 DPNI_ENABLE_VLAN_FILTER.. 7-81
7.3.43 DPNI_ADD_VLAN_ID .. 7-82
7.3.44 DPNI_REMOVE_VLAN_ID.. 7-83
7.3.45 DPNI_CLEAR_VLAN_FILTERS .. 7-84
7.3.46 DPNI_SET_TX_PRIORITIES .. 7-85
7.3.47 DPNI_SET_RX_TC_DIST ... 7-87

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -vii

Contents
Paragraph
Number Title

Page
Number

7.3.48 DPNI_SET_RX_TC_POLICING.. 7-92
7.3.49 DPNI_GET_RX_TC_POLICING... 7-94
7.3.50 DPNI_SET_TAILDROP ... 7-97
7.3.51 DPNI_GET_TAILDROP... 7-99
7.3.52 DPNI_SET_EARLY_DROP ... 7-101
7.3.53 DPNI_GET_EARLY_DROP... 7-104
7.3.54 DPNI_SET_QUEUE ... 7-107
7.3.55 DPNI_GET_QUEUE... 7-109
7.3.56 DPNI_SET_TX_CONFIRMATION_MODE...7-111
7.3.57 DPNI_GET_TX_CONFIRMATION_MODE... 7-112
7.3.58 DPNI_SET_QOS_TABLE .. 7-114
7.3.59 DPNI_ADD_QOS_ENTRY .. 7-118
7.3.60 DPNI_REMOVE_QOS_ENTRY .. 7-119
7.3.61 DPNI_CLEAR_QOS_TABLE .. 7-120
7.3.62 DPNI_ADD_FS_ENTRY.. 7-121
7.3.63 DPNI_REMOVE_FS_ENTRY.. 7-123
7.3.64 DPNI_CLEAR_FS_ENTRIES .. 7-124
7.3.65 DPNI_GET_API_VERSION... 7-125
7.3.66 DPNI_SET_OPR ... 7-127
7.3.67 DPNI_GET_OPR... 7-129
7.3.68 DPNI_SET_CONGESTION_NOTIFICATION.. 7-131
7.3.68.1 Congestion threshold representation.. 7-131
7.3.69 DPNI_GET_CONGESTION_NOTIFICATION... 7-133
7.3.70 DPNI_LOAD_SW_SEQUENCE .. 7-135
7.3.71 DPNI_ENABLE_SW_SEQUENCE ... 7-136

Chapter 8 DPBP: Data Path Buffer Pool

8.1 DPBP features.. 8-1
8.2 DPBP command reference... 8-2
8.2.1 DPBP_OPEN... 8-2
8.2.2 DPBP_CLOSE... 8-3
8.2.3 DPBP_CREATE .. 8-4
8.2.4 DPBP_DESTROY... 8-6
8.2.5 DPBP_ENABLE.. 8-7
8.2.6 DPBP_DISABLE... 8-8
8.2.7 DPBP_IS_ENABLED ... 8-9
8.2.8 DPBP_RESET ... 8-11
8.2.9 DPBP_SET_IRQ_ENABLE.. 8-12
8.2.10 DPBP_GET_IRQ_ENABLE... 8-13
8.2.11 DPBP_SET_IRQ_MASK.. 8-15

DPAA2UM, Rev 10, 12/2017

-viii NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

8.2.12 DPBP_GET_IRQ_MASK ... 8-16
8.2.13 DPBP_GET_IRQ_STATUS .. 8-18
8.2.14 DPBP_CLEAR_IRQ_STATUS ... 8-20
8.2.15 DPBP_GET_ATTRIBUTES.. 8-21
8.2.16 DPBP_SET_NOTIFICATIONS .. 8-23
8.2.17 DPBP_GET_NOTIFICATIONS.. 8-24
8.2.18 DPBP_GET_API_VERSION.. 8-26

Chapter 9 DPIO: Data Path I/O

9.1 DPIO features .. 9-1
9.2 DPIO command reference ... 9-2
9.2.1 DPIO_OPEN.. 9-2
9.2.2 DPIO_CLOSE ... 9-3
9.2.3 DPIO_CREATE... 9-4
9.2.4 DPIO_DESTROY.. 9-6
9.2.5 DPIO_ENABLE .. 9-7
9.2.6 DPIO_DISABLE ... 9-8
9.2.7 DPIO_IS_ENABLED.. 9-9
9.2.8 DPIO_RESET.. 9-11
9.2.9 DPIO_SET_IRQ_ENABLE .. 9-12
9.2.10 DPIO_GET_IRQ_ENABLE.. 9-13
9.2.11 DPIO_SET_IRQ_MASK... 9-15
9.2.12 DPIO_GET_IRQ_MASK.. 9-16
9.2.13 DPIO_GET_IRQ_STATUS ... 9-18
9.2.14 DPIO_CLEAR_IRQ_STATUS.. 9-20
9.2.15 DPIO_GET_ATTRIBUTES .. 9-21
9.2.16 DPIO_SET_STASHING_DESTINATION ... 9-23
9.2.17 DPIO_GET_STASHING_DESTINATION... 9-24
9.2.18 DPIO_ADD_STATIC_DEQUEUE_CHANNEL .. 9-26
9.2.19 DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL.. 9-28
9.2.20 DPIO_GET_API_VERSION... 9-29

Chapter 10 DPCON: Data Path Concentrator

10.1 DPCON features .. 10-1
10.2 DPCON command reference ... 10-2
10.2.1 DPCON_OPEN ... 10-2
10.2.2 DPCON_CLOSE ... 10-3
10.2.3 DPCON_CREATE... 10-4
10.2.4 DPCON_DESTROY ... 10-6

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -ix

Contents
Paragraph
Number Title

Page
Number

10.2.5 DPCON_ENABLE .. 10-7
10.2.6 DPCON_DISABLE... 10-8
10.2.7 DPCON_IS_ENABLED.. 10-9
10.2.8 DPCON_RESET.. 10-11
10.2.9 DPCON_SET_IRQ_ENABLE .. 10-12
10.2.10 DPCON_GET_IRQ_ENABLE ... 10-13
10.2.11 DPCON_SET_IRQ_MASK .. 10-15
10.2.12 DPCON_GET_IRQ_MASK.. 10-16
10.2.13 DPCON_GET_IRQ_STATUS... 10-18
10.2.14 DPCON_CLEAR_IRQ_STATUS ... 10-20
10.2.15 DPCON_GET_ATTRIBUTES .. 10-21
10.2.16 DPCON_SET_NOTIFICATION... 10-23
10.2.17 DPCON_GET_API_VERSION .. 10-24

Chapter 11 DPCI: Data Path Communication Interface

11.1 DPCI features... 11-1
11.2 DPCI functional description .. 11-1
11.2.1 Connecting DPCI objects... 11-1
11.2.2 Relationship with DPIO and DPCON objects ... 11-2
11.2.3 Buffer requirements ... 11-2
11.3 DPCI command reference.. 11-2
11.3.1 DPCI_OPEN.. 11-3
11.3.2 DPCI_CLOSE.. 11-4
11.3.3 DPCI_CREATE ... 11-5
11.3.4 DPCI_DESTROY.. 11-7
11.3.5 DPCI_ENABLE... 11-8
11.3.6 DPCI_DISABLE ... 11-9
11.3.7 DPCI_IS_ENABLED .. 11-10
11.3.8 DPCI_RESET .. 11-12
11.3.9 DPCI_SET_IRQ_ENABLE... 11-13
11.3.10 DPCI_GET_IRQ_ENABLE.. 11-14
11.3.11 DPCI_SET_IRQ_MASK... 11-16
11.3.12 DPCI_GET_IRQ_MASK .. 11-17
11.3.13 DPCI_GET_IRQ_STATUS ... 11-19
11.3.14 DPCI_CLEAR_IRQ_STATUS.. 11-21
11.3.15 DPCI_GET_ATTRIBUTES... 11-22
11.3.16 DPCI_GET_PEER_ATTRIBUTES... 11-24
11.3.17 DPCI_GET_LINK_STATE ... 11-26
11.3.18 DPCI_SET_RX_QUEUE .. 11-28
11.3.19 DPCI_GET_RX_QUEUE ... 11-29

DPAA2UM, Rev 10, 12/2017

-x NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

11.3.20 DPCI_GET_TX_QUEUE.. 11-31
11.3.21 DPCI_GET_API_VERSION... 11-33
11.3.22 DPCI_SET_OPR ... 11-35
11.3.23 DPCI_GET_OPR... 11-37

Chapter 12 DPDMUX: Data Path Network DeMux

12.1 DPDMUX features .. 12-1
12.2 DPDMUX functional description .. 12-2
12.2.1 Demux database... 12-2
12.2.2 Broadcast and multicast support .. 12-2
12.2.3 Promiscuous interfaces .. 12-2
12.2.4 Frames acceptance policy .. 12-3
12.3 DPDMUX command reference ... 12-3
12.3.1 DPDMUX_OPEN.. 12-4
12.3.2 DPDMUX_CLOSE ... 12-5
12.3.3 DPDMUX_CREATE... 12-6
12.3.4 DPDMUX_DESTROY.. 12-8
12.3.5 DPDMUX_ENABLE .. 12-9
12.3.6 DPDMUX_DISABLE ... 12-10
12.3.7 DPDMUX_IS_ENABLED.. 12-11
12.3.8 DPDMUX_RESET.. 12-12
12.3.9 DPDMUX_SET_IRQ_ENABLE .. 12-13
12.3.10 DPDMUX_GET_IRQ_ENABLE.. 12-14
12.3.11 DPDMUX_SET_IRQ_MASK... 12-16
12.3.12 DPDMUX_GET_IRQ_MASK.. 12-17
12.3.13 DPDMUX_GET_IRQ_STATUS ... 12-19
12.3.14 DPDMUX_CLEAR_IRQ_STATUS.. 12-21
12.3.15 DPDMUX_GET_ATTRIBUTES .. 12-22
12.3.16 DPDMUX_SET_MAX_FRAME_LENGTH.. 12-24
12.3.17 DPDMUX_IF_SET_ACCEPTED_FRAMES... 12-25
12.3.18 DPDMUX_IF_GET_ATTRIBUTES... 12-26
12.3.19 DPDMUX_IF_ENABLE... 12-28
12.3.20 DPDMUX_IF_DISABLE.. 12-29
12.3.21 DPDMUX_IF_SET_DEFAULT.. 12-30
12.3.22 DPDMUX_IF_GET_DEFAULT ... 12-31
12.3.23 DPDMUX_IF_REMOVE_L2_RULE... 12-33
12.3.24 DPDMUX_IF_ADD_L2_RULE... 12-34
12.3.25 DPDMUX_IF_GET_COUNTER.. 12-35
12.3.26 DPDMUX_UL_RESET_COUNTERS ... 12-37
12.3.27 DPDMUX_IF_SET_LINK_CFG .. 12-38

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -xi

Contents
Paragraph
Number Title

Page
Number

12.3.28 DPDMUX_IF_GET_LINK_STATE ... 12-39
12.3.29 DPDMUX_GET_API_VERSION... 12-41
12.3.30 DPDMUX_SET_CUSTOM_KEY .. 12-43
12.3.31 DPDMUX_ADD_CUSTOM_CLS_ENTRY .. 12-44
12.3.32 DPDMUX_REMOVE_CUSTOM_CLS_ENTRY .. 12-45

Chapter 13 12/2017DPSW: Data Path L2 Switch

13.1 DPSW features... 13-1
13.2 DPSW functional description .. 13-2
13.2.1 Creating L2 switch instance... 13-2
13.2.2 VLAN configuration.. 13-2
13.2.3 Learning modes.. 13-2
13.2.4 FDB configuration ... 13-3
13.3 DPSW command reference.. 13-4
13.3.1 DPSW_OPEN.. 13-4
13.3.2 DPSW_CLOSE.. 13-5
13.3.3 DPSW_CREATE ... 13-6
13.3.4 DPSW_DESTROY.. 13-8
13.3.5 DPSW_ENABLE... 13-9
13.3.6 DPSW_DISABLE ... 13-10
13.3.7 DPSW_IS_ENABLED .. 13-11
13.3.8 DPSW_RESET .. 13-13
13.3.9 DPSW_SET_IRQ_ENABLE... 13-14
13.3.10 DPSW_GET_IRQ_ENABLE.. 13-15
13.3.11 DPSW_SET_IRQ_MASK... 13-17
13.3.12 DPSW_GET_IRQ_MASK .. 13-18
13.3.13 DPSW_GET_IRQ_STATUS ... 13-20
13.3.14 DPSW_CLEAR_IRQ_STATUS.. 13-22
13.3.15 DPSW_GET_ATTRIBUTES... 13-23
13.3.16 DPSW_SET_REFLECTION_IF ... 13-25
13.3.17 DPSW_IF_SET_FLOODING ... 13-26
13.3.18 DPSW_IF_SET_BROADCAST ... 13-27
13.3.19 DPSW_IF_SET_MULTICAST ... 13-28
13.3.20 DPSW_IF_SET_TCI ... 13-29
13.3.21 DPSW_IF_GET_TCI... 13-30
13.3.22 DPSW_IF_SET_STP... 13-32
13.3.23 DPSW_IF_SET_ACCEPTED_FRAMES... 13-33
13.3.24 DPSW_SET_IF_ACCEPT_ALL_VLAN ... 13-34
13.3.25 DPSW_IF_GET_COUNTER .. 13-35
13.3.26 DPSW_IF_SET_COUNTER... 13-37

DPAA2UM, Rev 10, 12/2017

-xii NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

13.3.27 DPSW_IF_SET_TX_SELECTION... 13-38
13.3.28 DPSW_IF_ADD_REFLECTION.. 13-39
13.3.29 DPSW_IF_REMOVE_REFLECTION ... 13-40
13.3.30 DPSW_IF_SET_FLOODING_METERING... 13-41
13.3.31 DPSW_IF_SET_METERING... 13-42
13.3.32 DPSW_IF_SET_EARLY_DROP .. 13-43
13.3.33 DPSW_ADD_CUSTOM_TPID .. 13-45
13.3.34 DPSW_REMOVE_CUSTOM_TPID.. 13-46
13.3.35 DPSW_IF_ENABLE... 13-47
13.3.36 DPSW_IF_DISABLE.. 13-48
13.3.37 DPSW_IF_GET_ATTRIBUTES... 13-49
13.3.38 DPSW_IF_SET_MAX_FRAME_LENGTH... 13-51
13.3.39 DPSW_IF_SET_LINK_CFG .. 13-52
13.3.40 DPSW_IF_GET_LINK_STATE.. 13-53
13.3.41 DPSW_IF_GET_MAX_FRAME_LENGTH.. 13-55
13.3.42 DPSW_VLAN_ADD... 13-57
13.3.43 DPSW_VLAN_ADD_IF... 13-58
13.3.44 DPSW_VLAN_ADD_IF_UNTAGGED ... 13-59
13.3.45 DPSW_VLAN_ADD_IF_FLOODING... 13-60
13.3.46 DPSW_VLAN_REMOVE_IF... 13-61
13.3.47 DPSW_VLAN_REMOVE_IF_UNTAGGED... 13-62
13.3.48 DPSW_VLAN_REMOVE_IF_FLOODING .. 13-63
13.3.49 DPSW_VLAN_REMOVE .. 13-64
13.3.50 DPSW_VLAN_GET_ATTRIBUTES ... 13-65
13.3.51 DPSW_VLAN_GET_IF.. 13-67
13.3.52 DPSW_VLAN_GET_IF_FLOODING ... 13-69
13.3.53 DPSW_VLAN_GET_IF_UNTAGGED.. 13-71
13.3.54 DPSW_FDB_ADD.. 13-73
13.3.55 DPSW_FDB_REMOVE.. 13-75
13.3.56 DPSW_FDB_ADD_UNICAST... 13-76
13.3.57 DPSW_FDB_GET_UNICAST ... 13-77
13.3.58 DPSW_FDB_REMOVE_UNICAST .. 13-79
13.3.59 DPSW_FDB_ADD_MULTICAST ... 13-80
13.3.60 DPSW_FDB_GET_MULTICAST .. 13-81
13.3.61 DPSW_FDB_REMOVE_MULTICAST ... 13-83
13.3.62 DPSW_FDB_SET_LEARNING_MODE ... 13-84
13.3.63 DPSW_FDB_GET_ATTRIBUTES... 13-85
13.3.64 DPSW_ACL_ADD.. 13-87
13.3.65 DPSW_ACL_REMOVE ... 13-89
13.3.66 DPSW_ACL_PREPARE_ENTRY_CFG .. 13-90
13.3.67 DPSW_ACL_ADD_ENTRY... 13-92

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -xiii

Contents
Paragraph
Number Title

Page
Number

13.3.68 DPSW_ACL_REMOVE_ENTRY .. 13-93
13.3.69 DPSW_ACL_ADD_IF .. 13-96
13.3.70 DPSW_ACL_REMOVE_IF.. 13-97
13.3.71 DPSW_ACL_GET_ATTRIBUTES... 13-98
13.3.72 DPSW_CTRL_IF_GET_ATTRIBUTES... 13-100
13.3.73 DPSW_CTRL_IF_SET_POOLS... 13-102
13.3.74 DPSW_CTRL_IF_ENABLE... 13-103
13.3.75 DPSW_CTRL_IF_DISABLE.. 13-104
13.3.76 DPSW_GET_API_VERSION... 13-105

Chapter 14 12/2017DPMAC: Data Path MAC

14.1 DPMAC features.. 14-1
14.2 DPMAC command reference... 14-2
14.2.1 DPMAC_OPEN... 14-2
14.2.2 DPMAC_CLOSE... 14-3
14.2.3 DPMAC_CREATE .. 14-4
14.2.4 DPMAC_DESTROY... 14-6
14.2.5 DPMAC_SET_IRQ_ENABLE ... 14-7
14.2.6 DPMAC_GET_IRQ_ENABLE... 14-8
14.2.7 DPMAC_SET_IRQ_MASK.. 14-10
14.2.8 DPMAC_GET_IRQ_MASK... 14-11
14.2.9 DPMAC_GET_IRQ_STATUS .. 14-13
14.2.10 DPMAC_CLEAR_IRQ_STATUS... 14-15
14.2.11 DPMAC_GET_ATTRIBUTES ... 14-16
14.2.12 DPMAC_GET_LINK_CFG .. 14-18
14.2.13 DPMAC_SET_LINK_STATE... 14-20
14.2.14 DPMAC_GET_COUNTER... 14-21
14.2.15 DPMAC_GET_API_VERSION.. 14-23
14.2.16 DPMAC_RESET... 14-25

Chapter 15 DPRTC: Data Path Real Time Clock

15.1 DPRTC features ... 15-1
15.2 DPRTC command reference .. 15-2
15.2.1 DPRTC_OPEN .. 15-2
15.2.2 DPRTC_CLOSE .. 15-3
15.2.3 DPRTC_CREATE.. 15-4
15.2.4 DPRTC_DESTROY .. 15-6
15.2.5 DPRTC_SET_IRQ_ENABLE... 15-7
15.2.6 DPRTC_GET_IRQ_ENABLE .. 15-8

DPAA2UM, Rev 10, 12/2017

-xiv NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

15.2.7 DPRTC_SET_IRQ_MASK ... 15-10
15.2.8 DPRTC_GET_IRQ_MASK... 15-11
15.2.9 DPRTC_GET_IRQ_STATUS.. 15-13
15.2.10 DPRTC_CLEAR_IRQ_STATUS .. 15-15
15.2.11 DPRTC_GET_ATTRIBUTES... 15-16
15.2.12 DPRTC_SET_CLOCK_OFFSET.. 15-18
15.2.13 DPRTC_SET_FREQ_COMPENSATION... 15-19
15.2.14 DPRTC_GET_FREQ_COMPENSATION.. 15-20
15.2.15 DPRTC_GET_TIME ... 15-22
15.2.16 DPRTC_SET_TIME.. 15-24
15.2.17 DPRTC_SET_ALARM ... 15-25
15.2.18 DPRTC_GET_API_VERSION ... 15-26

Chapter 16 DPSECI: Data Path SEC Interface

16.1 DPSECI features .. 16-1
16.2 DPSECI functional description.. 16-1
16.2.1 Setting the DPSECI for SEC operation ... 16-1
16.2.2 Relationship with DPIO and DPCON objects ... 16-2
16.2.3 Buffer requirements ... 16-2
16.3 DPSECI command reference ... 16-3
16.3.1 DPSECI_OPEN ... 16-3
16.3.2 DPSECI_CLOSE... 16-4
16.3.3 DPSECI_CREATE... 16-5
16.3.4 DPSECI_DESTROY ... 16-7
16.3.5 DPSECI_ENABLE.. 16-8
16.3.6 DPSECI_DISABLE... 16-9
16.3.7 DPSECI_IS_ENABLED ... 16-10
16.3.8 DPSECI_RESET ... 16-12
16.3.9 DPSECI_SET_IRQ_ENABLE.. 16-13
16.3.10 DPSECI_GET_IRQ_ENABLE ... 16-14
16.3.11 DPSECI_SET_IRQ_MASK .. 16-16
16.3.12 DPSECI_GET_IRQ_MASK ... 16-17
16.3.13 DPSECI_GET_IRQ_STATUS... 16-19
16.3.14 DPSECI_CLEAR_IRQ_STATUS ... 16-21
16.3.15 DPSECI_GET_ATTRIBUTES.. 16-22
16.3.16 DPSECI_SET_RX_QUEUE ... 16-24
16.3.17 DPSECI_GET_RX_QUEUE... 16-25
16.3.18 DPSECI_GET_TX_QUEUE... 16-27
16.3.19 DPSECI_GET_SEC_ATTR... 16-29
16.3.20 DPSECI_GET_SEC_COUNTERS ... 16-31

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -xv

Contents
Paragraph
Number Title

Page
Number

16.3.21 DPSECI_GET_API_VERSION .. 16-33

Chapter 17 DPDCEI: Data Path DCE Interface

17.1 DPDCEI features ... 17-1
17.2 DPDCEI command reference .. 17-2
17.2.1 DPDCEI_OPEN... 17-2
17.2.2 DPDCEI_CLOSE .. 17-3
17.2.3 DPDCEI_CREATE.. 17-4
17.2.4 DPDCEI_DESTROY... 17-6
17.2.5 DPDCEI_ENABLE ... 17-7
17.2.6 DPDCEI_DISABLE .. 17-8
17.2.7 DPDCEI_IS_ENABLED... 17-9
17.2.8 DPDCEI_RESET... 17-11
17.2.9 DPDCEI_SET_IRQ_ENABLE ... 17-12
17.2.10 DPDCEI_GET_IRQ_ENABLE... 17-13
17.2.11 DPDCEI_SET_IRQ_MASK ... 17-15
17.2.12 DPDCEI_GET_IRQ_MASK... 17-16
17.2.13 DPDCEI_GET_IRQ_STATUS.. 17-18
17.2.14 DPDCEI_CLEAR_IRQ_STATUS... 17-20
17.2.15 DPDCEI_GET_ATTRIBUTES ... 17-21
17.2.16 DPDCEI_SET_RX_QUEUE... 17-23
17.2.17 DPDCEI_GET_RX_QUEUE .. 17-24
17.2.18 DPDCEI_GET_TX_QUEUE .. 17-26
17.2.19 DPDCEI_GET_API_VERSION ... 17-28

Chapter 18 DPDMAI: Data Path DMA Interface

18.1 DPDMAI features .. 18-1
18.2 DPDMAI command reference ... 18-2
18.2.1 DPDMAI_OPEN ... 18-2
18.2.2 DPDMAI_CLOSE... 18-3
18.2.3 DPDMAI_CREATE... 18-4
18.2.4 DPDMAI_DESTROY ... 18-6
18.2.5 DPDMAI_ENABLE.. 18-7
18.2.6 DPDMAI_DISABLE... 18-8
18.2.7 DPDMAI_IS_ENABLED ... 18-9
18.2.8 DPDMAI_RESET ... 18-11
18.2.9 DPDMAI_SET_IRQ_ENABLE.. 18-12
18.2.10 DPDMAI_GET_IRQ_ENABLE ... 18-13
18.2.11 DPDMAI_SET_IRQ_MASK .. 18-15

DPAA2UM, Rev 10, 12/2017

-xvi NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

18.2.12 DPDMAI_GET_IRQ_MASK ... 18-16
18.2.13 DPDMAI_GET_IRQ_STATUS... 18-18
18.2.14 DPDMAI_CLEAR_IRQ_STATUS ... 18-20
18.2.15 DPDMAI_GET_ATTRIBUTES.. 18-21
18.2.16 DPDMAI_SET_RX_QUEUE ... 18-23
18.2.17 DPDMAI_GET_RX_QUEUE... 18-24
18.2.18 DPDMAI_GET_TX_QUEUE... 18-26
18.2.19 DPDMAI_GET_API_VERSION .. 18-28

Chapter 19 DPAIOP: Data Path AIOP Control

19.1 DPAIOP features.. 19-1
19.1.1 Resetting the AIOP and reloading applications... 19-1
19.2 DPAIOP command reference... 19-3
19.2.1 DPAIOP_OPEN... 19-3
19.2.2 DPAIOP_CLOSE... 19-4
19.2.3 DPAIOP_CREATE .. 19-5
19.2.4 DPAIOP_DESTROY... 19-7
19.2.5 DPAIOP_RESET ... 19-8
19.2.6 DPAIOP_SET_IRQ_ENABLE.. 19-9
19.2.7 DPAIOP_GET_IRQ_ENABLE... 19-10
19.2.8 DPAIOP_SET_IRQ_MASK.. 19-12
19.2.9 DPAIOP_GET_IRQ_MASK ... 19-13
19.2.10 DPAIOP_GET_IRQ_STATUS .. 19-15
19.2.11 DPAIOP_CLEAR_IRQ_STATUS... 19-17
19.2.12 DPAIOP_GET_ATTRIBUTES.. 19-18
19.2.13 DPAIOP_LOAD .. 19-20
19.2.14 DPAIOP_RUN... 19-21
19.2.15 DPAIOP_GET_SL_VERSION.. 19-22
19.2.16 DPAIOP_GET_STATE.. 19-24
19.2.17 DPAIOP_SET_TIME_OF_DAY ... 19-26
19.2.18 DPAIOP_GET_TIME_OF_DAY .. 19-27
19.2.19 DPAIOP_GET_API_VERSION.. 19-29

Chapter 20 DPMCP: Data Path MC Portal

20.1 DPMCP features .. 20-1
20.2 DPMCP command reference ... 20-2
20.2.1 DPMCP_OPEN ... 20-2
20.2.2 DPMCP_CLOSE ... 20-3
20.2.3 DPMCP_CREATE... 20-4

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -xvii

Contents
Paragraph
Number Title

Page
Number

20.2.4 DPMCP_DESTROY ... 20-6
20.2.5 DPMCP_RESET.. 20-7
20.2.6 DPMCP_SET_IRQ_ENABLE .. 20-8
20.2.7 DPMCP_GET_IRQ_ENABLE ... 20-9
20.2.8 DPMCP_SET_IRQ_MASK .. 20-11
20.2.9 DPMCP_GET_IRQ_MASK.. 20-12
20.2.10 DPMCP_GET_IRQ_STATUS... 20-14
20.2.11 DPMCP_GET_ATTRIBUTES .. 20-16
20.2.12 DPMCP_GET_API_VERSION .. 20-18

Chapter 21 Memory Map and Register Definition

21.1 General Control Register 1 (GCR1) .. 21-1
21.2 General Status Register (GSR) .. 21-3
21.3 MC Firmware Base Address Low Register (MCFBALR) .. 21-4
21.4 MC Firmware Base Address High Register (MCFBAHR) ... 21-4
21.5 MC Firmware Attributes and Partitioning Register (MCFAPR) 21-5
21.6 Parameter Summary Register (PSR).. 21-6
21.7 Block Revision Register 1 (BRR1).. 21-6
21.8 Block Revision Register 2 (BRR2).. 21-7

Chapter 22 Data Path Layout (DPL) Reference

22.1 High-level DPL structure... 22-1
22.2 Node: containers .. 22-2
22.2.1 Child node: dprc... 22-2
22.2.1.1 Child node: resources .. 22-3
22.2.1.1.1 Child node: res... 22-3
22.2.1.2 Child node: objects .. 22-4
22.2.1.2.1 Child node: obj .. 22-5
22.2.1.2.2 Child Node: obj_set ... 22-5
22.3 Node: objects ... 22-6
22.3.1 Child node: dpni... 22-7
22.3.2 Child node: dpio... 22-7
22.3.3 Child node: dpbp.. 22-8
22.3.4 Child node: dpcon.. 22-8
22.3.5 Child node: dpci... 22-9
22.3.6 Child node: dpseci ... 22-9
22.3.7 Child node: dpdmux... 22-10
22.3.8 Child node: dpsw ... 22-11
22.3.9 Child node: dpmac ... 22-11

DPAA2UM, Rev 10, 12/2017

-xviii NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

22.3.10 Child node: dpdcei ... 22-12
22.3.11 Child node: dpdmai.. 22-12
22.3.12 Child node: dpmcp... 22-13
22.3.13 Child node: dpaiop... 22-13
22.4 Node: connections.. 22-13
22.4.1 Child node: connection .. 22-13

Chapter 23 Data Path Configuration (DPC) Reference

23.1 High-level DPC structure... 23-1
23.2 Node: mc_general .. 23-2
23.2.1 Child node: log... 23-2
23.3 Node: resources.. 23-3
23.3.1 Child node: icid_pools ... 23-3
23.3.1.1 Child node: icid_pool .. 23-3
23.4 Node: controllers.. 23-4
23.4.1 Child node: qbman... 23-4
23.5 Node: board_info ... 23-5
23.5.1 Child node: ports.. 23-5
23.5.1.1 Child node: mac... 23-5
23.6 Node: memory ... 23-6

Chapter 24 Use case scenarios

24.1 Steps to verify 1000BASE-X on LS1088A QDS .. 24-1
24.1.1 Preparation ... 24-1
24.1.1.1 Hardware.. 24-1
24.1.1.2 Software and firmware .. 24-1
24.1.1.3 RCW .. 24-1
24.1.1.4 Board setup .. 24-1
24.1.2 Test procedures .. 24-1
24.1.2.1 Verify that SGMII MC works with SGMII PHY... 24-1
24.1.2.2 Verify that SGMII MC does not work with 1000BaseX PHY 24-2
24.1.2.3 Modify DPC for MC to support 1000BaseX... 24-3
24.2 Steps to verify PHYless on LS1088A QDS... 24-4
24.2.1 Preparation ... 24-4
24.2.1.1 Hardware.. 24-4
24.2.1.2 Software and firmware .. 24-4
24.2.1.3 RCW .. 24-4
24.2.1.4 Board setup .. 24-5
24.2.2 Test procedures .. 24-6

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors -xix

Contents
Paragraph
Number Title

Page
Number

Chapter 25 Known Limitations

25.1 Reset of MC objects with FQs associated with a channel ... 25-1
25.2 Reconfiguring FQs associated with a channel ... 25-1

Appendix A Revision History

DPAA2UM, Rev 10, 12/2017

-xx NXP Semiconductors

Contents
Paragraph
Number Title

Page
Number

Introduction

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 1-1

Chapter 1 Introduction
DPAA2 is a hardware-level networking architecture found on some NXP SoCs. This document provides
technical information on this architecture mainly for software developers. DPAA2 SoCs contain the
following hardware IP blocks:

• Management Complex (required)

• WRIOP (required)

• QBMan (required)

• Accelerators, such as SEC, DCE, and PME (all optional)

• AIOP, a programmable packet engine (optional)

The following block diagram shows the hardware IP blocks of the DPAA2:

Figure 1-1. DPAA2 Hardware Blocks

The Management Complex (MC) is a key component of DPAA2. As explained in detail in this document,
the MC runs an NXP-supplied firmware image that abstracts and simplifies the allocation and
configuration of the other hardware elements by means of DPAA2 “objects”. These objects provide
familiar services such as providing the core of network interfaces, providing switching services, providing
access to accelerators, etc.

The MC subjects within the scope of the document are:

• Definition of DPAA2 objects: what they do, their configuration interfaces, and how the objects
work with each other.

Introduction

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 1-2

• Error reporting and handling for the objects.

• How to load and start the MC at the hardware level (needed to load the firmware) as well as how
to allocate memory for it, ICIDs, etc.

• The hardware programming model of the MC's command portals. They are used to convey
commands to work with objects.

• Interrupts and error indications from the MC itself (as opposed to objects)

The MC and objects abstract configuration. They do not abstract the actual I/O operations. These are done
using QBMan software portals (allocated and configured by means of DPIO objects). However, software
must directly use software portals for actual I/O.

Status Note

For now, readers must consult the full QBMan documentation in the low-level hardware reference manual.
This documentation contains more information than is needed for software development on general
purpose cores and AIOP. Eventually, the subset of the QBMan hardware-level information that is needed
will be available in this document. In addition, coverage of MC commands and objects usage will be
enhanced.

1.1 Intended audience

The purpose of this document is to describe the DPAA2 Management Complex services and describe the
best usage practices. This document contains an overview of the functions, interfaces, and recommended
use of the Management Complex to enable the DPAA2 hardware capabilities; including the programming
models for the various DPAA2 objects.

1.2 Definitions and acronyms
• AIOP: Advanced I/O Processor hardware

• DCE: Decompression and Compression Engine

• DPAA2: Data Path Acceleration Architecture, second version.

• DPC: Data Path Configuration

• DPL: Data Path Layout

• GPP: General Purpose Processor

• MC: Management Complex

• QBMan: Queue Manager and Buffer Manager hardware

• SEC: Security Engine hardware

• WRIOP: Wire-Rate I/O Processor

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-1

Chapter 2 Overview
The Management Complex (MC) is an SoC hardware block that simplifies DPAA2 device management -
network objects (network interfaces, L2 switches), accelerators, etc. The MC provides object abstractions
and a command interface that simplify software’s use of DPAA2 objects; it also provides resource
management capabilities that can create and assign these objects to different software contexts
(applications, virtual machines). This action allows the direct access by the software contexts to hardware
resources, while at the same time providing isolation for the objects from other contexts; this ensures that
malicious software can not impact the objects.

GPP and AIOP processes do not have direct access to most DPAA2 resources, and instead they perform
the necessary DPAA2 management operations using MC commands that carry out the actual hardware
interaction on behalf of that process.

2.1 Introduction to DPAA2 objects

The primary purpose of the MC provided DPAA2 objects is to simplify DPAA2 hardware block usage
through abstraction and encapsulation. DPAA2 objects:

• Encapsulate specific functionality

• Abstract that functionality from the DPAA2 hardware

• Present functionality in terms of well-defined attributes and methods

The MC exports a set of logical objects to enable DPAA2, as explained in the following sections. The
objects can be created dynamically through dedicated API calls, or statically during initialization using the
Data Path Layout (DPL) configuration file. Not all objects and object functionalities are available for all
DPAA 2.x based platforms; for more details see Section 2.1.5, “DPAA2 object support per platform.”

This section:

• Presents the DPAA2 object model at a concept level and describes how objects are created,
destroyed, conveyed, configured, and used.

• Lists the objects types and their purposes.

The “users” are often application software running on general purpose processors (cores) or on the AIOP.
Driver-level software on GPPs (and sometimes AIOP) work with the abstracted objects, rather than
directly with the hardware. For example, the GPP software deals with L2 switches and network interfaces
rather than directly with WRIOP.

DPAA2 objects express and abstract the DPAA2 hardware into software-managed objects that are:

• Application-oriented in terminology and use, rather than hardware-oriented.

• Based on concepts that are generally familiar to programmers and system architects.

• Simpler than direct management of the hardware.

• Indicate the architectural intent of the hardware blocks.

The DPAA2 object services are provided by software that runs as firmware on a DPAA2 hardware block
called the Management Complex. Users do not need to program the Management Complex in order to use
the Network Object Services; they simply use the NXP-supplied firmware. This firmware runs on the

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-2

Management Complex instead of a general purpose core in order to simplify the integration of NXP
software with customer software. The Management Complex provides objects that perform specific
services; the objects have attributes and interfaces that appear as hardware.

2.1.1 Network objects

The primary goal of DPAA2 is advanced networking, and MC exports several objects that allow users to
define their topology for “network on a chip”. The network topology may contain network interfaces with
varying capabilities as well as several types of switches and aggregators, linked together in a
straight-forward manner, defined by the user.

2.1.1.1 Data Path Network Interface (DPNI)

The MC exports a standard network interface that is configurable to support a wide range of features,
starting from as low as a basic Ethernet interface up to a high-functioning network interface. The DPNI
supports standard features such as filtering, QoS, checksum validation, and time-stamping; It can also
offload tasks from the GPP by performing functions such as VLAN header removal/insertion, IP
Reassembly, and IP Fragmentation.

On ingress, the DPNI receives frames from a DPMAC or another object such as a DPSW, parses headers,
determines the frame’s traffic class, and enqueues the frame onto a frame queue selected based on the
traffic class and other header values. This supports both hash-based distribution of frames to multiple
cores, and also direct flow steering of frames to specific cores. The DPNI can generate a per-queue data
availability notification when a frame is enqueued.

On egress, the DPNI dequeues frames from frame queues and transmits them using a DPMAC, or to
another DPAA2 object such as a DPSW.

Normally, the DPNI assumes that traffic consists of standard network packets (L2, L3, L4, etc.); however,
it is also possible to configure the DPNI as a generic network interface, and the traffic profile will be based
on packet format starting at higher layers. Example formats for this profile can include L5+L6+Payload
(as in GTP or CAPWAP applications). In this mode, the DPNI is not intended to interact with a standard
network stack, but instead it can be used in fast-path or tunnel applications, therefore suitable for network
connections between GPP applications and AIOP applications.

2.1.1.2 Data Path MAC (DPMAC)

The DPMAC represents an Ethernet MAC, a hardware device that connects to a PHY and allows physical
transmission and reception of Ethernet frames; since DPAA2 allows configuration of internal interfaces,
the total number of network interfaces may exceed the number of MAC objects. The DPMAC object also
exposes MDIO access that is used for configuration of external PHY devices.

2.1.1.3 Data Path Switch (DPSW)

The DPSW object provides the functionality of a general layer 2 switch. It receives packets on one port
and sends them on another. It can also send packets out on multiple ports for the purposes of broadcast,
multicast, or mirroring.

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-3

2.1.1.4 Data Path Demux (DPDMUX)

The DPDMUX is another type of switch. It differs from a DPSW in several ways. A DPDMUX has a
single “uplink” port. Also, it can be programmed to direct packets based on header fields beyond layer 2.

2.1.1.5 Data Path Link Aggregator (DPLAG)

The DPLAG object provides link aggregation. It combines two or more physical (slave) interfaces into a
single host-side (bonded) interface with aggregated bandwidth.

NOTE:

The DPLAG object is not yet supported and will be supported in a future
release.

The figure below summarizes the DPAA2 network objects and their associated symbols for illustrations.

Figure 1. DPAA2 Network objects summary and symbols

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-4

2.1.2 DPAA2 infrastructure objects

The MC exports a set of supporting objects that provide access to the DPAA2 QBMan in a way that is both
easy to configure, and flexible enough to allow optimal utilization and sharing of resources within software
contexts.

2.1.2.1 Data Path Buffer Pool (DPBP)

The DPBP represents a QBMan buffer pool. It is used mainly as a resource by DPAA2 network interfaces
and accelerators, but it is also an active entity because it can send buffer pool depletion notifications to
GPP core software. DPBP owners are responsible for seeding it with buffers

2.1.2.2 Data Path I/O Portal (DPIO)

The DPIO object allows QBMan software portal configuration with an optional notification channel; its
main purpose is to enable the GPP to perform I/O through QBMan – hardware queuing operations, such
as enqueue and dequeue, and hardware buffer management operations, such as acquire and release. It also
allows data availability notifications and buffer pool depletion notifications to be received. Each DPIO
object will be usually affined to a GPP core thread.

2.1.2.3 Data Path Concentrator (DPCON)

The DPCON object allows ingress packets from multiple interfaces to be aggregated into a single device
that appears to a GPP core as single interface. The DPCON utilizes scheduling options of the QBMan
channels to provide hardware-based scheduling offload of ingress packets, including scheduling between
different network interfaces.

The DPCON is also useful for software that polls for input frames; it allows a single interface to be polled
instead of multiple interfaces.

The figure below summarizes the DPAA2 infrastructure objects and their associated symbols for
illustrations.

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-5

Figure 2. DPAA2 Infrastructure objects summary and symbols

2.1.3 Accelerator interfaces

DPAA2 features several hardware accelerators to assist GPP in data processing tasks. The MC exports
accelerator interface objects that enable GPP software to send requests to these accelerators and receive
their data processing output.

2.1.3.1 Data Path Security Interface (DPSECI)

The Security engine (SEC) contains high-performance hardware for cryptographic acceleration and
offloading, designed to operate in a data path environment. It implements:

• Block encryption algorithms

• Stream cipher algorithms

• Hashing algorithms

• Public key algorithms

• Run time integrity checking

• Random number generator

The DPSECI object provides GPP software with an interface for sending requests to SEC and receiving
output responses.

2.1.3.2 Data Path De/Compression Interface (DPDCEI)

The Decompression and Compression Engine (DCE) contains high-performance hardware for
decompression and compression functionality, designed to operate in a data path environment. Its
functionality includes the following:

• Offloading and acceleration of DEFLATE decompression and compression as defined in RFC1951

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-6

• Offloading and acceleration of GZIP decompression and compression as defined in RFC1952

• Offloading and acceleration of ZLIB decompression and compression as defined in RFC1950

The DPDCEI object provides GPP software with an interface for sending requests to the DCE and
receiving output responses.

2.1.3.3 Data Path DMA Interface (DPDMAI)

The qDMA controller contains high-performance hardware for data transfer functionality, designed to
operate in a data path environment. The controller can transfer blocks of data between one source and one
or more destinations. The blocks of data transferred can be represented in memory as contiguous or
non-contiguous using scatter/gather tables.

The DPDMAI object provides GPP software with an interface for sending requests to the qDMA and
receiving completion responses.

The figure below summarizes the DPAA2 accelerator interface objects and their associated symbols for
illustrations.

Figure 3. DPAA2 Accelerator Interface objects summary and symbols

2.1.4 Management and control objects

2.1.4.1 Data Path Communication Interface (DPCI)

The MC exports a generic interface for inter-partition communication (IPC). The DPCI enables
frame-based communication between different software contexts, utilizing the QBMan infrastructure of
DPAA2. The communication protocol is kept undefined and the interface does not provide any parsing or
classification of the frames (unlike DPNI, which is a fully-featured standard network interface).

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-7

DPCI objects should be connected in pairs (one DPCI in each software context) to form a communication
link. This type of communication may serve basic management/control needs between GPP software and
AIOP software, or between two GPP software contexts.

2.1.4.2 Data Path Resource Container (DPRC)

The DPRC object allows the management complex to track sets of objects in use by the same software
component. The objects in the set are said to be in same container. The DPRC operates as a virtual bus,
and a software context may query it for DPAA2 objects and associate them with OS device drivers. The
DPRC also allows a software context to create descendant software contexts, assign resources and objects
to these contexts, and build the internal network topology by connecting DPAA2 network objects.

Some objects include DMA-capable hardware. All objects in the same DPRC share a common ICID, and
a common set of IO-MMU mappings. A number of key features of DPRCs include:

• Direct access – All the objects and resources in a container are private to the container, and
software components get direct access to the “registers” (as abstracted by the management
complex) of the hardware objects.

• Dynamic discovery – A software context that is given a DPRC can dynamically discover the
objects and resources placed in the container using MC commands.

• Hot plug/unplug – Objects can be dynamically plugged and unplugged into DPRCs

• Security – A software context can only see the objects its DPRC, and cannot affect other containers
or the proper operation of other software contexts. DMA transactions from MC objects are isolated
using the system IOMMU.

2.1.4.3 Data Path MC Portal (DPMCP)

The DPMCP object is associated with Management Complex Portals, and allows GPP software to
configure command completion interrupts for these portals. The DPMCP object is optional if the GPP
software is polling the portal and not using portal interrupts. However, for consistency and for better
tracking of MC portals that are in use, it is recommended to always create DPMCP objects for MC portals
used by GPP.

The figure below summarizes the DPAA2 management objects and their associated symbols for
illustrations.

Figure 4. DPAA2 Management objects summary and symbols

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-8

2.1.5 DPAA2 object support per platform

2.2 Objects topology and inter-connect

DPAA2 network objects can be connected to each other, creating a ‘network on a chip’ topology;
connections are virtual network cables between two endpoints, where an endpoint may be a network
interface (DPNI), a DPMAC (external port), a DPSW interface, a DPDMUX interface, etc. As in real
network, an endpoint is not necessarily aware of the peer endpoint’s type or identity, but it can query its
link state and receive notifications on link up/down events.

Table 2-1. DPAA2 objects supported by platform

Object Platform Comments

Networking objects

DPNI LS2080, LS2088, LS1088, LX2160,
LA1575

LS1088: No TCAM support
No support for DPNI_OPT_HAS_KEY_MASKING

DPMAC LS2080, LS2088, LS1088, LX2160,
LA1575

—

DPSW LS2080, LS2088, LX2160 —

DPDMUX LS2080, LS2088, LS1088, LX2160 —

DPLAG None —

DPRTC LS2080, LS2088, LS1088, LX2160,
LA1575

Two-step 1588 only

Accelerator objects

DPAIOP LS2088, LS1088, LA1575 —

DPSECI LS2080, LS2088, LS1088, LX2160,
LA1575

—

DPDMAI LS2080, LS2088, LS1088, LX2160,
LA1575

—

DPDCEI LS2080, LS2088, LX2160 —

Infrastructure objects

DPBP All —

DPIO All —

DPCON All —

Management and control objects

DPRC All —

DPCI All —

DPMCP All —

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-9

The figure below demonstrates a simple network topology. The network topology is shown in the greyed
box with dotted outline. The rest of the elements in the figure are shown for better understanding of the
system context.

Figure 5. Object topology example

The system in the example above involves only two external ports (DPMAC objects), but contains three
network interfaces (DPNI objects) that are completely independent of each other.

One DPNI is connected directly to a DPMAC object, in a way similar to traditional Ethernet controller.
This network interface can only communicate outside of the SoC.

The other two DPNI objects, as well as the second DPMAC object, are connected to DPSW interfaces.
This allows both network interfaces to communicate outside of the SoC using the DPMAC, and also to
communicate with each other.

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-10

Note, that the DPNI objects in the example are also associated with DPIO objects, enabling GPP software
to get notifications on data availability and perform I/O operations on these network interfaces. This type
of relation is not considered a connection with regards to the description in this section. The association of
DPIO objects to DPNI objects and other objects is explained in more detail later in this document.

The dashed configuration lines show what software component owns the configuration and management
of each object. Two network interfaces are owned by instances of the Linux Kernel Ethernet driver and
interact with the Linux network stack. One network interface is assigned to a user space process, and is
controlled by a user space Ethernet driver. The switch is managed independently of the network interfaces
that connect to it.

2.2.1 Connection and link state

The terminology of a Link is slightly different from a Connection. Connections between network objects
are a necessary condition to achieve a network link between the objects, but they are not a satisfying
condition. For the link to be up, both connected objects must be in enabled state. The software component
that owns each of the objects can enable or disable the object at any time – this is done by submitting the
corresponding commands to the MC. If either of the connected objects is disabled, the link state is
considered down, and packets cannot go through this link. Similarly, if the controlling software decides to
disconnect the two objects, the connection will be terminated and both objects will encounter a link down
event, even if both are still enabled.

The MC is responsible for propagating link state to objects. Considering the previous example, if the
DPMAC connected to the DPSW loses its external link, the peer DPSW interface gets a link down
notification; however, the two network interfaces connected to the DPSW are not affected – their link state
remains up and they can continue to communicate with each other through the switch.

2.2.2 Typical object connections

A DPNI object must be connected to another network object in order to have packets flowing through it.
As explained in the previous section, the connection alone is not sufficient. For the purpose of explaining
the allowed network connections, this section assumes that all objects are enabled and only discusses the
validity of connecting different types of objects.

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-11

The figure below shows typical connection options.

Figure 6. Typical connections of network objects

Configuration (a) shows a traditional Ethernet controller, where the DPNI is directly connected to the
DPMAC object. All DPMAC objects in this figure are assumed to be connected to external network (not
explicitly shown).

Configuration (b) shows two DPNI objects connected in a point-to-point manner, allowing network
communication between two software contexts. This type of connection is typical in GPP-to-AIOP
communication, or between two different GPP processes.

Configuration (c) shows a DPSW object connected to two DPMAC objects and two DPNI objects. All
DPSW interfaces are identical, so there is no significance to interface selection when connecting any of
the objects to a switch.

Overview

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 2-12

Configuration (d) shows a DPDMUX object that can split ingress traffic from a single DPMAC to multiple
network interfaces. While the DPDMUX single uplink interface is usually connected to a DPMAC, its
multiple internal interfaces are basically identical and are usually connected to internal DPNI objects.

Configuration (e) shows two layers of DPDMUX objects that can split ingress traffic by different criteria;
a typical example is an EVB (Edge Virtual Bridging) setup, where the lower DPDMUX functions as
S-Component (splits ingress traffic by S-VLAN) and the upper DPDMUX objects serve as Edge Relays
(splits the traffic by C-VLAN).

Configuration (f) shows a DPLAG object, aggregating three external slave interfaces into a single bonded
interface connected to a DPNI object.

NOTE

While cascading of multiple DPSW and/or DPDMUX objects is allowed, it
does impact the consumption of hardware resources in the device and
reduces the total number of DPNI objects that can be supported; it may also
degrade the overall performance. Therefore, it is always recommended to
set up the minimal required configuration to support a requested use case.

2.2.3 How and when to connect

Endpoints may be connected or disconnected at any phase, including:

• At MC initialization, through declaration of ‘connections’ in the DPL

• At runtime, by invoking connect/disconnect commands that are part of the DPRC object’s API.

GPP software contexts may be given privileges to perform topology changes through its own DPRC
object. A software context is only allowed to connect/disconnect endpoints in its own scope (container) or
in its descendants’ scope.

Boot and Initialization Process

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 3-1

Chapter 3 Boot and Initialization Process
MC initialization is a mandatory part of the boot process – the MC performs the configuration of key
DPAA2 hardware resources, such as QBMan, Ethernet ports, and others that are needed early in the boot
process. For example, a network interface may be needed to retrieve the OS image from the network;
therefore the MC initialization must complete before the main OS image is loaded. The SoC POR signal
leaves the DPAA2 in a known idle state, with all of the DPAA2 resources uninitialized and ready to be
allocated; the MC is kept in the boot hold-off (reset) state.

3.1 Loading the MC firmware

The MC firmware itself should be retrieved from a location that does not require DPAA2 network
interfaces, and can include an on-board memory, or alternatively a network location accessed using an
attached network card (PCI-Express network card, for example). MC requires the allocation of an isolated
block taken from main system memory for firmware storage and general DPAA use; This memory space
must not be accessible by any other device after MC initialization in order to guarantee MC’s isolation and
trust. The SoC boot program (for example, U-Boot) must configure the MC’s private memory space base
address and size in the MCFBALR and MCFBAHR registers. The size of memory allocated for MC is
configurable, but must be allocated in multiples of 256MB.

The boot program must validate the authenticity of the MC firmware before loading the firmware into the
MC memory space; the MC firmware is provided in FIT (Flattened Image Tree) image format and includes
checksum and version information, so that the boot program can make sure a proper image is loaded into
MC memory space.

3.2 Data Path Configuration (DPC)

The “Data Path Configuration” (DPC) is based on a text source file (similar to DTS) and compiled with
DTC to form a binary structure (blob, similar to DTB). The DPC file is an optional input to MC and
contains board-specific and system-specific information that may override the default DPAA hardware
configuration. The DPC file should be compiled to a binary blob using standard DTC tool. For some
systems, DPC may be optional.

The boot program should place the DPC blob at offset 0x00F00000 from MC memory base
(MCFBALR/HR).

3.3 Data Path Layout (DPL)

Many systems have little or no need to dynamically create and destroy DPAA2 objects. MC is able to
consume a data structure called the “Data Path Layout” (DPL) – that describes a set of objects to be created
when the system is initialized.

The DPL is based on a text source file (similar to DTS) and compiled with DTC to form a binary structure
(blob, similar to DTB). This binary structure is loaded by the boot program as an optional input to MC.
Unlike the Linux Device Tree, the purpose of the DPL is not to describe hardware attributes, but rather to
describe the initial topology of logical objects that the MC firmware should create.

Boot and Initialization Process

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 3-2

Nevertheless, and to satisfy the needs of more dynamic systems, MC also supports dynamic setup of
objects. Therefore, all contents of the DPL are considered optional – the same topology of software
contexts and logical objects can also be created dynamically. A software context may spawn, via its
management portal, a child software context, and assign objects to it. As explained in the resource
management chapter, root/parent software may dictate a limiting policy on its child software contexts.

The boot program should place the DPL blob at offset 0x00F20000 from MC memory base
(MCFBALR/HR).

3.4 Starting MC

After the firmware is loaded, the SoC boot program deasserts P1_RST_b and Mn_RST_b bits in the
General Control Register 1 (GCR1) to release the MC from reset; immediately the MC begins to retrieve
and execute the loaded firmware.

When the MC has completed its configuration and the DPAA2 initial configuration, it is ready to service
commands from the GP. MC initialization completion is signaled by the MC to the SoC boot program by
writing the MSC status field in the General Status Register (GSR); if the returned status indicates
successful initialization, the system boot process can continue normally. If an MC error code is returned,
the DPAA2 subsystem cannot be used, and the system boot should be halted to analyze the problem.

The boot program can request MC to postpone the processing of the DPL; this allows the boot program to
utilize some MC objects for its own use, regardless of which objects have been defined in the DPL. After
the boot program has completed its tasks it must destroy any MC objects that it previously created and
signal MC to load the system DPL.

Below is a summary of the expected handshake between the boot program and MC:

1. Boot program allocates system memory for MC, in N multiples of 256MB

2. Boot program sets MCFBALR and MCFBAHR with the physical base address of the memory
allocated for MC, and programs MCFBALR[MEMSZ] to indicate the size of the allocated
memory.

3. Boot program loads DPC blob at offset 0x00F00000 from MC firmware base.

4. Boot program loads DPL blob at offset 0x00F20000 from MC firmware base (optional).

5. Before kicking MC core, the boot program may set GSR[BC] with a value of 0xDD (indicates a
request to delay DPL processing). If this code is not set, DPL is deployed immediately after MC
completes its initial boot (steps 7 and 8 below are skipped).

6. Boot program kicks MC by writing to GCR.

7. If GSR[BC] was set to indicate delayed DPL processing, MC sets GSR[MCS] to indicate ready
status (0x1) or error status after it completes its initial boot. If no error is reported, the boot program
may issue MC commands (through MC portal #0) to create DPAA objects for its own use.

8. After the boot program completes its network activities it must destroy all created objects and clear
the GSR – this signals MC to deploy the DPL.

9. Once MC deploys the DPL, it sets GSR[MCS] to ready status (0x1) once again (or reports an error
status). The boot program should wait for such status before continuing to boot the main OS.

MC Firmware Versions

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 4-1

Chapter 4 MC Firmware Versions
The MC firmware uses various types of versioning.

4.1 MC global firmware versions

The firmware versions use the following rules:

• Major version number—incremented on API compatibility changes (updates to any DPAA2 object
or any other MC API).

• Minor version number—incremented on API additions that are backward compatible;

• The minor version number is reset to 0 when the major version number is incremented.

• Revision number—incremented on internal changes and/or bug fixes that have no impact on API
definition. The revision number is reset when either the major version or minor version is
incremented.

MC exposes the API to get the compiled firmware version. In addition, the MC API header files contain
matching major and minor numbers defined as preprocessor macros that allow the GPP/AIOP software to
verify the defined version numbers against the information retrieved from the MC API call; this check can
expose version conflicts between the GPP/AIOP software and the actual loaded firmware.

4.2 DPAA2 Object versions

In addition to the MC firmware global version, each DPAA2 object has its own version information (major
and minor numbers). The object version is incremented according to the following rules:

• Major version number—incremented on DPAA 2.x object API compatibility changes

• Minor version number—incremented on DPAA 2.x object API additions that are backward
compatible

The minor version number is reset to 0 when the major version number is incremented.

Each MC firmware is a collection of objects with various versions each object version being obtained by
using the object GET_VERSION command.

Before using an object it is recommended to validate the object version. By using the MC firmware version
and the object version the users can detect if certain commands or flags are supported and if there will be
incompatibilities between GPP/AIOP software and MC Firmware.

4.3 DPAA2 Object Commands

Each object supports a set of distinct commands offering different functionalities. Each command type has
a distinct CMDID. For each change in the command format or flags the CMDID for that command is
changed.

In order to support backward compatibility MC Firmware can interpret commands with different
CMDIDs.

MC Firmware Versions

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 4-2

An object version will advertise only one CMDID for each distinct command, but in order to support
backward compatibility there can be multiple CMDIDs supported for each distinct command (CMDIDs
used in prior MC releases).

4.4 Recommended user verification

Verify the MC firmware global version to see if the major version is the expected one or a newer one.

Before using an object verify the object major version to see if it is an expected one or a newer one that
supports the required commands and flags.

Use the latest CMDID for the commands or a CMDID that is supported by each object.

MC Firmware Versions

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 4-3

4.5 Firmware command reference
This section contains the detailed programming model of firmware commands.

4.5.1 DPMNG_GET_VERSION

The command format is shown in the figure below.

Command structure

Figure 4-1. DPMNG_GET_VERSION Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8311 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 4-1. DPMNG_GET_VERSION Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

MC Firmware Versions

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 4-4

Response structure

Figure 4-2. DPMNG_GET_VERSION Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8311 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 MAJOR REVISION

63 32 31 0

0x10 — MINOR

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 4-2. DPMNG_GET_VERSION Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 REVISION Internal revision number: incremented on implementation changes and/or bug fixes
that have no impact on API

32-63 MAJOR Major version number: incremented on API compatibility changes

0x10 0-31 MINOR Minor version number: incremented on API additions (backward compatible); reset
when major version is incremented

MC Firmware Versions

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 4-5

4.5.2 DPMNG_GET_SOC_VERSION

This command is available starting with MC 10.1.0; it will not work on older versions.

The command format is shown in the figure below.

Command structure

Figure 4-3. DPMNG_GET_SOC_VERSION Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8321 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 4-3. DPMNG_GET_SOC_VERSION Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

MC Firmware Versions

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 4-6

Response structure

Figure 4-4. DPMNG_GET_SOC_VERSION Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8321 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 PVR SVR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 4-4. DPMNG_GET_SOC_VERSION Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 SVR The contents of platform SVR register; consult platform-specific manual for detailed information.

32-63 PVR The contents of platform PVR register; consult platform-specific manual for detailed information.

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-1

Chapter 5 Management Command Portals
This section describes the MC command portals memory structure and their usage.

5.1 Overview of command portals

The MC interface contains 256 management portals that are contiguously mapped in the SoC address map.
Each portal is implemented in its own physical memory 64kB page within the SoC internal address map
so that the Hypervisor can properly manage GPP process allocation and access control portals. MC portals
must not be shared between different software contexts.

NOTE:

The portal page GPP memory management attribute should be set to
cache-inhibited.

Commands are submitted by GPP processes (or AIOP tasks) to a portal using non-cacheable store
instructions, similar to accessing typical I/O device registers. MC portals can only support one outstanding
command at a time, so all commands on the same portal are issued and completed serially. The command
portals can also be read by the GPP/AIOP processes. Misaligned word accesses of a portal, split burst
transactions, and accesses outside the 64 bytes of the portal are not performed.

The MC maintains an ICID attribute for every portal that is used to identify the isolation context for
command execution; a GPP process can only submit a command for the isolation context it is currently
executing within. Any memory address specified by the submitter, as input or output, is authenticated and
translated by the IOMMU when the data structure is accessed with the ICID assigned to that command
portal.

The MC uses a fair policy to determining which command portal is serviced next; the MC implements a
simple round-robin arbitration mechanism to select and prepare the next command to be processed. The
submitter may assign either a high or low priority for a command; outstanding high priority commands are
processed before any outstanding low priority commands.

5.2 Command portal usage

The MC uses a simple flow control mechanism – a portal command must be completed before a
subsequent command can be issued to that same portal; therefore, each portal can only have a single
outstanding command at any point in time. If a user submits a new command to its portal prior to that portal
being marked as available, the new command may be treated by the MC as an error, or simply ignored.

Commands submitted by the GPP/AIOP processors cause the MC to perform specific management
services; the available MC commands are documented in the corresponding MC objects sections. The
submitter prepares the specific command and its parameters, and afterwards writes the command header
that contains the command ID and other attributes; the actual command word field (the least significant
4-byte word at offset 0x0 of the portal address) should be written last. The MC waits for a command word
field write that indicates that a new command has been submitted, then starts processing that command.

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-2

NOTE:

The portal’s status field is used as the handshake mechanism between the
MC and the command submitter. The submitter must set the ready status
(0x01) when writing the command header (only after all parameters for the
specific command were written); the MC reports command completion with
success/error code in the same status field. The MC can also return
command response information in the portal’s memory, as documented for
each of the commands.

While a write of any word in an already serviced portal will be discarded,
reads of any portal word are always allowed; the submitter may poll the
status word freely.

The submitting process/task may use polling to query for command completion and final status; it writes
the desired command to a command portal, and polls the portal’s status word until it indicates that it is
completed and that the portal is made available. Only once the portal is available does a process/task issue
a subsequent command to that command portal. Other OS-specific wait mechanisms are also accepted, as
long as no other command is written to the portal before the previous command is completed.

5.3 Creating and destroying DPAA2 objects

DPAA2 object operations require GPP/AIOP software to open an object control session for the object, by
submitting a CREATE MC command; each object has dedicated CREATE command. DPAA2 object
operations are done in the context of a Data Path Resource Container that holds all the resources and object
information that the software context can access or use.

When opening a Data Path Resource Container a unique authentication token handle is returned to be used
by all the object operations done in the context of the container. The object CREATE command must be
executed on a MC portal that is assigned or in use by a Data Path Resource Container providing a unique
authentication token for that container.

An object CREATE command creates a new DPAA2 object type with the specified attributes used in the
command. By using the container token handle in the CREATE command the object is automatically
assigned to that container. If the token is '0' the object will be assigned to the container that hosts the MC
command portal executing this command. The object CREATE command returns the object ID of the
created object. The object ID is used to OPEN or DESTROY the object. The returned object ID has
significance only in the context of the resource container in which was created and the resource container
that currently owns the object.

The OPEN command uses the object ID and returns a unique authentication token, associated with the
specific object ID and the specific command portal; this token must be used in all subsequent commands
for this specific object except the DESTROY. The CLOSE command closes the control session of the
object and no further operations are allowed on the object without opening a new control session.

The DESTROY command destroy the object and release all its resources. The function uses the
authentication token of the parent container that created the object (not the one that currently owns the
object) and the object ID.

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-3

A single command portal can be used to control multiple DPAA2 objects, as long as both the command
portal and the object are assigned to the same software context, i.e. to the same resource container, and the
user makes sure that the commands are submitted to the portal one at a time. GPP/AIOP software should
submit separate CREATE commands for each object it wishes to control in order for a single command
portal to control multiple objects in the same software context.

A typical CREATE/OPEN/CLOSE/DESTROY flow for a DPNI object is detailed below:

dprc_open (dprc_io, cmd_flags, container_id, &dprc_token);

dpni_create(dprc_io, dprc_token, 0, &dpni_cfg, &dpni_id);

dpni_open(dprc_io, 0, dpni_id, &dpni_token);

dpni_enable(dprc_io, cmd_flags, dpni_token);

dpni_disable(dprc_io, cmd_flags, dpni_token);

dpni_close(dprc_io, 0, dpni_token);

dpni_destroy(dprc_io, dprc_token, 0, dpni_id);

5.4 Command portals memory map

The MC command portals are accessible to GPP and AIOP software through the SoC internal address map,
and the 64MB MC portal space is presented within the 512MB DPAA2 external address map that also
contains other DPAA2 portals. Each MC portal is mapped on a 64kB boundary, and the MC Portal is
Little-Endian. The MC Portal Space is laid out as shown in Figure 7.

Figure 7. MC Portal Map

The address map of a single MC Portal is also summarized in Table 1.

Table 1. MC Portal Map

Offset range
Block
Size

Description

0x0_0000 - 0x0_003F 64B Management Command Portal.
See Section 5.5, “Management command portal definition”

0x0_0040 - 0x0_FFFF remainder of 64kB Reserved.

Management Command Portal 1023

Management Command Portal 1

Management Command Portal 0

Management Command Portal 2

MC Portals offset: 0x3FF_0000

MC Portals offset: 0x002_0000

MC Portals offset: 0x001_0000

MC Portals offset: 0x000_0000

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-4

5.5 Management command portal definition

The format of the management command portal is shown in Figure 8.

Figure 8. Management Command Portal

Table 2 describes the Management Command Portal fields.

Offset 0x0 from Management Command Portal base (64kB aligned) Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

0x00

CMDID TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

127 64

0x08 PARAMS

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

191 128

0x10 PARAMS

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

255 192

0x18 PARAMS

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

319 256

0x20 PARAMS

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

383 320

0x28 PARAMS

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

447 384

0x30 PARAMS

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

511 448

0x38 PARAMS

Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000

Table 2. Management Command Portal Field Descriptions

Bits Name Description

0-7 SRCID The SoC architected source ID of the submitter. This is the same 8-bit source ID used throughout
the SoC.
This field is reserved. It cannot be written by a GPP processor.

8-14 — Reserved. Set to zero for forward compatibility.

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-5

15 P Priority. This is the command priority class. Outstanding high priority commands are serviced
before low priority commands.
1’b0 – low priority
1’b1 – high priority

16-23 STATUS Command ready/status.
This field is used as the handshake field between MC and the command submitter. The submitter
must set the ready status (0x01) when writing the command header (after the PARAMS area was
initialized with the specific command parameters). MC reports command completion with
success/error codes in this field, as listed below.

0x00 – Command ended successfully (set by MC on successful command completion)
0x01 – Command is ready for processing (must be set by the submitter)
0x03 – Authentication error (illegal object-portal-icid combination)
0x04 – No privilege (operation not permitted for current user)
0x05 – DMA or I/O error
0x06 – Configuration error (invalid/conflicting parameters)
0x07 – Command timed out (unexpected long execution time)
0x08 – No DPAA2 resources for completing the command
0x09 – No memory available for completing the command
0x0A – Busy (operation cannot be completed temporarily)
0x0B – Unsupported/unknown operation
0x0C – Invalid state (may indicate incorrect calling sequence)

24 INTR_DIS Interrupt disable.
Set to disable interrupt generation on command completion.
Note that command completion interrupts are managed through DPMCP object.

25-31 — Reserved. Set to zero for forward compatibility.

32-47 TOKEN Authentication token.
For “OPEN” commands and for DPXX_GET_API_VERSION, set this field to zero.
For object CREATE commands it represents the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to
the container that hosts the MC command portal executing this command.
For object DESTROY commands it represents the authentication token of the parent container
that created the object. Note that the object can be assigned to another container and sending
the authentication token of this container will result in a command failure.
The token is updated by MC after a successful completion of an “OPEN” command.
The generated token is valid for the specific object and specific command portal, until a “CLOSE”
command is completed.
User must keep the generated token and set it in the TOKEN field for every subsequent
command for the same object and on the same command portal.

48-63 CMDID Command ID. This is the predefined command code for the submitted command (see command
code definition in command specifications).

64-511 PARAMS Command parameters (56 bytes).
Each command defines specific set of parameters (see command specifications in this
document). Unused bits in this area should be cleared for forward compatibility.
Each of the seven 64-bits words is organized in memory in Little-Endian format.

Table 2. Management Command Portal Field Descriptions

Bits Name Description

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-6

5.6 MC General Command Portals command reference
This section contains the detailed programming model of MC general command portals commands.

5.6.1 DPMNG_GET_CONT_ID

Obtains the container id associated with a given portal.

The command format is shown in the figure below.

Command structure

Figure 5-1. DPMNG_GET_CONT_ID Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x8301 TOKEN —
IN

T
R

_
D

IS
STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 5-1. DPMNG_GET_CONT_ID Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-7

Response structure

Figure 5-2. DPMNG_GET_CONT_ID Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x8301 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — CONTAINER_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 5-2. DPMNG_GET_CONT_ID Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CONTAINER_ID Requested container ID

Management Command Portals

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 5-8

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-1

Chapter 6 DPRC: Data Path Resource Container
A GPP/AIOP software context (e.g. Kernel, user-space application, virtual machine, AIOP application)
can be associated with a single DPRC (Data Path Resource Container) object that holds all the resource
and object information that the software context can access or use.

A software context may need to spawn descendant software contexts (e.g. applications, virtual machines)
and grant them resources and objects; to support this process, a software context can create ‘child’
containers. The parent software context may assign resources and/or objects to that child container, and it
may also set resource management policies and reset and destroy the descendant container.

Each container holds three main components:

a) DPAA2 objects inventory for objects assigned to the container. Objects may be assigned either
by the parent software through DPRC commands, or through the DPL during initialization.

b) DPAA2 free resource pool inventory. Resource pools contain primitive resources that are
assigned to the container, and are not yet associated with any DPAA2 object.

c) Attributes that specify container properties and policies. Attributes are set by the software
context that creates the container (the parent), and cannot be changed by the descendant
software context.

Please refer to the API book for complete reference of available functions.

6.1 DPRC features

The following list summarizes the DPRC main features and capabilities:

• Supports container queries – provides information on the following:

— DPAA2 objects assigned to the container

— For each object, provides the object’s ID, version, mappable regions, supported IRQs and other
attributes

— Free resources assigned to the container

— Descendant (child) containers of this container

— The container’s policies and other attributes

• Supports creating and destroying descendant resource containers

• Supports assigning resources and objects to descendant containers

• Supports unassigning resources and objects from descendant containers

• Supports setting global policies to descendant containers

• Supports setting policies per free resource pool of descendant containers

• Supports connecting and disconnecting of DPAA2 network and communication interfaces – allows
users to create their required ‘network-on-chip’ topology

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-2

6.2 DPRC functional description

6.2.1 Resource container creation

During MC initialization, the boot program provides an initial DPL structure to the MC that defines the
initial container topology and their assigned DPAA2 objects and resources. Privileged software may also
perform dynamic descendant container creation for its supervised software contexts; a new DPRC object
is created for each descendant container. By issuing the corresponding commands to its own DPRC object,
the parent software context can control assignment of DPAA2 resources, objects, and management
policies.

A software context that creates descendant containers should set the following container attributes:

• Isolation Context ID (ICID) for the child container; alternatively, the ICID can be selected by the
MC from a pool of ICIDs that was predetermined in the DPL

• Spawning policy – determines if the child container is allowed to create its own child containers

• Allocation policy – determines if the child container is allowed to allocate resources from its parent

• Object creation policy – determines if the child container is allowed to create new DPAA2 objects

• Topology change policy – determines if the child container is allowed to change the DPAA2
objects topology by connecting or disconnecting DPAA2 network objects

6.2.2 Objects assignment

A parent software context may assign DPAA2 objects to its child containers; an assigned object can be
declared as ‘plugged’ or ‘unplugged’ during assignment. The owner software context may query its
associated DPRC object, see the following section on object discovery for more information, and associate
a device driver to the discovered object. A software context may also control the ‘plugged’ state of its own
objects by reassigning the object to itself and changing the state.

6.2.3 Objects discovery

The DPRC follows the concept of a probeable bus, that may be very useful during the software context’s
boot time; by sending the appropriate commands, GPP software can query the DPRC to probe/discover
DPAA2 objects in its domain and associate these objects with device drivers.

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-3

6.3 DPRC command reference
This section contains the detailed programming model of DPRC commands.

6.3.1 DPRC_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPRC_CREATE_CONTAINER command on the parent DPRC
object.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object..

Command structure

The command format is shown in the figure below.

Figure 9. DPRC_OPEN Command Description

The following table describes the command fields.
1-

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8051 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — CONTAINER_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 3. DPRC_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CONTAINER_ID Container ID to open

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-4

6.3.2 DPRC_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 10. DPRC_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-5

6.3.3 DPRC_CREATE_CONTAINER

This command creates and initializes an instance of DPRC according to the specified command
parameters. This command is not required for DPRC instances that are created using the DPL.

The command format is shown in the figure below.

Command structure

Figure 11. DPRC_CREATE_CONTAINER Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1511 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 32 31 0

0x08 — ICID OPTIONS

63 32 31 0

0x10 PORTAL_ID —

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 4. DPRC_CREATE_CONTAINER Command Field Descriptions1

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-32 OPTIONS Combination of 'DPRC_CFG_OPT_<X>' options:
bit 0: DPRC_CFG_OPT_SPAWN_ALLOWED - Spawn Policy Option allowed - Indicates that the new
container is allowed to spawn and have its own child containers
bit 1: DPRC_CFG_OPT_ALLOC_ALLOWED - General Container allocation policy - Indicates that the
new container is allowed to allocate requested resources from its parent container; if not set, the
container is only allowed to use resources in its own pools; Note that this is a container's global policy,
but the parent container may override it and set specific quota per resource type.
bit 2: DPRC_CFG_OPT_OBJ_CREATE_ALLOWED - Object initialization allowed - software context
associated with this container is allowed to invoke object initialization operations.
bit 3: DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED - Topology change allowed - software
context associated with this container is allowed to invoke topology operations, such as attach/detach
of network objects.
bit 5: DPRC_CFG_OPT_AIOP - AIOP -Indicates that container belongs to aiop.

32-47 ICID Container's ICID; if set to 'DPRC_GET_ICID_FROM_POOL', a free
ICID value is allocated by the DPRC

0x10 32-63 PORTAL_ID Portal ID; if set to 'DPRC_GET_PORTAL_ID_FROM_POOL', a free
portal ID is allocated by the DPRC

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-6

Response structure

Figure 12. DPRC_CREATE_CONTAINER Response Description

The following table describes the response fields.

0x18 0-63 LABEL[0-7] Object label

0x20 0-63 LABEL[8-15]

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1511 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 32 31 0

0x10 — CHILD_CONTAINER_ID

63 0

0x18 CHILD_PORTAL_PADDR

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 5. DPRC_CREATE_CONTAINER Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-31 CHILD_CONTAINER_ID Child container ID

0x18 0-63 CHILD_PORTAL_PADDR Base physical address of the child portal

Table 4. DPRC_CREATE_CONTAINER Command Field Descriptions1 (continued)

Offset Bits Name Description

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-7

6.3.4 DPRC_DESTROY_CONTAINER

Command structure

Figure 13. DPRC_DESTROY_CONTAINER Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1521 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — CHILD_CONTAINER_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CHILD_CONTAINER_ID ID of the container to destroy

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-8

6.3.5 DPRC_RESET_CONTAINER

Command structure

Figure 14. DPRC_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — CHILD_CONTAINER_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CHILD_CONTAINER_ID ID of the container to reset

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-9

6.3.6 DPRC_SET_IRQ

Set IRQ information for the DPRC to trigger an interrupt.

Command structure

Figure 15. DPRC_SET_IRQ Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0101 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 — IRQ_INDEX IRQ_VAL

63 0

0x10 IRQ_ADDR

63 32 31 0

0x18 IRQ_NUM

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 IRQ_VAL Value to write into IRQ_ADDR address

32-39 IRQ_INDEX Identifies the interrupt index to configure

0x10 0-63 IRQ_ADDR Address that must be written to signal a message-based interrupt

0x18 0-32 IRQ_NUM A user defined number associated with this IRQ

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-10

6.3.7 DPRC_GET_IRQ

Get IRQ information from the DPRC.

Command structure

Figure 16. DPRC_GET_IRQ Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0111 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-11

Response structure

Figure 17. DPRC_GET_IRQ Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0111 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 – IRQ_VAL

63 0

0x10 IRQ_ADDR

63 32 31 0

0x18 TYPE IRQ_NUM

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 IRQ_VAL Value that is written into IRQ_ADDR address

0x10 0-63 IRQ_ADDR Address that is written when signalling the message-based interrupt

0x18 0-32 IRQ_NUM A user defined number associated with this IRQ

32-63 TYPE Interrupt type:
0 represents message-based interrupt (both IRQ_ADDR and IRQ_VAL are valid)

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-12

6.3.8 DPRC_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 18. DPRC_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 — TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-13

6.3.9 DPRC_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 19. DPRC_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-14

Response structure

Figure 20. DPRC_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-15

6.3.10 DPRC_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 21. DPRC_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-16

6.3.11 DPRC_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 22. DPRC_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-17

Response structure

Figure 23. DPRC_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-18

6.3.12 DPRC_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 24. DPRC_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPRC_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-19

Response structure

Figure 25. DPRC_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events for IRQ 0:
Bit 0: DPRC_IRQ_EVENT_OBJ_ADDED – indicates that an object was added to the
container
Bit 1: DPRC_IRQ_EVENT_OBJ_REMOVED – indicates that an object was removed
from the container
Bit 2: DPRC_IRQ_EVENT_RES_ADDED – indicates that resources were added to the
container
Bit 3: DPRC_IRQ_EVENT_RES_REMOVED – indicates that resources were
removed from the container
Bit 4: DPRC_IRQ_EVENT_CONTAINER_DESTROYED – indicates that one of the
descendant containers was destroyed
Bit 5: DPRC_IRQ_EVENT_OBJ_DESTROYED – indicates that one of the container’s
objects was destroyed
Bit 6: DPRC_IRQ_EVENT_OBJ_CREATED – indicates that an object was created in
the container

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-20

6.3.13 DPRC_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 26. DPRC_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-21

6.3.14 DPRC_GET_ATTRIBUTES

Command structure

Figure 27. DPRC_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-22

Response structure

Figure 28. DPRC_GET_ATTRIBUTES Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 32 31 0

0x08 — ICID CONTAINER_ID

63 32 31 0

0x10 PORTAL_ID OPTIONS

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CONTAINER_ID Container's ID

32-47 ICID Container's ICID

0x10 0-31 OPTIONS Container's options as set at container's creation

32-63 PORTAL_ID Container's portal ID

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-23

6.3.15 DPRC_SET_RES_QUOTA

Command structure

Figure 29. DPRC_SET_RES_QUOTA Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1551 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 32 31 0

0x08 — QUOTA CHILD_CONTAINER_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CHILD_CONTAINER_ID ID of the child container

32-47 QUOTA Sets the maximum number of resources of the selected type that the child container is
allowed to allocate from its parent;
when quota is set to -1, the policy is the same as container's general policy.

0x10 0-63 TYPE[0-5] Resource/object type

0x18 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-24

6.3.16 DPRC_GET_RES_QUOTA

Command structure

Figure 30. DPRC_GET_RES_QUOTA Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1561 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — CHILD_CONTAINER_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CHILD_CONTAINER_ID ID of the child container

0x10 0-63 TYPE[0-5] Resource/object type

0x18 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-25

Response structure

Figure 31. DPRC_GET_RES_QUOTA Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1561 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 32 31 0

0x08 — QUOTA —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-47 QUOTA Sets the maximum number of resources of the selected type that the child container is
allowed to allocate from its parent;
when quota is set to -1, the policy is the same as container's general policy.

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-26

6.3.17 DPRC_ASSIGN

Command structure

Figure 32. DPRC_ASSIGN Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1571 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 OPTIONS CONTAINER_ID

63 32 31 0

0x10 ID_BASE_ALIGN NUM

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CONTAINER_ID ID of the child container

32-63 OPTIONS Request options: combination of DPRC_RES_REQ_OPT_ options:
bit 0: DPRC_RES_REQ_OPT_EXPLICIT - Explicit resource ID request - The
requested objects/resources are explicit and sequential (in case of resources). The
base ID is given at res_req at base_align field
bit 1: DPRC_RES_REQ_OPT_ALIGNED - Aligned resources request - Relevant only
for resources request (and not objects). Indicates that resources base ID should be
sequential and aligned to the value given at dprc_res_req base_align field
bit 2: DPRC_RES_REQ_OPT_PLUGGED - Plugged Flag - Relevant only for object
assignment request. Indicates that after all objects assigned. An interrupt will be
invoked at the relevant GPP. The assigned object will be marked as plugged. Plugged
objects can't be assigned from their container

0x10 0-31 NUM Number of resources

32-63 ID_BASE_ALIGN In case of explicit assignment (DPRC_RES_REQ_OPT_EXPLICIT is set at option),
this field represents the required base ID for resource allocation;
In case of aligned assignment (DPRC_RES_REQ_OPT_ALIGNED is set at
option), this field indicates the required alignment for the
resource ID(s) - use 0 if there is no alignment or explicit ID
requirements

0x18 0-63 TYPE[0-5] Resource/object type: Represent as a NULL terminated string.
This string may received by using dprc_get_pool() to get resource
type and dprc_get_obj() to get object type;
Note: it is not possible to assign/un-assign DPRC objects

0x20 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-27

6.3.18 DPRC_UNASSIGN

Command structure

Figure 33. DPRC_UNASSIGN Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1581 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 OPTIONS CHILD_CONTAINER_ID

63 32 31 0

0x10 ID_BASE_ALIGN NUM

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 CHILD_CONTAINER_ID ID of the child container

32-63 OPTIONS Request options: combination of DPRC_RES_REQ_OPT_ options:
bit 0: DPRC_RES_REQ_OPT_EXPLICIT - Explicit resource ID request - The
requested objects/resources are explicit and sequential (in case of resources). The
base ID is given at res_req at base_align field
bit 1: DPRC_RES_REQ_OPT_ALIGNED - Aligned resources request - Relevant only
for resources request (and not objects). Indicates that resources base ID should be
sequential and aligned to the value given at dprc_res_req base_align field
bit 2: DPRC_RES_REQ_OPT_PLUGGED - Plugged Flag - Relevant only for object
assignment request. Indicates that after all objects assigned. An interrupt will be
invoked at the relevant GPP. The assigned object will be marked as plugged. Plugged
objects can't be assigned from their container

0x10 0-31 NUM Number of resources

32-63 ID_BASE_ALIGN In case of explicit assignment (DPRC_RES_REQ_OPT_EXPLICIT is set at option),
this field represents the required base ID for resource allocation;
In case of aligned assignment (DPRC_RES_REQ_OPT_ALIGNED is set at
option), this field indicates the required alignment for the
resource ID(s) - use 0 if there is no alignment or explicit ID
requirements

0x18 0-63 TYPE[0-5] Resource/object type: Represent as a NULL terminated string.
This string may received by using dprc_get_pool() to get resource
type and dprc_get_obj() to get object type;
Note: it is not possible to assign/un-assign DPRC objects

0x20 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-28

6.3.19 DPRC_GET_POOL_COUNT

Command structure

Figure 34. DPRC_GET_POOL_COUNT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x16A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-29

Response structure

Figure 35. DPRC_GET_POOL_COUNT Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x16A1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — POOL_COUNT

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 POOL_COUNT Number of resource pools in the DPRC

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-30

6.3.20 DPRC_GET_POOL

Command structure

Figure 36. DPRC_GET_POOL Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1691 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — POOL_INDEX

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 POOL_INDEX Index of the pool to be queried (< pool_count)

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-31

Response structure

Figure 37. DPRC_GET_POOL Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1691 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-63 TYPE[0-7] The type of the pool

0x18 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-32

6.3.21 DPRC_GET_OBJ_COUNT

Command structure

Figure 38. DPRC_GET_OBJ_COUNT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1591 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-33

Response structure

Figure 39. DPRC_GET_OBJ_COUNT Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1591 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 OBJ_COUNT —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-63 OBJ_COUNT Number of objects assigned to the DPRC

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-34

6.3.22 DPRC_GET_OBJ

Command structure

Figure 40. DPRC_GET_OBJ Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — OBJ_INDEX

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-32 OBJ_INDEX Index of the object to be queried (< obj_count)

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-35

Response structure

Figure 41. DPRC_GET_OBJ Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15A1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 ID —

63 32 31 24 23 16 15 0

0x10 STATE REGION_COUNT IRQ_COUNT VENDOR

63 48 47 32 31 16 15 0

0x18 — FLAGS VERSION_MINOR VERSION_MAJOR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x30 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x38 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-63 ID ID of logical object resource

0x10 0-15 VENDOR Object vendor identifier

16-23 IRQ_COUNT Number of interrupts supported by the object

24-31 REGION_COUNT Number of mappable regions supported by the object

32-63 STATE Object state: combination of DPRC_OBJ_STATE_ states:
bit 0: DPRC_OBJ_STATE_OPEN - Opened state - Indicates that an object is open by

at least one owner
bit 1: DPRC_OBJ_STATE_PLUGGED - Plugged state - Indicates that the object is

plugged

0x18 0-15 VERSION_MAJOR Major version of the object

16-31 VERSION_MINOR Minor version of the object

32-47 FLAGS Object attribute flags.
Bit 0: DPRC_OBJ_FLAG_NO_MEM_SHAREABILITY—Object DMA is non-coherent.

Software must ensure proper access to non-coherent memory or override device
transaction attributes using IOMMU.

0x20 0-63 TYPE[0-7] Type of object: NULL terminated string

0x28 0-63 TYPE[8-15]

0x30 0-63 LABEL[0-7] Object label

0x38 0-63 LABEL[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-36

6.3.23 DPRC_GET_OBJ_DESC

Command structure

Figure 42. DPRC_GET_OBJ_DESC Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1621 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — OBJ_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-32 OBJ_ID The ID of the object to get its descriptor

0x10 0-63 OBJ_TYPE[0-7] The type of the object to get its descriptor

0x18 0-63 OBJ_TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-37

Response structure

Figure 43. DPRC_GET_OBJ_DESC Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1621 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 ID —

63 32 31 24 23 16 15 0

0x10 STATE REGION_COUNT IRQ_COUNT VENDOR

63 48 47 32 31 16 15 0

0x18 — FLAGS VERSION_MINOR VERSION_MAJOR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x30 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x38 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-63 ID ID of logical object resource

0x10 0-15 VENDOR Object vendor identifier

16-23 IRQ_COUNT Number of interrupts supported by the object

24-31 REGION_COUNT Number of mappable regions supported by the object

32-63 STATE Object state: combination of DPRC_OBJ_STATE_ states:
bit 0: DPRC_OBJ_STATE_OPEN - Opened state - Indicates that an object is open by

at least one owner
bit 1: DPRC_OBJ_STATE_PLUGGED - Plugged state - Indicates that the object is

plugged

0x18 0-15 VERSION_MAJOR Major version of the object

16-31 VERSION_MINOR Minor version of the object

32-47 FLAGS Object attribute flags.
Bit 0: DPRC_OBJ_FLAG_NO_MEM_SHAREABILITY—Object DMA is non-coherent.

Software must ensure proper access to non-coherent memory or override device
transaction attributes using IOMMU.

0x20 0-63 TYPE[0-7] Type of object: NULL terminated string

0x28 0-63 TYPE[8-15]

0x30 0-63 LABEL[0-7] Object label

0x38 0-63 LABEL[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-38

6.3.24 DPRC_GET_RES_COUNT

Command structure

Figure 44. DPRC_GET_RES_COUNT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-63 TYPE[0-7] pool type

0x18 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-39

Response structure

Figure 45. DPRC_GET_RES_COUNT Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15B1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — RES_COUNT

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 RES_COUNT Number of free resources of the given
resource type that are assigned to this DPRC

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-40

6.3.25 DPRC_GET_RES_IDS

Command structure

Figure 46. DPRC_GET_RES_IDS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15C1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 49 48 42 41 0

0x08 ITER_STATUS —

63 32 31 0

0x10 LAST_ID BASE_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 42-48 ITER_STATUS Iteration status - should be set to DPRC_ITER_STATUS_FIRST at first iteration; while
the returned marker is DPRC_ITER_STATUS_MORE, additional iterations are
needed, until the returned marker is DPRC_ITER_STATUS_LAST.
Values are:
0: DPRC_ITER_STATUS_FIRST
1: DPRC_ITER_STATUS_MORE
2: DPRC_ITER_STATUS_LAST

0x10 0-31 BASE_ID Base resource ID of this range

32-63 LAST_ID Last resource ID of this range

0x18 0-63 TYPE[0-7] pool type

0x20 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-41

Response structure

Figure 47. DPRC_GET_RES_IDS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15C1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 49 48 42 41 0

0x08 ITER_STATUS —

63 32 31 0

0x10 LAST_ID BASE_ID

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 42-48 ITER_STATUS Iteration status - should be set to DPRC_ITER_STATUS_FIRST at first iteration; while
the returned marker is DPRC_ITER_STATUS_MORE, additional iterations are
needed, until the returned marker is DPRC_ITER_STATUS_LAST
Values are:
0: DPRC_ITER_STATUS_FIRST
1: DPRC_ITER_STATUS_MORE
2: DPRC_ITER_STATUS_LAST

0x10 0-31 BASE_ID Base resource ID of this range

32-63 LAST_ID Last resource ID of this range

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-42

6.3.26 DPRC_GET_OBJ_REGION

Command structure

Figure 48. DPRC_GET_OBJ_REGION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15E2 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 32 31 0

0x08 — REGION_INDEX — OBJ_ID

63 0

0x10 —

63 0

0x18 —

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 OBJ_ID Unique object instance as returned in dprc_get_obj()

48-55 REGION_INDEX The specific region to query

0x20 0-63 OBJ_TYPE[0-7] Object type as returned in dprc_get_obj()

0x28 0-63 OBJ_TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-43

Response structure

Figure 49. DPRC_GET_OBJ_REGION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15E2 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 BASE_OFFSET

63 36 35 32 31 0

0x18 — TYPE SIZE

63 32 31 0

0x20 — FLAGS

63 0

0x28 BASE_PADDR

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-63 BASE_OFFSET Region base offset

0x18 0-31 SIZE Region size (in bytes)

32–35 TYPE Supported values are:
0: DPRC_REGION_TYPE_MC_PORTAL
1: DPRC_REGION_TYPE_QBMAN_PORTAL

0x20 0-31 FLAGS Supported values:
Bit 0: DPRC_REGION_FLAG_CACHEABLE—Indicates that the memory mapping

should be cacheable for this region.

0x28 0-63 BASE_PADDR Region base physical address

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-44

6.3.27 DPRC_SET_OBJ_LABEL

Command structure

Figure 50. DPRC_SET_OBJ_LABEL Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1611 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — OBJ_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 OBJ_ID Unique object instance as returned in dprc_get_obj()

0x10 0-63 LABEL[0-7] Object label

0x18 0-63 LABEL[8-15]

0x20 0-63 OBJ_TYPE[0-7] Object type as returned in dprc_get_obj()

0x28 0-63 OBJ_TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-45

6.3.28 DPRC_SET_OBJ_IRQ

Command structure

Figure 51. DPRC_SET_OBJ_IRQ Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15F1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 — IRQ_INDEX IRQ_VAL

63 0

0x10 IRQ_ADDR

63 32 31 0

0x18 OBJ_ID IRQ_NUM

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 IRQ_VAL Value to write into irq_addr address

32-39 IRQ_INDEX The interrupt index to configure

0x10 0-63 IRQ_ADDR Address that must be written to signal a message-based interrupt

0x18 0-31 IRQ_NUM A user defined number associated with this IRQ

32-63 OBJ_ID ID of the object to set its IRQ

0x20 0-63 OBJ_TYPE[0-7] Type of the object to set its IRQ

0x28 0-63 OBJ_TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-46

6.3.29 DPRC_GET_OBJ_IRQ

Command structure

Figure 52. DPRC_GET_OBJ_IRQ Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15F1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 — IRQ_INDEX OBJ_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 OBJ_ID ID of the object to get its IRQ

32-39 IRQ_INDEX The interrupt index to configure

0x10 0-63 OBJ_TYPE[0-7] Type of the object to get its IRQ

0x18 0-63 OBJ_TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-47

Response structure

Figure 53. DPRC_GET_OBJ_IRQ Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x15F1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — IRQ_VAL

63 0

0x10 IRQ_ADDR

63 32 31 0

0x18 TYPE IRQ_NUM

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 IRQ_VAL Value to write into irq_addr address

0x10 0-63 IRQ_ADDR Address that must be written to signal a message-based interrupt

0x18 0-31 IRQ_NUM A user defined number associated with this IRQ

32-63 TYPE Interrupt type: 0 represents message interrupt
type (both irq_addr and irq_val are valid)

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-48

6.3.30 DPRC_CONNECT

Command structure

Figure 54. DPRC_CONNECT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1671 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 ENDPOINT1_INTERFACE_ID ENPOINT1_ID

63 32 31 0

0x10 ENDPOINT2_INTERFACE_ID ENPOINT2_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 EP1_TYPE7 EP1_TYPE6 EP1_TYPE5 EP1_TYPE4 EP1_TYPE3 EP1_TYPE2 EP1_TYPE1 EP1_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 EP1_TYPE15 EP1_TYPE14 EP1_TYPE13 EP1_TYPE12 EP1_TYPE11 EP1_TYPE10 EP1_TYPE9 EP1_TYPE8

63 32 31 0

0x28 COMMITTED_RATE MAX_RATE

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x30 EP2_TYPE7 EP2_TYPE6 EP2_TYPE5 EP2_TYPE4 EP2_TYPE3 EP2_TYPE2 EP2_TYPE1 EP2_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x38 EP2_TYPE15 EP2_TYPE14 EP2_TYPE13 EP2_TYPE12 EP2_TYPE11 EP2_TYPE10 EP2_TYPE9 EP2_TYPE8

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ENDPOINT1_ID Endpoint object ID

32-63 ENDPOINT1_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0

0x10 0-31 ENDPOINT2_ID Endpoint object ID

32-63 ENDPOINT2_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0

0x18 0-63 ENDPOINT1_TYPE[0-5] Endpoint object type: NULL terminated string

0x20 0-63 ENDPOINT1_TYPE[8-15]

0x18 0-31 MAX_RATE Maximum rate (Mbits/s)

32-63 COMMITTED_RATE Committed rate (Mbits/s)

0x30 0-63 ENDPOINT2_TYPE[0-5] Endpoint object type: NULL terminated string

0X38 0-63 ENDPOINT2_TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-49

6.3.31 DPRC_DISCONNECT

Command structure

Figure 55. DPRC_DISCONNECT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1681 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 INTERFACE_ID ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID Endpoint object ID

32-63 INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0

0x10 0-63 TYPE[0-5] Endpoint object type: NULL terminated string

0x18 0-63 TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-50

6.3.32 DPRC_GET_CONNECTION

Command structure

Figure 56. DPRC_GET_CONNECTION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x16C1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 ENDPOINT1_INTERFACE_ID ENPOINT1_ID

63 32 31 0

0x10 EP1_TYPE7 EP1_TYPE6 EP1_TYPE5 EP1_TYPE4 EP1_TYPE3 EP1_TYPE2 EP1_TYPE1 EP1_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 EP1_TYPE15 EP1_TYPE14 EP1_TYPE13 EP1_TYPE12 EP1_TYPE11 EP1_TYPE10 EP1_TYPE9 EP1_TYPE8

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ENDPOINT1_ID Endpoint object ID

32-63 ENDPOINT1_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0

0x10 0-63 ENDPOINT1_TYPE[0-5] Endpoint object type: NULL terminated string

0x18 0-63 ENDPOINT1_TYPE[8-15]

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-51

Response structure

Figure 57. DPRC_GET_CONNECTION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x20F1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 ENDPOINT2_INTERFACE_ID ENPOINT2_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 EP2_TYPE7 EP2_TYPE6 EP2_TYPE5 EP2_TYPE4 EP2_TYPE3 EP2_TYPE2 EP2_TYPE1 EP2_TYPE0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x30 EP2_TYPE15 EP2_TYPE14 EP2_TYPE13 EP2_TYPE12 EP2_TYPE11 EP2_TYPE10 EP2_TYPE9 EP2_TYPE8

63 0

0x38 — STATE

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x20 0-31 ENDPOINT2_ID Endpoint object ID

32-63 ENDPOINT2_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0

0x28 0-63 ENDPOINT2_TYPE[0-5] Endpoint object type: NULL terminated string

0X30 0-63 ENDPOINT2_TYPE[8-15]

0x38 0-31 STATE Link state: 1 - link is up, 0 - link is down

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-52

6.3.33 DPRC_GET_API_VERSION

Command structure

Figure 58. DPRC_GET_API_VERSION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-53

Response structure

Figure 59. DPRC_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA051 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPRC: Data Path Resource Container

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 6-54

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-1

Chapter 7 DPNI: Data Path Network Interface
The DPNI object is a network interface that is configurable to support a wide range of features from a very
basic Ethernet interface up to a high-functioning network interface. The DPNI supports features that are
expected by standard network stacks, from basic features to offloads.

DPNIs work with Ethernet traffic, starting with the L2 header. Additional functions are provided for
standard network protocols (L2, L3, L4, etc.).

Please refer to the API book for complete reference of available functions.

7.1 DPNI features

The following list summarizes the DPNI main features and capabilities:

• Supports Ethernet network interfaces at different rates, both on physical interfaces and on internal
connections between a DPNI and another L2 interface (a DPNI, DPDMUX or DPSW port).

• Supports maximum frame size of 10KB

• Allows association with up to eight different Data Path Buffer Pools (DPBP objects)

• Allows interaction with one or more Data Path I/O (DPIO) objects for dequeueing/enqueueing
frame descriptors (FD) and for acquiring/releasing buffers.

• Supports wire-speed frame parsing; parsing results may be visible in the frame annotation area

• Supports unicast promiscuous and multicast promiscuous modes

• Supports filtering of received frames:

— Exact-match filtering based on destination MAC address

— Exact-match filtering based on VLAN

• QoS support:

— Packet classification to up to eight traffic classes

— Classification based on user-defined keys (with key size up to 56 bytes)

• Supports distribution over frame queues:

— Statistical distribution based on hash-generated key

— Explicit distribution based on user-defined flow selection (with key size up to 56 bytes)

• Supports different scheduling options for processing received packets:

— Queues can either be scheduled by software (default), or attached to a DPIO object, or attached
to a DPCON object

— Extended support for AIOP when used with DPCON

• Supports traffic shaping of transmitted packets:

— Up to eight transmit queues matching eight traffic classes

• Supports transmit confirmation of all packets or transmission errors only

• Supports L3 and L4 checksum generation

• Supports L3 and L4 checksum validation

• Supports network interface statistics:

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-2

— Ingress frames count

— Ingress bytes count

— Ingress frames dropped due to explicit ‘drop’ setting

— Ingress frames discarded due to errors

— Ingress multicast frames count

— Ingress multicast bytes count

— Ingress broadcast frames count

— Ingress broadcast bytes count

— Egress frames count

— Egress bytes count

— Egress frames discarded due to errors

• Supports link state indication – a network link is up only when the DPNI is initialized and enabled
(this statement is assuming that the peer network entity is also enabled).

• Supports network interface interrupts:

— Link change events

• Supports enable, disable, and reset operations

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-3

7.2 DPNI functional description

7.2.1 Ingress frame processing

The figure and paragraphs below describe the DPNI processing phases on ingress.

Figure 60. DPNI Processing Phases for Ingress Frames

a) A frame arrives at the DPNI from another object, such as DPMAC, DPSW or other object.

b) Parsing: The frame is parsed to locate the headers from which lookup keys can be generated.

c) Filtering: The Destination MAC address and VLAN (if exists) are matched against
user-defined filters; frames that do not match the filters are dropped.

NOTE

DPNI allows configuration of promiscuous mode for unicast and/or
multicast addresses; these modes, if enabled, override the MAC filter.

d) QoS: The DPNI supports up to eight ingress traffic classes and a variable number of QMan
frame queues per traffic class. The frame is classified to one of the traffic classes based on
user-defined lookup keys; the selected traffic class causes a specific set of queues to be
selected.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-4

e) Policing: The frame is ‘colored’ based on the policing profile defined for the traffic class,
followed by WRED algorithm that discards lowest priority frames if needed.

f) Distribution: The DPNI selects a destination frame queue for the frame, using either another
user-defined lookup (explicit flow steering) or an RSS-style hashing operation; this lookup
selects the final destination queue within the previously selected set (of the selected traffic
class).

g) The frame is enqueued onto the queue, and the queue represents the destination indirectly. At
this point, DPIO objects enter the process. Every queue is configured to deliver data availability
notifications to a specific DPIO, and these notifications tell the driver software using the DPIO
that one or more frames are available to read from a specific queue. Driver software responds
by using a DPIO (actually any of its DPIOs) to read a burst of one or more frames from the
queue.

The GPP driver software may steer any set of receive queues to DPIO or DPCON objects; the DPNI
configures the relevant queue to generate notifications through the associated DPIO or DPCON, as
explained below.

Any DPNI receive queue can be associated with a DPIO object. A DPIO object may operate with
notifications enabled, and in this case the queues associated with the DPIO generate FQDAN (Frame
Queue Data Available Notification) messages to GPP software when data is available.

DPNI receive queues can alternatively be associated with a DPCON object. When DPCON objects are
connected to a DPIO object where notifications are enabled, the DPCON generates CDAN (Channel Data
Available Notification) messages to GPP software when data is available.

GPP software may apply any of the following ingress scheduling options on the network interface:

a) Poll the DPNI queues using explicit dequeue requests through DPIO. In this case, the network
interface driver is self-scheduling the dequeue calls.

b) Use the DPIO object to get FQDAN notifications on the data availability in the DPNI queues,
and then dequeue from those queues. Driver may control scheduling by prioritizing the queues
(FQDAN messages will be prioritized).

c) An alternating method of options (a) and (b), such as in NAPI mode.

d) Use the DPCON object to employ hardware-assisted scheduling of different receive queues.
DPCON also allows the driver to schedule ingress traffic between different network interfaces.
GPP software may select specific flows to go through DPCON, and to get CDAN notifications
on data availability for those flows. Other flows can be scheduled according to any of the
former three options.

Options (a), (b), and (c) above do not require a DPCON object; the combination of DPNI and DPIO is
sufficient.

7.2.2 Egress frame processing

The figure and paragraphs below describe the DPNI processing phases on ingress.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-5

Figure 61. DPNI Processing Phases for Egress Frames

a) Driver software enqueues a frame onto one of the transmit queues, by indicating the desired
transmit priority (traffic class); the DPNI supports one logical transmit queue per traffic class

b) Scheduling and shaping: the frame is scheduled for transmission based the relative priority of
its traffic class among other transmitted frames. DPNI may also apply user-defined rate
limitation on egress.

c) The frame leaves the DPNI and is sent through DPMAC to an external port, or alternatively to
another network object such as DPSW.

The egress configuration involves up to eight traffic classes, each having its own transmit queue.

Transmit confirmation involves a dedicated confirmation queue per DPIO – the confirmation queue is used
to transmit confirmation of all packets, or optionally to only transmit errors, that were transmitted using
that DPIO. Transmit confirmation queues are configured to deliver packets through the respective DPIO.
The DPIO object may operate with notifications enabled or disabled, and the DPIO has its own dedicated
channel for passing notifications.

7.2.3 Relationship with DPIO and DPCON objects

A DPNI object can be fully operational only by association with at least one DPIO object. Mainly, DPIO
objects provide configuration of a QBMan software portal, with an option for data availability
notifications. GPP software is free to relate DPIO objects to threads, or to share them between cores in
SMP mode but this requires synchronized access to the QBMan software portal. It is possible to associate
multiple DPIO objects with the same DPNI, in order to spread traffic from this DPNI across multiple
QBMan software portals.

GPP software may decide to enable DPIO notifications, or it may dequeue frames based on its own
scheduled polling logic. It is also possible for one GPP entity to receive the notification from one DPIO
and alert another entity that will dequeue the packets using a different DPIO.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-6

DPCON objects are used for concentrating traffic from several interfaces into sub-interfaces, mainly for
scheduling purposes. It is possible to connect DPCON with DPIO so it generates notifications to the GPP.

Note that the QBMan software portal is used both for enqueue/dequeue operations on packets, and for
acquire/release buffer operations. GPP software is responsible for the portal’s operation mode and usage
i.e. sharing vs. affinity, NAPI mode vs. other modes, association of queue context, etc.

DPIO objects may serve multiple interfaces. This is not limited to multiple DPNI objects; it can also be
combined with communication interfaces and accelerator interfaces. For example, the same DPIO may
serve both a DPNI and a DPCI, assuming they are assigned to the same software context (container).

7.2.4 Relationship with DPBP objects

A DPNI object can be fully operational only by association with at least one DPBP object. Each DPNI
must be associated with at least one and up to eight DPBP objects, which allows the flexible use of
different buffer pools.

A DPBP object may be associated with several DPNI objects from the same software context. It is also
possible to initialize and associate a private DPBP object per DPNI; the GPP/AIOP software context has
to decide whether sharing is required.

7.2.5 Ingress QoS

The DPNI supports classification of received frames to traffic classes (up to 8). This is done by matching
the incoming frame with a user-defined lookup key (optionally with a mask). The result of the lookup in
the QoS table determines the traffic class for the received frame.

Each traffic class has its own set of attributes, for example distribution options, policing options

All QoS-related functions require that the DPNI be created with multiple traffic classes. (Refer to the
NUM_TCS setting in DPNI_CREATE.)

The user may select a flexible lookup key for the QoS table. This is done by invoking the
DPNI_SET_QOS_TABLE command. Following that step, the user may add and remove QoS entries using
the DPNI_ADD_QOS_ENTRY and DPNI_REMOVE_QOS_ENTRY commands.

Starting with MC 10.3.0 the default behavior for DPNI objects employed by AIOP is to assign a default
priority to each traffic class.

The priority value for each TC is computed based on DPNI's NUM_TCS and the 4 strict priority levels
from a QBMan Channel.

Before this version all traffic classes had the same priority on AIOP ingress.

For DPNI object in AIOP context the default traffic class to priority mapping is presented below:

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-7

The above static mapping can be overridden by DPNI_SET_QUEUE.

7.2.6 Ingress distribution

The ingress distribution phase selects a final destination queue within the previously selected set (of
chosen traffic class). The DPNI selects a destination frame queue for the frame using one of the following
methods:

• Explicit flow steering – based on user-defined lookup, or

• RSS-style hashing operation – hashing is based on user-defined key

Distribution functionality is valid only if the DPNI_OPT_NO_FS option was not specified at DPNI
creation; otherwise, each traffic class has exactly (and only) one flow. Refer to DPNI_CREATE for a
description of the DPNI_OPT_NO_FS option and NUM_QUEUES for configuration of DPNI distribution
size.

The first step in applying any type of distribution is to invoke the DPNI_SET_RX_TC_DIST command to
select the distribution mode (DIST_MODE = DPNI_DIST_MODE_FS / DPNI_DIST_MODE_HASH /
DPNI_DIST_MODE_NONE). The distribution mode is selected per traffic class, so each traffic class may
have different distribution method. For GPP software, the distribution size determines the number of
receive queues in that traffic class.

If flow steering distribution mode is selected, user must also provide the lookup key format for the flow
steering table. Following this step, user can start adding explicit flow steering entries to direct each flow
to the required receive queue. Please refer to the DPNI_ADD_FS_ENTRY command for more details.
Note that unmatched flows may either be dropped or directed to the default flow ID (FLOW_ID = 0). Flow
look-up miss behavior is configured through the MISS_ACTION field in the DPNI_SET_RX_TC_DIST
command.

Table 7-1. Traffic class mapping

NUM_TCS\TC ID| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

1 | 7 | x | x | x | x | x | x | x |

2 | 0 | 7 | x | x | x | x | x | x |

3 | 0 | 1 | 7 | x | x | x | x | x |

4 | 0 | 1 | 2 | 7 | x | x | x | x |

5 | 0 | 1 | 2 | 4 | 7 | x | x | x |

6 | 0 | 1 | 2 | 4 | 6 | 7 | x | x |

7 | 0 | 1 | 2 | 4 | 5 | 6 | 7 | x |

8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-8

7.2.7 Flow control

The dpni implements mechanisms described in IEEE 802.3x (flow control) and IEEE 802.1Qbb (priority
flow control).

These mechanisms can be triggered in two ways:

— Buffer pool depletion: when one of the buffer pools associated to dpni enters in depleted state.
This is the default trigger and is always used.

— Congestion: when Rx queue enter in congested state. To enable this trigger the user must send
command DPNI_SET_CONGESTION_NOTIFICATION with
DPNI_CONG_OPT_FLOW_CONTROL flag set in NOTIFICATION_MODE field and
QUEUE_TYPE set to Rx.

Flow control works only when dpni is connected to a dpmac object or other dpni object.

Flow control is affected by tail drop configuration. If the queues have tail drop enabled the buffer poll will
never be depleted and dpni will never send flow control packets.

When congestion notification is enabled the buffer pool depletion trigger is still in place. If congestion
thresholds are too big it is possible to deplete buffer pool and trigger flow control frames when no queue
is in congested state.

When a buffer pool is shared between multiple dpni objects the flow control may appear on all dpni objects
in the same time due buffer pool depletion. In this case the flow control may appear on low traffic
connections due to buffer depletion caused by high traffic on other dpni.

7.2.7.1 Flow control configuration

To enable flow control send command DPNI_SET_LINK_CFG and set the flag
DPNI_LINK_OPT_PAUSE. This will enable flow control frames triggered by buffer pool depletion. This
flag can be used in combination with DPNI_LINK_OPT_ASYM_PAUSE to generate asymmetric flow
control. See command description for different combination of these flags.

To enable flow control triggered by congestion send the command
DPNI_SET_CONGESTION_NOTIFICATION for Rx queue. If dpni have multiple traffic classes all the
traffic is stopped when a single traffic class enters in congested state.

7.2.7.2 Priority flow control configuration

Priority flow control will work only if dpni is connected to a dpmac object.

Before enabling priority flow control the user must create a qos table using command
DPNI_CMDID_SET_QOS_TBL and add entries using DPNI_CMDID_ADD_QOS_ENT in order to map
traffic to TC's.

To enable priority flow in addition to flags needed to enable flow control set
DPNI_LINK_OPT_PFC_PAUSE.

To enable flow control triggered by congestion send the command
DPNI_SET_CONGESTION_NOTIFICATION for Rx queue. If dpni is created using option

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-9

DPNI_OPT_SHARED_CONGESTION a single congested queue will stop all the traffic. In this case dpni
have a single congestion point and cannot verify what TC is congested.

The user can map buffer pools to a specific traffic class using the command DPNI_SET_POOLS. To do
this write in POOL<n>_DPBP_PRIO_MASK a bit mask with all traffic classes associated with
POOL<n>_DPBP_ID. When buffer pool with this ID enters in depletion state only traffic for associated
TC's will be stopped.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-10

7.3 DPNI command reference

This section contains the detailed programming model of DPNI commands.

7.3.1 DPNI_CREATE

Create the DPNI object, allocate required resources and perform required initialization. The object can be
created either by declaring it in the DPL file, or by invoking this command. This command includes all
required parameters for the instantiation of the DPNI object. Some parameters have default settings.

The object CREATE command must be executed on a MC portal that is assigned or in use by a Data Path
Resource Container providing a unique authentication token for that container. The command uses the
authentication token of a parent container to which the object should be created and assigned.

If the token is '0' the object will be assigned to the container that hosts the MC command portal executing
this command.

The command returns a DPNI_ID that can be used to OPEN or DESTROY the object.The command
format is shown in the figure below.

Command structure

Figure 62. DPNI_CREATE Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9011 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 56 55 48 47 40 39 32 31 0

0x08 – MAC_ENTRIES NUM_TCS NUM_QUEUES OPTIONS (details in the table below)

63 48 47 32 31 24 23 16 15 8 7 0

0x10 – FS_ENTRIES – QOS_ENTRIES – VLAN_ENTRIES

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 6. DPNI_CREATE Command Field Descriptions

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-11

0x08 0–31 OPTIONS – select one or more of the options below

0 DPNI_OPT_TX_FRM_RELEASE Controls availability of Tx confirmation queues:
0 – Tx confirmation queues are available. Tx confirmation behavior can be changed between confirmation
and buffer release by executing DPNI_SET_TX_CONFIRMATION_MODE.
1 – Tx confirmation queues are not available, the DPNI can only release the buffers associated with Tx traffic
to a buffer pool. DPNI_SET_TX_CONFIRMATION_MODE command with any mode other than
DPNI_CONF_DISABLE will return an error.

1 DPNI_OPT_NO_MAC_FILTER Controls availability of MAC filtering table:
0 – MAC filtering table is available. MAC filtering can be disabled at run-time executing
DPNI_SET_MULTICAST_PROMISC and DPNI_SET_UNICAST_PROMISC.
1 – MAC filtering is not available, the DPNI is always in promiscuous mode. Any command that enables
MAC filtering or manipulates entries in the MAC filtering list will return an error. The MAC_ENTRIES field in
DPNI_CREATE is ignored.
This option applies both to unicast and multicast MAC filtering.

2 DPNI_OPT_HAS_POLICING Controls availability of WRED/policing:
0 – WRED is not available. Command DPNI_SET_EARLY_DROP with mode set to
DPNI_EARLY_DROP_MODE_WRED will return an error.
Tail-drop and other congestion means are available independent of this option.
1 – WRED is available on this DPNI.

3 DPNI_OPT_SHARED_CONGESTION Controls the number of congestion groups reserved for the DPNI:
0 – Congestion groups are reserved per TC. This allows configuration of a tail-drop threshold or of a
congestion notification for all queues of each TC, independent of other TCs.
1 – There is a single congestion group for all TCs. A tail-drop or congestion notification can be configured
per DPNI, across all TCs. The TC input argument to DPNI_SET/GET_TAILDROP must be 0.
This option is ignored if the DPNI has 1 TC; the two options lead to the same behavior.
Note that the tail-drop mentioned here is applicable across multiple queues and is controlled using
DPNI_SET/GET_TAILDROP with CG_POINT set to DPNI_CP_GROUP.
Taildrop per queue, controlled using DPNI_SET/GET_TAILDROP with CG_POINT set to
DPNI_CP_QUEUE, is independent of this setting and is always available.

4 DPNI_OPT_HAS_KEY_MASKING Controls availability of masking for flow steering and QoS classification:
0 – masking is not available, look-ups are always exact match and the look-up key associated with the frame
must fully match the key in the look-up table. MASK and INDEX fields of DPNI_ADD_FS/QOS_ENTRY are
ignored.
1 – Masking is available, the look-up key associated with the frame must only match the part of the look-up
table key which is not masked out.
Note that the masking option is not available on all SoCs. If the option is set on a SoC that does not support
masking, DPNI_CREATE will return an error.

Note: Masking is supported on LS2080A and LS2088A SoCs and their variants, and is not supported on
LS108xA SoCs.

5 DPNI_OPT_NO_FS Controls availability of flow steering look-up table:
0 – Flow steering look-up table is available, it can be used to steer traffic toward a specific ingress queue,
filter out matching flows or associate matching flows with a given flow context (See description of FLC field
in the Frame Descriptor structure).
1 – Flow steering is not available, commands that manipulate the FS table will return an error.
Note that flow steering table can be used even if NUM_QUEUES = 1, but is limited to filtering out flows or
selecting FD[FLC] values per flow.

6 DPNI_OPT_HAS_OPR Controls availability of Order Restoration:
0 – Order Restoration is not available. Command DPNI_SET_OPR will return an error.
1 – Order Restoration is available on this DPNI. Note that this option is not available for LS2080A

7 DPNI_OPT_OPR_PER_TC 0 – Order Restoration Points can be set per each index in a TC.
1 – Order Restoration Points are shared for each TC and index is ignored in OPR commands.

8 DPNI_OPT_SINGLE_SENDER When set all TX traffic classes will use a single sender.
num_queues is ignored for TX, it will only be used for RX.
If this flag is set the num_queues parameter in dpni_get_attributes command will contain number of RX
queues per TC.

Table 6. DPNI_CREATE Command Field Descriptions (continued)

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-12

All unspecified fields are reserved and must be cleared (set to zero)

0x08 9-31 – Reserved

32-39 NUM_QUEUES Controls the number of queues available in the DPNI. These can be used to load-spread Rx traffic across
multiple CPUs and to maintain Tx flow affinity to a CPU including the delivery of Tx confirmations.
Value 0 is interpreted as 1. Maximum supported value is 8.

40-47 NUM_TCS Controls the number of traffic classes available in the DPNI. Each traffic class can have different attributes,
such as:
- different priorities for Tx and Rx,
- dedicated congestion thresholds and congestion notifications,
- dedicated buffer pools.
Value 0 is interpreted as 1. Maximum supported value is 8.

48-55 MAC_ENTRIES Controls the number of entries in the MAC filtering table. These are used to filter ingress traffic and discard
unexpected frames based on their destination MAC address. Both unicast and multicast traffic is subject to
filtering, although promiscuous mode can be enabled independently for the two.
This field is ignored if DPNI_OPT_NO_MAC_FILTER is set. Otherwise, value 0 is interpreted as 16.
Maximum supported value is 64.

0x10 0-7 VLAN_ENTRIES Controls the number of entries in the VLAN filtering table. If VLAN filtering is enabled, ingress traffic which
is VLAN tagged is filtered against the content of this table based on VLAN ID.
Value 0 disables VLAN filtering. Maximum supported value is 16.

16-23 QOS_ENTRIES Controls the number of entries in the QoS look-up table. This is used to select the TC for ingress traffic,
based on arbitrary classification keys.
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING value.
Value 0 is interpreted as 64. Maximum supported value is 64.

32-47 FS_ENTRIES Controls the number of entries in the flow steering table. This is used to:
- steer traffic toward a specific ingress queue,
- filter out matching flows, or
- associate matching flows with a given flow context (See description of FLC field in the Frame Descriptor
structure).
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING value.
Value 0 is interpreted as 64. Maximum supported value is 1024.

Table 6. DPNI_CREATE Command Field Descriptions (continued)

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-13

Response structure

Figure 7-2. DPNI_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9011 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPNI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 7-1. DPNI_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPNI_ID DPNI unique ID

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-14

7.3.2 DPNI_DESTROY

This command destroys the DPNI object and releases all its resources. It must be invoked in the software
context that created the object. The caller must provide the object id and the authentication token of the
parent container that created the object. Note that the object can be assigned to another container and
sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 63. DPNI_DESTROY Command Description

The following table describes the command fields.

Table 7. DPNI_DESTROY Command Field Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9811 TOKEN –
IN

T
R

_
D

IS
STATUS P – SRCID

63 32 31 0

0x08 — DPNI_ID

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPNI_ID ID of the DPNI object to destroy

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-15

7.3.3 DPNI_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPNI_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 64. DPNI_OPEN Command Description

The following table describes the command fields.

Table 8. DPNI_OPEN Command Field Descriptions

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8011 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 32 31 0

0x08 — DPNI_ID

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPNI_ID DPNI unique ID

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-16

7.3.4 DPNI_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 65. DPNI_CLOSE Command Description

The following table describes the command fields.

Table 9. DPNI_CLOSE Command Field Descriptions

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-17

7.3.5 DPNI_ENABLE

Enable the DPNI, allow sending and receiving frames.

Command structure

Figure 66. DPNI_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-18

7.3.6 DPNI_DISABLE

Disable the DPNI, stop sending and receiving frames.

Command structure

Figure 67. DPNI_DISABLE Command Description

The following table describes the command fields.

Table 10. DPNI_DISABLE Command Fields Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-19

7.3.7 DPNI_IS_ENABLED

Check if the DPNI is enabled.

Command structure

Figure 68. DPNI_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-20

Response structure

Figure 69. DPNI_IS_ENABLED Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if object is enabled

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-21

7.3.8 DPNI_RESET

Reset the DPNI, returns the object to initial state.

This command has some limitations when the DPNI object is associated with a DPCON. (See
Section 25.1, “Reset of MC objects with FQs associated with a channel.”)

Command structure

Figure 70. DPNI_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-22

7.3.9 DPNI_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 71. DPNI_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-23

7.3.10 DPNI_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 72. DPNI_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-24

Response structure

Figure 73. DPNI_GET_IRQ_ENABLE Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-25

7.3.11 DPNI_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 74. DPNI_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-26

7.3.12 DPNI_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 75. DPNI_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-27

Response structure

Figure 76. DPNI_GET_IRQ_MASK Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-28

7.3.13 DPNI_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 77. DPNI_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPNI_CLEAR_IRQ_STATUS command). Note that the STATUS returned
in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-29

Response structure

Figure 78. DPNI_GET_IRQ_STATUS Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events for IRQ 0:
Bit 0: DPNI_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-30

7.3.14 DPNI_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 79. DPNI_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-31

7.3.15 DPNI_GET_ATTRIBUTES

Retrieve DPNI attributes as configured when the object was created.

Command structure

Figure 80. DPNI_GET_ATTRIBUTES Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-32

Response structure

Figure 81. DPNI_GET_ATTRIBUTES Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 56 55 48 47 40 39 32 31 0

0x08 NUM_TX_TCS MAC_ENTRIES NUM_RX_TCS NUM_QUEUES OPTIONS (details in the table below)

63 48 47 32 31 24 23 16 15 8 7 0

0x10 – FS_ENTRIES – QOS_ENTRIES – VLAN_ENTRIES

63 32 31 16 15 8 7 0

0x18 – WRIOP_VERSION FS_KEY_SIZE QOS_KEY_SIZE

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-33

0x08 0–31 OPTIONS – select one or more of the options below

0 DPNI_OPT_TX_FRM_RELEASE Controls availability of Tx confirmation queues:
0 – Tx confirmation queues are available. Tx confirmation behavior can be changed between
confirmation and buffer release by executing DPNI_SET_TX_CONFIRMATION_MODE.
1 – Tx confirmation queues are not available, the DPNI can only release the buffers associated
with Tx traffic to a buffer pool. DPNI_SET_TX_CONFIRMATION_MODE command with any
mode other than DPNI_CONF_DISABLE will return an error.

1 DPNI_OPT_NO_MAC_FILTER Controls availability of MAC filtering table:
0 – MAC filtering table is available. MAC filtering can be disabled at run-time executing
DPNI_SET_MULTICAST_PROMISC and DPNI_SET_UNICAST_PROMISC.
1 – MAC filtering is not available, the DPNI is always in promiscuous mode. Any command that
enables MAC filtering or manipulates entries in the MAC filtering list will return an error. The
MAC_ENTRIES field in DPNI_CREATE is ignored.
This option applies both to unicast and multicast MAC filtering.

2 DPNI_OPT_HAS_POLICING Controls availability of WRED/policing:
0 – WRED is not available. Command DPNI_SET_EARLY_DROP with mode set to
DPNI_EARLY_DROP_MODE_WRED will return an error.
Tail-drop and other congestion means are available independent of this option.
1 – WRED is available on this DPNI.

3 DPNI_OPT_SHARED_CONGESTION Controls the number of congestion groups reserved for the DPNI:
0 – Congestion groups are reserved per TC. This allows configuration of a tail-drop threshold or
of a congestion notification for all queues of each TC, independent of other TCs.
1 – There is a single congestion group for all TCs. A tail-drop or congestion notification can be
configured per DPNI, across all TCs. The TC input argument to DPNI_SET/GET_TAILDROP
must be 0.
This option is ignored if the DPNI has 1 TC; the two options lead to the same behavior.
Note that the tail-drop mentioned here is applicable across multiple queues and is controlled
using DPNI_SET/GET_TAILDROP with CG_POINT set to DPNI_CP_GROUP.
Taildrop per queue, controlled using DPNI_SET/GET_TAILDROP with CG_POINT set to
DPNI_CP_QUEUE, is independent of this setting and is always available.

4 DPNI_OPT_HAS_KEY_MASKING Controls availability of masking for flow steering and QoS classification:
0 – masking is not available, look-ups are always exact match and the look-up key associated
with the frame must fully match the key in the look-up table. MASK and INDEX fields of
DPNI_ADD_FS/QOS_ENTRY are ignored.
1 – Masking is available, the look-up key associated with the frame must only match the part of
the look-up table key which is not masked out.
Note that the masking option is not available on all SoCs. If the option is set on a SoC that does
not support masking, DPNI_CREATE will return an error.

Note: Masking is supported on LS2080A and LS2088A SoCs and their variants, and is not
supported on LS108xA SoCs.

5 DPNI_OPT_NO_FS Controls availability of flow steering look-up table:
0 – Flow steering look-up table is available, it can be used to steer traffic toward a specific ingress
queue, filter out matching flows or associate matching flows with a given flow context (See
description of FLC field in the Frame Descriptor structure).
1 – Flow steering is not available, commands that manipulate the FS table will return an error.
Note that flow steering table can be used even if NUM_QUEUES = 1, but is limited to filtering out
flows or selecting FD[FLC] values per flow.

6 DPNI_OPT_HAS_OPR Controls availability of Order Restoration:
0 – Order Restoration is not available. Command DPNI_SET_OPR will return an error.
1 – Order Restoration is available on this DPNI. Note that this option is not available for LS2080A

7 DPNI_OPT_OPR_PER_TC 0 – Order Restoration Points can be set per each index in a TC.
1 – Order Restoration Points are shared for each TC and index is ignored in OPR commands.

8 DPNI_OPT_SINGLE_SENDER When set all TX traffic classes will use a single sender.
num_queues is ignored for TX, it will only be used for RX.
If this flag is set the num_queues parameter in dpni_get_attributes command will contain number
of RX queues per TC.

9-31 – Reserved

32-39 NUM_QUEUES Controls the number of queues available in the DPNI. These can be used to load-spread Rx
traffic across multiple CPUs and to maintain Tx flow affinity to a CPU including the delivery of Tx
confirmations.
Value 0 is interpreted as 1. Maximum supported value is 8.
If DPNI_OPT_SINGLE_SENDER option is set then this value is valid only for RX side (TX traffic
classes will have a single queue).

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-34

All unspecified fields are reserved and must be cleared (set to zero)

0x08 40-47 NUM_RX_TCS Controls the number of Rx traffic classes available in the DPNI. Each traffic class can have
different attributes such as:
- different priorities for Rx,
- dedicated congestion thresholds and congestion notifications,
- dedicated buffer pools.
Value 0 is interpreted as 1. Maximum supported value is 8.

48-55 MAC_ENTRIES Controls the number of entries in the MAC filtering table. These are used to filter ingress traffic
and discard unexpected frames based on their destination MAC address. Both unicast and
multicast traffic is subject to filtering, although promiscuous mode can be enabled independently
for the two.
This field is ignored if DPNI_OPT_NO_MAC_FILTER is set. Otherwise, value 0 is interpreted as
16. Maximum supported value is 64.

56-63 NUM_TX_TCS Controls the number of Tx traffic classes available in the DPNI.Each traffic class can have
different attributes such as:
-different priorities for Tx,
-dedicated congestion thresholds and congestion notification ,
-dedicated buffer pools.
Values 0 is interpreted as 8.Maximum supported value is 16.

0x10 0-7 VLAN_ENTRIES Controls the number of entries in the VLAN filtering table. If VLAN filtering is enabled, ingress
traffic which is VLAN tagged is filtered against the content of this table based on VLAN ID.
Value 0 disables VLAN filtering. Maximum supported value is 16.

16-23 QOS_ENTRIES Controls the number of entries in the QoS look-up table. This is used to select the TC for ingress
traffic, based on arbitrary classification keys.
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING
value.
Value 0 is interpreted as 64. Maximum supported value is 64.

32-47 FS_ENTRIES Controls the number of entries in the flow steering table. This is used to:
- steer traffic toward a specific ingress queue,
- filter out matching flows, or
- associate matching flows with a given flow context (See description of FLC field in the Frame
Descriptor structure).
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING
value.
Value 0 is interpreted as 64. Maximum supported value is 1024.

0x18 0-7 QOS_KEY_SIZE Size of the look-up key used for TC selection. Total size of protocol header fields selected as part
of QoS look-up key cannot exceed this value.

8-15 FS_KEY_SIZE Size of the look-up key used for flow steering. Total size of protocol header fields selected as part
of QoS look-up key cannot exceed this value.

16-31 WRIOP_VERSION Indicates the revision of the underlying WRIOP hardware block.
0x400 – WRIOP version 1.0.0, used on LS2080 and variants,
0x421 – WRIOP version 1.1.1, used on LS2088 and variants,
0x422 – WRIOP version 1.1.2, used on LS1088 and variants.

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-35

7.3.16 DPNI_SET_POOLS

This command will associate to a DPNI object one or more DPBP objects used to store received frames.
Each DPNI uses a maximum of eight buffer pools. Multiple DPNI objects can share the same DBPB
object.

The associated buffer pools are used to provide all the buffers needed to store DPNI ingress traffic.

The buffer layout is described in command DPNI_SET_BUFFER_LAYOUT. (See Section 7.3.18,
“DPNI_SET_BUFFER_LAYOUT.”) The buffers must be big enough to store frame data plus
supplementary info such as frame annotation.

When receive a new frame the DPNI will search for an associated buffer pool with the smallest size that
will fit frame data, annotations, head room and tail room. If such a buffer pool is found and is not empty,
hardware will get a buffer and store the frame. If there is no pool that will fit the data, hardware will store
the frame using multiple buffers by creating a scatter/gather list. The application may use multiple buffer
pools with different sizes to minimize memory/performance loss due to small frames or too many
scatter/gather lists due to large frames.

All buffers must be aligned to 64 bytes. The MC firmware does not check the alignment for the buffers
placed in pool.

For each buffer pool the command must provide:

• Buffer pool id: can be obtained with DPBP_GET_ATTRIBUTES command. Same id can be
passed to multiple DPNI objects to share same resource.

• Buffer size: the size of the buffers released into this DPBP object and is known by the application.

• Priority mask: associate buffer pool with a specific traffic class. This feature is needed when
DPNI_LINK_OPT_PFC_PAUSE is set in command DPNI_SET_LINK_CFG. If not needed the
field can be set to zero and the MC will associate all traffic classes to this buffer pool.

If DPNI_LINK_OPT_PFC_PAUSE is enabled and the associated buffer pool enters depletion state the
DPNI will generate a PFC frame using the POOLx_DPBP_PRIO_MASK. That is, if a buffer pool is
associated with multiple traffic classes the PFC frame will be generated for all of them.

DPNI_SET_POOLS must be executed before DPNI_ENABLE command.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-36

Command structure

Figure 82. DPNI_SET_POOLS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2002 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 56 55 48 47 32 31 16 15 14 13 12 11 10 9 8 7 0

0x08 — POOL0_DPBP_
PRIO_MASK

POOL0_DPBP_ID —

P
O

O
L

7
_B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

6
_B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

5
_B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

4
_B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

3
_B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

2
_B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

1
_B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

0
_B

A
C

K
U

P
_

P
O

O
L

NUM_DPBP

63 56 55 48 47 32 31 24 23 16 15 0

0x10 — POOL2_DPBP_
PRIO_MASK

POOL2_DPBP_ID — POOL1_DPBP_
PRIO_MASK

POOL1_DPBP_ID

63 56 55 48 47 32 31 24 23 16 15 0

0x18 — POOL4_DPBP_
PRIO_MASK

POOL4_DPBP_ID — POOL3_DPBP_
PRIO_MASK

POOL3_DPBP_ID

63 56 55 48 47 32 31 24 23 16 15 0

0x20 — POOL6_DPBP_
PRIO_MASK

POOL6_DPBP_ID — POOL5_DPBP_
PRIO_MASK

POOL5_DPBP_ID

63 48 47 32 31 24 23 16 15 0

0x28 POOL1_BUFFER_SIZE POOL0_BUFFER_SIZE — POOL7_DPBP_
PRIO_MASK

POOL7_DPBP_ID

63 48 47 32 31 16 15 0

0x30 POOL5_BUFFER_SIZE POOL4_BUFFER_SIZE POOL3_BUFFER_SIZE POOL2_BUFFER_SIZE

63 32 31 16 15 0

0x38 — POOL7_BUFFER_SIZE POOL6_BUFFER_SIZE

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 NUM_DPBP Number of buffer pools initialized with this command. Accepted values are 1–8

8-15 POOLS[0-7]_BACKUP_POOL Backup pool.
0 - Define this pool as a regular pool. This pool may be used for allocating buffers in the packet express
buffer.
1 - Define the pool as a backup pool. WRIOP uses backup pools when one or more valid regular pool is
depleted.

0x08 -
0x28

0-15 /
32-47

POOLS[0-7]_DPBP_ID DPBP object ID

0x08 -
0x28

16-23 /
48-55

POOLS[0-7]_DPBP_PRIO_MASK Priority mask. This is used to associate buffer pool to a specific traffic class. When DPNI receives a frame
on a specific traffic class it will store it into buffers pulled from associated DPBP object.
There are eight bits, one for each traffic class:
Bit n set: buffer pool is associated with traffic class N.
If set to zero the MC will assume the value 0xFF and DPBP will be associated for all traffic classes.

0x28 -
0x30

0-15 /
16-31/
32-47/
48-63

POLS[0-7]_BUFFER_SIZE Buffer size in bytes. This is the size for all buffers released into this pool.
It must be a multiple of 64 bytes

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-37

7.3.17 DPNI_SET_ERRORS_BEHAVIOR

Set errors behavior for the DPNI – decide which action to take when specific errors occur. This command
may be repeated with different errors selection at each time.

Command structure

Figure 83. DPNI_SET_ERRORS_BEHAVIOR Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x20B1 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 37 36 35 32 31 0

0x08 –

S
E

T
_F

R
A

M
E

_
A

N
N

O
TA

T
IO

N

E
R

R
O

R
_

A
C

T
IO

N

ERRORS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-38

All unspecified fields are reserved and must be cleared (set to zero)

0x08 0-31 ERRORS The errors mask to configure. Select any combination of supported errors below:

Bit 0: DPNI_ERROR_L4CE – parser L4 checksum error
Bit 2: DPNI_ERROR_L3CE – parser L3 checksum error
Bit 5: DPNI_ERROR_PHE – Parsing header error
Bit 12: DPNI_ERROR_FPE – Frame physical error
Bit 13: DPNI_ERROR_FLE – Frame length error
Bit 17: DPNI_ERROR_EOFHE – Extract out of frame header error

32-35 ERROR_ACTION Desired action for the errors selected in ERRORS mask. Select one of the supported
values below:

0 = DPNI_ERROR_ACTION_DISCARD – Discard the frame
1 = DPNI_ERROR_ACTION_CONTINUE – Continue with the normal flow
2 = DPNI_ERROR_ACTION_SEND_TO_ERROR_QUEUE – Send the frame to the
error queue

36 SET_FRAME_ANNOTATION Set to '1' to mark the errors in frame annotation status (FAS); relevant only for
non-discard actions.

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-39

7.3.18 DPNI_SET_BUFFER_LAYOUT

Set buffer layout attributes.

The general buffer format and what each field of the command configures is described in the following
figure.

Figure 7-3. Buffer format

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-40

Command structure

Figure 84. DPNI_SET_BUFFER_LAYOUT Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2652 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 52 51 50 49 48 47 32 31 8 7 0

0x08 – P
A

S
S

_
S

W
_

O
P

A
Q

U
E

P
A

S
S

_F
R

A
M

E
_

S
TA

T
U

S

P
A

S
S

_
P

A
R

S
E

R
_

R
E

S
U

LT

P
A

S
S

_
T

IM
E

S
TA

M
P

OPTIONS – QUEUE_TYPE

63 48 47 32 31 16 15 0

0x10 TAIL_ROOM HEAD_ROOM DATA_ALIGN PRIVATE_DATA_SIZE

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue,
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue,
3: DPNI_QUEUE_RX_ERR - Rx error queue.

32-47 OPTIONS Mask of bits indicating suggested modifications to the buffer layout:
Bit 0: DPNI_BUF_LAYOUT_OPT_TIMESTAMP—set to modify time-stamp setting
Bit 1: DPNI_BUF_LAYOUT_OPT_PARSER_RESULT—set to modify the parser-result setting.
Bit 2: DPNI_BUF_LAYOUT_OPT_FRAME_STATUS—set to modify the frame-status setting.
Bit 3: DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE—set to modify the private-data-size setting.
Bit 4: DPNI_BUF_LAYOUT_OPT_DATA_ALIGN—set to modify the data-alignment setting.
Bit 5: DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM—Select to modify the data-head-room setting.
Bit 6: DPNI_BUF_LAYOUT_OPT_DATA_TAIL_ROOM—Select to modify the data-tail-room setting.

48 PASS_TIMESTAMP ‘1’ indicates that timestamp is included in the buffer layout

49 PASS_PARSER_RESULT ‘1’ indicates that parsing results are included in the buffer layout

50 PASS_FRAME_STATUS ‘1’ indicates that frame status is included in the buffer layout

51 PASS_SW_OPAQUE ‘1’ indicates that SW annotation has been activated

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-41

All unspecified fields are reserved and must be cleared (set to zero).

0x10 0–15 PRIVATE_DATA_SIZE Size kept for private data (in bytes). Maximum value is 64.

16–31 DATA_ALIGN Frame data alignment

16-31 DATA_HEAD_ROOM Data head room

32-47 DATA_TAIL_ROOM Data tail room

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-42

7.3.19 DPNI_GET_BUFFER_LAYOUT

Retrieve buffer layout attributes.

Command structure

Figure 85. DPNI_GET_BUFFER_LAYOUT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2642 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 8 7 0

0x08 – QUEUE_TYPE

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 QUEUE_TYPE Type of queue to retrieve configuration from:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue,
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue,
3: DPNI_QUEUE_RX_ERR - Rx error queue

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-43

Response structure

Figure 86. DPNI_GET_BUFFER_LAYOUT Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2642 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 52 51 50 49 48 47 0

0x08 – P
A

S
S

_
S

W
_

O
P

A
Q

U
E

P
A

S
S

_F
R

A
M

E
_

S
TA

T
U

S

P
A

S
S

_
P

A
R

S
E

R
_

R
E

S
U

LT

P
A

S
S

_
T

IM
E

S
TA

M
P

–

63 48 47 32 31 16 15 0

0x10 TAIL_ROOM HEAD_ROOM DATA_ALIGN PRIVATE_DATA_SIZE

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 48 PASS_TIMESTAMP ‘1’ indicates that time-stamp is included in the buffer layout

49 PASS_PARSER_RESULT ‘1’ indicates that parsing results are included in the buffer layout

50 PASS_FRAME_STATUS ‘1’ indicates that frame status is included in the buffer layout

51 PASS_SW_OPAQUE ‘1’ indicates that SW annotation has been activated

0x10 0-15 PRIVATE_DATA_SIZE Size kept for private data (in bytes)

16-31 DATA_ALIGN Data alignment

32-47 DATA_HEAD_ROOM Data head room

48-63 DATA_TAIL_ROOM Data tail room

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-44

7.3.20 DPNI_SET_OFFLOAD

Set DPNI offload configuration.

Command structure

Figure 87. DPNI_SET_OFFLOAD Command Description

The following table describes the command fields.

Table 11. DPNI_SET_OFFLOAD Command Field Descriptions

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26C1 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 24 23 0

0x08 CONFIGURATION OFFLOAD_TYPE —

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 24-31 OFFLOAD_TYPE Type of offload to configure:
0: DPNI_OFF_RX_L3_CSUM – Rx Layer 3 checksum validation;
1: DPNI_OFF_RX_L4_CSUM – Rx Layer 4 checksum validation,
2: DPNI_OFF_TX_L3_CSUM – Tx Layer 3 checksum generation,
3: DPNI_OFF_TX_L4_CSUM – Tx Layer 4 checksum generation.
4: DPNI_FLCTYPE_HASH - FD flow context (FD[FLC]) generated by WRIOP for
AIOP/CTLU. (Caution: Make sure to do this before setting up the queue)

32–63 CONFIGURATION Configures the selected offload.
For OFFLOAD_TYPE 0-3, values are:
0: selected offload is disabled,
1: selected offload is enabled.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-45

7.3.21 DPNI_GET_OFFLOAD

Get DPNI offload configuration.

Command structure

Figure 88. DPNI_GET_OFFLOAD Command Description

The following table describes the command fields.

Table 12. DPNI_GET_OFFLOAD Command Field Descriptions

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26B1 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 24 23 0

0x08 – OFFLOAD_TYPE —

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 24-31 OFFLOAD_TYPE Type of offload to configure:
0: DPNI_OFF_RX_L3_CSUM – Rx Layer 3 checksum validation;
1: DPNI_OFF_RX_L4_CSUM – Rx Layer 4 checksum validation,
2: DPNI_OFF_TX_L3_CSUM – Tx Layer 3 checksum generation,
3: DPNI_OFF_TX_L4_CSUM – Tx Layer 4 checksum generation.
4.DPNI_FLCTYPE_HASH – FD flow context (FD[FLC]) generated by WRIOP for
AIOP/CTLU.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-46

Response structure

Figure 89. DPNI_GET_OFFLOAD Response Description

Table 13. DPNI_GET_OFFLOAD Response Field Descriptions

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26B1 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 32 31 0

0x08 CONFIGURATION —

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32–63 CONFIGURATION Configuration of selected offload.
For OFFLOAD_TYPE 0-3, values are:
0: selected offload is disabled
1: selected offload is enabled

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-47

7.3.22 DPNI_GET_QDID

Get the Queuing Destination ID (QDID) that should be used for frame enqueue operations.

The Queuing Destination (QD) feature implemented in QMan provides enqueuer support for the purposes
of:

• Distribution (load balancing)

• QoS (Quality of Service)

QD can use multiple queues.

When a frame is enqueued to QMan, either from a software portal, a network interface module (for
example WRIOP), or an accelerator, the enqueue command (or pre-enqueue command, in the case of
WRIOP) may specify:

• FQID to which the frame should be directly enqueued, or

• Queuing Destination ID (QDID) and priority, which will be resolved by the hardware into a
specific queue to be used for the enqueue.

The number of QD supported is Soc specific. Each QD provides next functions:

• QoS mapping of the enqueue to a specific queue or sub-group of queues, using a QPRI (queuing
priority) value provided in the command.

• Distribution of the enqueue within the QoS selected sub-group.

Example: To send data using a specific Traffic Class (TC) obtain QDID for TX queue. Use this QDID
together with TC priority to create enqueue command descriptor.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-48

Command structure

Figure 90. DPNI_GET_QDID Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2101 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 8 7 0

0x08 – QUEUE_TYPE

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

QUEUE_TYPE Type of queue to receive QDID for:
1: DPNI_QUEUE_TX - Tx queue

All other values are reserved

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-49

Response structure

Figure 91. DPNI_GET_QDID Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2101 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 16 15 0

0x08 – QDID

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 QDID Virtual QDID value that should be used as an argument in all enqueue operations

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-50

7.3.23 DPNI_GET_SP_INFO

Get the AIOP storage profile ID associated with the DPNI – relevant only for DPNI that belongs to AIOP
software context (resides in AIOP container).

Command structure

Figure 92. DPNI_GET_SP_INFO Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2111 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-51

Response structure

Figure 93. DPNI_GET_SP_INFO Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2111 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 32 31 16 15 0

0x08 – SPIDS_1 SPIDS_0

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 SPIDS[0..1] AIOP storage-profile ID

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-52

7.3.24 DPNI_GET_TX_DATA_OFFSET

Get the data offset for transmit buffers (from start of buffer).

Software should reserve the amount of space indicated by this command as headroom in all Tx frames.
This space may be used to pass metadata to/from hardware or to associate software-defined metadata with
the frame between Tx and Tx confirmation.

Command structure

Figure 94. DPNI_GET_TX_DATA_OFFSET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2121 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-53

Response structure

Figure 95. DPNI_GET_TX_DATA_OFFSET Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2121 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 16 15 0

0x08 DATA_OFFSET

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 DATA_OFFSET Transmit-side data offset (from start of buffer)

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-54

7.3.25 DPNI_GET_STATISTICS

Read DPNI statistics.

Command structure

Figure 96. DPNI_GET_STATISTICS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x25D2 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 15 8 7 0

0x08 – PARAM PAGE_NUMBER

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 PAGE_NUMBER Select one of the available counter pages to retrieve.
Supported values are 0-2. Check response structure of this command for content of
each page.

0x08 8-15 PARAM Custom parameter for some pages used to select a certain statistic source.It is used
for page 3 to select a traffic class.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-55

Response structure

Figure 97. DPNI_GET_STATISTICS Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x25D1 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 COUNTER0

63 0

0x10 COUNTER1

63 0

0x18 COUNTER2

63 0

0x20 COUNTER3

63 0

0x28 COUNTER4

63 0

0x30 COUNTER5

63 0

0x38 COUNTER6

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–63 COUNTER0 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_ALL_FRAMES – counts all accepted ingress frames,
1: EGRESS_ALL_FRAMES – counts all egress frames transmitted,
2: INGRESS_FILTERED_FRAMES – counts all ingress frames discarded due to filtering. Discard may be
caused by MAC, VLAN filtering, ACL configuration.
3.Cumulative count of the number of bytes dequeued.

0X10 0–63 COUNTER1 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_ALL_BYTES – counts bytes in all accepted ingress frames,
1: EGRESS_ALL_BYTES – counts bytes in all frames transmitted,
2: INGRESS_DISCARDED_FRAMES – counts all frames discarded due to errors. Errors may be caused by an
external source, frames being corrupted before entering the system, or caused by internal errors.
3.Cumulative count of the number of bytes dequeued.

0X18 0–63 COUNTER2 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_MULTICAST_FRAMES – counts multicast accepted ingress frames,
1: EGRESS_MULTICAST_FRAMES – counts multicast egress frames transmitted,
2: INGRESS_NOBUFFER_DISCARDS – counts discards on ingress side due to buffer depletion in DPNI buffer
pools. This counter is not available on LS2080.
3.Cumulative count of the number of bytes in all frames whose enqueue was rejected

0X20 0–63 COUNTER3 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_MULTICAST_BYTES – counts bytes in received multicast frames,
1: EGRESS_MULTICAST_BYTES – counts bytes in transmitted multicast frames,
2: EGRESS_DISCARDED_FRAMES – frames discarded on transmit due to DPNI configuration and/or frame
state.
3.Cumulative count of all frame enqueues rejected

0X28 0–63 COUNTER4 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_BROADCAST_FRAMES – counts broadcast accepted ingress frames,
1: EGRESS_BROADCAST_FRAMES – counts broadcast egress frames transmitted,
2: EGRESS_CONFIRMED_FRAMES – counts all frames that have been confirmed after transmission.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-56

0x30 0–63 COUNTER5 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_BROADCAST_BYTES – counts bytes in broadcast multicast frames,
1: EGRESS_BROADCAST_BYTES – counts bytes in broadcast multicast frames,

0x38 0–63 COUNTER6 Reserved

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-57

7.3.26 DPNI_RESET_STATISTICS

Reset DPNI statistics. The command resets all DPNI counters. Reset is not guaranteed to be synchronized
across all DPNI counters, executing DPNI_RESET_STATISTICS under live traffic may lead to counters
being out of sync. As an example, INGRESS_ALL_FRAMES may indicate a slightly different number
of frames than the ones included in INGRESS_ALL_BYTES.

Command structure

Figure 98. DPNI_RESET_STATISTICS Command Description

The following table describes the command fields.

Table 14. DPNI_RESET_STATISTICS Command Field Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x25E1 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-58

7.3.27 DPNI_SET_LINK_CFG

Set the link configuration. This command is available both for physical interfaces (DPNI connected to a
DPMAC) and for internal links (between a DPNI and another DPNI or DPDMUX, DPSW port).

In case of an internal link, MC updates the link state if needed and notifies both endpoints.

In case of a physical interface, MC may generate an interrupt to the DPMAC control software and request
changes in link configuration, depending on port configuration.

Pause frames are enabled/disabled using the following logic for
DPNI_LINK_OPT_<PAUSE/ASYM_PAUSE>:

Priority Flow Control (PFC) is enabled when one of the flag
DPNI_LINK_OPT_<PAUSE/ASYM_PAUSE> is enabled together with flag
PNI_LINK_OPT_PFC_PAUSE. Before activating PFC follow next steps:

1. Associate buffer pool to traffic classes using DPNI_SET_POOLS command

2. Perform QoS mappings using DPNI_ADD_QOS_ENTRY command

When buffer pool associated with a specific traffic class enters depletion state the DPNI will automatically
generate PFC frames. The mask from PFC frame will contain all traffic classes associated with this buffer
pool.

PAUSE ASYM_PAUSE Rx pause frame Tx pause frame

0 0 Disabled Disabled

0 1 Disabled Enabled

1 0 Enabled Enabled

1 1 Enabled Disabled

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-59

Command structure

Figure 99. DPNI_GET_LINK_STATE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x21A1 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 –

63 32 31 0

0x10 – RATE

63 0

0x18 OPTIONS

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-31 RATE Rate in Mbps

0x18 0–63 OPTIONS Mask of available options; use ‘DPNI_LINK_OPT_<x>’ values

1 DPNI_LINK_OPT_AUTONEG Enable auto-negotiation

2 DPNI_LINK_OPT_HALF_DUPLEX Enable half-duplex mode

3 DPNI_LINK_OPT_PAUSE Enable pause frames

4 DPNI_LINK_OPT_ASYM_PAUSE Enable a-symmetric pause frames

5 DPNI_LINK_OPT_PFC_PAUSE Enable Priority Flow Control pause frames. To use the feature properly, use the
DPNI_SET_POOLS command to associate DPBP objects for desired traffic classes.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-60

7.3.28 DPNI_GET_LINK_STATE

Return the link state (either up or down).

Command structure

Figure 100. DPNI_GET_LINK_STATE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2151 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-61

Response structure

Figure 101. DPNI_GET_LINK_STATE Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2151 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 33 32 31 0

0x08 – UP –

63 32 31 0

0x10 – RATE

63 0

0x18 OPTIONS

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32 UP Link state; '1' if link is up, '0' otherwise

0x10 0-31 RATE Rate in Mbps

0x18 OPTIONS Mask of available options; use ‘DPNI_LINK_OPT_<x>’ values

1 DPNI_LINK_OPT_AUTONEG Enable auto-negotiation

2 DPNI_LINK_OPT_HALF_DUPLEX Enable half-duplex mode

3 DPNI_LINK_OPT_PAUSE Enable pause frames

4 DPNI_LINK_OPT_ASYM_PAUSE Enable a-symmetric pause frames

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-62

7.3.29 DPNI_SET_TX_SHAPING

Set the transmit committed rate and excess rate shapers.

The shapers are token bucket based. The configurable parameters in this command, the rate limit, and
maximum burst size are translated to values specific to the token bucket model.

There are two shapers supported: one represents the committed rate (CR) and the other the excess rate
(ER). Each shaper has an individually configured rate limit and maximum burst size. The burst size is the
maximum amount of data (in bytes) sent as a consecutive burst of back to back frames on the network.

It is possible to configure the shapers as coupled so that the overflow of CR tokens is added to the ER
bucket.

During this transformation some approximations are done. In the token bucket model, there is also an
increment resolution for the rate that depends on the pre-scaler and QBMAN frequency values. These will
lead to actual rate values that differ from the rate given in the command by 1–2 Kbps.

Command structure

Figure 102. DPNI_SET_TX_SHAPING Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x21B2 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 16 15 0

0x08 — ER_MAX_BURST_SIZE CR_MAX_BURST_SIZE

63 32 31 0

0x10 ER_RATE_LIMIT CR_RATE_LIMIT

63 1 0

0x18 — CP

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 CR_MAX_BURST_SIZE Committed rate maximum burst size in bytes (up to 63487 bytes)

16–31 ER_MAX_BURST_SIZE Excess rate maximum burst size in bytes (up to 63487 bytes)

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-63

All unspecified fields are reserved and must be cleared (set to zero)

0x10 0-31 CR_RATE_LIMIT Committed rate in Mbps

32–63 ER_RATE_LIMIT Excess rate in Mbps

0x18 0 CP Coupled shapers.
0: The CR and ER shapers are independent
1: The CR and ER shapers are coupled

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-64

7.3.30 DPNI_SET_MAX_FRAME_LENGTH

Set the maximum allowed length for received frames.

Command structure

Figure 103. DPNI_SET_MAX_FRAME_LENGTH Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2161 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 16 15 0

0x08 – MAX_FRAME_LENGTH

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 MAX_FRAME_LENGTH Maximum received frame length (in bytes); a frame is discarded if its length exceeds
this value.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-65

7.3.31 DPNI_GET_MAX_FRAME_LENGTH

Get the maximum allowed length for received frames.

Command structure

Figure 104. DPNI_GET_MAX_FRAME_LENGTH Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2171 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-66

Response structure

Figure 105. DPNI_GET_MAX_FRAME_LENGTH Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2171 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 16 15 0

0x08 – MAX_FRAME_LENGTH

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 MAX_FRAME_LENGTH Maximum received frame length (in bytes); a frame is discarded if its length exceeds
this value.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-67

7.3.32 DPNI_SET_MULTICAST_PROMISC

This command is used to enable/disable multicast promiscuous mode. In this mode, all multicast MAC
addresses are accepted by the interface, and no multicast filtering is done.

This command does not control Error frames. The Error frames are configured independently via
DPNI_SET_ERRORS_BEHAVIOR command.

Command structure

Figure 106. DPNI_SET_MULTICAST_PROMISC Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2201 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN ‘0’: disable multicast promiscuous mode
‘1’: enable multicast promiscuous mode (default)

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-68

7.3.33 DPNI_GET_MULTICAST_PROMISC

Get status of multicast promiscuous mode.

Command structure

Figure 107. DPNI_GET_MULTICAST_PROMISC Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2211 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-69

Response structure

Figure 108. DPNI_GET_MULTICAST_PROMISC Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2211 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN ‘0’: multicast promiscuous mode is disabled
‘1’: multicast promiscuous mode is enabled

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-70

7.3.34 DPNI_SET_UNICAST_PROMISC

This command is used to enable/disable unicast promiscuous mode. In this mode, all unicast MAC
addresses are accepted by the interface, and no unicast filtering is done.

This command does not control Error frames. The Error frames can be configured independently using
DPNI_SET_ERRORS_BEHAVIOR command.

Command structure

Figure 109. DPNI_SET_UNICAST_PROMISC Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2221 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN ‘0’: disable unicast promiscuous mode (default)
‘1’: enable unicast promiscuous mode

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-71

7.3.35 DPNI_GET_UNICAST_PROMISC

Get status of unicast promiscuous mode.

Command structure

Figure 110. DPNI_GET_UNICAST_PROMISC Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2231 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-72

Response structure

Figure 111. DPNI_GET_UNICAST_PROMISC Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2231 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 1 0

0x08 – EN

63 0

0x10 -

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN ‘0’: multicast promiscuous mode is disabled
‘1’: multicast promiscuous mode is enabled

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-73

7.3.36 DPNI_SET_PRIMARY_MAC_ADDR

Set the primary MAC address of the interface.

The primary MAC address is initially set when the DPNI is created (see DPNI_CREATE command), and
may be modified by this command. Each interface must have at least one primary MAC address defined,
therefore this address can be modified but not removed. Additional MAC addresses can be assigned to the
interface through MAC filtering commands.

Command structure

Figure 112. DPNI_SET_PRIMARY_MAC_ADDR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2241 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-63 MAC_ADDR[0-5] MAC address (6 bytes) to set as primary address.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-74

7.3.37 DPNI_GET_PRIMARY_MAC_ADDR

Get the primary MAC address.

Command structure

Figure 113. DPNI_GET_PRIMARY_MAC_ADDR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2251 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-75

Response structure

Figure 114. DPNI_GET_PRIMARY_MAC_ADDR Response Description

All unspecified fields are cleared.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2251 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 –

63 0

0x10 -

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-63 MAC_ADDR[0-5] MAC address (6 bytes) that serves as primary address.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-76

7.3.38 DPNI_ADD_MAC_ADDR

Add MAC address filter. A successful invocation of this command configures the interface to accept
frames with the specified destination MAC address.

Command structure

Figure 115. DPNI_ADD_MAC_ADDR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2261 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-63 MAC_ADDR[0-5] MAC address to add

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-77

7.3.39 DPNI_REMOVE_MAC_ADDR

Remove MAC address filter. After a successful invocation of this command, frames with the specified
MAC address are rejected by the interface (unless promiscuous mode is enabled).

Command structure

Figure 116. DPNI_REMOVE_MAC_ADDR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2271 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-63 ADDR[0-5] MAC address to remove

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-78

7.3.40 DPNI_CLEAR_MAC_FILTERS

Clear all unicast and/or multicast MAC filters. Note that the primary MAC address is never cleared – it
stays valid at all times.

Command structure

Figure 117. DPNI_CLEAR_MAC_FILTERS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2281 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 –

M
U

LT
IC

A
S

T

U
N

IC
A

S
T

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 UNICAST Set to '1' to clear unicast addresses

1 MULTICAST Set to '1' to clear multicast addresses

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-79

7.3.41 DPNI_GET_PORT_MAC_ADDRESS

Returns the MAC address associated with the physical port, if the DPNI is connected to a DPMAC and
directly associated with one of the physical ports. It is recommended to call this function when initializing
a DPNI and, if the returned MAC address is not 0, use it as DPNI primary address.

Port MAC addresses are configured in port section of the DPC.

Command structure

Figure 118. DPNI_GET_PORT_MAC_ADDRESS Command Description

The following table describes the command fields.

Table 15. DPNI_GET_PORT_MAC_ADDRESS Command Command Field Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2631 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-80

Response structure

Figure 119. DPNI_GET_PORT_MAC_ADDRESS Response Description

Table 16. DPNI_GET_PORT_MAC_ADDRESS Response Field Descriptions

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2631 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 52 51 48 47 38 37 32 31 24 23 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 —

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16–63 MAC_ADDR[0-5] MAC address of the physical port. If the DPNI is not connected to the physical port or
an address has not been configured on the port these fields will be reset.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-81

7.3.42 DPNI_ENABLE_VLAN_FILTER

Enable/disable VLAN filtering mode.

Command structure

Figure 120. DPNI_ENABLE_VLAN_FILTER Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2301 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 1 0

0x08 EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN ‘0’: disable VLAN filtering
‘1’: enable VLAN filtering

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-82

7.3.43 DPNI_ADD_VLAN_ID

Add VLAN ID filter. A successful invocation of this command configures the interface to accept frames
with the specified VLAN ID (assuming they are not dropped by the MAC filters).

Command structure

Figure 121. DPNI_ADD_VLAN_ID Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2311 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 48 47 32 31 0

0x08 – VLAN_ID –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-47 VLAN_ID VLAN ID to add

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-83

7.3.44 DPNI_REMOVE_VLAN_ID

Remove VLAN filter. After a successful invocation of this command, frames with the specified VLAN ID
are rejected by the interface.

Command structure

Figure 122. DPNI_REMOVE_VLAN_ID Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2321 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 48 47 32 31 0

0x08 – VLAN_ID –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-47 VLAN_ID VLAN ID to remove

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-84

7.3.45 DPNI_CLEAR_VLAN_FILTERS

Clear all VLAN filters of the interface.

Command structure

Figure 123. DPNI_CLEAR_VLAN_FILTERS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2331 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-85

7.3.46 DPNI_SET_TX_PRIORITIES

This command sets the transmission priorities for DPNI TCs and the scheduling mode for each of them.
There are two types of scheduling mode supported: strict and weighted. These two can be combined. You
can have a part of the TCs with strict priority and the other part grouped together and having a weighted
bandwidth fair scheduling. For the strict priority TCs, a TC with an id lower than another TC id has a
higher priority. The weighted group has a lower priority than the strict priority TCs.

Weighted bandwidth fair scheduling (WBFS), is used to schedule packets from TCs within a priority group
such that each gets a fair amount of bandwidth made available to that priority group. In our case, all the
TCs with scheduling mode set to weighted are in the same group. Bandwidth (TX opportunities) that is
made available to a priority group is fair shared among the TCs of that group in proportion to a “weight
value configured.” For example, if TC X has a weight of 500 and TC Y has a weight of 100, TC X has a
fair share that is 5 times the fair share of TC Y.

Command structure

Figure 124. DPNI_SET_TX_PRIORITIES Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2502 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 23 16 15 0

0x08 PRIO_GRP_
B

PRIO_GRP_A FLAGS

63 32 31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

0x10 - SCH_

MODE7

SCH_

MODE6

SCH_

MODE5

SCH_

MODE4

SCH_

MODE3

SCH_

MODE2

SCH_

MODE1

SCH_

MODE0

63 48 47 32 31 16 15 0

0x18 -

63 48 47 32 31 16 15 0

0x20 DELTA_BW3 DELTA_BW2 DELTA_BW1 DELTA_BW0

63 0

0x28 DELTA_BW7 DELTA_BW6 DELTA_BW5 DELTA_BW4

63 0

0x30

63 0

0x38

Offset Bits Name Description

0x00 0-63 Command Header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FLAGS Not used

0x08 16-23 PRIO_GRP_A Group A priority

0x08 24-32 PRIO_GRP_B Group B priority

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-86

All unspecified fields are reserved and must be cleared (set to zero)

0x10 0-3 SCH_MODE_0 Scheduling mode set for the associated traffic class. Can be:
0: DPNI_TX_SCHED_STRICT_PRIORITY - lower index TCs always take
precedence over higher index TCs,
1: DPNI_TX_SCHED_WEIGHTED_A - there is no strict priority relation, BW
is divided proportional to DELTA_BW configuration. This TC will be placed in
priority group A
2: DPNI_TX_SCHED_WEIGHTED_B - there is no strict priority relation, BW
is divided proportional to DELTA_BW configuration. This TC will be placed in
priority group B
The two modes can be mixed. Strict priority TCs always take precedence
over weighted TCs regardless of their index. After consuming all Tx traffic for
all strict priority TCs, the weighted TCs are scheduled based on their
configured bandwidth.
The default configuration is strict priority on all TCs.

0x10 4-7 SCH_MODE_1

0x10 8-11 SCH_MODE_2

0x10 12-15 SCH_MODE_3

0x10 16-19 SCH_MODE_4

0x10 20-23 SCH_MODE_5

0x10 24-27 SCH_MODE_6

0x10 28-31 SCH_MODE_7

0x20 0-15 DELTA_BW0 Bandwidth configuration for each traffic class.
This field is only relevant if associated SCH_MODE is 1
(DPNI_TX_SCHED_WEIGHTED_A or DPNI_TX_SCHED_WEIGHTED_B).
Accepted values are in the range 100 to 24800. Each value represents the
weight for the traffic class. The bandwidth of the entire group is divided
between the traffic classes in it and is proportional to this weight.

0x20 15-31 DELTA_BW1

0x20 32-47 DELTA_BW2

0x20 48-63 DELTA_BW3

0x28 0-15 DELTA_BW4

0x28 15-31 DELTA_BW5

0x28 31-47 DELTA_BW6

0x28 48-63 DELTA_BW7

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-87

7.3.47 DPNI_SET_RX_TC_DIST

Set the receive-side traffic class configuration.

This command may be used to configure any traffic class out of the maximum number of traffic classes
selected during the creation of the DPNI. It determines the distribution mode and size for the traffic class;
it also specifies the distribution key, by specifying up to eight configurable extractions from the frame’s
headers and/or payload. The maximum size for the distribution key is limited by FS_KEY_SIZE, returned
by the DPNI_GET_ATTRIBUTES command..

Distribution functionality is valid only if DPNI NUM_QUEUES is greater than one; otherwise, each
traffic class has exactly (and only) one Rx queue.

Command structure

Figure 125. DPNI_SET_RX_TC_DIST Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2352 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 48 47 46 32 31 28 27 24 23 16 15 0

0x08 DEFAULT_FLOW_ID

K
E

E
P

_H
A

S
H

_
K

E
Y

– M
IS

S
_

A
C

T
IO

N

D
IS

T
_M

O
D

E

TC_ID DIST_SIZE

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 KEY_CFG_IOVA

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-88

All unspecified fields are reserved and must be cleared (set to zero)

0x08 0-15 DIST_SIZE Set the distribution size; supported values: 1,2,3,4,6,7,8.
Note that high values may be unsupported due to limited queue resources in the system or by the maximum
distribution size set on DPNI_CREATE.

16-23 TC_ID Traffic class to configure; valid values are in the range of (0-7), but also limited by the maximum number of traffic
classes configured during the creation of the DPNI.

24-27 DIST_MODE Distribution mode:
0: DPNI_DIST_MODE_NONE – no distribution
1: DPNI_DIST_MODE_HASH – use hash distribution; only supported for DPNIs with NUM_QUEUES greater than
1.
2: DPNI_DIST_MODE_FS – use explicit flow steering; not supported for DPNIs created with the
DPNI_OPT_NO_FS option.

28-31 MISS_ACTION For DIST_MODE = DPNI_DIST_MODE_FS: determine the fall-back action for no-match scenario.
0: DPNI_FS_MISS_DROP – in case of no-match, drop the frame
1: DPNI_FS_MISS_EXPLICIT_FLOWID – in case of no-match, use the flow ID specified in DEFAULT_FLOW_ID
2: DPNI_FS_MISS_HASH – in case of no-match, distribute using hash value

47 KEEP_HASH_KEY This field can be used to set up different key composition rules for hashing and flow steering (FS).
To set up the two keys, first execute DPNI_SET_RX_TC_DIST with DIST_MODE set to
DPNI_DIST_MODE_HASH and the hash key configuration, followed by a 2nd execution of
DPNI_SET_RX_TC_DIST with DIST_MODE set to DPNI_DIST_MODE_FS, the FS key configuration and
KEEP_HASH_KEY set to 1.
This field is only relevant if DIST_MODE is DPNI_DIST_MODE_FS. It is ignored in all other cases.

48-63 DEFAULT_FLOW_ID For DIST_MODE = DPNI_DIST_MODE_FS and MISS_ACTION = DPNI_FS_MISS_EXPLICIT_FLOWID:
specifies the default queue ID in case of no-match scenario.

0x38 0-63 KEY_CFG_IOVA I/O virtual address of zeroed 256 bytes of DMA-able memory. This extended buffer must be programmed as
specified in the “Extension structure” section below, to hold the distribution key configuration.
Ignored if DIST_MODE = DPNI_DIST_MODE_NONE.

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-89

Extension structure

Offset from Management Command Portal base Read-Write Access

63 8 7 0

0x00 – NUM_EXTRACT
S

63 32 31 24 23 16 15 12 11 8 7 0

0x08 FIELD OFFSET SIZE –

E
F

H
_

T
Y

P
E

PROT

63 36 35 32 31 24 23 16 15 8 7 0

0x10 –

E
X

T
R

A
C

T
_

T
Y

P
E

NUM_OF_BYTE_
MASKS

NUM_OF_REPE
ATS

CONSTANT HDR_INDEX

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 MASK3_OFFSET MASK3_MASK MASK2_OFFSET MASK2_MASK MASK1_OFFSET MASK1_MASK MASK0_OFFSET MASK0_MASK

0x20 -
0xC7

Repeating (9 more sections) of the extraction fields in offsets (0x08 - 0x1F) above.
NUM_EXTRACTS determines the number of valid extraction sections up to the 10 possible.

Figure 126. DPNI_SET_RX_TC_DIST Extension Description

Offset Bits Name Description

0x00 0-7 NUM_EXTRACTS Number of valid extractions out of the 10 possible; determines how many of the
EXTRACT0..9 below are valid. Value of 0 is invalid.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-90

0x08 0-7 EXTRACT0 PROT For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify any of the supported
headers:

8-11 EFH_TYPE For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify the type of
extraction from header (and determines validity of the next 3 parameters):
0: DPKG_FROM_HDR – SIZE and OFFSET are valid; SIZE bytes are extracted from
OFFSET relative to the start of the specified header (PROT).
1: DPKG_FROM_FIELD – FIELD, SIZE and OFFSET are valid; SIZE bytes are
extracted from OFFSET relative to the start of the specified FIELD.
2: DPKG_FULL_FIELD – only FIELD is valid; specified FIELD is fully extracted.

16-23 SIZE Size (in bytes) of the extraction

42-31 OFFSET Byte offset of starting point of the extraction

32-63 FIELD For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: standard field selection for
the extraction

0x10 0-7 HDR_INDEX For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: indicates the PROT header
index for protocols that may appear more than once within a frame (examples: VLAN,
MPLS, IP).
0x00 indicates the most outer (first) header.
0xFF indicates the most inner (last) header.

8-15 CONSTANT For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: the constant value to extract
(one byte)

16-23 NUM_OF_REPEATS For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: number of times to repeat
the extraction of the constant value (values are placed in the key in adjacent manner)

24-31 NUM_OF_BYTE_MASKS Determines the number of valid entries of MASKn_MASK and MASKn_OFFSET.
Up to four byte masks are available to apply on the extracted content (each mask is 1
byte in size).
Note, that byte masks are valid for any selection of EXTRACT_TYPE.

32-35 EXTRACT_TYPE Determines the type of extraction:

0: DPKG_EXTRACT_FROM_HDR – extract from the frame header; the following
fields are considered valid in this case:
PROT, EFH_TYPE, SIZE, OFFSET, FIELD, HDR_INDEX

1: DPKG_EXTRACT_FROM_DATA – extract from data not in the header; the following
fields are considered valid in this case:
SIZE, OFFSET

2: DPKG_EXTRACT_CONSTANT – extract user-selected constant values; the
following fields are considered valid in this case:
CONSTANT, NUM_OF_REPEATS

0x18 0-7 MASK0_MASK Byte mask to apply on the extracted content at offset MASK0_OFFSET

8-15 MASK0_OFFSET Offset (relative to the first byte of extracted content) for applying MASK0_MASK

16-23 MASK1_MASK Byte mask to apply on the extracted content at offset MASK1_OFFSET

24-31 MASK1_OFFSET Offset (relative to the first byte of extracted content) for applying MASK1_MASK

32-39 MASK2_MASK Byte mask to apply on the extracted content at offset MASK2_OFFSET

40-47 MASK2_OFFSET Offset (relative to the first byte of extracted content) for applying MASK2_MASK

48-55 MASK3_MASK Byte mask to apply on the extracted content at offset MASK3_OFFSET

56-63 MASK3_OFFSET Offset (relative to the first byte of extracted content) for applying MASK3_MASK

0x20 -
0x37

EXTRACT1 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 2

0x38 -
0x4F

EXTRACT2 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 3

Figure 126. DPNI_SET_RX_TC_DIST Extension Description

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-91

All unspecified fields are reserved and must be cleared (set to zero)

0x50 -
0x67

EXTRACT3 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 4

0x68 -
0x7F

EXTRACT4 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 5

0x80 -
0x97

EXTRACT5 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 6

0x98 -
0xAF

EXTRACT6 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 7

0xB0 -
0xC7

EXTRACT7 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 8

0xC8 -
0xDF

EXTRACT8 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 9

0xE0 -
0xF7

EXTRACT9 Similar to EXTRACT0; valid if NUM_EXTRACTS = 10

Figure 126. DPNI_SET_RX_TC_DIST Extension Description

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-92

7.3.48 DPNI_SET_RX_TC_POLICING

Set Rx traffic class policing configuration

Command structure

Figure 127. DPNI_SET_RX_TC_POLICING Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x23E1 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 24 23 16 15 12 11 8 7 4 3 0

0x08 OPTIONS – TC_ID –

UNITS

D
E

F
A

U
LT

_
C

O
L

O
R

MODE

63 32 31 0

0x10 CBS CIR

63 32 31 0

0x18 EBS EIR

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 0-3 MODE Policer mode.
Supported values:
0: None, policer is disabled
1: Pass-through
2: RFC2698
3: RFC4115

4-7 DEFAULT_COLOR For pass-through mode the policer re-colors with this color any incoming packets. For color-aware
non-pass-through mode: policer re-colors with this color all packets with FD[DROPP]>2.
Supported values:
0: Green
1: Yellow
2: Red

8-11 UNITS Bytes or Packets.
Supported values:
0: bytes
1: packets

16-23 TC_ID Traffic class ID

32-63 OPTIONS Any combination of the following bits:
1: Color aware
2: Discard red

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-93

All unspecified fields are reserved and must be cleared (set to zero)

0x10 0-31 CIR Committed information rate (CIR) in Kbps or packets/second

32-63 CBS Committed burst size (CBS) in bytes or packets

0x18 0-31 EIR Peak information rate (PIR, rfc2698) in Kbps or packets/second. Excess information rate (EIR,
rfc4115) in Kbps or packets/second

32-63 EBS Peak burst size (PBS, rfc2698) in bytes or packets
Excess burst size (EBS, rfc4115) in bytes or packets

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-94

7.3.49 DPNI_GET_RX_TC_POLICING

Get Rx traffic class policing configuration

Command structure

Figure 128. DPNI_GET_RX_TC_POLICING Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2511 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 24 23 16 15 0

0x08 – TC_ID –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-23 TC_ID Traffic class ID

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-95

Response structure

Figure 129. DPNI_GET_RX_TC_POLICING Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2511 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 32 31 12 11 8 7 4 3 0

0x08 OPTIONS –

UNITS

D
E

F
A

U
LT

_
C

O
LO

R

MODE

63 32 31 0

0x10 CBS CIR

63 32 31 0

0x18 EBS EIR

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-3 MODE Policer mode.
Supported values:
0: None, policer is disabled
1: Pass-through
2: RFC2698
3: RFC4115

4-7 DEFAULT_COLOR For pass-through mode the policer re-colors with this color any incoming packets. For
color-aware non-pass-through mode: policer re-colors with this color all packets with
FD[DROPP]>2.
Supported values:
0: Green
1: Yellow
2: Red

8-11 UNITS Bytes or Packets.
Supported values:
0: bytes
1: packets

32-63 OPTIONS Any combination of the following bits:
1: Color aware
2: Discard red

0x10 0-31 CIR Committed information rate (CIR) in Kbps or packets/second

32-63 CBS Committed burst size (CBS) in bytes or packets

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-96

All unspecified fields are reserved and must be cleared (set to zero)

0x18 0-31 EIR Peak information rate (PIR, rfc2698) in Kbps or packets/second
Excess information rate (EIR, rfc4115) in Kbps or packets/second

32-63 EBS Peak burst size (PBS, rfc2698) in bytes or packets
Excess burst size (EBS, rfc4115) in bytes or packets

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-97

7.3.50 DPNI_SET_TAILDROP

Configure taildrop on queues and/or on TCs. Taildrop causes traffic to be discarded once the fill threshold
is reached on these queues.

Command structure

Figure 130. DPNI_SET_TAILDROP Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2621 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 32 31 24 23 16 15 8 7 0

0x08 — INDEX TC QUEUE_TYPE CONGESTION_
POINT

63 32 31 24 23 16 15 1 0

0x10 THRESHOLD — UNITS OAL E

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 0–7 CONGESTION_POINT Selects either a queue or all queues associated with a TC. Supported values are:
0: a queue
1: a TC

8–15 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX—Rx queue,
1: DPNI_QUEUE_TX—Tx queue.

Note that only CONGESTION_POINT value 1 is supported for Tx queues.

16–23 TC Traffic class ID.

24–31 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in the range 0 to
NUM_QUEUES – 1.
This field is ignored for CONGESTION_POINT = 1.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-98

All unspecified fields are reserved and must be cleared (set to zero)

0x10 0 E Enable the taildrop:
0: Taildrop is disabled
1: Taildrop is enabled

1-12 OAL Overhead accounting length
This is a 12-bit, 2's complement value (range -2048 to +2047) representing a fixed
per-frame overhead to be added to the actual length of a frame when performing
certain calculations and/or threshold comparisons using frame length.

16–23 UNITS Units used by THRESHOLD:
0: Threshold is in bytes
1: Threshold is in frames
Note that frame threshold is not supported for CONGESTION_POINT = 0. It is only supported at the TC level.

32–63 THRESHOLD Taildrop threshold, using the specified UNITS.

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-99

7.3.51 DPNI_GET_TAILDROP

Retrieve taildrop on queues and/or on TCs.

Command structure

Figure 131. DPNI_GET_TAILDROP Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2611 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 24 23 16 15 8 7 0

0x08 — INDEX TC QUEUE_TYPE CONGESTION_
POINT

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 0–7 CONGESTION_POINT Selects either a queue or all queues associated with a TC. Supported values are:
0: a queue
1: a TC

8–15 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX—Rx queue,
1: DPNI_QUEUE_TX—Tx queue.

Note that only CONGESTION_POINT value 1 is supported for Tx queues.

16–23 TC Traffic class ID.

24–31 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in the range 0 to
NUM_QUEUES – 1.
This field is ignored for CONGESTION_POINT = 1.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-100

Response structure

Figure 132. DPNI_GET_TAILDROP Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2611 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 —

63 32 31 24 23 16 15 1 0

0x10 THRESHOLD — UNITS OAL E

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0 E Taildrop enabled:
0: Taildrop is disabled
1: Taildrop is enabled

1-12 OAL Overhead accounting length
This is a 12-bit, 2's complement value (range -2048 to +2047) representing a fixed per-frame
overhead to be added to the actual length of a frame when performing certain calculations and/or
threshold comparisons using frame length.

16–23 UNITS Units used by THRESHOLD:
0: Threshold is in bytes
1: Threshold is in frames

32–63 THRESHOLD Taildrop threshold, using the specified UNITS.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-101

7.3.52 DPNI_SET_EARLY_DROP

Set early drop policy for Tx and Rx traffic classes.

Command structure

Figure 133. DPNI_SET_EARLY_DROP Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2692 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 16 15 8 7 0

0x08 – TC_ID QUEUE_TYPE

63 0

0x10 EARLY_DROP_IOVA

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue.

8–15 TC_ID Traffic class ID

0x10 0-63 EARLY_DROP_IOVA I/O virtual address of 64 bytes;
Must be cacheline-aligned and DMA-able memory
This address points to an extended configuration structure. Please see the structure
description below.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-102

Extension structure

Figure 134. DPNI_SET_EARLY_DROP Extension Description

Offset from Management Command Portal base Read-Write Access

63 32 31 4 3 - 2 1 -0

0x00 –

U
N

IT
S

M
O

D
E

63 8 7 0

0x08 — GREEN_DROP_
PROBABILITY

63 0

0x10 GREEN_MAX_THRESHOLD

63 0

0x18 GREEN_MIN_THRESHOLD

63 0

0x20 —

63 8 7 0

0x28 — YELLOW_DROP
_PROBABILITY

63 0

0x30 YELLOW_MAX_THRESHOLD

63 0

0x38 YELLOW_MIN_THRESHOLD

63 0

0x40 —

63 8 7 0

0x48 — RED_DROP_PR
OBABILITY

63 0

0x50 RED_MAX_THRESHOLD

63 0

0x58 RED_MIN_THRESHOLD

Offset Bits Name Description

0x00 0–1 MODE Drop mode

2–3 UNITS Units type

0x08 0–7 GREEN_DROP_PROBABILITY Probability of green WRED that a packet will be discarded (1-100, associated with the max_threshold).

0x10 0-63 GREEN_MAX_THRESHOLD Maximum threshold of green WRED that packets may be discarded. Above this threshold all packets are
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW
implementation.

0x18 0-63 GREEN_MIN_THRESHOLD Minimum threshold of green WRED that packets may be discarded at

0x28 0-7 YELLOW_DROP_PROBABILITY Probability of yellow WRED that a packet will be discarded (1-100, associated with the max_threshold).

0x30 0-63 YELLOW_MAX_THRESHOLD Maximum threshold of yellow WRED that packets may be discarded. Above this threshold all packets are
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW
implementation.

0x38 0-63 YELLOW_MIN_THRESHOLD Minimum threshold of yellow WRED that packets may be discarded at

0x48 0-7 RED_DROP_PROBABILITY Probability of red WRED that a packet will be discarded (1-100, associated with the max_threshold).

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-103

All unspecified fields are reserved and must be cleared (set to zero)

0x50 0-63 RED_MAX_THRESHOLD Maximum threshold of red WRED that packets may be discarded. Above this threshold all packets are
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW
implementation.

0x58 0-63 RED_MIN_THRESHOLD Minimum threshold of red WRED that packets may be discarded at

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-104

7.3.53 DPNI_GET_EARLY_DROP

Get early drop policy for Tx and Rx traffic classes

Command structure

Figure 135. DPNI_GET_EARLY_DROP Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26A2 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 16 15 8 7 0

0x08 – TC_ID QUEUE_TYPE

63 0

0x10 EARLY_DROP_IOVA

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue.

8–15 TC_ID Traffic class ID

0x10 0-63 EARLY_DROP_IOVA I/O virtual address of 64 bytes;
Must be cache-line aligned and DMA-able memory
An extended configuration structure is returned at this address, please refer to the
extended structure description below.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-105

Extension structure

Figure 136. DPNI_GET_EARLY_DROP Extension Description

Offset from Management Command Portal base Read-Write Access

63 32 31 4 3 - 2 1 -0

0x00 –

U
N

IT
S

M
O

D
E

63 8 7 0

0x08 — GREEN_DROP_
PROBABILITY

63 0

0x10 GREEN_MAX_THRESHOLD

63 0

0x18 GREEN_MIN_THRESHOLD

63 0

0x20 —

63 8 7 0

0x28 — YELLOW_DROP
_PROBABILITY

63 0

0x30 YELLOW_MAX_THRESHOLD

63 0

0x38 YELLOW_MIN_THRESHOLD

63 0

0x40 —

63 8 7 0

0x48 — RED_DROP_PR
OBABILITY

63 0

0x50 RED_MAX_THRESHOLD

63 0

0x58 RED_MIN_THRESHOLD

Offset Bits Name Description

0x00 0-1 MODE Drop mode

2-3 UNITS Units type

0x08 0-7 GREEN_DROP_PROBABILITY Probability of green WRED that a packet will be discarded (1-100, associated with the MAX_THRESHOLD).

0x10 0-63 GREEN_MAX_THRESHOLD Maximum threshold of green WRED that packets may be discarded. Above this threshold all packets are
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW
implementation.

0x18 0-63 GREEN_MIN_THRESHOLD Minimum threshold of green WRED that packets may be discarded at

0x28 0-7 YELLOW_DROP_PROBABILITY Probability of yellow WRED that a packet will be discarded (1-100, associated with the MAX_THRESHOLD).

0x30 0-63 YELLOW_MAX_THRESHOLD Maximum threshold of yellow WRED that packets may be discarded. Above this threshold all packets are
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW
implementation.

0x38 0-63 YELLOW_MIN_THRESHOLD Minimum threshold of yellow WRED that packets may be discarded at

0x48 0-7 RED_DROP_PROBABILITY Probability of red WRED that a packet will be discarded (1-100, associated with the MAX_THRESHOLD).

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-106

All unspecified fields are reserved and must be cleared (set to zero)

0x50 0-63 RED_MAX_THRESHOLD Maximum threshold of red WRED that packets may be discarded. Above this threshold all packets are
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW
implementation.

0x58 0-63 RED_MIN_THRESHOLD Minimum threshold of red WRED that packets may be discarded at

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-107

7.3.54 DPNI_SET_QUEUE

Set queue configuration, including binding of the queue to a DPIO or DPCON object to receive
notifications and traffic on the CPU.

Command structure

Figure 137. DPNI_SET_QUEUE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2601 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 24 23 16 15 8 7 0

0x08 — OPTIONS INDEX TC QUEUE_TYPE

63 62 61 60 59 56 55 48 47 32 31 0

0x10 HA SC — DEST_
TYPE

PRIORI
TY

— DEST_ID

63 0

0x18 FLC

63 0

0x20 USER_CTX

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 QUEUE_TYPE Type of queue to set configuration to:
0: DPNI_QUEUE_RX - Rx queue
1: DPNI_QUEUE_TX - Tx queue (accepted, but no configuration change can be applied to Tx queues)
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue
3: DPNI_QUEUE_RX_ERR – Rx error queue

8–15 TC Traffic class. Ignored for QUEUE_TYPE 2 and 3 (Tx confirmation and Rx error queues).

16–23 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in range 0 to
NUM_QUEUES – 1.
This field is ignored for QUEUE_TYPE 3 (Rx error queue). For access to the shared Tx confirmation queue
(for Tx confirmation mode 1), this field must be set to 0xff

24–31 OPTIONS Option bits selecting specific configuration options to apply:
Bit 0: DPNI_QUEUE_OPT_USER_CTX – User defined data presented in dequeue information for frames
from this queue,
Bit 1: DPNI_QUEUE_OPT_DEST – Set queue destination configuration,
Bit 2: DPNI_QUEUE_OPT_FLC – Set FD[FLC] configuration for traffic on this queue,
Bit 3: DPNI_QUEUE_OPT_HOLD_ACTIVE – Set the queue hold active mode.
All these options are valid for QUEUE_TYPE 0, 2 and 3 (all except Tx queues).

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-108

All unspecified fields are reserved and must be cleared (set to zero)

0x10 0–31 DEST_ID The ID of a DPIO or DPCON object, depending on DEST_TYPE value.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE).

48–55 PRIORITY Sets the priority in the destination DPCON or DPIO for dequeued traffic. Supported values are 0 to # of
priorities in destination DPCON or DPIO - 1.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE), except if this DPNI is in AIOP context.
In that case the DPNI_SET_QUEUE can be used to override the default assigned priority of the FQ from the
TC - see Table 7-1., “Traffic class mapping from 7.2.5, “Ingress QoS.

56–59 DEST_TYPE Type of destination for dequeued traffic. Supported values:
0: DPNI_DEST_NONE – Frames are not delivered through DPIO or DPCON. This mode cannot be selected
after associating the queue with a DPIO or DPCON, unless the DPNI is reset.
1: DPNI_DEST_DPIO – frames are delivered to a DPIO,
2: DPNI_DEST_DPCON – frames are delivered to a DPCON.

62 SC Stash control – if set, lowest 6 bits of FLC are used for stash control. Please check description of FD
structure for more information.

63 HA Hold active – if set, this flag prevents the queue from being rescheduled between DPIOs while it carries traffic
and is active on one DPIO. Can help reduce reordering if one queue is services on multiple CPUs, but the
queue is also more likely to be trapped in one DPIO, especially when congested.

0x18 0–63 FLC Set default FLC value for traffic dequeued from this queue. Please check description of FD structure for
more information.
Note that FLC values set using DPNI_ADD_FS_ENTRY, if any, take precedence over values per queue.

0x20 0–63 USER_CTX User defined data, presented along with the frames being dequeued from this queue.

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-109

7.3.55 DPNI_GET_QUEUE

Get queue configuration and attributes, including queue IDs usable to enqueue/dequeuer traffic to/from the
queue.

Command structure

Figure 138. DPNI_GET_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x25F1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 24 23 16 15 8 7 0

0x08 — INDEX TC QUEUE_TYPE

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 QUEUE_TYPE Type of queue to set configuration to:
0: DPNI_QUEUE_RX - Rx queue
1: DPNI_QUEUE_TX - Tx queue
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue
3: DPNI_QUEUE_RX_ERR – Rx error queue

8–15 TC Traffic class. Ignored for QUEUE_TYPE 2 and 3 (Tx confirmation and Rx error queues).

16–23 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in range 0 to
NUM_QUEUES – 1.
This field is ignored for QUEUE_TYPE 3 (Rx error queue). For access to the shared Tx confirmation queue
(for Tx confirmation mode 1), this field must be set to 0xff

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-110

Response structure

Figure 139. DPNI_GET_QUEUE Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x25F1 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 –

63 62 61 60 59 56 55 48 47 32 31 0

0x10 HA SC — DEST_
TYPE

PRIORI
TY

— DEST_ID

63 0

0x18 FLC

63 0

0x20 USER_CTX

63 48 47 32 31 0

0x28 – QDBIN FQID

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0–31 DEST_ID The ID of a DPIO or DPCON object, depending on DEST_TYPE value.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE).

48–55 PRIORITY Sets the priority in the destination DPCON or DPIO for dequeued traffic. Supported values are 0-# of priorities
in destination DPCON or DPIO - 1.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE).

56–59 DEST_TYPE Type of destination for dequeued traffic. Supported values:
0: DPNI_DEST_NONE – Frames are not delivered through DPIO or DPCON. This mode cannot be selected
after associating the queue with a DPIO or DPCON, unless the DPNI is reset.
1: DPNI_DEST_DPIO – frames are delivered to a DPIO,
2: DPNI_DEST_DPCON – frames are delivered to a DPCON.

62 SC Stash control – if set, lowest 6 bits of FLC are used for stash control. Please check description of FD structure
for more information.

63 HA Hold active – if set, this flag prevents the queue from being rescheduled between DPIOs while it carries traffic
and is active on one DPIO. Can help reduce reordering if one queue is services on multiple CPUs, but the
queue is also more likely to be trapped in one DPIO, especially when congested.

0x18 0–63 FLC Set default FLC value for traffic dequeued from this queue. Please check description of FD structure for more
information.
Note that FLC values set using DPNI_ADD_FS_ENTRY, if any, take precedence over values per queue.

0x20 0–63 USER_CTX User defined data, presented along with the frames being dequeued from this queue.

0x28 0–31 FQID Frame queue ID, can be used to enqueue/dequeue or execute other commands on the queue through DPIO.
Note that Tx queues are logical queues and not all management commands are available on these queue types.

32–47 QDBIN Queue destination bin. Can be used with the DPIO enqueue operation based on QDID, QDBIN and QPRI.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-111

7.3.56 DPNI_SET_TX_CONFIRMATION_MODE

Set Tx confirmation mode. For each transmitted frame, the DPNI can either return the Frame Descriptor
through the Tx confirmation queues, or just release the buffer to the buffer pool and not confirm the
transmission explicitly.

If the transmitted frame is confirmed, the confirmation message can contain additional information like
the Tx timestamp.

If released, the buffer pool (DPBP) to which the buffers are released is indicated in the Tx Frame
Descriptor.

If the DPNI was created with DPNI_OPT_TX_FRM_RELEASE option, the only supported confirmation
mode is DISABLE.

This command can only be executed while the DPNI is disabled. Executing the command on an enabled
DPNI will return an error.

Command structure

Figure 140. DPNI_SET_TX_CONFIRMATION_MODE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2661 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 40 39 32 31 0

0x08 — MODE —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 MODE Tx confirmation mode:
0: DPNI_CONF_AFFINE – for each set of Tx queues (queues with the same QDBIN), there is an affine Tx
confirmation queue which is used to return descriptors for transmitted frames.
1: DPNI_CONF_SINGLE – there is a single Tx confirmation queue per DPNI. 'index' field in dpni_get_queue
command will be ignored if this mode is used.
2: DPNI_CONF_SINGLE – there is a single Tx confirmation queue per DPNI.
3: DPNI_CONF_NONE – there is no Tx confirmation message, the frame buffers are released to a buffer pool.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-112

7.3.57 DPNI_GET_TX_CONFIRMATION_MODE

Get Tx confirmation mode.

Command structure

Figure 141. DPNI_GET_TX_CONFIRMATION_MODE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26D1 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-113

Response structure

Figure 7-4. DPNI_GET_TX_CONFIRMATION_MODE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x26D1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 — MODE —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 7-2. DPNI_GET_TX_CONFIRMATION_MODE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 MODE Refer to DPNI_SET_TX_CONFIRMATION_MODE for a description of this field.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-114

7.3.58 DPNI_SET_QOS_TABLE

Configure the QoS criteria and attributes. The result of the lookup in QoS table determines the traffic class
for the received frame. The user may select a flexible lookup key for the QoS table. This command must
be invoked to select the QoS key format, before adding any QoS entries using the
DPNI_ADD_QOS_ENTRY command.

This function and all QoS-related functions require that the DPNI was created with multiple traffic classes.

Command structure

Figure 142. DPNI_SET_QOS_TABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2401 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 41 40 39 32 31 0

0x08

D
IS

C
A

R
D

_
O

N
_

M
IS

S

DEFAULT_TC –

63 0

0x10 -

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 KEY_CFG_IOVA

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 DEFAULT_TC Default traffic class to use in case of a lookup miss in the QoS table.
Valid only if DISCARD_ON_MISS is not set.

40 DISCARD_ON_MISS Determine the action in case of a lookup miss in the QoS table.
'0' – use DEFAULT_TC in case of no match
‘1’ – discard frames in case of no match.

0x38 0-63 KEY_CFG_IOVA I/O virtual address of zeroed 256 bytes of DMA-able memory. This extended buffer
must be programmed as specified in the “Extension structure” section below, to hold
the QoS key configuration.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-115

Extension structure

Figure 143. DPNI_SET_QOS_TABLE Extension Description

Offset from Management Command Portal base Read-Write Access

63 8 7 0

0x00 – NUM_EXTRACT
S

63 32 31 24 23 16 15 12 11 8 7 0

0x08 FIELD OFFSET SIZE –

E
F

H
_

T
Y

P
E

PROT

63 36 35 32 31 24 23 16 15 8 7 0

0x10 –

E
X

T
R

A
C

T
_

T
Y

P
E

NUM_OF_BYTE_
MASKS

NUM_OF_REPE
ATS

CONSTANT HDR_INDEX

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 MASK3_OFFSET MASK3_MASK MASK2_OFFSET MASK2_MASK MASK1_OFFSET MASK1_MASK MASK0_OFFSET MASK0_MASK

0x20 -
0xC7

Repeating (9 more sections) of the extraction fields in offsets (0x08 - 0x1F) above.
NUM_EXTRACTS determines the number of valid extraction sections up to the 10 possible.

Offset Bits Name Description

0x00 0-7 NUM_EXTRACTS Number of valid extractions out of the 10 possible; determines how many of the
EXTRACT0..9 below are valid. Value of 0 is invalid.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-116

0x08 0-7 EXTRACT0 PROT For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify any of the supported
headers:

8-11 EFH_TYPE For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify the type of
extraction from header (and determines validity of the next 3 parameters):
0: DPKG_FROM_HDR – SIZE and OFFSET are valid; SIZE bytes are extracted from
OFFSET relative to the start of the specified header (PROT).
1: DPKG_FROM_FIELD – FIELD, SIZE and OFFSET are valid; SIZE bytes are
extracted from OFFSET relative to the start of the specified FIELD.
2: DPKG_FULL_FIELD – only FIELD is valid; specified FIELD is fully extracted.

16-23 SIZE Size (in bytes) of the extraction

42-31 OFFSET Byte offset of starting point of the extraction

32-63 FIELD For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: standard field selection for
the extraction

0x10 0-7 HDR_INDEX For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: indicates the PROT header
index for protocols that may appear more than once within a frame (examples: VLAN,
MPLS, IP).
0x00 indicates the most outer (first) header.
0xFF indicates the most inner (last) header.

8-15 CONSTANT For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: the constant value to extract
(one byte)

16-23 NUM_OF_REPEATS For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: number of times to repeat
the extraction of the constant value (values are placed in the key in adjacent manner)

24-31 NUM_OF_BYTE_MASKS Determines the number of valid entries of MASKn_MASK and MASKn_OFFSET.
Up to four byte masks are available to apply on the extracted content (each mask is 1
byte in size).
Note, that byte masks are valid for any selection of EXTRACT_TYPE.

32-35 EXTRACT_TYPE Determines the type of extraction:

0: DPKG_EXTRACT_FROM_HDR – extract from the frame header; the following
fields are considered valid in this case:
PROT, EFH_TYPE, SIZE, OFFSET, FIELD, HDR_INDEX

1: DPKG_EXTRACT_FROM_DATA – extract from data not in the header; the following
fields are considered valid in this case:
SIZE, OFFSET

2: DPKG_EXTRACT_CONSTANT – extract user-selected constant values; the
following fields are considered valid in this case:
CONSTANT, NUM_OF_REPEATS

0x18 0-7 MASK0_MASK Byte mask to apply on the extracted content at offset MASK0_OFFSET

8-15 MASK0_OFFSET Offset (relative to the first byte of extracted content) for applying MASK0_MASK

16-23 MASK1_MASK Byte mask to apply on the extracted content at offset MASK1_OFFSET

24-31 MASK1_OFFSET Offset (relative to the first byte of extracted content) for applying MASK1_MASK

32-39 MASK2_MASK Byte mask to apply on the extracted content at offset MASK2_OFFSET

40-47 MASK2_OFFSET Offset (relative to the first byte of extracted content) for applying MASK2_MASK

48-55 MASK3_MASK Byte mask to apply on the extracted content at offset MASK3_OFFSET

56-63 MASK3_OFFSET Offset (relative to the first byte of extracted content) for applying MASK3_MASK

0x20 -
0x37

EXTRACT1 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 2

0x38 -
0x4F

EXTRACT2 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 3

0x50 -
0x67

EXTRACT3 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 4

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-117

All unspecified fields are reserved and must be cleared (set to zero)

0x68 -
0x7F

EXTRACT4 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 5

0x80 -
0x97

EXTRACT5 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 6

0x98 -
0xAF

EXTRACT6 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 7

0xB0 -
0xC7

EXTRACT7 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 8

0xC8 -
0xDF

EXTRACT8 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 9

0xE0 -
0xF7

EXTRACT9 Similar to EXTRACT0; valid if NUM_EXTRACTS = 10

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-118

7.3.59 DPNI_ADD_QOS_ENTRY

Add QoS mapping entry to select a traffic class for frames matching the specified rule.

Before using this command, the DPNI_SET_QOS_TABLE command must be invoked in order to define
the QoS key format and other attributes.

The user is responsible for providing the pointers (DMA-able memory) to the key and optionally a mask
to apply on extracted bytes.

Command structure

Figure 144. DPNI_ADD_QOS_ENTRY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2411 TOKEN –
IN

T
R

_
D

IS
STATUS P – SRCID

63 48 47 32 31 24 23 16 15 0

0x08 – INDEX KEY_SIZE TC_ID

63 0

0x10 KEY_IOVA

63 0

0x18 MASK_IOVA

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-23 TC_ID The traffic class to select in case a frame matches the specified lookup key and mask. Valid values
are in the range of (0-7), but also limited by the number of traffic classes configured during the creation
of the DPNI.

24-31 KEY_SIZE Size of the key and mask (in bytes); Must not exceed 56 bytes.

32–47 INDEX Location in the classification table at which to insert the entry.
Only relevant if MASKING is enabled for classification on this DPNI, it is ignored for exact match.
For classification that use masking the order is important, as multiple rules may match a given frame,
but only the first hit defines the action to be taken. In the general case generic rules that math many
flows should be placed at the end. For instance an IP address rule would be in front of the associated
IP subnet rule.

0x10 0-63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must match the
extraction order and format as specified in the SET_QOS_TABLE command.

0x18 0-63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able memory); the
mask format must match the key format.
Clear this field to indicate that no mask should be applied.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-119

7.3.60 DPNI_REMOVE_QOS_ENTRY

Remove QoS mapping entry that was previously added using DPNI_ADD_QOS_ENTRY command.

Command structure

Figure 145. DPNI_REMOVE_QOS_ENTRY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2421 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 28 27 24 23 0

0x08 – KEY_SIZE

63 0

0x10 KEY_IOVA

63 0

0x18 MASK_IOVA

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 24-31 KEY_SIZE Size of the key and mask (in bytes); Must not exceed 56 bytes.

0x10 0-63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must
match the extraction order and format as specified in the SET_QOS_TABLE
command.

0x18 0-63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able
memory); the mask format must match the key format.
Clear this field to indicate that no mask should be applied.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-120

7.3.61 DPNI_CLEAR_QOS_TABLE

Clear all QoS mapping entries. This command causes all received frames to be classified to the default
traffic class (TC_ID = 0).

Command structure

Figure 146. DPNI_CLEAR_QOS_TABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2431 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 0

0x08 –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-121

7.3.62 DPNI_ADD_FS_ENTRY

Add explicit flow steering entry to explicitly select a receive flow ID within a traffic class. Flow steering
lookup tables are managed per traffic class, therefore the user must first ensure that the frame type of
interest is also classified to the correct traffic class. Please refer to DPNI_ADD_QOS_ENTRY command
for more details.

Before using this command, the DPNI_SET_RX_TC_DIST command must be invoked to select flow
steering distribution mode (DIST_MODE = DPNI_DIST_MODE_FS), and to define the QoS key format
and other attributes.

The user is responsible for providing the pointers (DMA-able memory) to the key and optionally a mask
to apply on extracted bytes.

Command structure

Figure 147. DPNI_ADD_FS_ENTRY Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2441 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 32 31 24 23 16 15 0

0x08 FLOW_ID ENTRY_INDEX KEY_SIZE TC_ID OPTIONS

63 0

0x10 KEY_IOVA

63 0

0x18 MASK_IOVA

63 0

0x20 FLC

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-122

All unspecified fields are reserved and must be cleared (set to zero)

0x08 0–15 OPTIONS An array of bits, selecting which action(s) are applicable if this classification entry is hit:
Bit 0: DPNI_FS_OPT_DISCARD – matching traffic is discarded, all other action fields are ignored,
Bit 1: DPNI_FS_OPT_SET_FLC – set FLC value for matching traffic,
Bit 2: DPNI_FS_OPT_SET_STASH_CONTROL – enable stash control bits. Only relevant if bit 1 (set FLC) is also set,
otherwise ignored.
There is no bit associated with FLOW_ID; the destination queue is always overridden by classification, that is if the frame
is not discarded.

16–23 TC_ID Traffic class selection. Valid values are in the range 0 to NUM_TCS -1.

24–31 KEY_SIZE Size of the key and mask (in bytes). Limited to FS_KEY_SIZE returned by DPNI_GET_ATTRIBUTES.

32–47 ENTRY_INDEX Index of the entry in the table. It is only used if DPNI_OPT_HAS_KEY_MASKING is enabled on the DPNI, otherwise
ignored.
With masking multiple entries may match a frame, the action of the first match is applied.

48–63 FLOW_ID Queue index to send traffic to. This is in range 0..NUM_QUEUES-1.

0x10 0–63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must match the extraction order and
format as specified in the DPNI_SET_RX_TC_DIST command.

0x18 0–63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able memory); the mask format must
match the key format.
Clear this field to indicate that no mask should be applied.

0x20 0–63 FLC Flow context value used to initialize FD[FLC] fields for all matching frames.
Please check FLC field description in the Frame Descriptor (FD) documentation for more information.

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-123

7.3.63 DPNI_REMOVE_FS_ENTRY

Remove an existing flow steering entry that belongs to a specified traffic class.

Command structure

Figure 148. DPNI_REMOVE_FS_ENTRY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2451 TOKEN –

IN
T

R
_

D
IS

STATUS P – SRCID

63 32 31 24 23 16 15 0

0x08 – KEY_SIZE TC_ID

63 0

0x10 KEY_IOVA

63 0

0x18 MASK_IOVA

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 16-23 TC_ID Traffic class selection. Valid values are in the range of (0-7), but also limited by the
number of traffic classes configured during the creation of the DPNI.

24-31 KEY_SIZE Size of the key and mask (in bytes); Must not exceed 56 bytes.

0x10 0-63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must
match the extraction order and format as specified in the DPNI_SET_RX_TC_DIST
command.

0x18 0-63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able
memory); the mask format must match the key format.
Clear this field to indicate that no mask should be applied.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-124

7.3.64 DPNI_CLEAR_FS_ENTRIES

Clear all flow steering entries of a specified traffic class. This command causes all received frames
associated with that traffic class to be classified to the default flow ID (FLOW_ID = 0).

Command structure

Figure 149. DPNI_CLEAR_FS_ENTRIES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2461 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 24 23 16 15 0

0x08 – TC_ID

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 16-23 TC_ID Traffic class selection. Valid values are in the range of (0-7), but also limited by the
number of traffic classes configured during the creation of the DPNI.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-125

7.3.65 DPNI_GET_API_VERSION

Command structure

Figure 150. DPNI_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA011 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-126

Response structure

Figure 151. DPNI_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA051 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-127

7.3.66 DPNI_SET_OPR

Set the Order Point Record configuration. The command works only if the DPNI is created with the
DPNI_OPT_HAS_OPR option. It also works only for SoCs that support Order Restoration.

If the DPNI is configured with the DPNI_OPT_OPR_PER_TC option, then all frame queues within the
traffic class specified with TC_ID are configured to use the Order Point Record when the DPNI is enabled.
If the DPNI_OPT_OPR_PER_TC option is not set, the INDEX is used to select a specific queue from the
traffic class.

The order restoration is done for all enqueue commands that respect an order restoration point and are
coupled with a sequence number. These are judged by comparing that sequence number to the next
expected sequence number for that order point record. The treatment of the frame enqueued via an OPR
is determined by which window the sequence number of that frame falls within, what resources are still
available, and if loose ordering is enabled. The windows are shown in the following figure.

Figure 7-5. Order Point Record Configuration

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-128

Command structure

Figure 152. DPNI_SET_OPR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26E1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 24 23 16 15 8 7 0

0x08 — OPTIONS INDEX TC_ID —

63 56 55 48 47 40 39 32 31 24 23 0

0x10 OPRRWS OA OLWS OEANE OLOE —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 8-15 TC_ID Traffic class ID

16-23 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in range 0 to NUM_QUEUES –
1. This field is ignored for DPNI_OPT_OPR_PER_TC.

24–31 OPTIONS The command can function in two ways, depending on the options field value:
 • OPR_OPT_CREATE (1): Create the OPR with the given configuration
 • OPR_OPT_RETIRE (2): Retire OPR. In this case the configuration options from offset 0x10 are ignored.

The OPR is emptied by individually rejecting all enqueue commands held on the ORL.

0x10 24–31 OLOE OPR loose ordering enable
 • 0: Strict ordering mode
 • 1: Loose ordering mode

The ordering mode determines the action taken for OR enabled enqueues that fall in either the early or late
arrival rejection window or that need to be deferred when ORL resources are exhausted. For strict ordering
mode they are rejected and returned to software, and for loose ordering mode they are enqueued immediately.

32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable

40–47 OLWS OPR acceptable late arrival window size
 • 0: Disabled. Late arrivals are always rejected.
 • 1: Window size is 32 frames.
 • 2: Window size is the same as the OPR restoration window size configured in the OPRRWS field.
 • 3: Window size is 8192 frames. Late arrivals are always accepted.

48–55 OA OPR auto advance NESN window size

56–63 OPRRWS Order point record (OPR) restoration window size.
 • 0: Window size is 32 frames.
 • 1: Window size is 64 frames.
 • 2: Window size is 128 frames.
 • 3: Window size is 256 frames.
 • 4: Window size is 512 frames.
 • 5: Window size is 1024 frames.
 • 6–7: Reserved

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-129

7.3.67 DPNI_GET_OPR

Get Order Point Record (OPR) configuration and state. Works for OPRs that are created. The creation of
the OPR takes place when the DPNI is enabled the first time after a DPNI_SET_OPR command.

Command structure

Figure 153. DPNI_GET_OPR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26F1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 24 23 16 15 8 7 0

0x08 — INDEX TC_ID —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 8-15 TC_ID Traffic class ID

16-23 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in range 0 to
NUM_QUEUES – 1. This field is ignored for DPNI_OPT_OPR_PER_TC.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-130

Response structure

Figure 154. DPNI_SET_OPR Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x26F1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 56 55 48 47 40 39 32 31 24 23 2 1 0

0x10 OPRRWS OA OLWS OEANE OLOE — EN RIP

63 48 47 32 31 16 15 0

0x18 — NDSN — NESN

63 48 47 32 31 16 15 0

0x20 —

N
L

IS
_H

S
E

Q

EA_HSEQ —

N
L

IS
_

 T
S

E
Q

EA_TSEQ

63 48 47 32 31 16 15 0

0x28 — EA_TPTR — EA_HPTR

63 48 47 32 31 16 15 0

0x30 — OPRID — VOPRID

63 0

0x38 —

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0 RIP Retirement In Progress.

1 EN OPR is enabled.

24–31 OLOE OPR loose ordering enable

32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable

40–47 OLWS OPR acceptable late arrival window size

48–55 OA OPR auto advance NESN window size

56–63 OPRRWS Order point record (OPR) restoration window size

0x18 0–15 NESN Next expected sequence number.

32–47 NDSN Next dispensed sequence number.

0x20 0–15 EA_TSEQ Sequence number of the frame at the tail of the ORL.

16 NLIS_ TSEQ Not last in sequence for EA_TSEQ

32–47 EA_HSEQ Sequence number of the frame at the head of the ORL.

48 NLIS_ HSEQ Not last in sequence for EA_HSEQ

0x28 0–15 EA_HPTR Early arrival head pointer

32–47 EA_TPTR Early arrival tail pointer

0x30 0–15 VOPRID Virtual Order Point Record ID

32–47 OPRID Order Point Record ID

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-131

7.3.68 DPNI_SET_CONGESTION_NOTIFICATION

Set congestion notification. For more details about congestion and notification configuration, please read
the QBMan sections of the DPAA2 documentation.

7.3.68.1 Congestion threshold representation

DPAA2 hardware stores entry/exit threshold on 12 bits using next format:

• Bits 12-5 – TA value greater than zero

• Bits 4-0 – Tn

Threshold value is calculated using formula: threshold = TA * 2^Tn.

The MC firmware will try to convert 32bit provided threshold to 12bit format and it will perform some
approximations if the value provided in command cannot be converted. The notification message will
appear when approximated threshold is reached.

Command structure

Figure 155. DPNI_SET_CONGESTION_NOTIFICATION Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2671 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 8 7 0

0x08 — TC QUEUE_TYPE

63 62 61 60 59 56 55 48 47 32 31 0

0x10 — UNITS DEST_
TYPE

PRIORI
TY

NOTIFICATION_MODE DEST_ID

63 0

0x18 MESSAGE_IOVA

63 0

0x20 MESSAGE_CTX

63 32 31 0

0x28 THRESHOLD_EXIT THRESHOLD_ENTRY

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 QUEUE_TYPE Type of queue. Rx, Tx and Tx confirm types are supported.

8–15 TC Traffic class selection (0–7)

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-132

Table 7-3. Memory congestion notification message

0x10 0–31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32–47 NOTIFICATION_MODE Mask of available options.
Bit 0: DPNI_CONG_OPT_WRITE_MEM_ON_ENTER

CSCN message is written to MESSAGE_IOVA once entering a congestion state (see
'THRESHOLD_ENTRY')

Bit 1: DPNI_CONG_OPT_WRITE_MEM_ON_EXIT
CSCN message is written to MESSAGE_IOVA once exiting a ongestion state (see 'THRESHOLD_EXIT')

Bit 2: DDPNI_CONG_OPT_COHERENT_WRITE
CSCN write will attempt to allocate into a cache (coherent write); valid only if
'DPNI_CONG_OPT_WRITE_MEM_<X>' is selected

Bit 3: DDPNI_CONG_OPT_NOTIFY_DEST_ON_ENTER
If DEST_TYPE != DPNI_DEST_NONE CSCN message is sent to DPIO/DPCON's WQ channel once
entering a congestion state (see 'THRESHOLD_ENTRY')

Bit 4: DDPNI_CONG_OPT_NOTIFY_DEST_ON_EXIT
If DEST_TYPE != DPNI_DEST_NONE' CSCN message is sent to DPIO/DPCON's WQ channel once
exiting a congestion state (see 'THRESHOLD_EXIT')

Bit 5: DDPNI_CONG_OPT_INTR_COALESCING_DISABLED
If DEST_TYPE != DPNI_DEST_NONE when the CSCN is written to the sw-portal's DQRR, the DQRI
interrupt is asserted immediately (if enabled)

Bit 6: DPNI_CONG_OPT_FLOW_CONTROL - This notification will be used to generate flow control. When
the queue enters in congested state flow control frames are generated to stop traffic. It works only id
QUEUE_TYPE is a Rx queue.

48–55 PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0–1 or 0–7, depending on the number
of priorities in that channel; not relevant for 'DPNI_DEST_NONE' option

56–59 DEST_TYPE Type of destination for dequeued traffic. Supported values:
0: DPNI_DEST_NONE—notifications are delivered through memory (do not used DPIO/DPCON to deliver).
1: DPNI_DEST_DPIO—notifications are delivered to a DPIO,
2: DPNI_DEST_DPCON—notifications are delivered to a DPCON.

60–61 UNITS Unit type
0 – issue notifications after congestion group accumulates THRESHOLD_ENTRY/EXIT bytes
1 - issue notifications after congestion group accumulates THRESHOLD_ENTRY/EXIT frames

0x18 0–63 MESSAGE_IOVA Valid only if DPNI_CONG_OPT_WRITE_MEM_<X> flags are set in ‘options’ field.
This is the address where congestion message is written. Message description is found in table below.
Application must provide 16byte aligned pointer that can store 64 bytes.

0x20 0–63 MESSAGE_CTX This information is copied in congestion message. It is used to pass information needed to identify the
message and perform necessary actions.

0x28 0–31 THRESHOLD_ENTRY Above this threshold we enter a congestion state. Set it to '0' to disable it.

32–63 THRESHOLD_EXIT Below this threshold we exit the congestion state.

Offset
(bytes)

Size
(bytes) Field Description

0x00 1 VERB Bit 7 - reserved
Bit 6-0 - Notification message type

? "0x27 - CSCN-to-memory (Congestion State Change Notification written to memory)
? "Other values - reserved for other notification types

0x01 1 STAT Not used for CSCN-to-memory

0x02 1 STATE Bit 7-1 - reserved
Bit 0 - Congestion state

? "0 congestion group not congested
? "1 congestion group in congestion state

0x03 1 Reserved Not used

0x04 3 RID Resource ID
Bit 15-0 - Congestion Group ID
Bit 23-12 - Reserved

0x07 1 TOK Not used for CSCN-to-memory

0x08 8 CTX Context value provided in MESSAGE_CTX field in DPNI_SET_CONGESTION_NOTIFICATION command

Offset Bits Name Description

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-133

7.3.69 DPNI_GET_CONGESTION_NOTIFICATION

Get congestion notification. For more details about congestion and notification configuration, please read
the QBMan sections of the DPAA2 documentation.

Command structure

Figure 156. DPNI_GET_CONGESTION_NOTIFICATION Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2681 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 8 7 0

0x08 — TC QUEUE_TYPE

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 QUEUE_TYPE Type of queue. Rx, Tx and Tx confirm types are supported.

8–15 TC Traffic class selection (0–7)

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-134

Response structure

Figure 157. DPNI_GET_CONGESTION_NOTIFICATION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2681 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 62 61 60 59 56 55 48 47 32 31 0

0x10 — UNITS DEST_
TYPE

PRIORI
TY

NOTIFICATION_MODE DEST_ID

63 0

0x18 MESSAGE_IOVA

63 0

0x20 MESSAGE_CTX

63 32 31 0

0x28 THRESHOLD_EXIT THRESHOLD_ENTRY

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0–31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32–47 NOTIFICATION_MODE Mask of available options.
Bit 0: DPNI_CONG_OPT_WRITE_MEM_ON_ENTER

CSCN message is written to MESSAGE_IOVA once entering a congestion state (see
'THRESHOLD_ENTRY')

Bit 1: DPNI_CONG_OPT_WRITE_MEM_ON_EXIT
CSCN message is written to MESSAGE_IOVA once exiting a ongestion state (see 'THRESHOLD_EXIT')

Bit 2: DDPNI_CONG_OPT_COHERENT_WRITE
CSCN write will attempt to allocate into a cache (coherent write); valid only if
'DPNI_CONG_OPT_WRITE_MEM_<X>' is selected

Bit 3: DDPNI_CONG_OPT_NOTIFY_DEST_ON_ENTER
If DEST_TYPE != DPNI_DEST_NONE CSCN message is sent to DPIO/DPCON's WQ channel once
entering a congestion state (see 'THRESHOLD_ENTRY')

Bit 4: DDPNI_CONG_OPT_NOTIFY_DEST_ON_EXIT
If DEST_TYPE != DPNI_DEST_NONE' CSCN message is sent to DPIO/DPCON's WQ channel once
exiting a congestion state (see 'THRESHOLD_EXIT')

Bit 5: DDPNI_CONG_OPT_INTR_COALESCING_DISABLED
If DEST_TYPE != DPNI_DEST_NONE when the CSCN is written to the sw-portal's DQRR, the DQRI
interrupt is asserted immediately (if enabled)

48–55 PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0–1 or 0–7, depending on the number of
priorities in that channel; not relevant for 'DPNI_DEST_NONE' option

56–59 DEST_TYPE Type of destination for dequeued traffic

60–61 UNITS Unit type (0—BYTES, 1—FRAMES)

0x18 0–63 MESSAGE_IOVA I/O virtual address (must be in DMA-able memory), must be 16B aligned; valid only if
DPNI_CONG_OPT_WRITE_MEM_<X>' is contained in 'options' (NOTIFICATION_MODE)

0x20 0–63 MESSAGE_CTX The context that will be part of the CSCN message.

0x28 0–31 THRESHOLD_ENTRY Above this threshold we enter a congestion state. Set it to '0' to disable it.

32–63 THRESHOLD_EXIT Below this threshold we exit the congestion state.

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-135

7.3.70 DPNI_LOAD_SW_SEQUENCE

Parser block performs the parsing of frame header data with the purpose of detecting and validating the
structure of a frame. Parsing instructions may be added that extend the protocols supported and/or extract
additional attributes or frame header values. User-programmed parse functions are implemented through
soft examination sequences built from examine instructions pre-positioned in a dedicated internal RAM.

This command loads a soft examination sequence at a specified address in dedicated internal RAM of
choice (WRIOP ingress or egress).

Command structure

Figure 158. DPNI_LOAD_SW_SEQUENCE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2701 TOKEN –
IN

T
R

_D
IS

STATUS P – SRCID

63 8 7 0

0x08 — DEST

63 48 47 32 31 16 15 0

0x10 — SS_SIZE — SS_OFFSET

63 0

0x18 SS_IOVA

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 DEST Valid destinations are:
0: DPNI_SS_INGRESS – WRIOP Ingress parser
1: DPNI_SS_EGRESS – WRIOP Egress parser

0x10 0–15 SS_OFFSET The offset where the Soft Sequence must be loaded. Valid values are between 0x20
and 0x7FD.

32–47 SS_SIZE Soft Sequence Size in bytes. It must be a multiple of 4.

0x18 0–63 SS_IOVA I/O virtual address of the soft sequence to load

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-136

7.3.71 DPNI_ENABLE_SW_SEQUENCE

A Soft Sequence is enabled by attaching it to an existing hard HXS (Hard Header Examination Sequence)
or as a start of parsing. These sequences are configured via the parse profile. This command can perform
either of the two operations depending on the SET_START field.

In the case of attaching the soft sequence to a HXS. SET_START must be set to 0 and the command will
perform the following: will configure the parse profile to execute the soft sequence starting at SS_OFFSET
after the hard HXS and will copy the provided parameters in the parse profile. Setting the SS_OFFSET of
zero will disable the soft sequence after the given HXS.

In the other case when SET_START is set to 1 the command will ignore the HXS field (it will not enable
the soft sequence in the parse profile after the HXS) but will set the SS_OFFSET as the starting point
within the parse tree. The parameters will be also copied in the parse profile.

This command works together with the DPNI_LOAD_SW_SEQUENCE. The load command copies the
soft sequence code in the dedicated internal RAM of the parser and the enable command modifies the parse
profile so it uses the loaded soft sequence.

The supported HXS codes are given in the following table:

Table 7-4. HXS Coding

Code HXS Code HXS

0x00 Ethernet 0x0c TCP

0x01 LLC+SNAP 0x0d UDP

0x02 VLAN 0x0e IPSec

0x03 PPPoE+PPP 0x0f SCTP

0x04 MPLS 0x10 DCCP

0x05 ARP 0x11 Other L4 Shell

0x06 IP 0x12 GTP

0x07 IPv4 0x13 ESP

0x08 IPv6 0x14 VxLan

0x09 GRE 0x1e Layer5+ Shell

0x0a MinEncap 0x1f Final Shell

0x0b Other L3 Shell — —

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-137

Command structure

Figure 159. DPNI_ENABLE_SW_SEQUENCE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2711 TOKEN –

IN
T

R
_D

IS

STATUS P – SRCID

63 8 7 0

0x08 — DEST

63 40 39 32 31 16 15 0

0x10 — SET_START HXS SS_OFFSET

63 40 39 32 31 8 7 0

0x18 — PARAM_SIZE — PARAM_OFFSET

63 0

0x20 PARAM_IOVA

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 DEST Valid destinations are:
0: DPNI_SS_INGRESS – WRIOP Ingress parser
1: DPNI_SS_EGRESS – WRIOP Egress parser

0x10 0–15 SS_OFFSET The offset of the soft sequence

16–31 HXS The HXS code. The valid values are described in Table 7-4 in the command description above.

32–39 SET_START 0 – The soft sequence will be set enabled as an attachment after the specified HXS.
1 – The soft sequence will be set as start HXS for the corresponding parser (ingress/egress).
The HXS field is ignored and the parameters are copied in the parse profile.

0x18 0–7 PARAM_OFFSET Parameter offset starting from the parameter zone start in the parse profile (0-64).

32–39 PARAM_SIZE Parameters size in bytes

0x20 0–63 PARAM_IOVA I/O virtual address of the parameters to load into the parse profile

DPNI: Data Path Network Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 7-138

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-1

Chapter 8 DPBP: Data Path Buffer Pool
The DPBP configures a buffer pool that can be associated with DPAA2 network and accelerator interfaces;
DPBP owners are responsible for seeding it with buffers. The DPBP is a DPAA2 infrastructure object used
to configure a buffer pool that is compatible with QBMan hardware. The main role of the buffer manager
in DPAA2 is to reduce the software overhead associated with managing free buffer pools for multiple
DPAA2 objects. The buffer manager manages pools of data storage buffers, and allows the acquisition and
release of these buffers on behalf of multiple processor cores, network interfaces, and accelerators in a
multi-core SoC.

The DPBP is a DPAA2 infrastructure object used for buffer pool configuration, which is compatible with
the QBMan hardware and represents it; however it doesn't monitor the buffer pool content that is managed
by the GPP software. The main role of the buffer manager in DPAA2 is to reduce the overhead on software
for managing free buffer pools for multiple DPAA2 objects. The Buffer Manager is managing pools of data
storage buffers and allows the acquisition and release of these buffers on behalf of multiple processor
cores, network interfaces, and accelerators in a multi-core SoC.

The DPBP object is required for receiving frames from a network interface; refer to the DPNI section for
more information on the relationship between DPNI and DPBP.

Please refer to the API book for complete reference of available functions.

8.1 DPBP features

The following list summarizes the DPBP main features and capabilities:

• Maintains a list of software-provided free buffers that are used with DPAA2 objects

• Supports buffer pool depletion notifications

• Does not perform read or write access to the buffer

• Supports enable, disable, and reset operations

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-2

8.2 DPBP command reference

This section contains the detailed programming model of DPBP commands.

8.2.1 DPBP_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPBP_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

The command format is shown in the figure below.

Figure 160. DPBP_OPEN Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPBP_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 17. DPBP_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPBP_ID DPBP unique ID

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-3

8.2.2 DPBP_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 161. DPBP_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-4

8.2.3 DPBP_CREATE

This command creates and initializes an instance of DPBP according to the specified command
parameters. This command is not required for DPBP instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPBP ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 162. DPBP_CREATE Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 18. DPBP_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-5

Response structure

Figure 8-1. DPBP_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPBP_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 8-1. DPBP_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPBP_ID DPBP unique ID

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-6

8.2.4 DPBP_DESTROY

This command destroys the DPBP object and releases all its resources. It must be invoked in the software
context that created the object. The caller must provide the object id and the authentication token of the
parent container that created the object. Note that the object can be assigned to another container and
sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

Command structure

Figure 163. DPBP_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9841 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPBP_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPBP_ID ID of the DPBP object to destroy

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-7

8.2.5 DPBP_ENABLE

Command structure

Figure 164. DPBP_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-8

8.2.6 DPBP_DISABLE

Command structure

Figure 165. DPBP_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-9

8.2.7 DPBP_IS_ENABLED

Command structure

Figure 166. DPBP_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-10

Response structure

Figure 167. DPBP_IS_ENABLED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-11

8.2.8 DPBP_RESET

Command structure

Figure 168. DPBP_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-12

8.2.9 DPBP_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 169. DPBP_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-13

8.2.10 DPBP_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 170. DPBP_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-14

Response structure

Figure 171. DPBP_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-15

8.2.11 DPBP_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 172. DPBP_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-16

8.2.12 DPBP_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 173. DPBP_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-17

Response structure

Figure 174. DPBP_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-18

8.2.13 DPBP_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 175. DPBP_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPBP_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-19

Response structure

Figure 176. DPBP_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events:
None

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-20

8.2.14 DPBP_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 177. DPBP_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-21

8.2.15 DPBP_GET_ATTRIBUTES

Command structure

Figure 178. DPBP_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-22

Response structure

Figure 179. DPBP_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 ID BPID —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 BPID Hardware buffer pool ID; should be used as an argument in
acquire/release operations on buffers

32-63 ID DPBP object ID

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-23

8.2.16 DPBP_SET_NOTIFICATIONS

Command structure

Figure 180. DPBP_SET_NOTIFICATIONS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1B01 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DEPLETION_EXIT DEPLETION_ENTRYY

63 32 31 0

0x10 SURPLUS_EXIT SURPLUS_ENTRY

63 16 15 0

0x18 — OPTIONS

63 0

0x20 MESSAGE_CTX

63 0

0x28 MESSAGE_IOVA

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0.31 DEPLETION_ENTRY below this threshold the pool is "depleted"; set it to '0' to disable it

32-63 DEPLETION_EXIT greater than or equal to this threshold the pool exit its “depleted" state

0x10 0-31 SURPLUS_ENTRY above this threshold the pool is in "surplus" state; set it to '0' to disable it

32-63 SURPLUS_EXIT less than or equal to this threshold the pool exit its "surplus" state

0x18 0-15 OPTIONS Mask of available options; use 'DPBP_NOTIF_OPT_<X>' values

0x20 0-63 MESSAGE_CTX The context that will be part of the BPSCN message and will be written to
'message_iova'

0x28 0-63 MESSAGE_IOVA MUST be given if either 'depletion_entry' or 'surplus_entry' is not '0' (enable); I/O virtual
address (must be in DMA-able memory), must be 16B aligned.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-24

8.2.17 DPBP_GET_NOTIFICATIONS

Command structure

Figure 181. DPBP_GET_NOTIFICATIONS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1B11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-25

Response structure

Figure 182. DPBP_GET_NOTIFICATIONS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1B11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DEPLETION_EXIT DEPLETION_ENTRYY

63 32 31 0

0x10 SURPLUS_EXIT SURPLUS_ENTRY

63 16 15 0

0x18 — OPTIONS

63 0

0x20 MESSAGE_CTX

63 0

0x28 MESSAGE_IOVA

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0.31 DEPLETION_ENTRY below this threshold the pool is "depleted"; set to '0' to disable

32-63 DEPLETION_EXIT greater than or equal to this threshold the pool exit its “depleted" state

0x10 0-31 SURPLUS_ENTRY above this threshold the pool is in "surplus" state; set it to '0' to disable it

32-63 SURPLUS_EXIT less than or equal to this threshold the pool exit its "surplus" state

0x18 0-15 OPTIONS Mask of available options; use 'DPBP_NOTIF_OPT_<X>' values

0x20 0-63 MESSAGE_CTX The context that will be part of the BPSCN message and will be written to
'MESSAGE_IOVA'

0x28 0-63 MESSAGE_IOVA MUST be given if either 'DEPLETION_ENTRY' or 'SURPLUS_ENTRY' is not '0'
(enable); I/O virtual address (must be in DMA-able memory), must be 16B aligned.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-26

8.2.18 DPBP_GET_API_VERSION

Command structure

Figure 183. DPBP_GET_API_VERSION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-27

Response structure

Figure 184. DPBP_GET_API_VERSION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Figure 185. DPBP_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPBP: Data Path Buffer Pool

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 8-28

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-1

Chapter 9 DPIO: Data Path I/O
The DPIO object allows configuration of the QBMan software portal, with optional notification
capabilities. Software portals are used by GPP software to communicate with the QBMan. The DPIO
object’s main purpose is to enable the GPP to perform I/O – enqueue and dequeue operations, as well as
buffer release and acquire operations – using QBMan. Usually, a DPIO object can be affined to a GPP
core-thread, to prevent any need for multi-core synchronization on the software portal.

The DPIO object is mandatory for sending frames to, and receiving frames from, a network interface; refer
to the DPNI section for more information on the relationship between DPNI and DPIO.

9.1 DPIO features

The following list summarizes the DPIO main features and capabilities:

• Supports configuration of the QBMan software portal for GPP I/O operations

• Supports data availability notifications in the frame queues associated with the DPIO object

• Supports data availability notifications in the DPCON objects associated with the DPIO object

• Supports up to eight priorities for scheduling data availability notifications; having a DPIO object
with multiple priorities, for example, allows for different notification priorities to be set for
different DPNI receive queues; assuming that they are associated with the same DPIO object

• Supports enable, disable, and reset operations

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-2

9.2 DPIO command reference

This section contains the detailed programming model of DPIO commands.

9.2.1 DPIO_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPIO_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 186. DPIO_OPEN Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPIO_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 19. DPIO_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPIO_ID DPIO unique ID

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-3

9.2.2 DPIO_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 187. DPIO_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-4

9.2.3 DPIO_CREATE

This command creates and initializes an instance of DPIO according to the specified command parameters.
This command is not required for DPIO instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPIO ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 188. DPIO_CREATE Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 18 17 16 15 0

0x08 — NUM_PRIORITIE
S

— CHANN
EL_MO

DE

—

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 20. DPIO_CREATE Command Field Descriptions1

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-5

Response structure

Figure 9-1. DPIO_CREATE Response Description

The following table describes the response fields.

0x08 16-17 CHANNEL_MODE Notification channel mode. Select one of the supported values below:
0x0 = DPIO_NO_CHANNEL - No support for notification channel
0x1 = DPIO_LOCAL_CHANNEL - Notifications on data availability can be received by
a dedicated channel in the DPIO; user should point the queue's destination in the
relevant interface to this DPIO

32-39 NUM_PRIORITIES Number of priorities for the notification channel (1-8);
relevant only if 'channel_mode = DPIO_LOCAL_CHANNEL'

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9031 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — DPIO_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 9-1. DPIO_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPIO_ID DPIO unique ID

Table 20. DPIO_CREATE Command Field Descriptions1

Offset Bits Name Description

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-6

9.2.4 DPIO_DESTROY

This command destroys the DPIO object and releases all its resources. It must be invoked in the software
context that created the object. The caller must provide the object id and the authentication token of the
parent container that created the object. Note that the object can be assigned to another container and
sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 189. DPIO_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9831 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPIO_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPIO_ID ID of the DPIO object to destroy

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-7

9.2.5 DPIO_ENABLE
Command structure

Figure 190. DPIO_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-8

9.2.6 DPIO_DISABLE

Command structure

Figure 191. DPIO_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-9

9.2.7 DPIO_IS_ENABLED

Command structure

Figure 192. DPIO_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-10

Response structure

Figure 193. DPIO_IS_ENABLED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-11

9.2.8 DPIO_RESET

Command structure

Figure 194. DPIO_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-12

9.2.9 DPIO_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 195. DPIO_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-13

9.2.10 DPIO_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 196. DPIO_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-14

Response structure

Figure 197. DPIO_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-15

9.2.11 DPIO_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 198. DPIO_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-16

9.2.12 DPIO_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 199. DPIO_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-17

Response structure

Figure 200. DPIO_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-18

9.2.13 DPIO_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 201. DPIO_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPIO_CLEAR_IRQ_STATUS command). Note that the STATUS returned
in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-19

Response structure

Figure 202. DPIO_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events:
None

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-20

9.2.14 DPIO_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 203. DPIO_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

0x10 -
0x38

reserved

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-21

9.2.15 DPIO_GET_ATTRIBUTES

Command structure

Figure 204. DPIO_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-22

Response structure

Figure 205. DPIO_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 60 59 56 55 48 47 32 31 0

0x08 — CHANN
EL_MO

DE

NUM_PRIORITIE
S

QBMAN_PORTAL_ID ID

63 0

0x10 QBMAN_PORTAL_CE_PADDR

63 0

0x18 QBMAN_PORTAL_CI_PADDR

63 32 31 0

0x20 — QBMAN_VERSION

63 32 31 0

0x28 — CLK

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID DPIO object ID

32-47 QBMAN_PORTAL_ID Software portal ID

48-55 NUM_PRIORITIES Number of priorities for the notification channel (1-8); relevant only if
'CHANNEL_MODE = DPIO_LOCAL_CHANNEL'

56-59 CHANNEL_MODE Notification channel mode:
0x0 = DPIO_NO_CHANNEL - No support for notification channel
0x1 = DPIO_LOCAL_CHANNEL - Notifications on data availability can be received by
a dedicated channel in the DPIO; user should point the queue's destination in the
relevant interface to this DPIO

0x10 0-63 QBMAN_PORTAL_CE_PADDR Physical address of the software portal cache-enabled area

0x18 0-63 QBAMN_PORTAL_CI_PADDR Physical address of the software portal cache-inhibited area

0x20 0-31 QBMAN_VERSION QBMAN hardware IP version

0x28 0-31 CLK QBMAN clock frequency value in Hz

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-23

9.2.16 DPIO_SET_STASHING_DESTINATION

Command structure

Figure 206. DPIO_SET_STASHING_DESTINATION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1201 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 8 7 0

0x08 — SDEST

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 SDEST stashing destination value

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-24

9.2.17 DPIO_GET_STASHING_DESTINATION

Command structure

Figure 207. DPIO_GET_STASHING_DESTINATION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1211 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-25

Response structure

Figure 208. DPIO_GET_STASHING_DESTINATION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1211 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 8 7 0

0x08 — SDEST

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 SDEST stashing destination value

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-26

9.2.18 DPIO_ADD_STATIC_DEQUEUE_CHANNEL

Command structure

Figure 209. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1221 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPCON_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPCON_ID DPCON object ID

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-27

Response structure

Figure 210. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1221 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 8 7 0

0x08 — CHANNEL_INDE
X

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 CHANNEL_INDEX Returned channel index to be used in qbman API

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-28

9.2.19 DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL

Command structure

Figure 211. DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1231 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPCON_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPCON_ID DPCON object ID

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-29

9.2.20 DPIO_GET_API_VERSION

Command structure

Figure 212. DPIO_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPIO: Data Path I/O

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 9-30

Response structure

Figure 213. DPIO_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA031 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-1

Chapter 10 DPCON: Data Path Concentrator
The DPCON object provides advanced scheduling of ingress packets, including scheduling between
different network interfaces. It enables advanced scheduling options for ingress traffic coming from one
or more network interfaces, and provides better flexibility for the GPP software to handle received packets.
The use of DPCON objects is optional – it is not required for basic receive operations; refer to the DPNI
section for more information on the relationship between DPNI and DPCON.

If assigned to the AIOP container (contains MC objects owned by AIOP) the DPCON object switches to
AIOP mode and it provides the interface to prioritize the ingress traffic to AIOP.

The main reason for introducing this mode is to allow the AIOP software to implement a custom QoS
scheme.

In this mode the DPCON object can only be used by AIOP SW and it doesn't provide the notification
option. Note that QBMan has several (the number is platform depended) Direct Command Portals (DCP)
connected to AIOP HW block. In AIOP mode the DPCON can't be connected or linked with DPNI or
DPCI objects. This mode is strictly reserved for AIOP.

If the DPCON object is reassigned to a non-AIOP context the DPCON switches back to normal mode
(GPP).

Since the DPCON in AIOP mode operates on a different resource type ('dcp.aiop.ch') than normal GPP
mode ('swpch') it also affects the maximum number of concentrator objects - see 22.2.1.1 for resource
types. Note that when assigning a DPCON object AIOP, the channel resources are bind and released based
on the destination and source container type: AIOP or non-AIOP. In other words the DPCON object will
use on a single channel resource type. Also, during assign operation the number of priorities is maintained
- the number is constant during the object lifetime. This means that when the DPCON gets back to it's
creation container the same SWP Channel resource type will be allocated.

For LS2088A there can be maximum 63 DPCON objects in AIOP mode and for LS1088A only 15.

10.1 DPCON features

The following list summarizes the DPCON main features and capabilities:

• Supports configuration of QBMan channels for advanced scheduling of ingress packets from one
or more network interfaces

• Supports up to eight scheduling priorities; having a DPCON object with multiple priorities, for
example, allows for different priorities to be set for the receive queues of two different DPNI
objects

• Supports data availability notifications through a selected DPIO object

• Supports enable, disable, and reset operations

• Supports QBMan DCP AIOP Channels with up to 8 priorities

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-2

10.2 DPCON command reference

This section contains the detailed programming model of DPCON commands.

10.2.1 DPCON_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPCON_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

The command format is shown in the figure below.

Figure 214. DPCON_OPEN Command Description

The following table describes the command fields.
1-

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8081 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPCON_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 21. DPCON_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPCON_ID DPCON unique ID

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-3

10.2.2 DPCON_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 215. DPCON_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 -
0x38

Reserved

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-4

10.2.3 DPCON_CREATE

This command creates and initializes an instance of DPCON according to the specified command
parameters. This command is not required for DPCON instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPCON ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 216. DPCON_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9081 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 8 7 0

0x08 — NUM_PRIORITIE
S

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 22. DPCON_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 NUM_PRIORITIES Number of priorities for the DPCON channel (1-8)

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-5

Response structure

Figure 10-1. DPCON_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9081 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPCON_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 10-1. DPCON_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPCON_ID DPCON unique ID

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-6

10.2.4 DPCON_DESTROY

This command destroys the DPCON object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 217. DPCON_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9881 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPCON_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPCON_ID ID of the DPCON object to destroy

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-7

10.2.5 DPCON_ENABLE

Command structure

Figure 218. DPCON_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-8

10.2.6 DPCON_DISABLE

Command structure

Figure 219. DPCON_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-9

10.2.7 DPCON_IS_ENABLED

Command structure

Figure 220. DPCON_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-10

Response structure

Figure 221. DPCON_IS_ENABLED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-11

10.2.8 DPCON_RESET

Command structure

Figure 222. DPCON_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-12

10.2.9 DPCON_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 223. DPCON_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-13

10.2.10 DPCON_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 224. DPCON_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-14

Response structure

Figure 225. DPCON_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-15

10.2.11 DPCON_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 226. DPCON_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-16

10.2.12 DPCON_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 227. DPCON_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-17

Response structure

Figure 228. DPCON_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-18

10.2.13 DPCON_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 229. DPCON_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPCON_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-19

Response structure

Figure 230. DPCON_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events:
None

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-20

10.2.14 DPCON_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 231. DPCON_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-21

10.2.15 DPCON_GET_ATTRIBUTES

Command structure

Figure 232. DPCON_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-22

Response structure

Figure 233. DPCON_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 56 55 48 47 32 31 0

0x08 — NUM_PRIORITIES QBMAN_CH_ID ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID DPCON object ID

32-47 QBMAN_CH_ID Channel ID to be used by dequeue operation

48-55 NUM_PRIORITIES Number of priorities for the DPCON channel (1-8)

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-23

10.2.16 DPCON_SET_NOTIFICATION

Command structure

Figure 234. DPCON_SET_NOTIFICATION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1001 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 — PRIORITY DPIO_ID

63 0

0x10 USER_CTX

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPIO_ID DPIO object ID; must be configured with a notification channel

32-39 PRIORITY Priority selection within the DPIO channel; valid values
are 0-7, depending on the number of priorities in that channel

0x10 0-63 USER_CTX User context value provided with each CDAN message

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-24

10.2.17 DPCON_GET_API_VERSION

Command structure

Figure 235. DPCON_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA081 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-25

Response structure

Figure 236. DPCON_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA081 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPCON: Data Path Concentrator

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 10-26

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-1

Chapter 11 DPCI: Data Path Communication Interface
The MC exports a generic interface for inter-partition communication (IPC). The DPCI enables
frame-based communication between different software contexts, utilizing the DPAA2 QBMan
infrastructure. The communication protocol is completely free, unlike DPNI, which is a standard network
interface. DPCI objects may be connected in pairs (one DPCI in each software context) to form a
communication link. This type of communication may serve basic management/control needs between
GPP software and AIOP software, or between two separate GPP software contexts.

DPCI objects can be linked with DPCON objects but only if both are in AIOP container.The reason is that
DPCON objects in AIOP container are exclusively used by Advanced I/O processor and allow
implementing QoS on DPCI object receive queues-which implies that the DPCI object must be owned by
AIOP container also.

By default, Rx queues start with a default priority, which can be overridden by DPCI_SET_Rx_QUEUE
command.After DPCI_RESET the Rx queue priority values are reset to the default values.

Please refer to the API book for complete reference of available functions.

11.1 DPCI features

The following list summarizes the DPCI main features and capabilities:

• Supports up to two scheduling priorities for outgoing frames.

• Supports up to two scheduling priorities for incoming frames.

• Allows interaction with one or more Data Path I/O (DPIO) objects for dequeueing/enqueueing
frame descriptors (FD) and for acquiring/releasing buffers.

• Supports different scheduling options for processing received packets:

— Queues can be configured either in ‘parked’ mode (default), or attached to a DPIO object, or
attached to DPCON object

• Supports link state indication – a communication link is active only when both DPCI objects are
initialized and enabled.

• Supports enable, disable, and reset operations

• Supports for QoS–only if both DPCI and DPCON are in AIOP context.

11.2 DPCI functional description

11.2.1 Connecting DPCI objects

The communication channel consists of two DPCI objects, each on a different software context. Each
DPCI object owns up to two receive queues, matching the number of priorities requested when the object
was created. The two objects should be connected using either DPL declaration or through DPRC
CONNECT operation. The connection (link) will be in an active state (‘link up’) only after both DPCI
objects are enabled. Once the link is up, each software context may query the DPCI attributes to find the
queue IDs that should be used in enqueue and dequeue operations.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-2

11.2.2 Relationship with DPIO and DPCON objects

Each of the two DPCI receive queues may be associated with either a DPIO object or a DPCON object.
This serves for notification purposes and/or advanced scheduling of received frames.

DPIO objects provide configuration of a QBMan software portal, with an option for data availability
notifications. GPP software is free to relate DPIO objects to threads, or to share them between cores in
SMP mode but this requires synchronized access to the QBMan software portal. It is possible to associate
multiple DPIO objects with the same DPCI, in order to spread traffic from this DPCI across multiple
QBMan software portals.

GPP software may decide to enable DPIO notifications, or it may dequeue frames based on its own
scheduled polling logic. It is also possible for one GPP entity to receive the notification from one DPIO
and alert another entity that will dequeue the packets using a different DPIO.

DPCON objects are used for concentrating traffic from several interfaces into sub-interfaces, mainly for
scheduling purposes. It is possible to connect DPCON with DPIO so it generates notifications to the GPP

DPCI objects can be linked with DPCON objects that are in AIOP mode (DPCON utilizes a DCP AIOP
channel instead of a SWP Channel.

Note that the QBMan software portal is used both for enqueue/dequeue operations on packets, and for
acquire/release buffer operations. GPP software is responsible for the portal’s operation mode and usage
i.e. sharing vs. affinity, association of queue context, etc.

DPIO objects may serve multiple interfaces. This is not limited to multiple DPCI objects; it can also be
extended to network interfaces and accelerator interfaces. For example, the same DPIO may serve both a
DPNI and a DPCI, assuming they are assigned to the same software context (container).

11.2.3 Buffer requirements

A DPCI does not need to be associated with a DPBP object; in addition, buffers for the communication
messages (frames) may or may not be managed by buffer pools. However, these buffers must be shared by
the two communicating software contexts, as the communication channel does not involve copying of the
frame.

11.3 DPCI command reference

This section contains detailed programming model of DPCI commands.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-3

11.3.1 DPCI_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPCI_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

The command format is shown in the figure below.

Figure 237. DPCI_OPEN Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8071 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPCI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 23. DPCI_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPCI_ID DPCI unique ID

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-4

11.3.2 DPCI_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 238. DPCI_CLOSE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 24. DPCI_CLOSE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-5

11.3.3 DPCI_CREATE

This command creates and initializes an instance of DPCI according to the specified command parameters.
This command is not required for DPCI instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPCI ID that can be used to OPEN or DESTROY the object.

Command structure

Figure 239. DPCI_CREATE Command Description

1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 8 7 0

0x08 — NUM_OF_PRIOR
ITIES

63 0

0x10 —

63 32 31 0

0x18 — OPTIONS (details in the table below)

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 25. DPCI_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–7 NUM_OF_PRIORITIES Number of receive priorities (queues) for the DPCI; note, that the number of transmit priorities
(queues) is determined by the number of receive priorities of the peer DPCI object

0x18 0–31 OPTIONS – select one or more of the options below

6 DPCI_OPT_HAS_OPR Controls availability of Order Restoration:
0 – Order Restoration is not available. Command DPCI_SET_OPR will return an error.
1 – Order Restoration is available on this DPCI. Note that this option is not available for LS2080A

7 DPCI_OPT_OPR_SHARED 0 – Order Restoration Points can be set per each index or priority.
1 – Order Restoration Points are shared for the entire DPCI.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-6

Response structure

Figure 240. DPCI_CREATE Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9072 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPCI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 11-1. DPCI_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPCI_ID DPCI unique ID

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-7

11.3.4 DPCI_DESTROY

This command destroys the DPCI object and releases all its resources. It must be invoked in the software
context that created the object. The caller must provide the object id and the authentication token of the
parent container that created the object. Note that the object can be assigned to another container and
sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 241. DPCI_DESTROY Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9871 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPCI_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 26. DPCI_DESTROY Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPCI_ID ID of the DPCI object to destroy

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-8

11.3.5 DPCI_ENABLE

Command structure

Figure 242. DPCI_ENABLE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 27. DPCI_ENABLE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-9

11.3.6 DPCI_DISABLE

Command structure

Figure 243. DPCI_DISABLE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 28. DPCI_DISABLE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-10

11.3.7 DPCI_IS_ENABLED

Command structure

Figure 244. DPCI_IS_ENABLED Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 29. DPCI_IS_ENABLED Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-11

Response structure

Figure 245. DPCI_IS_ENABLED Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 30. DPCI_IS_ENABLED Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-12

11.3.8 DPCI_RESET
Command structure

Figure 246. DPCI_RESET Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 31. DPCI_RESET Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-13

11.3.9 DPCI_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 247. DPCI_SET_IRQ_ENABLE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 32. DPCI_SET_IRQ_ENABLE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-14

11.3.10 DPCI_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 248. DPCI_GET_IRQ_ENABLE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 33. DPCI_GET_IRQ_ENABLE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-15

Response structure

Figure 249. DPCI_GET_IRQ_ENABLE Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 34. DPCI_GET_IRQ_ENABLE Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-16

11.3.11 DPCI_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 250. DPCI_SET_IRQ_MASK Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 35. DPCI_SET_IRQ_MASK Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-17

11.3.12 DPCI_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 251. DPCI_GET_IRQ_MASK Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 36. DPCI_GET_IRQ_MASK Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-18

Response structure

Figure 252. DPCI_GET_IRQ_MASK Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 37. DPCI_GET_IRQ_MASK Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-19

11.3.13 DPCI_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 253. DPCI_GET_IRQ_STATUS Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 38. DPCI_GET_IRQ_STATUS Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPCI_CLEAR_IRQ_STATUS command). Note that the STATUS returned
in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-20

Response structure

Figure 254. DPCI_GET_IRQ_STATUS Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 39. DPCI_GET_IRQ_STATUS Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events for IRQ 0:
Bit 0: DPCI_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bit 1: DPCI_IRQ_EVENT_CONNECTED – indicates a peer was connected
Bit 2: DPCI_IRQ_EVENT_DISCONNECTED – indicates a peer was disconnected

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-21

11.3.14 DPCI_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 255. DPCI_CLEAR_IRQ_STATUS Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Table 40. DPCI_CLEAR_IRQ_STATUS Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-22

11.3.15 DPCI_GET_ATTRIBUTES

Command structure

Figure 256. DPCI_GET_ATTRIBUTES Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 41. DPCI_GET_ATTRIBUTES Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-23

Response structure

Figure 257. DPCI_GET_ATTRIBUTES Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 56 55 48 47 32 31 0

0x08 — NUM_OF_PRIOR
ITIES

— ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 42. DPCI_GET_ATTRIBUTES Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID DPCI object ID

48-55 NUM_OF_PRIORITIES Number of receive priorities

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-24

11.3.16 DPCI_GET_PEER_ATTRIBUTES

Command structure

Figure 258. DPCI_GET_PEER_ATTRIBUTES Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E21 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 43. DPCI_GET_PEER_ATTRIBUTES Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-25

Response structure

Figure 259. DPCI_GET_PEER_ATTRIBUTES Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — PEER_ID

63 8 7 0

0x10 — NUM_OF_
PRIORITIES

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 44. DPCI_GET_PEER_ATTRIBUTES Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 PEER_ID DPCI peer ID; if no peer is connected returns (-1)

0x10 0-7 NUM_OF_PRIORITIES The peer's number of receive priorities; determines the
number of transmit priorities for the local DPCI object

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-26

11.3.17 DPCI_GET_LINK_STATE

Command structure

Figure 260. DPCI_GET_LINK_STATE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 45. DPCI_GET_LINK_STATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-27

Response structure

Figure 261. DPCI_GET_LINK_STATE Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E11 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — UP

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 46. DPCI_GET_LINK_STATE Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 UP Returned link state; returns '1' if link is up, '0' otherwise

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-28

11.3.18 DPCI_SET_RX_QUEUE

As a limitation, this command will fail if it is called twice without resetting the object. See Section 25.2,
“Reconfiguring FQs associated with a channel.”

Command structure

Figure 262. DPCI_SET_RX_QUEUE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E01 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 53 52 51 48 47 40 39 32 31 0

0x08 —

O
P

E

TYPE PRIORITY DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 32 31 0

0x18 — OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 47. DPCI_SET_RX_QUEUE Command Field Descriptions1

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, depending on the number of
priorities in that channel; not relevant for 'DPCI_DEST_NONE' option, except if this DPCI is in AIOP context.
In that case the DCI_SET_RX_QUEUE can be used to override the default assigned priority.

40-47 PRIORITY Select the queue relative to number of priorities configured at DPCI creation; use DPCI_ALL_QUEUES to configure
all Rx queues identically.

48-51 DEST_TYPE Destination type:
0x0 = DPCI_DEST_NONE - Unassigned destination; The queue is set in parked mode and does not generate

FQDAN notifications; user is expected to dequeue from the queue based on polling or other user-defined method
0x1 = DPCI_DEST_DPIO- The queue is set in schedule mode and generates FQDAN notifications to the specified

DPIO; user is expected to dequeue from the queue only after notification is received
0x2 = DPCI_DEST_DPCON - The queue is set in schedule mode and does not generate FQDAN notifications, but

is connected to the specified DPCON object; user is expected to dequeue from the DPCON channel

52 ORDER_PRESERV
ATION_EN (OPE)

Order preservation configuration for the rx queue
Valid only if 'DPCI_QUEUE_OPT_ORDER_PRESERVATION' is contained in ‘options'

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-29

11.3.19 DPCI_GET_RX_QUEUE

Command structure

Figure 263. DPCI_GET_RX_QUEUE Command Description

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each
dequeued frame;
valid only if 'DPCI_QUEUE_OPT_USER_CTX' is contained in 'options'

0x18 0-32 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPCI_QUEUE_OPT_<X>' flags:
bit 0: DPCI_QUEUE_OPT_USER_CTX - Select to modify the user's context associated with the queue
bit 1: DPCI_QUEUE_OPT_DEST - Select to modify the queue's destination
bit 2: DPCI_QUEUE_OPT_HOLD_ACTIVE - Select to set the queue hold active mode

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E31 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 40 39 0

0x08 — PRIORITY —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 48. DPCI_GET_RX_QUEUE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 40-47 PRIORITY Select the queue relative to number of priorities configured at DPCI creation

Table 47. DPCI_SET_RX_QUEUE Command Field Descriptions1

Offset Bits Name Description

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-30

Response structure

Figure 264. DPCI_GET_RX_QUEUE Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E31 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 — DEST_
TYPE

— DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 32 31 0

0x18 — FQID

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 49. DPCI_GET_RX_QUEUE Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 PRIORITY Priority selection within the DPIO or DPCON channel; valid values
are 0-1 or 0-7, depending on the number of priorities in that
channel; not relevant for 'DPCI_DEST_NONE' option

48-51 DEST_TYPE Destination type

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each
dequeued frame

0x18 0-31 FQID Virtual FQID value to be used for dequeue operations

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-31

11.3.20 DPCI_GET_TX_QUEUE

Command structure

Figure 265. DPCI_GET_TX_QUEUE Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E41 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 40 39 0

0x08 — PRIORITY —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 50. DPCI_GET_TX_QUEUE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 40-47 PRIORITY Priority of the virtual frame queue that a SW context uses to send frames to the pair
SW context. DPCI objects work in pairs. To figure out which FQID one peer uses to
receive data must provide the priority level.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-32

Response structure

Figure 266. DPCI_GET_TX_QUEUE Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E41 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 FQID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 51. DPCI_GET_TX_QUEUE Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-63 FQID Virtual FQID to be used for sending frames to peer DPCI;
returns 'DPCI_FQID_NOT_VALID' if a no peer is connected or if
the selected priority exceeds the number of priorities of the
peer DPCI object

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-33

11.3.21 DPCI_GET_API_VERSION

Command structure

Figure 267. DPCI_GET_API_VERSION Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA071 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 52. DPCI_GET_TX_QUEUE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-34

Response structure

Figure 268. DPCI_GET_TX_QUEUE Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA071 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 53. DPCI_GET_TX_QUEUE Response Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-35

11.3.22 DPCI_SET_OPR

Set the Order Point Record configuration. The command works only if the DPCI is created with the
DPCI_OPT_HAS_OPR option. It also works only for SoCs that support Order Restoration.

If the DPCI is configured with the DPCI_OPT_OPR_SHARED than all frame queues from the DPCI are
configured to use the same Order Point Record. If the DPCI_OPT_OPR_SHARED option is not set the
INDEX is used to select a specific queue.

Command structure

Figure 269. DPCI_SET_OPR Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E51 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 24 23 16 15 0

0x08 — OPTIONS INDEX —

63 56 55 48 47 40 39 32 31 24 23 0

0x10 OPRRWS OA OLWS OEANE OLOE —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 54. DPCI_SET_OPR Response Field Descriptions1

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 16-23 INDEX Selects a specific queue from the Rx DPCI queues. Accepted values are in range 0 to
NUM_QUEUES – 1. This field is ignored for DPCI_OPT_OPR_SHARED.

24–31 OPTIONS The command can function in two ways, depending on the options field value:
 • OPR_OPT_CREATE (1): Create the OPR with the given configuration
 • OPR_OPT_RETIRE (2): Retire OPR. In this case the configuration options from offset 0x10 are

ignored.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-36

0x10 24–31 OLOE OPR loose ordering enable
 • 0: Strict ordering mode
 • 1: Loose ordering mode

32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable

40–47 OLWS OPR acceptable late arrival window size
 • 0: Disabled. Late arrivals are always rejected.
 • 1: Window size is 32 frames.
 • 2: Window size is the same as the OPR restoration window size configured in the OPRRWS field.
 • 3: Window size is 8192 frames. Late arrivals are always accepted.

48–55 OA OPR auto advance NESN window size

56–63 OPRRWS Order point record (OPR) restoration window size.
 • 0: Window size is 32 frames.
 • 1: Window size is 64 frames.
 • 2: Window size is 128 frames.
 • 3: Window size is 256 frames.
 • 4: Window size is 512 frames.
 • 5: Window size is 1024 frames.
 • 6–7: Reserved

1 All unspecified fields are reserved and must be cleared (set to zero).

Table 54. DPCI_SET_OPR Response Field Descriptions1

Offset Bits Name Description

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-37

11.3.23 DPCI_GET_OPR

Get Order Point Record (OPR) configuration and state. Works for OPRs that are created. The creation of
the OPR takes place the first time the DPCI is enabled after a DPCI_SET_OPR command.

Command structure

Figure 270. DPCI_GET_OPR Command Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E61 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 24 23 16 15 0

0x08 — INDEX —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 55. DPCI_GET_OPR Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0X08 16-23 INDEX Selects a specific queue from the Rx DPCI queues. This field is ignored for DPCI_OPT_OPR_SHARED.

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-38

Response structure

Figure 271. DPCI_GET_OPR Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0E61 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 56 55 48 47 40 39 32 31 24 23 2 1 0

0x10 OPRRWS OA OLWS OEANE OLOE — EN RIP

63 48 47 32 31 16 15 0

0x18 — NDSN — NESN

63 48 47 32 31 16 15 0

0x20 —

N
L

IS
_

H
S

E
Q

EA_HSEQ —

N
L

IS
_T

S
E

Q

EA_TSEQ

63 48 47 32 31 16 15 0

0x28 — EA_TPTR — EA_HPTR

63 48 47 32 31 16 15 0

0x30 — OPRID — VOPRID

63 0

0x38 —

Table 56. DPCI_GET_OPR Response Field Descriptions1

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0 RIP Retirement In Progress.

1 EN OPR is enabled.

24–31 OLOE OPR loose ordering enable

32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable

40–47 OLWS OPR acceptable late arrival window size

48–55 OA OPR auto advance NESN window size

56–63 OPRRWS Order point record (OPR) restoration window size

0x18 0–15 NESN Next expected sequence number.

32–47 NDSN Next dispensed sequence number.

0x20 0–15 EA_TSEQ Sequence number of the frame at the tail of the ORL.

16 NLIS_TSEQ Not last in sequence for EA_TSEQ

32–47 EA_HSEQ Sequence number of the frame at the head of the ORL.

48 NLIS_HSEQ Not last in sequence for EA_HSEQ

0x28 0–15 EA_HPTR Early arrival head pointer

32–47 EA_TPTR Early arrival tail pointer

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-39

0x30 0–15 VOPRID Virtual Order Point Record ID

32–47 OPRID Order Point Record ID

1 All unspecified fields are reserved and must be cleared (set to zero).

Table 56. DPCI_GET_OPR Response Field Descriptions1

Offset Bits Name Description

DPCI: Data Path Communication Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 11-40

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-1

Chapter 12 DPDMUX: Data Path Network DeMux
The DPDMUX object provides the functionality of Ethernet virtual bridging, based mainly on 802.1Qbg
standard. The major role of the DPDMUX is forwarding traffic from a single uplink interface to one or
more internal interfaces. The uplink interface can be an internal or external interface.

DPDMUX forwarding is decided by an internal database which classifies the received frames and sends
them to either the uplink interface or to the internal interfaces. The DPDMUX database can be updated
dynamically at run-time. DPDMUX does not support automatic learning from network traffic, however it
does learn MAC addresses and VLAN IDs from connected DPNI objects. There is no aging mechanism
support for database entries.

12.1 DPDMUX features

The following list summarizes the DPDMUX main features and capabilities:

• Supports 802.1Qbg configurations such as VEB and VEPA

• Splits ingress traffic from one uplink interface to multiple internal interfaces (DPNIs)

• Supports VM-to-VM bridging (VEB configuration mode)

• Supports the following demux methods:

— Split traffic by destination MAC address (DMAC)

— Split traffic by C-VLAN

— Split traffic by DMAC and C-VLAN combined

• Configurable number of demux table entries

• Support Unicast, Multicast and Broadcast frames, including Unicast and Multicast promiscuous
modes for the internal interfaces.

• Supports the following frame acceptance policies per interface:

— All frames are accepted (default behavior)

— Only tagged frames are accepted

— Only untagged (or priority-tagged) frames are accepted

• Statistics counters per interface

• Link state indication per interface (interrupt GPP on change)

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-2

12.2 DPDMUX functional description

12.2.1 Demux database

DPDMUX forwarding is decided by an internal database which classifies received frames and sends them
to either the uplink interface or to the internal interfaces.

DPDMUX database can be updated dynamically through two main mechanisms:

• Interface learning – DPDMUX automatically queries DPNI objects after they are connected to its
internal interfaces, and automatically configures the forwarding database with the matching
MAC/VLAN rules according to the selected demux method. The information received from DPNI
includes MAC filters (Unicast and Multicast), VLAN filters and promiscuous settings. Rules that
were configured based on this mechanism are removed once the DPNI object is disconnected from
the DPDMUX interface.

• Management configuration – The DPDMUX user (GPP driver) may add (or remove) forwarding
rules directly through DPDMUX commands. Please refer to the
DPDMUX_IF_ADD/REMOVE_L2_RULE commands for more details. Rules that were
configured through management commands can only be removed by management commands, so
connecting/disconnecting DPNI objects have no impact on such rules.

DPDMUX does not support automatic learning from network traffic. Frames that cannot be matched with
any rule are either dropped or redirected to a selected interface.

There is no automatic aging support for database entries.

12.2.2 Broadcast and multicast support

Ethernet broadcast and multicast frames are replicated to the relevant interfaces. Replication is supported
only when the demux method is based on MAC addresses (or MAC and VLAN). If the demux method is
set to use both MAC and VLAN, then replication is limited to the scope of the VLAN ID that is found in
the frame (frames do not cross VLAN boundaries).

Note, that if the demux method is not configured to use MAC address, frames are never replicated.

12.2.3 Promiscuous interfaces

As mentioned, the DPDMUX queries connected DPNI objects for their settings. If a DPNI is configured
in promiscuous mode (Unicast or Multicast), then it will receive all frames that did not match the MAC
address in any of the existing rules. Frames that match an existing rule are not forwarded to promiscuous
interfaces. When the demux method is set to use both MAC and VLAN, then frames replication to
promiscuous interfaces is limited to the scope of the VLAN ID that is found in the frame (frames do not
cross VLAN boundaries).

Note, that if the demux method is not configured to use MAC address, frames are never replicated.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-3

12.2.4 Frames acceptance policy

The frames acceptance policy can be configured for each of the DPDMUX interfaces. Note, that the
acceptance policy is applied before a frame is matched against the demux database.

Valid acceptance policies are:

• Admit all – The DPDMUX interface accepts all valid Ethernet frames (tagged, untagged and
priority-tagged frames).

• Admit only tagged – The DPDMUX interface accepts only VLAN-tagged Ethernet frames.

• Admit only untagged – The DPDMUX interface accepts only untagged Ethernet frames and
priority-tagged Ethernet frames (VLAN ID = 0).

For each interface, the user may select an action to apply on unaccepted frames – either drop the frame or
redirect it to control interface.

Please refer to DPDMUX_IF_SET_ACCEPTED_FRAMES command.

12.3 DPDMUX command reference

This section contains detailed programming model of DPDMUX commands.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-4

12.3.1 DPDMUX_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPDMUX_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 272. DPDMUX_OPEN Command Description

The following table describes the command fields.
1-

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x80B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPDMUX_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 57. DPDMUX_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPDMUX_ID DPDMUX unique ID

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-5

12.3.2 DPDMUX_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 273. DPDMUX_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-6

12.3.3 DPDMUX_CREATE

This command creates and initializes an instance of DPDMUX according to the specified command
parameters. This command is not required for DPDMUX instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPDMUX ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 274. DPDMUX_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 8 7 0

0x08 – NUM_IFS MANIP METHOD

63 32 31 16 15 0

0x10 — MAX_VLAN_IDS MAX_MC_GROUPS MAX_DMAT_ENTRIES

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 METHOD Defines the operation method for the DPDMUX address table. select one of the supported values
below:
0x1 = DPDMUX_METHOD_C_VLAN_MAC: DPDMUX based on C-VLAN and MAC address
0x2 = DPDMUX_METHOD_MAC: DPDMUX based on MAC address
0x3 = DPDMUX_METHOD_C_VLAN: DPDMUX based on C-VLAN
0x4 = DPDMUX_METHOD_S_VLAN: DPDMUX based on S-VLAN

8-15 MANIP Required manipulation operation. select one of the supported values below:
0x0 = DPDMUX_MANIP_NONE: No manipulation on frames
0x1 = DPDMUX_MANIP_ADD_REMOVE_S_VLAN: Add S-VLAN on egress, remove it on ingress

16-31 NUM_IFS Number of interfaces (excluding the uplink interface)

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-7

All unspecified fields are reserved and must be cleared (set to zero)

Response structure

Figure 12-1. DPDMUX_CREATE Response Description

The following table describes the response fields.

0x10 0-15 MAX_DMAT_ENTRIES Maximum entries in DPDMUX address table
0- indicates default: 64 entries multiplied by number of interfaces

16-31 MAX_MC_GROUPS Number of multicast groups in DPDMUX table
When METHOD=DPDMUX_METHOD_C_VLAN_MAC, MAX_VLAN_IDS is taken into account,
because a new broadcast address is added into the replication table for each vlan id.
At limit, the number of vlan ids used should be the same as the configuration of MAX_VLAN_IDS.
0 - indicates default: 32 multicast groups

32-47 MAX_VLAN_IDS Maximum VLANs allowed in the system – relevant only for
METHOD=DPDMUX_METHOD_C_VLAN_MAC.
0 - indicates default of 16 VLANs.

0x18 0-63 OPTIONS DPDMUX options - combination of 'DPDMUX_OPT_<X>' flags.
Select any combination of supported options below:
bit 1: DPDMUX_OPT_BRIDGE_EN - Enable bridging between internal interfaces; allowed only if
METHOD is either DPDMUX_METHOD_C_VLAN_MAC or DPDMUX_METHOD_MAC.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — DPDMUX_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 12-1. DPDMUX_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPDMUX_ID DPDMUX unique ID

Offset Bits Name Description

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-8

12.3.4 DPDMUX_DESTROY

This command destroys the DPDMUX object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 275. DPDMUX_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9861 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPDMUX_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPDMUX_ID ID of the DPDMUX object to destroy

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-9

12.3.5 DPDMUX_ENABLE

Command structure

Figure 276. DPDMUX_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-10

12.3.6 DPDMUX_DISABLE

Command structure

Figure 277. DPDMUX_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-11

12.3.7 DPDMUX_IS_ENABLED

Command structure

Figure 278. DPDMUX_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-12

12.3.8 DPDMUX_RESET

Command structure

Figure 279. DPDMUX_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-13

12.3.9 DPDMUX_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 280. DPDMUX_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-14

12.3.10 DPDMUX_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 281. DPDMUX_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-15

Response structure

Figure 282. DPDMUX_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-16

12.3.11 DPDMUX_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 283. DPDMUX_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-17

12.3.12 DPDMUX_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 284. DPDMUX_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-18

Response structure

Figure 285. DPDMUX_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-19

12.3.13 DPDMUX_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 286. DPDMUX_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPDMUX_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-20

Response structure

Figure 287. DPDMUX_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask (bits 0-15), one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events for IRQ 0:
Bit 0: DPDMUX_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bits 16-31 contain the DPDMUX interface ID associated with the event.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-21

12.3.14 DPDMUX_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 288. DPDMUX_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-22

12.3.15 DPDMUX_GET_ATTRIBUTES

Command structure

Figure 289. DPDMUX_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-23

Response structure

Figure 290. DPDMUX_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 32 31 16 15 8 7 0

0x08 — MEM_SIZE NUM_IFS MANIP METHOD

63 0

0x10 —

63 32 31 0

0x18 — ID

63 0

0x20 OPTIONS

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 METHOD DPDMUX address table method. One of the supported values below:
1 = DPDMUX_METHOD_C_VLAN_MAC - DPDMUX based on C-VLAN and MAC
address
2 = DPDMUX_METHOD_MAC - DPDMUX based on MAC address
3 = DPDMUX_METHOD_C_VLAN - DPDMUX based on C-VLAN
4 = DPDMUX_METHOD_S_VLAN - DPDMUX based on S-VLAN

8-15 MANIP DPDMUX manipulation type. One of the supported values below:
0 = DPDMUX_MANIP_NONE - No manipulation on frames
1 = DPDMUX_MANIP_ADD_REMOVE_S_VLAN - Add S-VLAN on egress, remove it
on ingress

16-31 NUM_IFS Number of interfaces (excluding the uplink interface)

32-47 MEM_SIZE DPDMUX frame storage memory size

0x18 0-31 ID DPDMUX object ID

0x20 0-63 OPTIONS Configuration options (bitmap). Any combination of supported options below:
bit 1: DPDMUX_OPT_BRIDGE_EN - Enable bridging between internal interfaces

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-24

12.3.16 DPDMUX_SET_MAX_FRAME_LENGTH

Sets the maximum accepted frame length on all DPDMUX ports.

Command structure

Figure 291. DPDMUX_SET_MAX_FRAME_LENGTH Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — MAX_FRAME_LENGTH

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 MAX_FRAME_LENGTH The required maximum frame length

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-25

12.3.17 DPDMUX_IF_SET_ACCEPTED_FRAMES

Command structure

Figure 292. DPDMUX_IF_SET_ACCEPTED_FRAMES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A71 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 24 23 20 19 16 15 0

0x08 — UNACC
EPT_A

CT

TYPE IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID (0 for uplink, or 1-num_ifs);

16-19 TYPE Defines ingress accepted frames. Select one of the supported values below:
0x0 = DPDMUX_ADMIT_ALL - The device accepts VLAN tagged, untagged and
priority-tagged frames
0x1 = DPDMUX_ADMIT_ONLY_VLAN_TAGGED - The device discards untagged
frames or priority-tagged frames that are received on this interface
0x2 = DPDMUX_ADMIT_ONLY_UNTAGGED - Untagged frames or priority-tagged
frames received on this interface are accepted

20-23 UNACCEPT_ACT Defines action on frames not accepted. Select one of the supported values below:
0x0 = DPDMUX_ACTION_DROP: Drop un-accepted frames
0x1 = DPDMUX_ACTION_REDIRECT_TO_CTRL: Redirect un-accepted frames to
the control interface

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-26

12.3.18 DPDMUX_IF_GET_ATTRIBUTES

Command structure

Figure 293. DPDMUX_IF_GET_ATTR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A81 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID (0 for uplink, or 1-num_ifs);

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-27

Response structure

Figure 294. DPDMUX_IF_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A81 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 60 59 56 55 26 25 24 23 0

0x08 —

A
C

C
E

P
T

_F
R

A
M

E
_

T
Y

P
E

—

IS
_

D
E

FA
U

LT

EN —

63 32 31 0

0x10 — RATE

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 24 ENABLED Indicates if interface is enabled

25 IS__DEFAULT Indicates if configured as default interface

56-59 ACCEPT_FRAME_TYPE Indicates type of accepted frames for the interface. Select one of the supported values
below:
0x0 = DPDMUX_ADMIT_ALL - The device accepts VLAN tagged, untagged and
priority-tagged frames
0x1 = DPDMUX_ADMIT_ONLY_VLAN_TAGGED - The device discards untagged
frames or priority-tagged frames that are received on this interface
0x2 = DPDMUX_ADMIT_ONLY_UNTAGGED - Untagged frames or priority-tagged
frames received on this interface are accepted

0x10 0-31 RATE Configured interface rate (in bits per second)

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-28

12.3.19 DPDMUX_IF_ENABLE

Command structure

Figure 295. DPDMUX_IF_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A91 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-29

12.3.20 DPDMUX_IF_DISABLE

Command structure

Figure 296. DPDMUX_IF_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0AA1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-30

12.3.21 DPDMUX_IF_SET_DEFAULT

This command sets which interface should be default.

Command structure

Figure 297. DPDMUX_IF_SET_DEFAULT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B81 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID
If IF_ID = 0, there won’t be any default interface, even if prior to this, one was set up.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-31

12.3.22 DPDMUX_IF_GET_DEFAULT

Command structure

Figure 298. DPDMUX_IF_GET_DEFAULT Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B91 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-32

Response structure

DPDMUX_GET_API_VER

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xB91 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID The ID of the default interface

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-33

12.3.23 DPDMUX_IF_REMOVE_L2_RULE

Command structure

Figure 299. DPDMUX_IF_REMOVE_L2_RULE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 IF_ID

63 48 47 32 31 0

0x10 — VLAN_ID —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Destination interface ID

16-63 MAC_ADDR[0-5] MAC address

0x10 32-47 VLAN_ID VLAN ID

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-34

12.3.24 DPDMUX_IF_ADD_L2_RULE

Command structure

Figure 300. DPDMUX_IF_ADD_L2_RULE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B01 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 IF_ID

63 48 47 32 31 0

0x10 — VLAN_ID —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Destination interface ID

16-63 MAC_ADDR[0-5] MAC address

0x10 32-47 VLAN_ID VLAN ID

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-35

12.3.25 DPDMUX_IF_GET_COUNTER

Command structure

Figure 301. DPDMUX_IF_GET_COUNTER Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B21 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 24 23 16 15 0

0x08 — COUNTER_TYP
E

IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-23 COUNTER_TYPE Counter type

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-36

Response structure

Figure 302. DPDMUX_IF_GET_COUNTER Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B21 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 COUNTER

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-63 COUNTER Returned specific counter information

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-37

12.3.26 DPDMUX_UL_RESET_COUNTERS

Command structure

Figure 303. DPDMUX_IF_RESET_COUNTERS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A31 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-38

12.3.27 DPDMUX_IF_SET_LINK_CFG

Command structure

Figure 304. DPDMUX_IF_SET_LINK_CFG Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B31 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 32 31 0

0x10 — RATE

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

0x10 0-63 RATE Rate

0x18 0-31 OPTIONS Mask of available options; use ‘DPDMUX_LINK_OPT_<x>’ values

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-39

12.3.28 DPDMUX_IF_GET_LINK_STATE

Command structure

Figure 305. DPDMUX_IF_GET_LINK_STATE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B41 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-40

Response structure

Figure 306. DPDMUX_IF_GET_LINK_STATE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B41 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 33 32 31 0

0x08 — UP —

63 32 31 0

0x10 — RATE

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32 UP 0 - down, 1 - up

0x10 0-31 RATE Rate

0x18 0-63 OPTIONS Mask of available options; use ‘DPDMUX_LINK_OPT_<x>’ values

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-41

12.3.29 DPDMUX_GET_API_VERSION

Command structure

Figure 307. DPDMUX_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-42

Response structure

Figure 308. DPDMUX_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-43

12.3.30 DPDMUX_SET_CUSTOM_KEY

This API is used to set a custom classification key. It is available only for DPDMUX instances, created
with DPDMUX_METHOD_CUSTOM. This API must be called before populating the classification
table using DPDMUX_ADD_CUSTOM_CLS_ENTRY command.
All calls to DPDMUX_SET_CUSTOM_KEY remove the existing classification entries that may have
been added previously using the DPDMUX_ADD_CUSTOM_CLS_ENTRY command.

Command structure

Figure 309. DPDMUX_SET_CUSTOM_KEY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B51 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 KEY_CFG_IOVA

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x38 0-63 KEY_CFG_IOVA I/O virtual address of a configuration structure set up using
DPKG_PREPARE_KEY_CFG.. Maximum key size is 24 bytes.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-44

12.3.31 DPDMUX_ADD_CUSTOM_CLS_ENTRY

This API is used to add a custom classification entry. It is available for only DPDMUX instances, created
with DPDMUX_METHOD_CUSTOM. Before calling this function, a classification key composition
rule must be set up using DPDMUX_SET_CUSTOM_KEY.

Command structure

Figure 310. DPDMUX_ADD_CUSTOM_CLS_ENTRY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B61 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 32 31 24 23 0

0x08 DEST_IF — KEY_SIZE —

63 0

0x10 KEY_IOVA

63 0

0x18 MASK_IOVA

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 24-31 KEY_SIZE Size, in bytes, of the look-up value. This must match the size of the look-up key
defined using DPDMUX_SET_CUSTOM_KEY, otherwise the entry will never be hit.

48–63 DEST_IF Interface to forward the frames to. Port numbering is similar to the one used to
connect interfaces:
• 0 is the uplink port
• all others are downlink ports.

0x10 0-63 KEY_IOVA I/O virtual address of buffer storing the look-up value.

0x18 0-63 MASK_IOVA I/O virtual address of the mask used for TCAM classification.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-45

12.3.32 DPDMUX_REMOVE_CUSTOM_CLS_ENTRY

This API is used to remove a custom classification entry. It is available only for DPDMUX instances,
created with DPDMUX_METHOD_CUSTOM. This API is also used to remove the previously inserted
classification entries using DPDMUX_ADD_CUSTOM_CLS_ENTRY.

Command structure

Figure 311. DPDMUX_REMOVE_CUSTOM_CLS_ENTRY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0B71 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 32 31 24 23 0

0x08 — KEY_SIZE —

63 0

0x10 KEY_IOVA

63 0

0x18 MASK_IOVA

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 24-31 KEY_SIZE Size, in bytes, of the look-up value. This must match the size of the look-up key
defined using DPDMUX_SET_CUSTOM_KEY, otherwise the entry will never be hit.

0x10 0-63 KEY_IOVA I/O virtual address of buffer storing the look-up value.

0x18 0-63 MASK_IOVA I/O virtual address of the mask used for TCAM classification.

DPDMUX: Data Path Network DeMux

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 12-46

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-1

Chapter 13 12/2017DPSW: Data Path L2 Switch
The DPSW object provides the functionality of a general layer-2 switch. It receives packets on one port
and sends them on another. It can also send packets out on multiple ports for the purposes of broadcast,
multicast, or mirroring.

13.1 DPSW features

The following list summarizes the DPSW main features and capabilities:

• Supports 802.1Q switching:

— Forwarding based on (outer) VLAN and MAC address

— Forwarding of L2 unicast, multicast and broadcast frames

• Supports connections to DPMAC and DPNI

• Supports separate MAC table (FDB) per VLAN

• Supports sharing of FDB between multiple VLANs

• Supports flooding (configuration per VLAN)

• Supports three address learning modes, selected per FDB:

— Automatic learning by the switch hardware

— Secure learning by host GPP software

— Non-secure learning by host GPP software

• Supports port-based VLAN – definition of default VLAN per interface

• Supports untagged frames transmission (configuration per VLAN/interface)

• Supports untagged frames admittance:

— Admit tagged and untagged frames

— Admit only tagged frames

• Supports VLAN filtering – dropping frames with unregistered VLANs

• Supports trunk interface – accepting all VLANs (configurtion per interface)

• Supports two custom TPIDs per switch

• Supports interface mirroring, with option to mirror only specific VLAN

— One mirroring destination interface per VLAN

• Supports STP/RSTP/MSTP marking (Spanning Tree Protocol handled by host GPP software)

• Supports QoS capabilities:

— Traffic class selection based on DSCP or 802.1P

— Supports transmission bandwidth allocation per traffic class

— Supports transmission rate configuration per interface

— Supports WRED on ingress (configuration per traffic class)

• Supports policy-based forwarding on ingress:

— TCAM lookup with keys formed of L2-L4 fields

• Supports forwarding of selective protocols to a control interface, for example:

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-2

— Ethernet monitoring packets (IEEE 802.3 clause 57, IEEE 802.1ag, ITU-T Y.1731)

— Multicast groups management packets (IGMP/MLD)

— Spanning Tree Protocol packets (BPDU)

• Supports statistics counters per interface

• Supports link state indication per interface

• Supports interrupts to host GPP software:

— Link change events (per interface)

• Supports switch enable, disable, and reset operations

• Supports interface enable and disable operations

13.2 DPSW functional description

13.2.1 Creating L2 switch instance

The DPSW may be declared in the DPL (Data Path Layout) file or created dynamically by submitting
explicit DPSW_CREATE command to the Management Complex. The DPSW has only one mandatory
input for creating a working L2 switch instance, and that is the requested number of switch interfaces.
Other configuration options are possible but have default settings for simplicity.

The default operation mode for a DPSW (unless requetsed otherqise in DPSW creation) is with a default
VLAN (VID = 1), a single Forwardimg Data Base (FDB 0) and with automatic learning enabled in
hardware. This implies that the switch is fully functional after creation, and user only needs to connect
each of its interfaces to either DPMAC objects or DPNI objects. Connections can be made initially in the
DPL or later through DPRC object.

13.2.2 VLAN configuration

The switch starts up with VLAN 1 being configured as default VLAN. All untagged traffic received on
any switch port is classified to VLAN 1 and all frames classified in VLAN 1 are sent out untagged on all
ports.

The DPSW allows to add (and remove) other VLANs at any time. Each VLAN can include any subset of
the switch ports.

13.2.3 Learning modes

The default configuration of the switch enables automatic learning by the switch hardware. It is possible
to set Secure or Unsecure CPU learning modes instead of automatic learning. The leraning mode is
configurable per FDB.

The table below summarizes the differences between the two CPU learning modes. These modes require
that one of the switch interfaces is defined as control interface.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-3

Note that turning off automatic learning does not remove the learned entries. Therefore, learning should
be disabled before injecting any traffic if the intent is to establish a static topology.

13.2.4 FDB configuration

The default switch configuration does not include any static entries. It is possible to add (and remove)
static rules for forwarding to different interfaces based on their MAC addresses.

The user may select to use a separate FDB per VLAN or decide to share FDBs between different VLANs.

Learning Mode
SMAC
known

DMAC
known

Action

Non-Secure
CPU learning

V V Forward to DMAC destination

- V Forward to DMAC destination + control interface

V - Forward to list of flooding-enabled interfaces

- - Forward to list of flooding-enabled interfaces + control interface

Secure
CPU learning

V V Forward to DMAC destination

- V Forward to control interface

V - Forward to list of flooding-enabled interfaces

- - Forward to control interface

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-4

13.3 DPSW command reference

This section contains detailed programming model of DPSW commands.

13.3.1 DPSW_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPSW_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 312. DPSW_OPEN Command Description

The following table describes the command fields.
1-

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8021 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 DPSW_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 58. DPSW_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPSW_ID DPSW unique ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-5

13.3.2 DPSW_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 313. DPSW_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-6

13.3.3 DPSW_CREATE

This command creates and initializes an instance of DPSW according to the specified command
parameters. This command is not required for DPSW instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPSW ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 314. DPSW_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 36 35 32 31 24 23 16 15 0

0x08 — COMPONENT

_TYPE

MAX_METERS_
PER_IF

MAX_FDBS NUM_IFS

63 48 47 32 31 16 15 0

0x10 MAX_FDB_MC_GROUPS FDB_AGING_TIME MAX_FDB_ENTRIES MAX_VLANS

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 59. DPSW_CREATE Command Field Descriptions1

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 NUM_IFS Number of external and internal interfaces

16-23 MAX_FDBS Maximum number of FDB’s; 0 - indicates default 16

24-31 MAX_METERS_PER_IF Number of meters per interface

32-35 COMPONENT_TYPE Type of component C_VLAN or VLAN
0 – for C_VLAN
1 – for VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-7

Response structure

Figure 13-1. DPSW_CREATE Response Description

The following table describes the response fields.

0x10 0-15 MAX_VLANS Maximum number of VLAN’s; 0 - indicates default 16

16-31 MAX_FDB_ENTRIES Number of FDB entries for default FDB table;
0 - indicates default 1024 entries.

32-47 FDB_AGING_TIME Default FDB aging time for default FDB table;
0 - indicates default 300 seconds

48-63 MAX_FDB_MC_GROUPS Number of multicast groups in each FDB table;
0 - indicates default 32

0x18 0-63 OPTIONS Enable/Disable DPSW features (bitmap). Select any combination of supported errors
below:
bit 0: DPSW_OPT_FLOODING_DIS - Disable flooding
bit 1: DPSW_OPT_BROADCAST_DIS - Disable Broadcast
bit 2: DPSW_OPT_MULTICAST_DIS - Disable Multicast
bit 3: DPSW_OPT_TC_DIS - Disable Traffic classes
bit 4: DPSW_OPT_CONTROL - Support control interface

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPSW_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 13-1. DPSW_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPSW_ID DPSW unique ID

Table 59. DPSW_CREATE Command Field Descriptions1

Offset Bits Name Description

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-8

13.3.4 DPSW_DESTROY

This command destroys the DPSW object and releases all its resources. It must be invoked in the software
context that created the object. The caller must provide the object id and the authentication token of the
parent container that created the object. Note that the object can be assigned to another container and
sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 315. DPSW_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9821 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPSW_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPSW_ID ID of the DPSW object to destroy

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-9

13.3.5 DPSW_ENABLE

Command structure

Figure 316. DPSW_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-10

13.3.6 DPSW_DISABLE

Command structure

Figure 317. DPSW_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-11

13.3.7 DPSW_IS_ENABLED

Command structure

Figure 318. DPSW_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-12

Response structure

Figure 319. DPSW_IS_ENABLED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-13

13.3.8 DPSW_RESET

Command structure

Figure 320. DPSW_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-14

13.3.9 DPSW_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 321. DPSW_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-15

13.3.10 DPSW_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 322. DPSW_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-16

Response structure

Figure 323. DPSW_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-17

13.3.11 DPSW_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 324. DPSW_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-18

13.3.12 DPSW_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 325. DPSW_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-19

Response structure

Figure 326. DPSW_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-20

13.3.13 DPSW_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 327. DPSW_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPSW_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-21

Response structure

Figure 328. DPSW_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask (bits 0-15), one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events for IRQ 0:
Bit 0: DPDMUX_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bits 16-31 contain the DPDMUX interface ID associated with the event.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-22

13.3.14 DPSW_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 329. DPSW_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63tl 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-23

13.3.15 DPSW_GET_ATTRIBUTES

Command structure

Figure 330. DPSW_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-24

Response structure

Figure 331. DPSW_GET_ATTRIBUTES Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 32 31 24 23 16 15 0

0x08 NUM_VLANS MAX_VLANS NUM_FDBS MAX_FDBS NUM_IFS

63 32 31 16 15 0

0x10 ID FDB_AGING_TIME MAX_FDB_ENTRIES

63 44 43 40 39 32 31 16 15 0

0x18 — COMPONENT_
TYPE

MAX_METERS_
PER_IF

MAX_FDB_MC_GROUPS MEM_SIZE

63 0

0x20 OPTIONS

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 NUM_IFS Number of interfaces

16-23 MAX_FDBS Maximum Number of FDBs

24-31 NUM_FDBS Current number of FDBs

32-47 MAX_VLANS Maximum number of VLANs

48-63 NUM_VLANS Current number of VLANs

0x10 0-15 MAX_FDB_ENTRIES Number of FDB entries for default FDB table;
0 - indicates default 1024 entries.

16-31 FDB_AGING_TIME Default FDB aging time for default FDB table;
0 - indicates default 300 seconds

32–63 ID DPSW object ID

0x18 0-15 MEM_SIZE DPSW frame storage memory size

16-31 MAX_FDB_MC_GROUPS Number of multicast groups in each FDB table;
0 - indicates default 32

32-39 MAX_METERS_PER_IF Number of meters per interface

40-43 COMPONENT_TYPE Type of component C_VLAN or VLAN
0 – for C_VLAN
1 – for VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-25

All unspecified fields are reserved and must be cleared (set to zero)

13.3.16 DPSW_SET_REFLECTION_IF

Command structure

Figure 332. DPSW_SET_REFLECTION_IF Command Description

All unspecified fields are reserved and must be cleared (set to zero)

0x20 0-63 OPTIONS Enable/Disable DPSW features.
bit 0: DPSW_OPT_FLOODING_DIS - Disable flooding
bit 1: DPSW_OPT_BROADCAST_DIS - Disable Broadcast
bit 2: DPSW_OPT_MULTICAST_DIS - Disable Multicast
bit 3: DPSW_OPT_TC_DIS - Disable Traffic classes
bit 4: DPSW_OPT_CONTROL - Support control interface

0x28 0-7 MAX_METERS_PER_IF Number of meters per interface

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0221 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

Offset Bits Name Description

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-26

13.3.17 DPSW_IF_SET_FLOODING

Command structure

Figure 333. DPSW_IF_SET_FLOODING Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0471 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 17 16 15 0

0x08 — EN IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16 EN 1 - enable, 0 - disable

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-27

13.3.18 DPSW_IF_SET_BROADCAST

Command structure

Figure 334. DPSW_IF_SET_BROADCAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0481 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 19 16 15 0

0x08 — EN IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16 EN 1 - enable, 0 - disable

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-28

13.3.19 DPSW_IF_SET_MULTICAST

Command structure

Figure 335. DPSW_IF_SET_MULTICAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0491 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 17 16 15 0

0x08 — EN IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16 EN 1 - enable, 0 - disable

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-29

13.3.20 DPSW_IF_SET_TCI

Command structure

Figure 336. DPSW_IF_SET_TCI Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0301 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 29 28 27 16 15 0

0x08 — PCP DE
I

VLAN_ID IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-27 VLAN_ID VLAN Identifier (VID): a 12-bit field specifying the VLAN
to which the frame belongs. The hexadecimal values
of 0x000 and 0xFFF are reserved;
all other values may be used as VLAN identifiers, allowing up
to 4,094 VLANs

28 DEI Drop Eligible Indicator (DEI): a 1-bit field. May be used
separately or in conjunction with PCP to indicate frames
eligible to be dropped in the presence of congestion

29-31 PCP Priority Code Point (PCP): a 3-bit field which refers
to the IEEE 802.1p priority

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-30

13.3.21 DPSW_IF_GET_TCI

Command structure

Figure 337. DPSW_IF_GET_TCI Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x04A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-31

Response structure

Figure 338. DPSW_IF_GET_TCI Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x04A1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 40 39 32 31 16 15 0

0x08 — PCP DEI VLAN_ID —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN Identifier (VID): a 12-bit field specifying the VLAN
to which the frame belongs. The hexadecimal values
of 0x000 and 0xFFF are reserved;
all other values may be used as VLAN identifiers, allowing up
to 4,094 VLANs

32-39 DEI Drop Eligible Indicator (DEI): a 1-bit field. May be used
separately or in conjunction with PCP to indicate frames
eligible to be dropped in the presence of congestion

40-47 PCP Priority Code Point (PCP): a 3-bit field which refers
to the IEEE 802.1p priority

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-32

13.3.22 DPSW_IF_SET_STP

Command structure

Figure 339. DPSW_IF_SET_STP Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0311 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 36 35 32 31 16 15 0

0x08 — STATE VLAN_ID IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-31 VLAN_ID VLAN ID STP state

32-35 STATE STP state. Select one of the supported values below:
0x0 = DPSW_STP_STATE_BLOCKING - Blocking state
0x1 = DPSW_STP_STATE_LISTENING - Listening state
0x2 = DPSW_STP_STATE_LEARNING - Learning state
0x3 = DPSW_STP_STATE_FORWARDING - Forwarding state

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-33

13.3.23 DPSW_IF_SET_ACCEPTED_FRAMES

Command structure

Figure 340. DPSW_IF_SET_ACCEPTED_FRAMES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0321 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 24 23 20 19 16 15 0

0x08 —

U
A

C
C

E
P

T
_

A
C

T

TYPE IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-19 TYPE Defines ingress accepted frames. Select one of the supported values below:
0x1 = DPSW_ADMIT_ALL - The device accepts VLAN tagged, untagged and priority
tagged frames
0x3 = DPSW_ADMIT_ONLY_VLAN_TAGGED - The device discards untagged frames
or Priority-Tagged frames received on this interface.

20-23 UNACCEPT_ACT When a frame is not accepted, it may be discarded or redirected
to control interface depending on this mode. Select one of the supported values below:
0x0 = DPSW_ACTION_DROP - Drop frame
0x1 = DPSW_ACTION_REDIRECT_TO_CTRL - Redirect frame to control interface

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-34

13.3.24 DPSW_SET_IF_ACCEPT_ALL_VLAN

Command structure

Figure 341. DPSW_SET_IF_ACCEPT_ALL_VLAN Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0331 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 —

A
C

C
E

P
T

_
A

L
L

IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16 ACCEPT_ALL Accept or drop frames having different VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-35

13.3.25 DPSW_IF_GET_COUNTER

Command structure

Figure 342. DPSW_IF_GET_COUNTER Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0341 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 21 20 16 15 0

0x08 — TYPE IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-20 TYPE Counter type. Select one of the supported values below:
0x0 = DPSW_CNT_ING_FRAME- Counts ingress frames
0x1 = DPSW_CNT_ING_BYTE - Counts ingress bytes
0x2 = DPSW_CNT_ING_FLTR_FRAME - Counts filtered ingress frames
0x3 = DPSW_CNT_ING_FRAME_DISCARD - Counts discarded ingress frame
0x4 = DPSW_CNT_ING_MCAST_FRAME- Counts ingress multicast frames
0x5 = DPSW_CNT_ING_MCAST_BYTE- Counts ingress multicast bytes
0x6 = DPSW_CNT_ING_BCAST_FRAME- Counts ingress broadcast frames
0x7 = DPSW_CNT_ING_BCAST_BYTES - Counts ingress broadcast bytes
0x8 = DPSW_CNT_EGR_FRAME - Counts egress frames
0x9 = DPSW_CNT_EGR_BYTE- Counts eEgress bytes
0xa =DPSW_CNT_EGR_FRAME_DISCARD - Counts discarded egress frames

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-36

Response structure

Figure 343. DPSW_IF_GET_COUNTER Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0341 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 COUNTER

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-63 COUNTER counter return value

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-37

13.3.26 DPSW_IF_SET_COUNTER

Command structure

Figure 344. DPSW_IF_SET_COUNTER Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0351 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 21 20 16 15 0

0x08 — TYPE IF_ID

63 0

0x10 COUNTER

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-20 TYPE Counter type. Select one of the supported values below:
0x0 = DPSW_CNT_ING_FRAME- Counts ingress frames
0x1 = DPSW_CNT_ING_BYTE - Counts ingress bytes
0x2 = DPSW_CNT_ING_FLTR_FRAME - Counts filtered ingress frames
0x3 = DPSW_CNT_ING_FRAME_DISCARD - Counts discarded ingress frame
0x4 = DPSW_CNT_ING_MCAST_FRAME- Counts ingress multicast frames
0x5 = DPSW_CNT_ING_MCAST_BYTE- Counts ingress multicast bytes
0x6 = DPSW_CNT_ING_BCAST_FRAME- Counts ingress broadcast frames
0x7 = DPSW_CNT_ING_BCAST_BYTES - Counts ingress broadcast bytes
0x8 = DPSW_CNT_EGR_FRAME - Counts egress frames
0x9 = DPSW_CNT_EGR_BYTE- Counts eEgress bytes
0xa =DPSW_CNT_EGR_FRAME_DISCARD - Counts discarded egress frames

0x10 0-63 COUNTER New counter value

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-38

13.3.27 DPSW_IF_SET_TX_SELECTION

Command structure

Figure 345. DPSW_IF_SET_TX_SELECTION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0361 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 19 18 16 15 0

0x08 — PRIORI
TY_SE
LECTO

R

IF_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 TC_ID7 TC_ID6 TC_ID5 TC_ID4 TC_ID3 TC_ID2 TC_ID1 TC_ID

63 51 48 47 32 31 20 19 16 15 0

0x18 — TC_SH
ED1_M

ODE

TC_SCHED1_DELTA_BANDWIDTH — TC_SH
ED0_M

ODE

TC_SCHED0_DELTA_BANDWIDTH

63 51 48 47 32 31 20 19 16 15 0

0x20 — TC_SH
ED3_M

ODE

TC_SCHED3_DELTA_BANDWIDTH — TC_SH
ED2_M

ODE

TC_SCHED2_DELTA_BANDWIDTH

63 51 48 47 32 31 20 19 16 15 0

0x28 — TC_SH
ED5_M

ODE

TC_SCHED5_DELTA_BANDWIDTH — TC_SH
ED4_M

ODE

TC_SCHED4_DELTA_BANDWIDTH

63 51 48 47 32 31 20 19 16 15 0

0x30 — TC_SH
ED7_M

ODE

TC_SCHED7_DELTA_BANDWIDTH — TC_SH
ED6_M

ODE

TC_SCHED6_DELTA_BANDWIDTH

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-18 PRIORITY_SELECTOR Source for user priority regeneration. Select one of the supported values below:
0x0 = DPSW_UP_PCP - Priority Code Point (PCP): a 3-bit field which refers to the
IEEE 802.1p priority.
0x1 = DPSW_UP_PCP_DEI - Priority Code Point (PCP) combined with Drop Eligible
Indicator (DEI)
0x2 = DPSW_UP_DSCP - Differentiated services Code Point (DSCP): 6 bit field from
IP header

0x10 0-63 TC_ID[0-7] The Regenerated User priority that the incoming
User Priority is mapped to for this interface

0x18-
0x30

0-15/
32-47

TC_SHED[0-7]_DELTA_BANDWIDTH weighted Bandwidth in range from 100 to 10000

16-19/
47-51

TC_SCHED[0-7]_MODE Strict or weight-based scheduling

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-39

13.3.28 DPSW_IF_ADD_REFLECTION

Command structure

Figure 346. DPSW_IF_ADD_REFLECTION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0371 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 34 33 32 31 16 15 0

0x08 — FILTER VLAN_ID IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-31 VLAN_ID VLAN ID to reflect;
valid only when filter type is DPSW_INGRESS_VLAN

32-33 FILTER Filter type for frames to reflect. Select one of the supported values below:
0x0 = DPSW_REFLECTION_FILTER_INGRESS_ALL - Reflect all frames
0x1 = DPSW_REFLECTION_FILTER_INGRESS_VLAN - Reflect only frames belong
to particular VLAN defined by vid parameter

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-40

13.3.29 DPSW_IF_REMOVE_REFLECTION

Command structure

Figure 347. DPSW_IF_REMOVE_REFLECTION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0381 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 34 33 32 31 16 15 0

0x08 — FILTER VLAN_ID IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-31 VLAN_ID VLAN ID to reflect;
valid only when filter type is DPSW_INGRESS_VLAN

32-33 FILTER Filter type for frames to reflect. Select one of the supported values below:
0x0 = DPSW_REFLECTION_FILTER_INGRESS_ALL - Reflect all frames
0x1 = DPSW_REFLECTION_FILTER_INGRESS_VLAN - Reflect only frames belong
to particular VLAN defined by vid parameter

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-41

13.3.30 DPSW_IF_SET_FLOODING_METERING

Command structure

Figure 348. DPSW_IF_SET_FLOODING_METERING Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0391 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 28 27 24 23 16 15 0

0x08 CIR UNITS MODE — IF_ID

63 32 31 0

0x10 CBS EIR

63 32 31 0

0x18 — EBS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

24-27 MODE Metering modes. Select one of the supported values below:
0x0 = DPSW_METERING_MODE_NONE: metering disabled
0x1 = DPSW_METERING_MODE_RFC2698: RFC 2698
0x2 = DPSW_METERING_MODE_RFC4115: RFC 4115

28-31 UNITS Metering count. Select one of the supported values below:
0x0 = DPSW_METERING_UNIT_BYTES: count in byte units
0x1 = DPSW_METERING_UNIT_FRAMES: count in frame units

32-63 CIR Committed information rate (CIR) in bits/s

0x10 0-31 EIR Excess information rate (EIR) in bits/s

32-63 CBS Committed burst size (CBS) in bytes

0x18 0-31 EBS Excess bust size (EBS) in bytes

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-42

13.3.31 DPSW_IF_SET_METERING

Command structure

Figure 349. DPSW_IF_SET_METERING Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x03A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 28 27 24 23 16 15 0

0x08 CIR UNITS MODE TC_ID IF_ID

63 32 31 0

0x10 CBS EIR

63 32 31 0

0x18 — EBS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-23 TC_ID Traffic class ID

24-27 MODE Metering modes. Select one of the supported values below:
0x0 = DPSW_METERING_MODE_NONE: metering disabled
0x1 = DPSW_METERING_MODE_RFC2698: RFC 2698
0x2 = DPSW_METERING_MODE_RFC4115: RFC 4115

28-31 UNITS Metering count. Select one of the supported values below:
0x0 = DPSW_METERING_UNIT_BYTES: count in byte units
0x1 = DPSW_METERING_UNIT_FRAMES: count in frame units

32-63 CIR Committed information rate (CIR) in bits/s

0x10 0-31 EIR Excess information rate (EIR) in bits/s

32-63 CBS Committed burst size (CBS) in bytes

0x18 0-31 EBS Excess bust size (EBS) in bytes

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-43

13.3.32 DPSW_IF_SET_EARLY_DROP

Command structure

Figure 350. DPSW_IF_SET_EARLY_DROP Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x03B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 8 7 0

0x08 IF_ID TC_ID —

63 0

0x10 EARLY_DROP_IOVA

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 8-15 TC_ID Traffic class ID

16-31 IF_ID Interface ID

0x10 0-63 EARLY_DROP_IOVA I/O virtual address of 64 bytes;
Must be cacheline-aligned and DMA-able memory

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-44

Extension structure

Figure 351. DPSW_IF_SET_EARLY_DROP Extension Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

0x00 TAIL_DROP_THRESHOLD — U
N

IT
S

D
R

O
P

_M
O

D
E

63 8 7 0

0x08 GREEN_DROP_
PROBABILITY

63 0

0x10 GREEN_MAX_THRESHOLD

63 0

0x18 GREEN_MIN_THRESHOLD

63 8 7 0

0x20 YELLOW_DROP
_PROBABILITY

63 0

0x28 YELLOW_MAX_THRESHOLD

63 0

0x30 YELLOW_MIN_THRESHOLD

Offset Bits Name Description

0x00 0-1 DROP_MODE Drop mode

2-3 UNITS Count units

32-63 TAIL_DROP_THRESHOLD Tail drop threshold

0x08 0-7 GREEN_DROP_PROBABILITY probability for green WRED that a packet will be discarded (1-100,
associated with the maximum threshold)

0x10 0-63 GREEN_MAX_THRESHOLD maximum threshold for green WRED hat packets may be discarded. Above this
threshold all packets are discarded; must be less than 2^39; approximated to be
expressed as (x+256)*2^(y-1) due to HW implementation.

0x18 0-63 GREEN_MIN_THRESHOLD minimum threshold for green WRED that packets may be discarded at

0x20 0-7 YELLOW_DROP_PROBABILITY probability for yellow WRED that a packet will be discarded (1-100,
associated with the maximum threshold)

0x28 0-63 YELLOW_MAX_THRESHOLD maximum threshold for yellow WRED hat packets may be discarded. Above this
threshold all packets are discarded; must be less than 2^39; approximated to be
expressed as (x+256)*2^(y-1) due to HW implementation.

0x30 0-63 YELLOW_MIN_THRESHOLD minimum threshold for yellow WRED that packets may be discarded at

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-45

13.3.33 DPSW_ADD_CUSTOM_TPID

Command structure

Figure 352. DPSW_ADD_CUSTOM_TPID Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0241 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 TPID —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 TPID An additional tag protocol identifier

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-46

13.3.34 DPSW_REMOVE_CUSTOM_TPID

Command structure

Figure 353. DPSW_REMOVE_CUSTOM_TPID Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0261 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 TPID —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 TPID An additional tag protocol identifier

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-47

13.3.35 DPSW_IF_ENABLE

Command structure

Figure 354. DPSW_IF_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x03D1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-48

13.3.36 DPSW_IF_DISABLE

Command structure

Figure 355. DPSW_IF_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x03E1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-49

13.3.37 DPSW_IF_GET_ATTRIBUTES

Command structure

Figure 356. DPSW_IF_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0421 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-50

Response structure

Figure 357. DPSW_IF_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0421 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 32 31 24 23 16 15 7 6 5 4 3 0

0x08 — QDID — NUM_TCS —

A
C

C
E

P
T

_
A

L
L

_
V

L
A

N

E
N

A
B

LE
D

—

A
D

M
IT

_
U

N
TA

G
G

E
D

63 32 31 0

0x10 — OPTIONS

63 32 31 0

0x18 — RATE

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-3 ADMIT_UNTAGGED When set to 'DPSW_ADMIT_ONLY_VLAN_TAGGED', the device discards
untagged frames or priority-tagged frames received on this
interface;
When set to 'DPSW_ADMIT_ALL', untagged frames or priority-
tagged frames received on this interface are accepted

5 ENABLED Indicates if interface is enabled

6 ACCEPT_ALL_VLAN The device discards/accepts incoming frames
for VLANs that do not include this interface

16-23 NUM_TCS Number of traffic classes

32-47 QDID QDID value to use when transmitting control frames through this interface

0x10 0-32 OPTIONS Interface configuration options (bitmap)

0x18 0-32 RATE Transmit rate in bits per second

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-51

13.3.38 DPSW_IF_SET_MAX_FRAME_LENGTH

Command structure

Figure 358. DPSW_IF_SET_MAX_FRAME_LENGTH Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0441 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — FRAME_LENGTH IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

16-31 FRAME_LENGTH Maximum Frame Length

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-52

13.3.39 DPSW_IF_SET_LINK_CFG

Command structure

Figure 359. DPSW_IF_SET_LINK_CFG Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x04C1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 32 31 0

0x10 — RATE

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

0x10 0-32 RATE Rate

0x18 0-63 OPTIONS Mask of available options; use ‘DPSW_LINK_OPT_<x> values

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-53

13.3.40 DPSW_IF_GET_LINK_STATE

Command structure

Figure 360. DPSW_IF_GET_LINK_STATE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0461 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-54

Response structure

Figure 361. DPSW_IF_GET_LINK_STATE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0461 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — UP —

63 32 31 0

0x10 — RATE

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32 UP 0 - down, 1- up

0x10 0-32 RATE Rate

0x18 0-63 OPTIONS Mask of available options; use ‘DPSW_LINK_OPT_<x>’ values

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-55

13.3.41 DPSW_IF_GET_MAX_FRAME_LENGTH

Command structure

Figure 362. DPSW_IF_GET_MAX_FRAME_LENGTH Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0451 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — IF_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IF_ID Interface ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-56

Response structure

Figure 363. DPSW_IF_GET_MAX_FRAME_LENGTH Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0451 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — FRAME_LENGTH —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 FRAME_LENGTH Maximum Frame Length

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-57

13.3.42 DPSW_VLAN_ADD

Command structure

Figure 364. DPSW_VLAN_ADD Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0601 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID FDB_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Data base

16-31 VLAN_ID VLAN ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-58

13.3.43 DPSW_VLAN_ADD_IF

Command structure

Figure 365. DPSW_VLAN_ADD_IF Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0611 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID —

63 0

0x10 IF_ID (Bitmap)

63 0

0x18 IF_ID (Bitmap)

63 0

0x20 IF_ID (Bitmap)

63 0

0x28 IF_ID (Bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN ID

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-59

13.3.44 DPSW_VLAN_ADD_IF_UNTAGGED

Command structure

Figure 366. DPSW_VLAN_ADD_IF_UNTAGGED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0621 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID —

63 0

0x10 IF_ID (Bitmap)

63 0

0x18 IF_ID (Bitmap)

63 0

0x20 IF_ID (Bitmap)

63 0

0x28 IF_ID (Bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN ID

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-60

13.3.45 DPSW_VLAN_ADD_IF_FLOODING

Command structure

Figure 367. DPSW_VLAN_ADD_IF_FLOODING Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0631 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID —

63 0

0x10 IF_ID (bitmap)

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN ID

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-61

13.3.46 DPSW_VLAN_REMOVE_IF

Command structure

Figure 368. DPSW_VLAN_REMOVE_IF Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0641 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID —

63 0

0x10 IF_ID (bitmap)

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN ID

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-62

13.3.47 DPSW_VLAN_REMOVE_IF_UNTAGGED

Command structure

Figure 369. DPSW_VLAN_REMOVE_IF_UNTAGGED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0651 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID —

63 0

0x10 IF_ID (bitmap)

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN ID

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-63

13.3.48 DPSW_VLAN_REMOVE_IF_FLOODING

Command structure

Figure 370. DPSW_VLAN_REMOVE_IF_FLOODING Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0661 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID —

63 0

0x10 IF_ID (bitmap)

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN ID

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-64

13.3.49 DPSW_VLAN_REMOVE

Command structure

Figure 371. DPSW_VLAN_REMOVE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0671 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 VLAN_ID VLAN ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-65

13.3.50 DPSW_VLAN_GET_ATTRIBUTES

Command structure

Figure 372. DPSW_VLAN_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x06B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — VLAN_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VLAN_ID VLAN ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-66

Response structure

Figure 373. DPSW_VLAN_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x06B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 48 47 32 31 16 15 0

0x10 NUM_FLOODING_IFS NUM_UNTAGGED_IFS NUM_IFS FDB_ID

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08

0x10 0-15 FDB_ID Associated FDB ID

16-31 NUM_IFS Number of interfaces

32-47 NUM_UNTAGGED_IFS Number of untagged interfaces

48-63 NUM_FLOODING_IFS Number of flooding interfaces

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-67

13.3.51 DPSW_VLAN_GET_IF

Command structure

Figure 374. DPSW_VLAN_GET_IF Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0681 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — VLAN_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VLAN_ID VLAN ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-68

Response structure

Figure 375. DPSW_VLAN_GET_IF Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0681 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — NUM_IFS —

63 0

0x10 IF_ID (bitmap)

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 NUM_IFS The number of interfaces that are
assigned to the egress list for this VLAN

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-69

13.3.52 DPSW_VLAN_GET_IF_FLOODING

Command structure

Figure 376. DPSW_VLAN_GET_IF_FLOODING Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0691 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VLAN_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VLAN_ID VLAN ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-70

Response structure

Figure 377. DPSW_VLAN_GET_IF_FLOODING Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0691 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — NUM_IFS —

63 0

0x10 IF_ID (bitmap)

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 NUM_IFS The number of interfaces that are
assigned to the egress list for this VLAN

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-71

13.3.53 DPSW_VLAN_GET_IF_UNTAGGED

Command structure

Figure 378. DPSW_VLAN_GET_IF_UNTAGGED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x06A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — VLAN_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VLAN_ID VLAN ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-72

Response structure

Figure 379. DPSW_VLAN_GET_IF_UNTAGGED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x06A1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — NUM_IFS —

63 0

0x10 IF_ID (bitmap)

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 NUM_IFS The number of interfaces that are
assigned to the egress list for this VLAN

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-73

13.3.54 DPSW_FDB_ADD

Command structure

Figure 380. DPSW_FDB_ADD Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0821 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 32 31 0

0x08 NUM_FDB_ENTRIES FDB_AGING_TIME —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-47 FDB_AGING_TIME Aging time in seconds

48-63 NUM_FDB_ENTRIES Number of FDB entries

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-74

Response structure

Figure 381. DPSW_FDB_ADD Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0821 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 16 15 0

0x08 — FDB_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-75

13.3.55 DPSW_FDB_REMOVE

Command structure

Figure 382. DPSW_FDB_REMOVE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0831 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — FDB_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-76

13.3.56 DPSW_FDB_ADD_UNICAST

Command structure

Figure 383. DPSW_FDB_ADD_UNICAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0841 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 40 39 32 31 24 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID

63 20 19 16 15 0

0x10 — TYPE IF_EGRESS

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

16-63 MAC_ADDR[0-5] MAC address

0x10 0-15 IF_EGRESS Egress interface ID

16-19 TYPE Select static or dynamic entry. Select one of the supported values below:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-77

13.3.57 DPSW_FDB_GET_UNICAST

Command structure

Figure 384. DPSW_FDB_GET_UNICAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0811 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 40 39 32 31 24 21 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

16-63 MAC_ADDR[0-5] MAC address

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-78

Response structure

Figure 385. DPSW_FDB_GET_UNICAST Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0811 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 20 19 16 15 0

0x10 — TYPE IF_EGRESS

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-15 IF_EGRESS Egress interface ID

16-19 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-79

13.3.58 DPSW_FDB_REMOVE_UNICAST

Command structure

Figure 386. DPSW_FDB_REMOVE_UNICAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0851 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 40 39 32 31 24 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID

63 20 19 16 15 0

0x10 — TYPE IF_EGRESS

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

16-63 MAC_ADDR[0-5] MAC address

0x10 0-15 IF_EGRESS Egress interface ID

16-19 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-80

13.3.59 DPSW_FDB_ADD_MULTICAST

Command structure

Figure 387. DPSW_FDB_ADD_MULTICAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0861 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 36 35 32 31 16 15 0

0x08 — TYPE NUM_IFS FDB_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x10 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 —

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 IF_ID (bitmap)

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

16-31 NUM_IFS Number of external and internal interfaces

32-35 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry

0x10 16-63 MAC_ADDR[0-5] MAC address

0x18-
0x37

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-81

13.3.60 DPSW_FDB_GET_MULTICAST

Command structure

Figure 388. DPSW_FDB_GET_MULTICAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0801 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

16-63 MAC_ADDR[0-5] MAC address

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-82

Response structure

Figure 389. DPSW_FDB_GET_MULTICAST Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0801 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 20 19 16 15 0

0x10 — TYPE NUM_IFS

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 IF_ID (bitmap)

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 Reserved

0x10 0-15 NUM_IFS Number of external and internal interfaces

16-19 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry 0x1 =
DPSW_FDB_ENTRY_DINAMIC - Dynamic entry

0x18-
0x37

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-83

13.3.61 DPSW_FDB_REMOVE_MULTICAST

Command structure

Figure 390. DPSW_FDB_REMOVE_MULTICAST Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0871 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 36 35 32 31 16 15 0

0x08 — TYPE NUM_IFS FDB_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 0

0x10 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 —

63 0

0x18 IF_ID (bitmap)

63 0

0x20 IF_ID (bitmap)

63 0

0x28 IF_ID (bitmap)

63 0

0x30 IF_ID (bitmap)

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

16-31 NUM_IFS Number of external and internal interfaces

32-35 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry

0x10 16-63 MAC_ADDR[0-5] MAC address

0x18-
0x37

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-84

13.3.62 DPSW_FDB_SET_LEARNING_MODE

Command structure

Figure 391. DPSW_FDB_SET_LEARNING_MODE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0881 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 20 19 16 15 0

0x08 — MODE FDB_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

16-19 MODE learning mode. Select one of the supported values below:
0x0 = DPSW_FDB_LEARNING_MODE_DIS - Disable Auto-learning
0x1 = DPSW_FDB_LEARNING_MODE_HW - Enable HW auto-Learning
0x2 = DPSW_FDB_LEARNING_MODE_NON_SECURE - Enable None secure
learning by CPU
0x3 = DPSW_FDB_LEARNING_MODE_SECURE - Enable secure learning by CPU

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-85

13.3.63 DPSW_FDB_GET_ATTRIBUTES

Command structure

Figure 392. DPSW_FDB_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0891 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — FDB_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 FDB_ID Forwarding Database Identifier

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-86

Response structure

Figure 393. DPSW_FDB_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0891 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 48 47 32 31 16 15 0

0x08 NUM_FDB_MC_GROUPS FDB_AGING_TIME MAX_FDB_ENTRIES —

63 20 19 16 15 0

0x10 — LEARNI
NG_MO

DE

MAX_FDB_MC_GROUPS

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-31 MAX_FDB_ENTRIES Number of FDB entries

32-47 FDB_AGING_TIME Aging time in seconds

48-63 NUM_FDB_MC_GROUPS Current number of multicast groups

0x10 0-15 MAX_FDB_MC_GROUPS Maximum number of multicast groups

16-19 LEARNING_MODE learning mode. Select one of the supported values below:
0x0 = DPSW_FDB_LEARNING_MODE_DIS - Disable Auto-learning
0x1 = DPSW_FDB_LEARNING_MODE_HW - Enable HW auto-Learning
0x2 = DPSW_FDB_LEARNING_MODE_NON_SECURE - Enable None secure
learning by CPU
0x3 = DPSW_FDB_LEARNING_MODE_SECURE - Enable secure learning by CPU

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-87

13.3.64 DPSW_ACL_ADD

Command structure

Figure 394. DPSW_ACL_ADD Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0901 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — MAX_ENTRIES —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 16-32 MAX_ENTIRIES Number of FDB entries

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-88

Response structure

Figure 395. DPSW_ACL_ADD Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0901 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 16 15 0

0x08 — ACL_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 ACL_ID Returned ACL ID, for the future reference

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-89

13.3.65 DPSW_ACL_REMOVE

Command structure

Figure 396. DPSW_ACL_REMOVE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0911 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — ACL_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 ACL_ID ACL ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-90

13.3.66 DPSW_ACL_PREPARE_ENTRY_CFG

Extension structure

Figure 397. DPSW_ACL_PREPARE_ENTRY_CFG Extension Description

Offset from Management Command Portal base Read-Write Access

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x00 L2_TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x08 L2_VLAN_ID L2_SOURCE_M
AC0

L2_SOURCE_M
AC1

L2_SOURCE_M
AC2

L2_SOURCE_M
AC3

L2_SOURCE_M
AC4

L2_SOURCE_MA
C5

63 32 31 0

0x10 L3_SOURCE_IP L3_DEST_IP

63 56 55 48 47 32 31 16 15 0

0x18 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 L2_VLAN_ID L2_SOURCE_M
AC0

L2_SOURCE_M
AC1

L2_SOURCE_M
AC2

L2_SOURCE_M
AC3

L2_SOURCE_M
AC4

L2_SOURCE_MA
C5

63 32 31 0

0x30 L3_SOURCE_IP L3_DEST_IP

63 56 55 48 47 32 31 16 15 0

0x38 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT

63 16 15 8 7 0

0x40 — L3_PROTOCOL L3_ROTOCOL

Offset Bits Name Description

0x00 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast,
Unicast, slow protocols, MVRP, STP

Key match Fields

48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP,
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE

0x08 0-47 L2_SOURCE_MAC[0-5] Source MAC address

48-63 L2_VLAN_ID layer 2 VLAN ID

0x10 0-31 L3_DEST_IP Destination IPv4 IP

32-63 L3_SOURCE_IP Source IPv4 IP

0x18 0-15 L4_DEST_PORT Destination TCP/UDP port

16-31 L4_SOURCE_PORT Source TCP/UDP port

32-47 L2_ETHR_TYPE Layer 2 Ethernet Type

48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload

56-63 L3_DSCP Layer 3 differentiated services code point

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-91

All unspecified fields are reserved and must be cleared (set to zero)

0x20 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast,
Unicast, slow protocols, MVRP, STP

key mask : b’1 - valid,
b’0 don’t care

48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP,
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE

0x28 0-47 L2_SOURCE_MAC[0-5] Source MAC address

48-63 L2_VLAN_ID layer 2 VLAN ID

0x30 0-31 L3_DEST_IP Destination IPv4 IP

32-63 L3_SOURCE_IP Source IPv4 IP

0x38 0-15 L4_DEST_PORT Destination TCP/UDP port

16-31 L4_SOURCE_PORT Source TCP/UDP port

32-47 L2_ETHR_TYPE Layer 2 Ethernet Type

48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload

56-63 L3_DSCP Layer 3 differentiated services code point

0x40 0-7 L3_PROTOCOL Tells the Network layer at the destination host, to which
Protocol this packet belongs to. The following protocol are
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP

Match Fields

8-15 L3_PROTOCOL Tells the Network layer at the destination host, to which
Protocol this packet belongs to. The following protocol are
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP

Mask : b’1 - valid, b’0
don’t care

Offset Bits Name Description

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-92

13.3.67 DPSW_ACL_ADD_ENTRY

Command structure

Figure 398. DPSW_ACL_ADD_ENTRY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0921 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 PRECEDENCE RESULT_IF_ID ACL_ID

63 4 3 0

0x10 —

R
E

S
U

LT
_A

C
T

IO
N

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 KEY_IOVA

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 ACL_ID ACL ID

16-31 RESULT_IF_ID Interface IDs to redirect frame. Valid only if redirect selected for action

32-63 PRECEDENCE Precedence inside ACL 0 is lowest; This priority can not change
during the lifetime of a Policy. It is user responsibility to
space the priorities according to consequent rule additions.

0x10 0-3 RESULT_ACTION Action should be taken when ACL entry hit

0x38 0-63 KEY_IOVA I/O virtual address of DMA-able memory filled with key after call to
dpsw_acl_prepare_entry_cfg()

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-93

13.3.68 DPSW_ACL_REMOVE_ENTRY

Command structure

Figure 399. DPSW_ACL_REMOVE_ENTRY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0931 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 PRECEDENCE RESULT_IF_ID ACL_ID

63 4 3 0

0x10 —

R
E

S
U

LT
_A

C
T

IO
N

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 KEY_IOVA

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 ACL_ID ACL ID

16-31 RESULT_IF_ID Interface IDs to redirect frame. Valid only if redirect selected for action

32-63 PRECEDENCE Precedence inside ACL 0 is lowest; This priority can not change
during the lifetime of a Policy. It is user responsibility to
space the priorities according to consequent rule additions.

0x10 0-3 RESULT_ACTION Action should be taken when ACL entry hit

0x38 0-63 KEY_IOVA I/O virtual address of DMA-able memory filled with key after call to
dpsw_acl_prepare_entry_cfg()

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-94

Extension structure

Figure 400. DPSW_ACL_REMOVE_ENTRY Extension Description

Offset from Management Command Portal base Read-Write Access

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x00 L2_TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x08 L2_VLAN_ID L2_SOURCE_M
AC0

L2_SOURCE_M
AC1

L2_SOURCE_M
AC2

L2_SOURCE_M
AC3

L2_SOURCE_M
AC4

L2_SOURCE_MA
C5

63 32 31 0

0x10 L3_SOURCE_IP L3_DEST_IP

63 56 55 48 47 32 31 16 15 0

0x18 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x20 TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5

63 48 47 40 39 32 31 24 23 16 15 8 7 0

0x28 L2_VLAN_ID L2_SOURCE_M
AC0

L2_SOURCE_M
AC1

L2_SOURCE_M
AC2

L2_SOURCE_M
AC3

L2_SOURCE_M
AC4

L2_SOURCE_MA
C5

63 32 31 0

0x30 L3_SOURCE_IP L3_DEST_IP

63 56 55 48 47 32 31 16 15 0

0x38 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT

63 32 31 16 15 8 7 0

0x40 PRECEDENCE IF_ID L3_PROTOCOL L3_ROTOCOL

63 4 3 0

0x48 — ACTIO
N

Offset Bits Name Description

0x00 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast,
Unicast, slow protocols, MVRP, STP

Key match Fields

48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP,
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE

0x08 0-47 L2_SOURCE_MAC[0-5] Source MAC address

48-63 L2_VLAN_ID layer 2 VLAN ID

0x10 0-31 L3_DEST_IP Destination IPv4 IP

32-63 L3_SOURCE_IP Source IPv4 IP

0x18 0-15 L4_DEST_PORT Destination TCP/UDP port

16-31 L4_SOURCE_PORT Source TCP/UDP port

32-47 L2_ETHR_TYPE Layer 2 Ethernet Type

48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload

56-63 L3_DSCP Layer 3 differentiated services code point

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-95

All unspecified fields are reserved and must be cleared (set to zero)

0x20 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast,
Unicast, slow protocols, MVRP, STP

key mask : b’1 - valid,
b’0 don’t care

48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP,
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE

0x28 0-47 L2_SOURCE_MAC[0-5] Source MAC address

48-63 L2_VLAN_ID layer 2 VLAN ID

0x30 0-31 L3_DEST_IP Destination IPv4 IP

32-63 L3_SOURCE_IP Source IPv4 IP

0x38 0-15 L4_DEST_PORT Destination TCP/UDP port

16-31 L4_SOURCE_PORT Source TCP/UDP port

32-47 L2_ETHR_TYPE Layer 2 Ethernet Type

48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload

56-63 L3_DSCP Layer 3 differentiated services code point

0x40 0-7 L3_PROTOCOL Tells the Network layer at the destination host, to which
Protocol this packet belongs to. The following protocol are
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP

Match Fields

8-15 L3_PROTOCOL Tells the Network layer at the destination host, to which
Protocol this packet belongs to. The following protocol are
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP

Mask : b’1 - valid, b’0
don’t care

16-31 IF_ID Interface IDs to redirect frame. Valid only if redirect selected for
action

result - Required
action when entry hit
occurs

32-63 PRECEDENCE Precedence inside ACL 0 is lowest; This priority can not change during the lifetime of
a Policy. It is user responsibility to space the priorities according to consequent rule
additions.

0x48 0-4 ACTION Action should be taken whenACL entry hit result - Required
action when entry hit
occurs

Offset Bits Name Description

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-96

13.3.69 DPSW_ACL_ADD_IF

Command structure

Figure 401. DPSW_ACL_ADD_IF Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0941 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — NUM_IFS ACL_ID

63 0

0x10 IF_ID (Bitmap)

63 0

0x18 IF_ID (Bitmap)

63 0

0x20 IF_ID (Bitmap)

63 0

0x28 IF_ID (Bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 ACL_ID ACL ID

16-31 NUM_IFS Number of interfaces

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-97

13.3.70 DPSW_ACL_REMOVE_IF

Command structure

Figure 402. DPSW_ACL_REMOVE_IF Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0951 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — NUM_IFS ACL_ID

63 0

0x10 IF_ID (Bitmap)

63 0

0x18 IF_ID (Bitmap)

63 0

0x20 IF_ID (Bitmap)

63 0

0x28 IF_ID (Bitmap)

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 ACL_ID ACL ID

16-31 NUM_IFS Number of interfaces

0x10-
0x2F

0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-98

13.3.71 DPSW_ACL_GET_ATTRIBUTES

Command structure

Figure 403. DPSW_ACL_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0961 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — ACL_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 ACL_ID ACL ID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-99

Response structure

Figure 404. DPSW_ACL_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0961 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 32 31 16 15 0

0x10 NUM_IFS NUM_ENTRIES MAX_ENTRIES

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-15 MAX_ENTRIES Max number of ACL entries

16-31 NUM_ENTRIES Number of used ACL entries

32-63 NUM_IFS Number of interfaces associated with ACL

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-100

13.3.72 DPSW_CTRL_IF_GET_ATTRIBUTES

Command structure

Figure 405. DPSW_CTRL_IF_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A01 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-101

Response structure

Figure 406. DPSW_CTRL_IF_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A01 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 32 31 0

0x10 RX_ERR_FQID RX_FQID

63 32 31 0

0x18 — TX_ERR_CONF_FQID

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-31 RX_FQID Receive FQID

32-63 RX_ERR_FQID Receive error FQID

0x18 0-31 TX_ERR_CONF_FQID Transmit error and confirmation FQID

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-102

13.3.73 DPSW_CTRL_IF_SET_POOLS

Command structure

Figure 407. DPSW_CTRL_IF_SET_POOLS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 16 15 14 13 12 11 10 9 8 7 0

0x08 POOL0_DPBP_ID —

P
O

O
L

7_
B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

6_
B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

5_
B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

4_
B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

3_
B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

2_
B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

1_
B

A
C

K
U

P
_

P
O

O
L

P
O

O
L

0_
B

A
C

K
U

P
_

P
O

O
L

NUM_DPBP

63 32 31 0

0x10 POOL2_DPBP_ID POOL1_DPBP_ID

63 32 31 0

0x18 POOL4_DPBP_ID POOL3_DPBP_ID

63 32 31 0

0x20 POOL6_DPBP_ID POOL5_DPBP_ID

63 48 47 32 31 0

0x28 POOL1_BUFFER_SIZE POOL0_BUFFER_SIZE POOL7_DPBP_ID

63 48 47 32 31 16 15 0

0x30 POOL5_BUFFER_SIZE POOL4_BUFFER_SIZE POOL3_BUFFER_SIZE POOL2_BUFFER_SIZE

63 32 31 16 15 0

0x38 — POOL7_BUFFER_SIZE POOL6_BUFFER_SIZE

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 NUM_DPBP Number of DPBPs

8-15 POOLS[0-7]_BACKUP_POOL Backup pool

0x08 -
0x28

0-31 /
32-63

POOLS[0-7]_DPBP_ID DPBP object ID

0x28 -
0x30

0-15 /
16-31/
32-47/
48-63

POLS[0-7]_BUFFER_SIZE Buffer size

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-103

13.3.74 DPSW_CTRL_IF_ENABLE

Command structure

Figure 408. DPSW_CTRL_IF_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A21 TOKEN — STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-104

13.3.75 DPSW_CTRL_IF_DISABLE

Command structure

Figure 409. DPSW_CTRL_IF_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0A31 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-105

13.3.76 DPSW_GET_API_VERSION

Command structure

Figure 410. DPSW_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPSW: Data Path L2 Switch

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 13-106

Response structure

Figure 411. DPSW_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA021 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-1

Chapter 14 12/2017DPMAC: Data Path MAC
For every DPAA2 MAC, there is an MC object named DPMAC, for MDIO and link state updates.

The DPMAC virtualizes the MDIO interface, so each PHY driver may see a private interface (removing
the need for synchronization in GPP on the multiplexed MDIO hardware).

DPMAC objects are expected to be accessed only by kernel/host when the PHYs are configured or when
a PHY interrupt occurs. PHY driver and PHY interrupt handling are kept in the responsibility of the GPP
(preferably BSP software in the kernel only).

MC does not handle PHY interrupts, therefore the PHY driver in GPP must notify state changes and adjust
the link setup through the DPMAC API.

14.1 DPMAC features

The following list summarizes the DPMAC main features and capabilities:

• Initialization of MAC controllers according to selected Reset Configuration Word and SerDes
protocols.

• Link configuration requests are taken from network objects connected to the DPMAC (for
example, DPNI, DPSW, or DPDMUX).

• Link state setting (by PHY driver) – the DPMAC propagates link state from the PHY to the
connected network object.

• IRQ support for link configuration request (to PHY driver) and for link state change.

• MDIO read/write commands

• Query MAC counters

• Supports various types of Ethernet links:

— Regular PHY links – Link is negotiated or set manually through PHY configuration.

— Fixed links – MC assumes that the link is always on (PHY configuration is assumed to be
fixed).

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-2

14.2 DPMAC command reference

This section contains detailed programming model of DPMAC commands.

14.2.1 DPMAC_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPMAC_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 412. DPMAC_OPEN Command Description

The following table describes the command fields.
1-

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x80C1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 DPMAC_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 60. DPMAC_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPMAC_ID DPMAC unique ID

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-3

14.2.2 DPMAC_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 413. DPMAC_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-4

14.2.3 DPMAC_CREATE

This command creates and initializes an instance of DPMAC according to the specified command
parameters. This command is not required for DPMAC instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPMAC ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 414. DPMAC_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x90C1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 0

0x08 — MAC_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 61. DPMAC_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 MAC_ID Represents the Hardware MAC ID; in case of multiple WRIOP,
the MAC IDs are continuous.
For example:
* 2 WRIOPs, 16 MACs in each:
* MAC IDs for the 1st WRIOP: 1-16,
* MAC IDs for the 2nd WRIOP: 17-32.

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-5

Response structure

Figure 14-1. DPMAC_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x90C1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPMAC_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 14-1. DPMAC_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPMAC_ID DPMAC unique ID

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-6

14.2.4 DPMAC_DESTROY

This command destroys the DPMAC object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 415. DPMAC_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x98C1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPMAC_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPMAC_ID ID of the DPMAC object to destroy

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-7

14.2.5 DPMAC_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 416. DPMAC_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-8

14.2.6 DPMAC_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 417. DPMAC_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-9

Response structure

Figure 418. DPMAC_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-10

14.2.7 DPMAC_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 419. DPMAC_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-11

14.2.8 DPMAC_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 420. DPMAC_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-12

Response structure

Figure 421. DPMAC_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-13

14.2.9 DPMAC_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 422. DPMAC_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPMAC_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-14

Response structure

Figure 423. DPMAC_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events in IRQ 0:
Bit 0: DPMAC_IRQ_EVENT_LINK_CFG_REQ – indicates a change in requested link
configuration; PHY driver (if exists) is expected to renogotiate the configuration.
Bit 1: DPMAC_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-15

14.2.10 DPMAC_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 424. DPMAC_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-16

14.2.11 DPMAC_GET_ATTRIBUTES

Command structure

Figure 425. DPMAC_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-17

Response structure

Figure 426. DPMAC_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 8 7 0

0x08 MAX_RATE ID LINK_TYPE ETH_IF

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 ETH_IF Ethernet interface

8-15 LINK_TYPE Link type

16-31 ID DPMAC object ID

32-63 MAX_RATE Maximum supported rate - in Mbps

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-18

14.2.12 DPMAC_GET_LINK_CFG

Command structure

Figure 427. DPMAC_GET_LINK_CFG Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0C21 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-19

Response structure

Figure 428. DPMAC_GET_LINK_CFG Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0C21 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 OPTIONS

63 32 31 0

0x10 — RATE

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 OPTIONS Enable/Disable DPMAC link cfg features (bitmap). See Table 14-2 for option values.

0x10 0-31 RATE Link’s rate

Table 14-2. DPMAC link options

Option value Description

0x0000000000000001ULL Enable auto-negotiation

0x0000000000000002ULL Enable half-duplex mode

0x0000000000000004ULL Enable pause frames

0x0000000000000008ULL Enable a-symmetric pause frames

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-20

14.2.13 DPMAC_SET_LINK_STATE

Command structure

Figure 429. DPMAC_SET_LINK_STATE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0C31 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 OPTIONS

63 32 31 0

0x10 — RATE

63 1 0

0x18 UP

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 OPTIONS Enable/Disable DPMAC link cfg features (bitmap). See Table 14-2 for option values.

0x10 0-31 RATE Link’s rate

0x18 0 UP Link state

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-21

14.2.14 DPMAC_GET_COUNTER

Command structure

Figure 430. DPMAC_GET_COUNTER Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0C41 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 8 7 0

0x08 — TYPE

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portypal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 TYPE The requested counter. See Table 62 for possible counter values and their meanings.

Table 62. DPMAC counter values

Counter value Description

0x0 Counts 64-bytes frames, good or bad

0x1 Counts 65- to 127-bytes frames, good or bad

0x2 Counts 128- to 255-bytes frames, good or bad

0x3 Counts 256- to 511-bytes frames, good or bad

0x4 Counts 512- to 1023-bytes frames, good or bad

0x5 Counts 1024- to 1518-bytes frames, good or bad

0x6 Counts 1519-bytes frames and larger (up to max frame length specified), good or bad

0x7 Counts frames which are shorter than 64 bytes received with a wrong CRC

0x8 Counts frames longer than the maximum frame length specified, with a bad frame check sequence

0x9 Counts dropped frames due to internal errors
 • occurs when a receive FIFO overflows.
 • includes also frames truncated as a result of the receive FIFO overflow

0xA Counts frames with an alignment error (optional used for wrong SFD)

0xA Counts frames transmitted that was less than 64 bytes long with a good CRC

0xC Counts frames longer than the maximum frame length specified, with a good frame check sequence

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-22

Response structure

Figure 431. DPMAC_GET_COUNTER Response Description

All unspecified fields are reserved and must be cleared (set to zero)

0xD Counts valid pause frames (regular and PFC)

0xE Counts valid pause frames transmitted (regular and PFC)

0xF Counts bytes received except preamble for all valid frames and valid pause frames

0x10 Counts received multicast frames

0x11 Counts received broadcast frames

0x12 Counts each good or bad frames received

0x13 Counts received unicast frames

0x14 Counts frames received with an error (except for undersized/fragment frame)

0x15 Counts bytes transmitted except preamble for all valid frames and valid pause frames transmitted

0x16 Counts transmitted multicast frames

0x17 Counts transmitted broadcast frames

0x18 Counts transmitted unicast frames

0x19 Counts frames transmitted with an error

0x1A Counts frames received without error, including pause frames

0x1B Counts frames transmitted without error, including pause frames

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0C41 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 COUNTER

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-63 COUNTER The requested counter

Table 62. DPMAC counter values

Counter value Description

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-23

14.2.15 DPMAC_GET_API_VERSION

Command structure

Figure 432. DPMAC_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0C1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-24

Response structure

Figure 433. DPMAC_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0C1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-25

14.2.16 DPMAC_RESET

Reset the DPMAC. Returns the object to initial state.

Command structure

Figure 434. DPMAC_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

12/2017DPMAC: Data Path MAC

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 14-26

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-1

Chapter 15 DPRTC: Data Path Real Time Clock
The MC exports the DPRTC object to allow GPP software to control the physical IEEE-1588 Real Time
Clock. A single DPRTC object is needed to control the IEEE-1588 RTC, and this object is expected to
serve the PTP stack running in GPP.

15.1 DPRTC features

The following list summarizes the DPRTC main features and capabilities:

• IEEE-1588 RTC accuracy in nanoseconds.

• Supports RTC frequency compensation.

• Supports modification of RTC clock offset.

• Supports direct setting of the RTC time – useful mainly for zeroing the timer, as the recommended
method for RTC modifications is through offset and/or frequency change.

• Supports setting an alarm time – generates an event to GPP at a requested time.

• Supports pulse-per-second event.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-2

15.2 DPRTC command reference

This section contains the detailed programming model of DPRTC commands.

15.2.1 DPRTC_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPRTC_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

The command format is shown in the figure below.

Figure 435. DPRTC_OPEN Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8101 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 DPRTC_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 63. DPRTC_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPRTC_ID DPRTC unique ID

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-3

15.2.2 DPRTC_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 436. DPRTC_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-4

15.2.3 DPRTC_CREATE

This command creates and initializes an instance of DPRTC according to the specified command
parameters. This command is not required for DPRTC instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPRTC ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 437. DPRTC_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9101 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 64. DPRTC_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-5

Response structure

Figure 15-1. DPRTC_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x9101 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPRTC_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 15-1. DPRTC_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPRTC_ID DPRTC unique ID

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-6

15.2.4 DPRTC_DESTROY

This command destroys the DPRTC object and releases all its resources. It must be invoked in the software
context that created the object. The caller must provide the object id and the authentication token of the
parent container that created the object. Note that the object can be assigned to another container and
sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 438. DPRTC_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9901 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPRTC_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPRTC_ID ID of the DPRTC object to destroy

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-7

15.2.5 DPRTC_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 439. DPRTC_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-8

15.2.6 DPRTC_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 440. DPRTC_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-9

Response structure

Figure 441. DPRTC_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-10

15.2.7 DPRTC_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 442. DPRTC_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-11

15.2.8 DPRTC_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 443. DPRTC_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-12

Response structure

Figure 444. DPRTC_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-13

15.2.9 DPRTC_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 445. DPRTC_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPRTC_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-14

Response structure

Figure 446. DPRTC_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events for IRQ 0:
Bit 27: DPRTC_EVENT_PPS – indicates a pulse per second event
Bit 30: DPRTC_EVENT_ALARM – indicates that the requested alarm time was
reached

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-15

15.2.10 DPRTC_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 447. DPRTC_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-16

15.2.11 DPRTC_GET_ATTRIBUTES

Command structure

Figure 448. DPRTC_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-17

Response structure

Figure 449. DPRTC_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID DPRTC object ID

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-18

15.2.12 DPRTC_SET_CLOCK_OFFSET

Command structure

Figure 450. DPRTC_SET_CLOCK_OFFSET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D01 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 OFFSET

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 OFFSET New clock offset (in nanoseconds)

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-19

15.2.13 DPRTC_SET_FREQ_COMPENSATION

Command structure

Figure 451. DPRTC_SET_FREQ_COMPENSATION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — FREQ_COMPENSATION

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 FREQ_COMPENSATION The new frequency compensation value to set.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-20

15.2.14 DPRTC_GET_FREQ_COMPENSATION

Command structure

Figure 452. DPRTC_GET_FREQ_COMPENSATION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D21 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-21

Response structure

Figure 453. DPRTC_GET_FREQ_COMPENSATION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D21 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — FREQ_COMPENSATION

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 FREQ_COMPENSATION Frequency compensation value

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-22

15.2.15 DPRTC_GET_TIME

Command structure

Figure 454. DPRTC_GET_TIME Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D31 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-23

Response structure

Figure 455. DPRTC_GET_TIME Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D31 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 TIME

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 TIME Current RTC time in nanoseconds

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-24

15.2.16 DPRTC_SET_TIME

Command structure

Figure 456. DPRTC_SET_TIME Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D41 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 TIME

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 TIME New RTC time in nanoseconds

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-25

15.2.17 DPRTC_SET_ALARM

Command structure

Figure 457. DPRTC_SET_ALARM Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1D51 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 TIME

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 TIME In nanoseconds, the time when the alarm
should go off - must be a multiple of the RTC period

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-26

15.2.18 DPRTC_GET_API_VERSION

Command structure

Figure 458. DPRTC_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA101 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-27

Response structure

Figure 459. DPRTC_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA101 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPRTC: Data Path Real Time Clock

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 15-28

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-1

Chapter 16 DPSECI: Data Path SEC Interface
The MC exports the DPSECI object as an interface to operate the DPAA2 Security Engine (SEC).

The DPSECI enables sending frame-based requests to the SEC and receiving back the processed response,
utilizing the DPAA2 QBMan infrastructure. The DPSECI object provides up to eight priorities for
processing SEC requests.

16.1 DPSECI features

The following list summarizes the main DPSECI features and capabilities:

• Supports up to eight scheduling priorities for processing service requests

— Each DPSECI transmit queue is mapped to one of eight service priorities, allowing further
prioritization in hardware between requests from different DPSECI objects.

• Supports up to eight receive queues for incoming response frames

— Each DPSECI response (receive) queue is mapped to one of eight receive priorities, allowing
further prioritization between other interfaces when associating the DPSECI receive queues to
DPIO or DPCON objects.

• Supports different scheduling options for processing received packets:

— Queues can be configured either in ‘parked’ mode (default), or attached to a DPIO object, or
attached to DPCON object

• Allows interaction with one or more DPIO objects for dequeueing/enqueueing frame descriptors
(FD) and for acquiring/releasing buffers.

• Supports enable, disable, and reset operations

16.2 DPSECI functional description

16.2.1 Setting the DPSECI for SEC operation

The DPSECI is an interface object that allows GPP software to send service requests to the SEC engine
and receive back the processed response. The actual description of the requested SEC service is built by
GPP software in the form of a frame descriptor. GPP software is also responsible for reading and parsing
the response frame descriptor containing the ouptut and status of the processed request.

The DPSECI is not aware of the content of SEC requests being sent, and does not perform any checks on
their correctness. It is involved only in setting up the QMan infrastructure for communicating with the SEC
engine.

The driver software must declare the number of priorities (either 1 or 2) for SEC processing. The DPSECI
priorities are mapped to one of eight global priorities of the SEC hardware block; this allows further
prioritization of service requests between different DPSECI objects.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-2

16.2.2 Relationship with DPIO and DPCON objects

Each of the two DPSECI response (receive) queues may be associated with either a DPIO object or a
DPCON object. This serves for notification purposes and/or advanced scheduling of received response
frames.

DPIO objects provide configuration of a QBMan software portal, with an option for data availability
notifications. GPP software is free to relate DPIO objects to threads, or to share them between cores in
SMP mode, but this requires synchronized access to the QBMan software portal. It is possible to associate
multiple DPIO objects with the same DPSECI, in order to spread responses from this DPSECI across
multiple QBMan software portals.

GPP software may decide to enable DPIO notifications, or it may dequeue frames based on its own
scheduled polling logic. It is also possible for one GPP entity to receive the notification from one DPIO
and alert another entity that will dequeue the packets using a different DPIO.

DPCON objects are used for concentrating traffic from several interfaces into sub-interfaces, mainly for
scheduling purposes. It is possible to connect DPCON with DPIO so it generates notifications to the GPP.

Note that the QBMan software portal is used both for enqueue/dequeue operations on packets, and for
acquire/release buffer operations. GPP software is responsible for the portal’s operation mode and usage
i.e. sharing vs. affinity, association of queue context, etc.

DPIO objects may serve multiple interfaces. This is not limited to multiple DPSECI objects; it can also be
extended to network interfaces and communication interfaces. For example, the same DPIO may serve
both a DPNI and a DPSECI, assuming they are assigned to the same software context (container).

16.2.3 Buffer requirements

A DPSECI does not need to be directly associated with a DPBP object; in addition, buffers for the SEC
service requests (frames) may or may not be managed by buffer pools. However, SEC response frames are
usually built by allocation of buffers from BMan buffer pools; therefore, GPP software should specify in
the SEC service requests which buffer pool ID to use for allocating the response buffer. The buffer pool
ID can be retrieved from the DPBP object (please refer to the DPBP API description).

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-3

16.3 DPSECI command reference

This section contains the detailed programming model of DPSECI commands.

16.3.1 DPSECI_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPSECI_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 460. DPSECI_OPEN Command Description

The following table describes the command fields.
1-

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8091 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 DPSECI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 65. DPSECI_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPSECI_ID

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-4

16.3.2 DPSECI_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 461. DPSECI_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero).

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-5

16.3.3 DPSECI_CREATE

This command creates and initializes an instance of DPSECI according to the specified command
parameters. This command is not required for DPSECI instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPSECI ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 462. DPSECI_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x08 PRIORITIES7 PRIORITIES6 PRIORITIES5 PRIORITIES4 PRIORITIES3 PRIORITIES2 PRIORITIES1 PRIORITIES0

63 16 15 8 7 0

0x10 — NUM_RX_QUEU
ES

NUM_TX_QUEU
ES

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 66. DPSECI_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 PRIORITIES[0-7] Priorities for the SEC hardware processing; valid priorities are configured with values 1-8; the entry
following last valid entry should be configured with 0

0x10 0-7 NUM_TX_QUEUES num of queues towards the SEC

8-15 NUM_RX_QUEUES num of queues back from the SEC

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-6

Response structure

Figure 16-1. DPSECI_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPSECI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 16-1. DPSECI_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPSECI_ID DPSECI unique ID

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-7

16.3.4 DPSECI_DESTROY

This command destroys the DPSECI object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 463. DPSECI_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x9891 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPSECI_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPSECI_ID ID of the DPSECI object to destroy

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-8

16.3.5 DPSECI_ENABLE

Command structure

Figure 464. DPSECI_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-9

16.3.6 DPSECI_DISABLE

Command structure

Figure 465. DPSECI_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-10

16.3.7 DPSECI_IS_ENABLED

Command structure

Figure 466. DPSECI_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-11

Response structure

Figure 467. DPSECI_IS_ENABLED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-12

16.3.8 DPSECI_RESET

Command structure

Figure 468. DPSECI_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-13

16.3.9 DPSECI_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 469. DPSECI_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

0x10 -
0x3F

– Reserved

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-14

16.3.10 DPSECI_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 470. DPSECI_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-15

Response structure

Figure 471. DPSECI_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-16

16.3.11 DPSECI_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 472. DPSECI_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-17

16.3.12 DPSECI_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 473. DPSECI_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-18

Response structure

Figure 474. DPSECI_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-19

16.3.13 DPSECI_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 475. DPSECI_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPSECI_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-20

Response structure

Figure 476. DPSECI_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events:
None

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-21

16.3.14 DPSECI_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 477. DPSECI_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-22

16.3.15 DPSECI_GET_ATTRIBUTES

Command structure

Figure 478. DPSECI_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-23

Response structure

Figure 479. DPSECI_GET_ATTRIBUTES Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — ID

63 16 15 8 7 0

0x10 — NUM_RX_QUEU
ES

NUM_TX_QUEU
ES

63 32 31 0

0x18 — OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID DPSECI object ID

0x10 0-7 NUM_TX_QUEUES number of queues towards the SEC

8-15 NUM_RX_QUEUES number of queues back from the SEC

0x18 0-31 OPTIONS Options that were used to create the DPSECI object (same as DPSECI_CREATE options). Any
combination of the following options: DPSECI_OPT_HAS_CG, DPSECI_OPT_HAS_OPR,
DPSECI_OPT_OPR_SHARED.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-24

16.3.16 DPSECI_SET_RX_QUEUE

Command structure

Figure 480. DPSECI_SET_RX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2201 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 16 15 0

0x08 — DEST_
TYPE

QUEUE DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 33 32 31 0

0x18

O
P

E

OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, depending on the
number of priorities in that channel; not relevant for 'DPSECI_DEST_NONE' option

40-47 QUEUE Select the queue relative to number of priorities configured at DPSECI creation; use
DPSECI_ALL_QUEUES to configure all Rx queues identically.

48-51 DEST_TYPE Destination type. Select one of the supported values:
0x0 = DPSECI_DEST_NONE- Unassigned destination; The queue is set in parked mode and does not
generate FQDAN notifications; user is expected to dequeue from the queue based on polling or other
user-defined method
0x1 = DPSECI_DEST_DPIO - The queue is set in schedule mode and generates FQDAN notifications to
the specified DPIO; user is expected to dequeue from the queue only after notification is received
0x2 = DPSECI_DEST_DPCON - The queue is set in schedule mode and does not generate FQDAN
notifications, but is connected to the specified DPCON object; user is expected to dequeue from the
DPCON channel

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame; valid only if
'DPSECI_QUEUE_OPT_USER_CTX' is contained in 'options'

0x18 0-31 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPSECI_QUEUE_OPT_<X>' flags below:
bit 0: DPSECI_QUEUE_OPT_USER_CTX - Select to modify the user's context associated with the queue
bit 1: DPSECI_QUEUE_OPT_DEST - Select to modify the queue's destination

32 ORDER_PRESERVATION_E
N (OPE)

order preservation configuration for the rx queue
valid only if 'DPSECI_QUEUE_OPT_ORDER_PRESERVATION' is contained in ‘options'

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-25

16.3.17 DPSECI_GET_RX_QUEUE

Command structure

Figure 481. DPSECI_GET_RX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1961 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 40 39 0

0x08 — QUEUE

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 40-47 QUEUE Select the queue relative to number of priorities configured at DPSECI creation

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-26

Response structure

Figure 482. DPSECI_GET_RX_QUEUE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1961 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 — DEST_
TYPE

— DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 33 32 31 0

0x18

O
P

E

FQID

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,
depending on the number of priorities in that channel; not relevant for
'DPSECI_DEST_NONE' option

48-51 DEST_TYPE Destination type. Select one of the supported values:
0x0 = DPSECI_DEST_NONE- Unassigned destination; The queue is set in parked
mode and does not generate FQDAN notifications; user is expected to dequeue from
the queue based on polling or other user-defined method
0x1 = DPSECI_DEST_DPIO - The queue is set in schedule mode and generates
FQDAN notifications to the specified DPIO; user is expected to dequeue from the
queue only after notification is received
0x2 = DPSECI_DEST_DPCON - The queue is set in schedule mode and does not
generate FQDAN notifications, but is connected to the specified DPCON object; user
is expected to dequeue from the DPCON channel

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame

0x18 0-31 FQID Virtual FQID value to be used for dequeue operations

32 ORDER_PRESERVATION_EN (OPE) Status of the order preservation configuration on the queue

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-27

16.3.18 DPSECI_GET_TX_QUEUE

Command structure

Figure 483. DPSECI_GET_TX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1971 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 40 39 0

0x08 — QUEUE —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 40-47 QUEUE Select the queue relative to number of priorities configured at DPSECI creation

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-28

Response structure

Figure 484. DPSECI_GET_TX_QUEUE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1971 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 FQID

63 32 31 0

0x10 — PRIORITY

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-63 FQID Virtual FQID to be used for sending frames to SEC hardware

0x10 0-31 PRIORITY SEC hardware processing priority for the queue

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-29

16.3.19 DPSECI_GET_SEC_ATTR

Command structure

Figure 485. DPSECI_GET_SEC_ATTR Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1981 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-30

Response structure

Figure 486. DPSECI_GET_SEC_ATTR Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1981 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 24 23 16 15 0

0x08 — ERA MINOR_REV MAJOR_REV IP_ID

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x10 — CRC_ACC_NUM SNOW_F9_ACC
_NUM

SNOW_F8_ACC
_NUM

— ZUC_ENC_ACC_
NUM

ZUC_AUTH_AC
C_NUM

DECO_NUM

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0x18 AES_ACC_NUM DES_ACC_NUM ARC4_ACC_NU
M

MD_ACC_NUM — RNG_ACC_NUM KASUMI_ACC_N
UM

PK_ACC_NUM

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 IP_ID ID for SEC.

16-23 MAJOR_REV Major revision number for SEC.

24-31 MINOR_REV Minor revision number for SEC.

32-39 ERA SEC controller era.

0x10 0-7 DECO_NUM The number of copies of the DECO that are implemented in this version of SEC.

8-15 ZUC_AUTH_ACC_NUM The number of copies of ZUCA that are implemented in this version of SEC.

16-24 ZUC_ENC_ACC_NUM The number of copies of ZUCE that are implemented in this version of SEC.

32-39 SNOW_F8_ACC_NUM The number of copies of the SNOW-f8 module that are implemented in this version of SEC.

40-47 SNOW_F9_ACC_NUM The number of copies of the SNOW-f9 module that are implemented in this version of SEC.

48-55 CRC_ACC_NUM The number of copies of the CRC module that are implemented in this version of SEC.

0x18 0-7 PK_ACC_NUM The number of copies of the Public Key module that are implemented in this version of SEC.

8-15 KASUMI_ACC_NUM The number of copies of the Kasumi module that are implemented in this version of SEC.

16-24 RNG_ACC_NUM The number of copies of the Random Number Generator that are implemented in this version of SEC.

32-39 MD_ACC_NUM The number of copies of the MDHA (Hashing module) that are implemented in this version of SEC.

40-47 ARC4_ACC_NUM The number of copies of the ARC4 module that are implemented in this version of SEC.

48-55 DES_ACC_NUM The number of copies of the DES module that are implemented in this version of SEC.

56-63 AES_ACC_NUM The number of copies of the AES module that are implemented in this version of SEC.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-31

All unspecified fields are reserved and must be cleared (set to zero)

16.3.20 DPSECI_GET_SEC_COUNTERS

Command structure

Figure 487. DPSECI_GET_SEC_COUNTERS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1991 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-32

Response structure

Figure 488. DPSECI_GET_SEC_COUNTERS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1991 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 DEQUEUED_REQUESTS

63 0

0x10 OB_ENC_REQUESTS

63 0

0x18 IB_DEC_REQUESTS

63 0

0x20 OB_ENC_BYTES

63 0

0x28 OB_PROT_BYTES

63 0

0x30 IB_DEC_BYTES

63 0

0x38 IB_VALID_BYTES

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 DEQUEUED_REQUESTS Number of Requests Dequeued

0x10 0-63 OB_ENC_REQUESTS Number of Outbound Encrypt Requests

0x18 0-63 IB_DEC_REQUESTS Number of Inbound Decrypt Requests

0x20 0-63 OB_ENC_BYTES Number of Outbound Bytes Encrypted

0x28 0-63 OB_PROT_BYTES Number of Outbound Bytes Encrypted

0x30 0-63 IB_DEC_BYTES Number of Inbound Bytes Decrypted

0x38 0-63 IB_VALID_BYTES Number of Inbound Bytes Validated

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-33

16.3.21 DPSECI_GET_API_VERSION

Command structure

Figure 489. DPSECI_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA091 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPSECI: Data Path SEC Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 16-34

Response structure

Figure 490. DPSECI_GET_API_VERSION Response Description

Figure 491.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA091 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-1

Chapter 17 DPDCEI: Data Path DCE Interface
The MC exports the DPDCEI object as an interface to operate the DPAA2 Data Compression Engine
(DCE).

The DPDCEI enables sending frame-based requests to DCE and receiving back the processed response,
utilizing the DPAA2 QBMan infrastructure. The DPDCEI object can be configured either for compression
mode or for decompression mode (but not for both).

17.1 DPDCEI features

The following list summarizes the main DPDCEI features and capabilities:

• A DPDCEI object can be configured either for compression mode or for decompression mode (but
not for both). Applications that require both services should create two distinct DPDCEI objects,
one for each operation type.

• Supports up to two scheduling priorities for processing service requests.

• Supports one receive queue for incoming response frames.

— A DPDCEI response (receive) queue is mapped to one of 8 receive priorities, allowing further
prioritization between other interfaces when associating the DPDCEI receive queue to DPIO
or DPCON objects.

• Supports different scheduling options for processing received packets:

— A DPDCEI receive queue can be configured either in ‘parked’ mode (default), or attached to a
DPIO object, or attached to DPCON object

• Allows interaction with one or more DPIO objects for dequeueing/enqueueing frame descriptors
(FD) and for acquiring/releasing buffers.

• Supports enable, disable, and reset operations

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-2

17.2 DPDCEI command reference

This section contains the detailed programming model of DPDCEI commands.

17.2.1 DPDCEI_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPDCEI_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

The command format is shown in the figure below.

Figure 492. DPDCEI_OPEN Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x80D1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPDCEI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 67. DPDCEI_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPDCEI_ID DPDCEI unique ID

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-3

17.2.2 DPDCEI_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 493. DPDCEI_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-4

17.2.3 DPDCEI_CREATE

This command creates and initializes an instance of DPDCEI according to the specified command
parameters. This command is not required for DPDCEI instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPDCEI ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 494. DPDCEI_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x90D1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 16 15 8 7 0

0x08 — PRIORITY ENGINE

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 68. DPDCEI_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-7 ENGINE compression or decompression engine to be selected

8-15 PRIORITY Priority for the DCE hardware processing (valid values 1-8).

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-5

Response structure

Figure 17-1. DPDCEI_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x90D1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPDCEI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 17-1. DPDCEI_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPDCEI_ID DPDCEI unique ID

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-6

17.2.4 DPDCEI_DESTROY

This command destroys the DPDCEI object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 495. DPDCEI_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x98D1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPDCEI_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPDCEI_ID ID of the DPDCEI object to destroy

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-7

17.2.5 DPDCEI_ENABLE

Command structure

Figure 496. DPDCEI_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-8

17.2.6 DPDCEI_DISABLE

Command structure

Figure 497. DPDCEI_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-9

17.2.7 DPDCEI_IS_ENABLED

Command structure

Figure 498. DPDCEI_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-10

Response structure

Figure 499. DPDCEI_IS_ENABLED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-11

17.2.8 DPDCEI_RESET

Command structure

Figure 500. DPDCEI_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-12

17.2.9 DPDCEI_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 501. DPDCEI_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-13

17.2.10 DPDCEI_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 502. DPDCEI_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-14

Response structure

Figure 503. DPDCEI_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-15

17.2.11 DPDCEI_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 504. DPDCEI_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-16

17.2.12 DPDCEI_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 505. DPDCEI_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-17

Response structure

Figure 506. DPDCEI_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-18

17.2.13 DPDCEI_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 507. DPDCEI_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPDCEI_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-19

Response structure

Figure 508. DPDCEI_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events:
None.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-20

17.2.14 DPDCEI_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 509. DPDCEI_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-21

17.2.15 DPDCEI_GET_ATTRIBUTES

Command structure

Figure 510. DPDCEI_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-22

Response structure

Figure 511. DPDCEI_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 — ENGINE ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID DPDCEI object ID

32-39 ENGINE DCE engine block

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-23

17.2.16 DPDCEI_SET_RX_QUEUE

Command structure

Figure 512. DPDCEI_SET_RX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1B01 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 — DEST_
TYPE

— DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,
depending on the number of priorities in that channel;
not relevant for 'DPDCEI_DEST_NONE' option

48-51 DEST_TYPE Destination type

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDCEI_QUEUE_OPT_USER_CTX' is contained in 'options'

0x18 0-63 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPDCEI_QUEUE_OPT_<X>' flags

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-24

17.2.17 DPDCEI_GET_RX_QUEUE

Command structure

Figure 513. DPDCEI_GET_RX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1B11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-25

Response structure

Figure 514. DPDCEI_GET_RX_QUEUE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1B11 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 — DEST_
TYPE

— DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 32 31 0

0x18 — FQID

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,
depending on the number of priorities in that channel;
not relevant for 'DPDCEI_DEST_NONE' option

48-51 DEST_TYPE Destination type

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDCEI_QUEUE_OPT_USER_CTX' is contained in 'options'

0x18 0-31 FQID Virtual FQID value to be used for dequeue operations

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-26

17.2.18 DPDCEI_GET_TX_QUEUE

Command structure

Figure 515. DPDCEI_GET_TX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1A11 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-27

Response structure

Figure 516. DPDCEI_GET_TX_QUEUE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1A11 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 32 31 0

0x10 — FQID

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-31 FQID Virtual FQID to be used for sending frames to DMA hardware

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-28

17.2.19 DPDCEI_GET_API_VERSION

Command structure

Figure 517. DPDCEI_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0D1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-29

Response structure

Figure 518. DPDCEI_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0D1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPDCEI: Data Path DCE Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 17-30

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-1

Chapter 18 DPDMAI: Data Path DMA Interface
The MC exports the DPDMAI object as an interface to operate the DPAA2 QDMA Engine.

The DPDMAI enables sending frame-based requests to QDMA and receiving back confirmation response
on transaction completion, utilizing the DPAA2 QBMan infrastructure. DPDMAI object provides up to
two priorities for processing QDMA requests.

18.1 DPDMAI features

The following list summarizes the DPDMAI main features and capabilities:

• Supports up to two scheduling priorities for processing service requests.

— Each DPDMAI transmit queue is mapped to one of two service priorities, allowing further
prioritization in hardware between requests from different DPDMAI objects.

• Supports up to two receive queues for incoming transaction completion confirmations.

— Each DPDMAI receive queue is mapped to one of two receive priorities, allowing further
prioritization between other interfaces when associating the DPDMAI receive queues to DPIO
or DPCON objects.

• Supports different scheduling options for processing received packets:

— Queues can be configured either in ‘parked’ mode (default), or attached to a DPIO object, or
attached to DPCON object

• Allows interaction with one or more DPIO objects for dequeueing/enqueueing frame descriptors
(FD) and for acquiring/releasing buffers.

• Supports enable, disable, and reset operations

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-2

18.2 DPDMAI command reference

This section contains the detailed programming model of DPDMAI commands.

18.2.1 DPDMAI_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPDMAI_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

The command format is shown in the figure below.

Figure 519. DPDMAI_OPEN Command Description

The following table describes the command fields.
1

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x80E1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPDMAI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 69. DPDMAI_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPDMAI_ID DPDMAI unique ID

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-3

18.2.2 DPDMAI_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 520. DPDMAI_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-4

18.2.3 DPDMAI_CREATE

This command creates and initializes an instance of DPDMAI according to the specified command
parameters. This command is not required for DPDMAI instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPDMAI ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 521. DPDMAI_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x90E1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 24 23 16 15 8 7 0

0x08 — PRIORITIES[1] PRIORITIES[0] —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 70. DPDMAI_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 8-23 PRIORITIES[0..1] Priorities for the DMA hardware processing; valid priorities are configured with values
1-8; the entry following last valid entry should be configured with 0

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-5

Response structure

Figure 18-1. DPDMAI_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x90E1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPDMAI_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 18-1. DPDMAI_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPDMAI_ID DPDMAI unique ID

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-6

18.2.4 DPDMAI_DESTROY

This command destroys the DPDMAI object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 522. DPDMAI_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero).

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x98E1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPDMAI_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPDMAI_ID ID of the DPDMAI object to destroy

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-7

18.2.5 DPDMAI_ENABLE

Command structure

Figure 523. DPDMAI_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0021 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-8

18.2.6 DPDMAI_DISABLE

Command structure

Figure 524. DPDMAI_DISABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0031 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-9

18.2.7 DPDMAI_IS_ENABLED

Command structure

Figure 525. DPDMAI_IS_ENABLED Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-10

Response structure

Figure 526. DPDMAI_IS_ENABLED Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0061 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 — EN

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Returns '1' if object is enabled; '0' otherwise

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-11

18.2.8 DPDMAI_RESET

Command structure

Figure 527. DPDMAI_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-12

18.2.9 DPDMAI_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 528. DPDMAI_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-13

18.2.10 DPDMAI_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 529. DPDMAI_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-14

Response structure

Figure 530. DPDMAI_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-15

18.2.11 DPDMAI_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 531. DPDMAI_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-16

18.2.12 DPDMAI_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 532. DPDMAI_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-17

Response structure

Figure 533. DPDMAI_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-18

18.2.13 DPDMAI_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 534. DPDMAI_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPDMAI_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-19

Response structure

Figure 535. DPDMAI_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events:
None.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-20

18.2.14 DPDMAI_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 536. DPDMAI_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-21

18.2.15 DPDMAI_GET_ATTRIBUTES

Command structure

Figure 537. DPDMAI_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-22

Response structure

Figure 538. DPDMAI_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 — NUM_OF_PRIOR
ITIES

ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID DPDMAI object ID

32-39 NUM_OF_PRIORITIES number of priorities

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-23

18.2.16 DPDMAI_SET_RX_QUEUE

Command structure

Figure 539. DPDMAI_SET_RX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1A01 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 — DEST_
TYPE

PRIORITY DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,
depending on the number of priorities in that channel;
not relevant for 'DPDMAI_DEST_NONE' option

40-47 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation; use
DPDMAI_ALL_QUEUES to configure all Rx queues identically.

48-51 DEST_TYPE Destination type

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDMAI_QUEUE_OPT_USER_CTX' is contained in 'options'

0x18 0-63 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPDMAI_QUEUE_OPT_<X>' flags

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-24

18.2.17 DPDMAI_GET_RX_QUEUE

Command structure

Figure 540. DPDMAI_GET_RX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1A21 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 40 39 0

0x08 — PRIORITY —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 40-47 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation; use
DPDMAI_ALL_QUEUES to configure all Rx queues identically.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-25

Response structure

Figure 541. DPDMAI_GET_RX_QUEUE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1A21 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 52 51 48 47 40 39 32 31 0

0x08 — DEST_
TYPE

— DEST_PRIORITY DEST_ID

63 0

0x10 USER_CTX

63 32 31 0

0x18 — FQID

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type

32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,
depending on the number of priorities in that channel;
not relevant for 'DPDMAI_DEST_NONE' option

48-51 DEST_TYPE Destination type

0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDMAI_QUEUE_OPT_USER_CTX' is contained in 'options'

0x18 0-31 FQID Virtual FQID value to be used for dequeue operations

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-26

18.2.18 DPDMAI_GET_TX_QUEUE

Command structure

Figure 542. DPDMAI_GET_TX_QUEUE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1A31 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 48 47 40 39 0

0x08 — PRIORITY —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 40-47 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation;

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-27

Response structure

Figure 543. DPDMAI_GET_TX_QUEUE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x1A31 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 32 31 0

0x10 — FQID

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x10 0-31 FQID Virtual FQID to be used for sending frames to DMA hardware

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-28

18.2.19 DPDMAI_GET_API_VERSION

Command structure

Figure 544. DPDMAI_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0E1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-29

Response structure

Figure 545. DPDMAI_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0E1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPDMAI: Data Path DMA Interface

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 18-30

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-1

Chapter 19 DPAIOP: Data Path AIOP Control
DPAIOP object represents an AIOP tile and is responsible for AIOP tile initialization and management.
MC performs initialization of the AIOP tile and its hardware blocks. MC is responsible for loading an
AIOP image into appropriate AIOP memory and releasing the AIOP cores for boot.

One of the main responsibilities of MC is loading an image to be used by the AIOP cores. Here are the
steps required to load an image. The AIOP cannot run without having a DPAIOP object residing in the
container (DPRC) of a GPP software context. that GPP software context will be responsible for controlling
the AIOP load and run, through the DPAIOP object.

After an AIOP image was successfully loaded, MC will kick AIOP cores to start running.

19.1 DPAIOP features

The following list summarizes the DPAIOP main features and capabilities:

• Create and destroy – DPAIOP object is associated with a single AIOP tile

• Load AIOP software image (including arguments string for the AIOP application)

• Run the AIOP

• Query AIOP state

• Query AIOP Service Layer version

• Set (and get) time of day in AIOP

• Reset the AIOP (not supported in LS2085A revision 1.0)

19.1.1 Resetting the AIOP and reloading applications

Use cases like loading a new AIOP elf or reloading the current application can be done without resetting
the data path HW or the entire SoC. The DPAIOP_RESET command handles the reset and prepares the
AIOP HW for loading the new application. During the reset command the management complex firmware
will execute the following steps sequentially:

1. Gracefully shuts down the task generation sources: TMan and Work Scheduler

2. Waits for QMan queues associated with the AIOP to drain; the MC firmware polls for completion

3. Waits for cores to finish processing the tasks in execution; the MC firmware polls for completion

4. Moves cores to reset mode

5. Requests the DPAA2 power management unit to reset the AIOP HW

6. Frees AIOP-allocated resources: disables AIOP error interrupts and DP-DDR/System DDR/PEB
memory resources allocated for TMan and CTLU

The MC firmware will wait for a defined time for each of these steps to finish. If the one of these steps
fails the command will immediately terminate with an error. This guarantees that the MC will not
indefinitely block the SW context that sent the reset command.

Resending the reset command or sending the load command (or any command) after an unsuccessful reset
will fail since AIOP reset errors may indicate a HW malfunction which can prevent an AIOP application

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-2

from running properly. In case of reset errors the MC log (configured with debug detail level) will detail
the exact step that failed. At this point the only way to load a new AIOP application is to do an SoC-wide
reset. In order to check if the reset command finished successfully or not (or there is an ongoing reset
command) the SW context must use the DPAIOP_GET_STATE command.

The DPAIOP_GET_STATE command can also be used to check if the AIOP application was loaded (the
AIOP elf image was deployed) and booted (AIOP cores are running and the application marks the boot
step as completed) successfully.

The reset command can be executed if either the DPAIOP_LOAD or DPAIOP_RUN commands fail, but
the run command can’t be executed if the elf image load command failed.

The DPAIOP_RESET command will affect only the AIOP HW block; however, in order to properly boot
the new application, the AIOP’s container, along with the comprised child objects, must also be reset.

The following steps summarize the AIOP application reload procedure and provide the order in which to
execute the involved commands:

1. DPAIOP_RESET - AIOP HW block reset: gracefully shutdown of AIOP HW and free resources

2. DPRC_RESET - Reset AIOP’s container: reset the state of all contained object;

3. DPAIOP_LOAD - Load AIOP application: deploy the elf image and allocate resources

4. DPAIOP_RUN - Start the configured AIOP cores and boot the new AIOP application

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-3

19.2 DPAIOP command reference

This section contains the detailed programming model of DPAIOP commands.

19.2.1 DPAIOP_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPAIOP_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 546. DPAIOP_OPEN Command Description

The following table describes the command fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x80A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 DPAIOP_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 71. DPAIOP_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPAIOP_ID DPAIOP unique ID

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-4

19.2.2 DPAIOP_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 547. DPAIOP_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-5

19.2.3 DPAIOP_CREATE

This command creates and initializes an instance of DPAIOP according to the specified command
parameters. This command is not required for DPAIOP instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPAIOP ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 548. DPAIOP_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x90A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 AIOP_CONTAINER_ID AIOP_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 72. DPAIOP_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 AIOP_ID AIOP ID

32-63 AIOP_CONTAINER_ID AIOP container ID

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-6

Response structure

Figure 19-1. DPAIOP_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x90A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPAIOP_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 19-1. DPAIOP_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPAIOP_ID DPAIOP unique ID

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-7

19.2.4 DPAIOP_DESTROY

This command destroys the DPAIOP object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 549. DPAIOP_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x98A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPAIOP_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPAIOP_ID ID of the DPAIOP object to destroy

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-8

19.2.5 DPAIOP_RESET

The DPAIOP_RESET command handles the reset and prepares the AIOP HW for loading the new
application. During the reset command the management complex firmware will execute the following
steps sequentially:

1. Gracefully shuts down the task generation sources: TMan and Work Scheduler

2. Waits for QMan queues associated with AIOP to drain; MC firmware polls for completion

3. Waits for cores to finish processing the tasks in execution; MC firmware polls for completion

4. Moves cores to reset mode

5. Requests the DPAA2 Power Management Unit to reset the AIOP HW

6. Frees AIOP allocated resources: disable AIOP error interrupts and DP-DDR/System DDR/PEB
memory resources allocated for TMan and CTLU

Read more about the reset procedure in Section 19.1.1, “Resetting the AIOP and reloading applications.”

Command structure

Figure 550. DPAIOP_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-9

19.2.6 DPAIOP_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 551. DPAIOP_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-10

19.2.7 DPAIOP_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 552. DPAIOP_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-11

Response structure

Figure 553. DPAIOP_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-12

19.2.8 DPAIOP_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 554. DPAIOP_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-13

19.2.9 DPAIOP_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 555. DPAIOP_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-14

Response structure

Figure 556. DPAIOP_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-15

19.2.10 DPAIOP_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 557. DPAIOP_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing
the need for DPAIOP_CLEAR_IRQ_STATUS command). Note that the STATUS
returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-16

Response structure

Figure 558. DPAIOP_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events:
None

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-17

19.2.11 DPAIOP_CLEAR_IRQ_STATUS

Clear (mark as handled) pending events of the specified interrupt index.

Command structure

Figure 559. DPAIOP_CLEAR_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0171 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled

32-39 IRQ_INDEX The interrupt index to configure

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-18

19.2.12 DPAIOP_GET_ATTRIBUTES

Command structure

Figure 560. DPAIOP_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-19

Response structure

Figure 561. DPAIOP_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 ID AIOP ID

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-20

19.2.13 DPAIOP_LOAD

The command will deploy an AIOP elf image and it will allocate memory resources requested by the new
AIOP application. If the command fails, DPAIOP_RESET must be run before trying to load another AIOP
image. To properly load a new AIOP application, the AIOP HW block must be in reset state. This is
accomplished after an SoC-wide reset or after a DPAIOP_RESET command. For more information about
the reload procedure, see Section 19.1.1, “Resetting the AIOP and reloading applications.”

Command structure

Figure 562. DPAIOP_LOAD Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2801 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x10 IMG_IOVA

63 0

0x18 OPTIONS

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–31 IMG_SIZE Size of AIOP ELF image in memory (in bytes)

0x10 0–63 IMG_IOVA I/O virtual address of AIOP ELF image

0x18 0–63 OPTIONS AIOP load options

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-21

19.2.14 DPAIOP_RUN

Launches the AIOP application. The SW context can choose which cores to run and pass parameters to the
AIOP application. The command can be executed only if DPAIOP_LOAD was previously run. If the
command fails, it is not permitted to resend the DPAIOP_RUN or DPAIOP_LOAD command. The SW
context must reiterate the application load procedure from the start. Please check the full AIOP application
load procedure in Section 19.1.1, “Resetting the AIOP and reloading applications.”

Command structure

Figure 563. DPAIOP_RUN Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2811 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 ARGS_SIZE —

63 0

0x10 CORES_MASK

63 0

0x18 OPTIONS

63 0

0x20 ARGS_IOVA

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-63 ARGS_SIZE Size of AIOP arguments in memory (in bytes)

0x10 0-63 CORES_MASK Mask of AIOP cores to run (core 0 in most significant bit)

0x18 0-63 OPTIONS Execution options (currently none defined)

0x20 0-63 ARGS_IOVA I/O virtual address of AIOP arguments

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-22

19.2.15 DPAIOP_GET_SL_VERSION

Command structure

Figure 564. DPAIOP_GET_SL_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2821 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-23

Response structure

Figure 565. DPAIOP_GET_SL_VERSION Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2821 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MINOR MAJOR

63 32 31 0

0x10 — REVISION

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MAJOR AIOP SL major version number

32-63 MINOR AIOP SL minor version number

0x10 0-31 REVISION AIOP SL revision number

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-24

19.2.16 DPAIOP_GET_STATE

Command structure

Figure 566. DPAIOP_GET_STATE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2831 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-25

Response structure

Figure 567. DPAIOP_GET_STATE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2831 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 — STATE

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATE AIOP state
0x00: AIOP reset successfully completed.
0x01: AIOP reset is ongoing.
0x02: AIOP image loading successfully completed.
0x04: AIOP image loading is ongoing.
0x08: AIOP image loading completed with error.
0x10: Boot process of AIOP cores is ongoing.
0x20: Boot process of AIOP cores completed with an error.
0x40: AIOP cores are functional and running

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-26

19.2.17 DPAIOP_SET_TIME_OF_DAY

Command structure

Figure 568. DPAIOP_SET_TIME_OF_DAY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2841 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 TIME_OF_DAY

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 TIME_OF_DAY Current number of milliseconds since the Epoch

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-27

19.2.18 DPAIOP_GET_TIME_OF_DAY

Command structure

Figure 569. DPAIOP_GET_TIME_OF_DAY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2851 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-28

Response structure

Figure 570. DPAIOP_GET_TIME_OF_DAY Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x2851 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 TIME_OF_DAY

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-63 TIME_OF_DAY Current number of milliseconds since the Epoch

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-29

19.2.19 DPAIOP_GET_API_VERSION

Command structure

Figure 571. DPAIOP_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0A1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPAIOP: Data Path AIOP Control

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 19-30

Response structure

Figure 572. DPAIOP_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0A1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-1

Chapter 20 DPMCP: Data Path MC Portal
The MC exports the DPMCP object to allow GPP software to control the MC portal operation mode, be it
polling mode or interrupt mode.

Each DPMCP object is associated with a single Management Complex Portal, and allows GPP software
to configure command completion interrupts for that portal. The DPMCP object is optional if the GPP
software is polling the portal and not using portal interrupts. However, for consistency and for better
tracking of MC portals that are in use, it is recommended to always create DPMCP objects for MC portals
used by GPP.

20.1 DPMCP features

The following list summarizes the DPMCP main features and capabilities:

• DPMCP can be created and destroyed via DPL or dynamically through MC commands.

• IRQ support for command completion.

• Reset support (closes all open tokens on the associated MC portal)

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-2

20.2 DPMCP command reference

This section contains detailed programming model of DPMCP commands.

20.2.1 DPMCP_OPEN

Open a control session for the specified object.

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by invoking DPMCP_CREATE command.

This function returns a unique authentication token, associated with the specific object ID; this token must
be used in all subsequent commands for this specific object.

Command structure

Figure 573. DPMCP_OPEN Command Description

The following table describes the command fields.
1-

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x80B1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 DPMCP_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 73. DPMCP_OPEN Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero)

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPMCP_ID DPMCP unique ID

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-3

20.2.2 DPMCP_CLOSE

Close the control session of the object.

After this function is called, no further operations are allowed on the object without opening a new control
session.

Command structure

Figure 574. DPMCP_CLOSE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x8001 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-4

20.2.3 DPMCP_CREATE

This command creates and initializes an instance of DPMCP according to the specified command
parameters. This command is not required for DPMCP instances that are created using the DPL.

For the CREATE command the caller must provide the authentication token of the parent container to
which the object should be created and assigned. If the token is '0' the object will be assigned to the
container that hosts the MC command portal executing this command.

The command returns a DPMCP ID that can be used to OPEN or DESTROY the object.

The command format is shown in the figure below.

Command structure

Figure 575. DPMCP_CREATE Command Description

The following table describes the command fields.
1-5

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x90B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — PORTAL_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 74. DPMCP_CREATE Command Field Descriptions1

1 All unspecified fields are reserved and must be cleared (set to zero).

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 PORTAL_ID Portal ID

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-5

Response structure

Figure 20-1. DPMCP_CREATE Response Description

The following table describes the response fields.

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 24 23 16 15 14 8 7 0

CMDID = 0x90B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPMCP_ID

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Table 20-1. DPMCP_CREATE Response Field Descriptions1

1 All unspecified fields are reserved.

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 DPMCP_ID DPMCP unique ID

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-6

20.2.4 DPMCP_DESTROY

This command destroys the DPMCP object and releases all its resources. It must be invoked in the
software context that created the object. The caller must provide the object id and the authentication token
of the parent container that created the object. Note that the object can be assigned to another container
and sending the authentication token of this container will return an error.

All open authentication tokens to the object must be closed before calling the destroy command.

After this function is called, no further operations are allowed on the object.

Command structure

Figure 576. DPMCP_DESTROY Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x98B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 32 31 0

0x08 — DPMCP_ID

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0–32 DPMCP_ID ID of the DPMCP object to destroy

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-7

20.2.5 DPMCP_RESET

Command structure

Figure 577. DPMCP_RESET Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0051 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-8

20.2.6 DPMCP_SET_IRQ_ENABLE

Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled
no causes will cause an interrupt.

Command structure

Figure 578. DPMCP_SET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0121 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 1 0

0x08 – IRQ_INDEX – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable

32-39 IRQ_INDEX Identifies the interrupt index to configure

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-9

20.2.7 DPMCP_GET_IRQ_ENABLE

Get overall interrupt state.

Command structure

Figure 579. DPMCP_GET_IRQ_ENABLE Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX Identifies the interrupt index to query

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-10

Response structure

Figure 580. DPMCP_GET_IRQ_ENABLE Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0131 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 1 0

0x08 – EN

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0 EN This bit is set if the interrupt is enabled

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-11

20.2.8 DPMCP_SET_IRQ_MASK

Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 581. DPMCP_SET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0141 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

32-39 IRQ_INDEX The interrupt index to configure

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-12

20.2.9 DPMCP_GET_IRQ_MASK

Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports
masking/unmasking each cause independently.

Command structure

Figure 582. DPMCP_GET_IRQ_MASK Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX –

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-39 IRQ_INDEX The interrupt index to query

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-13

Response structure

Figure 583. DPMCP_GET_IRQ_MASK Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0151 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 MASK

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-14

20.2.10 DPMCP_GET_IRQ_STATUS

Get the current status of pending events for the specified interrupt index.

Command structure

Figure 584. DPMCP_GET_IRQ_STATUS Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 40 39 32 31 0

0x08 – IRQ_INDEX STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state. Note that
the STATUS returned in the response is the status before the events are cleared.

Supported events: see response structure definition

32-39 IRQ_INDEX The interrupt index to query

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-15

Response structure

Figure 585. DPMCP_GET_IRQ_STATUS Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0161 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 STATUS

63 0

0x10 –

63 0

0x18 –

63 0

0x20 –

63 0

0x28 –

63 0

0x30 –

63 0

0x38 –

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending

Supported events for IRQ 0:
Bit 0: DPMCP_IRQ_EVENT_CMD_DONE – indicates completion of last command

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-16

20.2.11 DPMCP_GET_ATTRIBUTES

Command structure

Figure 586. DPMCP_GET_ATTRIBUTES Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-17

Response structure

Figure 587. DPMCP_GET_ATTRIBUTES Response Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0x0041 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 0

0x08 ID —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 32-63 ID DPMCP object ID

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-18

20.2.12 DPMCP_GET_API_VERSION

Command structure

Figure 588. DPMCP_GET_API_VERSION Command Description

All unspecified fields are reserved and must be cleared (set to zero)

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0B1 TOKEN —

IN
T

R
_

D
IS

STATUS P — SRCID

63 0

0x08 —

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-19

Response structure

Figure 589. DPMCP_GET_API_VERSION Response Description

Offset from Management Command Portal base Read-Write Access

63 48 47 32 31 25 24 23 16 15 14 8 7 0

0x00 CMDID = 0xA0B1 TOKEN —

IN
T

R
_D

IS

STATUS P — SRCID

63 32 31 16 15 0

0x08 — VERSION_MINOR VERSION_MAJOR

63 0

0x10 —

63 0

0x18 —

63 0

0x20 —

63 0

0x28 —

63 0

0x30 —

63 0

0x38 —

Offset Bits Name Description

0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.

0x08 0-15 VERSION_MAJOR Major version of API

16-31 VERSION_MINOR Minor version of API

DPMCP: Data Path MC Portal

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 20-20

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-1

Chapter 21 Memory Map and Register Definition
The MC CCSR space consists of a 64kB block assignment in the SoC CCSR map, and is accessible
through the CCSR SkyBlue interface. It is assumed that only trusted software is able to access the MC
registers, and all MC registers are Little-Endian; all accesses to MC registers must be naturally aligned to
4-byte word only. The MC configuration, control and status registers are summarized in Table 75.

21.1 General Control Register 1 (GCR1)

The GCR1, shown in the following figure, contains general control and configuration for the MC.

Table 75. MC Memory Map

Register offset
(Trusted access

only)
Register Access Reset

Section/
Page

0x0000 GCR1—General Control Register 1 R/W 0x0000_0000 21.1/21-1

0x0004 Reserved — — —

0x0008 GSR—General Status Register R/W 0x0000_0000 21.2/21-3

0x000C - 0x001F Reserved — — —

0x0020 MCFBALR—MC Firmware Base Address Low R/W 0x0000_0000 21.3/21-4

0x0024 MCFBAHR—MC Firmware Base Address High R/W 0x0000_0000 21.4/21-4

0x0028 MCFAPR—MC Firmware Attributes and Partitioning
Register

R/W 0x0000_0000 21.5/21-5

0x002C - 0x0BEF Reserved — — —

0x0BF0 PSR—Parameter Summary Register R 0x0000_0000 21.6/21-6

0x0BF4 Reserved — — —

0x0BF8 BRR1—Block Revision Register 1 R 0x0000_0000 21.7/21-6

0x0BFC BRR2—Block Revision Register 2 R 0x0000_0000 21.8/21-7

0x0C00 - 0xFFFF Reserved — — —

Offset <see Table 75> Access:
GPP Hypervisor & MC

Read/Write

31 30 29 24 23 22 21 16 15 14 13 3 2 1 0

R P1_
STOP

P2_
STOP

—
P1_

RST_b
P2_

RST_b
—

M1_
RST_b

M2_
RST_b

— — —
G_

RSTW

Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000

Figure 590. General Control Register 1 (GCR1)

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-2

The following table describes the GCR1 fields.

Table 76. GCR1 Field Descriptions

Bits Name Description

0 G_RST MC Global Reset. This bit asserts the reset signals to MC. This bit is self clearing so that MC firmware may
use this bit to self reset the entire MC.
1’b0 - the global_reset signal is de-asserted
1’b1 - the global_reset signal is asserted, Note that this value will automatically revert to 1’b0 after several
cycles.

1-13 — Reserved

14 M2_RST_b Command Portals 256-511 Reset. This bit clears all state associated with these command portal. If a portal
transaction is received while this bit is cleared, the MC cannot respond to the transaction and the
interconnect behavior is undefined. It is recommended that the GPP boot program sample this bit until it
reads as not reset (that is, 1’b1) before enabling or performing any accesses to thee MC portals. The result
of resetting the command portals after commencing operation without also resetting the entire MC is
undefined and should be avoided. This bit is persistent; it is not self clearing.
1’b0 - command portals 256-511 are reset. Portal access is disabled.
1’b1 - command portals 256-511 operate normally.

15 M1_RST_b Command Portals 0-255 Reset. This bit clears all state associated with these command portal. If a portal
transaction is received while this bit is cleared, the MC cannot respond to the transaction and the
interconnect behavior is undefined. It is recommended that the GPP boot program sample this bit until it
reads as not reset (that is, 1’b1) before enabling or performing any accesses to thee MC portals. The result
of resetting the command portals after commencing operation without also resetting the entire MC is
undefined and should be avoided. This bit is persistent; it is not self clearing.
1’b0 - command portals 0-255 are reset. Portal access is disabled.
1’b1 - command portals 0-255 operate normally.

16-21 — Reserved

22 P2_RST_b Processor 2 Reset. This bit asserts the hard_reset signal to MC processor 2 and to watchdog timer 2. This
does not reset the debug subsystems of the associated processor. This bit is persistent; it is not self
clearing.
In contrast to P1_RST_b, GPP should not alter this bit – MC firmware starts and stops MC cores as
necessary.
1’b0 - the hard_reset signal is asserted
1’b1 - the hard_reset signal is de-asserted and the processor is released to run

23 P1_RST_b Processor 1 Reset. This bit asserts the hard_reset signal to MC processor 1 and to watchdog timer 1. This
does not reset the debug subsystems of the associated processor. This bit is persistent; it is not self
clearing.
This bit should be set by a boot program in order to start MC firmware operation. The bit must be set only
after the MC firmware has been loaded into system memory and all other MC registers are programmed
as described in this section.
1’b0 - the hard_reset signal is asserted
1’b1 - the hard_reset signal is de-asserted and the processor is released to run

24-29 — Reserved

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-3

21.2 General Status Register (GSR)

The GSR, shown in the following figure, contains MC hardware and firmware status.

The following table describes the GSR fields.

30 P2_STOP Processor 2 Stop. This bit stops MC processor 2 clock. The processor clock does not stop immediately. No
state is lost. Command portals are not affected by this bit.
1’b0 - the processor is released to run (default out of POR)
1’b1 - the processor clock is (will be) stopped

31 P1_STOP Processor 1 Stop. This bit stops MC processor 1 clock. The processor clock does not stop immediately. No
state is lost. Command portals are not affected by this bit.
1’b0 - the processor is released to run (default out of POR)
1’b1 - the processor clock is (will be) stopped

Offset <see Table 75> Access:
MC & GPP Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HErr CErr — BC MCS

W

Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000

Figure 591. General Status Register (GSR)

Table 77. GSR Field Descriptions

Bits Name Description

0-7 MCS MC Status. After MC is kicked to run, MC writes boot status to the MCS bits. The boot program
should poll the MCS status field until it is set to a non-zero value.
The following codes indicate completion status of the MC boot process:
0x01 - MC boot completed successfully. System boot can continue normally.
0x03 - MC platform general failure.
0x07 - MC resource manager initialization failure.
0x0B - MC command portals initialization failure.
0x0D - QBMan controller initialization failure.
0x0F - WRIOP controller initialization failure.
0x11 - AIOP controller initialization failure.
0x23 - SEC engine initialization failure.
0x3D - DPL processing failure. DPL correctness should be verified by user.

8-15 BC Boot Code. This field can be optionally set to the value listed below by the boot program.
0xDD - Delay DPL processing by MC
All other values are ignored.

16-29 — Reserved, must be cleared.

Table 76. GCR1 Field Descriptions (continued)

Bits Name Description

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-4

21.3 MC Firmware Base Address Low Register (MCFBALR)

This is the least significant portion of the 512MB MC private memory base address within the SoC Internal
Address Map. The GPP should program MCFBALR only while the MC is stopped.

The MCFBALR register format is shown in the following figure.

The following table describes the MCFBALR fields.

21.4 MC Firmware Base Address High Register (MCFBAHR)

This is the most significant portion of the 512MB MC private memory base address within the SoC
Internal Address Map. The GPP should program MCFBAHR only while the MC is stopped.

The MCFBAHR register format is shown in the following figure.

30 CErr Catastrophic Error. Setting this bit asserts the MC Catastrophic_Error pin intended for input to SoC
Interrupt Controller. GPP should never set this bit.

31 HErr Hardware Error. When this bit is set, the MC has encountered an internal error condition. GPP
should never set this bit.
1’b0 - MC is running normally
1’b1 - MC is not running or has encountered an internal error. Setting this bit asserts the MC
HReset_Req.

Offset <see Table 75> Access:
Read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MCFBAR_LOW — MEMSZ

W

Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000

Figure 592. MC Firmware Base Address Low Register (MCFBALR)

Table 78. MCFBALR Field Descriptions

Bits Name Description

0-7 MEMSZ Size of system memory allocated for MC (and DPAA controllers included) by the boot program.
The allocated memory must be in multiples of 256MB, and the value (MEMSZ+1) indicates the
allocated number of 256MB memory blocks. For example:
0x00 – 256MB allocated (do not use this option if the SoC contains an AIOP)
0x01 – 512MB allocated
...
0x07 – 2GB allocated
etc.

8-28 — Reserved

29-31 MCFBAR_LOW MC Firmware Base Address Low. This is the least significant part of the MC private memory base
address, corresponding to address bits [31-29]. Bits [47-32] come from MCFBAHR.

Table 77. GSR Field Descriptions (continued)

Bits Name Description

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-5

The following table describes the MCFBAHR fields.

21.5 MC Firmware Attributes and Partitioning Register (MCFAPR)

The MCFARP is the isolation context identifier and memory access qualifiers that the MC uses, attaches
as transaction attribute, when accessing any location within its 512MB private memory block in the SoC
internal address map. The GPP should program MCFAPR only when the MC is stopped.

The following table describes the MCFAPR fields.

Offset <see Table 75> Access:
Read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
— MCFBAR_HIGH

W

Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000

Figure 593. MC Firmware Base Address High Register (MCFBAHR)

Table 79. MCFBAHR Field Descriptions

Bits Name Description

0-16 MCFBAR_HIGH MC Firmware Base Address High. This is the most significant part of the MC private memory base
address, corresponding to address bits [48-32]. Bits [31-29] come from MCFBALR.

17-31 — Reserved

Offset <see Table 75> Access:
Read-write

31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
— PL BMT — — ICID

W

Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000

Figure 594. MC Firmware Attributes and Partitioning Register (MCFAPR)

Table 80. MCFAPR Field Descriptions

Bits Name Description

0-14 ICID ICID. This is the Isolation Context ID value used by the PAMU/SMMU for address translation if the
Privilege Level bit is set.

15-16 — Reserved

17 BMT Bypass Memory Translation. This attribute forces bypassing of IOMMU translation.

18 PL Privilege Level. If this bit is set, MC interrupt transactions are labeled using the ICID (Isolation
Context ID) field, and are passed through the IOMMU for translation to the SoC internal Address
Map. If this bit is cleared, all MC support transactions bypass the IOMMU and the ICID value is
unused.

19-31 — Reserved

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-6

21.6 Parameter Summary Register (PSR)

PSR, shown in the following figure, provides a summary of the parameterized features for this MC
implementation.

NOTE

This register may be removed or modified by the design team; however, the
information contained in the register should be provided in some way.

The following table describes the PSR1 fields.

21.7 Block Revision Register 1 (BRR1)

BRR1, shown in the following figure, provides MC IP block revision information.

The following table describes the BRR1 fields.

Offset <see Table 75> Access:
Read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PROCS ADDR_W DPAA_INTS CMD_PORTALS

W

Reset 0x2 0x9 0x60 0x01FF

Figure 595. Parameter Summary Register 1 (PSR1)

Table 81. PSR1 Field Descriptions

Bits Name Description

0-15 CMD_PORTALS Command Portals - The total number of command portals implemented in all the CPMs in the MC

16-23 DPAA_INTS DPAA2 Interrupt Inputs - The amount of uncommitted DPAA2 interrupt input signals available for
connection to other DPAA2 IP blocks.

24-27 ADDR_W External Address Physical Width - The width of the SoC platform address.
Values: 0x0 = 32 bits, 0x2 = 36 bits, 0x4 = 40 bits, 0x6 = 44 bits, 0x8 = 48 bits, 0x9 = 49 bits

28-31 PROCS Total number of processors (cores or hardware threads) implemented within MC

Offset <see Table 75> Access:
Read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R IPMN IPMJ IPID

W

Reset 0x00 - Implementation specific 0x01 - Implementation specific 0x0A00

Figure 596. Block Revision Register 1 (BRR1)

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-7

21.8 Block Revision Register 2 (BRR2)

BRR2, shown in the following figure, provides information about the IP block integration and
configuration options. Note, that version information in this register is of the hardware block and not of
the loaded firmware.

The following table describes the BRR2 fields.

Table 82. BRR1 Field Descriptions

Bits Name Description

0-15 IPID IP block ID - 0x0A00 denotes Management Complex

16-23 IPMJ The major revision of the IP block. 0x01 in the initial MC implementation.

24-31 IPMN The minor revision of the IP block. 0x00 in the initial MC implementation.

Offset <see Table 75> Access:
Read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R IPCFGO
—

IPINTO
—

W

Reset 0x00 - Implementation specific 0x00 0x00 - Implementation specific 0x00

Figure 597. Block Revision Register 2 (BRR2)

Table 83. BRR2 Field Descriptions

Bits Name Description

0-7 — Reserved

8-15 IPINTO IP block integration options - This field is set to 0x00 for the initial MC implementation.

16-23 — Reserved

24-31 IPCFGO IP block configuration options - This field is set to 0x00 for the initial MC implementation.

Memory Map and Register Definition

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 21-8

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-1

Chapter 22 Data Path Layout (DPL) Reference
Systems do not need to dynamically create and destroy DPAA2 objects, and system design can be simpler
if the DPAA2 objects topology is declared statically at boot time. The MC is capable of consuming a binary
data structure named the Data Path Layout (DPL) that describes the initial a set of objects created when
the system is initialized; it is processed only once when the MC is initialized.

The DPL is based on a text source file that is similar in syntax to a device tree source file, and compiled
with DTC (Device Tree Compiler) to form a binary structure (blob). This binary structure is loaded by the
SoC boot program (U-Boot, for example) as an MC input. The purpose of the DPL is not to describe
hardware attributes, but rather to describe the initial topology and attributes of logical objects that the MC
should create.

This section describes the DPL syntax. The DPL source file syntax is a ‘tree’ of named nodes and
properties. Nodes contain properties (name and value pairs), and also optionally child nodes.

22.1 High-level DPL structure

The DPL structure is composed of three top-level nodes:

• “containers”—defines the initial set of containers in the system, where each container represents a
different software context that needs DPAA2 objects. This node also gives the initial assignment
of DPAA2 objects and resources to different containers.

• “objects”—defines the initial set of DPAA2 objects and their attributes.

• “connections”—defines connections between DPAA2 network objects; allows users to set up a
required network topology.

In addition, the DPL contains a DPL version in the “dpl-version” property, allowing the MC firmware to
detect and parse legacy DPL files. In this revision, the DPL version is 10.

Example – high level DPL structure:

/dts-v1/;
/ {

dpl-version = <10>;
containers {

. . .
};
objects {

. . .
};
connections {

. . .
};

};

The following sections describe each of the top-level nodes in more detail.

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-2

22.2 Node: containers

The “containers” node contains the initial set of ICID pools for the MC, as well as initial set of containers
with their assigned DPAA2 resources and objects; the “containers” node has no properties of its own.

22.2.1 Child node: dprc

The “dprc” node specifies an instantiation of the Data Path Resource Container (DPRC), where the
container ID is as specified in the node name “dprc@<id>”. The “dprc” node contains three sections:
container properties, and two child nodes: “resources” and “objects”.

Table 84. Properties of “dprc” node

Property
Required /
Optional

Expected Value(s) Description

parent R “dprc@<id>”, or “none” Containers hierarchy is set by
specifying the parent container ID,
or use “none” if this is a root-level
container

icid O <uint16_t>
or
“DPRC_GET_ICID_FROM_POOL”

Select specific ICID value for the
child container, or use
“DPRC_GET_ICID_FROM_POOL”
(default value) to have MC allocate
the ICID from the pool of free ICID
values

portal_id O <int>
or
“DPRC_GET_PORTAL_ID_FROM_POOL”

Primary MC command portal for this
container, or use
“DPRC_GET_PORTAL_ID_FROM
_POOL” (default value) to have MC
allocate the portal ID from the pool
of free portals

options O Zero or more of comma-separated options may be selected from the list below. If this property is
omitted, none of these options will be set.

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-3

22.2.1.1 Child node: resources

The “resources” node lists specific container resource assignment. The “resources” node has no properties
of its own, and it only contains child “res” nodes.

22.2.1.1.1 Child node: res

The “res@<n>” node declares a specific resource assignment; multiple “res” nodes may be declared in a
“resources” node. The value of <n> has no significance.

Table 85. Properties of “res” node

“DPRC_CFG_OPT_SPAWN_ALLOWED” The container is allowed to spawn
its own child containers

“DPRC_CFG_OPT_ALLOC_ALLOWED” The container is allowed to allocate
resources from its parent container;
if not set, the container is only
allowed to use resources from its
own pools. This is the container's
global policy, but the parent
container may override it and set
specific quota for each resource
type.

“DPRC_CFG_OPT_OBJ_CREATE_ALLOWED” The software context associated
with this container is allowed to
create new objects

“DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED” The software context associated
with this container is allowed to
invoke topology changes, such as
connect or disconnect of objects

“DPRC_CFG_OPT_AIOP” The container is associated with the
AIOP

“DPRC_CFG_OPT_IRQ_CFG_ALLOWED” The software context associated
with this container is allowed to set
IRQ configuration for objects

label O up to 16 characters Container’s label

Property
Required /
Optional

Expected Value(s) Description

type R Name of resource pool (specify only one from the list below).
Note that resource pool types may differ between SoC variants.

“mcp” MC portals

“swp” QBMan SW portals

“bp” QBMan buffer pools

“fq” QBMan frame queues

Property
Required /
Optional

Expected Value(s) Description

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-4

22.2.1.2 Child node: objects

The “objects” node lists specific container object assignment for the container. The “objects” node has no
properties of its own, and it only contains child “obj” nodes.

“qpr” QBMan queuing priority records

“qd” QBMan queuing destinations

“cg” QBMan congestion groups

“swpch” QBMan software portal channels

“cqch” QBMan class queue channels

“rplr” QBMan replication list records

“ifp.wr0” WRIOP interface profiles

“kp.wr0.ctlue” WRIOP CTLU egress key profiles

“kp.wr0.ctlui” WRIOP CTLU ingress key profiles

“prp.wr0.ctlue” WRIOP CTLU egress parser profiles

“prp.wr0.ctlui” WRIOP CTLU ingress parser profiles

“plcy.wr0.ctlui” WRIOP CTLU ingress policy tables

“plcye.wr0.ctlui” WRIOP CTLU ingress policy entries

“kp.aiop0.ctlu” AIOP CTLU key profiles

“kp.aiop0.mflu” AIOP MFLU key profiles

“prp.aiop0.ctlu” AIOP CTLU parser profiles

“prp.aiop0.mflu” AIOP MFLU parser profiles

“dcp.aiop.ch Direct connected portal AIOP channels

num R <uint32_t> Number of resources to assign

options O Select only one of the resource allocation options below, or none (omit this property or set to <0>).
Note the impact on ‘id_base_align’ property.

“DPRC_RES_REQ_OPT_EXPLICIT” Indicates that requested resources are explicit and
sequential, with base ID as specified by ‘id_base_align’
property

“DPRC_RES_REQ_OPT_ALIGNED” Indicates that resources’ base ID should be aligned to the
value specified by ‘id_base_align’ property

id_base_align R <int> In case of explicit assignment, indicates the base (first)
resource ID for the allocation.
In case of aligned (and non-explicit) assignment, indicates
the required alignment for the resource ID(s); set to <0> if
no special alignment is required.

Property
Required /
Optional

Expected Value(s) Description

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-5

22.2.1.2.1 Child node: obj

The “obj@<n>” node declares a specific object assignment; multiple “obj” nodes may be declared in an
“objects” node. The value of <n> has no significance.

Table 86. Properties of “obj” node

22.2.1.2.2 Child Node: obj_set

The “obj_set@<n>” node declares a set of a specific object assignment; multiple “obj_set” nodes may be
declared in an “objects” node. The value of <n> has no significance.

Property
Required /
Optional

Expected Value(s) Description

obj_name R “<object>@<id>”

Examples: “dpni@3”, “dpsw@5”

Object name and ID

plugged O <0> or <1> Indicates if the object is considered plugged to the
container, or not. Default value is <1>. If this property is
omitted, the object is considered plugged.

label O up to 16 characters Object’s label

Property
Required /
Optional

Expected Value(s) Description

type R up to 16 characters

Examples: “dpni”, “dpsw”

Object type

ids R <Array of int> The required IDs for objects in set

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-6

Example – declare a root-level container DPRC-1, with ICID 11, two configuration options, primary
command portal 7, additional command portals 15-16, and some DPAA2 objects assigned to the DPRC: a
set of four DPNI objects (with IDs: 1,2,5,30) and a single DPBP object (with ID=1 and a label):

dprc@1 {
parent = "none";
icid = <11>;
portal_id = <7>;
options = "DPRC_CFG_OPT_SPAWN_ALLOWED", "DPRC_CFG_OPT_ALLOC_ALLOWED";
resources {

res@1 {
type = "mcp";
num = <2>;
options = <1>;
id_base_align = <15>;

};
};
objects {

obj_set@1{
type = "dpni";
ids = <1 2 5 30>;

};
obj@1{

obj_name = "dpbp@1";
label = “my label”;

};
};

};

22.3 Node: objects

The top-level “objects” node, not to be confused with the child node of “dprc” node, contains the initial
set of objects created during boot by MC. The “objects” node has no properties of its own, and it only
contains child nodes that specify the different object attributes. Objects in this section are assigned to any
of the containers declared previously in the “containers” section.

Objects declared in the DPL are created during MC initialization, and do NOT need to be created later
using CREATE commands. These objects are available to their associated software contexts by submitting
an OPEN command for each object.

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-7

22.3.1 Child node: dpni
Table 87. Properties of “dpni” node

Example – declare DPNI-1 object with MAC address filter (16 entries), VLAN filter (16 entries), and QoS
support for 3 traffic classes and 32 QoS table entries.

dpni@1{
options = “”;
mac_filter_entries = <16>;
vlan_filter_entries = <16>;
num_tcs = <3>;
qos_entries = <32>;

};

22.3.2 Child node: dpio

The “dpio” node specifies an instantiation of Data Path I/O (DPIO) object, where the DPIO ID is as
specified in the node name “dpio@<id>”.

Property
Required /
Optional

Expected Value(s) Description

options O One or more of comma-separated options may be selected from the list below.

"DPNI_OPT_TX_FRM_RELEASE" Please refer to the description of
fields in the DPNI_CREATE
command."DPNI_OPT_NO_MAC_FILTER"

"DPNI_OPT_HAS_POLICING"

"DPNI_OPT_SHARED_CONGESTION"

"DPNI_OPT_HAS_KEY_MASKING"

"DPNI_OPT_NO_FS"

fs_entries O 0 – 1024

vlan_filter_entries O 0 – 16

mac_filter_entries O 0 – 64

num_queues O 1 – 8

num_tcs O 1 – 8

qos_entries O 0 – 64

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-8

Table 88. Properties of “dpio” node

Example – declare DPIO-3 object with a local notifications channel and 8 priority classes for notifications:

dpio@3{
channel_mode = "DPIO_LOCAL_CHANNEL";
num_priorities = <8>;

};

22.3.3 Child node: dpbp

The “dpbp” node specifies an instantiation of Data Path Buffer Pool (DPBP) object, where the DPBP ID
is as specified in the node name “dpbp@<id>”.

Table 89. Properties of “dpbp” node

Example – declare DPBP-5 object (no other properties are required):

dpbp@5{
};

22.3.4 Child node: dpcon

The “dpcon” node specifies an instantiation of Data Path Concentrator (DPCON) object, where the
DPCON ID is as specified in the node name “dpcon@<id>”.

Table 90. Properties of “dpcon” node

Example – declare DPCON-1 object with 4 priority classes for scheduling.

Property
Required /
Optional

Expected Value(s) Description

channel_mode R Select only one of the options from the list below

“DPIO_NO_CHANNEL” No notification channel

“DPIO_LOCAL_CHANNEL” Notifications associated with this DPIO
will be received at the DPIO’s
dedicated channel

num_priorities O <uint8_t> Number of priorities (1-8); relevant
only if “DPIO_LOCAL_CHANNEL” is
selected. Value defaults to 2.

Property
Required /
Optional

Expected Value(s) Description

N/A

Property
Required /
Optional

Expected Value(s) Description

num_priorities R <uint8_t> Number of priorities (1-8) for
scheduling

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-9

dpcon@1{
num_priorities = <4>;

};

22.3.5 Child node: dpci

The "dpci” node specifies an instantiation of Data Path Communication Interface (DPCI) object, where
the DPCI ID is as specified in the node name “dpci@<id>”.

Table 91. Properties of “dpci” node

Example – declare DPCI-1 object with 2 receive priorities.
dpci@1{

num_priorities = <2>;
};

22.3.6 Child node: dpseci

The ”dpseci” node specifies an instantiation of Data Path SEC Interface (DPSECI) object, where the
DPSECI ID is as specified in the node name ”dpseci@<id>”.

Table 92. Properties of “dpseci” node

Example – declare DPSECI-1 object with 2 priorities for hardware processing.
dpseci@1{

priorities = <2 5 1 2 3 4 3 1>;
};

Property
Required /
Optional

Expected Value(s) Description

num_priorities R <uint8_t> Number of receive priorities
(queues) for the DPCI; valid range
is 1-2.

Property
Required /
Optional

Expected Value(s) Description

priorities R < 1 to 8 uint8_t values separated by spaces> Priorities for the SEC hardware
processing; valid priorities are
configured with values 1-8; if a
single priority is required, set the
second priority to 0.

num_tx_queues O <uint8_t> Num of queues towards the SEC

num_rx_queues O <uint8_t> Num of queues back from the SEC

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-10

22.3.7 Child node: dpdmux

The “dpdmux” node specifies an instantiation of Data Path DeMux (DPDMUX) object, where the
DPDMUX ID is as specified in the node name “dpdmux@<id>”.

Table 93. Properties of “dpdmux” node

Example – declare DPDMUX-1 object with 4 internal interfaces, no manipulation, and demux done based
on MAC and VLAN:

dpdmux@1{
method = “DPDMUX_METHOD_C_VLAN_MAC”;
manip = “DPDMUX_MANIP_NONE”;
num_ifs = <4>;

};

Property
Required /
Optional

Expected Value(s) Description

method R Defines the method of the DPDMUX address table.

“DPDMUX_METHOD_C_VLAN_MAC” DeMux based on C-VLAN and MAC
address

“DPDMUX_METHOD_MAC” DeMux based on MAC address

“DPDMUX_METHOD_C_VLAN” DeMux based on C-VLAN

“DPDMUX_METHOD_S_VLAN” DeMux based on S-VLAN

manip O Required manipulation operation. Default is “DPDMUX_MANIP_NONE”

“DPDMUX_MANIP_NONE” No manipulation on frames

“DPDMUX_MANIP_ADD_REMOVE_S_VLAN” Add S-VLAN on egress, remove it on
ingress

num_ifs R <uint16_t> Number of interfaces (excluding the
uplink interface)

options O DPDMUX configuration options; One or more of comma-separated options may be
selected from the list below.

“DPDMUX_OPT_BRIDGE_EN” Enable bridging between internal
interfaces; allowed only if selected
“method” is either
“DPDMUX_METHOD_C_VLAN_MAC”
or “DPDMUX_METHOD_MAC”

max_dmat_entries O <uint16_t> Maximum entries in DPDMUX address
table; 0 indicates default: 64 entries per
interface

max_mc_groups O <uint16_t> Number of multicast groups in DPDMUX
table; 0 indicates default: 32 multicast
groups

max_vlan_ids O <uint16_t> max vlan ids allowed in the system -
relevant only case of working in
mac+vlan method.
0 indicates default: 16 VLAN ids

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-11

22.3.8 Child node: dpsw

The “dpsw” node specifies an instantiation of Data Path Switch (DPSW) object, where the DPSW ID is as
specified in the node name “dpsw@<id>”.

Table 94. Properties of “dpsw” node

Example – declare DPSW-1 object with 8 interfaces.
dpsw@1{

num_ifs = <8>;
};

22.3.9 Child node: dpmac

The "dpmac" node specifies an instantiation of Data Path MAC (DPMAC) object, where the DPMAC ID
is as specified in the node name "dpmac@<id>".

Property
Required /
Optional

Expected Value(s) Description

num_ifs R <uint16_t> Number of switch interfaces

options O Enable/ disable DPSW features

“DPSW_OPT_FLOODING_DIS” Disable flooding

"DPSW_OPT_CTRL_IF_DIS" Disable control interface

"DPSW_OPT_FLOODING_METERING_DIS" Disable flooding metering

“DPSW_OPT_MULTICAST_DIS” Disable Multicast support

"DPSW_OPT_METERING_EN" Enable metering

max_vlans O <uint16_t> Maximum number of VLANs;
0 indicates default: 16 VLANs

max_fdbs O <uint16_t> Maximum number of FDBs;
0 indicates default: 16 FDBs

max_fdb_entries O <uint16_t> Number of FDB entries for default
FDB table; 0 indicates default: 1024
entries

fdb_aging_time O <uint16_t> Default FDB aging time for default
FDB table; 0 indicates default: 300
seconds

max_fdb_mc_groups O <uint16_t> Number of multicast groups in each
FDB table; 0 indicates default: 32
multicast groups

max_meters_per_if O <uint8_t> Number of meters per interface

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-12

Table 95. Properties of "dpmac" node

Example — declare DPMAC-1.
dpmac@1{

};

22.3.10 Child node: dpdcei

The "dpdcei" node specifies an instantiation of Data Path Data Compression Interface (DPDCEI) object,
where the DPDCEI ID is as specified in the node name "dpdcei@<id>".

Table 96. Properties of "dpdcei" node

Example — declare DPDCEI-1.
dpdcei@1{

engine = "DPDCEI_ENGINE_COMPRESSION";
tx_priority = <1>;

};

22.3.11 Child node: dpdmai

The "dpdmai" node specifies an instantiation of Data Path DMA Interface (DPDMAI) object, where the
DPDMAI ID is as specified in the node name "dpmai@<id>".

Table 97. Properties of "dpdmai" node

Example — declare DPDMAI-1.

Property
Required /
Optional

Expected Value(s) Description

N/A

Property
Required /
Optional

Expected Value(s) Description

engine R DCE engine block

DPDCEI_ENGINE_COMPRESSION Compression engine

DPDCEI_ENGINE_DECOMPRESSION Decompression engine

priority R <int> Priority for the DCE hardware
processing (valid values 1-8).

Property
Required /
Optional

Expected Value(s) Description

priorities R < 1 or 2 uint8_t values separated by spaces> Priorities for the DMA hardware
processing; valid priorities are
configured with values 1-8; the entry
following last valid entry should be
configured with 0.

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-13

dpdmai@1{
priorities = <2 5>;

};

22.3.12 Child node: dpmcp

The "dpmcp" node specifies an instantiation of Data Path MC Portal (DPMCP) object, where the DPMCP
ID is as specified in the node name "dpmcp@<id>".

Table 98. Properties of "dpmcp" node

Example — declare DPMCP-1.
dpmcp@1{
};

22.3.13 Child node: dpaiop

The "dpaiop" node specifies an instantiation of Data Path AIOP (DPAIOP) object, where the DPAIOP ID
is as specified in the node name "dpaiop@<id>".

Table 99. Properties of "dpaiop" node

Example — declare DPAIOP-1.
dpaiop@1{

aiop_container_id = <1>;

};

22.4 Node: connections

The “connections” node specifies the initial object topology. The “connections” node has no properties of
its own, and it only contains child nodes that specify the required connections.

22.4.1 Child node: connection

The “connection@<n>” node declares a connection between two objects; multiple “connection” nodes
may be declared in a “connections” node. The value of <n> has no significance. The connection is
completely symmetric in nature, and therefore the “endpoint1” and “endpoint2” properties below are

Property
Required /
Optional

Expected Value(s) Description

N/A

Property
Required /
Optional

Expected Value(s) Description

aiop_container_id R <int> AIOP container ID

Data Path Layout (DPL) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 22-14

interchangeable – there is no significance to which object is listed as “endpoint1” and which is listed as
“endpoint2.”

Table 100. Properties of “connection” node

Example – set up one connection between DPNI-1 and DPMAC-2, and another connection between
DPMAC-3 and interface #1 of DPSW-1:

connections {
connection@1{

endpoint1 = "dpni@1";
endpoint2 = "dpmac@2";

};
connection@2{

endpoint1 = "dpsw@1/if@1";
endpoint2 = "dpmac@3";

};
};

Property
Required /
Optional

Expected Value(s) Description

endpoint1 R “<object>@<id>” or
“<object>@<id>/if@<if_id>”

Examples: “dpni@3”, “dpsw@5/if@1”

Object name and ID to connect with endpoint2 object;
objects with multiple interfaces (such as DPSW), must
specify also the interface ID

endpoint2 R Peer object name and ID to connect with the first object; for
objects with multiple interfaces (such as DPSW), must
specify also the interface ID

committed_rate O <uint32_t> Committed rate (Mbits/s)

max_rate O <uint32_t> Maximum rate (Mbits/s)

Data Path Configuration (DPC) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 23-1

Chapter 23 Data Path Configuration (DPC) Reference
The MC is capable of consuming a binary data structure named the Data Path Configuration (DPC) that
describes the initial board configuration when the system is initialized; it is processed only once before
MC is initialized.

The DPC is based on a text source file that is similar in syntax to a device tree source file, and compiled
with DTC (Device Tree Compiler) to form a binary structure (blob). This binary structure is loaded by the
SoC boot program (U-Boot, for example) as an MC input. The purpose of the DPC is to provide inputs to
MC on DPAA configuration constraints for current system or board.

This section describes the DPC syntax. The DPC source file syntax is a ‘tree’ of named nodes and
properties. Nodes contain properties (name and value pairs), and also optionally child nodes.

23.1 High-level DPC structure

The DPC structure is composed of these top-level nodes:

• “mc_general”—contains general configuration for MC firmware, such as logging options.

• “resources”—contains the initial set of system resources for MC.

• “controllers”—may be used to override the default configuration of DPAA controllers.

• “board_info”—contains various board hardware constraints.

• “memory”—provides additional information to MC about existing memories, eg. DP-DDR.

Example – high level DPC structure:

/dts-v1/;
/ {

mc_general {
. . .

};
resources {

. . .
};
controllers {

. . .
};
board_info {

. . .
};
memory {

. . .
};

};

The following sections describe each of the top-level nodes in more detail.

Data Path Configuration (DPC) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 23-2

23.2 Node: mc_general

The “mc_general” node contains general configuration for MC firmware, such as logging options.

23.2.1 Child node: log

The “log” node specifies the configuration of the log.

Table 101. Properties of “log” node

Example – declare log mode ON with ‘debug’ log level:

log {
mode = “LOG_MODE_ON”;
level = “LOG_LEVEL_DEBUG”;

};

Example – as previous example, but set separate levels for DPNI and DPMAC:

log {
mode = “LOG_MODE_ON”;
level = “LOG_LEVEL_DEBUG”;
level-DPNI = "LOG_LEVEL_ERROR"
level-DPMAC = "LOG_LEVEL_INFO"

};

Property
Required /
Optional

Expected Value(s) Description

mode O “LOG_MODE_ON” set log mode to ON or OFF.
default is “LOG_MODE_ON”

“LOG_MODE_OFF”

level O “LOG_LEVEL_GLOBAL” set the requested log level

“LOG_LEVEL_DEBUG”

“LOG_LEVEL_INFO”

“LOG_LEVEL_WARNING”

“LOG_LEVEL_ERROR”

“LOG_LEVEL_CRITICAL”

“LOG_LEVEL_ASSERT”

level-<module> O “LOG_LEVEL_GLOBAL” set the requested log level for
<module> (see example below)

“LOG_LEVEL_DEBUG”

“LOG_LEVEL_INFO”

“LOG_LEVEL_WARNING”

“LOG_LEVEL_ERROR”

“LOG_LEVEL_CRITICAL”

Data Path Configuration (DPC) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 23-3

23.3 Node: resources

The “resources” node contains the initial set of system resources for MC.

23.3.1 Child node: icid_pools

The “icid_pools” node specifies the initial set of ICID pools for MC. The MC uses the ICID pools to assign
an ICID value to a newly created container. Multiple “icid_pool” nodes may be declared. A child node is
defined for each “icid_pool” as following:

23.3.1.1 Child node: icid_pool

For each “icid_pool” the node name is “icid_pool@<id>”.

Table 102. Properties of “icid_pool” node

Example – declare two icid pools:

icid_pools {
icid_pool@1 {

base_icid = <0>;
num = <10>;

};
icid_pool@2 {

base_icid = <30>;
num = <100>;

};
};

Property
Required /
Optional

Expected Value(s) Description

base_icid R <uint32_t> First value in the range of ICIDs

num R <int> Number of consequent ICIDs in the
pool

Data Path Configuration (DPC) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 23-4

23.4 Node: controllers

The “controllers” node may be used to override the default configuration of DPAA controllers.

23.4.1 Child node: qbman

The “qbman” node may be used to override selected items of the QBMan controller’s default
configuration.

Table 103. Properties of “qbman” node

Example – declare QBMAN:

qbman {
total_bman_buffers = <1000000>;
wq_ch_conversion = <8>;

};

Property
Required /
Optional

Expected Value(s) Description

total_bman_buffers O <uint32_t> Specify the total number of buffers
that the BMan needs to handle.
Default is 900K buffers.

wq_ch_conversion O <uint16_t> Specify the number of WQ channels
to convert from 8-WQ mode (with 8
priorities) to 2-WQ mode (with 2
priorities). An 8-WQ channel will be
converted to four 2-WQ channels.
Default is 0.

Data Path Configuration (DPC) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 23-5

23.5 Node: board_info

The “board_info” node contains various board hardware constraints.

23.5.1 Child node: ports

The “ports” node specifies board-specific configuration of hardware ports.

23.5.1.1 Child node: mac

For each MAC the node name is “mac@<id>”.

Table 104. Properties of “mac” node

Example – declare two macs, mac-1 is fixed link and mac-3 uses an external PHY:

ports {
mac@1 {

link_type = “MAC_LINK_TYPE_FIXED”;
};
mac@3 {

link_type = “MAC_LINK_TYPE_PHY”;
port_mac_address = <0x00 0x04 0x9F 0x01 0x03 0x94>;

};

};

Property
Required /
Optional

Expected Value(s) Description

link_type O MAC link types.
default is “MAC_LINK_TYPE_FIXED”

“MAC_LINK_TYPE_NONE” MAC has no link

“MAC_LINK_TYPE_FIXED” MAC is fixed link

“MAC_LINK_TYPE_PHY” MAC uses PHY to link

port_mac_address O <int int int int int int> Mac Address to use on this physical port

Data Path Configuration (DPC) Reference

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 23-6

23.6 Node: memory

The “memory” node contains information about the existing memories on the board. These properties may
help to efficiently allocate system memories. The properties are presented in the following table.

Example – Set DP-DDR memory size to ‘0’ and provide custom bounds for MC space within the system
DDR:

memory {
dpddr_size = <0x0>;
mc_sys_ddr_start_address = <0x83 0xa000000f>;
mc_sys_ddr_end_address = <0x83 0xffe00000>;

};

Table 105. Properties of “memory” node

Property
Required /
Optional

Expected Value(s) Description

dpddr_size O <uint32_t> Specify a custom DP-DDR size. Note that if the value is ‘0’
then MC will not use this memory for AIOP resources.

mc_sys_ddr_start_address O <uint32_t uint32_t> Indication for MC about the actual start address of the
system DDR partition allocated for MC and AIOP resources.

mc_sys_ddr_end_address O <uint32_t uint32_t> Indication for MC about the actual end address of the system
DDR partition allocated for MC and AIOP resources.

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-1

Chapter 24 Use case scenarios

24.1 Steps to verify 1000BASE‐X on LS1088A QDS

While 1000Base-X is not supported explicitly, MC supports SGMII using 1000Base-X auto-negotiation
instead of the SGMII scheme. Physically and electrically it is still SGMII, though to the PCS SW, it would
look like 1000Base-X.

24.1.1 Preparation

24.1.1.1 Hardware

• LS1088AQDS board with LS1088A Rev 1.0

• 4 ports Vitesse SGMII riser card (SCH-24801 REVA1, with Vitesse PHY VSC8234)

24.1.1.2 Software and firmware

• Uboot from LSDK1706

• MC binary that supports 1000BASE-X mode

• DPC file

24.1.1.3 RCW

• Serdes 1 = 0x15 (1133)

24.1.1.4 Board setup

To setup the board, follow these steps:

1. Plug a Vitesse SGMII riser card in LS1088AQDS slot 1

2. Connect PORT 3 (the very bottom one) of the SGMII card to the company network (or any host).
PORT 3 of the SGMII card is now linked to DPMAC3@sgmii.

3. Program uboot to QSPI (in order for it to boot) and MC binary to QSPI offset 0xa00000.

24.1.2 Test procedures

24.1.2.1 Verify that SGMII MC works with SGMII PHY

1. Check the SGMII is in working order.

2. In DPC, make sure you have the following nodes:

boards {

ports {

mac@3 {

pcs_autoneg = "on";

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-2

};

};

};

In this case, the default Ethernet interface of MC supports SGMII mode, with auto negotiation ON.

3. Create dpc.dtb and program it to QSPI flash offset 0xe00000.

4. Boot up uboot and make sure MC is correctly loaded. (MC binary is at 0xa00000, DPC is at
0xe00000).

5. Run following sequence and verify that the host is alive.

=> setenv ipaddr <your_ip>

=> setenv serverip <host_ip>

=> setenv ethact DPMAC3@sgmii

=> ping $serverip

DPMAC3@sgmii Waiting for PHY auto negotiation to complete.. done

Using DPMAC3@sgmii device

host 10.81.55.3 is alive

24.1.2.2 Verify that SGMII MC does not work with 1000BaseX PHY

1. Run the following commands in U-Boot:

=> mdio list

FSL_MDIO0:

LS1088A_QDS_MDIO0:

1 - RealTek RTL8211F <--> DPMAC4@rgmii

LS1088A_QDS_MDIO1:

2 - RealTek RTL8211F <--> DPMAC5@rgmii

LS1088A_QDS_MDIO2:

1e - Vitesse VSC8234 <--> DPMAC7@sgmii

1f - Vitesse VSC8234 <--> DPMAC3@sgmii

=> mdio read DPMAC3@sgmii 0x17

Reading from bus LS1088A_QDS_MDIO2

PHY at address 1f:

23 - 0xa022

=> mdio write DPMAC3@sgmii 0x17 0xe024 # set PHY
to 1000BASE-X mode

=> mdio read DPMAC3@sgmii 0x0

Reading from bus LS1088A_QDS_MDIO2

PHY at address 1f:

0 - 0x1040

=> mdio write DPMAC3@sgmii 0x0 0x9040 # soft
reset PHY

=> mdio read DPMAC3@sgmii 0x17

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-3

Reading from bus LS1088A_QDS_MDIO2

PHY at address 1f:

23 - 0xe024

=> ping $serverip

DPMAC3@sgmii Waiting for PHY auto negotiation to complete.. done

Using DPMAC3@sgmii device

ARP Retry count exceeded; starting again

ping failed; host 10.81.55.3 is not alive

=>

24.1.2.3 Modify DPC for MC to support 1000BaseX

1. Modify DPC file, to configure MC supporting 1000BASE-X mode

boards {

ports {

mac@3 {

enet_if = "1000BASEX";

pcs_autoneg = "on";

};

};

};

In this case, the Ethernet interface of MC supports 1000BASE-X mode, with auto negotiation ON.

2. Create dpc.dtb and program it to QSPI flash offset 0xe00000

3. Reboot uboot, make sure MC is correctly loaded. (MC binary is at 0xa00000, DPC is at 0xe00000)

4. Run following sequence to set PHY to 1000BASE-X mode, then ping host server. You should see
ping is successful in 1000BASE-X mode.

=> setenv ipaddr <board_ip>
=> setenv serverip <host_ip>
=> setenv ethact DPMAC3@sgmii
=> mdio list
FSL_MDIO0:
LS1088A_QDS_MDIO0:
1 - RealTek RTL8211F <--> DPMAC4@rgmii
LS1088A_QDS_MDIO1:
2 - RealTek RTL8211F <--> DPMAC5@rgmii
LS1088A_QDS_MDIO2:
1e - Vitesse VSC8234 <--> DPMAC7@sgmii
1f - Vitesse VSC8234 <--> DPMAC3@sgmii
=> mdio read DPMAC3@sgmii 0x17

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-4

Reading from bus LS1088A_QDS_MDIO2
PHY at address 1f:
23 - 0xa022
=> mdio write DPMAC3@sgmii 0x17 0xe024
set PHY to 1000BASE-X mode
=> mdio read DPMAC3@sgmii 0x0
Reading from bus LS1088A_QDS_MDIO2
PHY at address 1f:
0 - 0x1040
=> mdio write DPMAC3@sgmii 0x0 0x9040
soft reset PHY
=> mdio read DPMAC3@sgmii 0x17
Reading from bus LS1088A_QDS_MDIO2
PHY at address 1f:
23 - 0xe024
=> ping $serverip
Using DPMAC3@sgmii device
host 10.81.55.3 is alive
=>

24.2 Steps to verify PHYless on LS1088A QDS

The MC firmware requires no extra configuration to make a PHYless connection.

24.2.1 Preparation

24.2.1.1 Hardware

• 2 of LS1088AQDS boards, with LS1088A Rev 1.0. The boards are labeled Board A and Board B.

• 1 of 4 ports used per SFP riser card (700-26908 REV X1). The cards are labeled Card A and Card
B.

• 2 of Finisar SFP modules, (FTLX8571D3BCL), and one multi-mode crossover fiber cable

OR
• One Direct Attached Cable (Tyco Electronics, 2127934-3 D)

24.2.1.2 Software and firmware

• Uboot that has PHYless SGMII support

• MC binary that supports SGMII

• DPC file

24.2.1.3 RCW

• Serdes 1 = 0x15 (1133)

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-5

24.2.1.4 Board setup

• Plug the SFP riser card A in slot 1 of LS1088AQDS Board A

• Plug the SFP riser card B in slot 1 of LS1088AQDS Board B

• Insert Finisar SFP modules to SFP cage 3 (the very top one) of both Card A and Card B, and
connect them with multi-mode crossover fiber cable. (Pic. 1)

OR
• Plug each end of the Direct Attached Cable to SFP cage 3 (the very top one) of both Card A and

Card B (Pic. 2)

Program uboot, MC and DPC to QSPI so uboot can boot up and MC/DPC can be loaded.

Figure 598. Multi-mode crossover fiber cable

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-6

Program uboot, MC and DPC to QSPI so uboot can boot up and MC/DPC can be loaded.

Figure 599. Cable attached directly

24.2.2 Test procedures

1. Setup up network parameters on Board A.

=> setenv ethact DPMAC3@sgmii
=> setenv ipaddr 1.1.1.1

2. Set up network parameters on Board B.

Note: Since server IP is dummy, you may need Board B to tftp a dummy file from the
dummy server so that it can respond to a ping.

=> setenv ethact DPMAC3@sgmii
=> setenv ipaddr 1.1.1.2
=> setenv serverip 1.1.1.10

3. Send a Tftp a fake file on Board B.

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-7

=> tftp afile
Using DPMAC3@sgmii device
TFTP from server 1.1.1.10; our IP address is 1.1.1.2
Filename 'afile'.
Load address: 0x90100000
Loading: *

4. Ping from Board A to Board B, while Board B is in polling status. To get a working Board B.

=> ping 1.1.1.2
Using DPMAC3@sgmii device
host 1.1.1.2 is alive

Use case scenarios

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 24-8

Known Limitations

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 25-1

Chapter 25 Known Limitations

25.1 Reset of MC objects with FQs associated with a channel

Although the MC supports individual object reset, there are some situations were it works only in certain
configurations.

The reset command can fail on MC objects connected to a DPCON or objects with FQs destination
configured to a DPIO/DPCON channel (e.g. DPNI) if the respective FQs are not empty. The workaround
is to place all objects that contribute to that channel in a single container, including the DPIOs and DPCON
objects. The DPRC_RESET will handle reset on all contained objects and properly clear the FQs
associated with a DPIO/DPCON channel.

This limitation is caused by a QMan limitation.

25.2 Reconfiguring FQs associated with a channel

This limitation has the same root cause as Section 25.1, “Reset of MC objects with FQs associated with a
channel,” but it is visible to the user when trying to reconfigure a RX queue that was previously configured
to a DPCON channel.

The workaround is the same as in Section 25.1, “Reset of MC objects with FQs associated with a channel.”

Known Limitations

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors 25-2

Revision History

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors A-1

Appendix A Revision History

Document Version Changes

Rev 8 – The default behavior for DPNI objects employed by AIOP is
to assign a default priority to each traffic class

– Added support for Flow Control (Chapter 7.2.7)

– Changes in commands:
– DPNI_GET_ATTRIBUTES

– DPNI_SET_OFFLOAD

– DPNI_GET_OFFLOAD

– DPNI_GET_STATISTICS

– DPNI_GET_STATISTICS response

– DPNI_SET_TX_SHAPING

– DPNI_SET_RX_TC_DIST

– DPNI_SET_TAILDROP

– DPNI_GET_TAILDROP response

– DPNI_SET_EARLY_DROP

– DPNI_GET_EARLY_DROP

– DPNI_SET_QUEUE

– DPNI_SET_TX_CONFIRMATION_MODE

– DPNI_SET_CONGESTION_NOTIFICATION

– DPCI_SET_RX_QUEUE

– Additional DPCON features and details added

– Additional DPCI features and details added

Revision History

DPAA2UM, Rev 10, 12/2017

NXP Semiconductors A-2

		DPAA2 User Manual

		Chapter 1 Introduction

		Figure 1-1. DPAA2 Hardware Blocks

		1.1 Intended audience

		1.2 Definitions and acronyms

		Chapter 2 Overview

		2.1 Introduction to DPAA2 objects

		2.1.1 Network objects

		2.1.1.1 Data Path Network Interface (DPNI)

		2.1.1.2 Data Path MAC (DPMAC)

		2.1.1.3 Data Path Switch (DPSW)

		2.1.1.4 Data Path Demux (DPDMUX)

		2.1.1.5 Data Path Link Aggregator (DPLAG)

		Figure 1. DPAA2 Network objects summary and symbols

		2.1.2 DPAA2 infrastructure objects

		2.1.2.1 Data Path Buffer Pool (DPBP)

		2.1.2.2 Data Path I/O Portal (DPIO)

		2.1.2.3 Data Path Concentrator (DPCON)

		Figure 2. DPAA2 Infrastructure objects summary and symbols

		2.1.3 Accelerator interfaces

		2.1.3.1 Data Path Security Interface (DPSECI)

		2.1.3.2 Data Path De/Compression Interface (DPDCEI)

		2.1.3.3 Data Path DMA Interface (DPDMAI)

		Figure 3. DPAA2 Accelerator Interface objects summary and symbols

		2.1.4 Management and control objects

		2.1.4.1 Data Path Communication Interface (DPCI)

		2.1.4.2 Data Path Resource Container (DPRC)

		2.1.4.3 Data Path MC Portal (DPMCP)

		Figure 4. DPAA2 Management objects summary and symbols

		2.1.5 DPAA2 object support per platform

		Table 2-1. DPAA2 objects supported by platform

		2.2 Objects topology and inter-connect

		Figure 5. Object topology example

		2.2.1 Connection and link state

		2.2.2 Typical object connections

		Figure 6. Typical connections of network objects

		2.2.3 How and when to connect

		Chapter 3 Boot and Initialization Process

		3.1 Loading the MC firmware

		3.2 Data Path Configuration (DPC)

		3.3 Data Path Layout (DPL)

		3.4 Starting MC

		Chapter 4 MC Firmware Versions

		4.1 MC global firmware versions

		4.2 DPAA2 Object versions

		4.3 DPAA2 Object Commands

		4.4 Recommended user verification

		4.5 Firmware command reference

		4.5.1 DPMNG_GET_VERSION

		Figure 4-1. DPMNG_GET_VERSION Command Description

		Table 4-1. DPMNG_GET_VERSION Command Field Descriptions

		Figure 4-2. DPMNG_GET_VERSION Response Description

		Table 4-2. DPMNG_GET_VERSION Response Field Descriptions

		4.5.2 DPMNG_GET_SOC_VERSION

		Figure 4-3. DPMNG_GET_SOC_VERSION Command Description

		Table 4-3. DPMNG_GET_SOC_VERSION Command Field Descriptions

		Figure 4-4. DPMNG_GET_SOC_VERSION Response Description

		Table 4-4. DPMNG_GET_SOC_VERSION Response Field Descriptions

		Chapter 5 Management Command Portals

		5.1 Overview of command portals

		5.2 Command portal usage

		5.3 Creating and destroying DPAA2 objects

		5.4 Command portals memory map

		Figure 7. MC Portal Map

		Table 1. MC Portal Map

		5.5 Management command portal definition

		Figure 8. Management Command Portal

		Table 2. Management Command Portal Field Descriptions

		5.6 MC General Command Portals command reference

		5.6.1 DPMNG_GET_CONT_ID

		Figure 5-1. DPMNG_GET_CONT_ID Command Description

		Table 5-1. DPMNG_GET_CONT_ID Command Field Descriptions

		Figure 5-2. DPMNG_GET_CONT_ID Response Description

		Table 5-2. DPMNG_GET_CONT_ID Response Field Descriptions

		Chapter 6 DPRC: Data Path Resource Container

		6.1 DPRC features

		6.2 DPRC functional description

		6.2.1 Resource container creation

		6.2.2 Objects assignment

		6.2.3 Objects discovery

		6.3 DPRC command reference

		6.3.1 DPRC_OPEN

		Figure 9. DPRC_OPEN Command Description

		Table 3. DPRC_OPEN Command Field Descriptions

		6.3.2 DPRC_CLOSE

		Figure 10. DPRC_CLOSE Command Description

		6.3.3 DPRC_CREATE_CONTAINER

		Figure 11. DPRC_CREATE_CONTAINER Command Description

		Table 4. DPRC_CREATE_CONTAINER Command Field Descriptions

		Figure 12. DPRC_CREATE_CONTAINER Response Description

		Table 5. DPRC_CREATE_CONTAINER Response Field Descriptions

		6.3.4 DPRC_DESTROY_CONTAINER

		Figure 13. DPRC_DESTROY_CONTAINER Command Description

		6.3.5 DPRC_RESET_CONTAINER

		Figure 14. DPRC_RESET Command Description

		6.3.6 DPRC_SET_IRQ

		Figure 15. DPRC_SET_IRQ Command Description

		6.3.7 DPRC_GET_IRQ

		Figure 16. DPRC_GET_IRQ Command Description

		Figure 17. DPRC_GET_IRQ Response Description

		6.3.8 DPRC_SET_IRQ_ENABLE

		Figure 18. DPRC_SET_IRQ_ENABLE Command Description

		6.3.9 DPRC_GET_IRQ_ENABLE

		Figure 19. DPRC_GET_IRQ_ENABLE Command Description

		Figure 20. DPRC_GET_IRQ_ENABLE Response Description

		6.3.10 DPRC_SET_IRQ_MASK

		Figure 21. DPRC_SET_IRQ_MASK Command Description

		6.3.11 DPRC_GET_IRQ_MASK

		Figure 22. DPRC_GET_IRQ_MASK Command Description

		Figure 23. DPRC_GET_IRQ_MASK Response Description

		6.3.12 DPRC_GET_IRQ_STATUS

		Figure 24. DPRC_GET_IRQ_STATUS Command Description

		Figure 25. DPRC_GET_IRQ_STATUS Response Description

		6.3.13 DPRC_CLEAR_IRQ_STATUS

		Figure 26. DPRC_CLEAR_IRQ_STATUS Command Description

		6.3.14 DPRC_GET_ATTRIBUTES

		Figure 27. DPRC_GET_ATTRIBUTES Command Description

		Figure 28. DPRC_GET_ATTRIBUTES Response Description

		6.3.15 DPRC_SET_RES_QUOTA

		Figure 29. DPRC_SET_RES_QUOTA Command Description

		6.3.16 DPRC_GET_RES_QUOTA

		Figure 30. DPRC_GET_RES_QUOTA Command Description

		Figure 31. DPRC_GET_RES_QUOTA Response Description

		6.3.17 DPRC_ASSIGN

		Figure 32. DPRC_ASSIGN Command Description

		6.3.18 DPRC_UNASSIGN

		Figure 33. DPRC_UNASSIGN Command Description

		6.3.19 DPRC_GET_POOL_COUNT

		Figure 34. DPRC_GET_POOL_COUNT Command Description

		Figure 35. DPRC_GET_POOL_COUNT Response Description

		6.3.20 DPRC_GET_POOL

		Figure 36. DPRC_GET_POOL Command Description

		Figure 37. DPRC_GET_POOL Response Description

		6.3.21 DPRC_GET_OBJ_COUNT

		Figure 38. DPRC_GET_OBJ_COUNT Command Description

		Figure 39. DPRC_GET_OBJ_COUNT Response Description

		6.3.22 DPRC_GET_OBJ

		Figure 40. DPRC_GET_OBJ Command Description

		Figure 41. DPRC_GET_OBJ Response Description

		6.3.23 DPRC_GET_OBJ_DESC

		Figure 42. DPRC_GET_OBJ_DESC Command Description

		Figure 43. DPRC_GET_OBJ_DESC Response Description

		6.3.24 DPRC_GET_RES_COUNT

		Figure 44. DPRC_GET_RES_COUNT Command Description

		Figure 45. DPRC_GET_RES_COUNT Response Description

		6.3.25 DPRC_GET_RES_IDS

		Figure 46. DPRC_GET_RES_IDS Command Description

		Figure 47. DPRC_GET_RES_IDS Response Description

		6.3.26 DPRC_GET_OBJ_REGION

		Figure 48. DPRC_GET_OBJ_REGION Command Description

		Figure 49. DPRC_GET_OBJ_REGION Response Description

		6.3.27 DPRC_SET_OBJ_LABEL

		Figure 50. DPRC_SET_OBJ_LABEL Command Description

		6.3.28 DPRC_SET_OBJ_IRQ

		Figure 51. DPRC_SET_OBJ_IRQ Command Description

		6.3.29 DPRC_GET_OBJ_IRQ

		Figure 52. DPRC_GET_OBJ_IRQ Command Description

		Figure 53. DPRC_GET_OBJ_IRQ Response Description

		6.3.30 DPRC_CONNECT

		Figure 54. DPRC_CONNECT Command Description

		6.3.31 DPRC_DISCONNECT

		Figure 55. DPRC_DISCONNECT Command Description

		6.3.32 DPRC_GET_CONNECTION

		Figure 56. DPRC_GET_CONNECTION Command Description

		Figure 57. DPRC_GET_CONNECTION Response Description

		6.3.33 DPRC_GET_API_VERSION

		Figure 58. DPRC_GET_API_VERSION Response Description

		Figure 59. DPRC_GET_API_VERSION Response Description

		Chapter 7 DPNI: Data Path Network Interface

		7.1 DPNI features

		7.2 DPNI functional description

		7.2.1 Ingress frame processing

		Figure 60. DPNI Processing Phases for Ingress Frames

		7.2.2 Egress frame processing

		Figure 61. DPNI Processing Phases for Egress Frames

		7.2.3 Relationship with DPIO and DPCON objects

		7.2.4 Relationship with DPBP objects

		7.2.5 Ingress QoS

		Table 7-1. Traffic class mapping

		7.2.6 Ingress distribution

		7.2.7 Flow control

		7.2.7.1 Flow control configuration

		7.2.7.2 Priority flow control configuration

		7.3 DPNI command reference

		7.3.1 DPNI_CREATE

		Figure 62. DPNI_CREATE Command Description

		Table 6. DPNI_CREATE Command Field Descriptions

		Figure 7-2. DPNI_CREATE Response Description

		Table 7-1. DPNI_CREATE Response Field Descriptions

		7.3.2 DPNI_DESTROY

		Figure 63. DPNI_DESTROY Command Description

		Table 7. DPNI_DESTROY Command Field Description

		7.3.3 DPNI_OPEN

		Figure 64. DPNI_OPEN Command Description

		Table 8. DPNI_OPEN Command Field Descriptions

		7.3.4 DPNI_CLOSE

		Figure 65. DPNI_CLOSE Command Description

		Table 9. DPNI_CLOSE Command Field Descriptions

		7.3.5 DPNI_ENABLE

		Figure 66. DPNI_ENABLE Command Description

		7.3.6 DPNI_DISABLE

		Figure 67. DPNI_DISABLE Command Description

		Table 10. DPNI_DISABLE Command Fields Description

		7.3.7 DPNI_IS_ENABLED

		Figure 68. DPNI_IS_ENABLED Command Description

		Figure 69. DPNI_IS_ENABLED Response Description

		7.3.8 DPNI_RESET

		Figure 70. DPNI_RESET Command Description

		7.3.9 DPNI_SET_IRQ_ENABLE

		Figure 71. DPNI_SET_IRQ_ENABLE Command Description

		7.3.10 DPNI_GET_IRQ_ENABLE

		Figure 72. DPNI_GET_IRQ_ENABLE Command Description

		Figure 73. DPNI_GET_IRQ_ENABLE Response Description

		7.3.11 DPNI_SET_IRQ_MASK

		Figure 74. DPNI_SET_IRQ_MASK Command Description

		7.3.12 DPNI_GET_IRQ_MASK

		Figure 75. DPNI_GET_IRQ_MASK Command Description

		Figure 76. DPNI_GET_IRQ_MASK Response Description

		7.3.13 DPNI_GET_IRQ_STATUS

		Figure 77. DPNI_GET_IRQ_STATUS Command Description

		Figure 78. DPNI_GET_IRQ_STATUS Response Description

		7.3.14 DPNI_CLEAR_IRQ_STATUS

		Figure 79. DPNI_CLEAR_IRQ_STATUS Command Description

		7.3.15 DPNI_GET_ATTRIBUTES

		Figure 80. DPNI_GET_ATTRIBUTES Command Description

		Figure 81. DPNI_GET_ATTRIBUTES Response Description

		7.3.16 DPNI_SET_POOLS

		Figure 82. DPNI_SET_POOLS Command Description

		7.3.17 DPNI_SET_ERRORS_BEHAVIOR

		Figure 83. DPNI_SET_ERRORS_BEHAVIOR Command Description

		7.3.18 DPNI_SET_BUFFER_LAYOUT

		Figure 7-3. Buffer format

		Figure 84. DPNI_SET_BUFFER_LAYOUT Command Description

		7.3.19 DPNI_GET_BUFFER_LAYOUT

		Figure 85. DPNI_GET_BUFFER_LAYOUT Command Description

		Figure 86. DPNI_GET_BUFFER_LAYOUT Response Description

		7.3.20 DPNI_SET_OFFLOAD

		Figure 87. DPNI_SET_OFFLOAD Command Description

		Table 11. DPNI_SET_OFFLOAD Command Field Descriptions

		7.3.21 DPNI_GET_OFFLOAD

		Figure 88. DPNI_GET_OFFLOAD Command Description

		Table 12. DPNI_GET_OFFLOAD Command Field Descriptions

		Figure 89. DPNI_GET_OFFLOAD Response Description

		Table 13. DPNI_GET_OFFLOAD Response Field Descriptions

		7.3.22 DPNI_GET_QDID

		Figure 90. DPNI_GET_QDID Command Description

		Figure 91. DPNI_GET_QDID Response Description

		7.3.23 DPNI_GET_SP_INFO

		Figure 92. DPNI_GET_SP_INFO Command Description

		Figure 93. DPNI_GET_SP_INFO Response Description

		7.3.24 DPNI_GET_TX_DATA_OFFSET

		Figure 94. DPNI_GET_TX_DATA_OFFSET Command Description

		Figure 95. DPNI_GET_TX_DATA_OFFSET Response Description

		7.3.25 DPNI_GET_STATISTICS

		Figure 96. DPNI_GET_STATISTICS Command Description

		Figure 97. DPNI_GET_STATISTICS Response Description

		7.3.26 DPNI_RESET_STATISTICS

		Figure 98. DPNI_RESET_STATISTICS Command Description

		Table 14. DPNI_RESET_STATISTICS Command Field Description

		7.3.27 DPNI_SET_LINK_CFG

		Figure 99. DPNI_GET_LINK_STATE Command Description

		7.3.28 DPNI_GET_LINK_STATE

		Figure 100. DPNI_GET_LINK_STATE Command Description

		Figure 101. DPNI_GET_LINK_STATE Response Description

		7.3.29 DPNI_SET_TX_SHAPING

		Figure 102. DPNI_SET_TX_SHAPING Command Description

		7.3.30 DPNI_SET_MAX_FRAME_LENGTH

		Figure 103. DPNI_SET_MAX_FRAME_LENGTH Command Description

		7.3.31 DPNI_GET_MAX_FRAME_LENGTH

		Figure 104. DPNI_GET_MAX_FRAME_LENGTH Command Description

		Figure 105. DPNI_GET_MAX_FRAME_LENGTH Response Description

		7.3.32 DPNI_SET_MULTICAST_PROMISC

		Figure 106. DPNI_SET_MULTICAST_PROMISC Command Description

		7.3.33 DPNI_GET_MULTICAST_PROMISC

		Figure 107. DPNI_GET_MULTICAST_PROMISC Command Description

		Figure 108. DPNI_GET_MULTICAST_PROMISC Response Description

		7.3.34 DPNI_SET_UNICAST_PROMISC

		Figure 109. DPNI_SET_UNICAST_PROMISC Command Description

		7.3.35 DPNI_GET_UNICAST_PROMISC

		Figure 110. DPNI_GET_UNICAST_PROMISC Command Description

		Figure 111. DPNI_GET_UNICAST_PROMISC Response Description

		7.3.36 DPNI_SET_PRIMARY_MAC_ADDR

		Figure 112. DPNI_SET_PRIMARY_MAC_ADDR Command Description

		7.3.37 DPNI_GET_PRIMARY_MAC_ADDR

		Figure 113. DPNI_GET_PRIMARY_MAC_ADDR Command Description

		Figure 114. DPNI_GET_PRIMARY_MAC_ADDR Response Description

		7.3.38 DPNI_ADD_MAC_ADDR

		Figure 115. DPNI_ADD_MAC_ADDR Command Description

		7.3.39 DPNI_REMOVE_MAC_ADDR

		Figure 116. DPNI_REMOVE_MAC_ADDR Command Description

		7.3.40 DPNI_CLEAR_MAC_FILTERS

		Figure 117. DPNI_CLEAR_MAC_FILTERS Command Description

		7.3.41 DPNI_GET_PORT_MAC_ADDRESS

		Figure 118. DPNI_GET_PORT_MAC_ADDRESS Command Description

		Table 15. DPNI_GET_PORT_MAC_ADDRESS Command Command Field Description

		Figure 119. DPNI_GET_PORT_MAC_ADDRESS Response Description

		Table 16. DPNI_GET_PORT_MAC_ADDRESS Response Field Descriptions

		7.3.42 DPNI_ENABLE_VLAN_FILTER

		Figure 120. DPNI_ENABLE_VLAN_FILTER Command Description

		7.3.43 DPNI_ADD_VLAN_ID

		Figure 121. DPNI_ADD_VLAN_ID Command Description

		7.3.44 DPNI_REMOVE_VLAN_ID

		Figure 122. DPNI_REMOVE_VLAN_ID Command Description

		7.3.45 DPNI_CLEAR_VLAN_FILTERS

		Figure 123. DPNI_CLEAR_VLAN_FILTERS Command Description

		7.3.46 DPNI_SET_TX_PRIORITIES

		Figure 124. DPNI_SET_TX_PRIORITIES Command Description

		7.3.47 DPNI_SET_RX_TC_DIST

		Figure 125. DPNI_SET_RX_TC_DIST Command Description

		Figure 126. DPNI_SET_RX_TC_DIST Extension Description

		7.3.48 DPNI_SET_RX_TC_POLICING

		Figure 127. DPNI_SET_RX_TC_POLICING Command Description

		7.3.49 DPNI_GET_RX_TC_POLICING

		Figure 128. DPNI_GET_RX_TC_POLICING Command Description

		Figure 129. DPNI_GET_RX_TC_POLICING Response Description

		7.3.50 DPNI_SET_TAILDROP

		Figure 130. DPNI_SET_TAILDROP Command Description

		7.3.51 DPNI_GET_TAILDROP

		Figure 131. DPNI_GET_TAILDROP Command Description

		Figure 132. DPNI_GET_TAILDROP Response Description

		7.3.52 DPNI_SET_EARLY_DROP

		Figure 133. DPNI_SET_EARLY_DROP Command Description

		Figure 134. DPNI_SET_EARLY_DROP Extension Description

		7.3.53 DPNI_GET_EARLY_DROP

		Figure 135. DPNI_GET_EARLY_DROP Command Description

		Figure 136. DPNI_GET_EARLY_DROP Extension Description

		7.3.54 DPNI_SET_QUEUE

		Figure 137. DPNI_SET_QUEUE Command Description

		7.3.55 DPNI_GET_QUEUE

		Figure 138. DPNI_GET_QUEUE Command Description

		Figure 139. DPNI_GET_QUEUE Response Description

		7.3.56 DPNI_SET_TX_CONFIRMATION_MODE

		Figure 140. DPNI_SET_TX_CONFIRMATION_MODE Command Description

		7.3.57 DPNI_GET_TX_CONFIRMATION_MODE

		Figure 141. DPNI_GET_TX_CONFIRMATION_MODE Command Description

		Figure 7-4. DPNI_GET_TX_CONFIRMATION_MODE Response Description

		Table 7-2. DPNI_GET_TX_CONFIRMATION_MODE Response Field Descriptions

		7.3.58 DPNI_SET_QOS_TABLE

		Figure 142. DPNI_SET_QOS_TABLE Command Description

		Figure 143. DPNI_SET_QOS_TABLE Extension Description

		7.3.59 DPNI_ADD_QOS_ENTRY

		Figure 144. DPNI_ADD_QOS_ENTRY Command Description

		7.3.60 DPNI_REMOVE_QOS_ENTRY

		Figure 145. DPNI_REMOVE_QOS_ENTRY Command Description

		7.3.61 DPNI_CLEAR_QOS_TABLE

		Figure 146. DPNI_CLEAR_QOS_TABLE Command Description

		7.3.62 DPNI_ADD_FS_ENTRY

		Figure 147. DPNI_ADD_FS_ENTRY Command Description

		7.3.63 DPNI_REMOVE_FS_ENTRY

		Figure 148. DPNI_REMOVE_FS_ENTRY Command Description

		7.3.64 DPNI_CLEAR_FS_ENTRIES

		Figure 149. DPNI_CLEAR_FS_ENTRIES Command Description

		7.3.65 DPNI_GET_API_VERSION

		Figure 150. DPNI_GET_API_VERSION Command Description

		Figure 151. DPNI_GET_API_VERSION Response Description

		7.3.66 DPNI_SET_OPR

		Figure 7-5. Order Point Record Configuration

		Figure 152. DPNI_SET_OPR Command Description

		7.3.67 DPNI_GET_OPR

		Figure 153. DPNI_GET_OPR Command Description

		Figure 154. DPNI_SET_OPR Response Description

		7.3.68 DPNI_SET_CONGESTION_NOTIFICATION

		7.3.68.1 Congestion threshold representation

		Figure 155. DPNI_SET_CONGESTION_NOTIFICATION Command Description

		Table 7-3. Memory congestion notification message

		7.3.69 DPNI_GET_CONGESTION_NOTIFICATION

		Figure 156. DPNI_GET_CONGESTION_NOTIFICATION Command Description

		Figure 157. DPNI_GET_CONGESTION_NOTIFICATION Response Description

		7.3.70 DPNI_LOAD_SW_SEQUENCE

		Figure 158. DPNI_LOAD_SW_SEQUENCE Command Description

		7.3.71 DPNI_ENABLE_SW_SEQUENCE

		Table 7-4. HXS Coding

		Figure 159. DPNI_ENABLE_SW_SEQUENCE Command Description

		Chapter 8 DPBP: Data Path Buffer Pool

		8.1 DPBP features

		8.2 DPBP command reference

		8.2.1 DPBP_OPEN

		Figure 160. DPBP_OPEN Command Description

		Table 17. DPBP_OPEN Command Field Descriptions

		8.2.2 DPBP_CLOSE

		Figure 161. DPBP_CLOSE Command Description

		8.2.3 DPBP_CREATE

		Figure 162. DPBP_CREATE Command Description

		Table 18. DPBP_CREATE Command Field Descriptions

		Figure 8-1. DPBP_CREATE Response Description

		Table 8-1. DPBP_CREATE Response Field Descriptions

		8.2.4 DPBP_DESTROY

		Figure 163. DPBP_DESTROY Command Description

		8.2.5 DPBP_ENABLE

		Figure 164. DPBP_ENABLE Command Description

		8.2.6 DPBP_DISABLE

		Figure 165. DPBP_DISABLE Command Description

		8.2.7 DPBP_IS_ENABLED

		Figure 166. DPBP_IS_ENABLED Command Description

		Figure 167. DPBP_IS_ENABLED Response Description

		8.2.8 DPBP_RESET

		Figure 168. DPBP_RESET Command Description

		8.2.9 DPBP_SET_IRQ_ENABLE

		Figure 169. DPBP_SET_IRQ_ENABLE Command Description

		8.2.10 DPBP_GET_IRQ_ENABLE

		Figure 170. DPBP_GET_IRQ_ENABLE Command Description

		Figure 171. DPBP_GET_IRQ_ENABLE Response Description

		8.2.11 DPBP_SET_IRQ_MASK

		Figure 172. DPBP_SET_IRQ_MASK Command Description

		8.2.12 DPBP_GET_IRQ_MASK

		Figure 173. DPBP_GET_IRQ_MASK Command Description

		Figure 174. DPBP_GET_IRQ_MASK Response Description

		8.2.13 DPBP_GET_IRQ_STATUS

		Figure 175. DPBP_GET_IRQ_STATUS Command Description

		Figure 176. DPBP_GET_IRQ_STATUS Response Description

		8.2.14 DPBP_CLEAR_IRQ_STATUS

		Figure 177. DPBP_CLEAR_IRQ_STATUS Command Description

		8.2.15 DPBP_GET_ATTRIBUTES

		Figure 178. DPBP_GET_ATTRIBUTES Command Description

		Figure 179. DPBP_GET_ATTRIBUTES Response Description

		8.2.16 DPBP_SET_NOTIFICATIONS

		Figure 180. DPBP_SET_NOTIFICATIONS Command Description

		8.2.17 DPBP_GET_NOTIFICATIONS

		Figure 181. DPBP_GET_NOTIFICATIONS Command Description

		Figure 182. DPBP_GET_NOTIFICATIONS Response Description

		8.2.18 DPBP_GET_API_VERSION

		Figure 183. DPBP_GET_API_VERSION Response Description

		Figure 184. DPBP_GET_API_VERSION Response Description

		Figure 185. DPBP_GET_API_VERSION Response Description

		Chapter 9 DPIO: Data Path I/O

		9.1 DPIO features

		9.2 DPIO command reference

		9.2.1 DPIO_OPEN

		Figure 186. DPIO_OPEN Command Description

		Table 19. DPIO_OPEN Command Field Descriptions

		9.2.2 DPIO_CLOSE

		Figure 187. DPIO_CLOSE Command Description

		9.2.3 DPIO_CREATE

		Figure 188. DPIO_CREATE Command Description

		Table 20. DPIO_CREATE Command Field Descriptions

		Figure 9-1. DPIO_CREATE Response Description

		Table 9-1. DPIO_CREATE Response Field Descriptions

		9.2.4 DPIO_DESTROY

		Figure 189. DPIO_DESTROY Command Description

		9.2.5 DPIO_ENABLE

		Figure 190. DPIO_ENABLE Command Description

		9.2.6 DPIO_DISABLE

		Figure 191. DPIO_DISABLE Command Description

		9.2.7 DPIO_IS_ENABLED

		Figure 192. DPIO_IS_ENABLED Command Description

		Figure 193. DPIO_IS_ENABLED Response Description

		9.2.8 DPIO_RESET

		Figure 194. DPIO_RESET Command Description

		9.2.9 DPIO_SET_IRQ_ENABLE

		Figure 195. DPIO_SET_IRQ_ENABLE Command Description

		9.2.10 DPIO_GET_IRQ_ENABLE

		Figure 196. DPIO_GET_IRQ_ENABLE Command Description

		Figure 197. DPIO_GET_IRQ_ENABLE Response Description

		9.2.11 DPIO_SET_IRQ_MASK

		Figure 198. DPIO_SET_IRQ_MASK Command Description

		9.2.12 DPIO_GET_IRQ_MASK

		Figure 199. DPIO_GET_IRQ_MASK Command Description

		Figure 200. DPIO_GET_IRQ_MASK Response Description

		9.2.13 DPIO_GET_IRQ_STATUS

		Figure 201. DPIO_GET_IRQ_STATUS Command Description

		Figure 202. DPIO_GET_IRQ_STATUS Response Description

		9.2.14 DPIO_CLEAR_IRQ_STATUS

		Figure 203. DPIO_CLEAR_IRQ_STATUS Command Description

		9.2.15 DPIO_GET_ATTRIBUTES

		Figure 204. DPIO_GET_ATTRIBUTES Command Description

		Figure 205. DPIO_GET_ATTRIBUTES Response Description

		9.2.16 DPIO_SET_STASHING_DESTINATION

		Figure 206. DPIO_SET_STASHING_DESTINATION Command Description

		9.2.17 DPIO_GET_STASHING_DESTINATION

		Figure 207. DPIO_GET_STASHING_DESTINATION Command Description

		Figure 208. DPIO_GET_STASHING_DESTINATION Response Description

		9.2.18 DPIO_ADD_STATIC_DEQUEUE_CHANNEL

		Figure 209. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description

		Figure 210. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description

		9.2.19 DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL

		Figure 211. DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL Command Description

		9.2.20 DPIO_GET_API_VERSION

		Figure 212. DPIO_GET_API_VERSION Command Description

		Figure 213. DPIO_GET_API_VERSION Response Description

		Chapter 10 DPCON: Data Path Concentrator

		10.1 DPCON features

		10.2 DPCON command reference

		10.2.1 DPCON_OPEN

		Figure 214. DPCON_OPEN Command Description

		Table 21. DPCON_OPEN Command Field Descriptions

		10.2.2 DPCON_CLOSE

		Figure 215. DPCON_CLOSE Command Description

		10.2.3 DPCON_CREATE

		Figure 216. DPCON_CREATE Command Description

		Table 22. DPCON_CREATE Command Field Descriptions

		Figure 10-1. DPCON_CREATE Response Description

		Table 10-1. DPCON_CREATE Response Field Descriptions

		10.2.4 DPCON_DESTROY

		Figure 217. DPCON_DESTROY Command Description

		10.2.5 DPCON_ENABLE

		Figure 218. DPCON_ENABLE Command Description

		10.2.6 DPCON_DISABLE

		Figure 219. DPCON_DISABLE Command Description

		10.2.7 DPCON_IS_ENABLED

		Figure 220. DPCON_IS_ENABLED Command Description

		Figure 221. DPCON_IS_ENABLED Response Description

		10.2.8 DPCON_RESET

		Figure 222. DPCON_RESET Command Description

		10.2.9 DPCON_SET_IRQ_ENABLE

		Figure 223. DPCON_SET_IRQ_ENABLE Command Description

		10.2.10 DPCON_GET_IRQ_ENABLE

		Figure 224. DPCON_GET_IRQ_ENABLE Command Description

		Figure 225. DPCON_GET_IRQ_ENABLE Response Description

		10.2.11 DPCON_SET_IRQ_MASK

		Figure 226. DPCON_SET_IRQ_MASK Command Description

		10.2.12 DPCON_GET_IRQ_MASK

		Figure 227. DPCON_GET_IRQ_MASK Command Description

		Figure 228. DPCON_GET_IRQ_MASK Response Description

		10.2.13 DPCON_GET_IRQ_STATUS

		Figure 229. DPCON_GET_IRQ_STATUS Command Description

		Figure 230. DPCON_GET_IRQ_STATUS Response Description

		10.2.14 DPCON_CLEAR_IRQ_STATUS

		Figure 231. DPCON_CLEAR_IRQ_STATUS Command Description

		10.2.15 DPCON_GET_ATTRIBUTES

		Figure 232. DPCON_GET_ATTRIBUTES Command Description

		Figure 233. DPCON_GET_ATTRIBUTES Response Description

		10.2.16 DPCON_SET_NOTIFICATION

		Figure 234. DPCON_SET_NOTIFICATION Command Description

		10.2.17 DPCON_GET_API_VERSION

		Figure 235. DPCON_GET_API_VERSION Command Description

		Figure 236. DPCON_GET_API_VERSION Response Description

		Chapter 11 DPCI: Data Path Communication Interface

		11.1 DPCI features

		11.2 DPCI functional description

		11.2.1 Connecting DPCI objects

		11.2.2 Relationship with DPIO and DPCON objects

		11.2.3 Buffer requirements

		11.3 DPCI command reference

		11.3.1 DPCI_OPEN

		Figure 237. DPCI_OPEN Command Description

		Table 23. DPCI_OPEN Command Field Descriptions

		11.3.2 DPCI_CLOSE

		Figure 238. DPCI_CLOSE Command Description

		Table 24. DPCI_CLOSE Command Field Descriptions

		11.3.3 DPCI_CREATE

		Figure 239. DPCI_CREATE Command Description

		Table 25. DPCI_CREATE Command Field Descriptions

		Figure 240. DPCI_CREATE Response Description

		Table 11-1. DPCI_CREATE Response Field Descriptions

		11.3.4 DPCI_DESTROY

		Figure 241. DPCI_DESTROY Command Description

		Table 26. DPCI_DESTROY Command Field Descriptions

		11.3.5 DPCI_ENABLE

		Figure 242. DPCI_ENABLE Command Description

		Table 27. DPCI_ENABLE Command Field Descriptions

		11.3.6 DPCI_DISABLE

		Figure 243. DPCI_DISABLE Command Description

		Table 28. DPCI_DISABLE Command Field Descriptions

		11.3.7 DPCI_IS_ENABLED

		Figure 244. DPCI_IS_ENABLED Command Description

		Table 29. DPCI_IS_ENABLED Command Field Descriptions

		Figure 245. DPCI_IS_ENABLED Response Description

		Table 30. DPCI_IS_ENABLED Response Field Descriptions

		11.3.8 DPCI_RESET

		Figure 246. DPCI_RESET Command Description

		Table 31. DPCI_RESET Command Field Descriptions

		11.3.9 DPCI_SET_IRQ_ENABLE

		Figure 247. DPCI_SET_IRQ_ENABLE Command Description

		Table 32. DPCI_SET_IRQ_ENABLE Command Field Descriptions

		11.3.10 DPCI_GET_IRQ_ENABLE

		Figure 248. DPCI_GET_IRQ_ENABLE Command Description

		Table 33. DPCI_GET_IRQ_ENABLE Command Field Descriptions

		Figure 249. DPCI_GET_IRQ_ENABLE Response Description

		Table 34. DPCI_GET_IRQ_ENABLE Response Field Descriptions

		11.3.11 DPCI_SET_IRQ_MASK

		Figure 250. DPCI_SET_IRQ_MASK Command Description

		Table 35. DPCI_SET_IRQ_MASK Command Field Descriptions

		11.3.12 DPCI_GET_IRQ_MASK

		Figure 251. DPCI_GET_IRQ_MASK Command Description

		Table 36. DPCI_GET_IRQ_MASK Command Field Descriptions

		Figure 252. DPCI_GET_IRQ_MASK Response Description

		Table 37. DPCI_GET_IRQ_MASK Response Field Descriptions

		11.3.13 DPCI_GET_IRQ_STATUS

		Figure 253. DPCI_GET_IRQ_STATUS Command Description

		Table 38. DPCI_GET_IRQ_STATUS Command Field Descriptions

		Figure 254. DPCI_GET_IRQ_STATUS Response Description

		Table 39. DPCI_GET_IRQ_STATUS Response Field Descriptions

		11.3.14 DPCI_CLEAR_IRQ_STATUS

		Figure 255. DPCI_CLEAR_IRQ_STATUS Command Description

		Table 40. DPCI_CLEAR_IRQ_STATUS Command Field Descriptions

		11.3.15 DPCI_GET_ATTRIBUTES

		Figure 256. DPCI_GET_ATTRIBUTES Command Description

		Table 41. DPCI_GET_ATTRIBUTES Command Field Descriptions

		Figure 257. DPCI_GET_ATTRIBUTES Response Description

		Table 42. DPCI_GET_ATTRIBUTES Response Field Descriptions

		11.3.16 DPCI_GET_PEER_ATTRIBUTES

		Figure 258. DPCI_GET_PEER_ATTRIBUTES Command Description

		Table 43. DPCI_GET_PEER_ATTRIBUTES Command Field Descriptions

		Figure 259. DPCI_GET_PEER_ATTRIBUTES Response Description

		Table 44. DPCI_GET_PEER_ATTRIBUTES Response Field Descriptions

		11.3.17 DPCI_GET_LINK_STATE

		Figure 260. DPCI_GET_LINK_STATE Command Description

		Table 45. DPCI_GET_LINK_STATE Command Field Descriptions

		Figure 261. DPCI_GET_LINK_STATE Response Description

		Table 46. DPCI_GET_LINK_STATE Response Field Descriptions

		11.3.18 DPCI_SET_RX_QUEUE

		Figure 262. DPCI_SET_RX_QUEUE Command Description

		Table 47. DPCI_SET_RX_QUEUE Command Field Descriptions

		11.3.19 DPCI_GET_RX_QUEUE

		Figure 263. DPCI_GET_RX_QUEUE Command Description

		Table 48. DPCI_GET_RX_QUEUE Command Field Descriptions

		Figure 264. DPCI_GET_RX_QUEUE Response Description

		Table 49. DPCI_GET_RX_QUEUE Response Field Descriptions

		11.3.20 DPCI_GET_TX_QUEUE

		Figure 265. DPCI_GET_TX_QUEUE Command Description

		Table 50. DPCI_GET_TX_QUEUE Command Field Descriptions

		Figure 266. DPCI_GET_TX_QUEUE Response Description

		Table 51. DPCI_GET_TX_QUEUE Response Field Descriptions

		11.3.21 DPCI_GET_API_VERSION

		Figure 267. DPCI_GET_API_VERSION Command Description

		Table 52. DPCI_GET_TX_QUEUE Command Field Descriptions

		Figure 268. DPCI_GET_TX_QUEUE Response Description

		Table 53. DPCI_GET_TX_QUEUE Response Field Descriptions

		11.3.22 DPCI_SET_OPR

		Figure 269. DPCI_SET_OPR Command Description

		Table 54. DPCI_SET_OPR Response Field Descriptions

		11.3.23 DPCI_GET_OPR

		Figure 270. DPCI_GET_OPR Command Description

		Table 55. DPCI_GET_OPR Command Field Descriptions

		Figure 271. DPCI_GET_OPR Response Description

		Table 56. DPCI_GET_OPR Response Field Descriptions

		Chapter 12 DPDMUX: Data Path Network DeMux

		12.1 DPDMUX features

		12.2 DPDMUX functional description

		12.2.1 Demux database

		12.2.2 Broadcast and multicast support

		12.2.3 Promiscuous interfaces

		12.2.4 Frames acceptance policy

		12.3 DPDMUX command reference

		12.3.1 DPDMUX_OPEN

		Figure 272. DPDMUX_OPEN Command Description

		Table 57. DPDMUX_OPEN Command Field Descriptions

		12.3.2 DPDMUX_CLOSE

		Figure 273. DPDMUX_CLOSE Command Description

		12.3.3 DPDMUX_CREATE

		Figure 274. DPDMUX_CREATE Command Description

		Figure 12-1. DPDMUX_CREATE Response Description

		Table 12-1. DPDMUX_CREATE Response Field Descriptions

		12.3.4 DPDMUX_DESTROY

		Figure 275. DPDMUX_DESTROY Command Description

		12.3.5 DPDMUX_ENABLE

		Figure 276. DPDMUX_ENABLE Command Description

		12.3.6 DPDMUX_DISABLE

		Figure 277. DPDMUX_DISABLE Command Description

		12.3.7 DPDMUX_IS_ENABLED

		Figure 278. DPDMUX_IS_ENABLED Command Description

		12.3.8 DPDMUX_RESET

		Figure 279. DPDMUX_RESET Command Description

		12.3.9 DPDMUX_SET_IRQ_ENABLE

		Figure 280. DPDMUX_SET_IRQ_ENABLE Command Description

		12.3.10 DPDMUX_GET_IRQ_ENABLE

		Figure 281. DPDMUX_GET_IRQ_ENABLE Command Description

		Figure 282. DPDMUX_GET_IRQ_ENABLE Response Description

		12.3.11 DPDMUX_SET_IRQ_MASK

		Figure 283. DPDMUX_SET_IRQ_MASK Command Description

		12.3.12 DPDMUX_GET_IRQ_MASK

		Figure 284. DPDMUX_GET_IRQ_MASK Command Description

		Figure 285. DPDMUX_GET_IRQ_MASK Response Description

		12.3.13 DPDMUX_GET_IRQ_STATUS

		Figure 286. DPDMUX_GET_IRQ_STATUS Command Description

		Figure 287. DPDMUX_GET_IRQ_STATUS Response Description

		12.3.14 DPDMUX_CLEAR_IRQ_STATUS

		Figure 288. DPDMUX_CLEAR_IRQ_STATUS Command Description

		12.3.15 DPDMUX_GET_ATTRIBUTES

		Figure 289. DPDMUX_GET_ATTRIBUTES Command Description

		Figure 290. DPDMUX_GET_ATTRIBUTES Response Description

		12.3.16 DPDMUX_SET_MAX_FRAME_LENGTH

		Figure 291. DPDMUX_SET_MAX_FRAME_LENGTH Command Description

		12.3.17 DPDMUX_IF_SET_ACCEPTED_FRAMES

		Figure 292. DPDMUX_IF_SET_ACCEPTED_FRAMES Command Description

		12.3.18 DPDMUX_IF_GET_ATTRIBUTES

		Figure 293. DPDMUX_IF_GET_ATTR Command Description

		Figure 294. DPDMUX_IF_GET_ATTRIBUTES Response Description

		12.3.19 DPDMUX_IF_ENABLE

		Figure 295. DPDMUX_IF_ENABLE Command Description

		12.3.20 DPDMUX_IF_DISABLE

		Figure 296. DPDMUX_IF_DISABLE Command Description

		12.3.21 DPDMUX_IF_SET_DEFAULT

		Figure 297. DPDMUX_IF_SET_DEFAULT Command Description

		12.3.22 DPDMUX_IF_GET_DEFAULT

		Figure 298. DPDMUX_IF_GET_DEFAULT Command Description

		12.3.23 DPDMUX_IF_REMOVE_L2_RULE

		Figure 299. DPDMUX_IF_REMOVE_L2_RULE Command Description

		12.3.24 DPDMUX_IF_ADD_L2_RULE

		Figure 300. DPDMUX_IF_ADD_L2_RULE Command Description

		12.3.25 DPDMUX_IF_GET_COUNTER

		Figure 301. DPDMUX_IF_GET_COUNTER Command Description

		Figure 302. DPDMUX_IF_GET_COUNTER Response Description

		12.3.26 DPDMUX_UL_RESET_COUNTERS

		Figure 303. DPDMUX_IF_RESET_COUNTERS Command Description

		12.3.27 DPDMUX_IF_SET_LINK_CFG

		Figure 304. DPDMUX_IF_SET_LINK_CFG Command Description

		12.3.28 DPDMUX_IF_GET_LINK_STATE

		Figure 305. DPDMUX_IF_GET_LINK_STATE Command Description

		Figure 306. DPDMUX_IF_GET_LINK_STATE Response Description

		12.3.29 DPDMUX_GET_API_VERSION

		Figure 307. DPDMUX_GET_API_VERSION Command Description

		Figure 308. DPDMUX_GET_API_VERSION Response Description

		12.3.30 DPDMUX_SET_CUSTOM_KEY

		Figure 309. DPDMUX_SET_CUSTOM_KEY Command Description

		12.3.31 DPDMUX_ADD_CUSTOM_CLS_ENTRY

		Figure 310. DPDMUX_ADD_CUSTOM_CLS_ENTRY Command Description

		12.3.32 DPDMUX_REMOVE_CUSTOM_CLS_ENTRY

		Figure 311. DPDMUX_REMOVE_CUSTOM_CLS_ENTRY Command Description

		Chapter 13 12/2017DPSW: Data Path L2 Switch

		13.1 DPSW features

		13.2 DPSW functional description

		13.2.1 Creating L2 switch instance

		13.2.2 VLAN configuration

		13.2.3 Learning modes

		13.2.4 FDB configuration

		13.3 DPSW command reference

		13.3.1 DPSW_OPEN

		Figure 312. DPSW_OPEN Command Description

		Table 58. DPSW_OPEN Command Field Descriptions

		13.3.2 DPSW_CLOSE

		Figure 313. DPSW_CLOSE Command Description

		13.3.3 DPSW_CREATE

		Figure 314. DPSW_CREATE Command Description

		Table 59. DPSW_CREATE Command Field Descriptions

		Figure 13-1. DPSW_CREATE Response Description

		Table 13-1. DPSW_CREATE Response Field Descriptions

		13.3.4 DPSW_DESTROY

		Figure 315. DPSW_DESTROY Command Description

		13.3.5 DPSW_ENABLE

		Figure 316. DPSW_ENABLE Command Description

		13.3.6 DPSW_DISABLE

		Figure 317. DPSW_DISABLE Command Description

		13.3.7 DPSW_IS_ENABLED

		Figure 318. DPSW_IS_ENABLED Command Description

		Figure 319. DPSW_IS_ENABLED Response Description

		13.3.8 DPSW_RESET

		Figure 320. DPSW_RESET Command Description

		13.3.9 DPSW_SET_IRQ_ENABLE

		Figure 321. DPSW_SET_IRQ_ENABLE Command Description

		13.3.10 DPSW_GET_IRQ_ENABLE

		Figure 322. DPSW_GET_IRQ_ENABLE Command Description

		Figure 323. DPSW_GET_IRQ_ENABLE Response Description

		13.3.11 DPSW_SET_IRQ_MASK

		Figure 324. DPSW_SET_IRQ_MASK Command Description

		13.3.12 DPSW_GET_IRQ_MASK

		Figure 325. DPSW_GET_IRQ_MASK Command Description

		Figure 326. DPSW_GET_IRQ_MASK Response Description

		13.3.13 DPSW_GET_IRQ_STATUS

		Figure 327. DPSW_GET_IRQ_STATUS Command Description

		Figure 328. DPSW_GET_IRQ_STATUS Response Description

		13.3.14 DPSW_CLEAR_IRQ_STATUS

		Figure 329. DPSW_CLEAR_IRQ_STATUS Command Description

		13.3.15 DPSW_GET_ATTRIBUTES

		Figure 330. DPSW_GET_ATTRIBUTES Command Description

		Figure 331. DPSW_GET_ATTRIBUTES Response Description

		13.3.16 DPSW_SET_REFLECTION_IF

		Figure 332. DPSW_SET_REFLECTION_IF Command Description

		13.3.17 DPSW_IF_SET_FLOODING

		Figure 333. DPSW_IF_SET_FLOODING Command Description

		13.3.18 DPSW_IF_SET_BROADCAST

		Figure 334. DPSW_IF_SET_BROADCAST Command Description

		13.3.19 DPSW_IF_SET_MULTICAST

		Figure 335. DPSW_IF_SET_MULTICAST Command Description

		13.3.20 DPSW_IF_SET_TCI

		Figure 336. DPSW_IF_SET_TCI Command Description

		13.3.21 DPSW_IF_GET_TCI

		Figure 337. DPSW_IF_GET_TCI Command Description

		Figure 338. DPSW_IF_GET_TCI Response Description

		13.3.22 DPSW_IF_SET_STP

		Figure 339. DPSW_IF_SET_STP Command Description

		13.3.23 DPSW_IF_SET_ACCEPTED_FRAMES

		Figure 340. DPSW_IF_SET_ACCEPTED_FRAMES Command Description

		13.3.24 DPSW_SET_IF_ACCEPT_ALL_VLAN

		Figure 341. DPSW_SET_IF_ACCEPT_ALL_VLAN Command Description

		13.3.25 DPSW_IF_GET_COUNTER

		Figure 342. DPSW_IF_GET_COUNTER Command Description

		Figure 343. DPSW_IF_GET_COUNTER Response Description

		13.3.26 DPSW_IF_SET_COUNTER

		Figure 344. DPSW_IF_SET_COUNTER Command Description

		13.3.27 DPSW_IF_SET_TX_SELECTION

		Figure 345. DPSW_IF_SET_TX_SELECTION Command Description

		13.3.28 DPSW_IF_ADD_REFLECTION

		Figure 346. DPSW_IF_ADD_REFLECTION Command Description

		13.3.29 DPSW_IF_REMOVE_REFLECTION

		Figure 347. DPSW_IF_REMOVE_REFLECTION Command Description

		13.3.30 DPSW_IF_SET_FLOODING_METERING

		Figure 348. DPSW_IF_SET_FLOODING_METERING Command Description

		13.3.31 DPSW_IF_SET_METERING

		Figure 349. DPSW_IF_SET_METERING Command Description

		13.3.32 DPSW_IF_SET_EARLY_DROP

		Figure 350. DPSW_IF_SET_EARLY_DROP Command Description

		Figure 351. DPSW_IF_SET_EARLY_DROP Extension Description

		13.3.33 DPSW_ADD_CUSTOM_TPID

		Figure 352. DPSW_ADD_CUSTOM_TPID Command Description

		13.3.34 DPSW_REMOVE_CUSTOM_TPID

		Figure 353. DPSW_REMOVE_CUSTOM_TPID Command Description

		13.3.35 DPSW_IF_ENABLE

		Figure 354. DPSW_IF_ENABLE Command Description

		13.3.36 DPSW_IF_DISABLE

		Figure 355. DPSW_IF_DISABLE Command Description

		13.3.37 DPSW_IF_GET_ATTRIBUTES

		Figure 356. DPSW_IF_GET_ATTRIBUTES Command Description

		Figure 357. DPSW_IF_GET_ATTRIBUTES Response Description

		13.3.38 DPSW_IF_SET_MAX_FRAME_LENGTH

		Figure 358. DPSW_IF_SET_MAX_FRAME_LENGTH Command Description

		13.3.39 DPSW_IF_SET_LINK_CFG

		Figure 359. DPSW_IF_SET_LINK_CFG Command Description

		13.3.40 DPSW_IF_GET_LINK_STATE

		Figure 360. DPSW_IF_GET_LINK_STATE Command Description

		Figure 361. DPSW_IF_GET_LINK_STATE Response Description

		13.3.41 DPSW_IF_GET_MAX_FRAME_LENGTH

		Figure 362. DPSW_IF_GET_MAX_FRAME_LENGTH Command Description

		Figure 363. DPSW_IF_GET_MAX_FRAME_LENGTH Response Description

		13.3.42 DPSW_VLAN_ADD

		Figure 364. DPSW_VLAN_ADD Command Description

		13.3.43 DPSW_VLAN_ADD_IF

		Figure 365. DPSW_VLAN_ADD_IF Command Description

		13.3.44 DPSW_VLAN_ADD_IF_UNTAGGED

		Figure 366. DPSW_VLAN_ADD_IF_UNTAGGED Command Description

		13.3.45 DPSW_VLAN_ADD_IF_FLOODING

		Figure 367. DPSW_VLAN_ADD_IF_FLOODING Command Description

		13.3.46 DPSW_VLAN_REMOVE_IF

		Figure 368. DPSW_VLAN_REMOVE_IF Command Description

		13.3.47 DPSW_VLAN_REMOVE_IF_UNTAGGED

		Figure 369. DPSW_VLAN_REMOVE_IF_UNTAGGED Command Description

		13.3.48 DPSW_VLAN_REMOVE_IF_FLOODING

		Figure 370. DPSW_VLAN_REMOVE_IF_FLOODING Command Description

		13.3.49 DPSW_VLAN_REMOVE

		Figure 371. DPSW_VLAN_REMOVE Command Description

		13.3.50 DPSW_VLAN_GET_ATTRIBUTES

		Figure 372. DPSW_VLAN_GET_ATTRIBUTES Command Description

		Figure 373. DPSW_VLAN_GET_ATTRIBUTES Response Description

		13.3.51 DPSW_VLAN_GET_IF

		Figure 374. DPSW_VLAN_GET_IF Command Description

		Figure 375. DPSW_VLAN_GET_IF Response Description

		13.3.52 DPSW_VLAN_GET_IF_FLOODING

		Figure 376. DPSW_VLAN_GET_IF_FLOODING Command Description

		Figure 377. DPSW_VLAN_GET_IF_FLOODING Response Description

		13.3.53 DPSW_VLAN_GET_IF_UNTAGGED

		Figure 378. DPSW_VLAN_GET_IF_UNTAGGED Command Description

		Figure 379. DPSW_VLAN_GET_IF_UNTAGGED Response Description

		13.3.54 DPSW_FDB_ADD

		Figure 380. DPSW_FDB_ADD Command Description

		Figure 381. DPSW_FDB_ADD Response Description

		13.3.55 DPSW_FDB_REMOVE

		Figure 382. DPSW_FDB_REMOVE Command Description

		13.3.56 DPSW_FDB_ADD_UNICAST

		Figure 383. DPSW_FDB_ADD_UNICAST Command Description

		13.3.57 DPSW_FDB_GET_UNICAST

		Figure 384. DPSW_FDB_GET_UNICAST Command Description

		Figure 385. DPSW_FDB_GET_UNICAST Response Description

		13.3.58 DPSW_FDB_REMOVE_UNICAST

		Figure 386. DPSW_FDB_REMOVE_UNICAST Command Description

		13.3.59 DPSW_FDB_ADD_MULTICAST

		Figure 387. DPSW_FDB_ADD_MULTICAST Command Description

		13.3.60 DPSW_FDB_GET_MULTICAST

		Figure 388. DPSW_FDB_GET_MULTICAST Command Description

		Figure 389. DPSW_FDB_GET_MULTICAST Response Description

		13.3.61 DPSW_FDB_REMOVE_MULTICAST

		Figure 390. DPSW_FDB_REMOVE_MULTICAST Command Description

		13.3.62 DPSW_FDB_SET_LEARNING_MODE

		Figure 391. DPSW_FDB_SET_LEARNING_MODE Command Description

		13.3.63 DPSW_FDB_GET_ATTRIBUTES

		Figure 392. DPSW_FDB_GET_ATTRIBUTES Command Description

		Figure 393. DPSW_FDB_GET_ATTRIBUTES Response Description

		13.3.64 DPSW_ACL_ADD

		Figure 394. DPSW_ACL_ADD Command Description

		Figure 395. DPSW_ACL_ADD Response Description

		13.3.65 DPSW_ACL_REMOVE

		Figure 396. DPSW_ACL_REMOVE Command Description

		13.3.66 DPSW_ACL_PREPARE_ENTRY_CFG

		Figure 397. DPSW_ACL_PREPARE_ENTRY_CFG Extension Description

		13.3.67 DPSW_ACL_ADD_ENTRY

		Figure 398. DPSW_ACL_ADD_ENTRY Command Description

		13.3.68 DPSW_ACL_REMOVE_ENTRY

		Figure 399. DPSW_ACL_REMOVE_ENTRY Command Description

		Figure 400. DPSW_ACL_REMOVE_ENTRY Extension Description

		13.3.69 DPSW_ACL_ADD_IF

		Figure 401. DPSW_ACL_ADD_IF Command Description

		13.3.70 DPSW_ACL_REMOVE_IF

		Figure 402. DPSW_ACL_REMOVE_IF Command Description

		13.3.71 DPSW_ACL_GET_ATTRIBUTES

		Figure 403. DPSW_ACL_GET_ATTRIBUTES Command Description

		Figure 404. DPSW_ACL_GET_ATTRIBUTES Response Description

		13.3.72 DPSW_CTRL_IF_GET_ATTRIBUTES

		Figure 405. DPSW_CTRL_IF_GET_ATTRIBUTES Command Description

		Figure 406. DPSW_CTRL_IF_GET_ATTRIBUTES Response Description

		13.3.73 DPSW_CTRL_IF_SET_POOLS

		Figure 407. DPSW_CTRL_IF_SET_POOLS Command Description

		13.3.74 DPSW_CTRL_IF_ENABLE

		Figure 408. DPSW_CTRL_IF_ENABLE Command Description

		13.3.75 DPSW_CTRL_IF_DISABLE

		Figure 409. DPSW_CTRL_IF_DISABLE Command Description

		13.3.76 DPSW_GET_API_VERSION

		Figure 410. DPSW_GET_API_VERSION Command Description

		Figure 411. DPSW_GET_API_VERSION Response Description

		Chapter 14 12/2017DPMAC: Data Path MAC

		14.1 DPMAC features

		14.2 DPMAC command reference

		14.2.1 DPMAC_OPEN

		Figure 412. DPMAC_OPEN Command Description

		Table 60. DPMAC_OPEN Command Field Descriptions

		14.2.2 DPMAC_CLOSE

		Figure 413. DPMAC_CLOSE Command Description

		14.2.3 DPMAC_CREATE

		Figure 414. DPMAC_CREATE Command Description

		Table 61. DPMAC_CREATE Command Field Descriptions

		Figure 14-1. DPMAC_CREATE Response Description

		Table 14-1. DPMAC_CREATE Response Field Descriptions

		14.2.4 DPMAC_DESTROY

		Figure 415. DPMAC_DESTROY Command Description

		14.2.5 DPMAC_SET_IRQ_ENABLE

		Figure 416. DPMAC_SET_IRQ_ENABLE Command Description

		14.2.6 DPMAC_GET_IRQ_ENABLE

		Figure 417. DPMAC_GET_IRQ_ENABLE Command Description

		Figure 418. DPMAC_GET_IRQ_ENABLE Response Description

		14.2.7 DPMAC_SET_IRQ_MASK

		Figure 419. DPMAC_SET_IRQ_MASK Command Description

		14.2.8 DPMAC_GET_IRQ_MASK

		Figure 420. DPMAC_GET_IRQ_MASK Command Description

		Figure 421. DPMAC_GET_IRQ_MASK Response Description

		14.2.9 DPMAC_GET_IRQ_STATUS

		Figure 422. DPMAC_GET_IRQ_STATUS Command Description

		Figure 423. DPMAC_GET_IRQ_STATUS Response Description

		14.2.10 DPMAC_CLEAR_IRQ_STATUS

		Figure 424. DPMAC_CLEAR_IRQ_STATUS Command Description

		14.2.11 DPMAC_GET_ATTRIBUTES

		Figure 425. DPMAC_GET_ATTRIBUTES Command Description

		Figure 426. DPMAC_GET_ATTRIBUTES Response Description

		14.2.12 DPMAC_GET_LINK_CFG

		Figure 427. DPMAC_GET_LINK_CFG Command Description

		Figure 428. DPMAC_GET_LINK_CFG Response Description

		Table 14-2. DPMAC link options

		14.2.13 DPMAC_SET_LINK_STATE

		Figure 429. DPMAC_SET_LINK_STATE Command Description

		14.2.14 DPMAC_GET_COUNTER

		Figure 430. DPMAC_GET_COUNTER Command Description

		Table 62. DPMAC counter values

		Figure 431. DPMAC_GET_COUNTER Response Description

		14.2.15 DPMAC_GET_API_VERSION

		Figure 432. DPMAC_GET_API_VERSION Command Description

		Figure 433. DPMAC_GET_API_VERSION Response Description

		14.2.16 DPMAC_RESET

		Figure 434. DPMAC_RESET Command Description

		Chapter 15 DPRTC: Data Path Real Time Clock

		15.1 DPRTC features

		15.2 DPRTC command reference

		15.2.1 DPRTC_OPEN

		Figure 435. DPRTC_OPEN Command Description

		Table 63. DPRTC_OPEN Command Field Descriptions

		15.2.2 DPRTC_CLOSE

		Figure 436. DPRTC_CLOSE Command Description

		15.2.3 DPRTC_CREATE

		Figure 437. DPRTC_CREATE Command Description

		Table 64. DPRTC_CREATE Command Field Descriptions

		Figure 15-1. DPRTC_CREATE Response Description

		Table 15-1. DPRTC_CREATE Response Field Descriptions

		15.2.4 DPRTC_DESTROY

		Figure 438. DPRTC_DESTROY Command Description

		15.2.5 DPRTC_SET_IRQ_ENABLE

		Figure 439. DPRTC_SET_IRQ_ENABLE Command Description

		15.2.6 DPRTC_GET_IRQ_ENABLE

		Figure 440. DPRTC_GET_IRQ_ENABLE Command Description

		Figure 441. DPRTC_GET_IRQ_ENABLE Response Description

		15.2.7 DPRTC_SET_IRQ_MASK

		Figure 442. DPRTC_SET_IRQ_MASK Command Description

		15.2.8 DPRTC_GET_IRQ_MASK

		Figure 443. DPRTC_GET_IRQ_MASK Command Description

		Figure 444. DPRTC_GET_IRQ_MASK Response Description

		15.2.9 DPRTC_GET_IRQ_STATUS

		Figure 445. DPRTC_GET_IRQ_STATUS Command Description

		Figure 446. DPRTC_GET_IRQ_STATUS Response Description

		15.2.10 DPRTC_CLEAR_IRQ_STATUS

		Figure 447. DPRTC_CLEAR_IRQ_STATUS Command Description

		15.2.11 DPRTC_GET_ATTRIBUTES

		Figure 448. DPRTC_GET_ATTRIBUTES Command Description

		Figure 449. DPRTC_GET_ATTRIBUTES Response Description

		15.2.12 DPRTC_SET_CLOCK_OFFSET

		Figure 450. DPRTC_SET_CLOCK_OFFSET Command Description

		15.2.13 DPRTC_SET_FREQ_COMPENSATION

		Figure 451. DPRTC_SET_FREQ_COMPENSATION Command Description

		15.2.14 DPRTC_GET_FREQ_COMPENSATION

		Figure 452. DPRTC_GET_FREQ_COMPENSATION Command Description

		Figure 453. DPRTC_GET_FREQ_COMPENSATION Response Description

		15.2.15 DPRTC_GET_TIME

		Figure 454. DPRTC_GET_TIME Command Description

		Figure 455. DPRTC_GET_TIME Response Description

		15.2.16 DPRTC_SET_TIME

		Figure 456. DPRTC_SET_TIME Command Description

		15.2.17 DPRTC_SET_ALARM

		Figure 457. DPRTC_SET_ALARM Command Description

		15.2.18 DPRTC_GET_API_VERSION

		Figure 458. DPRTC_GET_API_VERSION Command Description

		Figure 459. DPRTC_GET_API_VERSION Response Description

		Chapter 16 DPSECI: Data Path SEC Interface

		16.1 DPSECI features

		16.2 DPSECI functional description

		16.2.1 Setting the DPSECI for SEC operation

		16.2.2 Relationship with DPIO and DPCON objects

		16.2.3 Buffer requirements

		16.3 DPSECI command reference

		16.3.1 DPSECI_OPEN

		Figure 460. DPSECI_OPEN Command Description

		Table 65. DPSECI_OPEN Command Field Descriptions

		16.3.2 DPSECI_CLOSE

		Figure 461. DPSECI_CLOSE Command Description

		16.3.3 DPSECI_CREATE

		Figure 462. DPSECI_CREATE Command Description

		Table 66. DPSECI_CREATE Command Field Descriptions

		Figure 16-1. DPSECI_CREATE Response Description

		Table 16-1. DPSECI_CREATE Response Field Descriptions

		16.3.4 DPSECI_DESTROY

		Figure 463. DPSECI_DESTROY Command Description

		16.3.5 DPSECI_ENABLE

		Figure 464. DPSECI_ENABLE Command Description

		16.3.6 DPSECI_DISABLE

		Figure 465. DPSECI_DISABLE Command Description

		16.3.7 DPSECI_IS_ENABLED

		Figure 466. DPSECI_IS_ENABLED Command Description

		Figure 467. DPSECI_IS_ENABLED Response Description

		16.3.8 DPSECI_RESET

		Figure 468. DPSECI_RESET Command Description

		16.3.9 DPSECI_SET_IRQ_ENABLE

		Figure 469. DPSECI_SET_IRQ_ENABLE Command Description

		16.3.10 DPSECI_GET_IRQ_ENABLE

		Figure 470. DPSECI_GET_IRQ_ENABLE Command Description

		Figure 471. DPSECI_GET_IRQ_ENABLE Response Description

		16.3.11 DPSECI_SET_IRQ_MASK

		Figure 472. DPSECI_SET_IRQ_MASK Command Description

		16.3.12 DPSECI_GET_IRQ_MASK

		Figure 473. DPSECI_GET_IRQ_MASK Command Description

		Figure 474. DPSECI_GET_IRQ_MASK Response Description

		16.3.13 DPSECI_GET_IRQ_STATUS

		Figure 475. DPSECI_GET_IRQ_STATUS Command Description

		Figure 476. DPSECI_GET_IRQ_STATUS Response Description

		16.3.14 DPSECI_CLEAR_IRQ_STATUS

		Figure 477. DPSECI_CLEAR_IRQ_STATUS Command Description

		16.3.15 DPSECI_GET_ATTRIBUTES

		Figure 478. DPSECI_GET_ATTRIBUTES Command Description

		Figure 479. DPSECI_GET_ATTRIBUTES Response Description

		16.3.16 DPSECI_SET_RX_QUEUE

		Figure 480. DPSECI_SET_RX_QUEUE Command Description

		16.3.17 DPSECI_GET_RX_QUEUE

		Figure 481. DPSECI_GET_RX_QUEUE Command Description

		Figure 482. DPSECI_GET_RX_QUEUE Response Description

		16.3.18 DPSECI_GET_TX_QUEUE

		Figure 483. DPSECI_GET_TX_QUEUE Command Description

		Figure 484. DPSECI_GET_TX_QUEUE Response Description

		16.3.19 DPSECI_GET_SEC_ATTR

		Figure 485. DPSECI_GET_SEC_ATTR Command Description

		Figure 486. DPSECI_GET_SEC_ATTR Response Description

		16.3.20 DPSECI_GET_SEC_COUNTERS

		Figure 487. DPSECI_GET_SEC_COUNTERS Command Description

		Figure 488. DPSECI_GET_SEC_COUNTERS Response Description

		16.3.21 DPSECI_GET_API_VERSION

		Figure 489. DPSECI_GET_API_VERSION Command Description

		Figure 490. DPSECI_GET_API_VERSION Response Description

		Figure 491.

		Chapter 17 DPDCEI: Data Path DCE Interface

		17.1 DPDCEI features

		17.2 DPDCEI command reference

		17.2.1 DPDCEI_OPEN

		Figure 492. DPDCEI_OPEN Command Description

		Table 67. DPDCEI_OPEN Command Field Descriptions

		17.2.2 DPDCEI_CLOSE

		Figure 493. DPDCEI_CLOSE Command Description

		17.2.3 DPDCEI_CREATE

		Figure 494. DPDCEI_CREATE Command Description

		Table 68. DPDCEI_CREATE Command Field Descriptions

		Figure 17-1. DPDCEI_CREATE Response Description

		Table 17-1. DPDCEI_CREATE Response Field Descriptions

		17.2.4 DPDCEI_DESTROY

		Figure 495. DPDCEI_DESTROY Command Description

		17.2.5 DPDCEI_ENABLE

		Figure 496. DPDCEI_ENABLE Command Description

		17.2.6 DPDCEI_DISABLE

		Figure 497. DPDCEI_DISABLE Command Description

		17.2.7 DPDCEI_IS_ENABLED

		Figure 498. DPDCEI_IS_ENABLED Command Description

		Figure 499. DPDCEI_IS_ENABLED Response Description

		17.2.8 DPDCEI_RESET

		Figure 500. DPDCEI_RESET Command Description

		17.2.9 DPDCEI_SET_IRQ_ENABLE

		Figure 501. DPDCEI_SET_IRQ_ENABLE Command Description

		17.2.10 DPDCEI_GET_IRQ_ENABLE

		Figure 502. DPDCEI_GET_IRQ_ENABLE Command Description

		Figure 503. DPDCEI_GET_IRQ_ENABLE Response Description

		17.2.11 DPDCEI_SET_IRQ_MASK

		Figure 504. DPDCEI_SET_IRQ_MASK Command Description

		17.2.12 DPDCEI_GET_IRQ_MASK

		Figure 505. DPDCEI_GET_IRQ_MASK Command Description

		Figure 506. DPDCEI_GET_IRQ_MASK Response Description

		17.2.13 DPDCEI_GET_IRQ_STATUS

		Figure 507. DPDCEI_GET_IRQ_STATUS Command Description

		Figure 508. DPDCEI_GET_IRQ_STATUS Response Description

		17.2.14 DPDCEI_CLEAR_IRQ_STATUS

		Figure 509. DPDCEI_CLEAR_IRQ_STATUS Command Description

		17.2.15 DPDCEI_GET_ATTRIBUTES

		Figure 510. DPDCEI_GET_ATTRIBUTES Command Description

		Figure 511. DPDCEI_GET_ATTRIBUTES Response Description

		17.2.16 DPDCEI_SET_RX_QUEUE

		Figure 512. DPDCEI_SET_RX_QUEUE Command Description

		17.2.17 DPDCEI_GET_RX_QUEUE

		Figure 513. DPDCEI_GET_RX_QUEUE Command Description

		Figure 514. DPDCEI_GET_RX_QUEUE Response Description

		17.2.18 DPDCEI_GET_TX_QUEUE

		Figure 515. DPDCEI_GET_TX_QUEUE Command Description

		Figure 516. DPDCEI_GET_TX_QUEUE Response Description

		17.2.19 DPDCEI_GET_API_VERSION

		Figure 517. DPDCEI_GET_API_VERSION Command Description

		Figure 518. DPDCEI_GET_API_VERSION Response Description

		Chapter 18 DPDMAI: Data Path DMA Interface

		18.1 DPDMAI features

		18.2 DPDMAI command reference

		18.2.1 DPDMAI_OPEN

		Figure 519. DPDMAI_OPEN Command Description

		Table 69. DPDMAI_OPEN Command Field Descriptions

		18.2.2 DPDMAI_CLOSE

		Figure 520. DPDMAI_CLOSE Command Description

		18.2.3 DPDMAI_CREATE

		Figure 521. DPDMAI_CREATE Command Description

		Table 70. DPDMAI_CREATE Command Field Descriptions

		Figure 18-1. DPDMAI_CREATE Response Description

		Table 18-1. DPDMAI_CREATE Response Field Descriptions

		18.2.4 DPDMAI_DESTROY

		Figure 522. DPDMAI_DESTROY Command Description

		18.2.5 DPDMAI_ENABLE

		Figure 523. DPDMAI_ENABLE Command Description

		18.2.6 DPDMAI_DISABLE

		Figure 524. DPDMAI_DISABLE Command Description

		18.2.7 DPDMAI_IS_ENABLED

		Figure 525. DPDMAI_IS_ENABLED Command Description

		Figure 526. DPDMAI_IS_ENABLED Response Description

		18.2.8 DPDMAI_RESET

		Figure 527. DPDMAI_RESET Command Description

		18.2.9 DPDMAI_SET_IRQ_ENABLE

		Figure 528. DPDMAI_SET_IRQ_ENABLE Command Description

		18.2.10 DPDMAI_GET_IRQ_ENABLE

		Figure 529. DPDMAI_GET_IRQ_ENABLE Command Description

		Figure 530. DPDMAI_GET_IRQ_ENABLE Response Description

		18.2.11 DPDMAI_SET_IRQ_MASK

		Figure 531. DPDMAI_SET_IRQ_MASK Command Description

		18.2.12 DPDMAI_GET_IRQ_MASK

		Figure 532. DPDMAI_GET_IRQ_MASK Command Description

		Figure 533. DPDMAI_GET_IRQ_MASK Response Description

		18.2.13 DPDMAI_GET_IRQ_STATUS

		Figure 534. DPDMAI_GET_IRQ_STATUS Command Description

		Figure 535. DPDMAI_GET_IRQ_STATUS Response Description

		18.2.14 DPDMAI_CLEAR_IRQ_STATUS

		Figure 536. DPDMAI_CLEAR_IRQ_STATUS Command Description

		18.2.15 DPDMAI_GET_ATTRIBUTES

		Figure 537. DPDMAI_GET_ATTRIBUTES Command Description

		Figure 538. DPDMAI_GET_ATTRIBUTES Response Description

		18.2.16 DPDMAI_SET_RX_QUEUE

		Figure 539. DPDMAI_SET_RX_QUEUE Command Description

		18.2.17 DPDMAI_GET_RX_QUEUE

		Figure 540. DPDMAI_GET_RX_QUEUE Command Description

		Figure 541. DPDMAI_GET_RX_QUEUE Response Description

		18.2.18 DPDMAI_GET_TX_QUEUE

		Figure 542. DPDMAI_GET_TX_QUEUE Command Description

		Figure 543. DPDMAI_GET_TX_QUEUE Response Description

		18.2.19 DPDMAI_GET_API_VERSION

		Figure 544. DPDMAI_GET_API_VERSION Command Description

		Figure 545. DPDMAI_GET_API_VERSION Response Description

		Chapter 19 DPAIOP: Data Path AIOP Control

		19.1 DPAIOP features

		19.1.1 Resetting the AIOP and reloading applications

		19.2 DPAIOP command reference

		19.2.1 DPAIOP_OPEN

		Figure 546. DPAIOP_OPEN Command Description

		Table 71. DPAIOP_OPEN Command Field Descriptions

		19.2.2 DPAIOP_CLOSE

		Figure 547. DPAIOP_CLOSE Command Description

		19.2.3 DPAIOP_CREATE

		Figure 548. DPAIOP_CREATE Command Description

		Table 72. DPAIOP_CREATE Command Field Descriptions

		Figure 19-1. DPAIOP_CREATE Response Description

		Table 19-1. DPAIOP_CREATE Response Field Descriptions

		19.2.4 DPAIOP_DESTROY

		Figure 549. DPAIOP_DESTROY Command Description

		19.2.5 DPAIOP_RESET

		Figure 550. DPAIOP_RESET Command Description

		19.2.6 DPAIOP_SET_IRQ_ENABLE

		Figure 551. DPAIOP_SET_IRQ_ENABLE Command Description

		19.2.7 DPAIOP_GET_IRQ_ENABLE

		Figure 552. DPAIOP_GET_IRQ_ENABLE Command Description

		Figure 553. DPAIOP_GET_IRQ_ENABLE Response Description

		19.2.8 DPAIOP_SET_IRQ_MASK

		Figure 554. DPAIOP_SET_IRQ_MASK Command Description

		19.2.9 DPAIOP_GET_IRQ_MASK

		Figure 555. DPAIOP_GET_IRQ_MASK Command Description

		Figure 556. DPAIOP_GET_IRQ_MASK Response Description

		19.2.10 DPAIOP_GET_IRQ_STATUS

		Figure 557. DPAIOP_GET_IRQ_STATUS Command Description

		Figure 558. DPAIOP_GET_IRQ_STATUS Response Description

		19.2.11 DPAIOP_CLEAR_IRQ_STATUS

		Figure 559. DPAIOP_CLEAR_IRQ_STATUS Command Description

		19.2.12 DPAIOP_GET_ATTRIBUTES

		Figure 560. DPAIOP_GET_ATTRIBUTES Command Description

		Figure 561. DPAIOP_GET_ATTRIBUTES Response Description

		19.2.13 DPAIOP_LOAD

		Figure 562. DPAIOP_LOAD Command Description

		19.2.14 DPAIOP_RUN

		Figure 563. DPAIOP_RUN Command Description

		19.2.15 DPAIOP_GET_SL_VERSION

		Figure 564. DPAIOP_GET_SL_VERSION Command Description

		Figure 565. DPAIOP_GET_SL_VERSION Response Description

		19.2.16 DPAIOP_GET_STATE

		Figure 566. DPAIOP_GET_STATE Command Description

		Figure 567. DPAIOP_GET_STATE Response Description

		19.2.17 DPAIOP_SET_TIME_OF_DAY

		Figure 568. DPAIOP_SET_TIME_OF_DAY Command Description

		19.2.18 DPAIOP_GET_TIME_OF_DAY

		Figure 569. DPAIOP_GET_TIME_OF_DAY Command Description

		Figure 570. DPAIOP_GET_TIME_OF_DAY Response Description

		19.2.19 DPAIOP_GET_API_VERSION

		Figure 571. DPAIOP_GET_API_VERSION Command Description

		Figure 572. DPAIOP_GET_API_VERSION Response Description

		Chapter 20 DPMCP: Data Path MC Portal

		20.1 DPMCP features

		20.2 DPMCP command reference

		20.2.1 DPMCP_OPEN

		Figure 573. DPMCP_OPEN Command Description

		Table 73. DPMCP_OPEN Command Field Descriptions

		20.2.2 DPMCP_CLOSE

		Figure 574. DPMCP_CLOSE Command Description

		20.2.3 DPMCP_CREATE

		Figure 575. DPMCP_CREATE Command Description

		Table 74. DPMCP_CREATE Command Field Descriptions

		Figure 20-1. DPMCP_CREATE Response Description

		Table 20-1. DPMCP_CREATE Response Field Descriptions

		20.2.4 DPMCP_DESTROY

		Figure 576. DPMCP_DESTROY Command Description

		20.2.5 DPMCP_RESET

		Figure 577. DPMCP_RESET Command Description

		20.2.6 DPMCP_SET_IRQ_ENABLE

		Figure 578. DPMCP_SET_IRQ_ENABLE Command Description

		20.2.7 DPMCP_GET_IRQ_ENABLE

		Figure 579. DPMCP_GET_IRQ_ENABLE Command Description

		Figure 580. DPMCP_GET_IRQ_ENABLE Response Description

		20.2.8 DPMCP_SET_IRQ_MASK

		Figure 581. DPMCP_SET_IRQ_MASK Command Description

		20.2.9 DPMCP_GET_IRQ_MASK

		Figure 582. DPMCP_GET_IRQ_MASK Command Description

		Figure 583. DPMCP_GET_IRQ_MASK Response Description

		20.2.10 DPMCP_GET_IRQ_STATUS

		Figure 584. DPMCP_GET_IRQ_STATUS Command Description

		Figure 585. DPMCP_GET_IRQ_STATUS Response Description

		20.2.11 DPMCP_GET_ATTRIBUTES

		Figure 586. DPMCP_GET_ATTRIBUTES Command Description

		Figure 587. DPMCP_GET_ATTRIBUTES Response Description

		20.2.12 DPMCP_GET_API_VERSION

		Figure 588. DPMCP_GET_API_VERSION Command Description

		Figure 589. DPMCP_GET_API_VERSION Response Description

		Chapter 21 Memory Map and Register Definition

		Table 75. MC Memory Map

		21.1 General Control Register 1 (GCR1)

		Figure 590. General Control Register 1 (GCR1)

		Table 76. GCR1 Field Descriptions

		21.2 General Status Register (GSR)

		Figure 591. General Status Register (GSR)

		Table 77. GSR Field Descriptions

		21.3 MC Firmware Base Address Low Register (MCFBALR)

		Figure 592. MC Firmware Base Address Low Register (MCFBALR)

		Table 78. MCFBALR Field Descriptions

		21.4 MC Firmware Base Address High Register (MCFBAHR)

		Figure 593. MC Firmware Base Address High Register (MCFBAHR)

		Table 79. MCFBAHR Field Descriptions

		21.5 MC Firmware Attributes and Partitioning Register (MCFAPR)

		Figure 594. MC Firmware Attributes and Partitioning Register (MCFAPR)

		Table 80. MCFAPR Field Descriptions

		21.6 Parameter Summary Register (PSR)

		Figure 595. Parameter Summary Register 1 (PSR1)

		Table 81. PSR1 Field Descriptions

		21.7 Block Revision Register 1 (BRR1)

		Figure 596. Block Revision Register 1 (BRR1)

		Table 82. BRR1 Field Descriptions

		21.8 Block Revision Register 2 (BRR2)

		Figure 597. Block Revision Register 2 (BRR2)

		Table 83. BRR2 Field Descriptions

		Chapter 22 Data Path Layout (DPL) Reference

		22.1 High-level DPL structure

		22.2 Node: containers

		22.2.1 Child node: dprc

		Table 84. Properties of “dprc” node

		22.2.1.1 Child node: resources

		22.2.1.1.1 Child node: res

		Table 85. Properties of “res” node

		22.2.1.2 Child node: objects

		22.2.1.2.1 Child node: obj

		Table 86. Properties of “obj” node

		22.2.1.2.2 Child Node: obj_set

		22.3 Node: objects

		22.3.1 Child node: dpni

		Table 87. Properties of “dpni” node

		22.3.2 Child node: dpio

		Table 88. Properties of “dpio” node

		22.3.3 Child node: dpbp

		Table 89. Properties of “dpbp” node

		22.3.4 Child node: dpcon

		Table 90. Properties of “dpcon” node

		22.3.5 Child node: dpci

		Table 91. Properties of “dpci” node

		22.3.6 Child node: dpseci

		Table 92. Properties of “dpseci” node

		22.3.7 Child node: dpdmux

		Table 93. Properties of “dpdmux” node

		22.3.8 Child node: dpsw

		Table 94. Properties of “dpsw” node

		22.3.9 Child node: dpmac

		Table 95. Properties of "dpmac" node

		22.3.10 Child node: dpdcei

		Table 96. Properties of "dpdcei" node

		22.3.11 Child node: dpdmai

		Table 97. Properties of "dpdmai" node

		22.3.12 Child node: dpmcp

		Table 98. Properties of "dpmcp" node

		22.3.13 Child node: dpaiop

		Table 99. Properties of "dpaiop" node

		22.4 Node: connections

		22.4.1 Child node: connection

		Table 100. Properties of “connection” node

		Chapter 23 Data Path Configuration (DPC) Reference

		23.1 High-level DPC structure

		23.2 Node: mc_general

		23.2.1 Child node: log

		Table 101. Properties of “log” node

		23.3 Node: resources

		23.3.1 Child node: icid_pools

		23.3.1.1 Child node: icid_pool

		Table 102. Properties of “icid_pool” node

		23.4 Node: controllers

		23.4.1 Child node: qbman

		Table 103. Properties of “qbman” node

		23.5 Node: board_info

		23.5.1 Child node: ports

		23.5.1.1 Child node: mac

		Table 104. Properties of “mac” node

		23.6 Node: memory

		Table 105. Properties of “memory” node

		Chapter 24 Use case scenarios

		24.1 Steps to verify 1000BASE-X on LS1088A QDS

		24.1.1 Preparation

		24.1.1.1 Hardware

		24.1.1.2 Software and firmware

		24.1.1.3 RCW

		24.1.1.4 Board setup

		24.1.2 Test procedures

		24.1.2.1 Verify that SGMII MC works with SGMII PHY

		24.1.2.2 Verify that SGMII MC does not work with 1000BaseX PHY

		24.1.2.3 Modify DPC for MC to support 1000BaseX

		24.2 Steps to verify PHYless on LS1088A QDS

		24.2.1 Preparation

		24.2.1.1 Hardware

		24.2.1.2 Software and firmware

		24.2.1.3 RCW

		24.2.1.4 Board setup

		Figure 598. Multi-mode crossover fiber cable

		Figure 599. Cable attached directly

		24.2.2 Test procedures

		Chapter 25 Known Limitations

		25.1 Reset of MC objects with FQs associated with a channel

		25.2 Reconfiguring FQs associated with a channel

		Appendix A Revision History

DPAA2 API Reference Manual

Rev 1
Dec 2017

Contents
Chapter 1

Management Complex

1.1 Overview . 1

1.2 Management Complex General APIs . 1
1.2.1 Overview . 1
1.2.2 Data Structure Documentation . 2
1.2.2.1 struct mc_version . 2
1.2.2.2 struct mc_soc_version . 2
1.2.3 Macro Definition Documentation . 3
1.2.3.1 MC_VER_MAJOR . 3
1.2.4 Function Documentation . 3
1.2.4.1 mc_get_version . 3
1.2.4.2 mc_get_soc_version . 3

1.3 Data Path AIOP API . 3
1.3.1 Overview . 3
1.3.2 Data Structure Documentation . 5
1.3.2.1 struct dpaiop_cfg . 5
1.3.2.2 struct dpaiop_attr . 6
1.3.2.3 struct dpaiop_load_cfg . 6
1.3.2.4 struct dpaiop_run_cfg . 6
1.3.2.5 struct dpaiop_sl_version . 7
1.3.3 Macro Definition Documentation . 7
1.3.3.1 DPAIOP_STATE_RESET_DONE . 7
1.3.3.2 DPAIOP_STATE_RESET_ONGOING . 7
1.3.3.3 DPAIOP_STATE_LOAD_DONE . 8
1.3.3.4 DPAIOP_STATE_LOAD_ONGIONG . 8
1.3.3.5 DPAIOP_STATE_LOAD_ERROR . 8
1.3.3.6 DPAIOP_STATE_BOOT_ONGOING . 8
1.3.3.7 DPAIOP_STATE_BOOT_ERROR . 8
1.3.3.8 DPAIOP_STATE_RUNNING . 8
1.3.4 Function Documentation . 8
1.3.4.1 dpaiop_open . 8
1.3.4.2 dpaiop_close . 9
1.3.4.3 dpaiop_create . 9

NXP Semiconductors
DPAA2 API Reference Manual

i

Section number Title Page
1.3.4.4 dpaiop_destroy . 9
1.3.4.5 dpaiop_reset . 10
1.3.4.6 dpaiop_set_irq_enable . 10
1.3.4.7 dpaiop_get_irq_enable . 10
1.3.4.8 dpaiop_set_irq_mask . 11
1.3.4.9 dpaiop_get_irq_mask . 11
1.3.4.10 dpaiop_get_irq_status . 12
1.3.4.11 dpaiop_clear_irq_status . 13
1.3.4.12 dpaiop_get_attributes . 13
1.3.4.13 dpaiop_load . 13
1.3.4.14 dpaiop_run . 14
1.3.4.15 dpaiop_get_sl_version . 14

1.4 Data Path DMA Interface API . 14
1.4.1 Overview . 14
1.4.2 Data Structure Documentation . 16
1.4.2.1 struct dpdmai_cfg . 16
1.4.2.2 struct dpdmai_attr . 16
1.4.2.3 struct dpdmai_dest_cfg . 16
1.4.2.4 struct dpdmai_rx_queue_cfg . 17
1.4.2.5 struct dpdmai_rx_queue_attr . 17
1.4.2.6 struct dpdmai_tx_queue_attr . 18
1.4.3 Macro Definition Documentation . 18
1.4.3.1 DPDMAI_PRIO_NUM . 18
1.4.3.2 DPDMAI_ALL_QUEUES . 18
1.4.3.3 DPDMAI_QUEUE_OPT_USER_CTX . 18
1.4.3.4 DPDMAI_QUEUE_OPT_DEST . 18
1.4.4 Enumeration Type Documentation . 19
1.4.4.1 dpdmai_dest . 19
1.4.5 Function Documentation . 20
1.4.5.1 dpdmai_open . 20
1.4.5.2 dpdmai_close . 20
1.4.5.3 dpdmai_create . 21
1.4.5.4 dpdmai_destroy . 22
1.4.5.5 dpdmai_enable . 22
1.4.5.6 dpdmai_disable . 23
1.4.5.7 dpdmai_is_enabled . 23
1.4.5.8 dpdmai_reset . 23
1.4.5.9 dpdmai_set_irq_enable . 23
1.4.5.10 dpdmai_get_irq_enable . 24
1.4.5.11 dpdmai_set_irq_mask . 24
1.4.5.12 dpdmai_get_irq_mask . 25
1.4.5.13 dpdmai_get_irq_status . 26
1.4.5.14 dpdmai_clear_irq_status . 26
1.4.5.15 dpdmai_get_attributes . 26

NXP Semiconductors
DPAA2 API Reference Manual

ii

Section number Title Page
1.4.5.16 dpdmai_set_rx_queue . 27
1.4.5.17 dpdmai_get_rx_queue . 27
1.4.5.18 dpdmai_get_tx_queue . 27
1.4.5.19 dpdmai_get_api_version . 28

1.5 Data Path L2-Switch APIs . 28
1.5.1 Overview . 28
1.5.2 Data Structure Documentation . 34
1.5.2.1 struct dpsw_cfg . 34
1.5.2.2 struct dpsw_cfg.adv . 34
1.5.2.3 struct dpsw_attr . 35
1.5.2.4 struct dpsw_link_cfg . 36
1.5.2.5 struct dpsw_link_state . 36
1.5.2.6 struct dpsw_tci_cfg . 37
1.5.2.7 struct dpsw_stp_cfg . 37
1.5.2.8 struct dpsw_accepted_frames_cfg . 38
1.5.2.9 struct dpsw_tx_schedule_cfg . 39
1.5.2.10 struct dpsw_tx_selection_cfg . 39
1.5.2.11 struct dpsw_reflection_cfg . 40
1.5.2.12 struct dpsw_metering_cfg . 40
1.5.2.13 struct dpsw_wred_cfg . 41
1.5.2.14 struct dpsw_early_drop_cfg . 41
1.5.2.15 struct dpsw_custom_tpid_cfg . 42
1.5.2.16 struct dpsw_if_attr . 42
1.5.2.17 struct dpsw_vlan_cfg . 43
1.5.2.18 struct dpsw_vlan_if_cfg . 43
1.5.2.19 struct dpsw_vlan_attr . 43
1.5.2.20 struct dpsw_fdb_cfg . 44
1.5.2.21 struct dpsw_fdb_unicast_cfg . 44
1.5.2.22 struct dpsw_fdb_multicast_cfg . 45
1.5.2.23 struct dpsw_fdb_attr . 45
1.5.2.24 struct dpsw_acl_cfg . 46
1.5.2.25 struct dpsw_acl_fields . 46
1.5.2.26 struct dpsw_acl_key . 47
1.5.2.27 struct dpsw_acl_result . 47
1.5.2.28 struct dpsw_acl_entry_cfg . 48
1.5.2.29 struct dpsw_acl_if_cfg . 48
1.5.2.30 struct dpsw_acl_attr . 49
1.5.2.31 struct dpsw_ctrl_if_pools_cfg . 50
1.5.2.32 struct dpsw_ctrl_if_pools_cfg.pools . 50
1.5.3 Macro Definition Documentation . 50
1.5.3.1 DPSW_MAX_PRIORITIES . 50
1.5.3.2 DPSW_MAX_IF . 51
1.5.3.3 DPSW_OPT_FLOODING_DIS . 51
1.5.3.4 DPSW_OPT_MULTICAST_DIS . 51

NXP Semiconductors
DPAA2 API Reference Manual

iii

Section number Title Page
1.5.3.5 DPSW_OPT_CTRL_IF_DIS . 51
1.5.3.6 DPSW_OPT_FLOODING_METERING_DIS 51
1.5.3.7 DPSW_OPT_METERING_EN . 51
1.5.3.8 DPSW_IRQ_INDEX_IF . 51
1.5.3.9 DPSW_IRQ_EVENT_LINK_CHANGED . 51
1.5.3.10 DPSW_LINK_OPT_AUTONEG . 51
1.5.3.11 DPSW_LINK_OPT_HALF_DUPLEX . 51
1.5.3.12 DPSW_LINK_OPT_PAUSE . 52
1.5.3.13 DPSW_LINK_OPT_ASYM_PAUSE . 52
1.5.3.14 DPSW_MAX_TC . 52
1.5.4 Enumeration Type Documentation . 52
1.5.4.1 dpsw_component_type . 52
1.5.4.2 dpsw_action . 52
1.5.4.3 dpsw_stp_state . 52
1.5.4.4 dpsw_accepted_frames . 53
1.5.4.5 dpsw_counter . 53
1.5.4.6 dpsw_priority_selector . 54
1.5.4.7 dpsw_schedule_mode . 54
1.5.4.8 dpsw_reflection_filter . 55
1.5.4.9 dpsw_metering_mode . 55
1.5.4.10 dpsw_metering_unit . 55
1.5.4.11 dpsw_early_drop_unit . 56
1.5.4.12 dpsw_early_drop_mode . 56
1.5.4.13 dpsw_fdb_entry_type . 56
1.5.4.14 dpsw_fdb_learning_mode . 57
1.5.4.15 dpsw_acl_action . 58
1.5.5 Function Documentation . 58
1.5.5.1 dpsw_open . 58
1.5.5.2 dpsw_close . 58
1.5.5.3 dpsw_create . 59
1.5.5.4 dpsw_destroy . 59
1.5.5.5 dpsw_enable . 60
1.5.5.6 dpsw_disable . 60
1.5.5.7 dpsw_is_enabled . 60
1.5.5.8 dpsw_reset . 60
1.5.5.9 dpsw_set_irq_enable . 61
1.5.5.10 dpsw_get_irq_enable . 61
1.5.5.11 dpsw_set_irq_mask . 61
1.5.5.12 dpsw_get_irq_mask . 62
1.5.5.13 dpsw_get_irq_status . 62
1.5.5.14 dpsw_clear_irq_status . 63
1.5.5.15 dpsw_get_attributes . 64
1.5.5.16 dpsw_set_reflection_if . 64
1.5.5.17 dpsw_if_set_link_cfg . 64
1.5.5.18 dpsw_if_get_link_state . 65

NXP Semiconductors
DPAA2 API Reference Manual

iv

Section number Title Page
1.5.5.19 dpsw_if_set_flooding . 65
1.5.5.20 dpsw_if_set_broadcast . 65
1.5.5.21 dpsw_if_set_multicast . 66
1.5.5.22 dpsw_if_set_tci . 66
1.5.5.23 dpsw_if_get_tci . 66
1.5.5.24 dpsw_if_set_stp . 67
1.5.5.25 dpsw_if_set_accepted_frames . 67
1.5.5.26 dpsw_if_set_accept_all_vlan . 68
1.5.5.27 dpsw_if_get_counter . 69
1.5.5.28 dpsw_if_set_counter . 69
1.5.5.29 dpsw_if_set_tx_selection . 70
1.5.5.30 dpsw_if_add_reflection . 71
1.5.5.31 dpsw_if_remove_reflection . 71
1.5.5.32 dpsw_if_set_flooding_metering . 71
1.5.5.33 dpsw_if_set_metering . 72
1.5.5.34 dpsw_prepare_early_drop . 72
1.5.5.35 dpsw_if_set_early_drop . 72
1.5.5.36 dpsw_add_custom_tpid . 73
1.5.5.37 dpsw_remove_custom_tpid . 73
1.5.5.38 dpsw_if_enable . 74
1.5.5.39 dpsw_if_disable . 75
1.5.5.40 dpsw_if_get_attributes . 75
1.5.5.41 dpsw_if_set_max_frame_length . 75
1.5.5.42 dpsw_if_get_max_frame_length . 76
1.5.5.43 dpsw_vlan_add . 76
1.5.5.44 dpsw_vlan_add_if . 76
1.5.5.45 dpsw_vlan_add_if_untagged . 77
1.5.5.46 dpsw_vlan_add_if_flooding . 77
1.5.5.47 dpsw_vlan_remove_if . 78
1.5.5.48 dpsw_vlan_remove_if_untagged . 78
1.5.5.49 dpsw_vlan_remove_if_flooding . 78
1.5.5.50 dpsw_vlan_remove . 79
1.5.5.51 dpsw_vlan_get_attributes . 79
1.5.5.52 dpsw_vlan_get_if . 79
1.5.5.53 dpsw_vlan_get_if_flooding . 80
1.5.5.54 dpsw_vlan_get_if_untagged . 80
1.5.5.55 dpsw_fdb_add . 80
1.5.5.56 dpsw_fdb_remove . 81
1.5.5.57 dpsw_fdb_add_unicast . 81
1.5.5.58 dpsw_fdb_get_unicast . 81
1.5.5.59 dpsw_fdb_remove_unicast . 82
1.5.5.60 dpsw_fdb_add_multicast . 82
1.5.5.61 dpsw_fdb_get_multicast . 82
1.5.5.62 dpsw_fdb_remove_multicast . 83
1.5.5.63 dpsw_fdb_set_learning_mode . 83

NXP Semiconductors
DPAA2 API Reference Manual

v

Section number Title Page
1.5.5.64 dpsw_fdb_get_attributes . 83
1.5.5.65 dpsw_acl_add . 84
1.5.5.66 dpsw_acl_remove . 84
1.5.5.67 dpsw_acl_prepare_entry_cfg . 84
1.5.5.68 dpsw_acl_add_entry . 85
1.5.5.69 dpsw_acl_remove_entry . 85
1.5.5.70 dpsw_acl_add_if . 85
1.5.5.71 dpsw_acl_remove_if . 86
1.5.5.72 dpsw_acl_get_attributes . 86
1.5.5.73 dpsw_ctrl_if_set_pools . 86

1.6 Data Path Resource Container API . 87
1.6.1 Overview . 87
1.6.2 Data Structure Documentation . 89
1.6.2.1 struct dprc_cfg . 89
1.6.2.2 struct dprc_irq_cfg . 90
1.6.2.3 struct dprc_attributes . 90
1.6.2.4 struct dprc_res_req . 91
1.6.2.5 struct dprc_obj_desc . 91
1.6.2.6 struct dprc_res_ids_range_desc . 92
1.6.2.7 struct dprc_region_desc . 93
1.6.2.8 struct dprc_endpoint . 94
1.6.2.9 struct dprc_connection_cfg . 94
1.6.3 Macro Definition Documentation . 95
1.6.3.1 DPRC_GET_ICID_FROM_POOL . 95
1.6.3.2 DPRC_GET_PORTAL_ID_FROM_POOL 95
1.6.3.3 DPRC_CFG_OPT_SPAWN_ALLOWED . 95
1.6.3.4 DPRC_CFG_OPT_ALLOC_ALLOWED . 95
1.6.3.5 DPRC_CFG_OPT_OBJ_CREATE_ALLOWED 95
1.6.3.6 DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED 95
1.6.3.7 DPRC_CFG_OPT_AIOP . 96
1.6.3.8 DPRC_CFG_OPT_IRQ_CFG_ALLOWED 96
1.6.3.9 DPRC_IRQ_INDEX . 96
1.6.3.10 DPRC_NUM_OF_IRQS . 96
1.6.3.11 DPRC_IRQ_EVENT_OBJ_ADDED . 96
1.6.3.12 DPRC_IRQ_EVENT_OBJ_REMOVED . 96
1.6.3.13 DPRC_IRQ_EVENT_RES_ADDED . 96
1.6.3.14 DPRC_IRQ_EVENT_RES_REMOVED . 96
1.6.3.15 DPRC_IRQ_EVENT_CONTAINER_DESTROYED 96
1.6.3.16 DPRC_IRQ_EVENT_OBJ_DESTROYED 96
1.6.3.17 DPRC_IRQ_EVENT_OBJ_CREATED . 97
1.6.3.18 DPRC_RES_REQ_OPT_EXPLICIT . 97
1.6.3.19 DPRC_RES_REQ_OPT_ALIGNED . 97
1.6.3.20 DPRC_RES_REQ_OPT_PLUGGED . 97
1.6.3.21 DPRC_OBJ_STATE_OPEN . 97

NXP Semiconductors
DPAA2 API Reference Manual

vi

Section number Title Page
1.6.3.22 DPRC_OBJ_STATE_PLUGGED . 97
1.6.3.23 DPRC_OBJ_FLAG_NO_MEM_SHAREABILITY 97
1.6.3.24 DPRC_REGION_CACHEABLE . 98
1.6.4 Enumeration Type Documentation . 98
1.6.4.1 dprc_iter_status . 98
1.6.4.2 dprc_region_type . 98
1.6.5 Function Documentation . 98
1.6.5.1 dprc_get_container_id . 98
1.6.5.2 dprc_open . 99
1.6.5.3 dprc_close . 99
1.6.5.4 dprc_create_container . 99
1.6.5.5 dprc_destroy_container . 100
1.6.5.6 dprc_reset_container . 100
1.6.5.7 dprc_set_irq . 101
1.6.5.8 dprc_get_irq . 101
1.6.5.9 dprc_set_irq_enable . 102
1.6.5.10 dprc_get_irq_enable . 102
1.6.5.11 dprc_set_irq_mask . 102
1.6.5.12 dprc_get_irq_mask . 103
1.6.5.13 dprc_get_irq_status . 103
1.6.5.14 dprc_clear_irq_status . 104
1.6.5.15 dprc_get_attributes . 105
1.6.5.16 dprc_set_res_quota . 105
1.6.5.17 dprc_get_res_quota . 106
1.6.5.18 dprc_assign . 107
1.6.5.19 dprc_unassign . 108
1.6.5.20 dprc_get_pool_count . 109
1.6.5.21 dprc_get_pool . 109
1.6.5.22 dprc_get_obj_count . 110
1.6.5.23 dprc_get_obj . 111
1.6.5.24 dprc_get_obj_desc . 111
1.6.5.25 dprc_set_obj_irq . 112
1.6.5.26 dprc_get_obj_irq . 113
1.6.5.27 dprc_get_res_count . 113
1.6.5.28 dprc_get_res_ids . 114
1.6.5.29 dprc_get_obj_region . 115
1.6.5.30 dprc_set_obj_label . 115
1.6.5.31 dprc_connect . 116
1.6.5.32 dprc_disconnect . 117
1.6.5.33 dprc_get_connection . 117

1.7 Data Path Real Time Counter API . 118
1.7.1 Overview . 118
1.7.2 Data Structure Documentation . 119
1.7.2.1 struct dprtc_cfg . 119

NXP Semiconductors
DPAA2 API Reference Manual

vii

Section number Title Page
1.7.2.2 struct dprtc_attr . 119
1.7.3 Macro Definition Documentation . 119
1.7.3.1 DPRTC_MAX_IRQ_NUM . 119
1.7.3.2 DPRTC_EVENT_ALARM . 119
1.7.3.3 DPRTC_EVENT_PPS . 120
1.7.4 Function Documentation . 120
1.7.4.1 dprtc_open . 120
1.7.4.2 dprtc_close . 120
1.7.4.3 dprtc_create . 120
1.7.4.4 dprtc_destroy . 121
1.7.4.5 dprtc_set_clock_offset . 121
1.7.4.6 dprtc_set_freq_compensation . 122
1.7.4.7 dprtc_get_freq_compensation . 122
1.7.4.8 dprtc_get_time . 122
1.7.4.9 dprtc_set_time . 123
1.7.4.10 dprtc_set_alarm . 123
1.7.4.11 dprtc_set_irq_enable . 123
1.7.4.12 dprtc_get_irq_enable . 124
1.7.4.13 dprtc_set_irq_mask . 124
1.7.4.14 dprtc_get_irq_mask . 124
1.7.4.15 dprtc_get_irq_status . 125
1.7.4.16 dprtc_clear_irq_status . 125
1.7.4.17 dprtc_get_attributes . 125
1.7.4.18 dprtc_get_api_version . 126

1.8 Data Path Management Command Portal API 126
1.8.1 Overview . 126
1.8.2 Data Structure Documentation . 127
1.8.2.1 struct dpmcp_cfg . 127
1.8.2.2 struct dpmcp_attr . 127
1.8.3 Macro Definition Documentation . 128
1.8.3.1 DPMCP_GET_PORTAL_ID_FROM_POOL 128
1.8.3.2 DPMCP_IRQ_INDEX . 128
1.8.3.3 DPMCP_IRQ_EVENT_CMD_DONE . 128
1.8.4 Function Documentation . 128
1.8.4.1 dpmcp_open . 128
1.8.4.2 dpmcp_close . 128
1.8.4.3 dpmcp_create . 129
1.8.4.4 dpmcp_destroy . 129
1.8.4.5 dpmcp_reset . 130
1.8.4.6 dpmcp_set_irq_enable . 130
1.8.4.7 dpmcp_get_irq_enable . 130
1.8.4.8 dpmcp_set_irq_mask . 130
1.8.4.9 dpmcp_get_irq_mask . 131
1.8.4.10 dpmcp_get_irq_status . 131

NXP Semiconductors
DPAA2 API Reference Manual

viii

Section number Title Page
1.8.4.11 dpmcp_get_attributes . 132
1.8.4.12 dpmcp_get_api_version . 133

1.9 Data Path Buffer Pool API . 133
1.9.1 Overview . 133
1.9.2 Data Structure Documentation . 134
1.9.2.1 struct dpbp_cfg . 134
1.9.2.2 struct dpbp_attr . 134
1.9.2.3 struct dpbp_notification_cfg . 135
1.9.3 Macro Definition Documentation . 135
1.9.3.1 DPBP_NOTIF_OPT_COHERENT_WRITE 135
1.9.4 Function Documentation . 136
1.9.4.1 dpbp_open . 136
1.9.4.2 dpbp_close . 137
1.9.4.3 dpbp_create . 137
1.9.4.4 dpbp_destroy . 138
1.9.4.5 dpbp_enable . 139
1.9.4.6 dpbp_disable . 139
1.9.4.7 dpbp_is_enabled . 139
1.9.4.8 dpbp_reset . 140
1.9.4.9 dpbp_set_irq_enable . 141
1.9.4.10 dpbp_get_irq_enable . 141
1.9.4.11 dpbp_set_irq_mask . 141
1.9.4.12 dpbp_get_irq_mask . 142
1.9.4.13 dpbp_get_irq_status . 142
1.9.4.14 dpbp_clear_irq_status . 143
1.9.4.15 dpbp_get_attributes . 144
1.9.4.16 dpbp_set_notifications . 144
1.9.4.17 dpbp_get_notifications . 144
1.9.4.18 dpbp_get_api_version . 145
1.9.4.19 dpbp_get_num_free_bufs . 145

1.10 Data Path I/O Portal API . 145
1.10.1 Overview . 145
1.10.2 Data Structure Documentation . 147
1.10.2.1 struct dpio_cfg . 147
1.10.2.2 struct dpio_attr . 148
1.10.3 Macro Definition Documentation . 149
1.10.3.1 DPIO_IRQ_SWP_INDEX . 149
1.10.4 Enumeration Type Documentation . 149
1.10.4.1 dpio_channel_mode . 149
1.10.5 Function Documentation . 149
1.10.5.1 dpio_open . 149
1.10.5.2 dpio_close . 150
1.10.5.3 dpio_create . 151

NXP Semiconductors
DPAA2 API Reference Manual

ix

Section number Title Page
1.10.5.4 dpio_destroy . 151
1.10.5.5 dpio_enable . 152
1.10.5.6 dpio_disable . 153
1.10.5.7 dpio_is_enabled . 153
1.10.5.8 dpio_reset . 153
1.10.5.9 dpio_set_stashing_destination . 154
1.10.5.10 dpio_get_stashing_destination . 155
1.10.5.11 dpio_add_static_dequeue_channel . 155
1.10.5.12 dpio_remove_static_dequeue_channel . 155
1.10.5.13 dpio_set_irq_enable . 156
1.10.5.14 dpio_get_irq_enable . 156
1.10.5.15 dpio_set_irq_mask . 156
1.10.5.16 dpio_get_irq_mask . 157
1.10.5.17 dpio_get_irq_status . 157
1.10.5.18 dpio_clear_irq_status . 158
1.10.5.19 dpio_get_attributes . 159
1.10.5.20 dpio_get_api_version . 159

1.11 Data Path Concentrator API . 159
1.11.1 Overview . 159
1.11.2 Data Structure Documentation . 160
1.11.2.1 struct dpcon_cfg . 160
1.11.2.2 struct dpcon_attr . 161
1.11.2.3 struct dpcon_notification_cfg . 161
1.11.3 Macro Definition Documentation . 162
1.11.3.1 DPCON_INVALID_DPIO_ID . 162
1.11.4 Function Documentation . 162
1.11.4.1 dpcon_open . 162
1.11.4.2 dpcon_close . 162
1.11.4.3 dpcon_create . 162
1.11.4.4 dpcon_destroy . 163
1.11.4.5 dpcon_enable . 163
1.11.4.6 dpcon_disable . 164
1.11.4.7 dpcon_is_enabled . 165
1.11.4.8 dpcon_reset . 165
1.11.4.9 dpcon_set_irq_enable . 165
1.11.4.10 dpcon_get_irq_enable . 166
1.11.4.11 dpcon_set_irq_mask . 166
1.11.4.12 dpcon_get_irq_mask . 166
1.11.4.13 dpcon_get_irq_status . 167
1.11.4.14 dpcon_clear_irq_status . 167
1.11.4.15 dpcon_get_attributes . 167
1.11.4.16 dpcon_set_notification . 168
1.11.4.17 dpcon_get_api_version . 169

NXP Semiconductors
DPAA2 API Reference Manual

x

Section number Title Page
1.12 Data Path Network Interface API . 169
1.12.1 Overview . 169
1.12.2 Data Structure Documentation . 174
1.12.2.1 struct dpni_cfg . 174
1.12.2.2 struct dpni_pools_cfg . 176
1.12.2.3 struct dpni_pools_cfg.pools . 176
1.12.2.4 struct dpni_attr . 176
1.12.2.5 struct dpni_error_cfg . 177
1.12.2.6 struct dpni_buffer_layout . 178
1.12.2.7 struct dpni_sp_info . 179
1.12.2.8 struct dpni_statistics.page_0 . 179
1.12.2.9 struct dpni_statistics.page_1 . 180
1.12.2.10 struct dpni_statistics.page_2 . 180
1.12.2.11 struct dpni_statistics.raw . 181
1.12.2.12 struct dpni_link_cfg . 181
1.12.2.13 struct dpni_link_state . 181
1.12.2.14 struct dpni_tx_shaping_cfg . 182
1.12.2.15 struct dpni_tx_schedule_cfg . 182
1.12.2.16 struct dpni_tx_priorities_cfg . 183
1.12.2.17 struct dpni_fs_tbl_cfg . 183
1.12.2.18 struct dpni_rx_tc_dist_cfg . 183
1.12.2.19 struct dpni_rx_tc_policing_cfg . 184
1.12.2.20 struct dpni_wred_cfg . 185
1.12.2.21 struct dpni_early_drop_cfg . 185
1.12.2.22 struct dpni_dest_cfg . 186
1.12.2.23 struct dpni_congestion_notification_cfg . 186
1.12.2.24 struct dpni_queue . 187
1.12.2.25 struct dpni_queue_id . 188
1.12.2.26 struct dpni_queue.destination . 189
1.12.2.27 struct dpni_queue.flc . 189
1.12.2.28 struct dpni_qos_tbl_cfg . 190
1.12.2.29 struct dpni_rule_cfg . 190
1.12.2.30 struct dpni_fs_action_cfg . 190
1.12.2.31 struct dpni_taildrop . 191
1.12.3 Macro Definition Documentation . 191
1.12.3.1 DPNI_MAX_TC . 191
1.12.3.2 DPNI_MAX_DPBP . 191
1.12.3.3 DPNI_MAX_SP . 192
1.12.3.4 DPNI_ALL_TCS . 192
1.12.3.5 DPNI_ALL_TC_FLOWS . 192
1.12.3.6 DPNI_OPT_TX_FRM_RELEASE . 192
1.12.3.7 DPNI_OPT_NO_MAC_FILTER . 192
1.12.3.8 DPNI_OPT_HAS_POLICING . 192
1.12.3.9 DPNI_OPT_SHARED_CONGESTION . 192
1.12.3.10 DPNI_OPT_HAS_KEY_MASKING . 192

NXP Semiconductors
DPAA2 API Reference Manual

xi

Section number Title Page
1.12.3.11 DPNI_OPT_NO_FS . 193
1.12.3.12 DPNI_OPT_HAS_OPR . 193
1.12.3.13 DPNI_OPT_OPR_PER_TC . 193
1.12.3.14 DPNI_IRQ_INDEX . 193
1.12.3.15 DPNI_IRQ_EVENT_LINK_CHANGED . 193
1.12.3.16 DPNI_ERROR_EOFHE . 193
1.12.3.17 DPNI_ERROR_FLE . 193
1.12.3.18 DPNI_ERROR_FPE . 193
1.12.3.19 DPNI_ERROR_PHE . 194
1.12.3.20 DPNI_ERROR_L3CE . 194
1.12.3.21 DPNI_ERROR_L4CE . 194
1.12.3.22 DPNI_BUF_LAYOUT_OPT_TIMESTAMP 194
1.12.3.23 DPNI_BUF_LAYOUT_OPT_PARSER_RESULT 194
1.12.3.24 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS 194
1.12.3.25 DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE 194
1.12.3.26 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN 194
1.12.3.27 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM 194
1.12.3.28 DPNI_BUF_LAYOUT_OPT_DATA_TAIL_ROOM 194
1.12.4 Enumeration Type Documentation . 195
1.12.4.1 dpni_error_action . 195
1.12.4.2 dpni_offload . 196
1.12.4.3 dpni_tx_schedule_mode . 196
1.12.4.4 dpni_dist_mode . 196
1.12.4.5 dpni_fs_miss_action . 197
1.12.4.6 dpni_policer_mode . 197
1.12.4.7 dpni_policer_unit . 198
1.12.4.8 dpni_policer_color . 199
1.12.4.9 dpni_congestion_unit . 199
1.12.4.10 dpni_early_drop_mode . 199
1.12.4.11 dpni_dest . 200
1.12.4.12 dpni_confirmation_mode . 200
1.12.4.13 dpni_congestion_point . 200
1.12.5 Function Documentation . 201
1.12.5.1 dpni_open . 201
1.12.5.2 dpni_close . 201
1.12.5.3 dpni_create . 201
1.12.5.4 dpni_destroy . 202
1.12.5.5 dpni_set_pools . 202
1.12.5.6 dpni_enable . 203
1.12.5.7 dpni_disable . 203
1.12.5.8 dpni_is_enabled . 203
1.12.5.9 dpni_reset . 203
1.12.5.10 dpni_set_irq_enable . 204
1.12.5.11 dpni_get_irq_enable . 204
1.12.5.12 dpni_set_irq_mask . 204

NXP Semiconductors
DPAA2 API Reference Manual

xii

Section number Title Page
1.12.5.13 dpni_get_irq_mask . 205
1.12.5.14 dpni_get_irq_status . 205
1.12.5.15 dpni_clear_irq_status . 206
1.12.5.16 dpni_get_attributes . 207
1.12.5.17 dpni_set_errors_behavior . 207
1.12.5.18 dpni_get_buffer_layout . 207
1.12.5.19 dpni_set_buffer_layout . 208
1.12.5.20 dpni_set_offload . 208
1.12.5.21 dpni_get_offload . 209
1.12.5.22 dpni_get_qdid . 209
1.12.5.23 dpni_get_sp_info . 210
1.12.5.24 dpni_get_tx_data_offset . 211
1.12.5.25 dpni_set_link_cfg . 211
1.12.5.26 dpni_get_link_state . 211
1.12.5.27 dpni_set_tx_shaping . 212
1.12.5.28 dpni_set_max_frame_length . 212
1.12.5.29 dpni_get_max_frame_length . 212
1.12.5.30 dpni_set_mtu . 213
1.12.5.31 dpni_get_mtu . 214
1.12.5.32 dpni_set_multicast_promisc . 214
1.12.5.33 dpni_get_multicast_promisc . 214
1.12.5.34 dpni_set_unicast_promisc . 215
1.12.5.35 dpni_get_unicast_promisc . 215
1.12.5.36 dpni_set_primary_mac_addr . 215
1.12.5.37 dpni_get_primary_mac_addr . 215
1.12.5.38 dpni_add_mac_addr . 216
1.12.5.39 dpni_remove_mac_addr . 216
1.12.5.40 dpni_clear_mac_filters . 216
1.12.5.41 dpni_get_port_mac_addr . 217
1.12.5.42 dpni_enable_vlan_filter . 217
1.12.5.43 dpni_add_vlan_id . 217
1.12.5.44 dpni_remove_vlan_id . 218
1.12.5.45 dpni_clear_vlan_filters . 218
1.12.5.46 dpni_set_tx_priorities . 218
1.12.5.47 dpni_set_rx_tc_dist . 219
1.12.5.48 dpni_set_rx_tc_policing . 219
1.12.5.49 dpni_get_rx_tc_policing . 219
1.12.5.50 dpni_prepare_early_drop . 220
1.12.5.51 dpni_extract_early_drop . 220
1.12.5.52 dpni_set_early_drop . 220
1.12.5.53 dpni_get_early_drop . 221
1.12.5.54 dpni_set_congestion_notification . 221
1.12.5.55 dpni_get_congestion_notification . 222
1.12.5.56 dpni_set_tx_confirmation_mode . 222
1.12.5.57 dpni_set_qos_table . 222

NXP Semiconductors
DPAA2 API Reference Manual

xiii

Section number Title Page
1.12.5.58 dpni_add_qos_entry . 223
1.12.5.59 dpni_remove_qos_entry . 223
1.12.5.60 dpni_clear_qos_table . 223
1.12.5.61 dpni_add_fs_entry . 224
1.12.5.62 dpni_remove_fs_entry . 224
1.12.5.63 dpni_clear_fs_entries . 224
1.12.5.64 dpni_get_api_version . 225
1.12.5.65 dpni_set_queue . 225
1.12.5.66 dpni_get_queue . 226
1.12.5.67 dpni_get_statistics . 226
1.12.5.68 dpni_reset_statistics . 227
1.12.5.69 dpni_set_taildrop . 227
1.12.5.70 dpni_get_taildrop . 227
1.12.5.71 dpni_set_opr . 228
1.12.5.72 dpni_get_opr . 228

1.13 Data Path Key Generator API . 229
1.13.1 Overview . 229
1.13.2 Data Structure Documentation . 230
1.13.2.1 struct dpkg_mask . 230
1.13.2.2 struct dpkg_extract . 231
1.13.2.3 union dpkg_extract.extract . 231
1.13.2.4 struct dpkg_extract.extract.from_hdr . 232
1.13.2.5 struct dpkg_extract.extract.from_data . 232
1.13.2.6 struct dpkg_extract.extract.from_parse . 233
1.13.2.7 struct dpkg_profile_cfg . 233
1.13.3 Macro Definition Documentation . 233
1.13.3.1 DPKG_NUM_OF_MASKS . 233
1.13.3.2 DPKG_MAX_NUM_OF_EXTRACTS . 233
1.13.4 Enumeration Type Documentation . 234
1.13.4.1 dpkg_extract_from_hdr_type . 234
1.13.4.2 dpkg_extract_type . 235
1.13.5 Function Documentation . 235
1.13.5.1 dpkg_prepare_key_cfg . 235

1.14 Data Path Demux API . 236
1.14.1 Overview . 236
1.14.2 Data Structure Documentation . 238
1.14.2.1 struct dpdmux_cfg . 238
1.14.2.2 struct dpdmux_cfg.adv . 239
1.14.2.3 struct dpdmux_attr . 239
1.14.2.4 struct dpdmux_accepted_frames . 240
1.14.2.5 struct dpdmux_if_attr . 240
1.14.2.6 struct dpdmux_l2_rule . 241
1.14.2.7 struct dpdmux_link_cfg . 241

NXP Semiconductors
DPAA2 API Reference Manual

xiv

Section number Title Page
1.14.2.8 struct dpdmux_link_state . 241
1.14.2.9 struct dpdmux_rule_cfg . 242
1.14.2.10 struct dpdmux_cls_action . 242
1.14.3 Macro Definition Documentation . 243
1.14.3.1 DPDMUX_OPT_BRIDGE_EN . 243
1.14.3.2 DPDMUX_OPT_CLS_MASK_SUPPORT 243
1.14.3.3 DPDMUX_IRQ_EVENT_LINK_CHANGED 243
1.14.4 Enumeration Type Documentation . 243
1.14.4.1 dpdmux_manip . 243
1.14.4.2 dpdmux_method . 243
1.14.4.3 dpdmux_counter_type . 244
1.14.4.4 dpdmux_accepted_frames_type . 245
1.14.4.5 dpdmux_action . 245
1.14.5 Function Documentation . 246
1.14.5.1 dpdmux_open . 246
1.14.5.2 dpdmux_close . 246
1.14.5.3 dpdmux_create . 247
1.14.5.4 dpdmux_destroy . 248
1.14.5.5 dpdmux_enable . 248
1.14.5.6 dpdmux_disable . 249
1.14.5.7 dpdmux_is_enabled . 250
1.14.5.8 dpdmux_reset . 250
1.14.5.9 dpdmux_set_irq_enable . 250
1.14.5.10 dpdmux_get_irq_enable . 251
1.14.5.11 dpdmux_set_irq_mask . 251
1.14.5.12 dpdmux_get_irq_mask . 251
1.14.5.13 dpdmux_get_irq_status . 252
1.14.5.14 dpdmux_clear_irq_status . 252
1.14.5.15 dpdmux_get_attributes . 252
1.14.5.16 dpdmux_set_max_frame_length . 253
1.14.5.17 dpdmux_if_set_accepted_frames . 253
1.14.5.18 dpdmux_if_get_attributes . 254
1.14.5.19 dpdmux_if_remove_l2_rule . 255
1.14.5.20 dpdmux_if_add_l2_rule . 255
1.14.5.21 dpdmux_if_get_counter . 255
1.14.5.22 dpdmux_if_set_link_cfg . 256
1.14.5.23 dpdmux_if_get_link_state . 256
1.14.5.24 dpdmux_set_custom_key . 256
1.14.5.25 dpdmux_add_custom_cls_entry . 257
1.14.5.26 dpdmux_remove_custom_cls_entry . 257
1.14.5.27 dpdmux_get_api_version . 258

1.15 Data Path MAC API . 258
1.15.1 Overview . 258
1.15.2 Data Structure Documentation . 260

NXP Semiconductors
DPAA2 API Reference Manual

xv

Section number Title Page
1.15.2.1 struct dpmac_cfg . 260
1.15.2.2 struct dpmac_attr . 261
1.15.2.3 struct dpmac_link_cfg . 261
1.15.2.4 struct dpmac_link_state . 261
1.15.3 Macro Definition Documentation . 262
1.15.3.1 DPMAC_IRQ_INDEX . 262
1.15.3.2 DPMAC_IRQ_EVENT_LINK_CFG_REQ 262
1.15.3.3 DPMAC_IRQ_EVENT_LINK_CHANGED 262
1.15.3.4 DPMAC_LINK_OPT_AUTONEG . 262
1.15.3.5 DPMAC_LINK_OPT_HALF_DUPLEX . 262
1.15.3.6 DPMAC_LINK_OPT_PAUSE . 262
1.15.3.7 DPMAC_LINK_OPT_ASYM_PAUSE . 263
1.15.4 Enumeration Type Documentation . 263
1.15.4.1 dpmac_link_type . 263
1.15.4.2 dpmac_eth_if . 263
1.15.4.3 dpmac_counter . 264
1.15.5 Function Documentation . 266
1.15.5.1 dpmac_open . 266
1.15.5.2 dpmac_close . 267
1.15.5.3 dpmac_create . 268
1.15.5.4 dpmac_destroy . 268
1.15.5.5 dpmac_set_irq_enable . 269
1.15.5.6 dpmac_get_irq_enable . 270
1.15.5.7 dpmac_set_irq_mask . 270
1.15.5.8 dpmac_get_irq_mask . 271
1.15.5.9 dpmac_get_irq_status . 272
1.15.5.10 dpmac_clear_irq_status . 272
1.15.5.11 dpmac_get_attributes . 272
1.15.5.12 dpmac_get_link_cfg . 273
1.15.5.13 dpmac_set_link_state . 273
1.15.5.14 dpmac_get_counter . 273
1.15.5.15 dpmac_get_api_version . 274
1.15.5.16 dpmac_reset . 274

1.16 Data Path SEC Interface API . 274
1.16.1 Overview . 274
1.16.2 Data Structure Documentation . 276
1.16.2.1 struct dpseci_cfg . 276
1.16.2.2 struct dpseci_attr . 276
1.16.2.3 struct dpseci_dest_cfg . 277
1.16.2.4 struct dpseci_rx_queue_cfg . 277
1.16.2.5 struct dpseci_rx_queue_attr . 278
1.16.2.6 struct dpseci_tx_queue_attr . 278
1.16.2.7 struct dpseci_sec_attr . 279
1.16.2.8 struct dpseci_sec_counters . 280

NXP Semiconductors
DPAA2 API Reference Manual

xvi

Section number Title Page
1.16.3 Macro Definition Documentation . 281
1.16.3.1 DPSECI_PRIO_NUM . 281
1.16.3.2 DPSECI_ALL_QUEUES . 281
1.16.3.3 DPSECI_OPT_HAS_OPR . 281
1.16.3.4 DPSECI_OPT_OPR_SHARED . 281
1.16.3.5 DPSECI_QUEUE_OPT_USER_CTX . 281
1.16.3.6 DPSECI_QUEUE_OPT_DEST . 281
1.16.3.7 DPSECI_QUEUE_OPT_ORDER_PRESERVATION 281
1.16.4 Enumeration Type Documentation . 281
1.16.4.1 dpseci_dest . 281
1.16.5 Function Documentation . 282
1.16.5.1 dpseci_open . 282
1.16.5.2 dpseci_close . 282
1.16.5.3 dpseci_create . 283
1.16.5.4 dpseci_destroy . 284
1.16.5.5 dpseci_enable . 284
1.16.5.6 dpseci_disable . 285
1.16.5.7 dpseci_is_enabled . 285
1.16.5.8 dpseci_reset . 285
1.16.5.9 dpseci_set_irq_enable . 285
1.16.5.10 dpseci_get_irq_enable . 286
1.16.5.11 dpseci_set_irq_mask . 286
1.16.5.12 dpseci_get_irq_mask . 287
1.16.5.13 dpseci_get_irq_status . 288
1.16.5.14 dpseci_clear_irq_status . 288
1.16.5.15 dpseci_get_attributes . 288
1.16.5.16 dpseci_set_rx_queue . 289
1.16.5.17 dpseci_get_rx_queue . 289
1.16.5.18 dpseci_get_tx_queue . 289
1.16.5.19 dpseci_get_sec_counters . 290
1.16.5.20 dpseci_get_api_version . 290
1.16.5.21 dpseci_set_opr . 290
1.16.5.22 dpseci_get_opr . 291

1.17 Data Path DCE Interface API . 291
1.17.1 Overview . 291
1.17.2 Data Structure Documentation . 293
1.17.2.1 struct dpdcei_cfg . 293
1.17.2.2 struct dpdcei_attr . 294
1.17.2.3 struct dpdcei_dest_cfg . 294
1.17.2.4 struct dpdcei_rx_queue_cfg . 295
1.17.2.5 struct dpdcei_rx_queue_attr . 296
1.17.2.6 struct dpdcei_tx_queue_attr . 296
1.17.3 Macro Definition Documentation . 297
1.17.3.1 DPDCEI_FQID_NOT_VALID . 297

NXP Semiconductors
DPAA2 API Reference Manual

xvii

Section number Title Page
1.17.3.2 DPDCEI_QUEUE_OPT_USER_CTX . 297
1.17.3.3 DPDCEI_QUEUE_OPT_DEST . 297
1.17.4 Enumeration Type Documentation . 297
1.17.4.1 dpdcei_engine . 297
1.17.4.2 dpdcei_dest . 297
1.17.5 Function Documentation . 298
1.17.5.1 dpdcei_open . 298
1.17.5.2 dpdcei_close . 298
1.17.5.3 dpdcei_create . 299
1.17.5.4 dpdcei_destroy . 300
1.17.5.5 dpdcei_enable . 300
1.17.5.6 dpdcei_disable . 301
1.17.5.7 dpdcei_is_enabled . 302
1.17.5.8 dpdcei_reset . 302
1.17.5.9 dpdcei_set_irq_enable . 302
1.17.5.10 dpdcei_get_irq_enable . 303
1.17.5.11 dpdcei_set_irq_mask . 303
1.17.5.12 dpdcei_get_irq_mask . 303
1.17.5.13 dpdcei_get_irq_status . 304
1.17.5.14 dpdcei_clear_irq_status . 304
1.17.5.15 dpdcei_get_attributes . 304
1.17.5.16 dpdcei_set_rx_queue . 305
1.17.5.17 dpdcei_get_rx_queue . 306
1.17.5.18 dpdcei_get_tx_queue . 306
1.17.5.19 dpdcei_get_api_version . 306

1.18 Data Path Communication Interface API . 307
1.18.1 Overview . 307
1.18.2 Data Structure Documentation . 308
1.18.2.1 struct dpci_cfg . 308
1.18.2.2 struct dpci_attr . 309
1.18.2.3 struct dpci_peer_attr . 309
1.18.2.4 struct dpci_dest_cfg . 310
1.18.2.5 struct dpci_rx_queue_cfg . 310
1.18.2.6 struct dpci_rx_queue_attr . 310
1.18.2.7 struct dpci_tx_queue_attr . 311
1.18.3 Macro Definition Documentation . 311
1.18.3.1 DPCI_PRIO_NUM . 311
1.18.3.2 DPCI_FQID_NOT_VALID . 311
1.18.3.3 DPCI_ALL_QUEUES . 311
1.18.3.4 DPCI_OPT_HAS_OPR . 312
1.18.3.5 DPCI_OPT_OPR_SHARED . 312
1.18.3.6 DPCI_IRQ_INDEX . 312
1.18.3.7 DPCI_IRQ_EVENT_LINK_CHANGED . 312
1.18.3.8 DPCI_IRQ_EVENT_CONNECTED . 312

NXP Semiconductors
DPAA2 API Reference Manual

xviii

Section number Title Page
1.18.3.9 DPCI_IRQ_EVENT_DISCONNECTED . 312
1.18.3.10 DPCI_QUEUE_OPT_USER_CTX . 312
1.18.3.11 DPCI_QUEUE_OPT_DEST . 312
1.18.4 Enumeration Type Documentation . 312
1.18.4.1 dpci_dest . 312
1.18.5 Function Documentation . 313
1.18.5.1 dpci_open . 313
1.18.5.2 dpci_close . 313
1.18.5.3 dpci_create . 314
1.18.5.4 dpci_destroy . 315
1.18.5.5 dpci_enable . 315
1.18.5.6 dpci_disable . 316
1.18.5.7 dpci_is_enabled . 316
1.18.5.8 dpci_reset . 316
1.18.5.9 dpci_set_irq_enable . 316
1.18.5.10 dpci_get_irq_enable . 317
1.18.5.11 dpci_set_irq_mask . 317
1.18.5.12 dpci_get_irq_mask . 318
1.18.5.13 dpci_get_irq_status . 319
1.18.5.14 dpci_clear_irq_status . 319
1.18.5.15 dpci_get_attributes . 319
1.18.5.16 dpci_get_peer_attributes . 320
1.18.5.17 dpci_get_link_state . 320
1.18.5.18 dpci_set_rx_queue . 320
1.18.5.19 dpci_get_rx_queue . 321
1.18.5.20 dpci_get_tx_queue . 321
1.18.5.21 dpci_get_api_version . 321
1.18.5.22 dpci_set_opr . 322
1.18.5.23 dpci_get_opr . 322

Chapter 2
QBMan APIs

2.1 Overview . 323

2.2 Data Structure Documentation . 325
2.2.1 struct qbman_block_desc . 325
2.2.2 struct qbman_swp_desc . 326
2.2.3 struct qbman_fd . 326
2.2.4 struct qbman_pull_desc . 327
2.2.5 struct qbman_eq_desc . 327
2.2.6 struct qbman_eq_response . 327
2.2.7 struct qbman_release_desc . 327

NXP Semiconductors
DPAA2 API Reference Manual

xix

Section number Title Page
2.3 Function Documentation . 328
2.3.1 qbman_swp_init . 328
2.3.2 qbman_swp_finish . 328
2.3.3 qbman_swp_get_desc . 328
2.3.4 qbman_swp_interrupt_get_vanish . 328
2.3.5 qbman_swp_interrupt_read_status . 329
2.3.6 qbman_swp_interrupt_get_trigger . 329
2.3.7 qbman_swp_interrupt_get_inhibit . 329
2.3.8 qbman_swp_push_get . 329
2.3.9 qbman_swp_push_set . 330
2.3.10 qbman_pull_desc_clear . 330
2.3.11 qbman_pull_desc_set_storage . 330
2.3.12 qbman_pull_desc_set_numframes . 331
2.3.13 qbman_pull_desc_set_fq . 332
2.3.14 qbman_swp_pull . 332
2.3.15 qbman_swp_dqrr_next . 332
2.3.16 qbman_swp_dqrr_consume . 333
2.3.17 qbman_result_has_new_result . 334
2.3.18 qbman_result_is_DQ . 334
2.3.19 qbman_result_is_SCN . 334
2.3.20 qbman_result_is_FQDAN . 335
2.3.21 qbman_result_SCN_state . 335
2.3.22 qbman_result_SCN_rid . 335
2.3.23 qbman_result_SCN_ctx . 335
2.3.24 qbman_result_SCN_state_in_mem . 335
2.3.25 qbman_result_SCN_rid_in_mem . 335
2.3.26 qbman_result_bpscn_bpid . 335
2.3.27 qbman_result_bpscn_has_free_bufs . 335
2.3.28 qbman_result_bpscn_is_depleted . 336
2.3.29 qbman_result_bpscn_is_surplus . 336
2.3.30 qbman_result_bpscn_ctx . 336
2.3.31 qbman_result_cgcu_cgid . 336
2.3.32 qbman_result_cgcu_icnt . 336
2.3.33 qbman_eq_desc_clear . 336
2.3.34 qbman_eq_desc_set_no_orp . 336
2.3.35 qbman_eq_desc_set_orp . 337
2.3.36 qbman_eq_desc_set_orp_hole . 337
2.3.37 qbman_eq_desc_set_orp_nesn . 337
2.3.38 qbman_eq_desc_set_response . 338
2.3.39 qbman_eq_desc_set_token . 339
2.3.40 qbman_eq_desc_set_fq . 339
2.3.41 qbman_eq_desc_set_eqdi . 340
2.3.42 qbman_eq_desc_set_dca . 341
2.3.43 qbman_swp_enqueue . 341
2.3.44 qbman_swp_enqueue_thresh . 341

NXP Semiconductors
DPAA2 API Reference Manual

xx

Section number Title Page
2.3.45 qbman_release_desc_clear . 342
2.3.46 qbman_release_desc_set_bpid . 342
2.3.47 qbman_release_desc_set_rcdi . 342
2.3.48 qbman_swp_release . 342
2.3.49 qbman_swp_acquire . 342
2.3.50 qbman_swp_fq_schedule . 343
2.3.51 qbman_swp_fq_force . 344
2.3.52 qbman_swp_fq_xon . 344
2.3.53 qbman_swp_CDAN_set_context . 344
2.3.54 qbman_swp_CDAN_enable . 345
2.3.55 qbman_swp_CDAN_disable . 345
2.3.56 qbman_swp_CDAN_set_context_enable . 345

Chapter 3
Data Path Input Output APIs

3.1 Overview . 346

3.2 DPIO Service APIs . 346
3.2.1 Overview . 346
3.2.2 Data Structure Documentation . 347
3.2.2.1 struct dpaa2_io_desc . 347
3.2.2.2 struct dpaa2_io_notification_ctx . 348
3.2.3 Function Documentation . 349
3.2.3.1 dpaa2_io_create . 349
3.2.3.2 dpaa2_io_create_service . 350
3.2.3.3 dpaa2_io_default_service . 350
3.2.3.4 dpaa2_io_down . 350
3.2.3.5 dpaa2_io_service_add . 350
3.2.3.6 dpaa2_io_get_descriptor . 351
3.2.3.7 dpaa2_io_poll . 351
3.2.3.8 dpaa2_io_irq . 351
3.2.3.9 dpaa2_io_pause_poll . 351
3.2.3.10 dpaa2_io_resume_poll . 352
3.2.3.11 dpaa2_io_service_notifications . 352
3.2.3.12 dpaa2_io_service_stashing . 352
3.2.3.13 dpaa2_io_service_has_nonaffine . 352
3.2.3.14 dpaa2_io_service_register . 353
3.2.3.15 dpaa2_io_service_deregister . 353
3.2.3.16 dpaa2_io_service_rearm . 353
3.2.3.17 dpaa2_io_from_registration . 354
3.2.3.18 dpaa2_io_service_get_persistent . 354
3.2.3.19 dpaa2_io_service_pull_fq . 355

NXP Semiconductors
DPAA2 API Reference Manual

xxi

Section number Title Page
3.2.3.20 dpaa2_io_service_pull_channel . 356
3.2.3.21 dpaa2_io_service_enqueue_fq . 356
3.2.3.22 dpaa2_io_service_enqueue_qd . 357
3.2.3.23 dpaa2_io_service_release . 357
3.2.3.24 dpaa2_io_service_acquire . 358
3.2.3.25 dpaa2_io_store_create . 358
3.2.3.26 dpaa2_io_store_destroy . 358
3.2.3.27 dpaa2_io_store_next . 359

Chapter 4
DCE APIs

4.1 Overview . 361

4.2 Data Structure Documentation . 362
4.2.1 struct dce_gz_header . 362
4.2.2 struct dce_session_params . 363

4.3 Typedef Documentation . 364
4.3.1 dce_callback_frame . 364
4.3.2 dce_callback_data . 364

4.4 Enumeration Type Documentation . 365
4.4.1 dce_engine . 365
4.4.2 dce_paradigm . 365
4.4.3 dce_compression_effort . 365
4.4.4 dce_flush_parameter . 366

4.5 Function Documentation . 366
4.5.1 dce_session_create . 366
4.5.2 dce_session_device . 367
4.5.3 dce_session_destroy . 367
4.5.4 dce_process_frame . 367
4.5.5 dce_process_data . 368
4.5.6 dce_gz_header_update . 368

NXP Semiconductors
DPAA2 API Reference Manual

xxii

Chapter 1
Management Complex
1.1 Overview
The Management Complex (MC) is an SoC hardware block that simplifies DPAA2 device management-
network objects (network interfaces and L2 switches), accelerators, and so on. The MC provides object
abstractions and a command interface that simplify software’s use of DPAA2 objects; it also provides
resource management capabilities that can create and assign these objects to different software contexts
(applications, virtual machines). This action allows software contexts a direct access to the hardware
resources, while at the same time, providing isolation for the objects from other contexts. This ensures
that malicious software cannot impact the objects.
GPPL and AIOP processes do not have direct access to most DPAA2 resources. Instead they perform
the necessary DPAA2 management operations using MC commands that carry out the actual hardware
interaction on behalf of that process.

Modules
• Management Complex General APIs
• Data Path AIOP API
• Data Path DMA Interface API
• Data Path L2-Switch APIs
• Data Path Resource Container API
• Data Path Real Time Counter API
• Data Path Management Command Portal API
• Data Path Buffer Pool API
• Data Path I/O Portal API
• Data Path Concentrator API
• Data Path Network Interface API
• Data Path Key Generator API
• Data Path Demux API
• Data Path MAC API
• Data Path SEC Interface API
• Data Path DCE Interface API
• Data Path Communication Interface API

1.2 Management Complex General APIs
1.2.1 Overview

Contains general API for the Management Complex firmware.

Data Structures

• struct mc_version
• struct mc_soc_version

NXP Semiconductors
DPAA2 API Reference Manual

1

Management Complex General APIs

Macros

• #define MC_VER_MAJOR
• #define MC_VER_MINOR

Functions

• int mc_get_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, struct mc_version ∗mc_ver_info)
• int mc_get_soc_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, struct mc_soc_version ∗mc←↩

_platform_info)

1.2.2 Data Structure Documentation

1.2.2.1 struct mc_version

struct mc_versoin

Parameters

major Major version number: incremented on API compatibility changes
minor Minor version number: incremented on API additions (that are backward compati-

ble); reset when major version is incremented
revision Internal revision number: incremented on implementation changes and/or bug fixes

that have no impact on API

Data Fields

uint32_t major
uint32_t minor
uint32_t revision

1.2.2.2 struct mc_soc_version

struct mc_platform

Parameters

svr system version (content of platform SVR register)
pvr processor version (content of platform PVR register)

Data Fields

NXP Semiconductors
DPAA2 API Reference Manual

2

Data Path AIOP API

uint32_t svr
uint32_t pvr

1.2.3 Macro Definition Documentation

1.2.3.1 #define MC_VER_MAJOR

Management Complex firmware version information.

1.2.4 Function Documentation

1.2.4.1 int mc_get_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, struct
mc_version ∗ mc_ver_info)

mc_get_version() - Retrieves the Management Complex firmware version information

Parameters

mc_io Pointer to opaque I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

mc_ver_info Returned version information structure

Return: '0' on Success; Error code otherwise.

1.2.4.2 int mc_get_soc_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, struct
mc_soc_version ∗ mc_platform_info)

mc_get_soc_version() - Retrieves the Management Complex firmware version information

Parameters

mc_io Pointer to opaque I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

mc_platform←↩
_info

Returned version information structure. The structure contains the values of

SVR and PVR registers. Please consult platform specific reference manual for detailed information.

Return: '0' on Success; Error code otherwise.

1.3 Data Path AIOP API

1.3.1 Overview

Contains initialization APIs and runtime control APIs for DPAIOP.

NXP Semiconductors
DPAA2 API Reference Manual

3

Data Path AIOP API

Data Structures

• struct dpaiop_cfg
• struct dpaiop_attr
• struct dpaiop_load_cfg
• struct dpaiop_run_cfg
• struct dpaiop_sl_version

Macros

• #define DPAIOP_RUN_OPT_DEBUG
• #define DPAIOP_STATE_RESET_DONE
• #define DPAIOP_STATE_RESET_ONGOING
• #define DPAIOP_STATE_LOAD_DONE
• #define DPAIOP_STATE_LOAD_ONGIONG
• #define DPAIOP_STATE_LOAD_ERROR
• #define DPAIOP_STATE_BOOT_ONGOING
• #define DPAIOP_STATE_BOOT_ERROR
• #define DPAIOP_STATE_RUNNING

Functions

• int dpaiop_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpaiop_id, uint16_t ∗token)
• int dpaiop_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpaiop_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpaiop_cfg ∗cfg, uint32_t ∗obj_id)
• int dpaiop_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_t

object_id)
• int dpaiop_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpaiop_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t en)
• int dpaiop_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t ∗en)
• int dpaiop_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpaiop_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t ∗mask)
• int dpaiop_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t ∗status)
• int dpaiop_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t status)
• int dpaiop_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpaiop_attr ∗attr)
• int dpaiop_load (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpaiop_load←↩

_cfg ∗cfg)
• int dpaiop_run (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct dpaiop←↩

_run_cfg ∗cfg)
• int dpaiop_get_sl_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpaiop_sl_version ∗version)

NXP Semiconductors
DPAA2 API Reference Manual

4

Data Path AIOP API

1.3.2 Data Structure Documentation

1.3.2.1 struct dpaiop_cfg

struct dpaiop_cfg - Structure representing DPAIOP configuration

NXP Semiconductors
DPAA2 API Reference Manual

5

Data Path AIOP API

Parameters

aiop_id AIOP ID
aiop_←↩

container_id
AIOP container ID

Data Fields

int aiop_id
int aiop_←↩

container_id

1.3.2.2 struct dpaiop_attr

struct dpaiop_attr - Structure representing DPAIOP attributes

Parameters

id AIOP ID

Data Fields

int id

1.3.2.3 struct dpaiop_load_cfg

struct dpaiop_load_cfg - AIOP load configuration

Parameters

options AIOP load options
img_iova I/O virtual address of AIOP ELF image
img_size Size of AIOP ELF image in memory (in bytes)

tpc Tasks per core configuration. Valid values are: 1, 2, 4, 8 and 16. For any other value
MC will use the TCP value provided by AIOP image.

Data Fields

uint64_t options
uint64_t img_iova
uint32_t img_size
uint8_t tpc

1.3.2.4 struct dpaiop_run_cfg

struct dpaiop_run_cfg - AIOP run configuration

NXP Semiconductors
DPAA2 API Reference Manual

6

Data Path AIOP API

Parameters

cores_mask Mask of AIOP cores to run (core 0 in most significant bit)
options Execution options (currently none defined)

args_iova I/O virtual address of AIOP arguments
args_size Size of AIOP arguments in memory (in bytes)

Data Fields

uint64_t cores_mask
uint64_t options
uint64_t args_iova
uint32_t args_size

1.3.2.5 struct dpaiop_sl_version

struct dpaiop_sl_version - AIOP SL (Service Layer) version

Parameters

major AIOP SL major version number
minor AIOP SL minor version number

revision AIOP SL revision number

Data Fields

uint32_t major
uint32_t minor
uint32_t revision

1.3.3 Macro Definition Documentation

1.3.3.1 #define DPAIOP_STATE_RESET_DONE

AIOP states.

AIOP internal states, can be retrieved by calling dpaiop_get_state() routine AIOP reset successfully com-
pleted.

1.3.3.2 #define DPAIOP_STATE_RESET_ONGOING

AIOP reset is ongoing.

NXP Semiconductors
DPAA2 API Reference Manual

7

Data Path AIOP API

1.3.3.3 #define DPAIOP_STATE_LOAD_DONE

AIOP image loading successfully completed.

1.3.3.4 #define DPAIOP_STATE_LOAD_ONGIONG

AIOP image loading is ongoing.

1.3.3.5 #define DPAIOP_STATE_LOAD_ERROR

AIOP image loading completed with error.

1.3.3.6 #define DPAIOP_STATE_BOOT_ONGOING

Boot process of AIOP cores is ongoing.

1.3.3.7 #define DPAIOP_STATE_BOOT_ERROR

Boot process of AIOP cores completed with an error.

1.3.3.8 #define DPAIOP_STATE_RUNNING

AIOP cores are functional and running.

1.3.4 Function Documentation

1.3.4.1 int dpaiop_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpaiop_id,
uint16_t ∗ token)

dpaiop_open() - Open a control session for the specified object.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
dpaiop_id DPAIOP unique ID

token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpaiop_create function. This function returns a unique authentication
token, associated with the specific object ID and the specific MC portal; this token must be used in all
subsequent commands for this specific object

NXP Semiconductors
DPAA2 API Reference Manual

8

Data Path AIOP API

Return: '0' on Success; Error code otherwise.

1.3.4.2 int dpaiop_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpaiop_close() - Close the control session of the objecty

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.3.4.3 int dpaiop_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpaiop_cfg ∗ cfg, uint32_t ∗ obj_id)

dpaiop_create() - Create the DPAIOP object.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPAIOP object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.3.4.4 int dpaiop_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpaiop_destroy() - Destroy the DPAIOP object and release all its resources.

NXP Semiconductors
DPAA2 API Reference Manual

9

Data Path AIOP API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

1.3.4.5 int dpaiop_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpaiop_reset() - Reset the DPAIOP, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object

Return: '0' on Success; Error code otherwise.

1.3.4.6 int dpaiop_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpaiop_set_irq_enable() - Set overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.3.4.7 int dpaiop_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpaiop_get_irq_enable() - Get overall interrupt state

NXP Semiconductors
DPAA2 API Reference Manual

10

Data Path AIOP API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.3.4.8 int dpaiop_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dpaiop_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
irq_index The interrupt index to configure

mask Event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.3.4.9 int dpaiop_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dpaiop_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

11

Data Path AIOP API

1.3.4.10 int dpaiop_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpaiop_get_irq_status() - Get the current status of any pending interrupts.

NXP Semiconductors
DPAA2 API Reference Manual

12

Data Path AIOP API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.3.4.11 int dpaiop_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpaiop_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
irq_index The interrupt index to configure

status Bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.3.4.12 int dpaiop_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpaiop_attr ∗ attr)

dpaiop_get_attributes - Retrieve DPAIOP attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.3.4.13 int dpaiop_load (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
struct dpaiop_load_cfg ∗ cfg)

dpaiop_load_aiop() - Loads an image to AIOP

NXP Semiconductors
DPAA2 API Reference Manual

13

Data Path DMA Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
cfg AIOP load configurations

Return: '0' on Success; Error code otherwise.

1.3.4.14 int dpaiop_run (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
const struct dpaiop_run_cfg ∗ cfg)

dpaiop_run_aiop() - Starts AIOP execution

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
cfg AIOP run configuration

Return: '0' on Success; Error code otherwise.

1.3.4.15 int dpaiop_get_sl_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpaiop_sl_version ∗ version)

dpaiop_get_sl_version() - Get AIOP SL (Service Layer) version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPAIOP object
version AIOP SL version number

Return: '0' on Success; Error code otherwise.

1.4 Data Path DMA Interface API

1.4.1 Overview

Contains initialization APIs and runtime control APIs for DPDMAI.

Data Structures

• struct dpdmai_cfg
• struct dpdmai_attr
• struct dpdmai_dest_cfg

NXP Semiconductors
DPAA2 API Reference Manual

14

Data Path DMA Interface API

• struct dpdmai_rx_queue_cfg
• struct dpdmai_rx_queue_attr
• struct dpdmai_tx_queue_attr

Macros

• #define DPDMAI_PRIO_NUM
• #define DPDMAI_ALL_QUEUES
• #define DPDMAI_QUEUE_OPT_USER_CTX
• #define DPDMAI_QUEUE_OPT_DEST

Enumerations

• enum dpdmai_dest {
DPDMAI_DEST_NONE,
DPDMAI_DEST_DPIO,
DPDMAI_DEST_DPCON }

Functions

• int dpdmai_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpdmai_id, uint16_t ∗token)
• int dpdmai_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmai_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpdmai_cfg ∗cfg, uint32_t ∗obj_id)
• int dpdmai_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_t

object_id)
• int dpdmai_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmai_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmai_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpdmai_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmai_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t en)
• int dpdmai_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t ∗en)
• int dpdmai_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t mask)
• int dpdmai_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t ∗mask)
• int dpdmai_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t ∗status)
• int dpdmai_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t status)
• int dpdmai_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpdmai_attr ∗attr)
• int dpdmai_set_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t priority, const struct dpdmai_rx_queue_cfg ∗cfg)

NXP Semiconductors
DPAA2 API Reference Manual

15

Data Path DMA Interface API

• int dpdmai_get_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t
priority, struct dpdmai_rx_queue_attr ∗attr)

• int dpdmai_get_tx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩
t priority, struct dpdmai_tx_queue_attr ∗attr)

• int dpdmai_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,
uint16_t ∗minor_ver)

1.4.2 Data Structure Documentation

1.4.2.1 struct dpdmai_cfg

struct dpdmai_cfg - Structure representing DPDMAI configuration

Parameters

priorities Priorities for the DMA hardware processing; valid priorities are configured with val-
ues 1-8; the entry following last valid entry should be configured with 0

Data Fields

uint8_t priorities[DP←↩
DMAI_PRIO←↩
_NUM]

1.4.2.2 struct dpdmai_attr

struct dpdmai_attr - Structure representing DPDMAI attributes

Parameters

id DPDMAI object ID
num_of_←↩

priorities
number of priorities

Data Fields

int id
uint8_t num_of_←↩

priorities

1.4.2.3 struct dpdmai_dest_cfg

struct dpdmai_dest_cfg - Structure representing DPDMAI destination parameters

NXP Semiconductors
DPAA2 API Reference Manual

16

Data Path DMA Interface API

Parameters

dest_type Destination type
dest_id Either DPIO ID or DPCON ID, depending on the destination type
priority Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,

depending on the number of priorities in that channel; not relevant for 'DPDMAI_←↩
DEST_NONE' option

Data Fields

enum
dpdmai_dest

dest_type

int dest_id
uint8_t priority

1.4.2.4 struct dpdmai_rx_queue_cfg

struct dpdmai_rx_queue_cfg - DPDMAI RX queue configuration

Parameters

options Flags representing the suggested modifications to the queue; Use any combination of
'DPDMAI_QUEUE_OPT_<X>' flags

user_ctx User context value provided in the frame descriptor of each dequeued frame; valid
only if 'DPDMAI_QUEUE_OPT_USER_CTX' is contained in 'options'

dest_cfg Queue destination parameters; valid only if 'DPDMAI_QUEUE_OPT_DEST' is con-
tained in 'options'

Data Fields

uint32_t options
uint64_t user_ctx

struct dpdmai←↩
_dest_cfg

dest_cfg

1.4.2.5 struct dpdmai_rx_queue_attr

struct dpdmai_rx_queue_attr - Structure representing attributes of Rx queues

Parameters

user_ctx User context value provided in the frame descriptor of each dequeued frame
dest_cfg Queue destination configuration

NXP Semiconductors
DPAA2 API Reference Manual

17

Data Path DMA Interface API

fqid Virtual FQID value to be used for dequeue operations

Data Fields

uint64_t user_ctx
struct dpdmai←↩

_dest_cfg
dest_cfg

uint32_t fqid

1.4.2.6 struct dpdmai_tx_queue_attr

struct dpdmai_tx_queue_attr - Structure representing attributes of Tx queues

Parameters

fqid Virtual FQID to be used for sending frames to DMA hardware

Data Fields

uint32_t fqid

1.4.3 Macro Definition Documentation

1.4.3.1 #define DPDMAI_PRIO_NUM

Maximum number of Tx/Rx priorities per DPDMAI object.

1.4.3.2 #define DPDMAI_ALL_QUEUES

All queues considered; see dpdmai_set_rx_queue()

1.4.3.3 #define DPDMAI_QUEUE_OPT_USER_CTX

Select to modify the user's context associated with the queue.

1.4.3.4 #define DPDMAI_QUEUE_OPT_DEST

Select to modify the queue's destination.

NXP Semiconductors
DPAA2 API Reference Manual

18

Data Path DMA Interface API

1.4.4 Enumeration Type Documentation

1.4.4.1 enum dpdmai_dest

enum dpdmai_dest - DPDMAI destination types

NXP Semiconductors
DPAA2 API Reference Manual

19

Data Path DMA Interface API

Parameters

DPDMAI_D←↩
EST_NONE

Unassigned destination; The queue is set in parked mode and does not generate F←↩
QDAN notifications; user is expected to dequeue from the queue based on polling or
other user-defined method

DPDMAI_D←↩
EST_DPIO

The queue is set in schedule mode and generates FQDAN notifications to the specified
DPIO; user is expected to dequeue from the queue only after notification is received

DPDMAI_D←↩
EST_DPCON

The queue is set in schedule mode and does not generate FQDAN notifications, but
is connected to the specified DPCON object; user is expected to dequeue from the
DPCON channel

1.4.5 Function Documentation

1.4.5.1 int dpdmai_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpdmai_id,
uint16_t ∗ token)

dpdmai_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
dpdmai_id DPDMAI unique ID

token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have
been declared in the DPL or by calling the dpdmai_create() function. This function returns a unique
authentication token, associated with the specific object ID and the specific MC portal; this token must be
used in all subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

1.4.5.2 int dpdmai_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)

dpdmai_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

20

Data Path DMA Interface API

1.4.5.3 int dpdmai_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpdmai_cfg ∗ cfg, uint32_t ∗ obj_id)

dpdmai_create() - Create the DPDMAI object

NXP Semiconductors
DPAA2 API Reference Manual

21

Data Path DMA Interface API

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPDMAI object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.4.5.4 int dpdmai_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpdmai_destroy() - Destroy the DPDMAI object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

1.4.5.5 int dpdmai_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpdmai_enable() - Enable the DPDMAI, allow sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object

NXP Semiconductors
DPAA2 API Reference Manual

22

Data Path DMA Interface API

cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
token Token of DPDMAI object

Return: '0' on Success; Error code otherwise.

1.4.5.6 int dpdmai_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token
)

dpdmai_disable() - Disable the DPDMAI, stop sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object

Return: '0' on Success; Error code otherwise.

1.4.5.7 int dpdmai_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpdmai_is_enabled() - Check if the DPDMAI is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.4.5.8 int dpdmai_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpdmai_reset() - Reset the DPDMAI, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object

Return: '0' on Success; Error code otherwise.

1.4.5.9 int dpdmai_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpdmai_set_irq_enable() - Set overall interrupt state.

NXP Semiconductors
DPAA2 API Reference Manual

23

Data Path DMA Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt

Return: '0' on Success; Error code otherwise.

1.4.5.10 int dpdmai_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpdmai_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
irq_index The interrupt index to configure

en Returned Interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.4.5.11 int dpdmai_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t mask)

dpdmai_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

24

Data Path DMA Interface API

1.4.5.12 int dpdmai_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ mask)

dpdmai_get_irq_mask() - Get interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

25

Data Path DMA Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.4.5.13 int dpdmai_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpdmai_get_irq_status() - Get the current status of any pending interrupts

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.4.5.14 int dpdmai_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpdmai_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.4.5.15 int dpdmai_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpdmai_attr ∗ attr)

dpdmai_get_attributes() - Retrieve DPDMAI attributes.

NXP Semiconductors
DPAA2 API Reference Manual

26

Data Path DMA Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.4.5.16 int dpdmai_set_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t priority, const struct dpdmai_rx_queue_cfg ∗ cfg)

dpdmai_set_rx_queue() - Set Rx queue configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
priority Select the queue relative to number of priorities configured at DPDMAI creation; use

DPDMAI_ALL_QUEUES to configure all Rx queues identically.
cfg Rx queue configuration

Return: '0' on Success; Error code otherwise.

1.4.5.17 int dpdmai_get_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t priority, struct dpdmai_rx_queue_attr ∗ attr)

dpdmai_get_rx_queue() - Retrieve Rx queue attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
priority Select the queue relative to number of priorities configured at DPDMAI creation

attr Returned Rx queue attributes

Return: '0' on Success; Error code otherwise.

1.4.5.18 int dpdmai_get_tx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t priority, struct dpdmai_tx_queue_attr ∗ attr)

dpdmai_get_tx_queue() - Retrieve Tx queue attributes.

NXP Semiconductors
DPAA2 API Reference Manual

27

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMAI object
priority Select the queue relative to number of priorities configured at DPDMAI creation

attr Returned Tx queue attributes

Return: '0' on Success; Error code otherwise.

1.4.5.19 int dpdmai_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpdmai_get_api_version() - Get Data Path DMA API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path dma API
minor_ver Minor version of data path dma API

Return: '0' on Success; Error code otherwise.

1.5 Data Path L2-Switch APIs

1.5.1 Overview

Contains API for handling DPSW topology and functionality.

Data Structures

• struct dpsw_cfg
• struct dpsw_cfg.adv
• struct dpsw_attr
• struct dpsw_link_cfg
• struct dpsw_link_state
• struct dpsw_tci_cfg
• struct dpsw_stp_cfg
• struct dpsw_accepted_frames_cfg
• struct dpsw_tx_schedule_cfg
• struct dpsw_tx_selection_cfg
• struct dpsw_reflection_cfg
• struct dpsw_metering_cfg
• struct dpsw_wred_cfg
• struct dpsw_early_drop_cfg
• struct dpsw_custom_tpid_cfg
• struct dpsw_if_attr
• struct dpsw_vlan_cfg
• struct dpsw_vlan_if_cfg

NXP Semiconductors
DPAA2 API Reference Manual

28

Data Path L2-Switch APIs

• struct dpsw_vlan_attr
• struct dpsw_fdb_cfg
• struct dpsw_fdb_unicast_cfg
• struct dpsw_fdb_multicast_cfg
• struct dpsw_fdb_attr
• struct dpsw_acl_cfg
• struct dpsw_acl_fields
• struct dpsw_acl_key
• struct dpsw_acl_result
• struct dpsw_acl_entry_cfg
• struct dpsw_acl_if_cfg
• struct dpsw_acl_attr
• struct dpsw_ctrl_if_pools_cfg
• struct dpsw_ctrl_if_pools_cfg.pools

Macros

• #define DPSW_MAX_PRIORITIES
• #define DPSW_MAX_IF
• #define DPSW_OPT_FLOODING_DIS
• #define DPSW_OPT_MULTICAST_DIS
• #define DPSW_OPT_CTRL_IF_DIS
• #define DPSW_OPT_FLOODING_METERING_DIS
• #define DPSW_OPT_METERING_EN
• #define DPSW_IRQ_INDEX_IF
• #define DPSW_IRQ_INDEX_L2SW
• #define DPSW_IRQ_EVENT_LINK_CHANGED
• #define DPSW_LINK_OPT_AUTONEG
• #define DPSW_LINK_OPT_HALF_DUPLEX
• #define DPSW_LINK_OPT_PAUSE
• #define DPSW_LINK_OPT_ASYM_PAUSE
• #define DPSW_MAX_TC

Enumerations

• enum dpsw_component_type {
DPSW_COMPONENT_TYPE_C_VLAN,
DPSW_COMPONENT_TYPE_S_VLAN }

• enum dpsw_action {
DPSW_ACTION_DROP,
DPSW_ACTION_REDIRECT }

• enum dpsw_stp_state {
DPSW_STP_STATE_BLOCKING,
DPSW_STP_STATE_LISTENING,
DPSW_STP_STATE_LEARNING,
DPSW_STP_STATE_FORWARDING }

• enum dpsw_accepted_frames {
DPSW_ADMIT_ALL,
DPSW_ADMIT_ONLY_VLAN_TAGGED }

NXP Semiconductors
DPAA2 API Reference Manual

29

Data Path L2-Switch APIs

• enum dpsw_counter {
DPSW_CNT_ING_FRAME,
DPSW_CNT_ING_BYTE,
DPSW_CNT_ING_FLTR_FRAME,
DPSW_CNT_ING_FRAME_DISCARD,
DPSW_CNT_ING_MCAST_FRAME,
DPSW_CNT_ING_MCAST_BYTE,
DPSW_CNT_ING_BCAST_FRAME,
DPSW_CNT_ING_BCAST_BYTES,
DPSW_CNT_EGR_FRAME,
DPSW_CNT_EGR_BYTE,
DPSW_CNT_EGR_FRAME_DISCARD,
DPSW_CNT_EGR_STP_FRAME_DISCARD }

• enum dpsw_priority_selector {
DPSW_UP_PCP,
DPSW_UP_DSCP }

• enum dpsw_schedule_mode {
DPSW_SCHED_STRICT_PRIORITY,
DPSW_SCHED_WEIGHTED }

• enum dpsw_reflection_filter {
DPSW_REFLECTION_FILTER_INGRESS_ALL,
DPSW_REFLECTION_FILTER_INGRESS_VLAN }

• enum dpsw_metering_mode {
DPSW_METERING_MODE_NONE,
DPSW_METERING_MODE_RFC2698,
DPSW_METERING_MODE_RFC4115 }

• enum dpsw_metering_unit {
DPSW_METERING_UNIT_BYTES,
DPSW_METERING_UNIT_FRAMES }

• enum dpsw_early_drop_unit {
DPSW_EARLY_DROP_UNIT_BYTE,
DPSW_EARLY_DROP_UNIT_FRAMES }

• enum dpsw_early_drop_mode {
DPSW_EARLY_DROP_MODE_NONE,
DPSW_EARLY_DROP_MODE_TAIL,
DPSW_EARLY_DROP_MODE_WRED }

• enum dpsw_fdb_entry_type {
DPSW_FDB_ENTRY_STATIC,
DPSW_FDB_ENTRY_DINAMIC }

• enum dpsw_fdb_learning_mode {
DPSW_FDB_LEARNING_MODE_DIS,
DPSW_FDB_LEARNING_MODE_HW,
DPSW_FDB_LEARNING_MODE_NON_SECURE,
DPSW_FDB_LEARNING_MODE_SECURE }

• enum dpsw_acl_action {

NXP Semiconductors
DPAA2 API Reference Manual

30

Data Path L2-Switch APIs

DPSW_ACL_ACTION_DROP,
DPSW_ACL_ACTION_REDIRECT,
DPSW_ACL_ACTION_ACCEPT,
DPSW_ACL_ACTION_REDIRECT_TO_CTRL_IF }

Functions

• int dpsw_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpsw_id, uint16_t ∗token)
• int dpsw_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpsw_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpsw_cfg ∗cfg, uint32_t ∗obj_id)
• int dpsw_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpsw_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpsw_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpsw_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpsw_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpsw_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t en)
• int dpsw_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t ∗en)
• int dpsw_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpsw_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗mask)
• int dpsw_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dpsw_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t status)
• int dpsw_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpsw←↩

_attr ∗attr)
• int dpsw_set_reflection_if (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id)
• int dpsw_if_set_link_cfg (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, struct dpsw_link_cfg ∗cfg)
• int dpsw_if_get_link_state (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, struct dpsw_link_state ∗state)
• int dpsw_if_set_flooding (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, int en)
• int dpsw_if_set_broadcast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, int en)
• int dpsw_if_set_multicast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, int en)
• int dpsw_if_set_tci (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t if_id,

const struct dpsw_tci_cfg ∗cfg)
• int dpsw_if_get_tci (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t if_id,

struct dpsw_tci_cfg ∗cfg)
• int dpsw_if_set_stp (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t if_id,

const struct dpsw_stp_cfg ∗cfg)

NXP Semiconductors
DPAA2 API Reference Manual

31

Data Path L2-Switch APIs

• int dpsw_if_set_accepted_frames (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint16_t if_id, const struct dpsw_accepted_frames_cfg ∗cfg)

• int dpsw_if_set_accept_all_vlan (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint16_t if_id, int accept_all)

• int dpsw_if_get_counter (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t
if_id, enum dpsw_counter type, uint64_t ∗counter)

• int dpsw_if_set_counter (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t if←↩
_id, enum dpsw_counter type, uint64_t counter)

• int dpsw_if_set_tx_selection (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16←↩
_t if_id, const struct dpsw_tx_selection_cfg ∗cfg)

• int dpsw_if_add_reflection (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t
if_id, const struct dpsw_reflection_cfg ∗cfg)

• int dpsw_if_remove_reflection (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint16_t if_id, const struct dpsw_reflection_cfg ∗cfg)

• int dpsw_if_set_flooding_metering (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint16_t if_id, const struct dpsw_metering_cfg ∗cfg)

• int dpsw_if_set_metering (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t
if_id, uint8_t tc_id, const struct dpsw_metering_cfg ∗cfg)

• void dpsw_prepare_early_drop (const struct dpsw_early_drop_cfg ∗cfg, uint8_t ∗early_drop_buf)
• int dpsw_if_set_early_drop (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, uint8_t tc_id, uint64_t early_drop_iova)
• int dpsw_add_custom_tpid (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const

struct dpsw_custom_tpid_cfg ∗cfg)
• int dpsw_remove_custom_tpid (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const

struct dpsw_custom_tpid_cfg ∗cfg)
• int dpsw_if_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t if_id)
• int dpsw_if_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t if_id)
• int dpsw_if_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, struct dpsw_if_attr ∗attr)
• int dpsw_if_set_max_frame_length (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t if_id, uint16_t frame_length)
• int dpsw_if_get_max_frame_length (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t if_id, uint16_t ∗frame_length)
• int dpsw_vlan_add (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t vlan_id,

const struct dpsw_vlan_cfg ∗cfg)
• int dpsw_vlan_add_if (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t vlan←↩

_id, const struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_add_if_untagged (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_add_if_flooding (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_remove_if (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

vlan_id, const struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_remove_if_untagged (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_remove_if_flooding (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_remove (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_←↩

t vlan_id)
• int dpsw_vlan_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16←↩

NXP Semiconductors
DPAA2 API Reference Manual

32

Data Path L2-Switch APIs

_t vlan_id, struct dpsw_vlan_attr ∗attr)
• int dpsw_vlan_get_if (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t vlan←↩

_id, struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_get_if_flooding (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t vlan_id, struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_vlan_get_if_untagged (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t vlan_id, struct dpsw_vlan_if_cfg ∗cfg)
• int dpsw_fdb_add (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t ∗fdb_id,

const struct dpsw_fdb_cfg ∗cfg)
• int dpsw_fdb_remove (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t fdb←↩

_id)
• int dpsw_fdb_add_unicast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

fdb_id, const struct dpsw_fdb_unicast_cfg ∗cfg)
• int dpsw_fdb_get_unicast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

fdb_id, struct dpsw_fdb_unicast_cfg ∗cfg)
• int dpsw_fdb_remove_unicast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t fdb_id, const struct dpsw_fdb_unicast_cfg ∗cfg)
• int dpsw_fdb_add_multicast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16←↩

_t fdb_id, const struct dpsw_fdb_multicast_cfg ∗cfg)
• int dpsw_fdb_get_multicast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16←↩

_t fdb_id, struct dpsw_fdb_multicast_cfg ∗cfg)
• int dpsw_fdb_remove_multicast (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t fdb_id, const struct dpsw_fdb_multicast_cfg ∗cfg)
• int dpsw_fdb_set_learning_mode (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t fdb_id, enum dpsw_fdb_learning_mode mode)
• int dpsw_fdb_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16←↩

_t fdb_id, struct dpsw_fdb_attr ∗attr)
• int dpsw_acl_add (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t ∗acl_id,

const struct dpsw_acl_cfg ∗cfg)
• int dpsw_acl_remove (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t acl_id)
• void dpsw_acl_prepare_entry_cfg (const struct dpsw_acl_key ∗key, uint8_t ∗entry_cfg_buf)
• int dpsw_acl_add_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_←↩

t acl_id, const struct dpsw_acl_entry_cfg ∗cfg)
• int dpsw_acl_remove_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

acl_id, const struct dpsw_acl_entry_cfg ∗cfg)
• int dpsw_acl_add_if (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t acl_id,

const struct dpsw_acl_if_cfg ∗cfg)
• int dpsw_acl_remove_if (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_←↩

t acl_id, const struct dpsw_acl_if_cfg ∗cfg)
• ∗int dpsw_acl_get_attributes (struct fsl_mc_io ∗mc_io,∗uint32_t cmd_flags,∗uint16_t token,∗uint16←↩

_t acl_id,∗struct dpsw_acl_attr ∗attr)
• Error code otherwise ∗∗∗int dpsw_ctrl_if_get_attributes (struct fsl_mc_io ∗mc_io,∗uint32_←↩

t cmd_flags,∗uint16_t token,∗struct dpsw_ctrl_if_attr ∗attr)
• ∗int dpsw_ctrl_if_set_pools (struct fsl_mc_io ∗mc_io,∗uint32_t cmd_flags,∗uint16_t token,∗const

struct dpsw_ctrl_if_pools_cfg ∗cfg)
• Error code otherwise ∗∗∗int dpsw_ctrl_if_enable (struct fsl_mc_io ∗mc_io,∗uint32_t cmd_←↩

flags,∗uint16_t token)
• Error code otherwise ∗∗∗int dpsw_ctrl_if_disable (struct fsl_mc_io ∗mc_io,∗uint32_t cmd_←↩

flags,∗uint16_t token)
• ∗∗dpsw_get_api_version()-Get Data Path Switch API version ∗∗Return Error code otherwise

NXP Semiconductors
DPAA2 API Reference Manual

33

Data Path L2-Switch APIs

∗int dpsw_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,
uint16_t ∗minor_ver)

1.5.2 Data Structure Documentation

1.5.2.1 struct dpsw_cfg

struct dpsw_cfg - DPSW configuration

Parameters

num_ifs Number of external and internal interfaces
adv Advanced parameters; default is all zeros; use this structure to change default settings

Data Fields

uint16_t num_ifs
struct

dpsw_cfg
adv struct adv - Advanced parameters : Enable/Disable DPSW features

(bitmap) : Maximum Number of VLAN's; 0 - indicates default 16
: Number of meters per interface : Maximum Number of FDB's;
0 - indicates default 16 : Number of FDB entries for default FDB
table; 0 - indicates default 1024 entries. : Default FDB aging time
for default FDB table; 0 - indicates default 300 seconds : Number
of multicast groups in each FDB table; 0 - indicates default 32 :
Indicates the component type of this bridge

1.5.2.2 struct dpsw_cfg.adv

struct adv - Advanced parameters : Enable/Disable DPSW features (bitmap) : Maximum Number of VL←↩
AN's; 0 - indicates default 16 : Number of meters per interface : Maximum Number of FDB's; 0 - indicates
default 16 : Number of FDB entries for default FDB table; 0 - indicates default 1024 entries.

: Default FDB aging time for default FDB table; 0 - indicates default 300 seconds : Number of multicast
groups in each FDB table; 0 - indicates default 32 : Indicates the component type of this bridge

Data Fields

uint64_t options
uint16_t max_vlans
uint8_t max_meters_←↩

per_if

NXP Semiconductors
DPAA2 API Reference Manual

34

Data Path L2-Switch APIs

uint8_t max_fdbs
uint16_t max_fdb_←↩

entries
uint16_t fdb_aging_←↩

time
uint16_t max_fdb_mc←↩

_groups
enum dpsw_←↩
component_←↩

type

component_←↩
type

1.5.2.3 struct dpsw_attr

struct dpsw_attr - Structure representing DPSW attributes

Parameters

id DPSW object ID
options Enable/Disable DPSW features

max_vlans Maximum Number of VLANs
max_meters_←↩

per_if
Number of meters per interface

max_fdbs Maximum Number of FDBs
max_fdb_←↩

entries
Number of FDB entries for default FDB table; 0 - indicates default 1024 entries.

fdb_aging_time Default FDB aging time for default FDB table; 0 - indicates default 300 seconds
max_fdb_mc←↩

_groups
Number of multicast groups in each FDB table; 0 - indicates default 32

mem_size DPSW frame storage memory size
num_ifs Number of interfaces

num_vlans Current number of VLANs
num_fdbs Current number of FDBs

component_←↩
type

Component type of this bridge

NXP Semiconductors
DPAA2 API Reference Manual

35

Data Path L2-Switch APIs

Data Fields

int id
uint64_t options
uint16_t max_vlans
uint8_t max_meters_←↩

per_if
uint8_t max_fdbs

uint16_t max_fdb_←↩
entries

uint16_t fdb_aging_←↩
time

uint16_t max_fdb_mc←↩
_groups

uint16_t num_ifs
uint16_t mem_size
uint16_t num_vlans
uint8_t num_fdbs

enum dpsw_←↩
component_←↩

type

component_←↩
type

1.5.2.4 struct dpsw_link_cfg

struct dpsw_link_cfg - Structure representing DPSW link configuration

Parameters

rate Rate
options Mask of available options; use 'DPSW_LINK_OPT_<X>' values

Data Fields

uint32_t rate
uint64_t options

1.5.2.5 struct dpsw_link_state

struct dpsw_link_state - Structure representing DPSW link state

Parameters

rate Rate
options Mask of available options; use 'DPSW_LINK_OPT_<X>' values

up 0 - covers two cases: down and disconnected, 1 - up

NXP Semiconductors
DPAA2 API Reference Manual

36

Data Path L2-Switch APIs

Data Fields

uint32_t rate
uint64_t options

int up

1.5.2.6 struct dpsw_tci_cfg

struct dpsw_tci_cfg - Tag Contorl Information (TCI) configuration

Parameters

pcp Priority Code Point (PCP): a 3-bit field which refers to the IEEE 802.1p priority
dei Drop Eligible Indicator (DEI): a 1-bit field. May be used separately or in conjunction

with PCP to indicate frames eligible to be dropped in the presence of congestion
vlan_id VLAN Identifier (VID): a 12-bit field specifying the VLAN to which the frame be-

longs. The hexadecimal values of 0x000 and 0xFFF are reserved; all other values
may be used as VLAN identifiers, allowing up to 4,094 VLANs

Data Fields

uint8_t pcp
uint8_t dei

uint16_t vlan_id

1.5.2.7 struct dpsw_stp_cfg

struct dpsw_stp_cfg - Spanning Tree Protocol (STP) Configuration

Parameters

vlan_id VLAN ID STP state
state STP state

Data Fields

uint16_t vlan_id
enum

dpsw_stp_state
state

1.5.2.8 struct dpsw_accepted_frames_cfg

struct dpsw_accepted_frames_cfg - Types of frames to accept configuration

NXP Semiconductors
DPAA2 API Reference Manual

37

Data Path L2-Switch APIs

Parameters

type Defines ingress accepted frames
unaccept_act When a frame is not accepted, it may be discarded or redirected to control interface

depending on this mode

Data Fields

enum dpsw_←↩
accepted_←↩

frames

type

enum
dpsw_action

unaccept_act

1.5.2.9 struct dpsw_tx_schedule_cfg

struct dpsw_tx_schedule_cfg - traffic class configuration

Parameters

mode Strict or weight-based scheduling
delta_←↩

bandwidth
weighted Bandwidth in range from 100 to 10000

Data Fields

enum dpsw_←↩
schedule_mode

mode

uint16_t delta_←↩
bandwidth

1.5.2.10 struct dpsw_tx_selection_cfg

struct dpsw_tx_selection_cfg - Mapping user priority into traffic class configuration

Parameters

priority_←↩
selector

Source for user priority regeneration

tc_id The Regenerated User priority that the incoming User Priority is mapped to for this
interface

tc_sched Traffic classes configuration

NXP Semiconductors
DPAA2 API Reference Manual

38

Data Path L2-Switch APIs

Data Fields

enum dpsw_←↩
priority_←↩

selector

priority_←↩
selector

uint8_t tc_id[DPSW←↩

_MAX_PRI←↩
ORITIES]

struct
dpsw_tx_←↩

schedule_cfg

tc_sched[DP←↩
SW_MAX_T←↩
C]

1.5.2.11 struct dpsw_reflection_cfg

struct dpsw_reflection_cfg - Structure representing reflection information

Parameters

filter Filter type for frames to reflect
vlan_id Vlan Id to reflect; valid only when filter type is DPSW_INGRESS_VLAN

Data Fields

enum dpsw_←↩
reflection_filter

filter

uint16_t vlan_id

1.5.2.12 struct dpsw_metering_cfg

struct dpsw_metering_cfg - Metering configuration

Parameters

mode metering modes
units Bytes or frame units

cir Committed information rate (CIR) in Kbits/s
eir Peak information rate (PIR) Kbit/s rfc2698 Excess information rate (EIR) Kbit/s

rfc4115
cbs Committed burst size (CBS) in bytes
ebs Peak burst size (PBS) in bytes for rfc2698 Excess bust size (EBS) in bytes rfc4115

Data Fields

NXP Semiconductors
DPAA2 API Reference Manual

39

Data Path L2-Switch APIs

enum dpsw_←↩
metering_mode

mode

enum dpsw_←↩
metering_unit

units

uint32_t cir
uint32_t eir
uint32_t cbs
uint32_t ebs

1.5.2.13 struct dpsw_wred_cfg

struct dpsw_wred_cfg - WRED configuration

Parameters

max_threshold maximum threshold that packets may be discarded. Above this threshold all
packets are discarded; must be less than 2∧39; approximated to be expressed as
(x+256)∗2∧(y-1) due to HW implementation.

min_threshold minimum threshold that packets may be discarded at
drop_←↩

probability
probability that a packet will be discarded (1-100, associated with the maximum
threshold)

Data Fields

uint64_t min_threshold
uint64_t max_threshold
uint8_t drop_←↩

probability

1.5.2.14 struct dpsw_early_drop_cfg

struct dpsw_early_drop_cfg - early-drop configuration

Parameters

drop_mode drop mode
units count units

yellow WRED - 'yellow' configuration
green WRED - 'green' configuration

tail_drop_←↩
threshold

tail drop threshold

NXP Semiconductors
DPAA2 API Reference Manual

40

Data Path L2-Switch APIs

Data Fields

enum
dpsw_early_←↩

drop_mode

drop_mode

enum
dpsw_early_←↩

drop_unit

units

struct dpsw_←↩
wred_cfg

yellow

struct dpsw_←↩
wred_cfg

green

uint32_t tail_drop_←↩
threshold

1.5.2.15 struct dpsw_custom_tpid_cfg

struct dpsw_custom_tpid_cfg - Structure representing tag Protocol identifier

Parameters

tpid An additional tag protocol identifier

Data Fields

uint16_t tpid

1.5.2.16 struct dpsw_if_attr

struct dpsw_if_attr - Structure representing DPSW interface attributes

Parameters

num_tcs Number of traffic classes
rate Transmit rate in bits per second

options Interface configuration options (bitmap)
enabled Indicates if interface is enabled

accept_all_←↩
vlan

The device discards/accepts incoming frames for VLANs that do not include this
interface

NXP Semiconductors
DPAA2 API Reference Manual

41

Data Path L2-Switch APIs

admit_←↩
untagged

When set to 'DPSW_ADMIT_ONLY_VLAN_TAGGED', the device discards un-
tagged frames or priority-tagged frames received on this interface; When set to 'D←↩
PSW_ADMIT_ALL', untagged frames or priority- tagged frames received on this
interface are accepted

qdid control frames transmit qdid

Data Fields

uint8_t num_tcs
uint32_t rate
uint32_t options

int enabled
int accept_all_vlan

enum dpsw_←↩
accepted_←↩

frames

admit_←↩
untagged

uint16_t qdid

1.5.2.17 struct dpsw_vlan_cfg

struct dpsw_vlan_cfg - VLAN Configuration

Parameters

fdb_id Forwarding Data Base

Data Fields

uint16_t fdb_id

1.5.2.18 struct dpsw_vlan_if_cfg

struct dpsw_vlan_if_cfg - Set of VLAN Interfaces

Parameters

num_ifs The number of interfaces that are assigned to the egress list for this VLAN
if_id The set of interfaces that are assigned to the egress list for this VLAN

Data Fields

uint16_t num_ifs
uint16_t if_id[DPSW_←↩

MAX_IF]

NXP Semiconductors
DPAA2 API Reference Manual

42

Data Path L2-Switch APIs

1.5.2.19 struct dpsw_vlan_attr

struct dpsw_vlan_attr - VLAN attributes

NXP Semiconductors
DPAA2 API Reference Manual

43

Data Path L2-Switch APIs

Parameters

fdb_id Associated FDB ID
num_ifs Number of interfaces
num_←↩

untagged_ifs
Number of untagged interfaces

num_flooding←↩
_ifs

Number of flooding interfaces

Data Fields

uint16_t fdb_id
uint16_t num_ifs
uint16_t num_←↩

untagged_ifs
uint16_t num_←↩

flooding_ifs

1.5.2.20 struct dpsw_fdb_cfg

struct dpsw_fdb_cfg - FDB Configuration

Parameters

num_fdb_←↩
entries

Number of FDB entries

fdb_aging_time Aging time in seconds

Data Fields

uint16_t num_fdb_←↩
entries

uint16_t fdb_aging_←↩
time

1.5.2.21 struct dpsw_fdb_unicast_cfg

struct dpsw_fdb_unicast_cfg - Unicast entry configuration

Parameters

type Select static or dynamic entry
mac_addr MAC address

NXP Semiconductors
DPAA2 API Reference Manual

44

Data Path L2-Switch APIs

if_egress Egress interface ID

Data Fields

enum dpsw_←↩
fdb_entry_type

type

uint8_t mac_addr[6]
uint16_t if_egress

1.5.2.22 struct dpsw_fdb_multicast_cfg

struct dpsw_fdb_multicast_cfg - Multi-cast entry configuration

Parameters

type Select static or dynamic entry
mac_addr MAC address

num_ifs Number of external and internal interfaces
if_id Egress interface IDs

Data Fields

enum dpsw_←↩
fdb_entry_type

type

uint8_t mac_addr[6]
uint16_t num_ifs
uint16_t if_id[DPSW_←↩

MAX_IF]

1.5.2.23 struct dpsw_fdb_attr

struct dpsw_fdb_attr - FDB Attributes

Parameters

max_fdb_←↩
entries

Number of FDB entries

fdb_aging_time Aging time in seconds
learning_mode Learning mode
num_fdb_mc←↩

_groups
Current number of multicast groups

max_fdb_mc←↩
_groups

Maximum number of multicast groups

NXP Semiconductors
DPAA2 API Reference Manual

45

Data Path L2-Switch APIs

Data Fields

uint16_t max_fdb_←↩
entries

uint16_t fdb_aging_←↩
time

enum
dpsw_fdb_←↩

learning_mode

learning_mode

uint16_t num_fdb_mc←↩
_groups

uint16_t max_fdb_mc←↩
_groups

1.5.2.24 struct dpsw_acl_cfg

struct dpsw_acl_cfg - ACL Configuration

Parameters

max_entries Number of FDB entries

Data Fields

uint16_t max_entries

1.5.2.25 struct dpsw_acl_fields

struct dpsw_acl_fields - ACL fields.

Parameters

l2_dest_mac Destination MAC address: BPDU, Multicast, Broadcast, Unicast, slow protocols,
MVRP, STP

l2_source_mac Source MAC address
l2_tpid Layer 2 (Ethernet) protocol type, used to identify the following protocols: MPLS,

PTP, PFC, ARP, Jumbo frames, LLDP, IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE
l2_pcp_dei indicate which protocol is encapsulated in the payload
l2_vlan_id layer 2 VLAN ID

l2_ether_type layer 2 Ethernet type
l3_dscp Layer 3 differentiated services code point

NXP Semiconductors
DPAA2 API Reference Manual

46

Data Path L2-Switch APIs

l3_protocol Tells the Network layer at the destination host, to which Protocol this packet belongs
to. The following protocol are supported: ICMP, IGMP, IPv4 (encapsulation), TCP,
IPv6 (encapsulation), GRE, PTP

l3_source_ip Source IPv4 IP
l3_dest_ip Destination IPv4 IP

l4_source_port Source TCP/UDP Port
l4_dest_port Destination TCP/UDP Port

Data Fields

uint8_t l2_dest_mac[6]
uint8_t l2_source_←↩

mac[6]
uint16_t l2_tpid
uint8_t l2_pcp_dei

uint16_t l2_vlan_id
uint16_t l2_ether_type
uint8_t l3_dscp
uint8_t l3_protocol

uint32_t l3_source_ip
uint32_t l3_dest_ip
uint16_t l4_source_port
uint16_t l4_dest_port

1.5.2.26 struct dpsw_acl_key

struct dpsw_acl_key - ACL key

Parameters

match Match fields
mask Mask: b'1 - valid, b'0 don't care

Data Fields

struct dpsw_←↩
acl_fields

match

struct dpsw_←↩
acl_fields

mask

1.5.2.27 struct dpsw_acl_result

struct dpsw_acl_result - ACL action

NXP Semiconductors
DPAA2 API Reference Manual

47

Data Path L2-Switch APIs

Parameters

action Action should be taken when ACL entry hit
if_id Interface IDs to redirect frame. Valid only if redirect selected for action

Data Fields

enum dpsw_←↩
acl_action

action

uint16_t if_id

1.5.2.28 struct dpsw_acl_entry_cfg

struct dpsw_acl_entry_cfg - ACL entry

Parameters

key_iova I/O virtual address of DMA-able memory filled with key after call to dpsw_acl_←↩
prepare_entry_cfg()

result Required action when entry hit occurs
precedence Precedence inside ACL 0 is lowest; This priority can not change during the lifetime

of a Policy. It is user responsibility to space the priorities according to consequent
rule additions.

Data Fields

uint64_t key_iova
struct dpsw_←↩

acl_result
result

int precedence

1.5.2.29 struct dpsw_acl_if_cfg

struct dpsw_acl_if_cfg - List of interfaces to Associate with ACL

Parameters

num_ifs Number of interfaces
if_id List of interfaces

Data Fields

uint16_t num_ifs

NXP Semiconductors
DPAA2 API Reference Manual

48

Data Path L2-Switch APIs

uint16_t if_id[DPSW_←↩
MAX_IF]

1.5.2.30 struct dpsw_acl_attr

struct dpsw_acl_attr - ACL Attributes

Parameters

max_entries Max number of ACL entries
num_entries Number of used ACL entries

num_ifs Number of interfaces associated with ACL

Data Fields

uint16_t max_entries
uint16_t num_entries
uint16_t num_ifs

1.5.2.31 struct dpsw_ctrl_if_pools_cfg

struct dpsw_ctrl_if_pools_cfg - Control interface buffer pools configuration

Parameters

num_dpbp Number of DPBPs
pools Array of buffer pools parameters; The number of valid entries must match 'num_dpbp'

value

Data Fields

uint8_t num_dpbp
struct

dpsw_ctrl_if_←↩
pools_cfg

pools[DPSW←↩

_MAX_DPBP]
struct pools - Buffer pools parameters : DPBP object ID : Buffer
size : Backup pool

1.5.2.32 struct dpsw_ctrl_if_pools_cfg.pools

struct pools - Buffer pools parameters : DPBP object ID : Buffer size : Backup pool

Data Fields

int dpbp_id
uint16_t buffer_size

int backup_pool

NXP Semiconductors
DPAA2 API Reference Manual

49

Data Path L2-Switch APIs

1.5.3 Macro Definition Documentation

1.5.3.1 #define DPSW_MAX_PRIORITIES

DPSW general definitions.

Maximum number of traffic class priorities

1.5.3.2 #define DPSW_MAX_IF

Maximum number of interfaces.

1.5.3.3 #define DPSW_OPT_FLOODING_DIS

DPSW options.

Disable flooding

1.5.3.4 #define DPSW_OPT_MULTICAST_DIS

Disable Multicast.

1.5.3.5 #define DPSW_OPT_CTRL_IF_DIS

Support control interface.

1.5.3.6 #define DPSW_OPT_FLOODING_METERING_DIS

Disable flooding metering.

1.5.3.7 #define DPSW_OPT_METERING_EN

Enable metering.

1.5.3.8 #define DPSW_IRQ_INDEX_IF

DPSW IRQ Index and Events.

1.5.3.9 #define DPSW_IRQ_EVENT_LINK_CHANGED

IRQ event - Indicates that the link state changed.

NXP Semiconductors
DPAA2 API Reference Manual

50

Data Path L2-Switch APIs

1.5.3.10 #define DPSW_LINK_OPT_AUTONEG

Enable auto-negotiation.

1.5.3.11 #define DPSW_LINK_OPT_HALF_DUPLEX

Enable half-duplex mode.

1.5.3.12 #define DPSW_LINK_OPT_PAUSE

Enable pause frames.

1.5.3.13 #define DPSW_LINK_OPT_ASYM_PAUSE

Enable a-symmetric pause frames.

1.5.3.14 #define DPSW_MAX_TC

Maximum number of TC.

1.5.4 Enumeration Type Documentation

1.5.4.1 enum dpsw_component_type

enum dpsw_component_type - component type of a bridge

Parameters

DPSW_COM←↩
PONENT_TY←↩

PE_C_VLAN

A C-VLAN component of an enterprise VLAN bridge or of a Provider Bridge used
to process C-tagged frames

DPSW_COM←↩
PONENT_TY←↩

PE_S_VLAN

An S-VLAN component of a Provider Bridge

1.5.4.2 enum dpsw_action

enum dpsw_action - Action selection for special/control frames

NXP Semiconductors
DPAA2 API Reference Manual

51

Data Path L2-Switch APIs

Parameters

DPSW_ACTI←↩
ON_DROP

Drop frame

DPSW_ACTI←↩
ON_REDIRE←↩

CT

Redirect frame to control port

1.5.4.3 enum dpsw_stp_state

enum dpsw_stp_state - Spanning Tree Protocol (STP) states

Parameters

DPSW_STP_←↩
STATE_BLO←↩

CKING

Blocking state

DPSW_STP_←↩
STATE_LIST←↩

ENING

Listening state

DPSW_STP_←↩
STATE_LEA←↩

RNING

Learning state

DPSW_STP_←↩
STATE_FOR←↩

WARDING

Forwarding state

1.5.4.4 enum dpsw_accepted_frames

enum dpsw_accepted_frames - Types of frames to accept

Parameters

DPSW_ADM←↩
IT_ALL

The device accepts VLAN tagged, untagged and priority tagged frames

DPSW_ADM←↩
IT_ONLY_VL←↩

AN_TAGGED

The device discards untagged frames or Priority-Tagged frames received on this in-
terface.

1.5.4.5 enum dpsw_counter

enum dpsw_counter - Counters types

NXP Semiconductors
DPAA2 API Reference Manual

52

Data Path L2-Switch APIs

Parameters

DPSW_CNT_←↩
ING_FRAME

Counts ingress frames

DPSW_CNT_←↩
ING_BYTE

Counts ingress bytes

DPSW_CNT_←↩
ING_FLTR_←↩

FRAME

Counts filtered ingress frames

DPSW_CNT_←↩
ING_FRAME←↩

_DISCARD

Counts discarded ingress frame

DPSW_CNT_←↩
ING_MCAST←↩

_FRAME

Counts ingress multicast frames

DPSW_CNT_←↩
ING_MCAST←↩

_BYTE

Counts ingress multicast bytes

DPSW_CNT_←↩
ING_BCAST←↩

_FRAME

Counts ingress broadcast frames

DPSW_CNT_←↩
ING_BCAST←↩

_BYTES

Counts ingress broadcast bytes

DPSW_CNT_←↩
EGR_FRAME

Counts egress frames

DPSW_CNT_←↩
EGR_BYTE

Counts eEgress bytes

DPSW_CNT_←↩
EGR_FRAM←↩

E_DISCARD

Counts discarded egress frames

DPSW_CNT_←↩
EGR_STP_F←↩
RAME_DISC←↩

ARD

Counts egress STP discarded frames

NXP Semiconductors
DPAA2 API Reference Manual

53

Data Path L2-Switch APIs

1.5.4.6 enum dpsw_priority_selector

enum dpsw_priority_selector - User priority

Parameters

DPSW_UP_←↩
PCP

Priority Code Point (PCP): a 3-bit field which refers to the IEEE 802.1p priority.

DPSW_UP_←↩
DSCP

Differentiated services Code Point (DSCP): 6 bit field from IP header

1.5.4.7 enum dpsw_schedule_mode

enum dpsw_schedule_mode - Traffic classes scheduling

Parameters

DPSW_SCH←↩
ED_STRICT_←↩

PRIORITY

schedule strict priority

DPSW_SCH←↩
ED_WEIGH←↩

TED

schedule based on token bucket created algorithm

1.5.4.8 enum dpsw_reflection_filter

enum dpsw_reflection_filter - Filter type for frames to reflect

Parameters

DPSW_REFL←↩
ECTION_FIL←↩
TER_INGRE←↩

SS_ALL

Reflect all frames

DPSW_REFL←↩
ECTION_FIL←↩
TER_INGRE←↩

SS_VLAN

Reflect only frames belong to particular VLAN defined by vid parameter

1.5.4.9 enum dpsw_metering_mode

enum dpsw_metering_mode - Metering modes

NXP Semiconductors
DPAA2 API Reference Manual

54

Data Path L2-Switch APIs

Parameters

DPSW_MET←↩
ERING_MO←↩

DE_NONE

metering disabled

DPSW_MET←↩
ERING_MO←↩
DE_RFC2698

RFC 2698

DPSW_MET←↩
ERING_MO←↩
DE_RFC4115

RFC 4115

1.5.4.10 enum dpsw_metering_unit

enum dpsw_metering_unit - Metering count

Parameters

DPSW_MET←↩
ERING_UNI←↩

T_BYTES

count bytes

DPSW_MET←↩
ERING_UNI←↩

T_FRAMES

count frames

1.5.4.11 enum dpsw_early_drop_unit

enum dpsw_early_drop_unit - DPSW early drop unit

Parameters

DPSW_EARL←↩
Y_DROP_U←↩

NIT_BYTE

count bytes

DPSW_EARL←↩
Y_DROP_U←↩
NIT_FRAMES

count frames

1.5.4.12 enum dpsw_early_drop_mode

enum dpsw_early_drop_mode - DPSW early drop mode

NXP Semiconductors
DPAA2 API Reference Manual

55

Data Path L2-Switch APIs

Parameters

DPSW_EARL←↩
Y_DROP_M←↩

ODE_NONE

early drop is disabled

DPSW_EARL←↩
Y_DROP_M←↩

ODE_TAIL

early drop in taildrop mode

DPSW_EARL←↩
Y_DROP_M←↩
ODE_WRED

early drop in WRED mode

1.5.4.13 enum dpsw_fdb_entry_type

enum dpsw_fdb_entry_type - FDB Entry type - Static/Dynamic

Parameters

DPSW_FDB←↩
_ENTRY_ST←↩

ATIC

Static entry

DPSW_FDB←↩
_ENTRY_DI←↩

NAMIC

Dynamic entry

1.5.4.14 enum dpsw_fdb_learning_mode

enum dpsw_fdb_learning_mode - Auto-learning modes

NXP Semiconductors
DPAA2 API Reference Manual

56

Data Path L2-Switch APIs

Parameters

DPSW_FDB←↩
_LEARNING←↩

_MODE_DIS

Disable Auto-learning

DPSW_FDB←↩
_LEARNING←↩

_MODE_HW

Enable HW auto-Learning

DPSW_FDB←↩
_LEARNING←↩
_MODE_NO←↩

N_SECURE

Enable None secure learning by CPU

DPSW_FDB←↩
_LEARNING←↩
_MODE_SE←↩

CURE

Enable secure learning by CPU

NONE - SECURE LEARNING
SMAC found DMAC found CTLU Action
v v Forward frame to

1. DMAC destination
- v Forward frame to

1. DMAC destination
2. Control interface

v - Forward frame to
1. Flooding list of interfaces

- - Forward frame to
1. Flooding list of interfaces
2. Control interface

SECURE LEARING
SMAC found DMAC found CTLU Action
v v Forward frame to

1. DMAC destination
- v Forward frame to

1. Control interface
v - Forward frame to

1. Flooding list of interfaces
- - Forward frame to

1. Control interface

1.5.4.15 enum dpsw_acl_action

enum dpsw_acl_action

NXP Semiconductors
DPAA2 API Reference Manual

57

Data Path L2-Switch APIs

Parameters

DPSW_ACL_←↩
ACTION_DR←↩

OP

Drop frame

DPSW_ACL_←↩
ACTION_RE←↩

DIRECT

Redirect to certain port

DPSW_ACL_←↩
ACTION_AC←↩

CEPT

Accept frame

DPSW_ACL_←↩
ACTION_RE←↩
DIRECT_TO←↩

_CTRL_IF

Redirect to control interface

1.5.5 Function Documentation

1.5.5.1 int dpsw_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpsw_id,
uint16_t ∗ token)

dpsw_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

dpsw_id DPSW unique ID
token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpsw_create() function. This function returns a unique authentica-
tion token, associated with the specific object ID and the specific MC portal; this token must be used in
all subsequent commands for this specific object

Return: '0' on Success; Error code otherwise.

1.5.5.2 int dpsw_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpsw_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object

NXP Semiconductors
DPAA2 API Reference Manual

58

Data Path L2-Switch APIs

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.5.5.3 int dpsw_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpsw_cfg ∗ cfg, uint32_t ∗ obj_id)

dpsw_create() - Create the DPSW object.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPSW object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.5.5.4 int dpsw_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpsw_destroy() - Destroy the DPSW object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

59

Data Path L2-Switch APIs

1.5.5.5 int dpsw_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpsw_enable() - Enable DPSW functionality

NXP Semiconductors
DPAA2 API Reference Manual

60

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.6 int dpsw_disable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpsw_disable() - Disable DPSW functionality

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.7 int dpsw_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpsw_is_enabled() - Check if the DPSW is enabled

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise

1.5.5.8 int dpsw_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpsw_reset() - Reset the DPSW, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

61

Data Path L2-Switch APIs

1.5.5.9 int dpsw_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint8_t en)

dpsw_set_irq_enable() - Set overall interrupt state.

NXP Semiconductors
DPAA2 API Reference Manual

62

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt

Return: '0' on Success; Error code otherwise.

1.5.5.10 int dpsw_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpsw_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
irq_index The interrupt index to configure

en Returned Interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.5.5.11 int dpsw_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dpsw_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

63

Data Path L2-Switch APIs

1.5.5.12 int dpsw_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dpsw_get_irq_mask() - Get interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

64

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.5.5.13 int dpsw_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ status)

dpsw_get_irq_status() - Get the current status of any pending interrupts

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.5.5.14 int dpsw_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpsw_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.5.5.15 int dpsw_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dpsw_attr ∗ attr)

dpsw_get_attributes() - Retrieve DPSW attributes

NXP Semiconductors
DPAA2 API Reference Manual

65

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
attr Returned DPSW attributes

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.16 int dpsw_set_reflection_if (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id)

dpsw_set_reflection_if() - Set target interface for reflected interfaces.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Id

Only one reflection receive interface is allowed per switch

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.17 int dpsw_if_set_link_cfg (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, struct dpsw_link_cfg ∗ cfg)

dpsw_if_set_link_cfg() - set the link configuration.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id interface id

cfg Link configuration

Return: '0' on Success; Error code otherwise.

1.5.5.18 int dpsw_if_get_link_state (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, struct dpsw_link_state ∗ state)

dpsw_if_get_link_state - Return the link state

NXP Semiconductors
DPAA2 API Reference Manual

66

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id interface id
state link state 1 - linkup, 0 - link down or disconnected

returns '0' on Success; Error code otherwise.

1.5.5.19 int dpsw_if_set_flooding (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, int en)

dpsw_if_set_flooding() - Enable Disable flooding for particular interface

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

en 1 - enable, 0 - disable

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.20 int dpsw_if_set_broadcast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, int en)

dpsw_if_set_broadcast() - Enable/disable broadcast for particular interface

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

en 1 - enable, 0 - disable

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.21 int dpsw_if_set_multicast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, int en)

dpsw_if_set_multicast() - Enable/disable multicast for particular interface

NXP Semiconductors
DPAA2 API Reference Manual

67

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

en 1 - enable, 0 - disable

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.22 int dpsw_if_set_tci (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t if_id, const struct dpsw_tci_cfg ∗ cfg)

dpsw_if_set_tci() - Set default VLAN Tag Control Information (TCI)

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg Tag Control Information Configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.23 int dpsw_if_get_tci (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t if_id, struct dpsw_tci_cfg ∗ cfg)

dpsw_if_get_tci() - Get default VLAN Tag Control Information (TCI)

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg Tag Control Information Configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.24 int dpsw_if_set_stp (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t if_id, const struct dpsw_stp_cfg ∗ cfg)

dpsw_if_set_stp() - Function sets Spanning Tree Protocol (STP) state.

NXP Semiconductors
DPAA2 API Reference Manual

68

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg STP State configuration parameters

The following STP states are supported - blocking, listening, learning, forwarding and disabled.

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.25 int dpsw_if_set_accepted_frames (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, const struct dpsw_accepted_frames_cfg ∗ cfg)

dpsw_if_set_accepted_frames()

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg Frame types configuration

When is admit_only_vlan_tagged- the device will discard untagged frames or Priority-Tagged frames
received on this interface. When admit_only_untagged- untagged frames or Priority-Tagged frames re-
ceived on this interface will be accepted and assigned to a VID based on the PVID and VID Set for this
interface. When admit_all - the device will accept VLAN tagged, untagged and priority tagged frames.
The default is admit_all

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.26 int dpsw_if_set_accept_all_vlan (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, int accept_all)

dpsw_if_set_accept_all_vlan()

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

accept_all Accept or drop frames having different VLAN

When this is accept (FALSE), the device will discard incoming frames for VLANs that do not include this
interface in its Member set. When accept (TRUE), the interface will accept all incoming frames

Return: Completion status. '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

69

Data Path L2-Switch APIs

1.5.5.27 int dpsw_if_get_counter (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, enum dpsw_counter type, uint64_t ∗ counter)

dpsw_if_get_counter() - Get specific counter of particular interface

NXP Semiconductors
DPAA2 API Reference Manual

70

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier
type Counter type

counter return value

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.28 int dpsw_if_set_counter (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t if_id, enum dpsw_counter type, uint64_t counter)

dpsw_if_set_counter() - Set specific counter of particular interface

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier
type Counter type

counter New counter value

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.29 int dpsw_if_set_tx_selection (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, const struct dpsw_tx_selection_cfg ∗ cfg)

dpsw_if_set_tx_selection() - Function is used for mapping variety of frame fields

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg Traffic class mapping configuration

Function is used for mapping variety of frame fields (DSCP, PCP) to Traffic Class. Traffic class is a
number in the range from 0 to 7

Return: Completion status. '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

71

Data Path L2-Switch APIs

1.5.5.30 int dpsw_if_add_reflection (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, const struct dpsw_reflection_cfg ∗ cfg)

dpsw_if_add_reflection() - Identify interface to be reflected or mirrored

NXP Semiconductors
DPAA2 API Reference Manual

72

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg Reflection configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.31 int dpsw_if_remove_reflection (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, const struct dpsw_reflection_cfg ∗ cfg)

dpsw_if_remove_reflection() - Remove interface to be reflected or mirrored

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg Reflection configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.32 int dpsw_if_set_flooding_metering (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint16_t if_id, const struct dpsw_metering_cfg ∗ cfg
)

dpsw_if_set_flooding_metering() - Set flooding metering

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

cfg Metering parameters

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.33 int dpsw_if_set_metering (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, uint8_t tc_id, const struct dpsw_metering_cfg ∗
cfg)

dpsw_if_set_metering() - Set interface metering for flooding

NXP Semiconductors
DPAA2 API Reference Manual

73

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier
tc_id Traffic class ID

cfg Metering parameters

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.34 void dpsw_prepare_early_drop (const struct dpsw_early_drop_cfg ∗ cfg,
uint8_t ∗ early_drop_buf)

dpsw_prepare_early_drop() - Prepare an early drop for setting in to interface

Parameters

cfg Early-drop configuration
early_drop_buf Zeroed 256 bytes of memory before mapping it to DMA

This function has to be called before dpsw_if_tc_set_early_drop

1.5.5.35 int dpsw_if_set_early_drop (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, uint8_t tc_id, uint64_t early_drop_iova)

dpsw_if_set_early_drop() - Set interface traffic class early-drop configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier
tc_id Traffic class selection (0-7)

early_drop_←↩
iova

I/O virtual address of 64 bytes;

Must be cacheline-aligned and DMA-able memory

warning: Before calling this function, call dpsw_prepare_if_tc_early_drop() to prepare the early_drop_←↩
iova parameter

Return: '0' on Success; error code otherwise.

1.5.5.36 int dpsw_add_custom_tpid (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const struct dpsw_custom_tpid_cfg ∗ cfg)

dpsw_add_custom_tpid() - API Configures a distinct Ethernet type value

NXP Semiconductors
DPAA2 API Reference Manual

74

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
cfg Tag Protocol identifier

API Configures a distinct Ethernet type value (or TPID value) to indicate a VLAN tag in addition to the
common TPID values 0x8100 and 0x88A8. Two additional TPID's are supported

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.37 int dpsw_remove_custom_tpid (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const struct dpsw_custom_tpid_cfg ∗ cfg)

dpsw_remove_custom_tpid - API removes a distinct Ethernet type value

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
cfg Tag Protocol identifier

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.38 int dpsw_if_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t if_id)

dpsw_if_enable() - Enable Interface

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.39 int dpsw_if_disable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t if_id)

dpsw_if_disable() - Disable Interface

NXP Semiconductors
DPAA2 API Reference Manual

75

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.40 int dpsw_if_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, struct dpsw_if_attr ∗ attr)

dpsw_if_get_attributes() - Function obtains attributes of interface

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier
attr Returned interface attributes

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.41 int dpsw_if_set_max_frame_length (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint16_t if_id, uint16_t frame_length)

dpsw_if_set_max_frame_length() - Set Maximum Receive frame length.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

frame_length Maximum Frame Length

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.42 int dpsw_if_get_max_frame_length (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint16_t if_id, uint16_t ∗ frame_length)

dpsw_if_get_max_frame_length() - Get Maximum Receive frame length.

NXP Semiconductors
DPAA2 API Reference Manual

76

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id Interface Identifier

frame_length Returned maximum Frame Length

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.43 int dpsw_vlan_add (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t vlan_id, const struct dpsw_vlan_cfg ∗ cfg)

dpsw_vlan_add() - Adding new VLAN to DPSW.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg VLAN configuration

Only VLAN ID and FDB ID are required parameters here. 12 bit VLAN ID is defined in IEEE802.1Q.
Adding a duplicate VLAN ID is not allowed. FDB ID can be shared across multiple VLANs. Shared
learning is obtained by calling dpsw_vlan_add for multiple VLAN IDs with same fdb_id

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.44 int dpsw_vlan_add_if (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗ cfg)

dpsw_vlan_add_if() - Adding a set of interfaces to an existing VLAN.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg Set of interfaces to add

It adds only interfaces not belonging to this VLAN yet, otherwise an error is generated and an entire
command is ignored. This function can be called numerous times always providing required interfaces
delta.

Return: Completion status. '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

77

Data Path L2-Switch APIs

1.5.5.45 int dpsw_vlan_add_if_untagged (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗ cfg)

dpsw_vlan_add_if_untagged() - Defining a set of interfaces that should be transmitted as untagged.

NXP Semiconductors
DPAA2 API Reference Manual

78

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg set of interfaces that should be transmitted as untagged

These interfaces should already belong to this VLAN. By default all interfaces are transmitted as tagged.
Providing un-existing interface or untagged interface that is configured untagged already generates an
error and the entire command is ignored.

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.46 int dpsw_vlan_add_if_flooding (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗ cfg)

dpsw_vlan_add_if_flooding() - Define a set of interfaces that should be included in flooding when frame
with unknown destination unicast MAC arrived.
Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg Set of interfaces that should be used for flooding

These interfaces should belong to this VLAN. By default all interfaces are included into flooding list.
Providing un-existing interface or an interface that already in the flooding list generates an error and the
entire command is ignored.

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.47 int dpsw_vlan_remove_if (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗ cfg)

dpsw_vlan_remove_if() - Remove interfaces from an existing VLAN.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg Set of interfaces that should be removed

Interfaces must belong to this VLAN, otherwise an error is returned and an the command is ignored

Return: Completion status. '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

79

Data Path L2-Switch APIs

1.5.5.48 int dpsw_vlan_remove_if_untagged (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗ cfg
)

dpsw_vlan_remove_if_untagged() - Define a set of interfaces that should be converted from transmitted
as untagged to transmit as tagged.

NXP Semiconductors
DPAA2 API Reference Manual

80

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg set of interfaces that should be removed

Interfaces provided by API have to belong to this VLAN and configured untagged, otherwise an error is
returned and the command is ignored

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.49 int dpsw_vlan_remove_if_flooding (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint16_t vlan_id, const struct dpsw_vlan_if_cfg ∗ cfg
)

dpsw_vlan_remove_if_flooding() - Define a set of interfaces that should be removed from the flooding
list.
Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg set of interfaces used for flooding

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.50 int dpsw_vlan_remove (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t vlan_id)

dpsw_vlan_remove() - Remove an entire VLAN

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.51 int dpsw_vlan_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t vlan_id, struct dpsw_vlan_attr ∗ attr)

dpsw_vlan_get_attributes() - Get VLAN attributes

NXP Semiconductors
DPAA2 API Reference Manual

81

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

attr Returned DPSW attributes

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.52 int dpsw_vlan_get_if (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t vlan_id, struct dpsw_vlan_if_cfg ∗ cfg)

dpsw_vlan_get_if() - Get interfaces belong to this VLAN

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg Returned set of interfaces belong to this VLAN

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.53 int dpsw_vlan_get_if_flooding (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t vlan_id, struct dpsw_vlan_if_cfg ∗ cfg)

dpsw_vlan_get_if_flooding() - Get interfaces used in flooding for this VLAN

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg Returned set of flooding interfaces

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.54 int dpsw_vlan_get_if_untagged (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t vlan_id, struct dpsw_vlan_if_cfg ∗ cfg)

dpsw_vlan_get_if_untagged() - Get interfaces that should be transmitted as untagged

NXP Semiconductors
DPAA2 API Reference Manual

82

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
vlan_id VLAN Identifier

cfg Returned set of untagged interfaces

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.55 int dpsw_fdb_add (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t ∗ fdb_id, const struct dpsw_fdb_cfg ∗ cfg)

dpsw_fdb_add() - Add FDB to switch and Returns handle to FDB table for the reference

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Returned Forwarding Database Identifier

cfg FDB Configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.56 int dpsw_fdb_remove (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t fdb_id)

dpsw_fdb_remove() - Remove FDB from switch

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.57 int dpsw_fdb_add_unicast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, const struct dpsw_fdb_unicast_cfg ∗ cfg)

dpsw_fdb_add_unicast() - Function adds an unicast entry into MAC lookup table

NXP Semiconductors
DPAA2 API Reference Manual

83

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

cfg Unicast entry configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.58 int dpsw_fdb_get_unicast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, struct dpsw_fdb_unicast_cfg ∗ cfg)

dpsw_fdb_get_unicast() - Get unicast entry from MAC lookup table by unicast Ethernet address

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

cfg Returned unicast entry configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.59 int dpsw_fdb_remove_unicast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, const struct dpsw_fdb_unicast_cfg ∗ cfg)

dpsw_fdb_remove_unicast() - removes an entry from MAC lookup table

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

cfg Unicast entry configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.60 int dpsw_fdb_add_multicast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, const struct dpsw_fdb_multicast_cfg ∗ cfg)

dpsw_fdb_add_multicast() - Add a set of egress interfaces to multi-cast group

NXP Semiconductors
DPAA2 API Reference Manual

84

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

cfg Multicast entry configuration

If group doesn't exist, it will be created. It adds only interfaces not belonging to this multicast group yet,
otherwise error will be generated and the command is ignored. This function may be called numerous
times always providing required interfaces delta.

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.61 int dpsw_fdb_get_multicast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, struct dpsw_fdb_multicast_cfg ∗ cfg)

dpsw_fdb_get_multicast() - Reading multi-cast group by multi-cast Ethernet address.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

cfg Returned multicast entry configuration

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.62 int dpsw_fdb_remove_multicast (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, const struct dpsw_fdb_multicast_cfg ∗ cfg)

dpsw_fdb_remove_multicast() - Removing interfaces from an existing multicast group.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

cfg Multicast entry configuration

Interfaces provided by this API have to exist in the group, otherwise an error will be returned and an entire
command ignored. If there is no interface left in the group, an entire group is deleted

Return: Completion status. '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

85

Data Path L2-Switch APIs

1.5.5.63 int dpsw_fdb_set_learning_mode (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, enum dpsw_fdb_learning_mode mode)

dpsw_fdb_set_learning_mode() - Define FDB learning mode

NXP Semiconductors
DPAA2 API Reference Manual

86

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier
mode learning mode

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.64 int dpsw_fdb_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t fdb_id, struct dpsw_fdb_attr ∗ attr)

dpsw_fdb_get_attributes() - Get FDB attributes

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
fdb_id Forwarding Database Identifier

attr Returned FDB attributes

Return: Completion status. '0' on Success; Error code otherwise.

1.5.5.65 int dpsw_acl_add (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t ∗ acl_id, const struct dpsw_acl_cfg ∗ cfg)

dpsw_acl_add() - Adds ACL to L2 switch.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
acl_id Returned ACL ID, for the future reference

cfg ACL configuration

Create Access Control List. Multiple ACLs can be created and co-exist in L2 switch

Return: '0' on Success; Error code otherwise.

1.5.5.66 int dpsw_acl_remove (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t acl_id)

dpsw_acl_remove() - Removes ACL from L2 switch.

NXP Semiconductors
DPAA2 API Reference Manual

87

Data Path L2-Switch APIs

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
acl_id ACL ID

Return: '0' on Success; Error code otherwise.

1.5.5.67 void dpsw_acl_prepare_entry_cfg (const struct dpsw_acl_key ∗ key, uint8_t ∗
entry_cfg_buf)

dpsw_acl_prepare_entry_cfg() - Set an entry to ACL.

Parameters

key key
entry_cfg_buf Zeroed 256 bytes of memory before mapping it to DMA

This function has to be called before adding or removing acl_entry

1.5.5.68 int dpsw_acl_add_entry (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t acl_id, const struct dpsw_acl_entry_cfg ∗ cfg)

dpsw_acl_add_entry() - Adds an entry to ACL.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
acl_id ACL ID

cfg entry configuration

warning: This function has to be called after dpsw_acl_set_entry_cfg()

Return: '0' on Success; Error code otherwise.

1.5.5.69 int dpsw_acl_remove_entry (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t acl_id, const struct dpsw_acl_entry_cfg ∗ cfg)

dpsw_acl_remove_entry() - Removes an entry from ACL.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
acl_id ACL ID

cfg entry configuration

NXP Semiconductors
DPAA2 API Reference Manual

88

Data Path L2-Switch APIs

warning: This function has to be called after dpsw_acl_set_entry_cfg()

Return: '0' on Success; Error code otherwise.

1.5.5.70 int dpsw_acl_add_if (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t acl_id, const struct dpsw_acl_if_cfg ∗ cfg)

dpsw_acl_add_if() - Associate interface/interfaces with ACL.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
acl_id ACL ID

cfg interfaces list

Return: '0' on Success; Error code otherwise.

1.5.5.71 int dpsw_acl_remove_if (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t acl_id, const struct dpsw_acl_if_cfg ∗ cfg)

dpsw_acl_remove_if() - De-associate interface/interfaces from ACL.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
acl_id ACL ID

cfg interfaces list

Return: '0' on Success; Error code otherwise.

1.5.5.72 ∗ int dpsw_acl_get_attributes (struct fsl_mc_io ∗ mc_io, ∗uint32_t cmd_flags,
∗uint16_t token, ∗uint16_t acl_id, ∗struct dpsw_acl_attr ∗ attr)

/∗∗ /∗∗ /∗∗
• dpsw_acl_get_attributes() - Get specific counter of particular interface
• mc_io: Pointer to MC portal's I/O object
• cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
• token: Token of DPSW object
• acl_id: ACL Identifier
• attr: Returned ACL attributes
•
• Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

89

Data Path L2-Switch APIs

1.5.5.73 ∗ int dpsw_ctrl_if_set_pools (struct fsl_mc_io ∗ mc_io, ∗uint32_t cmd_flags,
∗uint16_t token, ∗const struct dpsw_ctrl_if_pools_cfg ∗ cfg)

/∗∗ /∗∗ /∗∗

NXP Semiconductors
DPAA2 API Reference Manual

90

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path switch API
minor_ver Minor version of data path switch API

• dpsw_ctrl_if_set_pools() - Set control interface buffer pools
• : Pointer to MC portal's I/O object
• : Command flags; one or more of 'MC_CMD_FLAG_'
• : Token of DPSW object
• : buffer pools configuration
•
• Return: '0' on Success; Error code otherwise.

1.6 Data Path Resource Container API

1.6.1 Overview

Contains DPRC API for managing and querying DPAA resources.

Data Structures

• struct dprc_cfg
• struct dprc_irq_cfg
• struct dprc_attributes
• struct dprc_res_req
• struct dprc_obj_desc
• struct dprc_res_ids_range_desc
• struct dprc_region_desc
• struct dprc_endpoint
• struct dprc_connection_cfg

Macros

• #define DPRC_GET_ICID_FROM_POOL
• #define DPRC_GET_PORTAL_ID_FROM_POOL
• #define DPRC_CFG_OPT_SPAWN_ALLOWED
• #define DPRC_CFG_OPT_ALLOC_ALLOWED
• #define DPRC_CFG_OPT_OBJ_CREATE_ALLOWED
• #define DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED
• #define DPRC_CFG_OPT_AIOP
• #define DPRC_CFG_OPT_IRQ_CFG_ALLOWED
• #define DPRC_IRQ_INDEX
• #define DPRC_NUM_OF_IRQS
• #define DPRC_IRQ_EVENT_OBJ_ADDED
• #define DPRC_IRQ_EVENT_OBJ_REMOVED
• #define DPRC_IRQ_EVENT_RES_ADDED
• #define DPRC_IRQ_EVENT_RES_REMOVED

NXP Semiconductors
DPAA2 API Reference Manual

91

Data Path Resource Container API

• #define DPRC_IRQ_EVENT_CONTAINER_DESTROYED
• #define DPRC_IRQ_EVENT_OBJ_DESTROYED
• #define DPRC_IRQ_EVENT_OBJ_CREATED
• #define DPRC_RES_REQ_OPT_EXPLICIT
• #define DPRC_RES_REQ_OPT_ALIGNED
• #define DPRC_RES_REQ_OPT_PLUGGED
• #define DPRC_OBJ_STATE_OPEN
• #define DPRC_OBJ_STATE_PLUGGED
• #define DPRC_OBJ_FLAG_NO_MEM_SHAREABILITY
• #define DPRC_REGION_CACHEABLE

Enumerations

• enum dprc_iter_status {
DPRC_ITER_STATUS_FIRST,
DPRC_ITER_STATUS_MORE,
DPRC_ITER_STATUS_LAST }

• enum dprc_region_type {
DPRC_REGION_TYPE_MC_PORTAL,
DPRC_REGION_TYPE_QBMAN_PORTAL }

Functions

• int dprc_get_container_id (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int ∗container_id)
• int dprc_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int container_id, uint16_t ∗token)
• int dprc_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dprc_create_container (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dprc_cfg ∗cfg, int ∗child_container_id, uint64_t ∗child_portal_offset)
• int dprc_destroy_container (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int child←↩

_container_id)
• int dprc_reset_container (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int child_←↩

container_id)
• int dprc_set_irq (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_index,

struct dprc_irq_cfg ∗irq_cfg)
• int dprc_get_irq (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_index,

int ∗type, struct dprc_irq_cfg ∗irq_cfg)
• int dprc_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t en)
• int dprc_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t ∗en)
• int dprc_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t mask)
• int dprc_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t ∗mask)
• int dprc_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dprc_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t status)

NXP Semiconductors
DPAA2 API Reference Manual

92

Data Path Resource Container API

• int dprc_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dprc_←↩
attributes ∗attributes)

• int dprc_set_res_quota (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int child_←↩
container_id, char ∗type, uint16_t quota)

• int dprc_get_res_quota (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int child_←↩
container_id, char ∗type, uint16_t ∗quota)

• int dprc_assign (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int container_id,
struct dprc_res_req ∗res_req)

• int dprc_unassign (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int child_←↩
container_id, struct dprc_res_req ∗res_req)

• int dprc_get_pool_count (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗pool←↩
_count)

• int dprc_get_pool (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int pool_index,
char ∗type)

• int dprc_get_obj_count (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗obj_←↩
count)

• int dprc_get_obj (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int obj_index, struct
dprc_obj_desc ∗obj_desc)

• int dprc_get_obj_desc (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, char ∗obj_←↩
type, int obj_id, struct dprc_obj_desc ∗obj_desc)

• int dprc_set_obj_irq (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, char ∗obj_type,
int obj_id, uint8_t irq_index, struct dprc_irq_cfg ∗irq_cfg)

• int dprc_get_obj_irq (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, char ∗obj_type,
int obj_id, uint8_t irq_index, int ∗type, struct dprc_irq_cfg ∗irq_cfg)

• int dprc_get_res_count (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, char ∗type,
int ∗res_count)

• int dprc_get_res_ids (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, char ∗type,
struct dprc_res_ids_range_desc ∗range_desc)

• int dprc_get_obj_region (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, char ∗obj←↩
_type, int obj_id, uint8_t region_index, struct dprc_region_desc ∗region_desc)

• int dprc_set_obj_label (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, char ∗obj_←↩
type, int obj_id, char ∗label)

• int dprc_connect (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct dprc←↩
_endpoint ∗endpoint1, const struct dprc_endpoint ∗endpoint2, const struct dprc_connection_cfg
∗cfg)

• int dprc_disconnect (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct
dprc_endpoint ∗endpoint)

• ∗int dprc_get_connection (struct fsl_mc_io ∗mc_io,∗uint32_t cmd_flags,∗uint16_t token,∗const
struct dprc_endpoint ∗endpoint1,∗struct dprc_endpoint ∗endpoint2,∗int ∗state)

• ∗∗dprc_get_api_version()-Get Data Path Resource Container API version ∗∗Return Error code oth-
erwise ∗int dprc_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major←↩
_ver, uint16_t ∗minor_ver)

1.6.2 Data Structure Documentation

1.6.2.1 struct dprc_cfg

struct dprc_cfg - Container configuration options

NXP Semiconductors
DPAA2 API Reference Manual

93

Data Path Resource Container API

Parameters

icid Container's ICID; if set to 'DPRC_GET_ICID_FROM_POOL', a free ICID value is
allocated by the DPRC

portal_id Portal ID; if set to 'DPRC_GET_PORTAL_ID_FROM_POOL', a free portal ID is
allocated by the DPRC

options Combination of 'DPRC_CFG_OPT_<X>' options
label Object's label

Data Fields

uint16_t icid
int portal_id

uint64_t options
char label[16]

1.6.2.2 struct dprc_irq_cfg

struct dprc_irq_cfg - IRQ configuration

Parameters

addr Address that must be written to signal a message-based interrupt
val Value to write into irq_addr address

irq_num A user defined number associated with this IRQ

Data Fields

uint64_t addr
uint32_t val

int irq_num

1.6.2.3 struct dprc_attributes

struct dprc_attributes - Container attributes

Parameters

container_id Container's ID
icid Container's ICID

portal_id Container's portal ID
options Container's options as set at container's creation

NXP Semiconductors
DPAA2 API Reference Manual

94

Data Path Resource Container API

Data Fields

int container_id
uint16_t icid

int portal_id
uint64_t options

1.6.2.4 struct dprc_res_req

struct dprc_res_req - Resource request descriptor, to be used in assignment or un-assignment of resources
and objects.

Parameters

type Resource/object type: Represent as a NULL terminated string. This string may re-
ceived by using dprc_get_pool() to get resource type and dprc_get_obj() to get object
type; Note: it is not possible to assign/un-assign DPRC objects

num Number of resources
options Request options: combination of DPRC_RES_REQ_OPT_ options

id_base_align In case of explicit assignment (DPRC_RES_REQ_OPT_EXPLICIT is set at option),
this field represents the required base ID for resource allocation; In case of aligned
assignment (DPRC_RES_REQ_OPT_ALIGNED is set at option), this field indicates
the required alignment for the resource ID(s) - use 0 if there is no alignment or explicit
ID requirements

Data Fields

char type[16]
uint32_t num
uint32_t options

int id_base_align

1.6.2.5 struct dprc_obj_desc

struct dprc_obj_desc - Object descriptor, returned from dprc_get_obj()

Parameters

type Type of object: NULL terminated string
id ID of logical object resource

vendor Object vendor identifier
ver_major Major version number

NXP Semiconductors
DPAA2 API Reference Manual

95

Data Path Resource Container API

ver_minor Minor version number
irq_count Number of interrupts supported by the object

region_count Number of mappable regions supported by the object
state Object state: combination of DPRC_OBJ_STATE_ states
label Object label
flags Object's flags

Data Fields

char type[16]
int id

uint16_t vendor
uint16_t ver_major
uint16_t ver_minor
uint8_t irq_count
uint8_t region_count

uint32_t state
char label[16]

uint16_t flags

1.6.2.6 struct dprc_res_ids_range_desc

struct dprc_res_ids_range_desc - Resource ID range descriptor

Parameters

base_id Base resource ID of this range
last_id Last resource ID of this range

iter_status Iteration status - should be set to DPRC_ITER_STATUS_FIRST at first iteration;
while the returned marker is DPRC_ITER_STATUS_MORE, additional iterations
are needed, until the returned marker is DPRC_ITER_STATUS_LAST

Data Fields

int base_id
int last_id

enum dprc_←↩
iter_status

iter_status

1.6.2.7 struct dprc_region_desc

struct dprc_region_desc - Mappable region descriptor

NXP Semiconductors
DPAA2 API Reference Manual

96

Data Path Resource Container API

Parameters

base_offset Region offset from region's base address. For DPMCP and DPRC objects, region
base is offset from SoC MC portals base address; For DPIO, region base is offset
from SoC QMan portals base address

size Region size (in bytes)
flags Region attributes
type Portal region type

Data Fields

uint32_t base_offset
uint32_t size
uint32_t flags

enum dprc_←↩
region_type

type

1.6.2.8 struct dprc_endpoint

struct dprc_endpoint - Endpoint description for link connect/disconnect operations

Parameters

type Endpoint object type: NULL terminated string
id Endpoint object ID

if_id Interface ID; should be set for endpoints with multiple interfaces ("dpsw",
"dpdmux"); for others, always set to 0

Data Fields

char type[16]
int id

uint16_t if_id

1.6.2.9 struct dprc_connection_cfg

struct dprc_connection_cfg - Connection configuration. Used for virtual connections only

Parameters

committed_rate Committed rate (Mbits/s)
max_rate Maximum rate (Mbits/s)

NXP Semiconductors
DPAA2 API Reference Manual

97

Data Path Resource Container API

Data Fields

uint32_t committed_rate
uint32_t max_rate

1.6.3 Macro Definition Documentation

1.6.3.1 #define DPRC_GET_ICID_FROM_POOL

Set this value as the icid value in dprc_cfg structure when creating a container, in case the ICID is not
selected by the user and should be allocated by the DPRC from the pool of ICIDs.

1.6.3.2 #define DPRC_GET_PORTAL_ID_FROM_POOL

Set this value as the portal_id value in dprc_cfg structure when creating a container, in case the portal ID
is not specifically selected by the user and should be allocated by the DPRC from the pool of portal ids.

1.6.3.3 #define DPRC_CFG_OPT_SPAWN_ALLOWED

Container general options.

These options may be selected at container creation by the container creator and can be retrieved using
dprc_get_attributes() Spawn Policy Option allowed - Indicates that the new container is allowed to spawn
and have its own child containers.

1.6.3.4 #define DPRC_CFG_OPT_ALLOC_ALLOWED

General Container allocation policy - Indicates that the new container is allowed to allocate requested
resources from its parent container; if not set, the container is only allowed to use resources in its own
pools; Note that this is a container's global policy, but the parent container may override it and set specific
quota per resource type.

1.6.3.5 #define DPRC_CFG_OPT_OBJ_CREATE_ALLOWED

Object initialization allowed - software context associated with this container is allowed to invoke object
initialization operations.

1.6.3.6 #define DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED

Topology change allowed - software context associated with this container is allowed to invoke topology
operations, such as attach/detach of network objects.

NXP Semiconductors
DPAA2 API Reference Manual

98

Data Path Resource Container API

1.6.3.7 #define DPRC_CFG_OPT_AIOP

AIOP - Indicates that container belongs to AIOP.

1.6.3.8 #define DPRC_CFG_OPT_IRQ_CFG_ALLOWED

IRQ Config - Indicates that the container allowed to configure its IRQs.

1.6.3.9 #define DPRC_IRQ_INDEX

DPRC IRQ Index and Events.

IRQ index

1.6.3.10 #define DPRC_NUM_OF_IRQS

Number of dprc's IRQs.

1.6.3.11 #define DPRC_IRQ_EVENT_OBJ_ADDED

IRQ event - Indicates that a new object added to the container.

1.6.3.12 #define DPRC_IRQ_EVENT_OBJ_REMOVED

IRQ event - Indicates that an object was removed from the container.

1.6.3.13 #define DPRC_IRQ_EVENT_RES_ADDED

IRQ event - Indicates that resources added to the container.

1.6.3.14 #define DPRC_IRQ_EVENT_RES_REMOVED

IRQ event - Indicates that resources removed from the container.

1.6.3.15 #define DPRC_IRQ_EVENT_CONTAINER_DESTROYED

IRQ event - Indicates that one of the descendant containers that opened by this container is destroyed.

1.6.3.16 #define DPRC_IRQ_EVENT_OBJ_DESTROYED

IRQ event - Indicates that on one of the container's opened object is destroyed.

NXP Semiconductors
DPAA2 API Reference Manual

99

Data Path Resource Container API

1.6.3.17 #define DPRC_IRQ_EVENT_OBJ_CREATED

Irq event - Indicates that object is created at the container.

1.6.3.18 #define DPRC_RES_REQ_OPT_EXPLICIT

Explicit resource ID request - The requested objects/resources are explicit and sequential (in case of re-
sources).

The base ID is given at res_req at base_align field

1.6.3.19 #define DPRC_RES_REQ_OPT_ALIGNED

Aligned resources request - Relevant only for resources request (and not objects).

Indicates that resources base ID should be sequential and aligned to the value given at dprc_res_req base←↩
_align field

1.6.3.20 #define DPRC_RES_REQ_OPT_PLUGGED

Plugged Flag - Relevant only for object assignment request.

Indicates that after all objects assigned. An interrupt will be invoked at the relevant GPP. The assigned
object will be marked as plugged. plugged objects can't be assigned from their container

1.6.3.21 #define DPRC_OBJ_STATE_OPEN

Objects Attributes Flags.

Opened state - Indicates that an object is open by at least one owner

1.6.3.22 #define DPRC_OBJ_STATE_PLUGGED

Plugged state - Indicates that the object is plugged.

1.6.3.23 #define DPRC_OBJ_FLAG_NO_MEM_SHAREABILITY

Shareability flag - Object flag indicating no memory shareability.

the object generates memory accesses that are non coherent with other masters; user is responsible for
proper memory handling through IOMMU configuration.

NXP Semiconductors
DPAA2 API Reference Manual

100

Data Path Resource Container API

1.6.3.24 #define DPRC_REGION_CACHEABLE

Region flags.

Cacheable - Indicates that region should be mapped as cacheable

1.6.4 Enumeration Type Documentation

1.6.4.1 enum dprc_iter_status

enum dprc_iter_status - Iteration status

Parameters

DPRC_ITER←↩
_STATUS_FI←↩

RST

Perform first iteration

DPRC_ITER←↩
_STATUS_M←↩

ORE

Indicates more/next iteration is needed

DPRC_ITER←↩
_STATUS_L←↩

AST

Indicates last iteration

1.6.4.2 enum dprc_region_type

enum dprc_region_type - Region type

Parameters

DPRC_REGI←↩
ON_TYPE_M←↩

C_PORTAL

MC portal region

DPRC_REGI←↩
ON_TYPE_Q←↩
BMAN_POR←↩

TAL

Qbman portal region

1.6.5 Function Documentation

1.6.5.1 int dprc_get_container_id (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int ∗
container_id)

dprc_get_container_id() - Get container ID associated with a given portal.

NXP Semiconductors
DPAA2 API Reference Manual

101

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

container_id Requested container ID

Return: '0' on Success; Error code otherwise.

1.6.5.2 int dprc_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int container_id,
uint16_t ∗ token)

dprc_open() - Open DPRC object for use

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

container_id Container ID to open
token Returned token of DPRC object

Return: '0' on Success; Error code otherwise.

warning Required before any operation on the object.

1.6.5.3 int dprc_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dprc_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.6.5.4 int dprc_create_container (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dprc_cfg ∗ cfg, int ∗ child_container_id, uint64_t ∗
child_portal_offset)

dprc_create_container() - Create child container

NXP Semiconductors
DPAA2 API Reference Manual

102

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
cfg Child container configuration

child_←↩
container_id

Returned child container ID

child_portal_←↩
offset

Returned child portal offset from MC portal base

Return: '0' on Success; Error code otherwise.

1.6.5.5 int dprc_destroy_container (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int child_container_id)

dprc_destroy_container() - Destroy child container.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
child_←↩

container_id
ID of the container to destroy

This function terminates the child container, so following this call the child container ID becomes invalid.

Notes:

• All resources and objects of the destroyed container are returned to the parent container or destroyed
if were created be the destroyed container.

• This function destroy all the child containers of the specified container prior to destroying the con-
tainer itself.

warning: Only the parent container is allowed to destroy a child policy Container 0 can't be destroyed

Return: '0' on Success; Error code otherwise.

1.6.5.6 int dprc_reset_container (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int child_container_id)

dprc_reset_container - Reset child container.

Parameters

NXP Semiconductors
DPAA2 API Reference Manual

103

Data Path Resource Container API

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
child_←↩

container_id
ID of the container to reset

In case a software context crashes or becomes non-responsive, the parent may wish to reset its resources
container before the software context is restarted.

This routine informs all objects assigned to the child container that the container is being reset, so they
may perform any cleanup operations that are needed. All objects handles that were owned by the child
container shall be closed.

Note that such request may be submitted even if the child software context has not crashed, but the resulting
object cleanup operations will not be aware of that.

Return: '0' on Success; Error code otherwise.

1.6.5.7 int dprc_set_irq (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
uint8_t irq_index, struct dprc_irq_cfg ∗ irq_cfg)

dprc_set_irq() - Set IRQ information for the DPRC to trigger an interrupt.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index Identifies the interrupt index to configure

irq_cfg IRQ configuration

Return: '0' on Success; Error code otherwise.

1.6.5.8 int dprc_get_irq (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
uint8_t irq_index, int ∗ type, struct dprc_irq_cfg ∗ irq_cfg)

dprc_get_irq() - Get IRQ information from the DPRC.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index The interrupt index to configure

NXP Semiconductors
DPAA2 API Reference Manual

104

Data Path Resource Container API

type Interrupt type: 0 represents message interrupt type (both irq_addr and irq_val are
valid)

irq_cfg IRQ attributes

Return: '0' on Success; Error code otherwise.

1.6.5.9 int dprc_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint8_t en)

dprc_set_irq_enable() - Set overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.6.5.10 int dprc_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint8_t ∗ en)

dprc_get_irq_enable() - Get overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.6.5.11 int dprc_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dprc_set_irq_mask() - Set interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

105

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.6.5.12 int dprc_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dprc_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.6.5.13 int dprc_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ status)

dprc_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

106

Data Path Resource Container API

1.6.5.14 int dprc_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dprc_clear_irq_status() - Clear a pending interrupt's status

NXP Semiconductors
DPAA2 API Reference Manual

107

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.6.5.15 int dprc_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dprc_attributes ∗ attributes)

dprc_get_attributes() - Obtains container attributes

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
attributes Returned container attributes

Return: '0' on Success; Error code otherwise.

1.6.5.16 int dprc_set_res_quota (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int child_container_id, char ∗ type, uint16_t quota)

dprc_set_res_quota() - Set allocation policy for a specific resource/object type in a child container

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
child_←↩

container_id
ID of the child container

type Resource/object type
quota Sets the maximum number of resources of the selected type that the child container

is allowed to allocate from its parent; when quota is set to -1, the policy is the same
as container's general policy.

Allocation policy determines whether or not a container may allocate resources from its parent. Each
container has a 'global' allocation policy that is set when the container is created.

This function sets allocation policy for a specific resource type. The default policy for all resource types
matches the container's 'global' allocation policy.

Return: '0' on Success; Error code otherwise.

warning Only the parent container is allowed to change a child policy.

NXP Semiconductors
DPAA2 API Reference Manual

108

Data Path Resource Container API

1.6.5.17 int dprc_get_res_quota (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int child_container_id, char ∗ type, uint16_t ∗ quota)

dprc_get_res_quota() - Gets the allocation policy of a specific resource/object type in a child container

NXP Semiconductors
DPAA2 API Reference Manual

109

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
child_←↩

container_id
ID of the child container

type resource/object type
quota Returnes the maximum number of resources of the selected type that the child con-

tainer is allowed to allocate from the parent; when quota is set to -1, the policy is the
same as container's general policy.

Return: '0' on Success; Error code otherwise.

1.6.5.18 int dprc_assign (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
int container_id, struct dprc_res_req ∗ res_req)

dprc_assign() - Assigns objects or resource to a child container.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
container_id ID of the child container

res_req Describes the type and amount of resources to assign to the given container

Assignment is usually done by a parent (this DPRC) to one of its child containers.

According to the DPRC allocation policy, the assigned resources may be taken (allocated) from the con-
tainer's ancestors, if not enough resources are available in the container itself.

The type of assignment depends on the dprc_res_req options, as follows:

• DPRC_RES_REQ_OPT_EXPLICIT: indicates that assigned resources should have the explicit base
ID specified at the id_base_align field of res_req.

• DPRC_RES_REQ_OPT_ALIGNED: indicates that the assigned resources should be aligned to the
value given at id_base_align field of res_req.

• DPRC_RES_REQ_OPT_PLUGGED: Relevant only for object assignment, and indicates that the
object must be set to the plugged state.

A container may use this function with its own ID in order to change a object state to plugged or unplugged.

If IRQ information has been set in the child DPRC, it will signal an interrupt following every change in
its object assignment.

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

110

Data Path Resource Container API

1.6.5.19 int dprc_unassign (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int child_container_id, struct dprc_res_req ∗ res_req)

dprc_unassign() - Un-assigns objects or resources from a child container and moves them into this (parent)
DPRC.

NXP Semiconductors
DPAA2 API Reference Manual

111

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
child_←↩

container_id
ID of the child container

res_req Describes the type and amount of resources to un-assign from the child container

Un-assignment of objects can succeed only if the object is not in the plugged or opened state.

Return: '0' on Success; Error code otherwise.

1.6.5.20 int dprc_get_pool_count (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int ∗ pool_count)

dprc_get_pool_count() - Get the number of dprc's pools

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
pool_count Returned number of resource pools in the dprc

Return: '0' on Success; Error code otherwise.

1.6.5.21 int dprc_get_pool (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int pool_index, char ∗ type)

dprc_get_pool() - Get the type (string) of a certain dprc's pool

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
pool_index Index of the pool to be queried (< pool_count)

type The type of the pool

The pool types retrieved one by one by incrementing pool_index up to (not including) the value of
pool_count returned from dprc_get_pool_count(). dprc_get_pool_count() must be called prior to dprc_←↩
get_pool().

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

112

Data Path Resource Container API

1.6.5.22 int dprc_get_obj_count (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ obj_count)

dprc_get_obj_count() - Obtains the number of objects in the DPRC

NXP Semiconductors
DPAA2 API Reference Manual

113

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
obj_count Number of objects assigned to the DPRC

Return: '0' on Success; Error code otherwise.

1.6.5.23 int dprc_get_obj (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
int obj_index, struct dprc_obj_desc ∗ obj_desc)

dprc_get_obj() - Get general information on an object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
obj_index Index of the object to be queried (< obj_count)
obj_desc Returns the requested object descriptor

The object descriptors are retrieved one by one by incrementing obj_index up to (not including) the
value of obj_count returned from dprc_get_obj_count(). dprc_get_obj_count() must be called prior to
dprc_get_obj().

Return: '0' on Success; Error code otherwise.

1.6.5.24 int dprc_get_obj_desc (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, char ∗ obj_type, int obj_id, struct dprc_obj_desc ∗ obj_desc)

dprc_get_obj_desc() - Get object descriptor.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
obj_type The type of the object to get its descriptor.

obj_id The id of the object to get its descriptor
obj_desc The returned descriptor to fill and return to the user

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

114

Data Path Resource Container API

1.6.5.25 int dprc_set_obj_irq (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, char ∗ obj_type, int obj_id, uint8_t irq_index, struct dprc_irq_cfg ∗
irq_cfg)

dprc_set_obj_irq() - Set IRQ information for object to trigger an interrupt.

NXP Semiconductors
DPAA2 API Reference Manual

115

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
obj_type Type of the object to set its IRQ

obj_id ID of the object to set its IRQ
irq_index The interrupt index to configure

irq_cfg IRQ configuration

Return: '0' on Success; Error code otherwise.

1.6.5.26 int dprc_get_obj_irq (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, char ∗ obj_type, int obj_id, uint8_t irq_index, int ∗ type, struct
dprc_irq_cfg ∗ irq_cfg)

dprc_get_obj_irq() - Get IRQ information from object.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
obj_type Type od the object to get its IRQ

obj_id ID of the object to get its IRQ
irq_index The interrupt index to configure

type Interrupt type: 0 represents message interrupt type (both irq_addr and irq_val are
valid)

irq_cfg The returned IRQ attributes

Return: '0' on Success; Error code otherwise.

1.6.5.27 int dprc_get_res_count (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, char ∗ type, int ∗ res_count)

dprc_get_res_count() - Obtains the number of free resources that are assigned to this container, by pool
type

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object

NXP Semiconductors
DPAA2 API Reference Manual

116

Data Path Resource Container API

type pool type
res_count Returned number of free resources of the given resource type that are assigned to this

DPRC

Return: '0' on Success; Error code otherwise.

1.6.5.28 int dprc_get_res_ids (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, char ∗ type, struct dprc_res_ids_range_desc ∗ range_desc)

dprc_get_res_ids() - Obtains IDs of free resources in the container

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
type pool type

range_desc range descriptor

Return: '0' on Success; Error code otherwise.

1.6.5.29 int dprc_get_obj_region (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, char ∗ obj_type, int obj_id, uint8_t region_index, struct
dprc_region_desc ∗ region_desc)

dprc_get_obj_region() - Get region information for a specified object.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
obj_type Object type as returned in dprc_get_obj()

obj_id Unique object instance as returned in dprc_get_obj()
region_index The specific region to query
region_desc Returns the requested region descriptor

Return: '0' on Success; Error code otherwise.

1.6.5.30 int dprc_set_obj_label (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, char ∗ obj_type, int obj_id, char ∗ label)

dprc_set_obj_label() - Set object label.

NXP Semiconductors
DPAA2 API Reference Manual

117

Data Path Resource Container API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
obj_type Object's type

obj_id Object's ID
label The required label. The maximum length is 16 chars.

Return: '0' on Success; Error code otherwise.

1.6.5.31 int dprc_connect (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, const struct dprc_endpoint ∗ endpoint1, const struct dprc_endpoint ∗
endpoint2, const struct dprc_connection_cfg ∗ cfg)

dprc_connect() - Connect two endpoints to create a network link between them

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
endpoint1 Endpoint 1 configuration parameters
endpoint2 Endpoint 2 configuration parameters

cfg Connection configuration. The connection configuration is ignored for connections
made to DPMAC objects, where rate is retrieved from the MAC configuration.

Return: '0' on Success; Error code otherwise.

1.6.5.32 int dprc_disconnect (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, const struct dprc_endpoint ∗ endpoint)

dprc_disconnect() - Disconnect one endpoint to remove its network connection

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRC object
endpoint Endpoint configuration parameters

Return: '0' on Success; Error code otherwise.

1.6.5.33 ∗ int dprc_get_connection (struct fsl_mc_io ∗ mc_io, ∗uint32_t cmd_flags,
∗uint16_t token, ∗const struct dprc_endpoint ∗ endpoint1, ∗struct
dprc_endpoint ∗ endpoint2, ∗int ∗ state)

/∗∗

NXP Semiconductors
DPAA2 API Reference Manual

118

Data Path Real Time Counter API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path resource container API
minor_ver Minor version of data path resource container API

• dprc_get_connection() - Get connected endpoint and link status if connection
• exists.
• : Pointer to MC portal's I/O object
• : Command flags; one or more of 'MC_CMD_FLAG_'
• : Token of DPRC object
• : Endpoint 1 configuration parameters
• : Returned endpoint 2 configuration parameters
• : Returned link state:
• 1 - link is up;
• 0 - link is down;
• -1 - no connection (endpoint2 information is irrelevant)
•
• Return: '0' on Success; -ENAVAIL if connection does not exist.

1.7 Data Path Real Time Counter API

1.7.1 Overview

Contains initialization APIs and runtime control APIs for RTC.

Data Structures

• struct dprtc_cfg
• struct dprtc_attr

Macros

• #define DPRTC_MAX_IRQ_NUM
• #define DPRTC_IRQ_INDEX
• #define DPRTC_EVENT_ALARM
• #define DPRTC_EVENT_PPS

Functions

• int dprtc_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dprtc_id, uint16_t ∗token)
• int dprtc_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dprtc_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dprtc_cfg ∗cfg, uint32_t ∗obj_id)

NXP Semiconductors
DPAA2 API Reference Manual

119

Data Path Real Time Counter API

• int dprtc_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩
t object_id)

• int dprtc_set_clock_offset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int64_t
offset)

• int dprtc_set_freq_compensation (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint32_t freq_compensation)

• int dprtc_get_freq_compensation (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint32_t ∗freq_compensation)

• int dprtc_get_time (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint64_t ∗time)
• int dprtc_set_time (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint64_t time)
• int dprtc_set_alarm (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint64_t time)
• int dprtc_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t en)
• int dprtc_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t ∗en)
• int dprtc_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dprtc_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗mask)
• int dprtc_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dprtc_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t status)
• int dprtc_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dprtc←↩

_attr ∗attr)
• int dprtc_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)

1.7.2 Data Structure Documentation

1.7.2.1 struct dprtc_cfg

struct dprtc_cfg - Structure representing DPRTC configuration

Parameters

options place holder

Data Fields

uint32_t options

1.7.2.2 struct dprtc_attr

struct dprtc_attr - Structure representing DPRTC attributes

NXP Semiconductors
DPAA2 API Reference Manual

120

Data Path Real Time Counter API

Parameters

id DPRTC object ID

Data Fields

int id

1.7.3 Macro Definition Documentation

1.7.3.1 #define DPRTC_MAX_IRQ_NUM

Number of irq's.

1.7.3.2 #define DPRTC_EVENT_ALARM

Interrupt event masks:

Interrupt event mask indicating alarm event had occurred

1.7.3.3 #define DPRTC_EVENT_PPS

Interrupt event mask indicating periodic pulse event had occurred.

1.7.4 Function Documentation

1.7.4.1 int dprtc_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dprtc_id,
uint16_t ∗ token)

dprtc_open() - Open a control session for the specified object.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

dprtc_id DPRTC unique ID
token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dprtc_create function. This function returns a unique authentication
token, associated with the specific object ID and the specific MC portal; this token must be used in all
subsequent commands for this specific object

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

121

Data Path Real Time Counter API

1.7.4.2 int dprtc_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dprtc_close() - Close the control session of the object

NXP Semiconductors
DPAA2 API Reference Manual

122

Data Path Real Time Counter API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.7.4.3 int dprtc_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dprtc_cfg ∗ cfg, uint32_t ∗ obj_id)

dprtc_create() - Create the DPRTC object.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPRTC object, allocate required resources and perform required initialization.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.7.4.4 int dprtc_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dprtc_destroy() - Destroy the DPRTC object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

123

Data Path Real Time Counter API

1.7.4.5 int dprtc_set_clock_offset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int64_t offset)

dprtc_set_clock_offset() - Sets the clock's offset (usually relative to another clock).

NXP Semiconductors
DPAA2 API Reference Manual

124

Data Path Real Time Counter API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
offset New clock offset (in nanoseconds).

Return: '0' on Success; Error code otherwise.

1.7.4.6 int dprtc_set_freq_compensation (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint32_t freq_compensation)

dprtc_set_freq_compensation() - Sets a new frequency compensation value.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
freq_←↩

compensation
The new frequency compensation value to set.

Return: '0' on Success; Error code otherwise.

1.7.4.7 int dprtc_get_freq_compensation (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint32_t ∗ freq_compensation)

dprtc_get_freq_compensation() - Retrieves the frequency compensation value

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
freq_←↩

compensation
Frequency compensation value

Return: '0' on Success; Error code otherwise.

1.7.4.8 int dprtc_get_time (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
uint64_t ∗ time)

dprtc_get_time() - Returns the current RTC time.

NXP Semiconductors
DPAA2 API Reference Manual

125

Data Path Real Time Counter API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
time Current RTC time.

Return: '0' on Success; Error code otherwise.

1.7.4.9 int dprtc_set_time (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token,
uint64_t time)

dprtc_set_time() - Updates current RTC time.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
time New RTC time.

Return: '0' on Success; Error code otherwise.

1.7.4.10 int dprtc_set_alarm (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint64_t time)

dprtc_set_alarm() - Defines and sets alarm.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
time In nanoseconds, the time when the alarm should go off - must be a multiple of 1

microsecond

Return: '0' on Success; Error code otherwise.

1.7.4.11 int dprtc_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dprtc_set_irq_enable() - Set overall interrupt state.

Parameters

NXP Semiconductors
DPAA2 API Reference Manual

126

Data Path Real Time Counter API

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.7.4.12 int dprtc_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dprtc_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.7.4.13 int dprtc_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dprtc_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
irq_index The interrupt index to configure

mask Event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

127

Data Path Real Time Counter API

1.7.4.14 int dprtc_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dprtc_get_irq_mask() - Get interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

128

Data Path Real Time Counter API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.7.4.15 int dprtc_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ status)

dprtc_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.7.4.16 int dprtc_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dprtc_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
irq_index The interrupt index to configure

status Bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.7.4.17 int dprtc_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dprtc_attr ∗ attr)

dprtc_get_attributes - Retrieve DPRTC attributes.

NXP Semiconductors
DPAA2 API Reference Manual

129

Data Path Management Command Portal API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPRTC object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.7.4.18 int dprtc_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dprtc_get_api_version() - Get Data Path Real Time Counter API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path real time counter API
minor_ver Minor version of data path real time counter API

Return: '0' on Success; Error code otherwise.

1.8 Data Path Management Command Portal API

1.8.1 Overview

Contains initialization APIs and runtime control APIs for DPMCP.

Data Structures

• struct dpmcp_cfg
• struct dpmcp_attr

Macros

• #define DPMCP_GET_PORTAL_ID_FROM_POOL
• #define DPMCP_IRQ_INDEX
• #define DPMCP_IRQ_EVENT_CMD_DONE

Functions

• int dpmcp_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpmcp_id, uint16_t ∗token)
• int dpmcp_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpmcp_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpmcp_cfg ∗cfg, uint32_t ∗obj_id)

NXP Semiconductors
DPAA2 API Reference Manual

130

Data Path Management Command Portal API

• int dpmcp_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_t
object_id)

• int dpmcp_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpmcp_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t en)
• int dpmcp_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t ∗en)
• int dpmcp_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpmcp_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t ∗mask)
• int dpmcp_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t ∗status)
• int dpmcp_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpmcp_attr ∗attr)
• int dpmcp_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)

1.8.2 Data Structure Documentation

1.8.2.1 struct dpmcp_cfg

struct dpmcp_cfg - Structure representing DPMCP configuration

Parameters

portal_id Portal ID; 'DPMCP_GET_PORTAL_ID_FROM_POOL' to get the portal ID from
pool

Data Fields

int portal_id

1.8.2.2 struct dpmcp_attr

struct dpmcp_attr - Structure representing DPMCP attributes

Parameters

id DPMCP object ID

Data Fields

int id

NXP Semiconductors
DPAA2 API Reference Manual

131

Data Path Management Command Portal API

1.8.3 Macro Definition Documentation

1.8.3.1 #define DPMCP_GET_PORTAL_ID_FROM_POOL

Get portal ID from pool.

1.8.3.2 #define DPMCP_IRQ_INDEX

IRQ.

IRQ Index

1.8.3.3 #define DPMCP_IRQ_EVENT_CMD_DONE

irq event - Indicates that the link state changed

1.8.4 Function Documentation

1.8.4.1 int dpmcp_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpmcp_id,
uint16_t ∗ token)

dpmcp_open() - Open a control session for the specified object.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
dpmcp_id DPMCP unique ID

token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpmcp_create function. This function returns a unique authentication
token, associated with the specific object ID and the specific MC portal; this token must be used in all
subsequent commands for this specific object

Return: '0' on Success; Error code otherwise.

1.8.4.2 int dpmcp_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpmcp_close() - Close the control session of the object

NXP Semiconductors
DPAA2 API Reference Manual

132

Data Path Management Command Portal API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMCP object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.8.4.3 int dpmcp_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpmcp_cfg ∗ cfg, uint32_t ∗ obj_id)

dpmcp_create() - Create the DPMCP object.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPMCP object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.8.4.4 int dpmcp_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpmcp_destroy() - Destroy the DPMCP object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

NXP Semiconductors
DPAA2 API Reference Manual

133

Data Path Management Command Portal API

Return: '0' on Success; error code otherwise.

1.8.4.5 int dpmcp_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpmcp_reset() - Reset the DPMCP, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMCP object

Return: '0' on Success; Error code otherwise.

1.8.4.6 int dpmcp_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpmcp_set_irq_enable() - Set overall interrupt state.

: Pointer to MC portal's I/O object : Command flags; one or more of 'MC_CMD_FLAG_' : Token of
DPMCP object : The interrupt index to configure : Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.8.4.7 int dpmcp_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpmcp_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMCP object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.8.4.8 int dpmcp_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dpmcp_set_irq_mask() - Set interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

134

Data Path Management Command Portal API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMCP object
irq_index The interrupt index to configure

mask Event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.8.4.9 int dpmcp_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dpmcp_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMCP object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.8.4.10 int dpmcp_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpmcp_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMCP object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

135

Data Path Management Command Portal API

1.8.4.11 int dpmcp_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpmcp_attr ∗ attr)

dpmcp_get_attributes - Retrieve DPMCP attributes.

NXP Semiconductors
DPAA2 API Reference Manual

136

Data Path Buffer Pool API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMCP object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.8.4.12 int dpmcp_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpmcp_get_api_version() - Get Data Path Management Command Portal API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path management command portal API
minor_ver Minor version of data path management command portal API

Return: '0' on Success; Error code otherwise.

1.9 Data Path Buffer Pool API

1.9.1 Overview

Contains initialization APIs and runtime control APIs for DPBP.

Data Structures

• struct dpbp_cfg
• struct dpbp_attr
• struct dpbp_notification_cfg

Macros

• #define DPBP_NOTIF_OPT_COHERENT_WRITE

Functions

• int dpbp_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpbp_id, uint16_t ∗token)
• int dpbp_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpbp_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpbp_cfg ∗cfg, uint32_t ∗obj_id)

NXP Semiconductors
DPAA2 API Reference Manual

137

Data Path Buffer Pool API

• int dpbp_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩
t object_id)

• int dpbp_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpbp_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpbp_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpbp_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpbp_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t en)
• int dpbp_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t ∗en)
• int dpbp_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpbp_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗mask)
• int dpbp_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dpbp_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t status)
• int dpbp_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpbp←↩

_attr ∗attr)
• int dpbp_set_notifications (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpbp_notification_cfg ∗cfg)
• int dpbp_get_notifications (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpbp_notification_cfg ∗cfg)
• int dpbp_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)
• int dpbp_get_num_free_bufs (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint32←↩

_t ∗num_free_bufs)

1.9.2 Data Structure Documentation

1.9.2.1 struct dpbp_cfg

struct dpbp_cfg - Structure representing DPBP configuration

Parameters

options place holder

Data Fields

uint32_t options

1.9.2.2 struct dpbp_attr

struct dpbp_attr - Structure representing DPBP attributes

NXP Semiconductors
DPAA2 API Reference Manual

138

Data Path Buffer Pool API

Parameters

id DPBP object ID
bpid Hardware buffer pool ID; should be used as an argument in acquire/release operations

on buffers

Data Fields

int id
uint16_t bpid

1.9.2.3 struct dpbp_notification_cfg

struct dpbp_notification_cfg - Structure representing DPBP notifications towards software

Parameters

depletion_entry below this threshold the pool is "depleted"; set it to '0' to disable it
depletion_exit greater than or equal to this threshold the pool exit its "depleted" state
surplus_entry above this threshold the pool is in "surplus" state; set it to '0' to disable it

surplus_exit less than or equal to this threshold the pool exit its "surplus" state
message_iova MUST be given if either 'depletion_entry' or 'surplus_entry' is not '0' (enable); I/O

virtual address (must be in DMA-able memory), must be 16B aligned.
message_ctx The context that will be part of the BPSCN message and will be written to 'message←↩

_iova'
options Mask of available options; use 'DPBP_NOTIF_OPT_<X>' values

Data Fields

uint32_t depletion_entry
uint32_t depletion_exit
uint32_t surplus_entry
uint32_t surplus_exit
uint64_t message_iova
uint64_t message_ctx
uint16_t options

1.9.3 Macro Definition Documentation

1.9.3.1 #define DPBP_NOTIF_OPT_COHERENT_WRITE

BPSCN write will attempt to allocate into a cache (coherent write)

NXP Semiconductors
DPAA2 API Reference Manual

139

Data Path Buffer Pool API

1.9.4 Function Documentation

1.9.4.1 int dpbp_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpbp_id,
uint16_t ∗ token)

dpbp_open() - Open a control session for the specified object.

NXP Semiconductors
DPAA2 API Reference Manual

140

Data Path Buffer Pool API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

dpbp_id DPBP unique ID
token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpbp_create function. This function returns a unique authentication
token, associated with the specific object ID and the specific MC portal; this token must be used in all
subsequent commands for this specific object

Return: '0' on Success; Error code otherwise.

1.9.4.2 int dpbp_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpbp_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.9.4.3 int dpbp_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpbp_cfg ∗ cfg, uint32_t ∗ obj_id)

dpbp_create() - Create the DPBP object.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPBP object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

141

Data Path Buffer Pool API

1.9.4.4 int dpbp_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpbp_destroy() - Destroy the DPBP object and release all its resources.

NXP Semiconductors
DPAA2 API Reference Manual

142

Data Path Buffer Pool API

Parameters

dprc_token Parent container token; '0' for default container
mc_io Pointer to MC portal's I/O object

cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

Return: '0' on Success; error code otherwise.

1.9.4.5 int dpbp_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpbp_enable() - Enable the DPBP.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object

Return: '0' on Success; Error code otherwise.

1.9.4.6 int dpbp_disable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpbp_disable() - Disable the DPBP.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object

Return: '0' on Success; Error code otherwise.

1.9.4.7 int dpbp_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpbp_is_enabled() - Check if the DPBP is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object

NXP Semiconductors
DPAA2 API Reference Manual

143

Data Path Buffer Pool API

en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.9.4.8 int dpbp_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpbp_reset() - Reset the DPBP, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object

Return: '0' on Success; Error code otherwise.

1.9.4.9 int dpbp_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint8_t en)

dpbp_set_irq_enable() - Set overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.9.4.10 int dpbp_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpbp_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

144

Data Path Buffer Pool API

1.9.4.11 int dpbp_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dpbp_set_irq_mask() - Set interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

145

Data Path Buffer Pool API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
irq_index The interrupt index to configure

mask Event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.9.4.12 int dpbp_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dpbp_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.9.4.13 int dpbp_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ status)

dpbp_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

146

Data Path Buffer Pool API

1.9.4.14 int dpbp_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpbp_clear_irq_status() - Clear a pending interrupt's status

NXP Semiconductors
DPAA2 API Reference Manual

147

Data Path Buffer Pool API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
irq_index The interrupt index to configure

status Bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.9.4.15 int dpbp_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dpbp_attr ∗ attr)

dpbp_get_attributes - Retrieve DPBP attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.9.4.16 int dpbp_set_notifications (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpbp_notification_cfg ∗ cfg)

dpbp_set_notifications() - Set notifications towards software

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
cfg notifications configuration

Return: '0' on Success; Error code otherwise.

1.9.4.17 int dpbp_get_notifications (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpbp_notification_cfg ∗ cfg)

dpbp_get_notifications() - Get the notifications configuration

Parameters

NXP Semiconductors
DPAA2 API Reference Manual

148

Data Path I/O Portal API

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
cfg notifications configuration

Return: '0' on Success; Error code otherwise.

1.9.4.18 int dpbp_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpbp_get_api_version() - Get buffer pool API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path buffer pool API
minor_ver Minor version of data path buffer pool API

Return: '0' on Success; Error code otherwise.

1.9.4.19 int dpbp_get_num_free_bufs (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint32_t ∗ num_free_bufs)

dpbp_get_num_free_bufs() - Get number of free buffers in the buffer pool

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPBP object
num_free_bufs Number of free buffers

Return: '0' on Success; Error code otherwise.

1.10 Data Path I/O Portal API

1.10.1 Overview

Contains initialization APIs and runtime control APIs for DPIO.

Data Structures

• struct dpio_cfg
• struct dpio_attr

NXP Semiconductors
DPAA2 API Reference Manual

149

Data Path I/O Portal API

Macros

• #define DPIO_IRQ_SWP_INDEX

Enumerations

• enum dpio_channel_mode {
DPIO_NO_CHANNEL,
DPIO_LOCAL_CHANNEL }

Functions

• int dpio_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpio_id, uint16_t ∗token)
• int dpio_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpio_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpio_cfg ∗cfg, uint32_t ∗obj_id)
• int dpio_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpio_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpio_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpio_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpio_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpio_set_stashing_destination (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint8_t sdest)
• int dpio_get_stashing_destination (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint8_t ∗sdest)
• int dpio_add_static_dequeue_channel (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

int dpcon_id, uint8_t ∗channel_index)
• int dpio_remove_static_dequeue_channel (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t

token, int dpcon_id)
• int dpio_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t en)
• int dpio_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t ∗en)
• int dpio_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t mask)
• int dpio_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t ∗mask)
• int dpio_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dpio_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t status)
• int dpio_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpio_←↩

attr ∗attr)
• int dpio_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)

NXP Semiconductors
DPAA2 API Reference Manual

150

Data Path I/O Portal API

1.10.2 Data Structure Documentation

1.10.2.1 struct dpio_cfg

struct dpio_cfg - Structure representing DPIO configuration

NXP Semiconductors
DPAA2 API Reference Manual

151

Data Path I/O Portal API

Parameters

channel_mode Notification channel mode
num_priorities Number of priorities for the notification channel (1-8); relevant only if 'channel_mode

= DPIO_LOCAL_CHANNEL'

Data Fields

enum dpio_←↩
channel_mode

channel_mode

uint8_t num_priorities

1.10.2.2 struct dpio_attr

struct dpio_attr - Structure representing DPIO attributes

Parameters

id DPIO object ID
qbman_←↩

portal_ce_←↩
offset

offset of the software portal cache-enabled area

qbman_←↩
portal_ci_offset

offset of the software portal cache-inhibited area

qbman_←↩
portal_id

Software portal ID

channel_mode Notification channel mode
num_priorities Number of priorities for the notification channel (1-8); relevant only if 'channel_mode

= DPIO_LOCAL_CHANNEL'
qbman_version QBMAN version

Data Fields

int id
uint64_t qbman_portal←↩

_ce_offset
uint64_t qbman_portal←↩

_ci_offset
uint16_t qbman_portal←↩

_id
enum dpio_←↩

channel_mode
channel_mode

NXP Semiconductors
DPAA2 API Reference Manual

152

Data Path I/O Portal API

uint8_t num_priorities
uint32_t qbman_version
uint32_t clk

1.10.3 Macro Definition Documentation

1.10.3.1 #define DPIO_IRQ_SWP_INDEX

DPIO IRQ Index and Events.

Irq software-portal index

1.10.4 Enumeration Type Documentation

1.10.4.1 enum dpio_channel_mode

enum dpio_channel_mode - DPIO notification channel mode

Parameters

DPIO_NO_C←↩
HANNEL

No support for notification channel

DPIO_LOCA←↩
L_CHANNEL

Notifications on data availability can be received by a dedicated channel in the DPIO;
user should point the queue's destination in the relevant interface to this DPIO

1.10.5 Function Documentation

1.10.5.1 int dpio_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpio_id,
uint16_t ∗ token)

dpio_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

dpio_id DPIO unique ID
token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpio_create() function. This function returns a unique authentication
token, associated with the specific object ID and any MC portals assigned to the parent container; this
token must be used in all subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

153

Data Path I/O Portal API

1.10.5.2 int dpio_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpio_close() - Close the control session of the object

NXP Semiconductors
DPAA2 API Reference Manual

154

Data Path I/O Portal API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object

Return: '0' on Success; Error code otherwise.

1.10.5.3 int dpio_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpio_cfg ∗ cfg, uint32_t ∗ obj_id)

dpio_create() - Create the DPIO object.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPIO object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.10.5.4 int dpio_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpio_destroy() - Destroy the DPIO object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; Error code otherwise

NXP Semiconductors
DPAA2 API Reference Manual

155

Data Path I/O Portal API

1.10.5.5 int dpio_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpio_enable() - Enable the DPIO, allow I/O portal operations.

NXP Semiconductors
DPAA2 API Reference Manual

156

Data Path I/O Portal API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object

Return: '0' on Success; Error code otherwise

1.10.5.6 int dpio_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)

dpio_disable() - Disable the DPIO, stop any I/O portal operation.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object

Return: '0' on Success; Error code otherwise

1.10.5.7 int dpio_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpio_is_enabled() - Check if the DPIO is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.10.5.8 int dpio_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpio_reset() - Reset the DPIO, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

157

Data Path I/O Portal API

1.10.5.9 int dpio_set_stashing_destination (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint8_t sdest)

dpio_set_stashing_destination() - Set the stashing destination.

NXP Semiconductors
DPAA2 API Reference Manual

158

Data Path I/O Portal API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
sdest stashing destination value

Return: '0' on Success; Error code otherwise.

1.10.5.10 int dpio_get_stashing_destination (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint8_t ∗ sdest)

dpio_get_stashing_destination() - Get the stashing destination..

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
sdest Returns the stashing destination value

Return: '0' on Success; Error code otherwise.

1.10.5.11 int dpio_add_static_dequeue_channel (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, int dpcon_id, uint8_t ∗ channel_index)

dpio_add_static_dequeue_channel() - Add a static dequeue channel.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
dpcon_id DPCON object ID

channel_index Returned channel index to be used in qbman API

Return: '0' on Success; Error code otherwise.

1.10.5.12 int dpio_remove_static_dequeue_channel (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, int dpcon_id)

dpio_remove_static_dequeue_channel() - Remove a static dequeue channel.

Parameters

NXP Semiconductors
DPAA2 API Reference Manual

159

Data Path I/O Portal API

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
dpcon_id DPCON object ID

Return: '0' on Success; Error code otherwise.

1.10.5.13 int dpio_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpio_set_irq_enable() - Set overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.10.5.14 int dpio_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpio_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.10.5.15 int dpio_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dpio_set_irq_mask() - Set interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

160

Data Path I/O Portal API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.10.5.16 int dpio_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dpio_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.10.5.17 int dpio_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpio_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

161

Data Path I/O Portal API

1.10.5.18 int dpio_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpio_clear_irq_status() - Clear a pending interrupt's status

NXP Semiconductors
DPAA2 API Reference Manual

162

Data Path Concentrator API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.10.5.19 int dpio_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dpio_attr ∗ attr)

dpio_get_attributes() - Retrieve DPIO attributes

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPIO object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise

1.10.5.20 int dpio_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpio_get_api_version() - Get Data Path I/O API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path i/o API
minor_ver Minor version of data path i/o API

Return: '0' on Success; Error code otherwise.

1.11 Data Path Concentrator API

1.11.1 Overview

Contains initialization APIs and runtime control APIs for DPCON.

Data Structures

• struct dpcon_cfg
• struct dpcon_attr

NXP Semiconductors
DPAA2 API Reference Manual

163

Data Path Concentrator API

• struct dpcon_notification_cfg

Macros

• #define DPCON_INVALID_DPIO_ID

Functions

• int dpcon_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpcon_id, uint16_t ∗token)
• int dpcon_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpcon_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpcon_cfg ∗cfg, uint32_t ∗obj_id)
• int dpcon_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpcon_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpcon_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpcon_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpcon_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpcon_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint8_t en)
• int dpcon_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint8_t ∗en)
• int dpcon_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpcon_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗mask)
• int dpcon_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dpcon_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t status)
• int dpcon_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpcon_attr ∗attr)
• int dpcon_set_notification (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpcon_notification_cfg ∗cfg)
• int dpcon_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)

1.11.2 Data Structure Documentation

1.11.2.1 struct dpcon_cfg

struct dpcon_cfg - Structure representing DPCON configuration

NXP Semiconductors
DPAA2 API Reference Manual

164

Data Path Concentrator API

Parameters

num_priorities Number of priorities for the DPCON channel (1-8)

Data Fields

uint8_t num_priorities

1.11.2.2 struct dpcon_attr

struct dpcon_attr - Structure representing DPCON attributes

Parameters

id DPCON object ID
qbman_ch_id Channel ID to be used by dequeue operation

num_priorities Number of priorities for the DPCON channel (1-8)

Data Fields

int id
uint16_t qbman_ch_id
uint8_t num_priorities

1.11.2.3 struct dpcon_notification_cfg

struct dpcon_notification_cfg - Structure representing notification parameters

Parameters

dpio_id DPIO object ID; must be configured with a notification channel; to disable notifica-
tions set it to 'DPCON_INVALID_DPIO_ID';

priority Priority selection within the DPIO channel; valid values are 0-7, depending on the
number of priorities in that channel

user_ctx User context value provided with each CDAN message

Data Fields

int dpio_id
uint8_t priority

uint64_t user_ctx

NXP Semiconductors
DPAA2 API Reference Manual

165

Data Path Concentrator API

1.11.3 Macro Definition Documentation

1.11.3.1 #define DPCON_INVALID_DPIO_ID

General DPCON macros.

Use it to disable notifications; see dpcon_set_notification()

1.11.4 Function Documentation

1.11.4.1 int dpcon_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpcon_id,
uint16_t ∗ token)

dpcon_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
dpcon_id DPCON unique ID

token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have
been declared in the DPL or by calling the dpcon_create() function. This function returns a unique
authentication token, associated with the specific object ID and the specific MC portal; this token must be
used in all subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

1.11.4.2 int dpcon_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)

dpcon_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.11.4.3 int dpcon_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpcon_cfg ∗ cfg, uint32_t ∗ obj_id)

dpcon_create() - Create the DPCON object.

NXP Semiconductors
DPAA2 API Reference Manual

166

Data Path Concentrator API

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPCON object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.11.4.4 int dpcon_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpcon_destroy() - Destroy the DPCON object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

1.11.4.5 int dpcon_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpcon_enable() - Enable the DPCON

Parameters

mc_io Pointer to MC portal's I/O object

NXP Semiconductors
DPAA2 API Reference Manual

167

Data Path Concentrator API

cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
token Token of DPCON object

Return: '0' on Success; Error code otherwise

1.11.4.6 int dpcon_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token
)

dpcon_disable() - Disable the DPCON

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object

Return: '0' on Success; Error code otherwise

1.11.4.7 int dpcon_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpcon_is_enabled() - Check if the DPCON is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.11.4.8 int dpcon_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpcon_reset() - Reset the DPCON, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object

Return: '0' on Success; Error code otherwise.

1.11.4.9 int dpcon_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpcon_set_irq_enable() - Set overall interrupt state.

NXP Semiconductors
DPAA2 API Reference Manual

168

Data Path Concentrator API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.11.4.10 int dpcon_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpcon_get_irq_enable() - Get overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.11.4.11 int dpcon_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t mask)

dpcon_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
irq_index The interrupt index to configure

mask Event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

169

Data Path Concentrator API

1.11.4.12 int dpcon_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ mask)

dpcon_get_irq_mask() - Get interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

170

Data Path Concentrator API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.11.4.13 int dpcon_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpcon_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
irq_index The interrupt index to configure

status interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt pending

Return: '0' on Success; Error code otherwise.

1.11.4.14 int dpcon_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpcon_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.11.4.15 int dpcon_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpcon_attr ∗ attr)

dpcon_get_attributes() - Retrieve DPCON attributes.

NXP Semiconductors
DPAA2 API Reference Manual

171

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
attr Object's attributes

Return: '0' on Success; Error code otherwise.

1.11.4.16 int dpcon_set_notification (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpcon_notification_cfg ∗ cfg)

dpcon_set_notification() - Set DPCON notification destination

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCON object
cfg Notification parameters

Return: '0' on Success; Error code otherwise

1.11.4.17 int dpcon_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpcon_get_api_version() - Get Data Path Concentrator API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path concentrator API
minor_ver Minor version of data path concentrator API

Return: '0' on Success; Error code otherwise.

1.12 Data Path Network Interface API

1.12.1 Overview

Contains initialization APIs and runtime control APIs for DPNI.

Data Structures

• struct dpni_cfg
• struct dpni_pools_cfg
• struct dpni_pools_cfg.pools

NXP Semiconductors
DPAA2 API Reference Manual

172

Data Path Network Interface API

• struct dpni_attr
• struct dpni_error_cfg
• struct dpni_buffer_layout
• struct dpni_sp_info
• struct dpni_statistics.page_0
• struct dpni_statistics.page_1
• struct dpni_statistics.page_2
• struct dpni_statistics.raw
• struct dpni_link_cfg
• struct dpni_link_state
• struct dpni_tx_shaping_cfg
• struct dpni_tx_schedule_cfg
• struct dpni_tx_priorities_cfg
• struct dpni_fs_tbl_cfg
• struct dpni_rx_tc_dist_cfg
• struct dpni_rx_tc_policing_cfg
• struct dpni_wred_cfg
• struct dpni_early_drop_cfg
• struct dpni_dest_cfg
• struct dpni_congestion_notification_cfg
• struct dpni_queue
• struct dpni_queue_id
• struct dpni_queue.destination
• struct dpni_queue.flc
• struct dpni_qos_tbl_cfg
• struct dpni_rule_cfg
• struct dpni_fs_action_cfg
• struct dpni_taildrop

Macros

• #define DPNI_MAX_TC
• #define DPNI_MAX_DPBP
• #define DPNI_MAX_SP
• #define DPNI_ALL_TCS
• #define DPNI_ALL_TC_FLOWS
• #define DPNI_OPT_TX_FRM_RELEASE
• #define DPNI_OPT_NO_MAC_FILTER
• #define DPNI_OPT_HAS_POLICING
• #define DPNI_OPT_SHARED_CONGESTION
• #define DPNI_OPT_HAS_KEY_MASKING
• #define DPNI_OPT_NO_FS
• #define DPNI_OPT_HAS_OPR
• #define DPNI_OPT_OPR_PER_TC
• #define DPNI_IRQ_INDEX
• #define DPNI_IRQ_EVENT_LINK_CHANGED
• #define DPNI_ERROR_EOFHE
• #define DPNI_ERROR_FLE
• #define DPNI_ERROR_FPE
• #define DPNI_ERROR_PHE
• #define DPNI_ERROR_L3CE
• #define DPNI_ERROR_L4CE
• #define DPNI_BUF_LAYOUT_OPT_TIMESTAMP
• #define DPNI_BUF_LAYOUT_OPT_PARSER_RESULT

NXP Semiconductors
DPAA2 API Reference Manual

173

Data Path Network Interface API

• #define DPNI_BUF_LAYOUT_OPT_FRAME_STATUS
• #define DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE
• #define DPNI_BUF_LAYOUT_OPT_DATA_ALIGN
• #define DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM
• #define DPNI_BUF_LAYOUT_OPT_DATA_TAIL_ROOM

Enumerations

• enum dpni_error_action {
DPNI_ERROR_ACTION_DISCARD,
DPNI_ERROR_ACTION_CONTINUE,
DPNI_ERROR_ACTION_SEND_TO_ERROR_QUEUE }

• enum dpni_offload {
DPNI_OFF_RX_L3_CSUM,
DPNI_OFF_RX_L4_CSUM,
DPNI_OFF_TX_L3_CSUM,
DPNI_OFF_TX_L4_CSUM }

• enum dpni_tx_schedule_mode {
DPNI_TX_SCHED_STRICT_PRIORITY,
DPNI_TX_SCHED_WEIGHTED }

• enum dpni_dist_mode {
DPNI_DIST_MODE_NONE,
DPNI_DIST_MODE_HASH,
DPNI_DIST_MODE_FS }

• enum dpni_fs_miss_action {
DPNI_FS_MISS_DROP,
DPNI_FS_MISS_EXPLICIT_FLOWID,
DPNI_FS_MISS_HASH }

• enum dpni_policer_mode {
DPNI_POLICER_MODE_NONE,
DPNI_POLICER_MODE_PASS_THROUGH,
DPNI_POLICER_MODE_RFC_2698,
DPNI_POLICER_MODE_RFC_4115 }

• enum dpni_policer_unit {
DPNI_POLICER_UNIT_BYTES,
DPNI_POLICER_UNIT_FRAMES }

• enum dpni_policer_color {
DPNI_POLICER_COLOR_GREEN,
DPNI_POLICER_COLOR_YELLOW,
DPNI_POLICER_COLOR_RED }

• enum dpni_congestion_unit {
DPNI_CONGESTION_UNIT_BYTES,
DPNI_CONGESTION_UNIT_FRAMES }

• enum dpni_early_drop_mode {
DPNI_EARLY_DROP_MODE_NONE,
DPNI_EARLY_DROP_MODE_TAIL,
DPNI_EARLY_DROP_MODE_WRED }

NXP Semiconductors
DPAA2 API Reference Manual

174

Data Path Network Interface API

• enum dpni_dest {
DPNI_DEST_NONE,
DPNI_DEST_DPIO,
DPNI_DEST_DPCON }

• enum dpni_confirmation_mode {
DPNI_CONF_AFFINE,
DPNI_CONF_SINGLE,
DPNI_CONF_DISABLE }

• enum dpni_congestion_point {
DPNI_CP_QUEUE,
DPNI_CP_GROUP }

Functions

• int dpni_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpni_id, uint16_t ∗token)
• int dpni_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpni_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpni_cfg ∗cfg, uint32_t ∗obj_id)
• int dpni_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpni_set_pools (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct dpni←↩

_pools_cfg ∗cfg)
• int dpni_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpni_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpni_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpni_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpni_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t en)
• int dpni_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t ∗en)
• int dpni_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t mask)
• int dpni_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t ∗mask)
• int dpni_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dpni_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t status)
• int dpni_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpni_←↩

attr ∗attr)
• int dpni_set_errors_behavior (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpni_error_cfg ∗cfg)
• int dpni_get_buffer_layout (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum

dpni_queue_type qtype, struct dpni_buffer_layout ∗layout)
• int dpni_set_buffer_layout (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum

dpni_queue_type qtype, const struct dpni_buffer_layout ∗layout)
• int dpni_set_offload (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni_←↩

offload type, uint32_t config)

NXP Semiconductors
DPAA2 API Reference Manual

175

Data Path Network Interface API

• int dpni_get_offload (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni_←↩
offload type, uint32_t ∗config)

• int dpni_get_qdid (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni_queue←↩
_type qtype, uint16_t ∗qdid)

• int dpni_get_sp_info (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpni_←↩
sp_info ∗sp_info)

• int dpni_get_tx_data_offset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t
∗data_offset)

• int dpni_set_link_cfg (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct
dpni_link_cfg ∗cfg)

• int dpni_get_link_state (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpni←↩
_link_state ∗state)

• int dpni_set_tx_shaping (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct
dpni_tx_shaping_cfg ∗tx_shaper)

• int dpni_set_max_frame_length (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint16_t max_frame_length)

• int dpni_get_max_frame_length (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,
uint16_t ∗max_frame_length)

• int dpni_set_mtu (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t mtu)
• int dpni_get_mtu (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t ∗mtu)
• int dpni_set_multicast_promisc (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int

en)
• int dpni_get_multicast_promisc (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int
∗en)

• int dpni_set_unicast_promisc (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int en)
• int dpni_get_unicast_promisc (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpni_set_primary_mac_addr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const

uint8_t mac_addr[6])
• int dpni_get_primary_mac_addr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint8_t mac_addr[6])
• int dpni_add_mac_addr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const uint8←↩

_t mac_addr[6])
• int dpni_remove_mac_addr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const

uint8_t mac_addr[6])
• int dpni_clear_mac_filters (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int unicast,

int multicast)
• int dpni_get_port_mac_addr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

mac_addr[6])
• int dpni_enable_vlan_filter (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int en)
• int dpni_add_vlan_id (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t vlan←↩

_id)
• int dpni_remove_vlan_id (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

vlan_id)
• int dpni_clear_vlan_filters (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpni_set_tx_priorities (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct

dpni_tx_priorities_cfg ∗cfg)
• int dpni_set_rx_tc_dist (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t tc_id,

const struct dpni_rx_tc_dist_cfg ∗cfg)
• int dpni_set_rx_tc_policing (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

tc_id, const struct dpni_rx_tc_policing_cfg ∗cfg)

NXP Semiconductors
DPAA2 API Reference Manual

176

Data Path Network Interface API

• int dpni_get_rx_tc_policing (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t
tc_id, struct dpni_rx_tc_policing_cfg ∗cfg)

• void dpni_prepare_early_drop (const struct dpni_early_drop_cfg ∗cfg, uint8_t ∗early_drop_buf)
• void dpni_extract_early_drop (struct dpni_early_drop_cfg ∗cfg, const uint8_t ∗early_drop_buf)
• int dpni_set_early_drop (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni←↩

_queue_type qtype, uint8_t tc_id, uint64_t early_drop_iova)
• int dpni_get_early_drop (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni←↩

_queue_type qtype, uint8_t tc_id, uint64_t early_drop_iova)
• int dpni_set_congestion_notification (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

enum dpni_queue_type qtype, uint8_t tc_id, const struct dpni_congestion_notification_cfg ∗cfg)
• int dpni_get_congestion_notification (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

enum dpni_queue_type qtype, uint8_t tc_id, struct dpni_congestion_notification_cfg ∗cfg)
• int dpni_set_tx_confirmation_mode (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

enum dpni_confirmation_mode mode)
• int dpni_set_qos_table (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct

dpni_qos_tbl_cfg ∗cfg)
• int dpni_add_qos_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct

dpni_rule_cfg ∗cfg, uint8_t tc_id, uint16_t index)
• int dpni_remove_qos_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const

struct dpni_rule_cfg ∗cfg)
• int dpni_clear_qos_table (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpni_add_fs_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t tc_id,

uint16_t index, const struct dpni_rule_cfg ∗cfg, const struct dpni_fs_action_cfg ∗action)
• int dpni_remove_fs_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

tc_id, const struct dpni_rule_cfg ∗cfg)
• int dpni_clear_fs_entries (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t tc←↩

_id)
• int dpni_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)
• int dpni_set_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni_←↩

queue_type qtype, uint8_t tc, uint8_t index, uint8_t options, const struct dpni_queue ∗queue)
• int dpni_get_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni_←↩

queue_type qtype, uint8_t tc, uint8_t index, struct dpni_queue ∗queue, struct dpni_queue_id ∗qid)
• int dpni_get_statistics (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t page,

union dpni_statistics ∗stat)
• int dpni_reset_statistics (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpni_set_taildrop (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni_←↩

congestion_point cg_point, enum dpni_queue_type q_type, uint8_t tc, uint8_t q_index, struct dpni←↩
_taildrop ∗taildrop)

• int dpni_get_taildrop (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum dpni_←↩
congestion_point cg_point, enum dpni_queue_type q_type, uint8_t tc, uint8_t q_index, struct dpni←↩
_taildrop ∗taildrop)

• int dpni_set_opr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t tc, uint8_t
index, uint8_t options, struct opr_cfg ∗cfg)

• int dpni_get_opr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t tc, uint8_t
index, struct opr_cfg ∗cfg, struct opr_qry ∗qry)

NXP Semiconductors
DPAA2 API Reference Manual

177

Data Path Network Interface API

1.12.2 Data Structure Documentation

1.12.2.1 struct dpni_cfg

struct dpni_cfg - Structure representing DPNI configuration

NXP Semiconductors
DPAA2 API Reference Manual

178

Data Path Network Interface API

Parameters

mac_addr Primary MAC address
adv Advanced parameters; default is all zeros; use this structure to change default settings

NXP Semiconductors
DPAA2 API Reference Manual

179

Data Path Network Interface API

Data Fields

uint32_t options : Any combination of the following options: DPNI_OPT_TX_←↩
FRM_RELEASE DPNI_OPT_NO_MAC_FILTER DPNI_OPT←↩
_HAS_POLICING DPNI_OPT_SHARED_CONGESTION DP←↩
NI_OPT_HAS_KEY_MASKING DPNI_OPT_NO_FS : Number
of entries in the flow steering table. This table is used to select the
ingress queue for ingress traffic, targeting a GPP core or another. In
addition it can be used to discard traffic that matches the set rule.
It is either an exact match table or a TCAM table, depending on
DPNI_OPT_ HAS_KEY_MASKING bit in OPTIONS field. This
field is ignored if DPNI_OPT_NO_FS bit is set in OPTIONS field.
Otherwise, value 0 defaults to 64. Maximum supported value is
1024. Note that the total number of entries is limited on the So←↩
C to as low as 512 entries if TCAM is used. : Number of entries
in the VLAN address filtering table. This is an exact match table
used to filter ingress traffic based on VLAN IDs. Value 0 disables
VLAN filtering. Maximum supported value is 16. : Number of
entries in the MAC address filtering table. This is an exact match
table and allows both unicast and multicast entries. The primary
MAC address of the network interface is not part of this table, this
contains only entries in addition to it. This field is ignored if DPN←↩
I_OPT_ NO_MAC_FILTER is set in OPTIONS field. Otherwise,
value 0 defaults to 80. Maximum supported value is 80. : Number
of Tx and Rx queues used for traffic distribution. This is orthogonal
to QoS and is only used to distribute traffic to multiple GPP cores.
This configuration affects the number of Tx queues (logical F←↩
Qs, all associated with a single CEETM queue), Rx queues and Tx
confirmation queues, if applicable. Value 0 defaults to one queue.
Maximum supported value is 8. : Number of traffic classes (T←↩
Cs), reserved for the DPNI. TCs can have different priority levels
for the purpose of Tx scheduling (see DPNI_SET_TX_SELEC←↩
TION), different BPs (DPNI_ SET_POOLS), policers. There are
dedicated QM queues for traffic classes (including class queues on
Tx). Value 0 defaults to one TC. Maximum supported value is 8. :
Number of entries in the QoS classification table. This table is used
to select the TC for ingress traffic. It is either an exact match or a
TCAM table, depending on DPNI_OPT_ HAS_KEY_MASKING
bit in OPTIONS field. This field is ignored if the DPNI has a single
TC. Otherwise, a value of 0 defaults to 64. Maximum supported
value is 64.

uint16_t fs_entries

NXP Semiconductors
DPAA2 API Reference Manual

180

Data Path Network Interface API

uint8_t vlan_filter_←↩
entries

uint8_t mac_filter_←↩
entries

uint8_t num_queues
uint8_t num_tcs
uint8_t qos_entries

1.12.2.2 struct dpni_pools_cfg

struct dpni_pools_cfg - Structure representing buffer pools configuration

Parameters

num_dpbp Number of DPBPs
pools Array of buffer pools parameters; The number of valid entries must match 'num_dpbp'

value

Data Fields

uint8_t num_dpbp
struct

dpni_pools_cfg
pools[DPNI_←↩
MAX_DPBP]

struct pools - Buffer pools parameters : DPBP object ID : Buffer
size : Backup pool

1.12.2.3 struct dpni_pools_cfg.pools

struct pools - Buffer pools parameters : DPBP object ID : Buffer size : Backup pool

Data Fields

int dpbp_id
uint16_t buffer_size

int backup_pool

1.12.2.4 struct dpni_attr

struct dpni_attr - Structure representing DPNI attributes

Parameters

options Any combination of the following options: DPNI_OPT_TX_FRM_RELEASE DP←↩
NI_OPT_NO_MAC_FILTER DPNI_OPT_HAS_POLICING DPNI_OPT_SHAR←↩
ED_CONGESTION DPNI_OPT_HAS_KEY_MASKING DPNI_OPT_NO_FS

NXP Semiconductors
DPAA2 API Reference Manual

181

Data Path Network Interface API

num_queues Number of Tx and Rx queues used for traffic distribution.
num_tcs Number of traffic classes (TCs), reserved for the DPNI.

mac_filter_←↩
entries

Number of entries in the MAC address filtering table.

vlan_filter_←↩
entries

Number of entries in the VLAN address filtering table.

qos_entries Number of entries in the QoS classification table.
fs_entries Number of entries in the flow steering table.

qos_key_size Size, in bytes, of the QoS look-up key. Defining a key larger than this when adding
QoS entries will result in an error.

fs_key_size Size, in bytes, of the flow steering look-up key. Defining a key larger than this when
composing the hash + FS key will result in an error.

wriop_version Version of WRIOP HW block. The 3 version values are stored on 6, 5, 5 bits re-
spectively. Values returned: - 0x400 - WRIOP version 1.0.0, used on LS2080 and
variants, - 0x421 - WRIOP version 1.1.1, used on LS2088 and variants, - 0x422 -
WRIOP version 1.1.2, used on LS1088 and variants.

Data Fields

uint32_t options
uint8_t num_queues
uint8_t num_tcs
uint8_t mac_filter_←↩

entries
uint8_t vlan_filter_←↩

entries
uint8_t qos_entries

uint16_t fs_entries
uint8_t qos_key_size
uint8_t fs_key_size

uint16_t wriop_version

1.12.2.5 struct dpni_error_cfg

struct dpni_error_cfg - Structure representing DPNI errors treatment

Parameters

errors Errors mask; use 'DPNI_ERROR__<X>
error_action The desired action for the errors mask
set_frame_←↩

annotation
Set to '1' to mark the errors in frame annotation status (FAS); relevant only for the
non-discard action

NXP Semiconductors
DPAA2 API Reference Manual

182

Data Path Network Interface API

Data Fields

uint32_t errors
enum dpni_←↩

error_action
error_action

int set_frame_←↩
annotation

1.12.2.6 struct dpni_buffer_layout

struct dpni_buffer_layout - Structure representing DPNI buffer layout

Parameters

options Flags representing the suggested modifications to the buffer layout; Use any combi-
nation of 'DPNI_BUF_LAYOUT_OPT_<X>' flags

pass_←↩
timestamp

Pass timestamp value

pass_parser_←↩
result

Pass parser results

pass_frame_←↩
status

Pass frame status

private_data←↩
_size

Size kept for private data (in bytes)

data_align Data alignment
data_head_←↩

room
Data head room

data_tail_room Data tail room

Data Fields

uint32_t options
int pass_←↩

timestamp
int pass_parser_←↩

result
int pass_frame_←↩

status
uint16_t private_data_←↩

size

NXP Semiconductors
DPAA2 API Reference Manual

183

Data Path Network Interface API

uint16_t data_align
uint16_t data_head_←↩

room
uint16_t data_tail_room

1.12.2.7 struct dpni_sp_info

struct dpni_sp_info - Structure representing DPNI storage-profile information (relevant only for DPNI
owned by AIOP)

Parameters

spids array of storage-profiles

Data Fields

uint16_t spids[DPNI_←↩
MAX_SP]

1.12.2.8 struct dpni_statistics.page_0

struct page_0 - Page_0 statistics structure : Ingress frame count : Ingress byte count : Ingress multicast
frame count : Ingress multicast byte count : Ingress broadcast frame count : Ingress broadcast byte count

Data Fields

uint64_t ingress_all_←↩
frames

uint64_t ingress_all_←↩
bytes

uint64_t ingress_←↩
multicast_←↩
frames

uint64_t ingress_←↩
multicast_bytes

uint64_t ingress_←↩
broadcast_←↩
frames

uint64_t ingress_←↩
broadcast_←↩
bytes

NXP Semiconductors
DPAA2 API Reference Manual

184

Data Path Network Interface API

1.12.2.9 struct dpni_statistics.page_1

struct page_1 - Page_1 statistics structure : Egress frame count : Egress byte count : Egress multicast
frame count : Egress multicast byte count : Egress broadcast frame count : Egress broadcast byte count

Data Fields

uint64_t egress_all_←↩
frames

uint64_t egress_all_←↩
bytes

uint64_t egress_←↩
multicast_←↩
frames

uint64_t egress_←↩
multicast_bytes

uint64_t egress_←↩
broadcast_←↩
frames

uint64_t egress_←↩
broadcast_←↩
bytes

1.12.2.10 struct dpni_statistics.page_2

struct page_2 - Page_2 statistics structure : Ingress filtered frame count : Ingress discarded frame count :
Ingress discarded frame count due to lack of buffers : Egress discarded frame count : Egress confirmed
frame count
Data Fields

uint64_t ingress_←↩
filtered_frames

uint64_t ingress_←↩
discarded_←↩
frames

NXP Semiconductors
DPAA2 API Reference Manual

185

Data Path Network Interface API

uint64_t ingress_←↩
nobuffer_←↩
discards

uint64_t egress_←↩
discarded_←↩
frames

uint64_t egress_←↩
confirmed_←↩
frames

1.12.2.11 struct dpni_statistics.raw

struct raw - raw statistics structure, used to index counters

Data Fields

uint64_t counter[DPN←↩
I_STATISTI←↩
CS_CNT]

1.12.2.12 struct dpni_link_cfg

struct - Structure representing DPNI link configuration

Parameters

rate Rate
options Mask of available options; use 'DPNI_LINK_OPT_<X>' values

Data Fields

uint32_t rate
uint64_t options

1.12.2.13 struct dpni_link_state

struct dpni_link_state - Structure representing DPNI link state

Parameters

rate Rate
options Mask of available options; use 'DPNI_LINK_OPT_<X>' values

up Link state; '0' for down, '1' for up

NXP Semiconductors
DPAA2 API Reference Manual

186

Data Path Network Interface API

Data Fields

uint32_t rate
uint64_t options

int up

1.12.2.14 struct dpni_tx_shaping_cfg

struct dpni_tx_shaping - Structure representing DPNI tx shaping configuration

Parameters

rate_limit rate in Mbps
max_burst_size burst size in bytes (up to 64KB)

Data Fields

uint32_t rate_limit
uint16_t max_burst_size

1.12.2.15 struct dpni_tx_schedule_cfg

struct dpni_tx_schedule_cfg - Structure representing Tx scheduling configuration

Parameters

mode scheduling mode
delta_←↩

bandwidth
Bandwidth represented in weights from 100 to 10000; not applicable for 'strict-
priority' mode;

Data Fields

enum
dpni_tx_←↩

schedule_mode

mode

uint16_t delta_←↩
bandwidth

1.12.2.16 struct dpni_tx_priorities_cfg

struct dpni_tx_priorities_cfg - Structure representing transmission priorities for DPNI TCs

Parameters

tc_sched an array of traffic-classes

NXP Semiconductors
DPAA2 API Reference Manual

187

Data Path Network Interface API

Data Fields

struct dpni_tx←↩
_schedule_cfg

tc_sched[DP←↩
NI_MAX_TC]

1.12.2.17 struct dpni_fs_tbl_cfg

struct dpni_fs_tbl_cfg - Flow Steering table configuration

Parameters

miss_action Miss action selection
default_flow_id Used when 'miss_action = DPNI_FS_MISS_EXPLICIT_FLOWID'

Data Fields

enum dpni_fs←↩
_miss_action

miss_action

uint16_t default_flow_id
char keep_hash_key

1.12.2.18 struct dpni_rx_tc_dist_cfg

struct dpni_rx_tc_dist_cfg - Rx traffic class distribution configuration

Parameters

dist_size Set the distribution size; supported values←↩
: 1,2,3,4,6,7,8,12,14,16,24,28,32,48,56,64,96, 112,128,192,224,256,384,448,512,768,896,1024

dist_mode Distribution mode
key_cfg_iova I/O virtual address of 256 bytes DMA-able memory filled with the extractions to be

used for the distribution key by calling dpkg_prepare_key_cfg() relevant only when
'dist_mode != DPNI_DIST_MODE_NONE', otherwise it can be '0'

fs_cfg Flow Steering table configuration; only relevant if 'dist_mode = DPNI_DIST_MO←↩
DE_FS'

Data Fields

uint16_t dist_size
enum dpni_←↩

dist_mode
dist_mode

uint64_t key_cfg_iova
struct dpni_fs←↩

_tbl_cfg
fs_cfg

NXP Semiconductors
DPAA2 API Reference Manual

188

Data Path Network Interface API

1.12.2.19 struct dpni_rx_tc_policing_cfg

struct dpni_rx_tc_policing_cfg - Policer configuration

NXP Semiconductors
DPAA2 API Reference Manual

189

Data Path Network Interface API

Parameters

options Mask of available options; use 'DPNI_POLICER_OPT_<X>' values
mode policer mode

default_color For pass-through mode the policer re-colors with this color any incoming packets.
For Color aware non-pass-through mode: policer re-colors with this color all packets
with FD[DROPP]>2.

units Bytes or Packets
cir Committed information rate (CIR) in Kbps or packets/second
cbs Committed burst size (CBS) in bytes or packets
eir Peak information rate (PIR, rfc2698) in Kbps or packets/second Excess information

rate (EIR, rfc4115) in Kbps or packets/second
ebs Peak burst size (PBS, rfc2698) in bytes or packets Excess burst size (EBS, rfc4115)

in bytes or packets

Data Fields

uint32_t options
enum dpni_←↩
policer_mode

mode

enum dpni_←↩
policer_unit

units

enum dpni_←↩
policer_color

default_color

uint32_t cir
uint32_t cbs
uint32_t eir
uint32_t ebs

1.12.2.20 struct dpni_wred_cfg

struct dpni_wred_cfg - WRED configuration

Parameters

max_threshold maximum threshold that packets may be discarded. Above this threshold all
packets are discarded; must be less than 2∧39; approximated to be expressed as
(x+256)∗2∧(y-1) due to HW implementation.

min_threshold minimum threshold that packets may be discarded at
drop_←↩

probability
probability that a packet will be discarded (1-100, associated with the max_threshold).

NXP Semiconductors
DPAA2 API Reference Manual

190

Data Path Network Interface API

Data Fields

uint64_t max_threshold
uint64_t min_threshold
uint8_t drop_←↩

probability

1.12.2.21 struct dpni_early_drop_cfg

struct dpni_early_drop_cfg - early-drop configuration

Parameters

mode drop mode
units units type

green WRED - 'green' configuration
yellow WRED - 'yellow' configuration

red WRED - 'red' configuration
tail_drop_←↩

threshold
tail drop threshold

Data Fields

enum
dpni_early_←↩

drop_mode

mode

enum dpni_←↩
congestion_←↩

unit

units

struct
dpni_wred_cfg

green

struct
dpni_wred_cfg

yellow

struct
dpni_wred_cfg

red

uint32_t tail_drop_←↩
threshold

1.12.2.22 struct dpni_dest_cfg

struct dpni_dest_cfg - Structure representing DPNI destination parameters

NXP Semiconductors
DPAA2 API Reference Manual

191

Data Path Network Interface API

Parameters

dest_type Destination type
dest_id Either DPIO ID or DPCON ID, depending on the destination type
priority Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,

depending on the number of priorities in that channel; not relevant for 'DPNI_DES←↩
T_NONE' option

Data Fields

enum
dpni_dest

dest_type

int dest_id
uint8_t priority

1.12.2.23 struct dpni_congestion_notification_cfg

struct dpni_congestion_notification_cfg - congestion notification configuration

Parameters

units units type
threshold_entry above this threshold we enter a congestion state. set it to '0' to disable it

threshold_exit below this threshold we exit the congestion state.
message_ctx The context that will be part of the CSCN message

message_iova I/O virtual address (must be in DMA-able memory), must be 16B aligned; valid only
if 'DPNI_CONG_OPT_WRITE_MEM_<X>' is contained in 'options'

dest_cfg CSCN can be send to either DPIO or DPCON WQ channel
notification_←↩

mode
Mask of available options; use 'DPNI_CONG_OPT_<X>' values

Data Fields

enum dpni_←↩
congestion_←↩

unit

units

uint32_t threshold_entry
uint32_t threshold_exit
uint64_t message_ctx
uint64_t message_iova

struct
dpni_dest_cfg

dest_cfg

uint16_t notification_←↩
mode

NXP Semiconductors
DPAA2 API Reference Manual

192

Data Path Network Interface API

1.12.2.24 struct dpni_queue

struct dpni_queue - Queue structure

NXP Semiconductors
DPAA2 API Reference Manual

193

Data Path Network Interface API

Parameters

user_context User data, presented to the user along with any frames from this queue. Not relevant
for Tx queues.

Data Fields

struct
dpni_queue

destination struct destination - Destination structure : ID of the destination,
only relevant if DEST_TYPE is > 0. Identifies either a DPIO or a
DPCON object. Not relevant for Tx queues. : May be one of the
following: 0 - No destination, queue can be manually queried, but
will not push traffic or notifications to a DPIO; 1 - The destination
is a DPIO. When traffic becomes available in the queue a FQDAN
(FQ data available notification) will be generated to selected DP←↩
IO; 2 - The destination is a DPCON. The queue is associated with
a DPCON object for the purpose of scheduling between multiple
queues. The DPCON may be independently configured to generate
notifications. Not relevant for Tx queues. : Hold active, maintains
a queue scheduled for longer in a DPIO during dequeue to reduce
spread of traffic. Only relevant if queues are not affined to a single
DPIO.

uint64_t user_context
struct

dpni_queue
flc struct flc - FD FLow Context structure : Default FLC value for

traffic dequeued from this queue. Please check description of F←↩
D structure for more information. Note that FLC values set using
dpni_add_fs_entry, if any, take precedence over values per queue.
: Boolean, indicates whether the 6 lowest significant bits are used
for stash control. If set, the 6 least significant bits in value are
interpreted as follows:

• bits 0-1: indicates the number of 64 byte units of context that
are stashed. FLC value is interpreted as a memory address in
this case, excluding the 6 LS bits.

• bits 2-3: indicates the number of 64 byte units of frame an-
notation to be stashed. Annotation is placed at FD[ADDR].

• bits 4-5: indicates the number of 64 byte units of frame data
to be stashed. Frame data is placed at FD[ADDR] + FD[OF←↩
FSET]. For more details check the Frame Descriptor chapter
in the hardware documentation.

NXP Semiconductors
DPAA2 API Reference Manual

194

Data Path Network Interface API

1.12.2.25 struct dpni_queue_id

struct dpni_queue_id - Queue identification, used for enqueue commands or queue control

Parameters

fqid FQID used for enqueueing to and/or configuration of this specific FQ
qdbin Queueing bin, used to enqueue using QDID, DQBIN, QPRI. Only relevant for Tx

queues.

Data Fields

uint32_t fqid
uint16_t qdbin

1.12.2.26 struct dpni_queue.destination

struct destination - Destination structure : ID of the destination, only relevant if DEST_TYPE is > 0.

Identifies either a DPIO or a DPCON object. Not relevant for Tx queues. : May be one of the following:
0 - No destination, queue can be manually queried, but will not push traffic or notifications to a DPIO; 1
- The destination is a DPIO. When traffic becomes available in the queue a FQDAN (FQ data available
notification) will be generated to selected DPIO; 2 - The destination is a DPCON. The queue is associated
with a DPCON object for the purpose of scheduling between multiple queues. The DPCON may be
independently configured to generate notifications. Not relevant for Tx queues. : Hold active, maintains a
queue scheduled for longer in a DPIO during dequeue to reduce spread of traffic. Only relevant if queues
are not affined to a single DPIO.

Data Fields

uint16_t id
enum

dpni_dest
type

char hold_active
uint8_t priority

1.12.2.27 struct dpni_queue.flc

struct flc - FD FLow Context structure : Default FLC value for traffic dequeued from this queue.

Please check description of FD structure for more information. Note that FLC values set using dpni_←↩
add_fs_entry, if any, take precedence over values per queue. : Boolean, indicates whether the 6 lowest
significant bits are used for stash control. If set, the 6 least significant bits in value are interpreted as
follows:

NXP Semiconductors
DPAA2 API Reference Manual

195

Data Path Network Interface API

• bits 0-1: indicates the number of 64 byte units of context that are stashed. FLC value is interpreted
as a memory address in this case, excluding the 6 LS bits.

• bits 2-3: indicates the number of 64 byte units of frame annotation to be stashed. Annotation is
placed at FD[ADDR].

• bits 4-5: indicates the number of 64 byte units of frame data to be stashed. Frame data is placed at
FD[ADDR] + FD[OFFSET]. For more details check the Frame Descriptor chapter in the hardware
documentation.

Data Fields

uint64_t value
char stash_control

1.12.2.28 struct dpni_qos_tbl_cfg

struct dpni_qos_tbl_cfg - Structure representing QOS table configuration

Parameters

key_cfg_iova I/O virtual address of 256 bytes DMA-able memory filled with key extractions to be
used as the QoS criteria by calling dpkg_prepare_key_cfg()

discard_on_←↩
miss

Set to '1' to discard frames in case of no match (miss); '0' to use the 'default_tc' in such
cases

default_tc Used in case of no-match and 'discard_on_miss'= 0

Data Fields

uint64_t key_cfg_iova
int discard_on_←↩

miss
uint8_t default_tc

1.12.2.29 struct dpni_rule_cfg

struct dpni_rule_cfg - Rule configuration for table lookup

Parameters

key_iova I/O virtual address of the key (must be in DMA-able memory)
mask_iova I/O virtual address of the mask (must be in DMA-able memory)

key_size key and mask size (in bytes)

Data Fields

uint64_t key_iova
uint64_t mask_iova
uint8_t key_size

NXP Semiconductors
DPAA2 API Reference Manual

196

Data Path Network Interface API

1.12.2.30 struct dpni_fs_action_cfg

struct dpni_fs_action_cfg - Action configuration for table look-up

NXP Semiconductors
DPAA2 API Reference Manual

197

Data Path Network Interface API

Parameters

flc FLC value for traffic matching this rule. Please check the Frame

Descriptor chapter in the hardware documentation for more information. flow_id: Identifies the Rx queue
used for matching traffic. Supported values are in range 0 to num_queue-1. options: Any combination of
DPNI_FS_OPT_ values.

Data Fields

uint64_t flc
uint16_t flow_id
uint16_t options

1.12.2.31 struct dpni_taildrop

struct dpni_taildrop - Structure representing the taildrop

Parameters

enable Indicates whether the taildrop is active or not.
units Indicates the unit of THRESHOLD. Queue taildrop only supports byte units, this field

is ignored and assumed = 0 if CONGESTION_POINT is 0.
threshold Threshold value, in units identified by UNITS field. Value 0 cannot be used as a valid

taildrop threshold, THRESHOLD must be > 0 if the taildrop is enabled.

Data Fields

char enable
enum dpni_←↩
congestion_←↩

unit

units

uint32_t threshold

1.12.3 Macro Definition Documentation

1.12.3.1 #define DPNI_MAX_TC

General DPNI macros.

Maximum number of traffic classes

1.12.3.2 #define DPNI_MAX_DPBP

Maximum number of buffer pools per DPNI.

NXP Semiconductors
DPAA2 API Reference Manual

198

Data Path Network Interface API

1.12.3.3 #define DPNI_MAX_SP

Maximum number of storage-profiles per DPNI.

1.12.3.4 #define DPNI_ALL_TCS

All traffic classes considered; see dpni_set_queue()

1.12.3.5 #define DPNI_ALL_TC_FLOWS

All flows within traffic class considered; see dpni_set_queue()

1.12.3.6 #define DPNI_OPT_TX_FRM_RELEASE

Tx traffic is always released to a buffer pool on transmit, there are no resources allocated to have the
frames confirmed back to the source after transmission.

1.12.3.7 #define DPNI_OPT_NO_MAC_FILTER

Disables support for MAC address filtering for addresses other than primary MAC address.

This affects both unicast and multicast. Promiscuous mode can still be enabled/disabled for both unicast
and multicast. If promiscuous mode is disabled, only traffic matching the primary MAC address will be
accepted.

1.12.3.8 #define DPNI_OPT_HAS_POLICING

Allocate policers for this DPNI.

They can be used to rate-limit traffic per traffic class (TC) basis.

1.12.3.9 #define DPNI_OPT_SHARED_CONGESTION

Congestion can be managed in several ways, allowing the buffer pool to deplete on ingress, taildrop on
each queue or use congestion groups for sets of queues.

If set, it configures a single congestion groups across all TCs. If reset, a congestion group is allocated for
each TC. Only relevant if the DPNI has multiple traffic classes.

1.12.3.10 #define DPNI_OPT_HAS_KEY_MASKING

Enables TCAM for Flow Steering and QoS look-ups.

NXP Semiconductors
DPAA2 API Reference Manual

199

Data Path Network Interface API

If not specified, all look-ups are exact match. Note that TCAM is not available on LS1088 and its variants.
Setting this bit on these SoCs will trigger an error.

1.12.3.11 #define DPNI_OPT_NO_FS

Disables the flow steering table.

1.12.3.12 #define DPNI_OPT_HAS_OPR

Enable the Order Restoration support.

1.12.3.13 #define DPNI_OPT_OPR_PER_TC

Order Point Records are shared for the entire TC.

1.12.3.14 #define DPNI_IRQ_INDEX

DPNI IRQ Index and Events.

IRQ index

1.12.3.15 #define DPNI_IRQ_EVENT_LINK_CHANGED

IRQ event - indicates a change in link state.

1.12.3.16 #define DPNI_ERROR_EOFHE

DPNI errors.

Extract out of frame header error

1.12.3.17 #define DPNI_ERROR_FLE

Frame length error.

1.12.3.18 #define DPNI_ERROR_FPE

Frame physical error.

NXP Semiconductors
DPAA2 API Reference Manual

200

Data Path Network Interface API

1.12.3.19 #define DPNI_ERROR_PHE

Parsing header error.

1.12.3.20 #define DPNI_ERROR_L3CE

Parser L3 checksum error.

1.12.3.21 #define DPNI_ERROR_L4CE

Parser L3 checksum error.

1.12.3.22 #define DPNI_BUF_LAYOUT_OPT_TIMESTAMP

DPNI buffer layout modification options.

Select to modify the time-stamp setting

1.12.3.23 #define DPNI_BUF_LAYOUT_OPT_PARSER_RESULT

Select to modify the parser-result setting; not applicable for Tx.

1.12.3.24 #define DPNI_BUF_LAYOUT_OPT_FRAME_STATUS

Select to modify the frame-status setting.

1.12.3.25 #define DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE

Select to modify the private-data-size setting.

1.12.3.26 #define DPNI_BUF_LAYOUT_OPT_DATA_ALIGN

Select to modify the data-alignment setting.

1.12.3.27 #define DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM

Select to modify the data-head-room setting.

1.12.3.28 #define DPNI_BUF_LAYOUT_OPT_DATA_TAIL_ROOM

Select to modify the data-tail-room setting.

NXP Semiconductors
DPAA2 API Reference Manual

201

Data Path Network Interface API

1.12.4 Enumeration Type Documentation

1.12.4.1 enum dpni_error_action

enum dpni_error_action - Defines DPNI behavior for errors

NXP Semiconductors
DPAA2 API Reference Manual

202

Data Path Network Interface API

Parameters

DPNI_ERRO←↩
R_ACTION_←↩

DISCARD

Discard the frame

DPNI_ERRO←↩
R_ACTION_←↩

CONTINUE

Continue with the normal flow

DPNI_ERRO←↩
R_ACTION_←↩
SEND_TO_E←↩
RROR_QUE←↩

UE

Send the frame to the error queue

1.12.4.2 enum dpni_offload

enum dpni_offload - Identifies a type of offload targeted by the command

Parameters

DPNI_OFF_←↩
RX_L3_CSUM

Rx L3 checksum validation

DPNI_OFF_←↩
RX_L4_CSUM

Rx L4 checksum validation

DPNI_OFF_←↩
TX_L3_CSUM

Tx L3 checksum generation

DPNI_OFF_←↩
TX_L4_CSUM

Tx L4 checksum generation

1.12.4.3 enum dpni_tx_schedule_mode

enum dpni_tx_schedule_mode - DPNI Tx scheduling mode

Parameters

DPNI_TX_S←↩
CHED_STRI←↩
CT_PRIORITY

strict priority

DPNI_TX_S←↩
CHED_WEI←↩

GHTED

weighted based scheduling

1.12.4.4 enum dpni_dist_mode

enum dpni_dist_mode - DPNI distribution mode

NXP Semiconductors
DPAA2 API Reference Manual

203

Data Path Network Interface API

Parameters

DPNI_DIST_←↩
MODE_NONE

No distribution

DPNI_DIST_←↩
MODE_HASH

Use hash distribution; only relevant if the 'DPNI_OPT_DIST_HASH' option was set
at DPNI creation

DPNI_DIST_←↩
MODE_FS

Use explicit flow steering; only relevant if the 'DPNI_OPT_DIST_FS' option was set
at DPNI creation

1.12.4.5 enum dpni_fs_miss_action

enum dpni_fs_miss_action - DPNI Flow Steering miss action

Parameters

DPNI_FS_M←↩
ISS_DROP

In case of no-match, drop the frame

DPNI_FS_M←↩
ISS_EXPLICI←↩

T_FLOWID

In case of no-match, use explicit flow-id

DPNI_FS_M←↩
ISS_HASH

In case of no-match, distribute using hash

1.12.4.6 enum dpni_policer_mode

enum dpni_policer_mode - selecting the policer mode

Parameters

DPNI_POLI←↩
CER_MODE←↩

_NONE

Policer is disabled

DPNI_POLI←↩
CER_MODE←↩
_PASS_THR←↩

OUGH

Policer pass through

DPNI_POLI←↩
CER_MODE←↩

_RFC_2698

Policer algorithm RFC 2698

NXP Semiconductors
DPAA2 API Reference Manual

204

Data Path Network Interface API

DPNI_POLI←↩
CER_MODE←↩

_RFC_4115

Policer algorithm RFC 4115

1.12.4.7 enum dpni_policer_unit

enum dpni_policer_unit - DPNI policer units

Parameters

DPNI_POLI←↩
CER_UNIT_←↩

BYTES

bytes units

DPNI_POLI←↩
CER_UNIT_←↩

FRAMES

frames units

1.12.4.8 enum dpni_policer_color

enum dpni_policer_color - selecting the policer color

Parameters

DPNI_POLI←↩
CER_COLO←↩

R_GREEN

Green color

DPNI_POLI←↩
CER_COLO←↩

R_YELLOW

Yellow color

DPNI_POLI←↩
CER_COLO←↩

R_RED

Red color

1.12.4.9 enum dpni_congestion_unit

enum dpni_congestion_unit - DPNI congestion units

Parameters

DPNI_CON←↩
GESTION_U←↩

NIT_BYTES

bytes units

DPNI_CON←↩
GESTION_U←↩
NIT_FRAMES

frames units

NXP Semiconductors
DPAA2 API Reference Manual

205

Data Path Network Interface API

1.12.4.10 enum dpni_early_drop_mode

enum dpni_early_drop_mode - DPNI early drop mode

NXP Semiconductors
DPAA2 API Reference Manual

206

Data Path Network Interface API

Parameters

DPNI_EARL←↩
Y_DROP_M←↩

ODE_NONE

early drop is disabled

DPNI_EARL←↩
Y_DROP_M←↩

ODE_TAIL

early drop in taildrop mode

DPNI_EARL←↩
Y_DROP_M←↩
ODE_WRED

early drop in WRED mode

1.12.4.11 enum dpni_dest

enum dpni_dest - DPNI destination types

Parameters

DPNI_DEST←↩
_NONE

Unassigned destination; The queue is set in parked mode and does not generate F←↩
QDAN notifications; user is expected to dequeue from the queue based on polling or
other user-defined method

DPNI_DEST←↩
_DPIO

The queue is set in schedule mode and generates FQDAN notifications to the specified
DPIO; user is expected to dequeue from the queue only after notification is received

DPNI_DEST←↩
_DPCON

The queue is set in schedule mode and does not generate FQDAN notifications, but
is connected to the specified DPCON object; user is expected to dequeue from the
DPCON channel

1.12.4.12 enum dpni_confirmation_mode

enum dpni_confirmation_mode - Defines DPNI options supported for Tx confirmation

Parameters

DPNI_CONF←↩
_AFFINE

For each Tx queue set associated with a sender there is

an affine Tx Confirmation queue DPNI_CONF_SINGLE: All Tx queues are associated with a single Tx
confirmation queue DPNI_CONF_DISABLE: Tx frames are not confirmed. This must be associated with
proper FD set-up to have buffers release to a Buffer Pool, otherwise buffers will be leaked

1.12.4.13 enum dpni_congestion_point

enum dpni_congestion_point - Structure representing congestion point

NXP Semiconductors
DPAA2 API Reference Manual

207

Data Path Network Interface API

Parameters

DPNI_CP_Q←↩
UEUE

Set taildrop per queue, identified by QUEUE_TYPE, TC and QUEUE_INDEX

DPNI_CP_G←↩
ROUP

Set taildrop per queue group. Depending on options used to define the DPNI this can
be either per TC (default) or per interface (DPNI_OPT_SHARED_CONGESTION
set at DPNI create). QUEUE_INDEX is ignored if this type is used.

1.12.5 Function Documentation

1.12.5.1 int dpni_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpni_id,
uint16_t ∗ token)

dpni_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

dpni_id DPNI unique ID
token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpni_create() function. This function returns a unique authentication
token, associated with the specific object ID and the specific MC portal; this token must be used in all
subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

1.12.5.2 int dpni_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpni_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.12.5.3 int dpni_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpni_cfg ∗ cfg, uint32_t ∗ obj_id)

dpni_create() - Create the DPNI object

NXP Semiconductors
DPAA2 API Reference Manual

208

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPNI object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.12.5.4 int dpni_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpni_destroy() - Destroy the DPNI object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

1.12.5.5 int dpni_set_pools (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, const struct dpni_pools_cfg ∗ cfg)

dpni_set_pools() - Set buffer pools configuration

Parameters

mc_io Pointer to MC portal's I/O object

NXP Semiconductors
DPAA2 API Reference Manual

209

Data Path Network Interface API

cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
token Token of DPNI object

cfg Buffer pools configuration

mandatory for DPNI operation warning:Allowed only when DPNI is disabled

Return: '0' on Success; Error code otherwise.

1.12.5.6 int dpni_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpni_enable() - Enable the DPNI, allow sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object

Return: '0' on Success; Error code otherwise.

1.12.5.7 int dpni_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)

dpni_disable() - Disable the DPNI, stop sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object

Return: '0' on Success; Error code otherwise.

1.12.5.8 int dpni_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpni_is_enabled() - Check if the DPNI is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.12.5.9 int dpni_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpni_reset() - Reset the DPNI, returns the object to initial state.

NXP Semiconductors
DPAA2 API Reference Manual

210

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object

Return: '0' on Success; Error code otherwise.

1.12.5.10 int dpni_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpni_set_irq_enable() - Set overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
irq_index The interrupt index to configure

en Interrupt state: - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.12.5.11 int dpni_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpni_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.12.5.12 int dpni_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dpni_set_irq_mask() - Set interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

211

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.12.5.13 int dpni_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dpni_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.12.5.14 int dpni_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpni_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

212

Data Path Network Interface API

1.12.5.15 int dpni_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpni_clear_irq_status() - Clear a pending interrupt's status

NXP Semiconductors
DPAA2 API Reference Manual

213

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.12.5.16 int dpni_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dpni_attr ∗ attr)

dpni_get_attributes() - Retrieve DPNI attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
attr Object's attributes

Return: '0' on Success; Error code otherwise.

1.12.5.17 int dpni_set_errors_behavior (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpni_error_cfg ∗ cfg)

dpni_set_errors_behavior() - Set errors behavior

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
cfg Errors configuration

this function may be called numerous times with different error masks

Return: '0' on Success; Error code otherwise.

1.12.5.18 int dpni_get_buffer_layout (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, enum dpni_queue_type qtype, struct dpni_buffer_layout ∗
layout)

/∗∗

NXP Semiconductors
DPAA2 API Reference Manual

214

Data Path Network Interface API

Parameters

DPNI_QUE←↩
UE_RX

Rx queue

DPNI_QUE←↩
UE_TX

Tx queue

DPNI_QUE←↩
UE_TX_CON←↩

FIRM

Tx confirmation queue

DPNI_QUE←↩
UE_RX_ERR

Rx error queue

enum dpni_queue_type - Identifies a type of queue targeted by the command

/enum dpni_queue_type { DPNI_QUEUE_RX, DPNI_QUEUE_TX, DPNI_QUEUE_TX_CONFIRM,
DPNI_QUEUE_RX_ERR, };

dpni_get_buffer_layout() - Retrieve buffer layout attributes. mc_io: Pointer to MC portal's I/O object
cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' token: Token of DPNI object qtype:
Type of queue to get the layout from layout: Returns buffer layout attributes

Return: '0' on Success; Error code otherwise.

1.12.5.19 int dpni_set_buffer_layout (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, enum dpni_queue_type qtype, const struct dpni_buffer_layout
∗ layout)

dpni_set_buffer_layout() - Set buffer layout configuration.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
qtype Type of queue to set layout on

layout Buffer layout configuration

Return: '0' on Success; Error code otherwise.

warning Allowed only when DPNI is disabled

1.12.5.20 int dpni_set_offload (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, enum dpni_offload type, uint32_t config)

dpni_set_offload() - Set DPNI offload configuration.

NXP Semiconductors
DPAA2 API Reference Manual

215

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
type Type of DPNI offload

config Offload configuration. For checksum offloads, non-zero value enables the offload.

Return: '0' on Success; Error code otherwise.

warning Allowed only when DPNI is disabled

1.12.5.21 int dpni_get_offload (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, enum dpni_offload type, uint32_t ∗ config)

dpni_get_offload() - Get DPNI offload configuration.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
type Type of DPNI offload

config Offload configuration. For checksum offloads, a value of 1 indicates that the offload
is enabled.

Return: '0' on Success; Error code otherwise.

warning Allowed only when DPNI is disabled

1.12.5.22 int dpni_get_qdid (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, enum dpni_queue_type qtype, uint16_t ∗ qdid)

dpni_get_qdid() - Get the Queuing Destination ID (QDID) that should be used for enqueue operations

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
qtype Type of queue to get QDID for. For applications lookig to transmit traffic this should

be set to DPNI_QUEUE_TX
qdid Returned virtual QDID value that should be used as an argument in all enqueue oper-

ations

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

216

Data Path Network Interface API

1.12.5.23 int dpni_get_sp_info (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dpni_sp_info ∗ sp_info)

dpni_get_spids() - Get the AIOP storage profile IDs associated with the DPNI

NXP Semiconductors
DPAA2 API Reference Manual

217

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
sp_info Returned AIOP storage-profile information

Return: '0' on Success; Error code otherwise.

warning Only relevant for DPNI that belongs to AIOP container.

1.12.5.24 int dpni_get_tx_data_offset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t ∗ data_offset)

dpni_get_tx_data_offset() - Get the Tx data offset (from start of buffer)

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
data_offset Tx data offset (from start of buffer)

Return: '0' on Success; Error code otherwise.

1.12.5.25 int dpni_set_link_cfg (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, const struct dpni_link_cfg ∗ cfg)

dpni_set_link_cfg() - set the link configuration.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
cfg Link configuration

Return: '0' on Success; Error code otherwise.

1.12.5.26 int dpni_get_link_state (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t
token, struct dpni_link_state ∗ state)

dpni_get_link_state() - Return the link state (either up or down)

Parameters

NXP Semiconductors
DPAA2 API Reference Manual

218

Data Path Network Interface API

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
state Returned link state;

Return: '0' on Success; Error code otherwise.

1.12.5.27 int dpni_set_tx_shaping (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const struct dpni_tx_shaping_cfg ∗ tx_shaper)

dpni_set_tx_shaping() - Set the transmit shaping

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tx_shaper tx shaping configuration

Return: '0' on Success; Error code otherwise.

1.12.5.28 int dpni_set_max_frame_length (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t max_frame_length)

dpni_set_max_frame_length() - Set the maximum received frame length.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
max_frame_←↩

length
Maximum received frame length (in bytes); frame is discarded if its length exceeds
this value

Return: '0' on Success; Error code otherwise.

1.12.5.29 int dpni_get_max_frame_length (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t ∗ max_frame_length)

dpni_get_max_frame_length() - Get the maximum received frame length.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
max_frame_←↩

length
Maximum received frame length (in bytes); frame is discarded if its length exceeds
this value

NXP Semiconductors
DPAA2 API Reference Manual

219

Data Path Network Interface API

Return: '0' on Success; Error code otherwise.

1.12.5.30 int dpni_set_mtu (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t mtu)

dpni_set_mtu() - Set the MTU for the interface.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mtu MTU length (in bytes)

MTU determines the maximum fragment size for performing IP fragmentation on egress packets. Return:
'0' on Success; Error code otherwise.

1.12.5.31 int dpni_get_mtu (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t ∗ mtu)

dpni_get_mtu() - Get the MTU.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mtu Returned MTU length (in bytes)

Return: '0' on Success; Error code otherwise.

1.12.5.32 int dpni_set_multicast_promisc (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int en)

dpni_set_multicast_promisc() - Enable/disable multicast promiscuous mode

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
en Set to '1' to enable; '0' to disable

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

220

Data Path Network Interface API

1.12.5.33 int dpni_get_multicast_promisc (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int ∗ en)

dpni_get_multicast_promisc() - Get multicast promiscuous mode

NXP Semiconductors
DPAA2 API Reference Manual

221

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
en Returns '1' if enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.12.5.34 int dpni_set_unicast_promisc (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int en)

dpni_set_unicast_promisc() - Enable/disable unicast promiscuous mode

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
en Set to '1' to enable; '0' to disable

Return: '0' on Success; Error code otherwise.

1.12.5.35 int dpni_get_unicast_promisc (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int ∗ en)

dpni_get_unicast_promisc() - Get unicast promiscuous mode

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
en Returns '1' if enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.12.5.36 int dpni_set_primary_mac_addr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const uint8_t mac_addr[6])

dpni_set_primary_mac_addr() - Set the primary MAC address

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mac_addr MAC address to set as primary address

NXP Semiconductors
DPAA2 API Reference Manual

222

Data Path Network Interface API

Return: '0' on Success; Error code otherwise.

1.12.5.37 int dpni_get_primary_mac_addr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t mac_addr[6])

dpni_get_primary_mac_addr() - Get the primary MAC address

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mac_addr Returned MAC address

Return: '0' on Success; Error code otherwise.

1.12.5.38 int dpni_add_mac_addr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const uint8_t mac_addr[6])

dpni_add_mac_addr() - Add MAC address filter

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mac_addr MAC address to add

Return: '0' on Success; Error code otherwise.

1.12.5.39 int dpni_remove_mac_addr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const uint8_t mac_addr[6])

dpni_remove_mac_addr() - Remove MAC address filter

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mac_addr MAC address to remove

Return: '0' on Success; Error code otherwise.

1.12.5.40 int dpni_clear_mac_filters (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int unicast, int multicast)

dpni_clear_mac_filters() - Clear all unicast and/or multicast MAC filters

NXP Semiconductors
DPAA2 API Reference Manual

223

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
unicast Set to '1' to clear unicast addresses

multicast Set to '1' to clear multicast addresses

The primary MAC address is not cleared by this operation.

Return: '0' on Success; Error code otherwise.

1.12.5.41 int dpni_get_port_mac_addr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t mac_addr[6])

dpni_get_port_mac_addr() - Retrieve MAC address associated to the physical port the DPNI is attached
to
Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mac_addr MAC address of the physical port, if any, otherwise 0

The primary MAC address is not modified by this operation.

Return: '0' on Success; Error code otherwise.

1.12.5.42 int dpni_enable_vlan_filter (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, int en)

dpni_enable_vlan_filter() - Enable/disable VLAN filtering mode

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
en Set to '1' to enable; '0' to disable

Return: '0' on Success; Error code otherwise.

1.12.5.43 int dpni_add_vlan_id (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint16_t vlan_id)

dpni_add_vlan_id() - Add VLAN ID filter

NXP Semiconductors
DPAA2 API Reference Manual

224

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
vlan_id VLAN ID to add

Return: '0' on Success; Error code otherwise.

1.12.5.44 int dpni_remove_vlan_id (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t vlan_id)

dpni_remove_vlan_id() - Remove VLAN ID filter

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
vlan_id VLAN ID to remove

Return: '0' on Success; Error code otherwise.

1.12.5.45 int dpni_clear_vlan_filters (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token)

dpni_clear_vlan_filters() - Clear all VLAN filters

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object

Return: '0' on Success; Error code otherwise.

1.12.5.46 int dpni_set_tx_priorities (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const struct dpni_tx_priorities_cfg ∗ cfg)

dpni_set_tx_priorities() - Set transmission TC priority configuration

Parameters

mc_io Pointer to MC portal's I/O object

NXP Semiconductors
DPAA2 API Reference Manual

225

Data Path Network Interface API

cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
token Token of DPNI object

cfg transmission selection configuration

warning: Allowed only when DPNI is disabled

Return: '0' on Success; Error code otherwise.

1.12.5.47 int dpni_set_rx_tc_dist (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t tc_id, const struct dpni_rx_tc_dist_cfg ∗ cfg)

dpni_set_rx_tc_dist() - Set Rx traffic class distribution configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc_id Traffic class selection (0-7)

cfg Traffic class distribution configuration

warning: if 'dist_mode != DPNI_DIST_MODE_NONE', call dpkg_prepare_key_cfg() first to prepare the
key_cfg_iova parameter

Return: '0' on Success; error code otherwise.

1.12.5.48 int dpni_set_rx_tc_policing (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t tc_id, const struct dpni_rx_tc_policing_cfg ∗ cfg)

dpni_set_rx_tc_policing() - Set Rx traffic class policing configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc_id Traffic class selection (0-7)

cfg Traffic class policing configuration

Return: '0' on Success; error code otherwise.

1.12.5.49 int dpni_get_rx_tc_policing (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t tc_id, struct dpni_rx_tc_policing_cfg ∗ cfg)

dpni_get_rx_tc_policing() - Get Rx traffic class policing configuration

NXP Semiconductors
DPAA2 API Reference Manual

226

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc_id Traffic class selection (0-7)

cfg Traffic class policing configuration

Return: '0' on Success; error code otherwise.

1.12.5.50 void dpni_prepare_early_drop (const struct dpni_early_drop_cfg ∗ cfg, uint8_t
∗ early_drop_buf)

dpni_prepare_early_drop() - prepare an early drop.

Parameters

cfg Early-drop configuration
early_drop_buf Zeroed 256 bytes of memory before mapping it to DMA

This function has to be called before dpni_set_rx_tc_early_drop or dpni_set_tx_tc_early_drop

1.12.5.51 void dpni_extract_early_drop (struct dpni_early_drop_cfg ∗ cfg, const uint8_t
∗ early_drop_buf)

dpni_extract_early_drop() - extract the early drop configuration.

Parameters

cfg Early-drop configuration
early_drop_buf Zeroed 256 bytes of memory before mapping it to DMA

This function has to be called after dpni_get_rx_tc_early_drop or dpni_get_tx_tc_early_drop

1.12.5.52 int dpni_set_early_drop (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, enum dpni_queue_type qtype, uint8_t tc_id, uint64_t
early_drop_iova)

dpni_set_early_drop() - Set traffic class early-drop configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

NXP Semiconductors
DPAA2 API Reference Manual

227

Data Path Network Interface API

token Token of DPNI object
qtype Type of queue - only Rx and Tx types are supported
tc_id Traffic class selection (0-7)

early_drop_←↩
iova

I/O virtual address of 256 bytes DMA-able memory filled with the early-drop config-
uration by calling dpni_prepare_early_drop()

warning: Before calling this function, call dpni_prepare_early_drop() to prepare the early_drop_iova
parameter

Return: '0' on Success; error code otherwise.

1.12.5.53 int dpni_get_early_drop (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, enum dpni_queue_type qtype, uint8_t tc_id, uint64_t
early_drop_iova)

dpni_get_rx_tc_early_drop() - Get Rx traffic class early-drop configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
qtype Type of queue - only Rx and Tx types are supported
tc_id Traffic class selection (0-7)

early_drop_←↩
iova

I/O virtual address of 256 bytes DMA-able memory

warning: After calling this function, call dpni_extract_early_drop() to get the early drop configuration

Return: '0' on Success; error code otherwise.

1.12.5.54 int dpni_set_congestion_notification (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, enum dpni_queue_type qtype, uint8_t tc_id, const
struct dpni_congestion_notification_cfg ∗ cfg)

dpni_set_congestion_notification() - Set traffic class congestion notification configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
qtype Type of queue - Rx, Tx and Tx confirm types are supported

NXP Semiconductors
DPAA2 API Reference Manual

228

Data Path Network Interface API

tc_id Traffic class selection (0-7)
cfg congestion notification configuration

Return: '0' on Success; error code otherwise.

1.12.5.55 int dpni_get_congestion_notification (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, enum dpni_queue_type qtype, uint8_t tc_id, struct
dpni_congestion_notification_cfg ∗ cfg)

dpni_get_congestion_notification() - Get traffic class congestion notification configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
qtype Type of queue - Rx, Tx and Tx confirm types are supported
tc_id Traffic class selection (0-7)

cfg congestion notification configuration

Return: '0' on Success; error code otherwise.

1.12.5.56 int dpni_set_tx_confirmation_mode (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, enum dpni_confirmation_mode mode)

dpni_set_tx_confirmation_mode() - Tx confirmation mode

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
mode Tx confirmation mode

This function is useful only when 'DPNI_OPT_TX_CONF_DISABLED' is not selected at DPNI creation.
Calling this function with 'mode' set to DPNI_CONF_DISABLE disables all transmit confirmation (in-
cluding the private confirmation queues), regardless of previous settings; Note that in this case, Tx error
frames are still enqueued to the general transmit errors queue. Calling this function with 'mode' set to
DPNI_CONF_SINGLE switches all Tx confirmations to a shared Tx conf queue. The ID of the queue
when calling dpni_set/get_queue is -1. Tx confirmation mode can only be changed while the DPNI is
disabled. Executing this command while the DPNI is enabled will return an error.

Return: '0' on Success; Error code otherwise.

1.12.5.57 int dpni_set_qos_table (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t
token, const struct dpni_qos_tbl_cfg ∗ cfg)

dpni_set_qos_table() - Set QoS mapping table

NXP Semiconductors
DPAA2 API Reference Manual

229

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
cfg QoS table configuration

This function and all QoS-related functions require that 'max_tcs > 1' was set at DPNI creation.

warning: Before calling this function, call dpkg_prepare_key_cfg() to prepare the key_cfg_iova parameter

Return: '0' on Success; Error code otherwise.

1.12.5.58 int dpni_add_qos_entry (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const struct dpni_rule_cfg ∗ cfg, uint8_t tc_id, uint16_t index)

dpni_add_qos_entry() - Add QoS mapping entry (to select a traffic class)

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
cfg QoS rule to add

tc_id Traffic class selection (0-7)
index Location in the QoS table where to insert the entry. Only relevant if MASKING is

enabled for QoS classification on this DPNI, it is ignored for exact match.

Return: '0' on Success; Error code otherwise.

1.12.5.59 int dpni_remove_qos_entry (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const struct dpni_rule_cfg ∗ cfg)

dpni_remove_qos_entry() - Remove QoS mapping entry

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
cfg QoS rule to remove

Return: '0' on Success; Error code otherwise.

1.12.5.60 int dpni_clear_qos_table (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token)

dpni_clear_qos_table() - Clear all QoS mapping entries

NXP Semiconductors
DPAA2 API Reference Manual

230

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object

Following this function call, all frames are directed to the default traffic class (0)

Return: '0' on Success; Error code otherwise.

1.12.5.61 int dpni_add_fs_entry (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t tc_id, uint16_t index, const struct dpni_rule_cfg ∗ cfg, const
struct dpni_fs_action_cfg ∗ action)

dpni_add_fs_entry() - Add Flow Steering entry for a specific traffic class (to select a flow ID)

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc_id Traffic class selection (0-7)
index Location in the QoS table where to insert the entry. Only relevant if MASKING is

enabled for QoS classification on this DPNI, it is ignored for exact match.
cfg Flow steering rule to add

action Action to be taken as result of a classification hit

Return: '0' on Success; Error code otherwise.

1.12.5.62 int dpni_remove_fs_entry (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t tc_id, const struct dpni_rule_cfg ∗ cfg)

dpni_remove_fs_entry() - Remove Flow Steering entry from a specific traffic class

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc_id Traffic class selection (0-7)

cfg Flow steering rule to remove

Return: '0' on Success; Error code otherwise.

1.12.5.63 int dpni_clear_fs_entries (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t tc_id)

dpni_clear_fs_entries() - Clear all Flow Steering entries of a specific traffic class

NXP Semiconductors
DPAA2 API Reference Manual

231

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc_id Traffic class selection (0-7)

Return: '0' on Success; Error code otherwise.

1.12.5.64 int dpni_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpni_get_api_version() - Get Data Path Network Interface API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path network interface API
minor_ver Minor version of data path network interface API

Return: '0' on Success; Error code otherwise.

1.12.5.65 int dpni_set_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, enum dpni_queue_type qtype, uint8_t tc, uint8_t index, uint8_t options,
const struct dpni_queue ∗ queue)

dpni_set_queue() - Set queue parameters

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
qtype Type of queue - all queue types are supported, although the command is ignored for

Tx
tc Traffic class, in range 0 to NUM_TCS - 1

index Selects the specific queue out of the set allocated for the same TC.Value must be in
range 0 to NUM_QUEUES - 1

options A combination of DPNI_QUEUE_OPT_ values that control what configuration op-
tions are set on the queue

NXP Semiconductors
DPAA2 API Reference Manual

232

Data Path Network Interface API

queue Queue configuration structure

Return: '0' on Success; Error code otherwise.

1.12.5.66 int dpni_get_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, enum dpni_queue_type qtype, uint8_t tc, uint8_t index, struct
dpni_queue ∗ queue, struct dpni_queue_id ∗ qid)

dpni_get_queue() - Get queue parameters

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
qtype Type of queue - all queue types are supported

tc Traffic class, in range 0 to NUM_TCS - 1
index Selects the specific queue out of the set allocated for the same TC. Value must be in

range 0 to NUM_QUEUES - 1
queue Queue configuration structure

qid Queue identification

This function returns current queue configuration which can be changed by calling dpni_set_queue, and
queue identification information. Returned qid.fqid and/or qid.qdbin values can be used to:

• enqueue traffic for Tx queues,
• perform volatile dequeue for Rx and, if applicable, Tx confirmation clean-up,
• retrieve queue state.

All these operations are supported through the DPIO run-time API.

Return: '0' on Success; Error code otherwise.

1.12.5.67 int dpni_get_statistics (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t page, union dpni_statistics ∗ stat)

dpni_get_statistics() - Get DPNI statistics

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
page Selects the statistics page to retrieve, see DPNI_GET_STATISTICS output. Pages

are numbered 0 to 2.

NXP Semiconductors
DPAA2 API Reference Manual

233

Data Path Network Interface API

stat Structure containing the statistics

Return: '0' on Success; Error code otherwise.

1.12.5.68 int dpni_reset_statistics (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token)

dpni_reset_statistics() - Clears DPNI statistics

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object

Return: '0' on Success; Error code otherwise.

1.12.5.69 int dpni_set_taildrop (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, enum dpni_congestion_point cg_point, enum dpni_queue_type q_type,
uint8_t tc, uint8_t q_index, struct dpni_taildrop ∗ taildrop)

dpni_set_taildrop() - Set taildrop per queue or TC

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
cg_point Congestion point. DPNI_CP_QUEUE is only supported in combination with DPN←↩

I_QUEUE_RX.
q_type Queue type, can be DPNI_QUEUE_RX or DPNI_QUEUE_TX.

tc Traffic class to apply this taildrop to
q_index Index of the queue if the DPNI supports multiple queues for traffic distribution. Ig-

nored if CONGESTION_POINT is not DPNI_CP_QUEUE.
taildrop Taildrop structure

Setting a per-TC taildrop (cg_point = DPNI_CP_GROUP) will reset any current congestion notification
or early drop (WRED) configuration previously applied to the same TC.

Return: '0' on Success; Error code otherwise.

1.12.5.70 int dpni_get_taildrop (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, enum dpni_congestion_point cg_point, enum dpni_queue_type q_type,
uint8_t tc, uint8_t q_index, struct dpni_taildrop ∗ taildrop)

dpni_get_taildrop() - Get taildrop information

NXP Semiconductors
DPAA2 API Reference Manual

234

Data Path Network Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
cg_point Congestion point

q_type
tc Traffic class to apply this taildrop to

q_index Index of the queue if the DPNI supports multiple queues for traffic distribution. Ig-
nored if CONGESTION_POINT is not 0.

taildrop Taildrop structure

Return: '0' on Success; Error code otherwise.

1.12.5.71 int dpni_set_opr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t tc, uint8_t index, uint8_t options, struct opr_cfg ∗ cfg)

dpni_set_opr() - Set Order Restoration configuration.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc Traffic class, in range 0 to NUM_TCS - 1

index Selects the specific queue out of the set allocated for the same TC. Value must be in
range 0 to NUM_QUEUES - 1

options Configuration mode options can be OPR_OPT_CREATE or OPR_OPT_RETIRE
cfg Configuration options for the OPR

Return: '0' on Success; Error code otherwise.

1.12.5.72 int dpni_get_opr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t tc, uint8_t index, struct opr_cfg ∗ cfg, struct opr_qry ∗ qry)

dpni_get_opr() - Retrieve Order Restoration config and query.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPNI object
tc Traffic class, in range 0 to NUM_TCS - 1

NXP Semiconductors
DPAA2 API Reference Manual

235

Data Path Key Generator API

index Selects the specific queue out of the set allocated for the same TC. Value must be in
range 0 to NUM_QUEUES - 1

cfg Returned OPR configuration
qry Returned OPR query

Return: '0' on Success; Error code otherwise.

1.13 Data Path Key Generator API

1.13.1 Overview

Contains initialization APIs and runtime APIs for the Key Generator.

Data Structures

• struct dpkg_mask
• struct dpkg_extract
• union dpkg_extract.extract
• struct dpkg_extract.extract.from_hdr
• struct dpkg_extract.extract.from_data
• struct dpkg_extract.extract.from_parse
• struct dpkg_profile_cfg

Macros

• #define DPKG_NUM_OF_MASKS
• #define DPKG_MAX_NUM_OF_EXTRACTS

Enumerations

• enum dpkg_extract_from_hdr_type {
DPKG_FROM_HDR,
DPKG_FROM_FIELD,
DPKG_FULL_FIELD }

• enum dpkg_extract_type {
DPKG_EXTRACT_FROM_HDR,
DPKG_EXTRACT_FROM_DATA,
DPKG_EXTRACT_FROM_PARSE }

Functions

• int dpkg_prepare_key_cfg (const struct dpkg_profile_cfg ∗cfg, uint8_t ∗key_cfg_buf)

NXP Semiconductors
DPAA2 API Reference Manual

236

Data Path Key Generator API

1.13.2 Data Structure Documentation

1.13.2.1 struct dpkg_mask

struct dpkg_mask - A structure for defining a single extraction mask

NXP Semiconductors
DPAA2 API Reference Manual

237

Data Path Key Generator API

Parameters

mask Byte mask for the extracted content
offset Offset within the extracted content

Data Fields

uint8_t mask
uint8_t offset

1.13.2.2 struct dpkg_extract

struct dpkg_extract - A structure for defining a single extraction

Parameters

type Determines how the union below is interpreted: DPKG_EXTRACT_FROM_HDR:
selects 'from_hdr'; DPKG_EXTRACT_FROM_DATA: selects 'from_data'; DPKG←↩
_EXTRACT_FROM_PARSE: selects 'from_parse'

extract Selects extraction method
num_of_byte←↩

_masks
Defines the number of valid entries in the array below; This is also the number of
bytes to be used as masks

masks Masks parameters

Data Fields

enum dpkg_←↩
extract_type

type

union
dpkg_extract

extract union extract - Selects extraction method - Used when 'type = D←↩
PKG_EXTRACT_FROM_HDR' - Used when 'type = DPKG_E←↩
XTRACT_FROM_DATA' - Used when 'type = DPKG_EXTRA←↩
CT_FROM_PARSE'

uint8_t num_of_byte←↩
_masks

struct
dpkg_mask

masks[DPKG←↩
_NUM_OF_←↩
MASKS]

1.13.2.3 union dpkg_extract.extract

union extract - Selects extraction method - Used when 'type = DPKG_EXTRACT_FROM_HDR' - Used
when 'type = DPKG_EXTRACT_FROM_DATA' - Used when 'type = DPKG_EXTRACT_FROM_PA←↩
RSE'

NXP Semiconductors
DPAA2 API Reference Manual

238

Data Path Key Generator API

Data Fields

extract from_hdr struct from_hdr - Used when 'type = DPKG_EXTRACT_FROM←↩
_HDR' : Any of the supported headers : Defines the type of header
extraction: DPKG_FROM_HDR: use size & offset below; DPK←↩
G_FROM_FIELD: use field, size and offset below; DPKG_FUL←↩
L_FIELD: use field below : One of the supported fields (NH_FL←↩
D_) : Size in bytes : Byte offset : Clear for cases not listed below;
Used for protocols that may have more than a single header, 0 indi-
cates an outer header; Supported protocols (possible values): NE←↩
T_PROT_VLAN (0, HDR_INDEX_LAST); NET_PROT_MPLS
(0, 1, HDR_INDEX_LAST); NET_PROT_IP(0, HDR_INDEX←↩
_LAST); NET_PROT_IPv4(0, HDR_INDEX_LAST); NET_PR←↩
OT_IPv6(0, HDR_INDEX_LAST);

extract from_data struct from_data Used when 'type = DPKG_EXTRACT_FROM←↩
_DATA' : Size in bytes : Byte offset

extract from_parse struct from_parse Used when 'type = DPKG_EXTRACT_FRO←↩
M_PARSE' : Size in bytes : Byte offset

1.13.2.4 struct dpkg_extract.extract.from_hdr

struct from_hdr - Used when 'type = DPKG_EXTRACT_FROM_HDR' : Any of the supported headers
: Defines the type of header extraction: DPKG_FROM_HDR: use size & offset below; DPKG_FROM←↩
_FIELD: use field, size and offset below; DPKG_FULL_FIELD: use field below : One of the supported
fields (NH_FLD_)

: Size in bytes : Byte offset : Clear for cases not listed below; Used for protocols that may have more than a
single header, 0 indicates an outer header; Supported protocols (possible values): NET_PROT_VLAN (0,
HDR_INDEX_LAST); NET_PROT_MPLS (0, 1, HDR_INDEX_LAST); NET_PROT_IP(0, HDR_IN←↩
DEX_LAST); NET_PROT_IPv4(0, HDR_INDEX_LAST); NET_PROT_IPv6(0, HDR_INDEX_LAST);

Data Fields

enum net_prot prot
enum dpkg_←↩
extract_from←↩

_hdr_type

type

uint32_t field
uint8_t size
uint8_t offset
uint8_t hdr_index

1.13.2.5 struct dpkg_extract.extract.from_data

struct from_data Used when 'type = DPKG_EXTRACT_FROM_DATA' : Size in bytes : Byte offset

NXP Semiconductors
DPAA2 API Reference Manual

239

Data Path Key Generator API

Data Fields

uint8_t size
uint8_t offset

1.13.2.6 struct dpkg_extract.extract.from_parse

struct from_parse Used when 'type = DPKG_EXTRACT_FROM_PARSE' : Size in bytes : Byte offset

Data Fields

uint8_t size
uint8_t offset

1.13.2.7 struct dpkg_profile_cfg

struct dpkg_profile_cfg - A structure for defining a full Key Generation profile (rule)

Parameters

num_extracts Defines the number of valid entries in the array below
extracts Array of required extractions

Data Fields

uint8_t num_extracts
struct

dpkg_extract
extracts[DPK←↩
G_MAX_NU←↩
M_OF_EXT←↩
RACTS]

1.13.3 Macro Definition Documentation

1.13.3.1 #define DPKG_NUM_OF_MASKS

Key Generator properties.

Number of masks per key extraction

1.13.3.2 #define DPKG_MAX_NUM_OF_EXTRACTS

Number of extractions per key profile.

NXP Semiconductors
DPAA2 API Reference Manual

240

Data Path Key Generator API

1.13.4 Enumeration Type Documentation

1.13.4.1 enum dpkg_extract_from_hdr_type

enum dpkg_extract_from_hdr_type - Selecting extraction by header types

NXP Semiconductors
DPAA2 API Reference Manual

241

Data Path Key Generator API

Parameters

DPKG_FRO←↩
M_HDR

Extract selected bytes from header, by offset

DPKG_FRO←↩
M_FIELD

Extract selected bytes from header, by offset from field

DPKG_FUL←↩
L_FIELD

Extract a full field

1.13.4.2 enum dpkg_extract_type

enum dpkg_extract_type - Enumeration for selecting extraction type

Parameters

DPKG_EXT←↩
RACT_FRO←↩

M_HDR

Extract from the header

DPKG_EXT←↩
RACT_FRO←↩

M_DATA

Extract from data not in specific header

DPKG_EXT←↩
RACT_FRO←↩

M_PARSE

Extract from parser-result; e.g. can be used to extract header existence; please refer
to 'Parse Result definition' chapter in the parser BG

1.13.5 Function Documentation

1.13.5.1 int dpkg_prepare_key_cfg (const struct dpkg_profile_cfg ∗ cfg, uint8_t ∗
key_cfg_buf)

dpkg_prepare_key_cfg() - function prepare extract parameters

Parameters

cfg defining a full Key Generation profile (rule)
key_cfg_buf Zeroed 256 bytes of memory before mapping it to DMA

This function has to be called before the following functions:

• dpni_set_rx_tc_dist()
• dpni_set_qos_table()
• dpkg_prepare_key_cfg()

NXP Semiconductors
DPAA2 API Reference Manual

242

Data Path Demux API

1.14 Data Path Demux API

1.14.1 Overview

Contains API for handling DPDMUX topology and functionality.

Data Structures

• struct dpdmux_cfg
• struct dpdmux_cfg.adv
• struct dpdmux_attr
• struct dpdmux_accepted_frames
• struct dpdmux_if_attr
• struct dpdmux_l2_rule
• struct dpdmux_link_cfg
• struct dpdmux_link_state
• struct dpdmux_rule_cfg
• struct dpdmux_cls_action

Macros

• #define DPDMUX_OPT_BRIDGE_EN
• #define DPDMUX_OPT_CLS_MASK_SUPPORT
• #define DPDMUX_IRQ_INDEX_IF
• #define DPDMUX_IRQ_INDEX
• #define DPDMUX_IRQ_EVENT_LINK_CHANGED

Enumerations

• enum dpdmux_manip {
DPDMUX_MANIP_NONE,
DPDMUX_MANIP_ADD_REMOVE_S_VLAN }

• enum dpdmux_method {
DPDMUX_METHOD_NONE,
DPDMUX_METHOD_C_VLAN_MAC,
DPDMUX_METHOD_MAC,
DPDMUX_METHOD_C_VLAN,
DPDMUX_METHOD_S_VLAN,
DPDMUX_METHOD_CUSTOM }

• enum dpdmux_counter_type {

NXP Semiconductors
DPAA2 API Reference Manual

243

Data Path Demux API

DPDMUX_CNT_ING_FRAME,
DPDMUX_CNT_ING_BYTE,
DPDMUX_CNT_ING_FLTR_FRAME,
DPDMUX_CNT_ING_FRAME_DISCARD,
DPDMUX_CNT_ING_MCAST_FRAME,
DPDMUX_CNT_ING_MCAST_BYTE,
DPDMUX_CNT_ING_BCAST_FRAME,
DPDMUX_CNT_ING_BCAST_BYTES,
DPDMUX_CNT_EGR_FRAME,
DPDMUX_CNT_EGR_BYTE,
DPDMUX_CNT_EGR_FRAME_DISCARD }

• enum dpdmux_accepted_frames_type {
DPDMUX_ADMIT_ALL,
DPDMUX_ADMIT_ONLY_VLAN_TAGGED,
DPDMUX_ADMIT_ONLY_UNTAGGED }

• enum dpdmux_action {
DPDMUX_ACTION_DROP,
DPDMUX_ACTION_REDIRECT_TO_CTRL }

Functions

• int dpdmux_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpdmux_id, uint16_t ∗token)
• int dpdmux_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmux_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpdmux_cfg ∗cfg, uint32_t ∗obj_id)
• int dpdmux_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_t

object_id)
• int dpdmux_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmux_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmux_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpdmux_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdmux_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t en)
• int dpdmux_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t ∗en)
• int dpdmux_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t mask)
• int dpdmux_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t ∗mask)
• int dpdmux_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t ∗status)
• int dpdmux_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t status)
• int dpdmux_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpdmux_attr ∗attr)
• int dpdmux_set_max_frame_length (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t max_frame_length)
• int dpdmux_if_set_accepted_frames (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

NXP Semiconductors
DPAA2 API Reference Manual

244

Data Path Demux API

uint16_t if_id, const struct dpdmux_accepted_frames ∗cfg)
• int dpdmux_if_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16←↩

_t if_id, struct dpdmux_if_attr ∗attr)
• int dpdmux_if_remove_l2_rule (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t if_id, const struct dpdmux_l2_rule ∗rule)
• int dpdmux_if_add_l2_rule (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16_t

if_id, const struct dpdmux_l2_rule ∗rule)
• ∗int dpdmux_if_get_counter (struct fsl_mc_io ∗mc_io,∗uint32_t cmd_flags,∗uint16_t token,∗uint16←↩

_t if_id,∗enum dpdmux_counter_type counter_type,∗uint64_t ∗counter)
• Error code otherwise ∗∗∗int dpdmux_ul_reset_counters (struct fsl_mc_io ∗mc_io,∗uint32_t cmd←↩

_flags,∗uint16_t token)
• int dpdmux_if_set_link_cfg (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint16←↩

_t if_id, struct dpdmux_link_cfg ∗cfg)
• int dpdmux_if_get_link_state (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

uint16_t if_id, struct dpdmux_link_state ∗state)
• int dpdmux_set_custom_key (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint64←↩

_t key_cfg_iova)
• int dpdmux_add_custom_cls_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token,

struct dpdmux_rule_cfg ∗rule, struct dpdmux_cls_action ∗action)
• int dpdmux_remove_custom_cls_entry (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t to-

ken, struct dpdmux_rule_cfg ∗rule)
• int dpdmux_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)

1.14.2 Data Structure Documentation

1.14.2.1 struct dpdmux_cfg

struct dpdmux_cfg - DPDMUX configuration parameters

Parameters

method Defines the operation method for the DPDMUX address table
manip Required manipulation operation

num_ifs Number of interfaces (excluding the uplink interface)
adv Advanced parameters; default is all zeros; use this structure to change default settings

Data Fields

enum
dpdmux_←↩

method

method

NXP Semiconductors
DPAA2 API Reference Manual

245

Data Path Demux API

enum
dpdmux_manip

manip

uint16_t num_ifs
struct

dpdmux_cfg
adv struct adv - Advanced parameters : DPDMUX options - combina-

tion of 'DPDMUX_OPT_<X>' flags : Maximum entries in DP←↩
DMUX address table. Maximum value supported is 64. Value 0
defaults to 64 entries. : Number of multicast groups in DPDMUX
table. Maximum value supported is 32. Value 0 defaults to 32 mul-
ticast groups. : max vlan ids allowed in the system - relevant only
case of working in mac+vlan method. This value is used for flood-
ing across all ports member in a given VLAN, if an exact match is
not found. Maximum value supported is 16. Value 0 defaults to 16
VLANs.

1.14.2.2 struct dpdmux_cfg.adv

struct adv - Advanced parameters : DPDMUX options - combination of 'DPDMUX_OPT_<X>' flags :
Maximum entries in DPDMUX address table.

Maximum value supported is 64. Value 0 defaults to 64 entries. : Number of multicast groups in DP←↩
DMUX table. Maximum value supported is 32. Value 0 defaults to 32 multicast groups. : max vlan ids
allowed in the system - relevant only case of working in mac+vlan method. This value is used for flooding
across all ports member in a given VLAN, if an exact match is not found. Maximum value supported is
16. Value 0 defaults to 16 VLANs.
Data Fields

uint64_t options
uint16_t max_dmat_←↩

entries
uint16_t max_mc_←↩

groups
uint16_t max_vlan_ids

1.14.2.3 struct dpdmux_attr

struct dpdmux_attr - Structure representing DPDMUX attributes

Parameters

id DPDMUX object ID
options Configuration options (bitmap)
method DPDMUX address table method
manip DPDMUX manipulation type

num_ifs Number of interfaces (excluding the uplink interface)
mem_size DPDMUX frame storage memory size

NXP Semiconductors
DPAA2 API Reference Manual

246

Data Path Demux API

Data Fields

int id
uint64_t options

enum
dpdmux_←↩

method

method

enum
dpdmux_manip

manip

uint16_t num_ifs
uint16_t mem_size

1.14.2.4 struct dpdmux_accepted_frames

struct dpdmux_accepted_frames - Frame types configuration

Parameters

type Defines ingress accepted frames
unaccept_act Defines action on frames not accepted

Data Fields

enum
dpdmux_←↩
accepted_←↩
frames_type

type

enum
dpdmux_action

unaccept_act

1.14.2.5 struct dpdmux_if_attr

struct dpdmux_if_attr - Structure representing frame types configuration

Parameters

rate Configured interface rate (in bits per second)
enabled Indicates if interface is enabled

accept_frame←↩
_type

Indicates type of accepted frames for the interface

NXP Semiconductors
DPAA2 API Reference Manual

247

Data Path Demux API

Data Fields

uint32_t rate
int enabled

enum
dpdmux_←↩
accepted_←↩
frames_type

accept_frame←↩
_type

1.14.2.6 struct dpdmux_l2_rule

struct dpdmux_l2_rule - Structure representing L2 rule

Parameters

mac_addr MAC address
vlan_id VLAN ID

Data Fields

uint8_t mac_addr[6]
uint16_t vlan_id

1.14.2.7 struct dpdmux_link_cfg

struct dpdmux_link_cfg - Structure representing DPDMUX link configuration

Parameters

rate Rate
options Mask of available options; use 'DPDMUX_LINK_OPT_<X>' values

Data Fields

uint32_t rate
uint64_t options

1.14.2.8 struct dpdmux_link_state

struct dpdmux_link_state - Structure representing DPDMUX link state

Parameters

rate Rate
options Mask of available options; use 'DPDMUX_LINK_OPT_<X>' values

up 0 - down, 1 - up

NXP Semiconductors
DPAA2 API Reference Manual

248

Data Path Demux API

Data Fields

uint32_t rate
uint64_t options

int up

1.14.2.9 struct dpdmux_rule_cfg

struct dpdmux_rule_cfg - Custom classification rule.

Parameters

key_iova DMA address of buffer storing the look-up value
mask_iova DMA address of the mask used for TCAM classification

key_size size, in bytes, of the look-up value. This must match the size of the look-up key
defined using dpdmux_set_custom_key, otherwise the entry will never be hit

Data Fields

uint64_t key_iova
uint64_t mask_iova
uint8_t key_size

1.14.2.10 struct dpdmux_cls_action

struct dpdmux_cls_action - Action to execute for frames matching the classification entry

Parameters

dest_if Interface to forward the frames to. Port numbering is similar to the one used to con-
nect interfaces: - 0 is the uplink port, - all others are downlink ports.

Data Fields

uint16_t dest_if

1.14.3 Macro Definition Documentation

1.14.3.1 #define DPDMUX_OPT_BRIDGE_EN

DPDMUX general options.

Enable bridging between internal interfaces

NXP Semiconductors
DPAA2 API Reference Manual

249

Data Path Demux API

1.14.3.2 #define DPDMUX_OPT_CLS_MASK_SUPPORT

Mask support for classification.

1.14.3.3 #define DPDMUX_IRQ_EVENT_LINK_CHANGED

IRQ event - Indicates that the link state changed.

1.14.4 Enumeration Type Documentation

1.14.4.1 enum dpdmux_manip

enum dpdmux_manip - DPDMUX manipulation operations

Parameters

DPDMUX_M←↩
ANIP_NONE

No manipulation on frames

DPDMUX_M←↩
ANIP_ADD_←↩
REMOVE_S_←↩

VLAN

Add S-VLAN on egress, remove it on ingress

1.14.4.2 enum dpdmux_method

enum dpdmux_method - DPDMUX method options

Parameters

DPDMUX_M←↩
ETHOD_NO←↩

NE

no DPDMUX method - depracated, don't use

DPDMUX_M←↩
ETHOD_C_←↩

VLAN_MAC

DPDMUX based on C-VLAN and MAC address

DPDMUX_M←↩
ETHOD_MAC

DPDMUX based on MAC address

DPDMUX_M←↩
ETHOD_C_←↩

VLAN

DPDMUX based on C-VLAN

NXP Semiconductors
DPAA2 API Reference Manual

250

Data Path Demux API

DPDMUX_M←↩
ETHOD_S_V←↩

LAN

DPDMUX based on S-VLAN

1.14.4.3 enum dpdmux_counter_type

enum dpdmux_counter_type - Counter types

Parameters

DPDMUX_C←↩
NT_ING_FR←↩

AME

Counts ingress frames

DPDMUX_C←↩
NT_ING_BY←↩

TE

Counts ingress bytes

DPDMUX_C←↩
NT_ING_FL←↩

TR_FRAME

Counts filtered ingress frames

DPDMUX_C←↩
NT_ING_FR←↩
AME_DISCA←↩

RD

Counts discarded ingress frames

DPDMUX_C←↩
NT_ING_MC←↩

AST_FRAME

Counts ingress multicast frames

DPDMUX_C←↩
NT_ING_MC←↩

AST_BYTE

Counts ingress multicast bytes

DPDMUX_C←↩
NT_ING_BC←↩

AST_FRAME

Counts ingress broadcast frames

DPDMUX_C←↩
NT_ING_BC←↩

AST_BYTES

Counts ingress broadcast bytes

DPDMUX_C←↩
NT_EGR_FR←↩

AME

Counts egress frames

NXP Semiconductors
DPAA2 API Reference Manual

251

Data Path Demux API

DPDMUX_C←↩
NT_EGR_BY←↩

TE

Counts egress bytes

DPDMUX_C←↩
NT_EGR_FR←↩
AME_DISCA←↩

RD

Counts discarded egress frames

1.14.4.4 enum dpdmux_accepted_frames_type

enum dpdmux_accepted_frames_type - DPDMUX frame types

Parameters

DPDMUX_A←↩
DMIT_ALL

The device accepts VLAN tagged, untagged and priority-tagged frames

DPDMUX_A←↩
DMIT_ONLY←↩
_VLAN_TAG←↩

GED

The device discards untagged frames or priority-tagged frames that are received on
this interface

DPDMUX_A←↩
DMIT_ONLY←↩
_UNTAGGED

Untagged frames or priority-tagged frames received on this interface are accepted

1.14.4.5 enum dpdmux_action

enum dpdmux_action - DPDMUX action for un-accepted frames

Parameters

DPDMUX_A←↩
CTION_DROP

Drop un-accepted frames

DPDMUX_A←↩
CTION_RED←↩
IRECT_TO_←↩

CTRL

Redirect un-accepted frames to the control interface

1.14.5 Function Documentation

1.14.5.1 int dpdmux_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int
dpdmux_id, uint16_t ∗ token)

dpdmux_open() - Open a control session for the specified object

NXP Semiconductors
DPAA2 API Reference Manual

252

Data Path Demux API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

dpdmux_id DPDMUX unique ID
token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have
been declared in the DPL or by calling the dpdmux_create() function. This function returns a unique
authentication token, associated with the specific object ID and the specific MC portal; this token must be
used in all subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

1.14.5.2 int dpdmux_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token
)

dpdmux_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.14.5.3 int dpdmux_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpdmux_cfg ∗ cfg, uint32_t ∗ obj_id)

dpdmux_create() - Create the DPDMUX object

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPDMUX object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

NXP Semiconductors
DPAA2 API Reference Manual

253

Data Path Demux API

Return: '0' on Success; Error code otherwise.

1.14.5.4 int dpdmux_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpdmux_destroy() - Destroy the DPDMUX object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

1.14.5.5 int dpdmux_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token)

dpdmux_enable() - Enable DPDMUX functionality

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object

Return: '0' on Success; Error code otherwise.

1.14.5.6 int dpdmux_disable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token)

dpdmux_disable() - Disable DPDMUX functionality

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

254

Data Path Demux API

1.14.5.7 int dpdmux_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpdmux_is_enabled() - Check if the DPDMUX is enabled.

NXP Semiconductors
DPAA2 API Reference Manual

255

Data Path Demux API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.14.5.8 int dpdmux_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpdmux_reset() - Reset the DPDMUX, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object

Return: '0' on Success; Error code otherwise.

1.14.5.9 int dpdmux_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpdmux_set_irq_enable() - Set overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.14.5.10 int dpdmux_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpdmux_get_irq_enable() - Get overall interrupt state.

NXP Semiconductors
DPAA2 API Reference Manual

256

Data Path Demux API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.14.5.11 int dpdmux_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t mask)

dpdmux_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.14.5.12 int dpdmux_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ mask)

dpdmux_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

257

Data Path Demux API

1.14.5.13 int dpdmux_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpdmux_get_irq_status() - Get the current status of any pending interrupts.

NXP Semiconductors
DPAA2 API Reference Manual

258

Data Path Demux API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.14.5.14 int dpdmux_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpdmux_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.14.5.15 int dpdmux_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpdmux_attr ∗ attr)

dpdmux_get_attributes() - Retrieve DPDMUX attributes

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.14.5.16 int dpdmux_set_max_frame_length (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, uint16_t max_frame_length)

dpdmux_set_max_frame_length() - Set the maximum frame length in DPDMUX

NXP Semiconductors
DPAA2 API Reference Manual

259

Data Path Demux API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
max_frame_←↩

length
The required maximum frame length

Update the maximum frame length on all DMUX interfaces. In case of VEPA, the maximum frame length
on all dmux interfaces will be updated with the minimum value of the mfls of the connected dpnis and the
actual value of dmux mfl.

Return: '0' on Success; Error code otherwise.

1.14.5.17 int dpdmux_if_set_accepted_frames (struct fsl_mc_io ∗ mc_io,
uint32_t cmd_flags, uint16_t token, uint16_t if_id, const struct
dpdmux_accepted_frames ∗ cfg)

dpdmux_if_set_accepted_frames() - Set the accepted frame types

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
if_id Interface ID (0 for uplink, or 1-num_ifs);

cfg Frame types configuration

if 'DPDMUX_ADMIT_ONLY_VLAN_TAGGED' is set - untagged frames or priority-tagged frames
are discarded. if 'DPDMUX_ADMIT_ONLY_UNTAGGED' is set - untagged frames or priority-tagged
frames are accepted. if 'DPDMUX_ADMIT_ALL' is set (default mode) - all VLAN tagged, untagged and
priority-tagged frame are accepted;

Return: '0' on Success; Error code otherwise.

1.14.5.18 int dpdmux_if_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, struct dpdmux_if_attr ∗ attr)

dpdmux_if_get_attributes() - Obtain DPDMUX interface attributes

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
if_id Interface ID (0 for uplink, or 1-num_ifs);
attr Interface attributes

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

260

Data Path Demux API

1.14.5.19 int dpdmux_if_remove_l2_rule (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, const struct dpdmux_l2_rule ∗ rule)

dpdmux_if_remove_l2_rule() - Remove L2 rule from DPDMUX table

NXP Semiconductors
DPAA2 API Reference Manual

261

Data Path Demux API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
if_id Destination interface ID
rule L2 rule

Function removes a L2 rule from DPDMUX table or adds an interface to an existing multicast address

Return: '0' on Success; Error code otherwise.

1.14.5.20 int dpdmux_if_add_l2_rule (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, const struct dpdmux_l2_rule ∗ rule)

dpdmux_if_add_l2_rule() - Add L2 rule into DPDMUX table

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
if_id Destination interface ID
rule L2 rule

Function adds a L2 rule into DPDMUX table or adds an interface to an existing multicast address

Return: '0' on Success; Error code otherwise.

1.14.5.21 ∗ int dpdmux_if_get_counter (struct fsl_mc_io ∗ mc_io, ∗uint32_t cmd_flags,
∗uint16_t token, ∗uint16_t if_id, ∗enum dpdmux_counter_type counter_type,
∗uint64_t ∗ counter)

/∗∗ /∗∗
• dpdmux_if_get_counter() - Functions obtains specific counter of an interface
• mc_io: Pointer to MC portal's I/O object
• cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
• token: Token of DPDMUX object
• if_id: Interface Id
• counter_type: counter type
• counter: Returned specific counter information
•
• Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

262

Data Path Demux API

1.14.5.22 int dpdmux_if_set_link_cfg (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, struct dpdmux_link_cfg ∗ cfg)

dpdmux_if_set_link_cfg() - set the link configuration.

NXP Semiconductors
DPAA2 API Reference Manual

263

Data Path Demux API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
if_id interface id

cfg Link configuration

Return: '0' on Success; Error code otherwise.

1.14.5.23 int dpdmux_if_get_link_state (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint16_t if_id, struct dpdmux_link_state ∗ state)

dpdmux_if_get_link_state - Return the link state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDMUX object
if_id interface id
state link state

returns '0' on Success; Error code otherwise.

1.14.5.24 int dpdmux_set_custom_key (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint64_t key_cfg_iova)

dpdmux_set_custom_key - Set a custom classification key.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
if_id interface id

key_cfg_iova DMA address of a configuration structure set up using dpkg_prepare_key_cfg. Max-
imum key size is 24 bytes.

This API is only available for DPDMUX instance created with DPDMUX_METHOD_CUSTOM. This
API must be called before populating the classification table using dpdmux_add_custom_cls_entry.

Calls to dpdmux_set_custom_key remove all existing classification entries that may have been added
previously using dpdmux_add_custom_cls_entry.

returns '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

264

Data Path Demux API

1.14.5.25 int dpdmux_add_custom_cls_entry (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, struct dpdmux_rule_cfg ∗ rule, struct
dpdmux_cls_action ∗ action)

dpdmux_add_custom_cls_entry - Adds a custom classification entry.

NXP Semiconductors
DPAA2 API Reference Manual

265

Data Path MAC API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
rule Classification rule to insert. Rules cannot be duplicated, if a matching rule already

exists, the action will be replaced.
action Action to perform for matching traffic.

This API is only available for DPDMUX instances created with DPDMUX_METHOD_CUSTOM. Before
calling this function a classification key composition rule must be set up using dpdmux_set_custom_key.

returns '0' on Success; Error code otherwise.

1.14.5.26 int dpdmux_remove_custom_cls_entry (struct fsl_mc_io ∗ mc_io, uint32_t
cmd_flags, uint16_t token, struct dpdmux_rule_cfg ∗ rule)

dpdmux_remove_custom_cls_entry - Removes a custom classification entry.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSW object
rule Classification rule to remove

This API is only available for DPDMUX instances created with DPDMUX_METHOD_CUSTOM. The
API can be used to remove classification entries previously inserted using dpdmux_add_custom_cls_entry.

returns '0' on Success; Error code otherwise.

1.14.5.27 int dpdmux_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpaiop_get_api_version() - Get Data Path Demux API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path demux API
minor_ver Minor version of data path demux API

Return: '0' on Success; Error code otherwise.

1.15 Data Path MAC API
1.15.1 Overview

Contains initialization APIs and runtime control APIs for DPMAC.

NXP Semiconductors
DPAA2 API Reference Manual

266

Data Path MAC API

Data Structures

• struct dpmac_cfg
• struct dpmac_attr
• struct dpmac_link_cfg
• struct dpmac_link_state

Macros

• #define DPMAC_IRQ_INDEX
• #define DPMAC_IRQ_EVENT_LINK_CFG_REQ
• #define DPMAC_IRQ_EVENT_LINK_CHANGED
• #define DPMAC_LINK_OPT_AUTONEG
• #define DPMAC_LINK_OPT_HALF_DUPLEX
• #define DPMAC_LINK_OPT_PAUSE
• #define DPMAC_LINK_OPT_ASYM_PAUSE

Enumerations

• enum dpmac_link_type {
DPMAC_LINK_TYPE_NONE,
DPMAC_LINK_TYPE_FIXED,
DPMAC_LINK_TYPE_PHY,
DPMAC_LINK_TYPE_BACKPLANE }

• enum dpmac_eth_if {
DPMAC_ETH_IF_MII,
DPMAC_ETH_IF_RMII,
DPMAC_ETH_IF_SMII,
DPMAC_ETH_IF_GMII,
DPMAC_ETH_IF_RGMII,
DPMAC_ETH_IF_SGMII,
DPMAC_ETH_IF_QSGMII,
DPMAC_ETH_IF_XAUI,
DPMAC_ETH_IF_XFI }

• enum dpmac_counter {

NXP Semiconductors
DPAA2 API Reference Manual

267

Data Path MAC API

DPMAC_CNT_ING_FRAME_64,
DPMAC_CNT_ING_FRAME_127,
DPMAC_CNT_ING_FRAME_255,
DPMAC_CNT_ING_FRAME_511,
DPMAC_CNT_ING_FRAME_1023,
DPMAC_CNT_ING_FRAME_1518,
DPMAC_CNT_ING_FRAME_1519_MAX,
DPMAC_CNT_ING_FRAG,
DPMAC_CNT_ING_JABBER,
DPMAC_CNT_ING_FRAME_DISCARD,
DPMAC_CNT_ING_ALIGN_ERR,
DPMAC_CNT_EGR_UNDERSIZED,
DPMAC_CNT_ING_OVERSIZED,
DPMAC_CNT_ING_VALID_PAUSE_FRAME,
DPMAC_CNT_EGR_VALID_PAUSE_FRAME,
DPMAC_CNT_ING_BYTE,
DPMAC_CNT_ING_MCAST_FRAME,
DPMAC_CNT_ING_BCAST_FRAME,
DPMAC_CNT_ING_ALL_FRAME,
DPMAC_CNT_ING_UCAST_FRAME,
DPMAC_CNT_ING_ERR_FRAME,
DPMAC_CNT_EGR_BYTE,
DPMAC_CNT_EGR_MCAST_FRAME,
DPMAC_CNT_EGR_BCAST_FRAME,
DPMAC_CNT_EGR_UCAST_FRAME,
DPMAC_CNT_EGR_ERR_FRAME,
DPMAC_CNT_ING_GOOD_FRAME,
DPMAC_CNT_ENG_GOOD_FRAME }

Functions

• int dpmac_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpmac_id, uint16_t ∗token)
• int dpmac_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpmac_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpmac_cfg ∗cfg, uint32_t ∗obj_id)
• int dpmac_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpmac_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t en)
• int dpmac_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t ∗en)
• int dpmac_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpmac_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗mask)
• int dpmac_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

NXP Semiconductors
DPAA2 API Reference Manual

268

Data Path MAC API

t irq_index, uint32_t ∗status)
• int dpmac_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t status)
• int dpmac_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpmac_attr ∗attr)
• int dpmac_get_link_cfg (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpmac_link_cfg ∗cfg)
• int dpmac_set_link_state (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpmac_link_state ∗link_state)
• int dpmac_get_counter (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, enum

dpmac_counter type, uint64_t ∗counter)
• int dpmac_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)
• int dpmac_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)

1.15.2 Data Structure Documentation

1.15.2.1 struct dpmac_cfg

struct dpmac_cfg - Structure representing DPMAC configuration

Parameters

mac_id Represents the Hardware MAC ID; in case of multiple WRIOP, the MAC IDs are
continuous. For example: 2 WRIOPs, 16 MACs in each: MAC IDs for the 1st WR←↩
IOP: 1-16, MAC IDs for the 2nd WRIOP: 17-32.

Data Fields

uint16_t mac_id

1.15.2.2 struct dpmac_attr

struct dpmac_attr - Structure representing DPMAC attributes

Parameters

id DPMAC object ID
max_rate Maximum supported rate - in Mbps

eth_if Ethernet interface
link_type link type

NXP Semiconductors
DPAA2 API Reference Manual

269

Data Path MAC API

Data Fields

uint16_t id
uint32_t max_rate

enum
dpmac_eth_if

eth_if

enum dpmac←↩
_link_type

link_type

1.15.2.3 struct dpmac_link_cfg

struct dpmac_link_cfg - Structure representing DPMAC link configuration

Parameters

rate Link's rate - in Mbps
options Enable/Disable DPMAC link cfg features (bitmap)

Data Fields

uint32_t rate
uint64_t options

1.15.2.4 struct dpmac_link_state

struct dpmac_link_state - DPMAC link configuration request

Parameters

rate Rate in Mbps
options Enable/Disable DPMAC link cfg features (bitmap)

up Link state

Data Fields

uint32_t rate
uint64_t options

int up

1.15.3 Macro Definition Documentation

1.15.3.1 #define DPMAC_IRQ_INDEX

DPMAC IRQ Index and Events.

IRQ index

NXP Semiconductors
DPAA2 API Reference Manual

270

Data Path MAC API

1.15.3.2 #define DPMAC_IRQ_EVENT_LINK_CFG_REQ

IRQ event - indicates a change in link state.

1.15.3.3 #define DPMAC_IRQ_EVENT_LINK_CHANGED

IRQ event - Indicates that the link state changed.

1.15.3.4 #define DPMAC_LINK_OPT_AUTONEG

DPMAC link configuration/state options.

Enable auto-negotiation

1.15.3.5 #define DPMAC_LINK_OPT_HALF_DUPLEX

Enable half-duplex mode.

1.15.3.6 #define DPMAC_LINK_OPT_PAUSE

Enable pause frames.

1.15.3.7 #define DPMAC_LINK_OPT_ASYM_PAUSE

Enable a-symmetric pause frames.

1.15.4 Enumeration Type Documentation

1.15.4.1 enum dpmac_link_type

enum dpmac_link_type - DPMAC link type

NXP Semiconductors
DPAA2 API Reference Manual

271

Data Path MAC API

Parameters

DPMAC_LIN←↩
K_TYPE_NO←↩

NE

No link

DPMAC_LIN←↩
K_TYPE_FIX←↩

ED

Link is fixed type

DPMAC_LIN←↩
K_TYPE_PHY

Link by PHY ID

DPMAC_LIN←↩
K_TYPE_BA←↩

CKPLANE

Backplane link type

1.15.4.2 enum dpmac_eth_if

enum dpmac_eth_if - DPMAC Ethrnet interface

Parameters

DPMAC_ET←↩
H_IF_MII

MII interface

DPMAC_ET←↩
H_IF_RMII

RMII interface

DPMAC_ET←↩
H_IF_SMII

SMII interface

DPMAC_ET←↩
H_IF_GMII

GMII interface

DPMAC_ET←↩
H_IF_RGMII

RGMII interface

DPMAC_ET←↩
H_IF_SGMII

SGMII interface

DPMAC_ET←↩
H_IF_QSGM←↩

II

QSGMII interface

DPMAC_ET←↩
H_IF_XAUI

XAUI interface

DPMAC_ET←↩
H_IF_XFI

XFI interface

NXP Semiconductors
DPAA2 API Reference Manual

272

Data Path MAC API

1.15.4.3 enum dpmac_counter

enum dpmac_counter - DPMAC counter types

Parameters

DPMAC_CN←↩
T_ING_FRA←↩

ME_64

counts 64-bytes frames, good or bad.

DPMAC_CN←↩
T_ING_FRA←↩

ME_127

counts 65- to 127-bytes frames, good or bad.

DPMAC_CN←↩
T_ING_FRA←↩

ME_255

counts 128- to 255-bytes frames, good or bad.

DPMAC_CN←↩
T_ING_FRA←↩

ME_511

counts 256- to 511-bytes frames, good or bad.

DPMAC_CN←↩
T_ING_FRA←↩

ME_1023

counts 512- to 1023-bytes frames, good or bad.

DPMAC_CN←↩
T_ING_FRA←↩

ME_1518

counts 1024- to 1518-bytes frames, good or bad.

DPMAC_CN←↩
T_ING_FRA←↩
ME_1519_M←↩

AX

counts 1519-bytes frames and larger (up to max frame length specified), good or bad.

DPMAC_CN←↩
T_ING_FRAG

counts frames which are shorter than 64 bytes received with a wrong CRC

DPMAC_CN←↩
T_ING_JABB←↩

ER

counts frames longer than the maximum frame length specified, with a bad frame
check sequence.

DPMAC_CN←↩
T_ING_FRA←↩

ME_DISCARD

counts dropped frames due to internal errors. Occurs when a receive FIFO overflows.
Includes also frames truncated as a result of the receive FIFO overflow.

NXP Semiconductors
DPAA2 API Reference Manual

273

Data Path MAC API

DPMAC_CN←↩
T_ING_ALIG←↩

N_ERR

counts frames with an alignment error (optional used for wrong SFD).

DPMAC_CN←↩
T_EGR_UN←↩

DERSIZED

counts frames transmitted that was less than 64 bytes long with a good CRC.

DPMAC_CN←↩
T_ING_OVE←↩

RSIZED

counts frames longer than the maximum frame length specified, with a good frame
check sequence.

DPMAC_CN←↩
T_ING_VALI←↩
D_PAUSE_F←↩

RAME

counts valid pause frames (regular and PFC)

DPMAC_CN←↩
T_EGR_VAL←↩
ID_PAUSE_←↩

FRAME

counts valid pause frames transmitted (regular and PFC).

DPMAC_CN←↩
T_ING_BYTE

counts bytes received except preamble for all valid frames and valid pause frames.

DPMAC_CN←↩
T_ING_MCA←↩

ST_FRAME

counts received multicast frames.

DPMAC_CN←↩
T_ING_BCA←↩

ST_FRAME

counts received broadcast frames.

DPMAC_CN←↩
T_ING_ALL_←↩

FRAME

counts each good or bad frames received.

DPMAC_CN←↩
T_ING_UCA←↩

ST_FRAME

counts received unicast frames.

DPMAC_CN←↩
T_ING_ERR←↩

_FRAME

counts frames received with an error (except for undersized/fragment frame).

DPMAC_CN←↩
T_EGR_BYTE

counts bytes transmitted except preamble for all valid frames and valid pause frames
transmitted.

DPMAC_CN←↩
T_EGR_MC←↩
AST_FRAME

counts transmitted multicast frames.

NXP Semiconductors
DPAA2 API Reference Manual

274

Data Path MAC API

DPMAC_CN←↩
T_EGR_BCA←↩

ST_FRAME

counts transmitted broadcast frames.

DPMAC_CN←↩
T_EGR_UCA←↩

ST_FRAME

counts transmitted unicast frames.

DPMAC_CN←↩
T_EGR_ERR←↩

_FRAME

counts frames transmitted with an error.

DPMAC_CN←↩
T_ING_GOO←↩

D_FRAME

counts frames received without error, including pause frames.

DPMAC_CN←↩
T_ENG_GO←↩

OD_FRAME

counts frames transmitted without error, including pause frames.

1.15.5 Function Documentation

1.15.5.1 int dpmac_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpmac_id,
uint16_t ∗ token)

dpmac_open() - Open a control session for the specified object.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
dpmac_id DPMAC unique ID

token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpmac_create function. This function returns a unique authentication
token, associated with the specific object ID and the specific MC portal; this token must be used in all
subsequent commands for this specific object

Return: '0' on Success; Error code otherwise.

1.15.5.2 int dpmac_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpmac_close() - Close the control session of the object

NXP Semiconductors
DPAA2 API Reference Manual

275

Data Path MAC API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.15.5.3 int dpmac_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpmac_cfg ∗ cfg, uint32_t ∗ obj_id)

dpmac_create() - Create the DPMAC object.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPMAC object, allocate required resources and perform required initialization.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.15.5.4 int dpmac_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpmac_destroy() - Destroy the DPMAC object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

276

Data Path MAC API

1.15.5.5 int dpmac_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpmac_set_irq_enable() - Set overall interrupt state.

NXP Semiconductors
DPAA2 API Reference Manual

277

Data Path MAC API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.15.5.6 int dpmac_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpmac_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.15.5.7 int dpmac_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t mask)

dpmac_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
irq_index The interrupt index to configure

mask Event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

278

Data Path MAC API

1.15.5.8 int dpmac_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ mask)

dpmac_get_irq_mask() - Get interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

279

Data Path MAC API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.15.5.9 int dpmac_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpmac_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.15.5.10 int dpmac_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpmac_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
irq_index The interrupt index to configure

status Bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.15.5.11 int dpmac_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpmac_attr ∗ attr)

dpmac_get_attributes - Retrieve DPMAC attributes.

NXP Semiconductors
DPAA2 API Reference Manual

280

Data Path MAC API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.15.5.12 int dpmac_get_link_cfg (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpmac_link_cfg ∗ cfg)

dpmac_get_link_cfg() - Get Ethernet link configuration

Parameters

mc_io Pointer to opaque I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
cfg Returned structure with the link configuration

Return: '0' on Success; Error code otherwise.

1.15.5.13 int dpmac_set_link_state (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpmac_link_state ∗ link_state)

dpmac_set_link_state() - Set the Ethernet link status

Parameters

mc_io Pointer to opaque I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object
link_state Link state configuration

Return: '0' on Success; Error code otherwise.

1.15.5.14 int dpmac_get_counter (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, enum dpmac_counter type, uint64_t ∗ counter)

dpmac_get_counter() - Read a specific DPMAC counter

Parameters

mc_io Pointer to opaque I/O object

NXP Semiconductors
DPAA2 API Reference Manual

281

Data Path SEC Interface API

cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
token Token of DPMAC object
type The requested counter

counter Returned counter value

Return: The requested counter; '0' otherwise.

1.15.5.15 int dpmac_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpmac_get_api_version() - Get Data Path MAC version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path mac API
minor_ver Minor version of data path mac API

Return: '0' on Success; Error code otherwise.

1.15.5.16 int dpmac_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpmac_reset() - Reset the DPMAC, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPMAC object

Return: '0' on Success; Error code otherwise.

1.16 Data Path SEC Interface API

1.16.1 Overview

Contains initialization APIs and runtime control APIs for DPSECI.

Data Structures

• struct dpseci_cfg
• struct dpseci_attr
• struct dpseci_dest_cfg
• struct dpseci_rx_queue_cfg
• struct dpseci_rx_queue_attr
• struct dpseci_tx_queue_attr

NXP Semiconductors
DPAA2 API Reference Manual

282

Data Path SEC Interface API

• struct dpseci_sec_attr
• struct dpseci_sec_counters

Macros

• #define DPSECI_PRIO_NUM
• #define DPSECI_ALL_QUEUES
• #define DPSECI_OPT_HAS_OPR
• #define DPSECI_OPT_OPR_SHARED
• #define DPSECI_QUEUE_OPT_USER_CTX
• #define DPSECI_QUEUE_OPT_DEST
• #define DPSECI_QUEUE_OPT_ORDER_PRESERVATION

Enumerations

• enum dpseci_dest {
DPSECI_DEST_NONE,
DPSECI_DEST_DPIO,
DPSECI_DEST_DPCON }

Functions

• int dpseci_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpseci_id, uint16_t ∗token)
• int dpseci_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpseci_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpseci_cfg ∗cfg, uint32_t ∗obj_id)
• int dpseci_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpseci_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpseci_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpseci_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpseci_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpseci_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint8_t en)
• int dpseci_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t ∗en)
• int dpseci_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpseci_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗mask)
• int dpseci_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t ∗status)
• int dpseci_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint32_t status)
• int dpseci_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpseci_attr ∗attr)

NXP Semiconductors
DPAA2 API Reference Manual

283

Data Path SEC Interface API

• int dpseci_set_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩
t queue, const struct dpseci_rx_queue_cfg ∗cfg)

• int dpseci_get_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩
t queue, struct dpseci_rx_queue_attr ∗attr)

• int dpseci_get_tx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩
t queue, struct dpseci_tx_queue_attr ∗attr)

• Error code otherwise ∗int dpseci_get_sec_attr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags,
uint16_t token, struct dpseci_sec_attr ∗attr)

• int dpseci_get_sec_counters (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct
dpseci_sec_counters ∗counters)

• int dpseci_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,
uint16_t ∗minor_ver)

• int dpseci_set_opr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t index,
uint8_t options, struct opr_cfg ∗cfg)

• int dpseci_get_opr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t index,
struct opr_cfg ∗cfg, struct opr_qry ∗qry)

1.16.2 Data Structure Documentation

1.16.2.1 struct dpseci_cfg

struct dpseci_cfg - Structure representing DPSECI configuration

Parameters

options Any combination of the following options: DPSECI_OPT_HAS_OPR DPSECI_O←↩
PT_OPR_SHARED

num_tx_queues num of queues towards the SEC
num_rx_←↩

queues
num of queues back from the SEC

priorities Priorities for the SEC hardware processing; each place in the array is the priority of
the tx queue towards the SEC, valid priorities are configured with values 1-8;

Data Fields

uint32_t options
uint8_t num_tx_←↩

queues
uint8_t num_rx_←↩

queues
uint8_t priorities[DP←↩

SECI_PRIO_←↩
NUM]

NXP Semiconductors
DPAA2 API Reference Manual

284

Data Path SEC Interface API

1.16.2.2 struct dpseci_attr

struct dpseci_attr - Structure representing DPSECI attributes

NXP Semiconductors
DPAA2 API Reference Manual

285

Data Path SEC Interface API

Parameters

id DPSECI object ID
num_tx_queues number of queues towards the SEC

num_rx_←↩
queues

number of queues back from the SEC

Data Fields

int id
uint8_t num_tx_←↩

queues
uint8_t num_rx_←↩

queues

1.16.2.3 struct dpseci_dest_cfg

struct dpseci_dest_cfg - Structure representing DPSECI destination parameters

Parameters

dest_type Destination type
dest_id Either DPIO ID or DPCON ID, depending on the destination type
priority Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,

depending on the number of priorities in that channel; not relevant for 'DPSECI_D←↩
EST_NONE' option

Data Fields

enum
dpseci_dest

dest_type

int dest_id
uint8_t priority

1.16.2.4 struct dpseci_rx_queue_cfg

struct dpseci_rx_queue_cfg - DPSECI RX queue configuration

Parameters

options Flags representing the suggested modifications to the queue; Use any combination of
'DPSECI_QUEUE_OPT_<X>' flags

NXP Semiconductors
DPAA2 API Reference Manual

286

Data Path SEC Interface API

order_←↩
preservation_←↩

en

order preservation configuration for the rx queue

valid only if 'DPSECI_QUEUE_OPT_ORDER_PRESERVATION' is contained in 'options' user_ctx:
User context value provided in the frame descriptor of each dequeued frame; valid only if 'DPSECI_Q←↩
UEUE_OPT_USER_CTX' is contained in 'options' dest_cfg: Queue destination parameters; valid only if
'DPSECI_QUEUE_OPT_DEST' is contained in 'options'

Data Fields

uint32_t options
int order_←↩

preservation_←↩
en

uint64_t user_ctx
struct dpseci_←↩

dest_cfg
dest_cfg

1.16.2.5 struct dpseci_rx_queue_attr

struct dpseci_rx_queue_attr - Structure representing attributes of Rx queues

Parameters

user_ctx User context value provided in the frame descriptor of each dequeued frame
order_←↩

preservation_←↩
en

Status of the order preservation configuration on the queue

dest_cfg Queue destination configuration
fqid Virtual FQID value to be used for dequeue operations

Data Fields

uint64_t user_ctx
int order_←↩

preservation_←↩
en

struct dpseci_←↩
dest_cfg

dest_cfg

uint32_t fqid

1.16.2.6 struct dpseci_tx_queue_attr

struct dpseci_tx_queue_attr - Structure representing attributes of Tx queues

NXP Semiconductors
DPAA2 API Reference Manual

287

Data Path SEC Interface API

Parameters

fqid Virtual FQID to be used for sending frames to SEC hardware
priority SEC hardware processing priority for the queue

Data Fields

uint32_t fqid
uint8_t priority

1.16.2.7 struct dpseci_sec_attr

/∗∗
Parameters

ip_id ID for SEC.
major_rev Major revision number for SEC.
minor_rev Minor revision number for SEC.

era SEC Era.
deco_num The number of copies of the DECO that are implemented in

struct dpseci_sec_attr - Structure representing attributes of the SEC hardware accelerator

this version of SEC. zuc_auth_acc_num: The number of copies of ZUCA that are implemented in this
version of SEC. zuc_enc_acc_num: The number of copies of ZUCE that are implemented in this version
of SEC. snow_f8_acc_num: The number of copies of the SNOW-f8 module that are implemented in this
version of SEC. snow_f9_acc_num: The number of copies of the SNOW-f9 module that are implemented
in this version of SEC. crc_acc_num: The number of copies of the CRC module that are implemented in
this version of SEC. pk_acc_num: The number of copies of the Public Key module that are implemented in
this version of SEC. kasumi_acc_num: The number of copies of the Kasumi module that are implemented
in this version of SEC. rng_acc_num: The number of copies of the Random Number Generator that are
implemented in this version of SEC. md_acc_num: The number of copies of the MDHA (Hashing module)
that are implemented in this version of SEC. arc4_acc_num: The number of copies of the ARC4 module
that are implemented in this version of SEC. des_acc_num: The number of copies of the DES module that
are implemented in this version of SEC. aes_acc_num: The number of copies of the AES module that are
implemented in this version of SEC.

Data Fields

∗uint16_t ip_id
∗uint8_t major_rev
∗uint8_t minor_rev
∗uint8_t era

NXP Semiconductors
DPAA2 API Reference Manual

288

Data Path SEC Interface API

∗uint8_t deco_num
∗uint8_t zuc_auth_acc←↩

_num
∗uint8_t zuc_enc_acc←↩

_num
∗uint8_t snow_f8_acc←↩

_num
∗uint8_t snow_f9_acc←↩

_num
∗uint8_t crc_acc_num
∗uint8_t pk_acc_num
∗uint8_t kasumi_acc_←↩

num
∗uint8_t rng_acc_num
∗uint8_t md_acc_num
∗uint8_t arc4_acc_num
∗uint8_t des_acc_num
∗uint8_t aes_acc_num

1.16.2.8 struct dpseci_sec_counters

struct dpseci_sec_counters - Structure representing global SEC counters and not per dpseci counters

Parameters

dequeued_←↩
requests

Number of Requests Dequeued

ob_enc_←↩
requests

Number of Outbound Encrypt Requests

ib_dec_←↩
requests

Number of Inbound Decrypt Requests

ob_enc_bytes Number of Outbound Bytes Encrypted
ob_prot_bytes Number of Outbound Bytes Protected
ib_dec_bytes Number of Inbound Bytes Decrypted

ib_valid_bytes Number of Inbound Bytes Validated

Data Fields

uint64_t dequeued_←↩
requests

NXP Semiconductors
DPAA2 API Reference Manual

289

Data Path SEC Interface API

uint64_t ob_enc_←↩
requests

uint64_t ib_dec_←↩
requests

uint64_t ob_enc_bytes
uint64_t ob_prot_bytes
uint64_t ib_dec_bytes
uint64_t ib_valid_bytes

1.16.3 Macro Definition Documentation

1.16.3.1 #define DPSECI_PRIO_NUM

General DPSECI macros.

Maximum number of Tx/Rx priorities per DPSECI object

1.16.3.2 #define DPSECI_ALL_QUEUES

All queues considered; see dpseci_set_rx_queue()

1.16.3.3 #define DPSECI_OPT_HAS_OPR

Enable the Order Restoration support.

1.16.3.4 #define DPSECI_OPT_OPR_SHARED

Order Point Records are shared for the entire DPSECI.

1.16.3.5 #define DPSECI_QUEUE_OPT_USER_CTX

DPSECI queue modification options.

Select to modify the user's context associated with the queue

1.16.3.6 #define DPSECI_QUEUE_OPT_DEST

Select to modify the queue's destination.

NXP Semiconductors
DPAA2 API Reference Manual

290

Data Path SEC Interface API

1.16.3.7 #define DPSECI_QUEUE_OPT_ORDER_PRESERVATION

Select to modify the queue's order preservation.

1.16.4 Enumeration Type Documentation

1.16.4.1 enum dpseci_dest

enum dpseci_dest - DPSECI destination types

Parameters

DPSECI_DE←↩
ST_NONE

Unassigned destination; The queue is set in parked mode and does not generate F←↩
QDAN notifications; user is expected to dequeue from the queue based on polling or
other user-defined method

DPSECI_DE←↩
ST_DPIO

The queue is set in schedule mode and generates FQDAN notifications to the specified
DPIO; user is expected to dequeue from the queue only after notification is received

DPSECI_DE←↩
ST_DPCON

The queue is set in schedule mode and does not generate FQDAN notifications, but
is connected to the specified DPCON object; user is expected to dequeue from the
DPCON channel

1.16.5 Function Documentation

1.16.5.1 int dpseci_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpseci_id,
uint16_t ∗ token)

dpseci_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
dpseci_id DPSECI unique ID

token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have
been declared in the DPL or by calling the dpseci_create() function. This function returns a unique
authentication token, associated with the specific object ID and the specific MC portal; this token must be
used in all subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

291

Data Path SEC Interface API

1.16.5.2 int dpseci_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpseci_close() - Close the control session of the object

NXP Semiconductors
DPAA2 API Reference Manual

292

Data Path SEC Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.16.5.3 int dpseci_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpseci_cfg ∗ cfg, uint32_t ∗ obj_id)

dpseci_create() - Create the DPSECI object

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPSECI object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.16.5.4 int dpseci_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpseci_destroy() - Destroy the DPSECI object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

NXP Semiconductors
DPAA2 API Reference Manual

293

Data Path SEC Interface API

Return: '0' on Success; error code otherwise.

1.16.5.5 int dpseci_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpseci_enable() - Enable the DPSECI, allow sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object

Return: '0' on Success; Error code otherwise.

1.16.5.6 int dpseci_disable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token)

dpseci_disable() - Disable the DPSECI, stop sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object

Return: '0' on Success; Error code otherwise.

1.16.5.7 int dpseci_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpseci_is_enabled() - Check if the DPSECI is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.16.5.8 int dpseci_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)

dpseci_reset() - Reset the DPSECI, returns the object to initial state.

NXP Semiconductors
DPAA2 API Reference Manual

294

Data Path SEC Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object

Return: '0' on Success; Error code otherwise.

1.16.5.9 int dpseci_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpseci_set_irq_enable() - Set overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt

Return: '0' on Success; Error code otherwise.

1.16.5.10 int dpseci_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpseci_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
irq_index The interrupt index to configure

en Returned Interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.16.5.11 int dpseci_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t mask)

dpseci_set_irq_mask() - Set interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

295

Data Path SEC Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.16.5.12 int dpseci_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ mask)

dpseci_get_irq_mask() - Get interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.16.5.13 int dpseci_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpseci_get_irq_status() - Get the current status of any pending interrupts

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

296

Data Path SEC Interface API

1.16.5.14 int dpseci_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpseci_clear_irq_status() - Clear a pending interrupt's status

NXP Semiconductors
DPAA2 API Reference Manual

297

Data Path SEC Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.16.5.15 int dpseci_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpseci_attr ∗ attr)

dpseci_get_attributes() - Retrieve DPSECI attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.16.5.16 int dpseci_set_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t queue, const struct dpseci_rx_queue_cfg ∗ cfg)

dpseci_set_rx_queue() - Set Rx queue configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
queue Select the queue relative to number of priorities configured at DPSECI creation; use

DPSECI_ALL_QUEUES to configure all Rx queues identically.
cfg Rx queue configuration

Return: '0' on Success; Error code otherwise.

1.16.5.17 int dpseci_get_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t queue, struct dpseci_rx_queue_attr ∗ attr)

dpseci_get_rx_queue() - Retrieve Rx queue attributes.

NXP Semiconductors
DPAA2 API Reference Manual

298

Data Path SEC Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
queue Select the queue relative to number of priorities configured at DPSECI creation

attr Returned Rx queue attributes

Return: '0' on Success; Error code otherwise.

1.16.5.18 int dpseci_get_tx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t queue, struct dpseci_tx_queue_attr ∗ attr)

dpseci_get_tx_queue() - Retrieve Tx queue attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
queue Select the queue relative to number of priorities configured at DPSECI creation

attr Returned Tx queue attributes

Return: '0' on Success; Error code otherwise.

1.16.5.19 int dpseci_get_sec_counters (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpseci_sec_counters ∗ counters)

dpseci_get_sec_counters() - Retrieve SEC accelerator counters.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
counters Returned SEC counters

Return: '0' on Success; Error code otherwise.

1.16.5.20 int dpseci_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpseci_get_api_version() - Get Data Path SEC Interface API version

NXP Semiconductors
DPAA2 API Reference Manual

299

Data Path DCE Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path sec API
minor_ver Minor version of data path sec API

Return: '0' on Success; Error code otherwise.

1.16.5.21 int dpseci_set_opr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t index, uint8_t options, struct opr_cfg ∗ cfg)

dpseci_set_opr() - Set Order Restoration configuration.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
index The queue index

options Configuration mode options can be OPR_OPT_CREATE or OPR_OPT_RETIRE
cfg Configuration options for the OPR

Return: '0' on Success; Error code otherwise.

1.16.5.22 int dpseci_get_opr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t index, struct opr_cfg ∗ cfg, struct opr_qry ∗ qry)

dpseci_get_opr() - Retrieve Order Restoration config and query.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPSECI object
index The queue index

cfg Returned OPR configuration
qry Returned OPR query

Return: '0' on Success; Error code otherwise.

1.17 Data Path DCE Interface API

1.17.1 Overview

Contains initialization APIs and runtime control APIs for DPDCEI.

NXP Semiconductors
DPAA2 API Reference Manual

300

Data Path DCE Interface API

Data Structures

• struct dpdcei_cfg
• struct dpdcei_attr
• struct dpdcei_dest_cfg
• struct dpdcei_rx_queue_cfg
• struct dpdcei_rx_queue_attr
• struct dpdcei_tx_queue_attr

Macros

• #define DPDCEI_FQID_NOT_VALID
• #define DPDCEI_QUEUE_OPT_USER_CTX
• #define DPDCEI_QUEUE_OPT_DEST

Enumerations

• enum dpdcei_engine {
DPDCEI_ENGINE_COMPRESSION,
DPDCEI_ENGINE_DECOMPRESSION }

• enum dpdcei_dest {
DPDCEI_DEST_NONE,
DPDCEI_DEST_DPIO,
DPDCEI_DEST_DPCON }

Functions

• int dpdcei_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpdcei_id, uint16_t ∗token)
• int dpdcei_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdcei_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpdcei_cfg ∗cfg, uint32_t ∗obj_id)
• int dpdcei_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpdcei_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdcei_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdcei_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpdcei_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpdcei_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t en)
• int dpdcei_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t

irq_index, uint8_t ∗en)
• int dpdcei_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t mask)
• int dpdcei_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗mask)
• int dpdcei_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_←↩

t irq_index, uint32_t ∗status)

NXP Semiconductors
DPAA2 API Reference Manual

301

Data Path DCE Interface API

• int dpdcei_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t
irq_index, uint32_t status)

• int dpdcei_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct
dpdcei_attr ∗attr)

• int dpdcei_set_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, const struct
dpdcei_rx_queue_cfg ∗cfg)

• int dpdcei_get_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct
dpdcei_rx_queue_attr ∗attr)

• int dpdcei_get_tx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct
dpdcei_tx_queue_attr ∗attr)

• int dpdcei_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,
uint16_t ∗minor_ver)

1.17.2 Data Structure Documentation

1.17.2.1 struct dpdcei_cfg

struct dpdcei_cfg - Structure representing DPDCEI configuration

Parameters

engine compression or decompression engine to be selected
priority Priority for the DCE hardware processing (valid values 1-8). This is the scheduling

priority for traffic going into the accelerator. For scheduling priority on CPU side,
coming back from accelerator, use dpdcei_set_rx_queue.

Data Fields

enum
dpdcei_engine

engine

uint8_t priority

1.17.2.2 struct dpdcei_attr

struct dpdcei_attr - Structure representing DPDCEI attributes

Parameters

id DPDCEI object ID
engine DCE engine block

Data Fields

int id
enum

dpdcei_engine
engine

NXP Semiconductors
DPAA2 API Reference Manual

302

Data Path DCE Interface API

1.17.2.3 struct dpdcei_dest_cfg

struct dpdcei_dest_cfg - Structure representing DPDCEI destination parameters

NXP Semiconductors
DPAA2 API Reference Manual

303

Data Path DCE Interface API

Parameters

dest_type Destination type
dest_id Either DPIO ID or DPCON ID, depending on the destination type
priority Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,

depending on the number of priorities in that channel; not relevant for 'DPDCEI_D←↩
EST_NONE' option

Data Fields

enum
dpdcei_dest

dest_type

int dest_id
uint8_t priority

1.17.2.4 struct dpdcei_rx_queue_cfg

struct dpdcei_rx_queue_cfg - RX queue configuration

Parameters

options Flags representing the suggested modifications to the queue; Use any combination of
'DPDCEI_QUEUE_OPT_<X>' flags

user_ctx User context value provided in the frame descriptor of each dequeued frame; valid
only if 'DPDCEI_QUEUE_OPT_USER_CTX' is contained in 'options'

dest_cfg Queue destination parameters; valid only if 'DPDCEI_QUEUE_OPT_DEST' is con-
tained in 'options'

Data Fields

uint32_t options
uint64_t user_ctx

struct dpdcei←↩
_dest_cfg

dest_cfg

1.17.2.5 struct dpdcei_rx_queue_attr

struct dpdcei_rx_queue_attr - Structure representing attributes of Rx queues

Parameters

user_ctx User context value provided in the frame descriptor of each dequeued frame
dest_cfg Queue destination configuration

fqid Virtual FQID value to be used for dequeue operations

NXP Semiconductors
DPAA2 API Reference Manual

304

Data Path DCE Interface API

Data Fields

uint64_t user_ctx
struct dpdcei←↩

_dest_cfg
dest_cfg

uint32_t fqid

1.17.2.6 struct dpdcei_tx_queue_attr

struct dpdcei_tx_queue_attr - Structure representing attributes of Tx queues

Parameters

fqid Virtual FQID to be used for sending frames to DCE hardware

Data Fields

uint32_t fqid

1.17.3 Macro Definition Documentation

1.17.3.1 #define DPDCEI_FQID_NOT_VALID

General DPDCEI macros.

Indicates an invalid frame queue

1.17.3.2 #define DPDCEI_QUEUE_OPT_USER_CTX

DPDCEI queue modification options.

Select to modify the user's context associated with the queue

1.17.3.3 #define DPDCEI_QUEUE_OPT_DEST

Select to modify the queue's destination.

1.17.4 Enumeration Type Documentation

1.17.4.1 enum dpdcei_engine

enum dpdcei_engine - DCE engine block

NXP Semiconductors
DPAA2 API Reference Manual

305

Data Path DCE Interface API

Parameters

DPDCEI_EN←↩
GINE_COM←↩

PRESSION

Engine compression

DPDCEI_EN←↩
GINE_DECO←↩

MPRESSION

Engine decompression

1.17.4.2 enum dpdcei_dest

enum dpdcei_dest - DPDCEI destination types

Parameters

DPDCEI_DE←↩
ST_NONE

Unassigned destination; The queue is set in parked mode and does not generate F←↩
QDAN notifications; user is expected to dequeue from the queue based on polling or
other user-defined method

DPDCEI_DE←↩
ST_DPIO

The queue is set in schedule mode and generates FQDAN notifications to the specified
DPIO; user is expected to dequeue from the queue only after notification is received

DPDCEI_DE←↩
ST_DPCON

The queue is set in schedule mode and does not generate FQDAN notifications, but
is connected to the specified DPCON object; user is expected to dequeue from the
DPCON channel

1.17.5 Function Documentation

1.17.5.1 int dpdcei_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpdcei_id,
uint16_t ∗ token)

dpdcei_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
dpdcei_id DPDCEI unique ID

This function can be used to open a control session for an already created object; an object may have
been declared in the DPL or by calling the dpdcei_create() function. This function returns a unique
authentication token, associated with the specific object ID and the specific MC portal; this token must be
used in all subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

306

Data Path DCE Interface API

1.17.5.2 int dpdcei_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token
)

dpdcei_close() - Close the control session of the object

NXP Semiconductors
DPAA2 API Reference Manual

307

Data Path DCE Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

1.17.5.3 int dpdcei_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpdcei_cfg ∗ cfg, uint32_t ∗ obj_id)

dpdcei_create() - Create the DPDCEI object

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg configuration parameters
obj_id returned object id

Create the DPDCEI object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.17.5.4 int dpdcei_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpdcei_destroy() - Destroy the DPDCEI object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

Return: '0' on Success; error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

308

Data Path DCE Interface API

1.17.5.5 int dpdcei_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token
)

dpdcei_enable() - Enable the DPDCEI, allow sending and receiving frames.

NXP Semiconductors
DPAA2 API Reference Manual

309

Data Path DCE Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object

Return: '0' on Success; Error code otherwise.

1.17.5.6 int dpdcei_disable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token)

dpdcei_disable() - Disable the DPDCEI, stop sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object

Return: '0' on Success; Error code otherwise.

1.17.5.7 int dpdcei_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpdcei_is_enabled() - Check if the DPDCEI is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
en Return '1' for object enabled/'0' otherwise

Return: '0' on Success; Error code otherwise.

1.17.5.8 int dpdcei_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)

dpdcei_reset() - Reset the DPDCEI, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

310

Data Path DCE Interface API

1.17.5.9 int dpdcei_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t en)

dpdcei_set_irq_enable() - Set overall interrupt state.

NXP Semiconductors
DPAA2 API Reference Manual

311

Data Path DCE Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt

Return: '0' on Success; Error code otherwise.

1.17.5.10 int dpdcei_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpdcei_get_irq_enable() - Get overall interrupt state

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
irq_index The interrupt index to configure

en Returned Interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.17.5.11 int dpdcei_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t mask)

dpdcei_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

312

Data Path DCE Interface API

1.17.5.12 int dpdcei_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ mask)

dpdcei_get_irq_mask() - Get interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

313

Data Path DCE Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.17.5.13 int dpdcei_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpdcei_get_irq_status() - Get the current status of any pending interrupts

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.17.5.14 int dpdcei_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpdcei_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.17.5.15 int dpdcei_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpdcei_attr ∗ attr)

dpdcei_get_attributes() - Retrieve DPDCEI attributes.

NXP Semiconductors
DPAA2 API Reference Manual

314

Data Path DCE Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.17.5.16 int dpdcei_set_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, const struct dpdcei_rx_queue_cfg ∗ cfg)

dpdcei_set_rx_queue() - Set Rx queue configuration

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
cfg Rx queue configuration

Return: '0' on Success; Error code otherwise.

1.17.5.17 int dpdcei_get_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpdcei_rx_queue_attr ∗ attr)

dpdcei_get_rx_queue() - Retrieve Rx queue attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
attr Returned Rx queue attributes

Return: '0' on Success; Error code otherwise.

1.17.5.18 int dpdcei_get_tx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpdcei_tx_queue_attr ∗ attr)

dpdcei_get_tx_queue() - Retrieve Tx queue attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPDCEI object
attr Returned Tx queue attributes

NXP Semiconductors
DPAA2 API Reference Manual

315

Data Path Communication Interface API

Return: '0' on Success; Error code otherwise.

1.17.5.19 int dpdcei_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpdcei_get_api_version() - Get Data Path DCE (decript/encrypt engine) API version

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path dce API
minor_ver Minor version of data path dce API

Return: '0' on Success; Error code otherwise.

1.18 Data Path Communication Interface API

1.18.1 Overview

Contains initialization APIs and runtime control APIs for DPCI.

Data Structures

• struct dpci_cfg
• struct dpci_attr
• struct dpci_peer_attr
• struct dpci_dest_cfg
• struct dpci_rx_queue_cfg
• struct dpci_rx_queue_attr
• struct dpci_tx_queue_attr

Macros

• #define DPCI_PRIO_NUM
• #define DPCI_FQID_NOT_VALID
• #define DPCI_ALL_QUEUES
• #define DPCI_OPT_HAS_OPR
• #define DPCI_OPT_OPR_SHARED
• #define DPCI_IRQ_INDEX
• #define DPCI_IRQ_EVENT_LINK_CHANGED
• #define DPCI_IRQ_EVENT_CONNECTED
• #define DPCI_IRQ_EVENT_DISCONNECTED
• #define DPCI_QUEUE_OPT_USER_CTX
• #define DPCI_QUEUE_OPT_DEST

NXP Semiconductors
DPAA2 API Reference Manual

316

Data Path Communication Interface API

Enumerations

• enum dpci_dest {
DPCI_DEST_NONE,
DPCI_DEST_DPIO,
DPCI_DEST_DPCON }

Functions

• int dpci_open (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, int dpci_id, uint16_t ∗token)
• int dpci_close (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpci_create (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, const struct

dpci_cfg ∗cfg, uint32_t ∗obj_id)
• int dpci_destroy (struct fsl_mc_io ∗mc_io, uint16_t dprc_token, uint32_t cmd_flags, uint32_←↩

t object_id)
• int dpci_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpci_disable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpci_is_enabled (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗en)
• int dpci_reset (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token)
• int dpci_set_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t en)
• int dpci_get_irq_enable (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint8_t ∗en)
• int dpci_set_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t mask)
• int dpci_get_irq_mask (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq_←↩

index, uint32_t ∗mask)
• int dpci_get_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t ∗status)
• int dpci_clear_irq_status (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t irq←↩

_index, uint32_t status)
• int dpci_get_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct dpci_←↩

attr ∗attr)
• int dpci_get_peer_attributes (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, struct

dpci_peer_attr ∗attr)
• int dpci_get_link_state (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, int ∗up)
• int dpci_set_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t prior-

ity, const struct dpci_rx_queue_cfg ∗cfg)
• int dpci_get_rx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t prior-

ity, struct dpci_rx_queue_attr ∗attr)
• int dpci_get_tx_queue (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t prior-

ity, struct dpci_tx_queue_attr ∗attr)
• int dpci_get_api_version (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t ∗major_ver,

uint16_t ∗minor_ver)
• int dpci_set_opr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t index,

uint8_t options, struct opr_cfg ∗cfg)
• int dpci_get_opr (struct fsl_mc_io ∗mc_io, uint32_t cmd_flags, uint16_t token, uint8_t index, struct

opr_cfg ∗cfg, struct opr_qry ∗qry)

NXP Semiconductors
DPAA2 API Reference Manual

317

Data Path Communication Interface API

1.18.2 Data Structure Documentation

1.18.2.1 struct dpci_cfg

struct dpci_cfg - Structure representing DPCI configuration

NXP Semiconductors
DPAA2 API Reference Manual

318

Data Path Communication Interface API

Parameters

options Any combination of the following options: DPCI_OPT_HAS_OPR DPCI_OPT_O←↩
PR_SHARED

num_of_←↩
priorities

Number of receive priorities (queues) for the DPCI; note, that the number of transmit
priorities (queues) is determined by the number of receive priorities of the peer DPCI
object

Data Fields

uint32_t options
uint8_t num_of_←↩

priorities

1.18.2.2 struct dpci_attr

struct dpci_attr - Structure representing DPCI attributes

Parameters

id DPCI object ID
num_of_←↩

priorities
Number of receive priorities

Data Fields

int id
uint8_t num_of_←↩

priorities

1.18.2.3 struct dpci_peer_attr

struct dpci_peer_attr - Structure representing the peer DPCI attributes

Parameters

peer_id DPCI peer id; if no peer is connected returns (-1)
num_of_←↩

priorities
The pper's number of receive priorities; determines the number of transmit priorities
for the local DPCI object

Data Fields

int peer_id

NXP Semiconductors
DPAA2 API Reference Manual

319

Data Path Communication Interface API

uint8_t num_of_←↩
priorities

1.18.2.4 struct dpci_dest_cfg

struct dpci_dest_cfg - Structure representing DPCI destination configuration

Parameters

dest_type Destination type
dest_id Either DPIO ID or DPCON ID, depending on the destination type
priority Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7,

depending on the number of priorities in that channel; not relevant for 'DPCI_DES←↩
T_NONE' option

Data Fields

enum dpci_dest dest_type
int dest_id

uint8_t priority

1.18.2.5 struct dpci_rx_queue_cfg

struct dpci_rx_queue_cfg - Structure representing RX queue configuration

Parameters

options Flags representing the suggested modifications to the queue; Use any combination of
'DPCI_QUEUE_OPT_<X>' flags

user_ctx User context value provided in the frame descriptor of each dequeued frame; valid
only if 'DPCI_QUEUE_OPT_USER_CTX' is contained in 'options'

dest_cfg Queue destination parameters; valid only if 'DPCI_QUEUE_OPT_DEST' is con-
tained in 'options'

Data Fields

uint32_t options
uint64_t user_ctx

struct
dpci_dest_cfg

dest_cfg

1.18.2.6 struct dpci_rx_queue_attr

struct dpci_rx_queue_attr - Structure representing Rx queue attributes

NXP Semiconductors
DPAA2 API Reference Manual

320

Data Path Communication Interface API

Parameters

user_ctx User context value provided in the frame descriptor of each dequeued frame
dest_cfg Queue destination configuration

fqid Virtual FQID value to be used for dequeue operations

Data Fields

uint64_t user_ctx
struct

dpci_dest_cfg
dest_cfg

uint32_t fqid

1.18.2.7 struct dpci_tx_queue_attr

struct dpci_tx_queue_attr - Structure representing attributes of Tx queues

Parameters

fqid Virtual FQID to be used for sending frames to peer DPCI; returns 'DPCI_FQID_N←↩
OT_VALID' if a no peer is connected or if the selected priority exceeds the number
of priorities of the peer DPCI object

Data Fields

uint32_t fqid

1.18.3 Macro Definition Documentation

1.18.3.1 #define DPCI_PRIO_NUM

General DPCI macros.

Maximum number of Tx/Rx priorities per DPCI object

1.18.3.2 #define DPCI_FQID_NOT_VALID

Indicates an invalid frame queue.

1.18.3.3 #define DPCI_ALL_QUEUES

All queues considered; see dpci_set_rx_queue()

NXP Semiconductors
DPAA2 API Reference Manual

321

Data Path Communication Interface API

1.18.3.4 #define DPCI_OPT_HAS_OPR

Enable the Order Restoration support.

1.18.3.5 #define DPCI_OPT_OPR_SHARED

Order Point Records are shared for the entire DPCI.

1.18.3.6 #define DPCI_IRQ_INDEX

DPCI IRQ Index and Events.

IRQ index

1.18.3.7 #define DPCI_IRQ_EVENT_LINK_CHANGED

IRQ event - indicates a change in link state.

1.18.3.8 #define DPCI_IRQ_EVENT_CONNECTED

IRQ event - indicates a connection event.

1.18.3.9 #define DPCI_IRQ_EVENT_DISCONNECTED

IRQ event - indicates a disconnection event.

1.18.3.10 #define DPCI_QUEUE_OPT_USER_CTX

DPCI queue modification options.

Select to modify the user's context associated with the queue

1.18.3.11 #define DPCI_QUEUE_OPT_DEST

Select to modify the queue's destination.

1.18.4 Enumeration Type Documentation

1.18.4.1 enum dpci_dest

enum dpci_dest - DPCI destination types

NXP Semiconductors
DPAA2 API Reference Manual

322

Data Path Communication Interface API

Parameters

DPCI_DEST←↩
_NONE

Unassigned destination; The queue is set in parked mode and does not generate F←↩
QDAN notifications; user is expected to dequeue from the queue based on polling or
other user-defined method

DPCI_DEST←↩
_DPIO

The queue is set in schedule mode and generates FQDAN notifications to the specified
DPIO; user is expected to dequeue from the queue only after notification is received

DPCI_DEST←↩
_DPCON

The queue is set in schedule mode and does not generate FQDAN notifications, but
is connected to the specified DPCON object; user is expected to dequeue from the
DPCON channel

1.18.5 Function Documentation

1.18.5.1 int dpci_open (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, int dpci_id,
uint16_t ∗ token)

dpci_open() - Open a control session for the specified object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

dpci_id DPCI unique ID
token Returned token; use in subsequent API calls

This function can be used to open a control session for an already created object; an object may have been
declared in the DPL or by calling the dpci_create() function. This function returns a unique authentication
token, associated with the specific object ID and the specific MC portal; this token must be used in all
subsequent commands for this specific object.

Return: '0' on Success; Error code otherwise.

1.18.5.2 int dpci_close (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpci_close() - Close the control session of the object

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object

After this function is called, no further operations are allowed on the object without opening a new control
session.

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

323

Data Path Communication Interface API

1.18.5.3 int dpci_create (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, const struct dpci_cfg ∗ cfg, uint32_t ∗ obj_id)

dpci_create() - Create the DPCI object.

NXP Semiconductors
DPAA2 API Reference Manual

324

Data Path Communication Interface API

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

cfg Configuration structure
obj_id returned object id

Create the DPCI object, allocate required resources and perform required initialization.

The object can be created either by declaring it in the DPL file, or by calling this function.

The function accepts an authentication token of a parent container that this object should be assigned to.
The token can be '0' so the object will be assigned to the default container. The newly created object can
be opened with the returned object id and using the container's associated tokens and MC portals.

Return: '0' on Success; Error code otherwise.

1.18.5.4 int dpci_destroy (struct fsl_mc_io ∗ mc_io, uint16_t dprc_token, uint32_t
cmd_flags, uint32_t object_id)

dpci_destroy() - Destroy the DPCI object and release all its resources.

Parameters

mc_io Pointer to MC portal's I/O object
dprc_token Parent container token; '0' for default container
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
object_id The object id; it must be a valid id within the container that

created this object;

The function accepts the authentication token of the parent container that created the object (not the one
that currently owns the object). The object is searched within parent using the provided 'object_id'. All
tokens to the object must be closed before calling destroy.

Return: '0' on Success; error code otherwise.

1.18.5.5 int dpci_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpci_enable() - Enable the DPCI, allow sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

NXP Semiconductors
DPAA2 API Reference Manual

325

Data Path Communication Interface API

token Token of DPCI object

Return: '0' on Success; Error code otherwise.

1.18.5.6 int dpci_disable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpci_disable() - Disable the DPCI, stop sending and receiving frames.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object

Return: '0' on Success; Error code otherwise.

1.18.5.7 int dpci_is_enabled (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ en)

dpci_is_enabled() - Check if the DPCI is enabled.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
en Returns '1' if object is enabled; '0' otherwise

Return: '0' on Success; Error code otherwise.

1.18.5.8 int dpci_reset (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t token)

dpci_reset() - Reset the DPCI, returns the object to initial state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object

Return: '0' on Success; Error code otherwise.

1.18.5.9 int dpci_set_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint8_t en)

dpci_set_irq_enable() - Set overall interrupt state.

NXP Semiconductors
DPAA2 API Reference Manual

326

Data Path Communication Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

en Interrupt state - enable = 1, disable = 0

Allows GPP software to control when interrupts are generated. Each interrupt can have up to 32 causes.
The enable/disable control's the overall interrupt state. if the interrupt is disabled no causes will cause an
interrupt.

Return: '0' on Success; Error code otherwise.

1.18.5.10 int dpci_get_irq_enable (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint8_t ∗ en)

dpci_get_irq_enable() - Get overall interrupt state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

en Returned interrupt state - enable = 1, disable = 0

Return: '0' on Success; Error code otherwise.

1.18.5.11 int dpci_set_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t mask)

dpci_set_irq_mask() - Set interrupt mask.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

mask event mask to trigger interrupt; each bit: 0 = ignore event 1 = consider event for
asserting IRQ

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

327

Data Path Communication Interface API

1.18.5.12 int dpci_get_irq_mask (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t irq_index, uint32_t ∗ mask)

dpci_get_irq_mask() - Get interrupt mask.

NXP Semiconductors
DPAA2 API Reference Manual

328

Data Path Communication Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

mask Returned event mask to trigger interrupt

Every interrupt can have up to 32 causes and the interrupt model supports masking/unmasking each cause
independently

Return: '0' on Success; Error code otherwise.

1.18.5.13 int dpci_get_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t ∗ status)

dpci_get_irq_status() - Get the current status of any pending interrupts.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

status Returned interrupts status - one bit per cause: 0 = no interrupt pending 1 = interrupt
pending

Return: '0' on Success; Error code otherwise.

1.18.5.14 int dpci_clear_irq_status (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, uint8_t irq_index, uint32_t status)

dpci_clear_irq_status() - Clear a pending interrupt's status

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
irq_index The interrupt index to configure

status bits to clear (W1C) - one bit per cause: 0 = don't change 1 = clear status bit

Return: '0' on Success; Error code otherwise.

1.18.5.15 int dpci_get_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, struct dpci_attr ∗ attr)

dpci_get_attributes() - Retrieve DPCI attributes.

NXP Semiconductors
DPAA2 API Reference Manual

329

Data Path Communication Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
attr Returned object's attributes

Return: '0' on Success; Error code otherwise.

1.18.5.16 int dpci_get_peer_attributes (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t token, struct dpci_peer_attr ∗ attr)

dpci_get_peer_attributes() - Retrieve peer DPCI attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
attr Returned peer attributes

Return: '0' on Success; Error code otherwise.

1.18.5.17 int dpci_get_link_state (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, int ∗ up)

dpci_get_link_state() - Retrieve the DPCI link state.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
up Returned link state; returns '1' if link is up, '0' otherwise

DPCI can be connected to another DPCI, together they create a 'link'. In order to use the DPCI Tx and Rx
queues, both objects must be enabled.

Return: '0' on Success; Error code otherwise.

1.18.5.18 int dpci_set_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t priority, const struct dpci_rx_queue_cfg ∗ cfg)

dpci_set_rx_queue() - Set Rx queue configuration

NXP Semiconductors
DPAA2 API Reference Manual

330

Data Path Communication Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
priority Select the queue relative to number of priorities configured at DPCI creation; use

DPCI_ALL_QUEUES to configure all Rx queues identically.
cfg Rx queue configuration

Return: '0' on Success; Error code otherwise.

1.18.5.19 int dpci_get_rx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t priority, struct dpci_rx_queue_attr ∗ attr)

dpci_get_rx_queue() - Retrieve Rx queue attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
priority Select the queue relative to number of priorities configured at DPCI creation

attr Returned Rx queue attributes

Return: '0' on Success; Error code otherwise.

1.18.5.20 int dpci_get_tx_queue (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t priority, struct dpci_tx_queue_attr ∗ attr)

dpci_get_tx_queue() - Retrieve Tx queue attributes.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
priority Select the queue relative to number of priorities of the peer DPCI object

attr Returned Tx queue attributes

Return: '0' on Success; Error code otherwise.

1.18.5.21 int dpci_get_api_version (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags,
uint16_t ∗ major_ver, uint16_t ∗ minor_ver)

dpci_get_api_version() - Get communication interface API version

NXP Semiconductors
DPAA2 API Reference Manual

331

Data Path Communication Interface API

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'
major_ver Major version of data path communication interface API
minor_ver Minor version of data path communication interface API

Return: '0' on Success; Error code otherwise.

1.18.5.22 int dpci_set_opr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t index, uint8_t options, struct opr_cfg ∗ cfg)

dpci_set_opr() - Set Order Restoration configuration.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
index The queue index

options Configuration mode options can be OPR_OPT_CREATE or OPR_OPT_RETIRE
cfg Configuration options for the OPR

Return: '0' on Success; Error code otherwise.

1.18.5.23 int dpci_get_opr (struct fsl_mc_io ∗ mc_io, uint32_t cmd_flags, uint16_t
token, uint8_t index, struct opr_cfg ∗ cfg, struct opr_qry ∗ qry)

dpci_get_opr() - Retrieve Order Restoration config and query.

Parameters

mc_io Pointer to MC portal's I/O object
cmd_flags Command flags; one or more of 'MC_CMD_FLAG_'

token Token of DPCI object
index The queue index

cfg Returned OPR configuration
qry Returned OPR query

Return: '0' on Success; Error code otherwise.

NXP Semiconductors
DPAA2 API Reference Manual

332

Chapter 2
QBMan APIs
2.1 Overview
The QBMan block descriptor, software portal descriptor and frame descriptor are defined here.

This includes QBMan portal APIs to implement the following functions:

• Initialize and destroy Software portal object.
• Read and write Software portal interrupt registers.
• Enqueue, including setting the enqueue descriptor, and issuing enqueue command etc.
• Dequeue, including setting the dequeue descriptor, issuing dequeue command, parsing the dequeue

response in DQRR and memory, parsing the state change notifications etc.
• Release, including setting the release descriptor, and issuing the buffer release command.
• Acquire, acquire the buffer from the given buffer pool.
• FQ management.
• Channel management, enable/disable CDAN with or without context.

Data Structures
• struct qbman_block_desc
• struct qbman_swp_desc
• struct qbman_fd
• struct qbman_pull_desc
• struct qbman_eq_desc
• struct qbman_eq_response
• struct qbman_release_desc

Macros
• #define QBMAN_SWP_INTERRUPT_EQRI
• #define QBMAN_SWP_INTERRUPT_EQDI
• #define QBMAN_SWP_INTERRUPT_DQRI
• #define QBMAN_SWP_INTERRUPT_RCRI
• #define QBMAN_SWP_INTERRUPT_RCDI
• #define QBMAN_SWP_INTERRUPT_VDCI
• #define qbman_result_FQDAN_fqid(dq)
• #define qbman_result_FQRN_fqid(dq)
• #define qbman_result_FQRNI_fqid(dq)
• #define qbman_result_FQPN_fqid(dq)
• #define qbman_result_CDAN_cid(dq)
• #define qbman_result_CSCN_cgid(dq)

NXP Semiconductors
DPAA2 API Reference Manual

333

Overview

Enumerations
• enum qbman_pull_type_e {

qbman_pull_type_prio,
qbman_pull_type_active,
qbman_pull_type_active_noics }

Functions
• struct qbman_swp ∗ qbman_swp_init (const struct qbman_swp_desc ∗d)
• void qbman_swp_finish (struct qbman_swp ∗p)
• const struct qbman_swp_desc ∗ qbman_swp_get_desc (struct qbman_swp ∗p)
• uint32_t qbman_swp_interrupt_get_vanish (struct qbman_swp ∗p)
• void qbman_swp_interrupt_set_vanish (struct qbman_swp ∗p, uint32_t mask)
• uint32_t qbman_swp_interrupt_read_status (struct qbman_swp ∗p)
• void qbman_swp_interrupt_clear_status (struct qbman_swp ∗p, uint32_t mask)
• uint32_t qbman_swp_interrupt_get_trigger (struct qbman_swp ∗p)
• void qbman_swp_interrupt_set_trigger (struct qbman_swp ∗p, uint32_t mask)
• int qbman_swp_interrupt_get_inhibit (struct qbman_swp ∗p)
• void qbman_swp_interrupt_set_inhibit (struct qbman_swp ∗p, int inhibit)
• void qbman_swp_push_get (struct qbman_swp ∗, uint8_t channel_idx, int ∗enabled)
• void qbman_swp_push_set (struct qbman_swp ∗, uint8_t channel_idx, int enable)
• void qbman_pull_desc_clear (struct qbman_pull_desc ∗d)
• void qbman_pull_desc_set_storage (struct qbman_pull_desc ∗d, struct dpaa2_dq ∗storage, dma_←↩

addr_t storage_phys, int stash)
• void qbman_pull_desc_set_numframes (struct qbman_pull_desc ∗, uint8_t numframes)
• void qbman_pull_desc_set_fq (struct qbman_pull_desc ∗, uint32_t fqid)
• void qbman_pull_desc_set_wq (struct qbman_pull_desc ∗, uint32_t wqid, enum qbman_pull_←↩

type_e dct)
• void qbman_pull_desc_set_channel (struct qbman_pull_desc ∗, uint32_t chid, enum qbman_←↩

pull_type_e dct)
• int qbman_swp_pull (struct qbman_swp ∗, struct qbman_pull_desc ∗d)
• const struct dpaa2_dq ∗ qbman_swp_dqrr_next (struct qbman_swp ∗s)
• void qbman_swp_dqrr_consume (struct qbman_swp ∗s, const struct dpaa2_dq ∗dq)
• int qbman_result_has_new_result (struct qbman_swp ∗, const struct dpaa2_dq ∗)
• int qbman_result_is_DQ (const struct dpaa2_dq ∗)
• static int qbman_result_is_SCN (const struct dpaa2_dq ∗dq)
• int qbman_result_is_FQDAN (const struct dpaa2_dq ∗)
• int qbman_result_is_CDAN (const struct dpaa2_dq ∗)
• int qbman_result_is_CSCN (const struct dpaa2_dq ∗)
• int qbman_result_is_BPSCN (const struct dpaa2_dq ∗)
• int qbman_result_is_CGCU (const struct dpaa2_dq ∗)
• int qbman_result_is_FQRN (const struct dpaa2_dq ∗)
• int qbman_result_is_FQRNI (const struct dpaa2_dq ∗)
• int qbman_result_is_FQPN (const struct dpaa2_dq ∗)
• uint8_t qbman_result_SCN_state (const struct dpaa2_dq ∗)
• uint32_t qbman_result_SCN_rid (const struct dpaa2_dq ∗)
• uint64_t qbman_result_SCN_ctx (const struct dpaa2_dq ∗)
• uint8_t qbman_result_SCN_state_in_mem (const struct dpaa2_dq ∗)
• uint32_t qbman_result_SCN_rid_in_mem (const struct dpaa2_dq ∗)
• uint16_t qbman_result_bpscn_bpid (const struct dpaa2_dq ∗)
• int qbman_result_bpscn_has_free_bufs (const struct dpaa2_dq ∗)
• int qbman_result_bpscn_is_depleted (const struct dpaa2_dq ∗)
• int qbman_result_bpscn_is_surplus (const struct dpaa2_dq ∗)
• uint64_t qbman_result_bpscn_ctx (const struct dpaa2_dq ∗)

NXP Semiconductors
DPAA2 API Reference Manual

334

Data Structure Documentation

• uint16_t qbman_result_cgcu_cgid (const struct dpaa2_dq ∗)
• uint64_t qbman_result_cgcu_icnt (const struct dpaa2_dq ∗)
• void qbman_eq_desc_clear (struct qbman_eq_desc ∗)
• void qbman_eq_desc_set_no_orp (struct qbman_eq_desc ∗d, int respond_success)
• void qbman_eq_desc_set_orp (struct qbman_eq_desc ∗d, int respond_success, uint32_t opr_id,

uint32_t seqnum, int incomplete)
• void qbman_eq_desc_set_orp_hole (struct qbman_eq_desc ∗d, uint32_t opr_id, uint32_t seqnum)
• void qbman_eq_desc_set_orp_nesn (struct qbman_eq_desc ∗d, uint32_t opr_id, uint32_t seqnum)
• void qbman_eq_desc_set_response (struct qbman_eq_desc ∗d, dma_addr_t storage_phys, int stash)
• void qbman_eq_desc_set_token (struct qbman_eq_desc ∗d, uint8_t token)
• void qbman_eq_desc_set_fq (struct qbman_eq_desc ∗, uint32_t fqid)
• void qbman_eq_desc_set_qd (struct qbman_eq_desc ∗, uint32_t qdid, uint32_t qd_bin, uint32_t

qd_prio)
• void qbman_eq_desc_set_eqdi (struct qbman_eq_desc ∗, int enable)
• void qbman_eq_desc_set_dca (struct qbman_eq_desc ∗, int enable, uint32_t dqrr_idx, int park)
• int qbman_swp_enqueue (struct qbman_swp ∗, const struct qbman_eq_desc ∗, const struct qbman←↩

_fd ∗fd)
• int qbman_swp_enqueue_thresh (struct qbman_swp ∗, unsigned int thresh)
• void qbman_release_desc_clear (struct qbman_release_desc ∗)
• void qbman_release_desc_set_bpid (struct qbman_release_desc ∗, uint32_t bpid)
• void qbman_release_desc_set_rcdi (struct qbman_release_desc ∗, int enable)
• int qbman_swp_release (struct qbman_swp ∗s, const struct qbman_release_desc ∗d, const uint64_t
∗buffers, unsigned int num_buffers)

• int qbman_swp_acquire (struct qbman_swp ∗, uint32_t bpid, uint64_t ∗buffers, unsigned int num←↩
_buffers)

• int qbman_swp_fq_schedule (struct qbman_swp ∗s, uint32_t fqid)
• int qbman_swp_fq_force (struct qbman_swp ∗s, uint32_t fqid)
• int qbman_swp_fq_xon (struct qbman_swp ∗s, uint32_t fqid)
• int qbman_swp_fq_xoff (struct qbman_swp ∗s, uint32_t fqid)
• int qbman_swp_CDAN_set_context (struct qbman_swp ∗, uint16_t channelid, uint64_t ctx)
• int qbman_swp_CDAN_enable (struct qbman_swp ∗, uint16_t channelid)
• int qbman_swp_CDAN_disable (struct qbman_swp ∗, uint16_t channelid)
• int qbman_swp_CDAN_set_context_enable (struct qbman_swp ∗, uint16_t channelid, uint64_t ctx)

2.2 Data Structure Documentation

2.2.1 struct qbman_block_desc

struct qbman_block_desc - qbman block descriptor structure

Descriptor for a QBMan instance on the SoC. On partitions/targets that do not control this QBMan in-
stance, these values may simply be place-holders. The idea is simply that we be able to distinguish
between them, eg. so that SWP descriptors can identify which QBMan instance they belong to.

Data Fields

void ∗ ccsr_reg_bar
int irq_rerr

NXP Semiconductors
DPAA2 API Reference Manual

335

Data Structure Documentation

int irq_nrerr

2.2.2 struct qbman_swp_desc

struct qbman_swp_desc - qbman software portal descriptor structure

Descriptor for a QBMan software portal, expressed in terms that make sense to the user context. Ie. on
MC, this information is likely to be true-physical, and instantiated statically at compile-time. On GPP, this
information is likely to be obtained via "discovery" over a partition's "layerscape bus" (ie. in response to
a MC portal command), and would take into account any virtualisation of the GPP user's address space
and/or interrupt numbering.

Data Fields

const struct
qbman_block←↩

_desc
∗

block

void ∗ cena_bar
void ∗ cinh_bar

uint32_t qman_version

2.2.3 struct qbman_fd

struct qbman_fd - basic structure for qbman frame descriptor

Place-holder for FDs, we represent it via the simplest form that we need for now. Different overlays
may be needed to support different options, etc. (It is impractical to define One True Struct, because the
resulting encoding routines (lots of read-modify-writes) would be worst-case performance whether or not
circumstances required them.)

Note, as with all data-structures exchanged between software and hardware (be they located in the portal
register map or DMA'd to and from main-memory), the driver ensures that the caller of the driver A←↩
PI sees the data-structures in host-endianness. "struct qbman_fd" is no exception. The 32-bit words
contained within this structure are represented in host-endianness, even if hardware always treats them as
little-endian. As such, if any of these fields are interpreted in a binary (rather than numerical) fashion by
hardware blocks (eg. accelerators), then the user should be careful. We illustrate with an example;

Suppose the desired behaviour of an accelerator is controlled by the "frc" field of the FDs that are sent to
it. Suppose also that the behaviour desired by the user corresponds to an "frc" value which is expressed as
the literal sequence of bytes 0xfe, 0xed, 0xab, and 0xba. So "frc" should be the 32-bit value in which 0xfe
is the first byte and 0xba is the last byte, and as hardware is little-endian, this amounts to a 32-bit "value"
of 0xbaabedfe. If the software is little-endian also, this can simply be achieved by setting frc=0xbaabedfe.
On the other hand, if software is big-endian, it should set frc=0xfeedabba! The best away of avoiding
trouble with this sort of thing is to treat the 32-bit words as numerical values, in which the offset of a field

NXP Semiconductors
DPAA2 API Reference Manual

336

Data Structure Documentation

from the beginning of the first byte (as required or generated by hardware) is numerically encoded by a
left-shift (ie. by raising the field to a corresponding power of 2). Ie. in the current example, software could
set "frc" in the following way, and it would work correctly on both little-endian and big-endian operation;
fd.frc = (0xfe << 0) | (0xed << 8) | (0xab << 16) | (0xba << 24);

Data Fields

union
qbman_fd

__unnamed_←↩
_

2.2.4 struct qbman_pull_desc

struct qbman_pull_desc - the structure for pull dequeue descriptor

Data Fields

uint32_t dont_←↩
manipulate_←↩
directly[6]

2.2.5 struct qbman_eq_desc

struct qbman_eq_desc - structure of enqueue descriptor

Data Fields

uint32_t dont_←↩
manipulate_←↩
directly[8]

2.2.6 struct qbman_eq_response

struct qbman_eq_response - structure of enqueue response

Data Fields

uint32_t dont_←↩
manipulate_←↩
directly[16]

2.2.7 struct qbman_release_desc

struct qbman_release_desc - The structure for buffer release descriptor

NXP Semiconductors
DPAA2 API Reference Manual

337

Function Documentation

Data Fields

uint32_t dont_←↩
manipulate_←↩
directly[1]

2.3 Function Documentation

2.3.1 struct qbman_swp∗ qbman_swp_init (const struct qbman_swp_desc ∗ d)

qbman_swp_init() - Create a functional object representing the given QBMan portal descriptor.

Parameters

d the given qbman swp descriptor

Return qbman_swp portal object for success, NULL if the object cannot be created.

2.3.2 void qbman_swp_finish (struct qbman_swp ∗ p)

qbman_swp_finish() - Create and destroy a functional object representing the given QBMan portal de-
scriptor.

Parameters

p the qbman_swp object to be destroyed.

2.3.3 const struct qbman_swp_desc∗ qbman_swp_get_desc (struct qbman_swp ∗
p)

qbman_swp_get_desc() - Get the descriptor of the given portal object.

Parameters

p the given portal object.

Return the descriptor for this portal.

2.3.4 uint32_t qbman_swp_interrupt_get_vanish (struct qbman_swp ∗ p)

qbman_swp_interrupt_get_vanish() qbman_swp_interrupt_set_vanish() - Get/Set the data in software por-
tal interrupt status disable register.

NXP Semiconductors
DPAA2 API Reference Manual

338

Function Documentation

Parameters

p the given software portal object.
mask The mask to set in SWP_IDSR register.

Return the settings in SWP_ISDR register for Get function.

2.3.5 uint32_t qbman_swp_interrupt_read_status (struct qbman_swp ∗ p)

qbman_swp_interrupt_read_status() qbman_swp_interrupt_clear_status() - Get/Set the data in software
portal interrupt status register.

Parameters

p the given software portal object.
mask The mask to set in SWP_ISR register.

Return the settings in SWP_ISR register for Get function.

2.3.6 uint32_t qbman_swp_interrupt_get_trigger (struct qbman_swp ∗ p)

qbman_swp_interrupt_get_trigger() qbman_swp_interrupt_set_trigger() - Get/Set the data in software por-
tal interrupt enable register.

Parameters

p the given software portal object.
mask The mask to set in SWP_IER register.

Return the settings in SWP_IER register for Get function.

2.3.7 int qbman_swp_interrupt_get_inhibit (struct qbman_swp ∗ p)

qbman_swp_interrupt_get_inhibit() qbman_swp_interrupt_set_inhibit() - Set/Set the data in software por-
tal interrupt inhibit register.

Parameters

p the given software portal object.
mask The mask to set in SWP_IIR register.

Return the settings in SWP_IIR register for Get function.

2.3.8 void qbman_swp_push_get (struct qbman_swp ∗ , uint8_t channel_idx, int
∗ enabled)

qbman_swp_push_get() - Get the push dequeue setup.

NXP Semiconductors
DPAA2 API Reference Manual

339

Function Documentation

Parameters

p the software portal object.
channel_idx the channel index to query.

enabled returned boolean to show whether the push dequeue is enabled for

the given channel.

2.3.9 void qbman_swp_push_set (struct qbman_swp ∗ , uint8_t channel_idx, int
enable)

qbman_swp_push_set() - Enable or disable push dequeue.

Parameters

p the software portal object.
channel_idx the channel index..

enable enable or disable push dequeue.

The user of a portal can enable and disable push-mode dequeuing of up to 16 channels independently. It
does not specify this toggling by channel IDs, but rather by specifying the index (from 0 to 15) that has
been mapped to the desired channel.

2.3.10 void qbman_pull_desc_clear (struct qbman_pull_desc ∗ d)

qbman_pull_desc_clear() - Clear the contents of a descriptor to default/starting state.

Parameters

d the pull dequeue descriptor to be cleared.

2.3.11 void qbman_pull_desc_set_storage (struct qbman_pull_desc ∗ d, struct
dpaa2_dq ∗ storage, dma_addr_t storage_phys, int stash)

qbman_pull_desc_set_storage()- Set the pull dequeue storage

Parameters

d the pull dequeue descriptor to be set.
storage the pointer of the memory to store the dequeue result.

storage_phys the physical address of the storage memory.
stash to indicate whether write allocate is enabled.

If not called, or if called with 'storage' as NULL, the result pull dequeues will produce results to DQRR. If
'storage' is non-NULL, then results are produced to the given memory location (using the physical/DMA
address which the caller provides in 'storage_phys'), and 'stash' controls whether or not those writes to
main-memory express a cache-warming attribute.

NXP Semiconductors
DPAA2 API Reference Manual

340

Function Documentation

2.3.12 void qbman_pull_desc_set_numframes (struct qbman_pull_desc ∗ , uint8_t
numframes)

qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued.

NXP Semiconductors
DPAA2 API Reference Manual

341

Function Documentation

Parameters

d the pull dequeue descriptor to be set.
numframes number of frames to be set, must be between 1 and 16, inclusive.

2.3.13 void qbman_pull_desc_set_fq (struct qbman_pull_desc ∗ , uint32_t fqid)

qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues.

Parameters

fqid the frame queue index of the given FQ.

qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues. wqid: composed of
channel id and wqid within the channel. dct: the dequeue command type.

qbman_pull_desc_set_channel() - Set channelid from which the dequeue command dequeues. chid: the
channel id to be dequeued. dct: the dequeue command type.

Exactly one of the following descriptor "actions" should be set. (Calling any one of these will replace the
effect of any prior call to one of these.)

• pull dequeue from the given frame queue (FQ)
• pull dequeue from any FQ in the given work queue (WQ)
• pull dequeue from any FQ in any WQ in the given channel

2.3.14 int qbman_swp_pull (struct qbman_swp ∗ , struct qbman_pull_desc ∗ d)

qbman_swp_pull() - Issue the pull dequeue command

Parameters

s the software portal object.
d the software portal descriptor which has been configured with

the set of qbman_pull_desc_set_∗() calls.

Return 0 for success, and -EBUSY if the software portal is not ready to do pull dequeue.

2.3.15 const struct dpaa2_dq∗ qbman_swp_dqrr_next (struct qbman_swp ∗ s)

qbman_swp_dqrr_next() - Get an valid DQRR entry.

Parameters

NXP Semiconductors
DPAA2 API Reference Manual

342

Function Documentation

s the software portal object.

Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry only once, so repeated
calls can return a sequence of DQRR entries, without requiring they be consumed immediately or in any
particular order.

2.3.16 void qbman_swp_dqrr_consume (struct qbman_swp ∗ s, const struct
dpaa2_dq ∗ dq)

qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from qbman_swp_dqrr_←↩
next().

Parameters

s the software portal object.
dq the DQRR entry to be consumed.

2.3.17 int qbman_result_has_new_result (struct qbman_swp ∗ , const struct
dpaa2_dq ∗)

qbman_result_has_new_result() - Check and get the dequeue response from the dq storage memory set in
pull dequeue command

Parameters

s the software portal object.
dq the dequeue result read from the memory.

Only used for user-provided storage of dequeue results, not DQRR. For efficiency purposes, the driver
will perform any required endianness conversion to ensure that the user's dequeue result storage is in
host-endian format (whether or not that is the same as the little-endian format that hardware DMA'd to
the user's storage). As such, once the user has called qbman_result_has_new_result() and been returned
a valid dequeue result, they should not call it again on the same memory location (except of course if
another dequeue command has been executed to produce a new result to that location).

Return 1 for getting a valid dequeue result, or 0 for not getting a valid dequeue result.

2.3.18 int qbman_result_is_DQ (const struct dpaa2_dq ∗)

qbman_result_is_DQ() - check the dequeue result is a dequeue response or not

Parameters

dq the dequeue result to be checked.

DQRR entries may contain non-dequeue results, ie. notifications

NXP Semiconductors
DPAA2 API Reference Manual

343

Function Documentation

2.3.19 static int qbman_result_is_SCN (const struct dpaa2_dq ∗ dq) [static]

qbman_result_is_SCN() - Check the dequeue result is notification or not

NXP Semiconductors
DPAA2 API Reference Manual

344

Function Documentation

Parameters

dq the dequeue result to be checked.

All the non-dequeue results (FQDAN/CDAN/CSCN/...) are "state change notifications" of one type or
another. Some APIs apply to all of them, of the form qbman_result_SCN_∗∗∗().

2.3.20 int qbman_result_is_FQDAN (const struct dpaa2_dq ∗)

Recognise different notification types, only required if the user allows for these to occur, and cares about
them when they do.

2.3.21 uint8_t qbman_result_SCN_state (const struct dpaa2_dq ∗)

qbman_result_SCN_state() - Get the state field in State-change notification

2.3.22 uint32_t qbman_result_SCN_rid (const struct dpaa2_dq ∗)

qbman_result_SCN_rid() - Get the resource id in State-change notification

2.3.23 uint64_t qbman_result_SCN_ctx (const struct dpaa2_dq ∗)

qbman_result_SCN_ctx() - Get the context data in State-change notification

2.3.24 uint8_t qbman_result_SCN_state_in_mem (const struct dpaa2_dq ∗)

qbman_result_SCN_state_in_mem() - Get the state field in State-change notification which is written to
memory instead of DQRR.

2.3.25 uint32_t qbman_result_SCN_rid_in_mem (const struct dpaa2_dq ∗)

qbman_result_SCN_rid_in_mem() - Get the resource id in State-change notification which is written to
memory instead of DQRR.

2.3.26 uint16_t qbman_result_bpscn_bpid (const struct dpaa2_dq ∗)

qbman_result_bpscn_bpid() - Get the bpid from BPSCN

Return the buffer pool id.

NXP Semiconductors
DPAA2 API Reference Manual

345

Function Documentation

2.3.27 int qbman_result_bpscn_has_free_bufs (const struct dpaa2_dq ∗)

qbman_result_bpscn_has_free_bufs() - Check whether there are free buffers in the pool from BPSCN.

Return the number of free buffers.

2.3.28 int qbman_result_bpscn_is_depleted (const struct dpaa2_dq ∗)

qbman_result_bpscn_is_depleted() - Check BPSCN to see whether the buffer pool is depleted.

Return the status of buffer pool depletion.

2.3.29 int qbman_result_bpscn_is_surplus (const struct dpaa2_dq ∗)

qbman_result_bpscn_is_surplus() - Check BPSCN to see whether the buffer pool is surplus or not.

Return the status of buffer pool surplus.

2.3.30 uint64_t qbman_result_bpscn_ctx (const struct dpaa2_dq ∗)

qbman_result_bpscn_ctx() - Get the BPSCN CTX from BPSCN message

Return the BPSCN context.

2.3.31 uint16_t qbman_result_cgcu_cgid (const struct dpaa2_dq ∗)

qbman_result_cgcu_cgid() - Check CGCU resouce id, i.e.

cgid

Return the CGCU resource id.

2.3.32 uint64_t qbman_result_cgcu_icnt (const struct dpaa2_dq ∗)

qbman_result_cgcu_icnt() - Get the I_CNT from CGCU

Return instantaneous count in the CGCU notification.

2.3.33 void qbman_eq_desc_clear (struct qbman_eq_desc ∗)

qbman_eq_desc_clear() - Clear the contents of a descriptor to default/starting state.

NXP Semiconductors
DPAA2 API Reference Manual

346

Function Documentation

2.3.34 void qbman_eq_desc_set_no_orp (struct qbman_eq_desc ∗ d, int
respond_success)

qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp

NXP Semiconductors
DPAA2 API Reference Manual

347

Function Documentation

Parameters

d the enqueue descriptor.
response_←↩

success
1 = enqueue with response always; 0 = enqueue with

rejections returned on a FQ.

2.3.35 void qbman_eq_desc_set_orp (struct qbman_eq_desc ∗ d, int
respond_success, uint32_t opr_id, uint32_t seqnum, int incomplete)

qbman_eq_desc_set_orp() - Set order-resotration in the enqueue descriptor

Parameters

d the enqueue descriptor.
response_←↩

success
1 = enqueue with response always; 0 = enqueue with

rejections returned on a FQ. opr_id: the order point record id. seqnum: the order restoration sequence
number. incomplete: indiates whether this is the last fragments using the same sequeue number.

2.3.36 void qbman_eq_desc_set_orp_hole (struct qbman_eq_desc ∗ d, uint32_t
opr_id, uint32_t seqnum)

qbman_eq_desc_set_orp_hole() - fill a hole in the order-restoration sequence without any enqueue

Parameters

d the enqueue descriptor.
opr_id the order point record id.

seqnum the order restoration sequence number.

2.3.37 void qbman_eq_desc_set_orp_nesn (struct qbman_eq_desc ∗ d, uint32_t
opr_id, uint32_t seqnum)

qbman_eq_desc_set_orp_nesn() - advance NESN (Next Expected Sequence Number) without any en-
queue

Parameters

d the enqueue descriptor.

NXP Semiconductors
DPAA2 API Reference Manual

348

Function Documentation

opr_id the order point record id.
seqnum the order restoration sequence number.

2.3.38 void qbman_eq_desc_set_response (struct qbman_eq_desc ∗ d,
dma_addr_t storage_phys, int stash)

qbman_eq_desc_set_response() - Set the enqueue response info.

Parameters

d the enqueue descriptor
storage_phys the physical address of the enqueue response in memory.

stash indicate that the write allocation enabled or not.

In the case where an enqueue response is DMA'd, this determines where that response should go.
(The physical/DMA address is given for hardware's benefit, but software should interpret it as a "struct
qbman_eq_response" data structure.) 'stash' controls whether or not the write to main-memory expresses
a cache-warming attribute.

2.3.39 void qbman_eq_desc_set_token (struct qbman_eq_desc ∗ d, uint8_t token
)

qbman_eq_desc_set_token() - Set token for the enqueue command

Parameters

d the enqueue descriptor
token the token to be set.

token is the value that shows up in an enqueue response that can be used to detect when the results have
been published. The easiest technique is to zero result "storage" before issuing an enqueue, and use any
non-zero 'token' value.

2.3.40 void qbman_eq_desc_set_fq (struct qbman_eq_desc ∗ , uint32_t fqid)

qbman_eq_desc_set_fq() qbman_eq_desc_set_qd() - Set eithe FQ or Queuing Destination for the enqueue
command.
Parameters

d the enqueue descriptor
fqid the id of the frame queue to be enqueued.
qdid the id of the queuing destination to be enqueued.

qd_bin the queuing destination bin
qd_prio the queuing destination priority.

NXP Semiconductors
DPAA2 API Reference Manual

349

Function Documentation

Exactly one of the following descriptor "targets" should be set. (Calling any one of these will replace the
effect of any prior call to one of these.)

• enqueue to a frame queue
• enqueue to a queuing destination Note, that none of these will have any affect if the "action" type

has been set to "orp_hole" or "orp_nesn".

2.3.41 void qbman_eq_desc_set_eqdi (struct qbman_eq_desc ∗ , int enable)

qbman_eq_desc_set_eqdi() - enable/disable EQDI interrupt

Parameters

d the enqueue descriptor
enable boolean to enable/disable EQDI

Determines whether or not the portal's EQDI interrupt source should be asserted after the enqueue
command is completed.

2.3.42 void qbman_eq_desc_set_dca (struct qbman_eq_desc ∗ , int enable,
uint32_t dqrr_idx, int park)

qbman_eq_desc_set_dca() - Set DCA mode in the enqueue command.

Parameters

d the enqueue descriptor.
enable enabled/disable DCA mode.

dqrr_idx DCAP_CI, the DCAP consumer index.
park determine the whether park the FQ or not

Determines whether or not a portal DQRR entry should be consumed once the enqueue command is
completed. (And if so, and the DQRR entry corresponds to a held-active (order-preserving) FQ, whether
the FQ should be parked instead of being rescheduled.)

2.3.43 int qbman_swp_enqueue (struct qbman_swp ∗ , const struct
qbman_eq_desc ∗ , const struct qbman_fd ∗ fd)

qbman_swp_enqueue() - Issue an enqueue command.

Parameters

s the software portal used for enqueue.
d the enqueue descriptor.

fd the frame descriptor to be enqueued.

Please note that 'fd' should only be NULL if the "action" of the descriptor is "orp_hole" or "orp_nesn".

NXP Semiconductors
DPAA2 API Reference Manual

350

Function Documentation

Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.

2.3.44 int qbman_swp_enqueue_thresh (struct qbman_swp ∗ , unsigned int
thresh)

qbman_swp_enqueue_thresh() - Set the threshold for EQRI interrupt.

An EQRI interrupt can be generated when the fill-level of EQCR falls below the 'thresh' value set here.
Setting thresh==0 (the default) disables.

2.3.45 void qbman_release_desc_clear (struct qbman_release_desc ∗)

qbman_release_desc_clear() - Clear the contents of a descriptor to default/starting state.

2.3.46 void qbman_release_desc_set_bpid (struct qbman_release_desc ∗ ,
uint32_t bpid)

qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to

2.3.47 void qbman_release_desc_set_rcdi (struct qbman_release_desc ∗ , int
enable)

qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI interrupt source should be
asserted after the release command is completed.

2.3.48 int qbman_swp_release (struct qbman_swp ∗ s, const struct
qbman_release_desc ∗ d, const uint64_t ∗ buffers, unsigned int num_buffers
)

qbman_swp_release() - Issue a buffer release command.

Parameters

s the software portal object.
d the release descriptor.

buffers a pointer pointing to the buffer address to be released.
num_buffers number of buffers to be released, must be less than 8.

Return 0 for success, -EBUSY if the release command ring is not ready.

NXP Semiconductors
DPAA2 API Reference Manual

351

Function Documentation

2.3.49 int qbman_swp_acquire (struct qbman_swp ∗ , uint32_t bpid, uint64_t ∗
buffers, unsigned int num_buffers)

qbman_swp_acquire() - Issue a buffer acquire command.

NXP Semiconductors
DPAA2 API Reference Manual

352

Function Documentation

Parameters

s the software portal object.
bpid the buffer pool index.

buffers a pointer pointing to the acquired buffer address|es.
num_buffers number of buffers to be acquired, must be less than 8.

Return 0 for success, or negative error code if the acquire command fails.

2.3.50 int qbman_swp_fq_schedule (struct qbman_swp ∗ s, uint32_t fqid)

qbman_swp_fq_schedule() - Move the fq to the scheduled state.

Parameters

s the software portal object.
fqid the index of frame queue to be scheduled.

There are a couple of different ways that a FQ can end up parked state, This schedules it.

Return 0 for success, or negative error code for failure.

2.3.51 int qbman_swp_fq_force (struct qbman_swp ∗ s, uint32_t fqid)

qbman_swp_fq_force() - Force the FQ to fully scheduled state.

Parameters

s the software portal object.
fqid the index of frame queue to be forced.

Force eligible will force a tentatively-scheduled FQ to be fully-scheduled and thus be available for
selection by any channel-dequeuing behaviour (push or pull). If the FQ is subsequently "dequeued"
from the channel and is still empty at the time this happens, the resulting dq_entry will have no FD.
(qbman_result_DQ_fd() will return NULL.)

Return 0 for success, or negative error code for failure.

2.3.52 int qbman_swp_fq_xon (struct qbman_swp ∗ s, uint32_t fqid)

qbman_swp_fq_xon() qbman_swp_fq_xoff() - XON/XOFF the frame queue.

Parameters

s the software portal object.
fqid the index of frame queue.

These functions change the FQ flow-control stuff between XON/XOFF. (The default is XON.) This setting
doesn't affect enqueues to the FQ, just dequeues. XOFF FQs will remain in the tenatively-scheduled state,

NXP Semiconductors
DPAA2 API Reference Manual

353

Function Documentation

even when non-empty, meaning they won't be selected for scheduled dequeuing. If a FQ is changed to
XOFF after it had already become truly-scheduled to a channel, and a pull dequeue of that channel occurs
that selects that FQ for dequeuing, then the resulting dq_entry will have no FD. (qbman_result_DQ_fd()
will return NULL.)

Return 0 for success, or negative error code for failure.

2.3.53 int qbman_swp_CDAN_set_context (struct qbman_swp ∗ , uint16_t
channelid, uint64_t ctx)

qbman_swp_CDAN_set_context() - Set CDAN context

Parameters

s the software portal object.
channelid the channel index.

ctx the context to be set in CDAN.

Return 0 for success, or negative error code for failure.

2.3.54 int qbman_swp_CDAN_enable (struct qbman_swp ∗ , uint16_t channelid)

qbman_swp_CDAN_enable() - Enable CDAN for the channel.

Parameters

s the software portal object.
channelid the index of the channel to generate CDAN.

Return 0 for success, or negative error code for failure.

2.3.55 int qbman_swp_CDAN_disable (struct qbman_swp ∗ , uint16_t channelid)

qbman_swp_CDAN_disable() - disable CDAN for the channel.

Parameters

s the software portal object.
channelid the index of the channel to generate CDAN.

Return 0 for success, or negative error code for failure.

2.3.56 int qbman_swp_CDAN_set_context_enable (struct qbman_swp ∗ , uint16_t
channelid, uint64_t ctx)

qbman_swp_CDAN_set_context_enable() - Set CDAN contest and enable CDAN

NXP Semiconductors
DPAA2 API Reference Manual

354

Function Documentation

Parameters

s the software portal object.
channelid the index of the channel to generate CDAN.

ctx the context set in CDAN.

Return 0 for success, or negative error code for failure.

NXP Semiconductors
DPAA2 API Reference Manual

355

Chapter 3
Data Path Input Output APIs
3.1 Overview
Contains initialization APIs and runtime control APIs for Data Path Input Output APIs.

Modules
• DPIO Service APIs

3.2 DPIO Service APIs

3.2.1 Overview

The DPIO service provides APIs for users to interact with the datapath by enqueueing and dequeing frame
descriptors.

The following set of APIs can be used to enqueue and dequeue frames as well as producing notification
callbacks when data is available for dequeue.

Data Structures

• struct dpaa2_io_desc
• struct dpaa2_io_notification_ctx

Functions

• struct dpaa2_io ∗ dpaa2_io_create (const struct dpaa2_io_desc ∗desc)
• struct dpaa2_io ∗ dpaa2_io_create_service (void)
• struct dpaa2_io ∗ dpaa2_io_default_service (void)
• void dpaa2_io_down (struct dpaa2_io ∗d)
• int dpaa2_io_service_add (struct dpaa2_io ∗service, struct dpaa2_io ∗obj)
• int dpaa2_io_get_descriptor (struct dpaa2_io ∗obj, struct dpaa2_io_desc ∗desc)
• int dpaa2_io_poll (struct dpaa2_io ∗obj)
• int dpaa2_io_irq (struct dpaa2_io ∗obj)
• int dpaa2_io_pause_poll (struct dpaa2_io ∗obj)
• int dpaa2_io_resume_poll (struct dpaa2_io ∗obj)
• void dpaa2_io_service_notifications (struct dpaa2_io ∗s, cpumask_t ∗mask)
• void dpaa2_io_service_stashing (struct dpaa2_io ∗s, cpumask_t ∗mask)
• int dpaa2_io_service_has_nonaffine (struct dpaa2_io ∗s)
• int dpaa2_io_service_register (struct dpaa2_io ∗service, struct dpaa2_io_notification_ctx ∗ctx)
• int dpaa2_io_service_deregister (struct dpaa2_io ∗service, struct dpaa2_io_notification_ctx ∗ctx)
• int dpaa2_io_service_rearm (struct dpaa2_io ∗service, struct dpaa2_io_notification_ctx ∗ctx)
• int dpaa2_io_from_registration (struct dpaa2_io_notification_ctx ∗ctx, struct dpaa2_io ∗∗ret)

NXP Semiconductors
DPAA2 API Reference Manual

356

DPIO Service APIs

• int dpaa2_io_service_get_persistent (struct dpaa2_io ∗service, int cpu, struct dpaa2_io ∗∗ret)
• int dpaa2_io_service_pull_fq (struct dpaa2_io ∗d, uint32_t fqid, struct dpaa2_io_store ∗s)
• int dpaa2_io_service_pull_channel (struct dpaa2_io ∗d, uint32_t channelid, struct dpaa2_io_store
∗s)

• int dpaa2_io_service_enqueue_fq (struct dpaa2_io ∗d, uint32_t fqid, const struct dpaa2_fd ∗fd)
• int dpaa2_io_service_enqueue_qd (struct dpaa2_io ∗d, uint32_t qdid, uint8_t prio, uint16_t qdbin,

const struct dpaa2_fd ∗fd)
• int dpaa2_io_service_release (struct dpaa2_io ∗d, uint32_t bpid, const uint64_t ∗buffers, unsigned

int num_buffers)
• int dpaa2_io_service_acquire (struct dpaa2_io ∗d, uint32_t bpid, uint64_t ∗buffers, unsigned int

num_buffers)
• struct dpaa2_io_store ∗ dpaa2_io_store_create (unsigned int max_frames, struct device ∗dev)
• void dpaa2_io_store_destroy (struct dpaa2_io_store ∗s)
• struct dpaa2_dq ∗ dpaa2_io_store_next (struct dpaa2_io_store ∗s, int ∗is_last)

3.2.2 Data Structure Documentation

3.2.2.1 struct dpaa2_io_desc

struct dpaa2_io_desc - The DPIO descriptor.

Parameters

receives_←↩
notifications

Use notificaton mode.

has_irq use irq-based proessing.
will_poll use poll processing.

has_8prio set for channel with 8 priority WQs.
cpu the cpu index that at least interrupt handlers will execute on.

stash_affinity the stash affinity for this portal favour 'cpu'
regs_cena the cache enabled regs.
regs_cinh the cache inhibited regs.

dpio_id The dpio index.
qman_version the qman version

Describe the attributes and features of the DPIO object.

Data Fields

int receives_←↩
notifications

int has_irq
int will_poll
int has_8prio

NXP Semiconductors
DPAA2 API Reference Manual

357

DPIO Service APIs

int cpu
int stash_affinity

void ∗ regs_cena
void ∗ regs_cinh

int dpio_id
uint32_t qman_version

3.2.2.2 struct dpaa2_io_notification_ctx

struct dpaa2_io_notification_ctx - The DPIO notification context structure.

Parameters

cb the callback to be invoked when the notification arrives.
is_cdan Zero/FALSE for FQDAN, non-zero/TRUE for CDAN.

id FQID or channel ID, needed for rearm.
desired_cpu the cpu on which the notifications will show up.
actual_cpu the cpu the notification actually shows up.

migration_cb callback function used for migration.
dpio_id the dpio index.
qman64 the 64-bit context value shows up in the FQDAN/CDAN.

node the list node.
dpio_private the dpio object internal to dpio_service.

When a FQDAN/CDAN registration is made (eg. by DPNI/DPCON/DPAI code), a context of the follow-
ing type is used. The caller can embed it within a larger structure in order to add state that is tracked along
with the notification (this may be useful when callbacks are invoked that pass this notification context as
a parameter).

Data Fields

• void(∗ cb)(struct dpaa2_io_notification_ctx ∗)
• int is_cdan
• uint32_t id
• int desired_cpu
• int actual_cpu
• void(∗ migration_cb)(struct dpaa2_io_notification_ctx ∗, int oldcpu, int newcpu)
• int dpio_id
• uint64_t qman64
• struct list_head node
• void ∗ dpio_private

NXP Semiconductors
DPAA2 API Reference Manual

358

DPIO Service APIs

3.2.3 Function Documentation

3.2.3.1 struct dpaa2_io∗ dpaa2_io_create (const struct dpaa2_io_desc ∗ desc)

dpaa2_io_create() - create a dpaa2_io object.

NXP Semiconductors
DPAA2 API Reference Manual

359

DPIO Service APIs

Parameters

desc the dpaa2_io descriptor

Activates a "struct dpaa2_io" corresponding to the given config of an actual DPIO object. This handle can
be used on it's own (like a one-portal "DPIO service") or later be added to a service-type "struct dpaa2_io"
object. Note, the information required on 'cfg' is copied so the caller is free to do as they wish with the
input parameter upon return.

Return a valid dpaa2_io object for success, or NULL for failure.

3.2.3.2 struct dpaa2_io∗ dpaa2_io_create_service (void)

dpaa2_io_create_service() - Create an (initially empty) DPIO service.

Return a valid dpaa2_io object for success, or NULL for failure.

3.2.3.3 struct dpaa2_io∗ dpaa2_io_default_service (void)

dpaa2_io_default_service() - Use the driver's own global (and initially empty) DPIO service.

This increments the reference count, so don't forget to use dpaa2_io_down() for each time this function is
called.

Return a valid dpaa2_io object for success, or NULL for failure.

3.2.3.4 void dpaa2_io_down (struct dpaa2_io ∗ d)

dpaa2_io_down() - release the dpaa2_io object.

Parameters

d the dpaa2_io object to be released.

The "struct dpaa2_io" type can represent an individual DPIO object (as described by "struct dpaa2_io_←↩
desc") or an instance of a "DPIO service", which can be used to group/encapsulate multiple DPIO objects.
In all cases, each handle obtained should be released using this function.

3.2.3.5 int dpaa2_io_service_add (struct dpaa2_io ∗ service, struct dpaa2_io ∗ obj)

dpaa2_io_service_add() - Add the given DPIO object to the given DPIO service.

Parameters

service the given DPIO service.

NXP Semiconductors
DPAA2 API Reference Manual

360

DPIO Service APIs

obj the given DPIO object.

'service' must have been created by dpaa2_io_create_service() and 'obj' must have been created by dpaa2←↩
_io_create(). This increments the reference count on the object that 'obj' refers to, so the user could call
dpaa2_io_down(obj) after this and the object will persist within the service (and will be destroyed when
the service is destroyed).

Return 0 for success, or -EINVAL for failure.

3.2.3.6 int dpaa2_io_get_descriptor (struct dpaa2_io ∗ obj, struct dpaa2_io_desc ∗ desc
)

dpaa2_io_get_descriptor() - Get the DPIO descriptor of the given DPIO object.

Parameters

obj the given DPIO object.
desc the returned DPIO descriptor.

This function will return failure if the given dpaa2_io struct represents a service rather than an individual
DPIO object, otherwise it returns zero and the given 'cfg' structure is filled in.

Return 0 for success, or -EINVAL for failure.

3.2.3.7 int dpaa2_io_poll (struct dpaa2_io ∗ obj)

dpaa2_io_poll() - Process any notifications and h/w-initiated events that are polling-driven.

Parameters

obj the given DPIO object.

Obligatory for DPIO objects that have dpaa2_io_desc::will_poll non-zero.

Return 0 for success, or -EINVAL for failure.

3.2.3.8 int dpaa2_io_irq (struct dpaa2_io ∗ obj)

dpaa2_io_irq() - Process any notifications and h/w-initiated events that are irq-driven.

Parameters

obj the given DPIO object.

Obligatory for DPIO objects that have dpaa2_io_desc::has_irq non-zero.

Return IRQ_HANDLED for success, or -EINVAL for failure.

3.2.3.9 int dpaa2_io_pause_poll (struct dpaa2_io ∗ obj)

dpaa2_io_pause_poll() - Used to stop polling.

NXP Semiconductors
DPAA2 API Reference Manual

361

DPIO Service APIs

Parameters

obj the given DPIO object.

If a polling application is going to stop polling for a period of time and supports interrupt processing, it
can call this function to convert all processing to IRQ. (Eg. when sleeping.)

Return -EINVAL.

3.2.3.10 int dpaa2_io_resume_poll (struct dpaa2_io ∗ obj)

dpaa2_io_resume_poll() - Resume polling

Parameters

obj the given DPIO object.

Return -EINVAL.

3.2.3.11 void dpaa2_io_service_notifications (struct dpaa2_io ∗ s, cpumask_t ∗ mask)

dpaa2_io_service_notifications() - Get a mask of cpus that the DPIO service can receive notifications on.

Parameters

s the given DPIO object.
mask the mask of cpus.

Note that this is a run-time snapshot. If things like cpu-hotplug are supported in the target system, then an
attempt to register notifications for a cpu that appears present in the given mask might fail if that cpu has
gone offline in the mean time.

3.2.3.12 void dpaa2_io_service_stashing (struct dpaa2_io ∗ s, cpumask_t ∗ mask)

dpaa2_io_service_stashing - Get a mask of cpus that the DPIO service has stash affinity to.

Parameters

s the given DPIO object.
mask the mask of cpus.

3.2.3.13 int dpaa2_io_service_has_nonaffine (struct dpaa2_io ∗ s)

dpaa2_io_service_nonaffine() - Check the DPIO service's cpu affinity for stashing.

NXP Semiconductors
DPAA2 API Reference Manual

362

DPIO Service APIs

Parameters

s the given DPIO object.

Return a boolean, whether or not the DPIO service has resources that have no particular cpu affinity for
stashing. (Useful to know if you wish to operate on CPUs that the service has no affinity to, you would
choose to use resources that are neutral, rather than affine to a different CPU.) Unlike other service-specific
APIs, this one doesn't return an error if it is passed a non-service object. So don't do it.

3.2.3.14 int dpaa2_io_service_register (struct dpaa2_io ∗ service, struct
dpaa2_io_notification_ctx ∗ ctx)

dpaa2_io_service_register() - Prepare for servicing of FQDAN or CDAN notifications on the given DPIO
service.
Parameters

service the given DPIO service.
ctx the notification context.

The MC command to attach the caller's DPNI/DPCON/DPAI device to a DPIO object is performed after
this function is called. In that way, (a) the DPIO service is "ready" to handle a notification arrival (which
might happen before the "attach" command to MC has returned control of execution back to the caller),
and (b) the DPIO service can provide back to the caller the 'dpio_id' and 'qman64' parameters that it
should pass along in the MC command in order for the DPNI/DPCON/DPAI resources to be configured
to produce the right notification fields to the DPIO service.

Return 0 for success, or -ENODEV for failure.

3.2.3.15 int dpaa2_io_service_deregister (struct dpaa2_io ∗ service, struct
dpaa2_io_notification_ctx ∗ ctx)

dpaa2_io_service_deregister - The opposite of 'register'.

Parameters

service the given DPIO service.
ctx the notification context.

Note that 'register' should be called before making the MC call to attach the notification-producing device
to the notification-handling DPIO service, the 'unregister' function should be called after making the MC
call to detach the notification-producing device.

Return 0 for success.

3.2.3.16 int dpaa2_io_service_rearm (struct dpaa2_io ∗ service, struct
dpaa2_io_notification_ctx ∗ ctx)

dpaa2_io_service_rearm() - Rearm the notification for the given DPIO service.

NXP Semiconductors
DPAA2 API Reference Manual

363

DPIO Service APIs

Parameters

service the given DPIO service.
ctx the notification context.

Once a FQDAN/CDAN has been produced, the corresponding FQ/channel is considered "disarmed".
Ie. the user can issue pull dequeue operations on that traffic source for as long as it likes. Eventually it
may wish to "rearm" that source to allow it to produce another FQDAN/CDAN, that's what this function
achieves.

Return 0 for success, or -ENODEV if no service available, -EBUSY/-EIO for not being able to implement
the rearm the notifiaton due to setting CDAN or scheduling fq.

3.2.3.17 int dpaa2_io_from_registration (struct dpaa2_io_notification_ctx ∗ ctx, struct
dpaa2_io ∗∗ ret)

dpaa2_io_from_registration() - Get the DPIO object from the given notification context.

Parameters

ctx the given notifiation context.
ret the returned DPIO object.

Like 'dpaa2_io_service_get_persistent()' (see below), except that the returned handle is not selected based
on a 'cpu' argument, but is the same DPIO object that the given notification context is registered against.
The returned handle carries a reference count, so a corresponding dpaa2_io_down() would be required
when the reference is no longer needed.

Return 0 for success, or -EINVAL for failure.

3.2.3.18 int dpaa2_io_service_get_persistent (struct dpaa2_io ∗ service, int cpu, struct
dpaa2_io ∗∗ ret)

dpaa2_io_service_get_persistent() - Get the DPIO resource from the given notification context and cpu.

Parameters

service the DPIO service.
cpu the cpu that the DPIO resource has stashing affinity to.
ret the returned DPIO resource.

The various DPIO interfaces can accept a "struct dpaa2_io" handle that refers to an individual DPIO
object or to a whole service. In the latter case, an internal choice is made for each operation. This
function supports the former case, by selecting an individual DPIO object from the service in order for
it to be used multiple times to provide "persistence". The returned handle also carries a reference count,
so a corresponding dpaa2_io_down() would be required when the reference is no longer needed. Note, a
parameter of -1 for 'cpu' will select a DPIO resource that has no particular stashing affinity to any cpu (eg.
one that stashes to platform cache).

Return 0 for success, or -ENODEV for failure.

NXP Semiconductors
DPAA2 API Reference Manual

364

DPIO Service APIs

3.2.3.19 int dpaa2_io_service_pull_fq (struct dpaa2_io ∗ d, uint32_t fqid, struct
dpaa2_io_store ∗ s)

dpaa2_io_service_pull_fq() - pull dequeue functions from a fq.

NXP Semiconductors
DPAA2 API Reference Manual

365

DPIO Service APIs

Parameters

d the given DPIO service.
fqid the given frame queue id.

s the dpaa2_io_store object for the result.

To support DCA/order-preservation, it will be necessary to support an alternative form, because they must
ultimately dequeue to DQRR rather than a user-supplied dpaa2_io_store. Furthermore, those dequeue
results will "complete" using a caller-provided callback (from DQRR processing) rather than the caller
explicitly looking at their dpaa2_io_store for results. Eg. the alternative form will likely take a callback
parameter rather than a store parameter. Ignoring it for now to keep the picture clearer.

Return 0 for success, or error code for failure.

3.2.3.20 int dpaa2_io_service_pull_channel (struct dpaa2_io ∗ d, uint32_t channelid,
struct dpaa2_io_store ∗ s)

dpaa2_io_service_pull_channel() - pull dequeue functions from a channel.

Parameters

d the given DPIO service.
channelid the given channel id.

s the dpaa2_io_store object for the result.

To support DCA/order-preservation, it will be necessary to support an alternative form, because they must
ultimately dequeue to DQRR rather than a user-supplied dpaa2_io_store. Furthermore, those dequeue
results will "complete" using a caller-provided callback (from DQRR processing) rather than the caller
explicitly looking at their dpaa2_io_store for results. Eg. the alternative form will likely take a callback
parameter rather than a store parameter. Ignoring it for now to keep the picture clearer.

Return 0 for success, or error code for failure.

3.2.3.21 int dpaa2_io_service_enqueue_fq (struct dpaa2_io ∗ d, uint32_t fqid, const
struct dpaa2_fd ∗ fd)

dpaa2_io_service_enqueue_fq() - Enqueue a frame to a frame queue.

Parameters

d the given DPIO service.
fqid the given frame queue id.

fd the frame descriptor which is enqueued.

This definition bypasses some features that are not expected to be priority-1 features, and may not be
needed at all via current assumptions (QBMan's feature set is wider than the MC object model is intended-
ing to support, initially at least). Plus, keeping them out (for now) keeps the API view simpler. Missing
features are;

• enqueue confirmation (results DMA'd back to the user)

NXP Semiconductors
DPAA2 API Reference Manual

366

DPIO Service APIs

• ORP
• DCA/order-preservation (see note in "pull dequeues")
• enqueue consumption interrupts

Return 0 for successful enqueue, or -EBUSY if the enqueue ring is not ready, or -ENODEV if there is no
dpio service.

3.2.3.22 int dpaa2_io_service_enqueue_qd (struct dpaa2_io ∗ d, uint32_t qdid, uint8_t
prio, uint16_t qdbin, const struct dpaa2_fd ∗ fd)

dpaa2_io_service_enqueue_qd() - Enqueue a frame to a QD.

Parameters

d the given DPIO service.
qdid the given queuing destination id.
prio the given queuing priority.

qdbin the given queuing destination bin.
fd the frame descriptor which is enqueued.

This definition bypasses some features that are not expected to be priority-1 features, and may not be
needed at all via current assumptions (QBMan's feature set is wider than the MC object model is intended-
ing to support, initially at least). Plus, keeping them out (for now) keeps the API view simpler. Missing
features are;

• enqueue confirmation (results DMA'd back to the user)
• ORP
• DCA/order-preservation (see note in "pull dequeues")
• enqueue consumption interrupts

Return 0 for successful enqueue, or -EBUSY if the enqueue ring is not ready, or -ENODEV if there is no
dpio service.

3.2.3.23 int dpaa2_io_service_release (struct dpaa2_io ∗ d, uint32_t bpid, const uint64_t
∗ buffers, unsigned int num_buffers)

dpaa2_io_service_release() - Release buffers to a buffer pool.

Parameters

d the given DPIO object.
bpid the buffer pool id.

buffers the buffers to be released.

NXP Semiconductors
DPAA2 API Reference Manual

367

DPIO Service APIs

num_buffers the number of the buffers to be released.

Return 0 for success, and negative error code for failure.

3.2.3.24 int dpaa2_io_service_acquire (struct dpaa2_io ∗ d, uint32_t bpid, uint64_t ∗
buffers, unsigned int num_buffers)

dpaa2_io_service_acquire() - Acquire buffers from a buffer pool.

Parameters

d the given DPIO object.
bpid the buffer pool id.

buffers the buffer addresses for acquired buffers.
num_buffers the expected number of the buffers to acquire.

Return a negative error code if the command failed, otherwise it returns the number of buffers acquired,
which may be less than the number requested. Eg. if the buffer pool is empty, this will return zero.

3.2.3.25 struct dpaa2_io_store∗ dpaa2_io_store_create (unsigned int max_frames,
struct device ∗ dev)

dpaa2_io_store_create() - Create the dma memory storage for dequeue result.

Parameters

max_frames the maximum number of dequeued result for frames, must be <= 16.
dev the device to allow mapping/unmapping the DMAable region.

Constructor - max_frames must be <= 16. The user provides the device struct to allow map-
ping/unmapping of the DMAable region. Area for storage will be allocated during create. The size
of this storage is "max_frames∗sizeof(struct dpaa2_dq)". The 'dpaa2_io_store' returned is a wrapper
structure allocated within the DPIO code, which owns and manages allocated store.

Return dpaa2_io_store struct for successfuly created storage memory, or NULL if not getting the stroage
for dequeue result in create API.

3.2.3.26 void dpaa2_io_store_destroy (struct dpaa2_io_store ∗ s)

dpaa2_io_store_destroy() - Destroy the dma memory storage for dequeue result.

Parameters

s the storage memory to be destroyed.

Frees to specified storage memory.

NXP Semiconductors
DPAA2 API Reference Manual

368

DPIO Service APIs

3.2.3.27 struct dpaa2_dq∗ dpaa2_io_store_next (struct dpaa2_io_store ∗ s, int ∗ is_last)

dpaa2_io_store_next() - Determine when the next dequeue result is available.

NXP Semiconductors
DPAA2 API Reference Manual

369

DPIO Service APIs

Parameters

s the dpaa2_io_store object.
is_last indicate whether this is the last frame in the pull command.

Once dpaa2_io_store has been passed to a function that performs dequeues to it, like dpaa2_ni_rx(), this
function can be used to determine when the next frame result is available. Once this function returns
non-NULL, a subsequent call to it will try to find the next dequeue result.

Note that if a pull-dequeue has a null result because the target FQ/channel was empty, then this function
will return NULL rather than expect the caller to always check for this on his own side. As such, "is_last"
can be used to differentiate between "end-of-empty-dequeue" and "still-waiting".

Return dequeue result for a valid dequeue result, or NULL for empty dequeue.

NXP Semiconductors
DPAA2 API Reference Manual

370

Chapter 4
DCE APIs
4.1 Overview
The DCE API - A re-entrant simplified interface to DCE.

Goal: This API was designed to simplify interaction with DCE as much as possible without loss of flexi-
bility and acceleration offered by DCE hardware

Theory of operation: A user creates a session object to process multiple pieces of similar data on DCE.
All subsequent interaction is done through this session. One session can be used concurrently, if order is
not necessary. Multiple sessions can be used simultaneously

Data Structures
• struct dce_gz_header
• struct dce_session_params

Typedefs
• typedef void(∗ dce_callback_frame) (struct dce_session ∗session, uint8_t status, struct dpaa2_fd
∗input_fd, struct dpaa2_fd ∗output_fd, size_t input_consumed, void ∗context)

• typedef void(∗ dce_callback_data) (struct dce_session ∗session, uint8_t status, dma_addr_t input,
dma_addr_t output, size_t input_consumed, size_t output_produced, void ∗context)

Enumerations
• enum dce_engine {

DCE_COMPRESSION,
DCE_DECOMPRESSION }

• enum dce_paradigm {
DCE_SESSION_STATELESS,
DCE_SESSION_STATEFUL_TRUNCATION,
DCE_SESSION_STATEFUL_RECYCLE }

• enum dce_compression_format {
DCE_SESSION_CF_DEFLATE,
DCE_SESSION_CF_ZLIB,
DCE_SESSION_CF_GZIP }

• enum dce_compression_effort {
DCE_SESSION_CE_NONE,
DCE_SESSION_CE_STATIC_HUFF_STRMATCH,
DCE_SESSION_CE_HUFF_ONLY,
DCE_SESSION_CE_BEST_POSSIBLE }

NXP Semiconductors
DPAA2 API Reference Manual

371

Data Structure Documentation

• enum dce_flush_parameter {
DCE_Z_NO_FLUSH,
DCE_Z_PARTIAL_FLUSH,
DCE_Z_SYNC_FLUSH,
DCE_Z_FULL_FLUSH,
DCE_Z_FINISH,
DCE_Z_BLOCK,
DCE_Z_TREES }

Functions
• int dce_session_create (int ∗vfio_fd, int ∗vfio_group_fd, struct dce_session ∗session, struct dce_←↩

session_params ∗params)
• struct dpdcei_priv ∗ dce_session_device (struct dce_session ∗session)
• int dce_session_destroy (int ∗vfio_fd, struct dce_session ∗session)
• int dce_process_frame (struct dce_session ∗session, struct dpaa2_fd ∗input_fd, struct dpaa2_←↩

fd ∗output_fd, enum dce_flush_parameter flush, bool initial_frame, bool recycled_frame, void
∗context)

• int dce_process_data (struct dce_session ∗session, dma_addr_t input, dma_addr_t output, size_t
input_len, size_t output_len, enum dce_flush_parameter flush, bool initial_request, bool recycled←↩
_request, void ∗context)

• int dce_gz_header_update (struct dce_session ∗session)

4.2 Data Structure Documentation

4.2.1 struct dce_gz_header

struct dce_gz_header - gzip header and state for gzip streams

Parameters

text True if compressed data is believed to be text
time Modification time

xflags Extra flags indicating compression level (not used when writing a gzip file)
os operating system

meta_data Contiguous memory for storing meta data like name and comment
extra_len ‘extra' field length
name_len ‘name' field length

comment_len ‘comment' field length
meta_max Space available at meta_data

hcrc true if there was or will be a header crc

NXP Semiconductors
DPAA2 API Reference Manual

372

Data Structure Documentation

done true when done reading gzip header

The gzip compression format documented in RFC 1952 includes a header for each gzip member.

Data Fields

int text
unsigned long time

int xflags
int os

dma_addr_t meta_data
unsigned int extra_len
unsigned int name_len
unsigned int comment_len
unsigned int meta_max

int hcrc
int done

4.2.2 struct dce_session_params

struct dce_session_params - parameters used in initialisation of dce_session engine : compression or
decompression paradigm : statefull_recycle, statefull_truncate, or stateless compression_format : gzip,
zlib, deflate compression_effort : compression effort from none to best possible gz_header : Pointer to
gzip header.

Valid in gzip mode only callback_frame : User defined callback function for receiving responses from
dce_process_frame() callback_data : User defined callback function for receiving responses from dce_←↩
process_frame()

Data Fields

enum
dce_engine

engine

enum
dce_paradigm

paradigm

enum dce_←↩
compression_←↩

format

compression_←↩
format

enum dce_←↩
compression_←↩

effort

compression_←↩
effort

NXP Semiconductors
DPAA2 API Reference Manual

373

Typedef Documentation

struct
dce_gz_header

∗

gz_header

unsigned buffer_pool_id
unsigned buffer_pool_←↩

id2
bool release_buffers
bool encode_base←↩

_64
dce_callback←↩

_frame
callback_frame

dce_callback←↩
_data

callback_data

4.3 Typedef Documentation

4.3.1 dce_callback_frame

Return result of a (de)compress dce_process_frame() call.

Parameters

session Pointer to session struct for which response was received from DCE
status The status returned by DCE

input_fd Pointer to the input frame. NB: The FD pointed to is no persistent. A copy should be
made by the callback if the preservation of the FD is needed

output_fd Pointer to output FD. Same consideration as input_fd
input_←↩

consumed
Number of bytes used in creating output

output_←↩
produced

Number of bytes produced

context Pointer to user defined object received in dce_process_frame() call

4.3.2 dce_callback_data

Return result of a (de)compress dce_process_data() call.

Parameters

session Pointer to session struct for which response was received from DCE
status The status returned by DCE

NXP Semiconductors
DPAA2 API Reference Manual

374

Enumeration Type Documentation

input Input pointer as received by the API in dce_process_data() call
output Output pointer to resulting data

input_←↩
consumed

Number of bytes used in creating output

output_←↩
produced

Number of bytes produced

context Pointer to user defined object received in dce_process_data() call

4.4 Enumeration Type Documentation
4.4.1 enum dce_engine

enum dce_engine - The engine to use for session operations

Parameters

DCE_COMP←↩
RESSION

Compression engine

DCE_DECO←↩
MPRESSION

Decompression engine

4.4.2 enum dce_paradigm

/∗∗
Parameters

DCE_SESSI←↩
ON_CF_DE←↩

FLATE

Raw deflate, see RFC 1951

DCE_SESSI←↩
ON_CF_ZLIB

zlib, see RFC 1950

DCE_SESSI←↩
ON_CF_GZIP

gzip, see RFC 1952

* enum dce_paradigm - The way to handle multi-frame requests

* @DCE_SESSION_STATELESS: All requests will be self contained

* @DCE_SESSION_STATEFUL_TRUNCATION: Requests resulting in exceptions will be

* truncated

* @DCE_SESSION_STATEFUL_RECYCLE: Requests resulting in exceptions will

* cause suspension and allow recovery

4.4.3 enum dce_compression_effort

enum dce_compression_effort - Level of compression to perform

NXP Semiconductors
DPAA2 API Reference Manual

375

Function Documentation

Parameters

DCE_SESSI←↩
ON_CE_NO←↩

NE

No compression, just add appropriate headers

DCE_SESSI←↩
ON_CE_STA←↩
TIC_HUFF_←↩

STRMATCH

Static Huffman & string matching

DCE_SESSI←↩
ON_CE_HU←↩

FF_ONLY

Huffman only

DCE_SESSI←↩
ON_CE_BES←↩

T_POSSIBLE

Best possible compression

4.4.4 enum dce_flush_parameter

enum dce_flush_parameter - Data flushing modes

Parameters

DCE_Z_NO_←↩
FLUSH

equivalent to Z_NO_FLUSH

DCE_Z_PAR←↩
TIAL_FLUSH

equivalent to Z_PARTIAL_FLUSH

DCE_Z_SYN←↩
C_FLUSH

equivalent to Z_SYNC_FLUSH

DCE_Z_FUL←↩
L_FLUSH

equivalent to Z_FULL_FLUSH

DCE_Z_FINI←↩
SH

equivalent to Z_FINISH

DCE_Z_BLO←↩
CK

equivalent to Z_BLOCK

DCE_Z_TRE←↩
ES

equivalent to Z_TREES

These flush parameters are parallel to the zlib standard

4.5 Function Documentation

4.5.1 int dce_session_create (int ∗ vfio_fd, int ∗ vfio_group_fd, struct
dce_session ∗ session, struct dce_session_params ∗ params)

dce_session_create() - Initialise a session for compression or decompression

NXP Semiconductors
DPAA2 API Reference Manual

376

Function Documentation

Parameters

session Pointer to a session struct to be initialised
params Pointer to a params struct to be used in configuring the session

Contextual information is stored opaquely in the session object, such as the buffer pool id to use for
getting buffers, the gzip header pointer to info such as the ID1 ID2 CM FLG MTIME XFL OS fields. A
session is setup then used to send many requests to DCE

Return: 0 on success, error otherwise

4.5.2 struct dpdcei_priv∗ dce_session_device (struct dce_session ∗ session)

dce_session_device - gets the (de)compression device used in the session : Pointer to a session struct from
which to get a device

Can be used by the DCE caller to dma map memory to the device before passing it to the process functions

Return: Pointer to device. NULL pointer if error

4.5.3 int dce_session_destroy (int ∗ vfio_fd, struct dce_session ∗ session)

dce_session_destroy() - cleanup and release resources held by session

Parameters

session Pointer to a session to be retired

This function checks for work units in flight and make sure that there is no attempt to cleanup a session
while WIP

Return: 0 on success, -EACCES if there is still work in progress

4.5.4 int dce_process_frame (struct dce_session ∗ session, struct dpaa2_fd ∗
input_fd, struct dpaa2_fd ∗ output_fd, enum dce_flush_parameter flush,
bool initial_frame, bool recycled_frame, void ∗ context)

dce_process_frame() - Compress or decompress a frame asynchronously

Parameters

session Pointer to session struct on which to send (de)compress requests
input_fd Pointer to a FD that contains the input data

output_fd Pointer to a FD that has the output buffer. If this parameter is NULL then the buffer
pool associated with the session to acquire buffers as necessary

NXP Semiconductors
DPAA2 API Reference Manual

377

Function Documentation

flush Flush behaviour for the request using zLib semantics
initial_frame Indicates that this is the first frame in a flow

recycled_frame Indicates this frame is a response to a session suspend
context Pointer to a caller defined object that is returned in dequeue

More on context The caller can point context at a meaningful object to allow the user defined callback to
take some useful action. e.g. Wakeup a sleeping thread, pass on some information about the destination
for the data

Return: 0 on success, -EBUSY if the device is busy and call must be reattempted

4.5.5 int dce_process_data (struct dce_session ∗ session, dma_addr_t
input, dma_addr_t output, size_t input_len, size_t output_len, enum
dce_flush_parameter flush, bool initial_request, bool recycled_request, void
∗ context)

dce_process_data() - Compress or decompress arbitrary data asynchronously

Parameters

session Pointer to a session struct on which to send (de)compress requests
input DMA address to input data, can be NULL if final input was passed in the previous

process calls
output DMA address to output buffer, must not be NULL

input_len Size of the data for input
output_len Size of the output buffer available. BMan output is not supported in rev 1 silicon. The

size currently must be greater than 0
flush Flush behaviour for the request using zLib semantics

initial_request Indicates that this is the first frame in a flow
recycled_←↩

request
Indicates this frame is a response to a session suspend

context Pointer to a caller defined object that is returned in dequeue

More on context The caller can point context at a meaningful object to allow the user defined callback
to take some useful action. e.g. Wakeup a sleeping thread, pass on some information about where is the
destination for the data.

Return: 0 on success, -EBUSY if the device is busy and call must be reattempted

4.5.6 int dce_gz_header_update (struct dce_session ∗ session)

dce_gz_header_update() - Notify session of a gzip header update

NXP Semiconductors
DPAA2 API Reference Manual

378

Function Documentation

Parameters

session Pointer to a session struct that must be notified of the header update

This function is only valid for Compression sessions Return: 0 on success, -EBUSY if the device is busy
and call must be reattempted -EINVAL if the session is not in gzip mode, is a decompression session,
or a stateless compression session. For stateless compression sessions the gzip header will be updated
automatically with every call to dce_process_frame() or dce_process_data()

NXP Semiconductors
DPAA2 API Reference Manual

379

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP
assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. NXP does
not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address:
nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, Layerscape, and
QorIQ are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. Arm, Cortex, and TrustZone
are registered trademarks of Arm Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved.

© 2018 NXP B.V.

http://www.nxp.com

http://www.nxp.com/support

http://www.nxp.com/SalesTermsandConditions

		Chapter 1 Management Complex

		Overview

		Management Complex General APIs

		Overview

		Data Structure Documentation

		struct mc_version

		struct mc_soc_version

		Macro Definition Documentation

		MC_VER_MAJOR

		Function Documentation

		mc_get_version

		mc_get_soc_version

		Data Path AIOP API

		Overview

		Data Structure Documentation

		struct dpaiop_cfg

		struct dpaiop_attr

		struct dpaiop_load_cfg

		struct dpaiop_run_cfg

		struct dpaiop_sl_version

		Macro Definition Documentation

		DPAIOP_STATE_RESET_DONE

		DPAIOP_STATE_RESET_ONGOING

		DPAIOP_STATE_LOAD_DONE

		DPAIOP_STATE_LOAD_ONGIONG

		DPAIOP_STATE_LOAD_ERROR

		DPAIOP_STATE_BOOT_ONGOING

		DPAIOP_STATE_BOOT_ERROR

		DPAIOP_STATE_RUNNING

		Function Documentation

		dpaiop_open

		dpaiop_close

		dpaiop_create

		dpaiop_destroy

		dpaiop_reset

		dpaiop_set_irq_enable

		dpaiop_get_irq_enable

		dpaiop_set_irq_mask

		dpaiop_get_irq_mask

		dpaiop_get_irq_status

		dpaiop_clear_irq_status

		dpaiop_get_attributes

		dpaiop_load

		dpaiop_run

		dpaiop_get_sl_version

		Data Path DMA Interface API

		Overview

		Data Structure Documentation

		struct dpdmai_cfg

		struct dpdmai_attr

		struct dpdmai_dest_cfg

		struct dpdmai_rx_queue_cfg

		struct dpdmai_rx_queue_attr

		struct dpdmai_tx_queue_attr

		Macro Definition Documentation

		DPDMAI_PRIO_NUM

		DPDMAI_ALL_QUEUES

		DPDMAI_QUEUE_OPT_USER_CTX

		DPDMAI_QUEUE_OPT_DEST

		Enumeration Type Documentation

		dpdmai_dest

		Function Documentation

		dpdmai_open

		dpdmai_close

		dpdmai_create

		dpdmai_destroy

		dpdmai_enable

		dpdmai_disable

		dpdmai_is_enabled

		dpdmai_reset

		dpdmai_set_irq_enable

		dpdmai_get_irq_enable

		dpdmai_set_irq_mask

		dpdmai_get_irq_mask

		dpdmai_get_irq_status

		dpdmai_clear_irq_status

		dpdmai_get_attributes

		dpdmai_set_rx_queue

		dpdmai_get_rx_queue

		dpdmai_get_tx_queue

		dpdmai_get_api_version

		Data Path L2-Switch APIs

		Overview

		Data Structure Documentation

		struct dpsw_cfg

		struct dpsw_cfg.adv

		struct dpsw_attr

		struct dpsw_link_cfg

		struct dpsw_link_state

		struct dpsw_tci_cfg

		struct dpsw_stp_cfg

		struct dpsw_accepted_frames_cfg

		struct dpsw_tx_schedule_cfg

		struct dpsw_tx_selection_cfg

		struct dpsw_reflection_cfg

		struct dpsw_metering_cfg

		struct dpsw_wred_cfg

		struct dpsw_early_drop_cfg

		struct dpsw_custom_tpid_cfg

		struct dpsw_if_attr

		struct dpsw_vlan_cfg

		struct dpsw_vlan_if_cfg

		struct dpsw_vlan_attr

		struct dpsw_fdb_cfg

		struct dpsw_fdb_unicast_cfg

		struct dpsw_fdb_multicast_cfg

		struct dpsw_fdb_attr

		struct dpsw_acl_cfg

		struct dpsw_acl_fields

		struct dpsw_acl_key

		struct dpsw_acl_result

		struct dpsw_acl_entry_cfg

		struct dpsw_acl_if_cfg

		struct dpsw_acl_attr

		struct dpsw_ctrl_if_pools_cfg

		struct dpsw_ctrl_if_pools_cfg.pools

		Macro Definition Documentation

		DPSW_MAX_PRIORITIES

		DPSW_MAX_IF

		DPSW_OPT_FLOODING_DIS

		DPSW_OPT_MULTICAST_DIS

		DPSW_OPT_CTRL_IF_DIS

		DPSW_OPT_FLOODING_METERING_DIS

		DPSW_OPT_METERING_EN

		DPSW_IRQ_INDEX_IF

		DPSW_IRQ_EVENT_LINK_CHANGED

		DPSW_LINK_OPT_AUTONEG

		DPSW_LINK_OPT_HALF_DUPLEX

		DPSW_LINK_OPT_PAUSE

		DPSW_LINK_OPT_ASYM_PAUSE

		DPSW_MAX_TC

		Enumeration Type Documentation

		dpsw_component_type

		dpsw_action

		dpsw_stp_state

		dpsw_accepted_frames

		dpsw_counter

		dpsw_priority_selector

		dpsw_schedule_mode

		dpsw_reflection_filter

		dpsw_metering_mode

		dpsw_metering_unit

		dpsw_early_drop_unit

		dpsw_early_drop_mode

		dpsw_fdb_entry_type

		dpsw_fdb_learning_mode

		dpsw_acl_action

		Function Documentation

		dpsw_open

		dpsw_close

		dpsw_create

		dpsw_destroy

		dpsw_enable

		dpsw_disable

		dpsw_is_enabled

		dpsw_reset

		dpsw_set_irq_enable

		dpsw_get_irq_enable

		dpsw_set_irq_mask

		dpsw_get_irq_mask

		dpsw_get_irq_status

		dpsw_clear_irq_status

		dpsw_get_attributes

		dpsw_set_reflection_if

		dpsw_if_set_link_cfg

		dpsw_if_get_link_state

		dpsw_if_set_flooding

		dpsw_if_set_broadcast

		dpsw_if_set_multicast

		dpsw_if_set_tci

		dpsw_if_get_tci

		dpsw_if_set_stp

		dpsw_if_set_accepted_frames

		dpsw_if_set_accept_all_vlan

		dpsw_if_get_counter

		dpsw_if_set_counter

		dpsw_if_set_tx_selection

		dpsw_if_add_reflection

		dpsw_if_remove_reflection

		dpsw_if_set_flooding_metering

		dpsw_if_set_metering

		dpsw_prepare_early_drop

		dpsw_if_set_early_drop

		dpsw_add_custom_tpid

		dpsw_remove_custom_tpid

		dpsw_if_enable

		dpsw_if_disable

		dpsw_if_get_attributes

		dpsw_if_set_max_frame_length

		dpsw_if_get_max_frame_length

		dpsw_vlan_add

		dpsw_vlan_add_if

		dpsw_vlan_add_if_untagged

		dpsw_vlan_add_if_flooding

		dpsw_vlan_remove_if

		dpsw_vlan_remove_if_untagged

		dpsw_vlan_remove_if_flooding

		dpsw_vlan_remove

		dpsw_vlan_get_attributes

		dpsw_vlan_get_if

		dpsw_vlan_get_if_flooding

		dpsw_vlan_get_if_untagged

		dpsw_fdb_add

		dpsw_fdb_remove

		dpsw_fdb_add_unicast

		dpsw_fdb_get_unicast

		dpsw_fdb_remove_unicast

		dpsw_fdb_add_multicast

		dpsw_fdb_get_multicast

		dpsw_fdb_remove_multicast

		dpsw_fdb_set_learning_mode

		dpsw_fdb_get_attributes

		dpsw_acl_add

		dpsw_acl_remove

		dpsw_acl_prepare_entry_cfg

		dpsw_acl_add_entry

		dpsw_acl_remove_entry

		dpsw_acl_add_if

		dpsw_acl_remove_if

		dpsw_acl_get_attributes

		dpsw_ctrl_if_set_pools

		Data Path Resource Container API

		Overview

		Data Structure Documentation

		struct dprc_cfg

		struct dprc_irq_cfg

		struct dprc_attributes

		struct dprc_res_req

		struct dprc_obj_desc

		struct dprc_res_ids_range_desc

		struct dprc_region_desc

		struct dprc_endpoint

		struct dprc_connection_cfg

		Macro Definition Documentation

		DPRC_GET_ICID_FROM_POOL

		DPRC_GET_PORTAL_ID_FROM_POOL

		DPRC_CFG_OPT_SPAWN_ALLOWED

		DPRC_CFG_OPT_ALLOC_ALLOWED

		DPRC_CFG_OPT_OBJ_CREATE_ALLOWED

		DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED

		DPRC_CFG_OPT_AIOP

		DPRC_CFG_OPT_IRQ_CFG_ALLOWED

		DPRC_IRQ_INDEX

		DPRC_NUM_OF_IRQS

		DPRC_IRQ_EVENT_OBJ_ADDED

		DPRC_IRQ_EVENT_OBJ_REMOVED

		DPRC_IRQ_EVENT_RES_ADDED

		DPRC_IRQ_EVENT_RES_REMOVED

		DPRC_IRQ_EVENT_CONTAINER_DESTROYED

		DPRC_IRQ_EVENT_OBJ_DESTROYED

		DPRC_IRQ_EVENT_OBJ_CREATED

		DPRC_RES_REQ_OPT_EXPLICIT

		DPRC_RES_REQ_OPT_ALIGNED

		DPRC_RES_REQ_OPT_PLUGGED

		DPRC_OBJ_STATE_OPEN

		DPRC_OBJ_STATE_PLUGGED

		DPRC_OBJ_FLAG_NO_MEM_SHAREABILITY

		DPRC_REGION_CACHEABLE

		Enumeration Type Documentation

		dprc_iter_status

		dprc_region_type

		Function Documentation

		dprc_get_container_id

		dprc_open

		dprc_close

		dprc_create_container

		dprc_destroy_container

		dprc_reset_container

		dprc_set_irq

		dprc_get_irq

		dprc_set_irq_enable

		dprc_get_irq_enable

		dprc_set_irq_mask

		dprc_get_irq_mask

		dprc_get_irq_status

		dprc_clear_irq_status

		dprc_get_attributes

		dprc_set_res_quota

		dprc_get_res_quota

		dprc_assign

		dprc_unassign

		dprc_get_pool_count

		dprc_get_pool

		dprc_get_obj_count

		dprc_get_obj

		dprc_get_obj_desc

		dprc_set_obj_irq

		dprc_get_obj_irq

		dprc_get_res_count

		dprc_get_res_ids

		dprc_get_obj_region

		dprc_set_obj_label

		dprc_connect

		dprc_disconnect

		dprc_get_connection

		Data Path Real Time Counter API

		Overview

		Data Structure Documentation

		struct dprtc_cfg

		struct dprtc_attr

		Macro Definition Documentation

		DPRTC_MAX_IRQ_NUM

		DPRTC_EVENT_ALARM

		DPRTC_EVENT_PPS

		Function Documentation

		dprtc_open

		dprtc_close

		dprtc_create

		dprtc_destroy

		dprtc_set_clock_offset

		dprtc_set_freq_compensation

		dprtc_get_freq_compensation

		dprtc_get_time

		dprtc_set_time

		dprtc_set_alarm

		dprtc_set_irq_enable

		dprtc_get_irq_enable

		dprtc_set_irq_mask

		dprtc_get_irq_mask

		dprtc_get_irq_status

		dprtc_clear_irq_status

		dprtc_get_attributes

		dprtc_get_api_version

		Data Path Management Command Portal API

		Overview

		Data Structure Documentation

		struct dpmcp_cfg

		struct dpmcp_attr

		Macro Definition Documentation

		DPMCP_GET_PORTAL_ID_FROM_POOL

		DPMCP_IRQ_INDEX

		DPMCP_IRQ_EVENT_CMD_DONE

		Function Documentation

		dpmcp_open

		dpmcp_close

		dpmcp_create

		dpmcp_destroy

		dpmcp_reset

		dpmcp_set_irq_enable

		dpmcp_get_irq_enable

		dpmcp_set_irq_mask

		dpmcp_get_irq_mask

		dpmcp_get_irq_status

		dpmcp_get_attributes

		dpmcp_get_api_version

		Data Path Buffer Pool API

		Overview

		Data Structure Documentation

		struct dpbp_cfg

		struct dpbp_attr

		struct dpbp_notification_cfg

		Macro Definition Documentation

		DPBP_NOTIF_OPT_COHERENT_WRITE

		Function Documentation

		dpbp_open

		dpbp_close

		dpbp_create

		dpbp_destroy

		dpbp_enable

		dpbp_disable

		dpbp_is_enabled

		dpbp_reset

		dpbp_set_irq_enable

		dpbp_get_irq_enable

		dpbp_set_irq_mask

		dpbp_get_irq_mask

		dpbp_get_irq_status

		dpbp_clear_irq_status

		dpbp_get_attributes

		dpbp_set_notifications

		dpbp_get_notifications

		dpbp_get_api_version

		dpbp_get_num_free_bufs

		Data Path I/O Portal API

		Overview

		Data Structure Documentation

		struct dpio_cfg

		struct dpio_attr

		Macro Definition Documentation

		DPIO_IRQ_SWP_INDEX

		Enumeration Type Documentation

		dpio_channel_mode

		Function Documentation

		dpio_open

		dpio_close

		dpio_create

		dpio_destroy

		dpio_enable

		dpio_disable

		dpio_is_enabled

		dpio_reset

		dpio_set_stashing_destination

		dpio_get_stashing_destination

		dpio_add_static_dequeue_channel

		dpio_remove_static_dequeue_channel

		dpio_set_irq_enable

		dpio_get_irq_enable

		dpio_set_irq_mask

		dpio_get_irq_mask

		dpio_get_irq_status

		dpio_clear_irq_status

		dpio_get_attributes

		dpio_get_api_version

		Data Path Concentrator API

		Overview

		Data Structure Documentation

		struct dpcon_cfg

		struct dpcon_attr

		struct dpcon_notification_cfg

		Macro Definition Documentation

		DPCON_INVALID_DPIO_ID

		Function Documentation

		dpcon_open

		dpcon_close

		dpcon_create

		dpcon_destroy

		dpcon_enable

		dpcon_disable

		dpcon_is_enabled

		dpcon_reset

		dpcon_set_irq_enable

		dpcon_get_irq_enable

		dpcon_set_irq_mask

		dpcon_get_irq_mask

		dpcon_get_irq_status

		dpcon_clear_irq_status

		dpcon_get_attributes

		dpcon_set_notification

		dpcon_get_api_version

		Data Path Network Interface API

		Overview

		Data Structure Documentation

		struct dpni_cfg

		struct dpni_pools_cfg

		struct dpni_pools_cfg.pools

		struct dpni_attr

		struct dpni_error_cfg

		struct dpni_buffer_layout

		struct dpni_sp_info

		struct dpni_statistics.page_0

		struct dpni_statistics.page_1

		struct dpni_statistics.page_2

		struct dpni_statistics.raw

		struct dpni_link_cfg

		struct dpni_link_state

		struct dpni_tx_shaping_cfg

		struct dpni_tx_schedule_cfg

		struct dpni_tx_priorities_cfg

		struct dpni_fs_tbl_cfg

		struct dpni_rx_tc_dist_cfg

		struct dpni_rx_tc_policing_cfg

		struct dpni_wred_cfg

		struct dpni_early_drop_cfg

		struct dpni_dest_cfg

		struct dpni_congestion_notification_cfg

		struct dpni_queue

		struct dpni_queue_id

		struct dpni_queue.destination

		struct dpni_queue.flc

		struct dpni_qos_tbl_cfg

		struct dpni_rule_cfg

		struct dpni_fs_action_cfg

		struct dpni_taildrop

		Macro Definition Documentation

		DPNI_MAX_TC

		DPNI_MAX_DPBP

		DPNI_MAX_SP

		DPNI_ALL_TCS

		DPNI_ALL_TC_FLOWS

		DPNI_OPT_TX_FRM_RELEASE

		DPNI_OPT_NO_MAC_FILTER

		DPNI_OPT_HAS_POLICING

		DPNI_OPT_SHARED_CONGESTION

		DPNI_OPT_HAS_KEY_MASKING

		DPNI_OPT_NO_FS

		DPNI_OPT_HAS_OPR

		DPNI_OPT_OPR_PER_TC

		DPNI_IRQ_INDEX

		DPNI_IRQ_EVENT_LINK_CHANGED

		DPNI_ERROR_EOFHE

		DPNI_ERROR_FLE

		DPNI_ERROR_FPE

		DPNI_ERROR_PHE

		DPNI_ERROR_L3CE

		DPNI_ERROR_L4CE

		DPNI_BUF_LAYOUT_OPT_TIMESTAMP

		DPNI_BUF_LAYOUT_OPT_PARSER_RESULT

		DPNI_BUF_LAYOUT_OPT_FRAME_STATUS

		DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE

		DPNI_BUF_LAYOUT_OPT_DATA_ALIGN

		DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM

		DPNI_BUF_LAYOUT_OPT_DATA_TAIL_ROOM

		Enumeration Type Documentation

		dpni_error_action

		dpni_offload

		dpni_tx_schedule_mode

		dpni_dist_mode

		dpni_fs_miss_action

		dpni_policer_mode

		dpni_policer_unit

		dpni_policer_color

		dpni_congestion_unit

		dpni_early_drop_mode

		dpni_dest

		dpni_confirmation_mode

		dpni_congestion_point

		Function Documentation

		dpni_open

		dpni_close

		dpni_create

		dpni_destroy

		dpni_set_pools

		dpni_enable

		dpni_disable

		dpni_is_enabled

		dpni_reset

		dpni_set_irq_enable

		dpni_get_irq_enable

		dpni_set_irq_mask

		dpni_get_irq_mask

		dpni_get_irq_status

		dpni_clear_irq_status

		dpni_get_attributes

		dpni_set_errors_behavior

		dpni_get_buffer_layout

		dpni_set_buffer_layout

		dpni_set_offload

		dpni_get_offload

		dpni_get_qdid

		dpni_get_sp_info

		dpni_get_tx_data_offset

		dpni_set_link_cfg

		dpni_get_link_state

		dpni_set_tx_shaping

		dpni_set_max_frame_length

		dpni_get_max_frame_length

		dpni_set_mtu

		dpni_get_mtu

		dpni_set_multicast_promisc

		dpni_get_multicast_promisc

		dpni_set_unicast_promisc

		dpni_get_unicast_promisc

		dpni_set_primary_mac_addr

		dpni_get_primary_mac_addr

		dpni_add_mac_addr

		dpni_remove_mac_addr

		dpni_clear_mac_filters

		dpni_get_port_mac_addr

		dpni_enable_vlan_filter

		dpni_add_vlan_id

		dpni_remove_vlan_id

		dpni_clear_vlan_filters

		dpni_set_tx_priorities

		dpni_set_rx_tc_dist

		dpni_set_rx_tc_policing

		dpni_get_rx_tc_policing

		dpni_prepare_early_drop

		dpni_extract_early_drop

		dpni_set_early_drop

		dpni_get_early_drop

		dpni_set_congestion_notification

		dpni_get_congestion_notification

		dpni_set_tx_confirmation_mode

		dpni_set_qos_table

		dpni_add_qos_entry

		dpni_remove_qos_entry

		dpni_clear_qos_table

		dpni_add_fs_entry

		dpni_remove_fs_entry

		dpni_clear_fs_entries

		dpni_get_api_version

		dpni_set_queue

		dpni_get_queue

		dpni_get_statistics

		dpni_reset_statistics

		dpni_set_taildrop

		dpni_get_taildrop

		dpni_set_opr

		dpni_get_opr

		Data Path Key Generator API

		Overview

		Data Structure Documentation

		struct dpkg_mask

		struct dpkg_extract

		union dpkg_extract.extract

		struct dpkg_extract.extract.from_hdr

		struct dpkg_extract.extract.from_data

		struct dpkg_extract.extract.from_parse

		struct dpkg_profile_cfg

		Macro Definition Documentation

		DPKG_NUM_OF_MASKS

		DPKG_MAX_NUM_OF_EXTRACTS

		Enumeration Type Documentation

		dpkg_extract_from_hdr_type

		dpkg_extract_type

		Function Documentation

		dpkg_prepare_key_cfg

		Data Path Demux API

		Overview

		Data Structure Documentation

		struct dpdmux_cfg

		struct dpdmux_cfg.adv

		struct dpdmux_attr

		struct dpdmux_accepted_frames

		struct dpdmux_if_attr

		struct dpdmux_l2_rule

		struct dpdmux_link_cfg

		struct dpdmux_link_state

		struct dpdmux_rule_cfg

		struct dpdmux_cls_action

		Macro Definition Documentation

		DPDMUX_OPT_BRIDGE_EN

		DPDMUX_OPT_CLS_MASK_SUPPORT

		DPDMUX_IRQ_EVENT_LINK_CHANGED

		Enumeration Type Documentation

		dpdmux_manip

		dpdmux_method

		dpdmux_counter_type

		dpdmux_accepted_frames_type

		dpdmux_action

		Function Documentation

		dpdmux_open

		dpdmux_close

		dpdmux_create

		dpdmux_destroy

		dpdmux_enable

		dpdmux_disable

		dpdmux_is_enabled

		dpdmux_reset

		dpdmux_set_irq_enable

		dpdmux_get_irq_enable

		dpdmux_set_irq_mask

		dpdmux_get_irq_mask

		dpdmux_get_irq_status

		dpdmux_clear_irq_status

		dpdmux_get_attributes

		dpdmux_set_max_frame_length

		dpdmux_if_set_accepted_frames

		dpdmux_if_get_attributes

		dpdmux_if_remove_l2_rule

		dpdmux_if_add_l2_rule

		dpdmux_if_get_counter

		dpdmux_if_set_link_cfg

		dpdmux_if_get_link_state

		dpdmux_set_custom_key

		dpdmux_add_custom_cls_entry

		dpdmux_remove_custom_cls_entry

		dpdmux_get_api_version

		Data Path MAC API

		Overview

		Data Structure Documentation

		struct dpmac_cfg

		struct dpmac_attr

		struct dpmac_link_cfg

		struct dpmac_link_state

		Macro Definition Documentation

		DPMAC_IRQ_INDEX

		DPMAC_IRQ_EVENT_LINK_CFG_REQ

		DPMAC_IRQ_EVENT_LINK_CHANGED

		DPMAC_LINK_OPT_AUTONEG

		DPMAC_LINK_OPT_HALF_DUPLEX

		DPMAC_LINK_OPT_PAUSE

		DPMAC_LINK_OPT_ASYM_PAUSE

		Enumeration Type Documentation

		dpmac_link_type

		dpmac_eth_if

		dpmac_counter

		Function Documentation

		dpmac_open

		dpmac_close

		dpmac_create

		dpmac_destroy

		dpmac_set_irq_enable

		dpmac_get_irq_enable

		dpmac_set_irq_mask

		dpmac_get_irq_mask

		dpmac_get_irq_status

		dpmac_clear_irq_status

		dpmac_get_attributes

		dpmac_get_link_cfg

		dpmac_set_link_state

		dpmac_get_counter

		dpmac_get_api_version

		dpmac_reset

		Data Path SEC Interface API

		Overview

		Data Structure Documentation

		struct dpseci_cfg

		struct dpseci_attr

		struct dpseci_dest_cfg

		struct dpseci_rx_queue_cfg

		struct dpseci_rx_queue_attr

		struct dpseci_tx_queue_attr

		struct dpseci_sec_attr

		struct dpseci_sec_counters

		Macro Definition Documentation

		DPSECI_PRIO_NUM

		DPSECI_ALL_QUEUES

		DPSECI_OPT_HAS_OPR

		DPSECI_OPT_OPR_SHARED

		DPSECI_QUEUE_OPT_USER_CTX

		DPSECI_QUEUE_OPT_DEST

		DPSECI_QUEUE_OPT_ORDER_PRESERVATION

		Enumeration Type Documentation

		dpseci_dest

		Function Documentation

		dpseci_open

		dpseci_close

		dpseci_create

		dpseci_destroy

		dpseci_enable

		dpseci_disable

		dpseci_is_enabled

		dpseci_reset

		dpseci_set_irq_enable

		dpseci_get_irq_enable

		dpseci_set_irq_mask

		dpseci_get_irq_mask

		dpseci_get_irq_status

		dpseci_clear_irq_status

		dpseci_get_attributes

		dpseci_set_rx_queue

		dpseci_get_rx_queue

		dpseci_get_tx_queue

		dpseci_get_sec_counters

		dpseci_get_api_version

		dpseci_set_opr

		dpseci_get_opr

		Data Path DCE Interface API

		Overview

		Data Structure Documentation

		struct dpdcei_cfg

		struct dpdcei_attr

		struct dpdcei_dest_cfg

		struct dpdcei_rx_queue_cfg

		struct dpdcei_rx_queue_attr

		struct dpdcei_tx_queue_attr

		Macro Definition Documentation

		DPDCEI_FQID_NOT_VALID

		DPDCEI_QUEUE_OPT_USER_CTX

		DPDCEI_QUEUE_OPT_DEST

		Enumeration Type Documentation

		dpdcei_engine

		dpdcei_dest

		Function Documentation

		dpdcei_open

		dpdcei_close

		dpdcei_create

		dpdcei_destroy

		dpdcei_enable

		dpdcei_disable

		dpdcei_is_enabled

		dpdcei_reset

		dpdcei_set_irq_enable

		dpdcei_get_irq_enable

		dpdcei_set_irq_mask

		dpdcei_get_irq_mask

		dpdcei_get_irq_status

		dpdcei_clear_irq_status

		dpdcei_get_attributes

		dpdcei_set_rx_queue

		dpdcei_get_rx_queue

		dpdcei_get_tx_queue

		dpdcei_get_api_version

		Data Path Communication Interface API

		Overview

		Data Structure Documentation

		struct dpci_cfg

		struct dpci_attr

		struct dpci_peer_attr

		struct dpci_dest_cfg

		struct dpci_rx_queue_cfg

		struct dpci_rx_queue_attr

		struct dpci_tx_queue_attr

		Macro Definition Documentation

		DPCI_PRIO_NUM

		DPCI_FQID_NOT_VALID

		DPCI_ALL_QUEUES

		DPCI_OPT_HAS_OPR

		DPCI_OPT_OPR_SHARED

		DPCI_IRQ_INDEX

		DPCI_IRQ_EVENT_LINK_CHANGED

		DPCI_IRQ_EVENT_CONNECTED

		DPCI_IRQ_EVENT_DISCONNECTED

		DPCI_QUEUE_OPT_USER_CTX

		DPCI_QUEUE_OPT_DEST

		Enumeration Type Documentation

		dpci_dest

		Function Documentation

		dpci_open

		dpci_close

		dpci_create

		dpci_destroy

		dpci_enable

		dpci_disable

		dpci_is_enabled

		dpci_reset

		dpci_set_irq_enable

		dpci_get_irq_enable

		dpci_set_irq_mask

		dpci_get_irq_mask

		dpci_get_irq_status

		dpci_clear_irq_status

		dpci_get_attributes

		dpci_get_peer_attributes

		dpci_get_link_state

		dpci_set_rx_queue

		dpci_get_rx_queue

		dpci_get_tx_queue

		dpci_get_api_version

		dpci_set_opr

		dpci_get_opr

		Chapter 2 QBMan APIs

		Overview

		Data Structure Documentation

		struct qbman_block_desc

		struct qbman_swp_desc

		struct qbman_fd

		struct qbman_pull_desc

		struct qbman_eq_desc

		struct qbman_eq_response

		struct qbman_release_desc

		Function Documentation

		qbman_swp_init

		qbman_swp_finish

		qbman_swp_get_desc

		qbman_swp_interrupt_get_vanish

		qbman_swp_interrupt_read_status

		qbman_swp_interrupt_get_trigger

		qbman_swp_interrupt_get_inhibit

		qbman_swp_push_get

		qbman_swp_push_set

		qbman_pull_desc_clear

		qbman_pull_desc_set_storage

		qbman_pull_desc_set_numframes

		qbman_pull_desc_set_fq

		qbman_swp_pull

		qbman_swp_dqrr_next

		qbman_swp_dqrr_consume

		qbman_result_has_new_result

		qbman_result_is_DQ

		qbman_result_is_SCN

		qbman_result_is_FQDAN

		qbman_result_SCN_state

		qbman_result_SCN_rid

		qbman_result_SCN_ctx

		qbman_result_SCN_state_in_mem

		qbman_result_SCN_rid_in_mem

		qbman_result_bpscn_bpid

		qbman_result_bpscn_has_free_bufs

		qbman_result_bpscn_is_depleted

		qbman_result_bpscn_is_surplus

		qbman_result_bpscn_ctx

		qbman_result_cgcu_cgid

		qbman_result_cgcu_icnt

		qbman_eq_desc_clear

		qbman_eq_desc_set_no_orp

		qbman_eq_desc_set_orp

		qbman_eq_desc_set_orp_hole

		qbman_eq_desc_set_orp_nesn

		qbman_eq_desc_set_response

		qbman_eq_desc_set_token

		qbman_eq_desc_set_fq

		qbman_eq_desc_set_eqdi

		qbman_eq_desc_set_dca

		qbman_swp_enqueue

		qbman_swp_enqueue_thresh

		qbman_release_desc_clear

		qbman_release_desc_set_bpid

		qbman_release_desc_set_rcdi

		qbman_swp_release

		qbman_swp_acquire

		qbman_swp_fq_schedule

		qbman_swp_fq_force

		qbman_swp_fq_xon

		qbman_swp_CDAN_set_context

		qbman_swp_CDAN_enable

		qbman_swp_CDAN_disable

		qbman_swp_CDAN_set_context_enable

		Chapter 3 Data Path Input Output APIs

		Overview

		DPIO Service APIs

		Overview

		Data Structure Documentation

		struct dpaa2_io_desc

		struct dpaa2_io_notification_ctx

		Function Documentation

		dpaa2_io_create

		dpaa2_io_create_service

		dpaa2_io_default_service

		dpaa2_io_down

		dpaa2_io_service_add

		dpaa2_io_get_descriptor

		dpaa2_io_poll

		dpaa2_io_irq

		dpaa2_io_pause_poll

		dpaa2_io_resume_poll

		dpaa2_io_service_notifications

		dpaa2_io_service_stashing

		dpaa2_io_service_has_nonaffine

		dpaa2_io_service_register

		dpaa2_io_service_deregister

		dpaa2_io_service_rearm

		dpaa2_io_from_registration

		dpaa2_io_service_get_persistent

		dpaa2_io_service_pull_fq

		dpaa2_io_service_pull_channel

		dpaa2_io_service_enqueue_fq

		dpaa2_io_service_enqueue_qd

		dpaa2_io_service_release

		dpaa2_io_service_acquire

		dpaa2_io_store_create

		dpaa2_io_store_destroy

		dpaa2_io_store_next

		Chapter 4 DCE APIs

		Overview

		Data Structure Documentation

		struct dce_gz_header

		struct dce_session_params

		Typedef Documentation

		dce_callback_frame

		dce_callback_data

		Enumeration Type Documentation

		dce_engine

		dce_paradigm

		dce_compression_effort

		dce_flush_parameter

		Function Documentation

		dce_session_create

		dce_session_device

		dce_session_destroy

		dce_process_frame

		dce_process_data

		dce_gz_header_update

Writing Descriptors for NXP CAAM using
RTA Library

Document Number: WDNCRL
Rev 18.03
Mar 2018

Contents

Chapter 1
Introduction

Chapter 2
User Manual

Chapter 3
RTA API

3.1 Overview . 5

3.2 Detailed Description . 5

3.3 Data Structure Documentation . 5
3.3.1 struct program . 5

3.4 Descriptor Buffer Management Routines . 6
3.4.1 Overview . 6
3.4.2 Detailed Description . 6
3.4.3 Macro Definition Documentation . 7
3.4.3.1 PROGRAM_CNTXT_INIT . 7
3.4.3.2 PROGRAM_FINALIZE . 8
3.4.3.3 PROGRAM_SET_36BIT_ADDR . 8
3.4.3.4 PROGRAM_SET_BSWAP . 8
3.4.3.5 WORD . 9
3.4.3.6 DWORD . 10
3.4.3.7 COPY_DATA . 10
3.4.3.8 DESC_LEN . 10
3.4.3.9 DESC_BYTES . 11
3.4.3.10 INTL_SEC_ERA . 11
3.4.4 Enumeration Type Documentation . 11
3.4.4.1 rta_sec_era . 11
3.4.5 Function Documentation . 11
3.4.5.1 rta_set_sec_era(enum rta_sec_era era) . 11

ii
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Section number Title Page

3.4.5.2 rta_get_sec_era(void) . 12
3.4.6 Variable Documentation . 12
3.4.6.1 rta_sec_era . 12

3.5 SEC Commands Routines . 12
3.5.1 Overview . 12
3.5.2 Detailed Description . 13
3.5.3 Macro Definition Documentation . 14
3.5.3.1 SHR_HDR . 14
3.5.3.2 JOB_HDR . 15
3.5.3.3 JOB_HDR_EXT . 15
3.5.3.4 MOVE . 16
3.5.3.5 MOVEB . 17
3.5.3.6 MOVEDW . 18
3.5.3.7 FIFOLOAD . 19
3.5.3.8 SEQFIFOLOAD . 20
3.5.3.9 FIFOSTORE . 21
3.5.3.10 SEQFIFOSTORE . 22
3.5.3.11 KEY . 23
3.5.3.12 SEQINPTR . 24
3.5.3.13 SEQOUTPTR . 25
3.5.3.14 ALG_OPERATION . 26
3.5.3.15 PROTOCOL . 27
3.5.3.16 DKP_PROTOCOL . 27
3.5.3.17 PKHA_OPERATION . 28
3.5.3.18 JUMP . 29
3.5.3.19 JUMP_INC . 30
3.5.3.20 JUMP_DEC . 31
3.5.3.21 LOAD . 31
3.5.3.22 SEQLOAD . 32
3.5.3.23 STORE . 32
3.5.3.24 SEQSTORE . 33
3.5.3.25 MATHB . 34
3.5.3.26 MATHI . 35
3.5.3.27 MATHU . 36
3.5.3.28 SIGNATURE . 37
3.5.3.29 NFIFOADD . 38
3.5.3.30 DCOPY . 38
3.5.4 Enumeration Type Documentation . 39
3.5.4.1 rta_jump_type . 39
3.5.4.2 rta_jump_cond . 39
3.5.4.3 rta_share_type . 39
3.5.4.4 rta_data_type . 39

3.6 Self Referential Code Management Routines . 39

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

iii

Section number Title Page

3.6.1 Overview . 39
3.6.2 Detailed Description . 40
3.6.3 Macro Definition Documentation . 40
3.6.3.1 REFERENCE . 40
3.6.3.2 LABEL . 40
3.6.3.3 SET_LABEL . 40
3.6.3.4 PATCH_JUMP . 40
3.6.3.5 PATCH_MOVE . 41
3.6.3.6 PATCH_LOAD . 41
3.6.3.7 PATCH_STORE . 42
3.6.3.8 PATCH_HDR . 42
3.6.3.9 PATCH_RAW . 43

3.7 Shared Descriptor Example Routines . 43
3.7.1 Overview . 43
3.7.2 Detailed Description . 45
3.7.3 Function Documentation . 45
3.7.3.1 cnstr_shdsc_snow_f8(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo

∗cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction) . . . 45
3.7.3.2 cnstr_shdsc_snow_f9(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo

∗authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen) . 46

3.7.3.3 cnstr_shdsc_blkcipher(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗cipherdata, uint8_t ∗iv, uint32_t ivlen, uint8_t dir) 46

3.7.3.4 cnstr_shdsc_hmac(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗authdata, uint8_t do_icv, uint8_t trunc_len) 47

3.7.3.5 cnstr_shdsc_kasumi_f8(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction) . . . 48

3.7.3.6 cnstr_shdsc_kasumi_f9(uint32_t ∗descbuf, bool ps, bool swap, struct al-
ginfo ∗authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen) . 49

3.7.3.7 cnstr_shdsc_crc(uint32_t ∗descbuf, bool swap) 49
3.7.3.8 cnstr_shdsc_gcm_encap(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo

∗cipherdata, uint32_t ivlen, uint32_t icvsize) 50
3.7.3.9 cnstr_shdsc_gcm_decap(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo

∗cipherdata, uint32_t ivlen, uint32_t icvsize) 50
3.7.3.10 cnstr_shdsc_ipsec_encap(uint32_t ∗descbuf, bool ps, bool swap, enum rta←↩

_share_type share, struct ipsec_encap_pdb ∗pdb, struct alginfo ∗cipherdata,
struct alginfo ∗authdata) . 51

3.7.3.11 cnstr_shdsc_ipsec_decap(uint32_t ∗descbuf, bool ps, bool swap, enum rta←↩
_share_type share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata,
struct alginfo ∗authdata) . 51

3.7.3.12 cnstr_shdsc_ipsec_encap_des_aes_xcbc(uint32_t ∗descbuf, struct ipsec_←↩
encap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata) 52

iv
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Section number Title Page

3.7.3.13 cnstr_shdsc_ipsec_decap_des_aes_xcbc(uint32_t ∗descbuf, struct ipsec_←↩
decap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata) 53

3.7.3.14 cnstr_shdsc_ipsec_new_encap(uint32_t ∗descbuf, bool ps, bool swap, enum
rta_share_type share, struct ipsec_encap_pdb ∗pdb, uint8_t ∗opt_ip_hdr, struct
alginfo ∗cipherdata, struct alginfo ∗authdata) 54

3.7.3.15 cnstr_shdsc_ipsec_new_decap(uint32_t ∗descbuf, bool ps, bool swap, enum
rta_share_type share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata,
struct alginfo ∗authdata) . 55

3.7.3.16 cnstr_shdsc_authenc(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗cipherdata, struct alginfo ∗authdata, uint16_t ivlen, uint16_t auth_only_len,
uint8_t trunc_len, uint8_t dir) . 55

3.7.3.17 cnstr_shdsc_macsec_encap(uint32_t ∗descbuf, bool swap, struct alginfo
∗cipherdata, uint64_t sci, uint16_t ethertype, uint8_t tci_an, uint32_t pn) . . . 57

3.7.3.18 cnstr_shdsc_macsec_decap(uint32_t ∗descbuf, bool swap, struct alginfo
∗cipherdata, uint64_t sci, uint32_t pn) . 58

3.7.3.19 cnstr_shdsc_mbms(uint32_t ∗descbuf, bool ps, bool swap, unsigned
∗preheader_len, enum mbms_pdu_type pdu_type) 58

3.7.3.20 cnstr_shdsc_pdcp_c_plane_encap(uint32_t ∗descbuf, bool ps, bool swap,
uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t hfn_←↩
threshold, struct alginfo ∗cipherdata, struct alginfo ∗authdata, unsigned char
era_2_sw_hfn_override) . 59

3.7.3.21 cnstr_shdsc_pdcp_c_plane_decap(uint32_t ∗descbuf, bool ps, bool swap,
uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t hfn_←↩
threshold, struct alginfo ∗cipherdata, struct alginfo ∗authdata, unsigned char
era_2_sw_hfn_override) . 60

3.7.3.22 cnstr_shdsc_pdcp_u_plane_encap(uint32_t ∗descbuf, bool ps, bool swap,
enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer, unsigned
short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata, unsigned
char era_2_sw_hfn_override) . 61

3.7.3.23 cnstr_shdsc_pdcp_u_plane_decap(uint32_t ∗descbuf, bool ps, bool swap,
enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer, unsigned
short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata, unsigned
char era_2_sw_hfn_override) . 62

3.7.3.24 cnstr_shdsc_pdcp_short_mac(uint32_t ∗descbuf, bool ps, bool swap, struct al-
ginfo ∗authdata) . 63

3.7.3.25 cnstr_shdsc_rlc_encap(uint32_t ∗descbuf, bool ps, enum rlc_mode mode,
uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn←↩
_threshold, struct alginfo ∗cipherdata) . 63

3.7.3.26 cnstr_shdsc_rlc_decap(uint32_t ∗descbuf, bool ps, enum rlc_mode mode,
uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn←↩
_threshold, struct alginfo ∗cipherdata) . 64

3.7.3.27 cnstr_shdsc_rsa(uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct
protcmd ∗protcmd) . 65

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

v

Section number Title Page

3.7.3.28 cnstr_shdsc_srtp_encap(uint32_t ∗descbuf, bool swap, struct alginfo
∗authdata, struct alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint8_t
∗cipher_salt) . 65

3.7.3.29 cnstr_shdsc_srtp_decap(uint32_t ∗descbuf, bool swap, struct alginfo
∗authdata, struct alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint16_t
seq_num, uint8_t ∗cipher_salt) . 66

3.7.3.30 cnstr_shdsc_tls(uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct
protcmd ∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata) 66

3.7.3.31 cnstr_shdsc_cwap_dtls(uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb,
struct protcmd ∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata) . 67

3.7.3.32 cnstr_shdsc_wifi_encap(uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac←↩
_hdr_len, uint64_t pn, uint8_t priority, uint8_t key_id, struct alginfo ∗cipherdata) 68

3.7.3.33 cnstr_shdsc_wifi_decap(uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac←↩
_hdr_len, uint64_t pn, uint8_t priority, struct alginfo ∗cipherdata) 69

3.7.3.34 cnstr_shdsc_wimax_encap_era5(uint32_t ∗descbuf, bool swap, uint8_t pdb←↩
_opts, uint32_t pn, uint16_t protinfo, struct alginfo ∗cipherdata) 69

3.7.3.35 cnstr_shdsc_wimax_encap(uint32_t ∗descbuf, bool swap, uint8_t pdb_opts,
uint32_t pn, uint16_t protinfo, struct alginfo ∗cipherdata) 70

3.7.3.36 cnstr_shdsc_wimax_decap(uint32_t ∗descbuf, bool swap, uint8_t pdb_opts,
uint32_t pn, uint16_t ar_len, uint16_t protinfo, struct alginfo ∗cipherdata) . . . 71

Chapter 4
RTA Descriptors Library

4.1 Overview . 73

4.2 Detailed Description . 73

4.3 Auxiliary Data Structures . 73
4.3.1 Overview . 73
4.3.2 Detailed Description . 73
4.3.3 Data Structure Documentation . 73
4.3.3.1 struct alginfo . 73
4.3.3.2 struct protcmd . 74
4.3.3.3 struct mbms_type_0_pdb . 74
4.3.3.4 struct mbms_type_1_3_pdb . 74
4.3.4 Enumeration Type Documentation . 75
4.3.4.1 ipsec_icv_size . 75
4.3.4.2 cipher_type_macsec . 75
4.3.4.3 mbms_pdu_type . 75
4.3.4.4 cipher_type_pdcp . 75
4.3.4.5 auth_type_pdcp . 76
4.3.4.6 pdcp_dir . 76
4.3.4.7 pdcp_plane . 76

vi
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Section number Title Page

4.3.4.8 pdcp_sn_size . 77
4.3.4.9 rlc_mode . 77
4.3.4.10 rlc_dir . 77
4.3.4.11 cipher_type_rlc . 77
4.3.4.12 rsa_decrypt_form . 78
4.3.4.13 tls_cipher_mode . 78
4.3.5 Function Documentation . 78
4.3.5.1 rta_inline_query(unsigned sd_base_len, unsigned jd_len, unsigned ∗data_len,

uint32_t ∗inl_mask, unsigned count) . 78
4.3.5.2 rta_dtls_pdb_ars(uint32_t options) . 78
4.3.5.3 rta_tls_cipher_mode(uint16_t protinfo) . 79

4.4 SEC Protocol Data Block Data Structures . 79
4.4.1 Overview . 79
4.4.2 Detailed Description . 79
4.4.3 ipsec_encap_pdb . 79
4.4.3.1 Overview . 79
4.4.3.2 Detailed Description . 80
4.4.3.3 Data Structure Documentation . 80
4.4.3.3.1 struct ipsec_encap_cbc . 80
4.4.3.3.2 struct ipsec_encap_ctr . 81
4.4.3.3.3 struct ipsec_encap_ccm . 81
4.4.3.3.4 struct ipsec_encap_gcm . 81
4.4.3.3.5 struct ipsec_encap_pdb . 81
4.4.4 ipsec_decap_pdb . 82
4.4.4.1 Overview . 82
4.4.4.2 Detailed Description . 82
4.4.4.3 Data Structure Documentation . 82
4.4.4.3.1 struct ipsec_decap_cbc . 82
4.4.4.3.2 struct ipsec_decap_ctr . 82
4.4.4.3.3 struct ipsec_decap_gcm . 84
4.4.4.3.4 struct ipsec_decap_pdb . 84

4.5 Auxiliary Defines . 84
4.5.1 Overview . 84
4.5.2 Detailed Description . 86
4.5.3 Macro Definition Documentation . 86
4.5.3.1 PDBOPTS_ESP_ESN . 86
4.5.3.2 PDBOPTS_ESP_IPVSN . 86
4.5.3.3 PDBOPTS_ESP_TUNNEL . 86
4.5.3.4 PDBOPTS_ESP_UPDATE_CSUM . 86
4.5.3.5 PDBOPTS_ESP_DIFFSERV . 86
4.5.3.6 PDBOPTS_ESP_IVSRC . 86
4.5.3.7 PDBOPTS_ESP_IPHDRSRC . 86
4.5.3.8 PDBOPTS_ESP_INCIPHDR . 86

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

vii

Section number Title Page

4.5.3.9 PDBOPTS_ESP_OIHI_MASK . 87
4.5.3.10 PDBOPTS_ESP_OIHI_PDB_INL . 87
4.5.3.11 PDBOPTS_ESP_OIHI_PDB_REF . 87
4.5.3.12 PDBOPTS_ESP_OIHI_IF . 87
4.5.3.13 PDBOPTS_ESP_NAT . 87
4.5.3.14 PDBOPTS_ESP_NUC . 87
4.5.3.15 PDBOPTS_ESP_ARS_MASK . 87
4.5.3.16 PDBOPTS_ESP_ARSNONE . 87
4.5.3.17 PDBOPTS_ESP_ARS64 . 87
4.5.3.18 PDBOPTS_ESP_ARS128 . 87
4.5.3.19 PDBOPTS_ESP_ARS32 . 88
4.5.3.20 PDBOPTS_ESP_VERIFY_CSUM . 88
4.5.3.21 PDBOPTS_ESP_TECN . 88
4.5.3.22 PDBOPTS_ESP_OUTFMT . 88
4.5.3.23 PDBOPTS_ESP_AOFL . 88
4.5.3.24 PDBOPTS_ESP_ETU . 88
4.5.3.25 PDBHMO_ESP_DECAP_DTTL . 88
4.5.3.26 PDBHMO_ESP_DIFFSERV . 88
4.5.3.27 PDBHMO_ESP_SNR . 88
4.5.3.28 PDBHMO_ESP_DFBIT . 89
4.5.3.29 PDBHMO_ESP_DFV . 89
4.5.3.30 PDBHMO_ESP_ODF . 89
4.5.3.31 MBMS_HEADER_POLY . 89
4.5.3.32 MBMS_PAYLOAD_POLY . 89
4.5.3.33 MBMS_TYPE0_HDR_LEN . 89
4.5.3.34 MBMS_TYPE1_HDR_LEN . 89
4.5.3.35 MBMS_TYPE3_HDR_LEN . 89
4.5.3.36 DUMMY_BUF_BASE . 89
4.5.3.37 HDR_CRC_MASK . 90
4.5.3.38 FM_RX_PRIV_SIZE . 90
4.5.3.39 FM_RX_EXTRA_HEADROOM . 90
4.5.3.40 IC_PR_OFFSET . 90
4.5.3.41 PR_L4_OFFSET . 90
4.5.3.42 BUF_IC_OFFSET . 90
4.5.3.43 BUF_PR_OFFSET . 90
4.5.3.44 BUF_L4_OFFSET . 90
4.5.3.45 UDP_HDR_LEN . 90
4.5.3.46 GTP_HDR_LEN . 91
4.5.3.47 MBMS_HDR_OFFSET . 91
4.5.3.48 MBMS_CRC_HDR_FAIL . 91
4.5.3.49 MBMS_CRC_PAYLOAD_FAIL . 91
4.5.3.50 PDCP_NULL_MAX_FRAME_LEN . 91
4.5.3.51 PDCP_MAC_I_LEN . 91
4.5.3.52 PDCP_MAX_FRAME_LEN_STATUS . 91
4.5.3.53 PDCP_C_PLANE_SN_MASK . 91

viii
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Section number Title Page

4.5.3.54 PDCP_U_PLANE_15BIT_SN_MASK . 91
4.5.3.55 PDCP_BEARER_MASK . 92
4.5.3.56 PDCP_DIR_MASK . 92
4.5.3.57 PDCP_NULL_INT_MAC_I_VAL . 92
4.5.3.58 PDCP_NULL_INT_ICV_CHECK_FAILED_STATUS 92
4.5.3.59 PDCP_DPOVRD_HFN_OV_EN . 92
4.5.3.60 PDCP_P4080REV2_HFN_OV_BUFLEN . 92
4.5.3.61 CRC_8_ATM_POLY . 93
4.5.3.62 WIMAX_GMH_EC_MASK . 93
4.5.3.63 WIMAX_ICV_LEN . 93
4.5.3.64 WIMAX_FCS_LEN . 93
4.5.3.65 WIMAX_PN_LEN . 93
4.5.3.66 WIMAX_PDBOPTS_FCS . 93
4.5.3.67 WIMAX_PDBOPTS_AR . 93

4.6 Job Descriptor Example Routines . 94
4.6.1 Overview . 94
4.6.2 Detailed Description . 94
4.6.3 Function Documentation . 94
4.6.3.1 cnstr_jobdesc_mdsplitkey(uint32_t ∗descbuf, bool ps, bool swap, uint64_←↩

t alg_key, uint8_t keylen, uint32_t cipher, uint64_t padbuf) 94

4.7 Shared Descriptor Helper Routines . 95
4.7.1 Overview . 95
4.7.2 Detailed Description . 95
4.7.3 Function Documentation . 95
4.7.3.1 split_key_len(uint32_t hash) . 95
4.7.3.2 split_key_pad_len(uint32_t hash) . 95
4.7.3.3 get_mbms_stats(uint32_t ∗descbuf, void ∗stats, enum mbms_pdu_type pdu←↩

_type) . 96
4.7.4 rsa_pdb . 97
4.7.4.1 Overview . 97
4.7.4.2 Detailed Description . 97
4.7.4.3 Data Structure Documentation . 97
4.7.4.3.1 struct rsa_encrypt_pdb_64b . 97
4.7.4.3.2 struct rsa_encrypt_pdb . 98
4.7.4.3.3 struct rsa_dec_pdb_form1_64b . 98
4.7.4.3.4 struct rsa_dec_pdb_form1 . 98
4.7.4.3.5 struct rsa_dec_pdb_form2_64b . 99
4.7.4.3.6 struct rsa_dec_pdb_form2 . 99
4.7.4.3.7 struct rsa_dec_pdb_form3_64b . 100
4.7.4.3.8 struct rsa_dec_pdb_form3 . 101
4.7.5 tls_pdb . 101
4.7.5.1 Overview . 101
4.7.5.2 Detailed Description . 102

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

ix

Section number Title Page

4.7.5.3 Data Structure Documentation . 102
4.7.5.3.1 struct tls_block_enc . 102
4.7.5.3.2 struct dtls_block_enc . 102
4.7.5.3.3 struct tls_block_dec . 102
4.7.5.3.4 struct dtls_block_dec . 102
4.7.5.3.5 struct tls_block_pdb . 103
4.7.5.3.6 struct tls_stream_enc . 103
4.7.5.3.7 struct tls_stream_dec . 103
4.7.5.3.8 struct tls_stream_pdb . 103
4.7.5.3.9 struct tls_ctr_enc . 104
4.7.5.3.10 struct tls_ctr . 104
4.7.5.3.11 struct tls_ctr_pdb . 104
4.7.5.3.12 struct tls12_gcm_encap . 105
4.7.5.3.13 struct tls12_gcm_decap . 105
4.7.5.3.14 struct dtls_gcm_enc . 105
4.7.5.3.15 struct dtls_gcm_dec . 105
4.7.5.3.16 struct tls_gcm_pdb . 106
4.7.5.3.17 struct tls12_ccm_encap . 106
4.7.5.3.18 struct tls_ccm . 106
4.7.5.3.19 struct tls_ccm_pdb . 107

x
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Chapter 1
Introduction
Runtime Assembler (RTA) Library is an easy and flexible runtime method for writing SEC descriptors. It
implements a thin abstraction layer above SEC commands set; the resulting code is compact and similar
to a descriptor sequence.

RTA library improves comprehension of the SEC code, adds flexibility for writing complex descriptors
and keeps the code lightweight. Should be used by whom needs to encode descriptors at runtime, with
comprehensible flow control in descriptor.

The User Manual page contains more details about RTA.

RTA

RTA

User space

Kernel space

Platform hardware

Crypto

application

QBMAN

QI JRI
SEC

SEC Driver

SEC QI Driver

Figure 1: RTA Integration Overview

In the SDK package, an example of RTA usage in user space is included. RTA is used in user space by
Data Plane Development Kit (DPDK). The inclusion of RTA in kernel space in the diagram above is only
demonstrative.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

1

Chapter 2
User Manual
RTA (Runtime Assembler Library) is a standalone library for writing SEC descriptors.

RTA gives users the ability to write descriptors in a human readable form by using C code instead of low
level machine code. It also gives the advantage that it verifies the correctness of the descriptors. RTA has,
over the other code translators, the advantage that it gives shorter and more readable code.

As a standalone library, RTA will not interfere with other components of the user application.

Installation

The library can be installed by running 'make' inside the root of the package:

$ make install

The default install path "/usr/include" can be changed by editing the Makefile. It is not necessary to install
the library on the target machine unless you intend to build your application there as well.

Using RTA

RTA can be used in an application just by including the following header file:

#include flib/rta.h

The files in sec/rta/include/flib/desc directory contain several real-world descriptors written with RTA.
You can use them as-is or adapt them to your needs.

RTA routines take as first parameter a pointer to a "struct program" variable. It contains housekeeping
information that is used during descriptor creation.

RTA creates the descriptors and saves them in buffers. It is the user's job to allocate memory for these
buffers before passing them to RTA program initialization call.

An RTA program must start with a call to PROGRAM_CNTXT_INIT and end with PROGRAM_FINA←↩
LIZE. PROGRAM_CNTXT_INIT will initialize the members of 'program' structure with user information
(pointer to user's buffer, and the SEC subversion). The PROGRAM_FINALIZE call checks the descrip-
tor's validity.

The program length is limited to the size of buffer descriptor which can be maximum 64 words (256 bytes).
However, a JUMP command can cause loading and execution of another Job Descriptor; this allows for
much larger programs to be created.

2
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

RTA components

The content of the package is split mainly in two components:

• descriptor builder API (rta.h)
• ready to use RTA descriptors (sec/rta/include/flib/desc/∗.h)

These are the main building blocks of descriptors:

• buffer management: init & finalize
• SEC commands: MOVE, LOAD, FIFO_LOAD etc.
• descriptor labels (e.g. used as JUMP destinations)
• utility commands: (e.g. PATCH_∗ commands that update labels and references)

In some cases, descriptor fields can't all be set when the commands are inserted. These fields must be
updated in a similar fashion to what the linking process does with a binary file. RTA uses PATCH_∗
commands to get relevant information and PROGRAM_FINALIZE to complete the "code relocation".

If there is a need for descriptors larger than 64 words, their function can be split into several smaller ones.
In such case the smaller descriptors are correlated and updated using PATCH_∗ commands. These calls
must appear after all the descriptors are finalized and not before as in a single descriptor case (the reason
being that only then references to all descriptors are available).

Example applications

The RTA package comes with a set of examples inside "tests" directory. These examples can be compiled
by issuing the 'make' command:

$ tree tests/
tests/

+--- Makefile
+--- blkcipher_seq.c
+--- blob_example.c
+--- capwap.c
+--- deco_dma_1.c
...

The provided Makefile contains the necessary include paths and compiler flags to build all examples
without installing the library on your machine:

$ cd tests
$ make all

or

$ make <test_name>

To build the tests for the target machine, you must set the CROSS_COMPILE variable to your toolchain
compiler before building:

$ export CROSS_COMPILE=powerpc-fsl-linux-
$ make all

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

3

Supported hardware platforms

The current version of RTA supports SEC versions 4.X.

Known limitations

The code is checked against the complete table of SEC features. There is no verification of code against
SEC features that are not available on a certain SEC subversion.

4
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Chapter 3
RTA API
3.1 Overview
Contains RTA API details.

Modules
• Descriptor Buffer Management Routines
• SEC Commands Routines
• Self Referential Code Management Routines

Data Structures
• struct program

3.2 Detailed Description
Contains RTA API details.

3.3 Data Structure Documentation

3.3.1 struct program

Descriptor buffer management structure.

Data Fields

unsigned current_pc Current offset in descriptor.
unsigned current_←↩

instruction
Current instruction in descriptor.

unsigned first_error_pc Offset of the first error in descriptor.
unsigned start_pc Start offset in descriptor buffer.

uint32_t ∗ buffer Buffer carrying descriptor.
uint32_t ∗ shrhdr Shared descriptor header.
uint32_t ∗ jobhdr Job descriptor header.

bool ps Pointer fields size: - if ps is true, pointers will be 36 bits in length.
- if ps is false, pointers will be 32 bits in length.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

5

Descriptor Buffer Management Routines

bool bswap If true, perform byte swap on a 4-byte boundary.

3.4 Descriptor Buffer Management Routines

3.4.1 Overview

Contains details of RTA descriptor buffer management and SEC Era management routines.

Macros

• #define PROGRAM_CNTXT_INIT(program, buffer, offset) rta_program_cntxt_init(program,
buffer, offset)

• #define PROGRAM_FINALIZE(program) rta_program_finalize(program)
• #define PROGRAM_SET_36BIT_ADDR(program) rta_program_set_36bit_addr(program)
• #define PROGRAM_SET_BSWAP(program) rta_program_set_bswap(program)
• #define WORD(program, val) rta_word(program, val)
• #define DWORD(program, val) rta_dword(program, val)
• #define COPY_DATA(program, data, len) rta_copy_data(program, (data), (len))
• #define DESC_LEN(buffer) rta_desc_len(buffer)
• #define DESC_BYTES(buffer) rta_desc_bytes(buffer)
• #define INTL_SEC_ERA(sec_era) (sec_era - 1)

Enumerations

Functions

• static int rta_set_sec_era (enum rta_sec_era era)
Set SEC Era HW block revision for which the RTA library will generate generate the descriptors.

• static unsigned rta_get_sec_era (void)
Get SEC Era HW block revision for which the RTA library will generate the descriptors.

Variables

• enum rta_sec_era rta_sec_era
SEC HW block revision.

3.4.2 Detailed Description

Contains details of RTA descriptor buffer management and SEC Era management routines.

6
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Descriptor Buffer Management Routines

3.4.3 Macro Definition Documentation

3.4.3.1 #define PROGRAM_CNTXT_INIT(program, buffer, offset
) rta_program_cntxt_init(program, buffer, offset)

Must be called before any descriptor run-time assembly call type field carry info i.e. whether descriptor is
shared or job descriptor.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

7

Descriptor Buffer Management Routines

Parameters

out program Pointer to struct program.
in buffer Input buffer where the descriptor will be placed (uint32_t ∗).
in offset Offset in input buffer from where the data will be written (unsigned).

3.4.3.2 #define PROGRAM_FINALIZE(program) rta_program_finalize(program)

Must be called to mark completion of RTA call.

Parameters

out program Pointer to struct program.

Returns

Total size of the descriptor in words or negative number on error.

3.4.3.3 #define PROGRAM_SET_36BIT_ADDR(program) rta_program_set_36bit_←↩
addr(program)

Must be called to set pointer size to 36 bits.

Parameters

out program Pointer to struct program.

Returns

Current size of the descriptor in words (unsigned).

3.4.3.4 #define PROGRAM_SET_BSWAP(program) rta_program_set_bswap(program)

Must be called to enable byte swapping.

Parameters

out program Pointer to struct program.

Returns

Current size of the descriptor in words (unsigned).

Note

Byte swapping on a 4-byte boundary will be performed at the end - when calling PROGRAM_FI←↩
NALIZE().

8
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Descriptor Buffer Management Routines

3.4.3.5 #define WORD(program, val) rta_word(program, val)

Must be called to insert in descriptor buffer a 32bit value.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

9

Descriptor Buffer Management Routines

Parameters

out program Pointer to struct program.
in val Input value to be written in descriptor buffer (uint32_t).

Returns

The descriptor buffer offset where this command is inserted (unsigned).

3.4.3.6 #define DWORD(program, val) rta_dword(program, val)

Must be called to insert in descriptor buffer a 64bit value.

Parameters

out program Pointer to struct program.
in val Input value to be written in descriptor buffer (uint64_t)

Returns

The descriptor buffer offset where this command is inserted (unsigned).

3.4.3.7 #define COPY_DATA(program, data, len) rta_copy_data(program, (data),
(len))

Must be called to insert in descriptor buffer data larger than 64 bits.

Parameters

out program Pointer to struct program.
in data Input data to be written in descriptor buffer (uint8_t ∗).
in len Length of input data (unsigned).

Returns

The descriptor buffer offset where this command is inserted (unsigned).

3.4.3.8 #define DESC_LEN(buffer) rta_desc_len(buffer)

Determines job / shared descriptor buffer length (in words).

10
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Descriptor Buffer Management Routines

Parameters

in buffer Descriptor buffer (uint32_t ∗)

Returns

Descriptor buffer length in words (unsigned).

3.4.3.9 #define DESC_BYTES(buffer) rta_desc_bytes(buffer)

Determines job / shared descriptor buffer length (in bytes).

Parameters

in buffer Descriptor buffer (uint32_t ∗).

Returns

Descriptor buffer length in bytes (unsigned).

3.4.3.10 #define INTL_SEC_ERA(sec_era) (sec_era - 1)

Translates the SEC Era from user representation to internal.

Parameters

in sec_era SEC Era in user representation.

3.4.4 Enumeration Type Documentation

3.4.4.1 enum rta_sec_era

sec_run_time_asm.h

SEC HW block revisions supported by the RTA library.

3.4.5 Function Documentation

3.4.5.1 static int rta_set_sec_era (enum rta_sec_era era) [inline], [static]

Warning

Must be called only once, before using any other RTA API routine.
Not thread safe.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

11

SEC Commands Routines

Parameters

in era SEC Era (enum rta_sec_era).

Returns

- 0 if the ERA was set successfully
• 1 otherwise (int)

3.4.5.2 static unsigned rta_get_sec_era (void) [inline], [static]

Returns

SEC Era (unsigned).

3.4.6 Variable Documentation

3.4.6.1 enum rta_sec_era rta_sec_era

This must not be confused with SEC version:

• SEC HW block revision format is "v".
• SEC revision format is "x.y".

3.5 SEC Commands Routines

3.5.1 Overview

Contains details of RTA wrapper routines over SEC engine commands.

Macros

• #define SHR_HDR(program, share, start_idx, flags) rta_shr_header(program, share, start_idx, flags)
• #define JOB_HDR(program, share, start_idx, share_desc, flags) rta_job_header(program, share,

start_idx, share_desc, flags, 0)
• #define JOB_HDR_EXT(program, share, start_idx, share_desc, flags, ext_flags)
• #define MOVE(program, src, src_offset, dst, dst_offset, length, opt) rta_move(program, __MOVE,

src, src_offset, dst, dst_offset, length, opt)
• #define MOVEB(program, src, src_offset, dst, dst_offset, length, opt)
• #define MOVEDW(program, src, src_offset, dst, dst_offset, length, opt)
• #define FIFOLOAD(program, data, src, length, flags) rta_fifo_load(program, data, src, length, flags)
• #define SEQFIFOLOAD(program, data, length, flags) rta_fifo_load(program, data, NONE, length,

flags|SEQ)
• #define FIFOSTORE(program, data, encrypt_flags, dst, length, flags) rta_fifo_store(program, data,

encrypt_flags, dst, length, flags)

12
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

• #define SEQFIFOSTORE(program, data, encrypt_flags, length, flags) rta_fifo_store(program, data,
encrypt_flags, 0, length, flags|SEQ)

• #define KEY(program, key_dst, encrypt_flags, src, length, flags) rta_key(program, key_dst,
encrypt_flags, src, length, flags)

• #define SEQINPTR(program, src, length, flags) rta_seq_in_ptr(program, src, length, flags)
• #define SEQOUTPTR(program, dst, length, flags) rta_seq_out_ptr(program, dst, length, flags)
• #define ALG_OPERATION(program, cipher_alg, aai, algo_state, icv_check, enc) rta_←↩

operation(program, cipher_alg, aai, algo_state, icv_check, enc)
• #define PROTOCOL(program, optype, protid, protoinfo) rta_proto_operation(program, optype,

protid, protoinfo)
• #define DKP_PROTOCOL(program, protid, key_src, key_dst, keylen, key, key_type) rta_dkp_←↩

proto(program, protid, key_src, key_dst, keylen, key, key_type)
• #define PKHA_OPERATION(program, op_pkha) rta_pkha_operation(program, op_pkha)
• #define JUMP(program, addr, jump_type, test_type, cond) rta_jump(program, addr, jump_type,

test_type, cond, NONE)
• #define JUMP_INC(program, addr, test_type, cond, src_dst) rta_jump(program, addr, LOCAL_J←↩

UMP_INC, test_type, cond, src_dst)
• #define JUMP_DEC(program, addr, test_type, cond, src_dst) rta_jump(program, addr, LOCAL_J←↩

UMP_DEC, test_type, cond, src_dst)
• #define LOAD(program, addr, dst, offset, length, flags) rta_load(program, addr, dst, offset, length,

flags)
• #define SEQLOAD(program, dst, offset, length, flags) rta_load(program, NONE, dst, offset, length,

flags|SEQ)
• #define STORE(program, src, offset, dst, length, flags) rta_store(program, src, offset, dst, length,

flags)
• #define SEQSTORE(program, src, offset, length, flags) rta_store(program, src, offset, NONE,

length, flags|SEQ)
• #define MATHB(program, operand1, operator, operand2, result, length, opt)
• #define MATHI(program, operand, operator, imm, result, length, opt)
• #define MATHU(program, operand1, operator, result, length, opt)
• #define SIGNATURE(program, sign_type) rta_signature(program, sign_type)
• #define NFIFOADD(program, src, data, length, flags) rta_nfifo_load(program, src, data, length,

flags)
• #define DCOPY BIT(30)

Enumerations

3.5.2 Detailed Description

Contains details of RTA wrapper routines over SEC engine commands.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

13

SEC Commands Routines

3.5.3 Macro Definition Documentation

3.5.3.1 #define SHR_HDR(program, share, start_idx, flags) rta_shr_header(program,
share, start_idx, flags)

Configures Shared Descriptor HEADER command.

14
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in share Descriptor share state (enum rta_share_type)
in start_idx Index in descriptor buffer where the execution of the shared descriptor

should start (unsigned).
in flags Operational flags:

• RIF, DNR, CIF, SC, PD

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.2 #define JOB_HDR(program, share, start_idx, share_desc, flags
) rta_job_header(program, share, start_idx, share_desc, flags, 0)

Configures JOB Descriptor HEADER command.

Parameters

in,out program Pointer to struct program
in share Descriptor share state (enum rta_share_type)
in start_idx Index in descriptor buffer where the execution of the job descriptor

should start (unsigned). In case SHR bit is present in flags, this will
be the shared descriptor length.

in share_desc Pointer to shared descriptor, in case SHR bit is set (uint64_t).
in flags Operational flags:

• RSMS, DNR, TD, MTD, REO, SHR.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.3 #define JOB_HDR_EXT(program, share, start_idx, share_desc, flags,
ext_flags)

Value:

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

15

SEC Commands Routines

rta_job_header(program, share, start_idx, share_desc, flags | EXT, \
ext_flags)

Configures JOB Descriptor HEADER command.

Parameters

in,out program Pointer to struct program.
in share Descriptor share state (enum rta_share_type)
in start_idx Index in descriptor buffer where the execution of the job descriptor

should start (unsigned). In case SHR bit is present in flags, this will
be the shared descriptor length.

in share_desc Pointer to shared descriptor, in case SHR bit is set (uint64_t).
in flags Operational flags:

• RSMS, DNR, TD, MTD, REO, SHR.

in ext_flags Extended header flags:

• DSV (DECO Select Valid), DECO Id (limited by DSEL_MASK).

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.4 #define MOVE(program, src, src_offset, dst, dst_offset, length, opt
) rta_move(program, __MOVE, src, src_offset, dst, dst_offset, length, opt)

Configures MOVE and MOVE_LEN commands.

Parameters

in,out program Pointer to struct program.
in src Internal source of data that will be moved:

• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOABD, IFIFOAB1, IFIFOAB2, AB1, AB2, ABD.

16
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

in src_offset Offset in source data (uint16_t).
in dst Internal destination of data that will be moved:

• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOAB1, IFIFOAB2, IFIFO, PKA, KEY1, KEY2, ALTSOUR←↩
CE.

in dst_offset Offset in destination data (uint16_t)
in length Size of data to be moved:

• for MOVE must be specified as immediate value and IMMED
flag must be set;

• for MOVE_LEN must be specified using MATH0-MATH3.

in opt Operational flags:

• WAITCOMP, FLUSH1, FLUSH2, LAST1, LAST2, SIZE_WORD,
SIZE_BYTE, SIZE_DWORD, IMMED (not valid for MOVE_L←↩
EN).

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.5 #define MOVEB(program, src, src_offset, dst, dst_offset, length, opt)

Value:

rta_move(program, __MOVEB, src, src_offset, dst, dst_offset, length, \
opt)

Configures MOVEB command. Identical with MOVE command, if byte swapping not enabled; else,
when src/dst is descriptor buffer or MATH registers, data type is byte array when MOVE data type is
4-byte array and vice versa.

Parameters

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

17

SEC Commands Routines

in,out program Pointer to struct program
in src Internal source of data that will be moved:

• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOABD, IFIFOAB1, IFIFOAB2, AB1, AB2, ABD.

in src_offset Offset in source data (uint16_t).
in dst Internal destination of data that will be moved:

• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOAB1, IFIFOAB2, IFIFO, PKA, KEY1, KEY2, ALTSOUR←↩
CE.

in dst_offset Offset in destination data (uint16_t)
in length Size of data to be moved:

• for MOVE must be specified as immediate value and IMMED
flag must be set;

• for MOVE_LEN must be specified using MATH0-MATH3.

in opt Operational flags:

• WAITCOMP, FLUSH1, FLUSH2, LAST1, LAST2, SIZE_WORD,
SIZE_BYTE, SIZE_DWORD, IMMED (not valid for MOVE_L←↩
EN).

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.6 #define MOVEDW(program, src, src_offset, dst, dst_offset, length, opt)

Value:

rta_move(program, __MOVEDW, src, src_offset, dst, dst_offset, length, \
opt)

Configures MOVEDW command. Identical with MOVE command, with the following differences:

• data type is 8-byte array;
• word swapping is performed when SEC is programmed in little-endian mode.

18
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in src Internal source of data that will be moved:

• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3, IFIFOABD, IFIFOAB1, IFIFO←↩
AB2, AB1, AB2, ABD.
Parameters

in src_offset Offset in source data (uint16_t).
in dst Internal destination of data that will be moved:

• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3, IFIFOAB1, IFIFOAB2, IFIFO,
PKA, KEY1, KEY2, ALTSOURCE.
Parameters

in dst_offset Offset in destination data (uint16_t).
in length Size of data to be moved:

• for MOVE must be specified as immediate value and IMMED flag must be set;
• for MOVE_LEN must be specified using MATH0-MATH3.

Parameters

in opt Operational flags:

• WAITCOMP, FLUSH1, FLUSH2, LAST1, LAST2, SIZE_WORD, SIZE_BYTE, SIZE_DWORD, I←↩
MMED (not valid for MOVE_LEN).
Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor buffer

where the instruction should have been written.

3.5.3.7 #define FIFOLOAD(program, data, src, length, flags) rta_fifo_load(program,
data, src, length, flags)

Configures FIFOLOAD command to load message data, PKHA data, IV, ICV, AAD, and bit length
message data into Input Data FIFO.

Parameters

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

19

SEC Commands Routines

in,out program Pointer to struct program
in data Input data type to store:

• PKHA registers, IFIFO, MSG1, MSG2, MSGOUTSNOOP, MS←↩
GINSNOOP, IV1, IV2, AAD1, ICV1, ICV2, BIT_DATA, SKIP.

in src Pointer or actual data in case of immediate load; IMMED, COPY, and
DCOPY flags indicate action taken (inline imm data, inline ptr, inline
from ptr).

in length Number of bytes to load (uint32_t).
in flags Operational flags:

• SGF, IMMED, EXT, CLASS1, CLASS2, BOTH, FLUSH1, LAST1,
LAST2, COPY, DCOPY.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.8 #define SEQFIFOLOAD(program, data, length, flags) rta_fifo_load(program,
data, NONE, length, flags|SEQ)

Configures SEQ FIFOLOAD command to load message data, PKHA data, IV, ICV, AAD, and bit length
message data into Input Data FIFO.

Parameters

in,out program Pointer to struct program
in data Input data type to store:

• PKHA registers, IFIFO, MSG1, MSG2, MSGOUTSNOOP, MS←↩
GINSNOOP, IV1, IV2, AAD1, ICV1, ICV2, BIT_DATA, SKIP.

20
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

in length Number of bytes to load; can be set to 0 for SEQ command w/ VLF set
(uint32_t).

in flags Operational flags:

• VLF, CLASS1, CLASS2, BOTH, FLUSH1, LAST1, LAST2, AIDF.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.9 #define FIFOSTORE(program, data, encrypt_flags, dst, length, flags
) rta_fifo_store(program, data, encrypt_flags, dst, length, flags)

Configures FIFOSTORE command, to move data from Output Data FIFO to external memory using
DMA.
Parameters

in,out program Pointer to struct program
in data Output data type to store:

• PKHA registers, IFIFO, OFIFO, RNG, RNGOFIFO, AFHA_SB←↩
OX, MDHA_SPLIT_KEY, MSG, KEY1, KEY2, SKIP.

in encrypt_flags Store data encryption mode:

• EKT, TK.

in dst Pointer to store location (uint64_t).
in length Number of bytes to load (uint32_t).
in flags Operational flags:@

• SGF, CONT, EXT, CLASS1, CLASS2, BOTH.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

21

SEC Commands Routines

3.5.3.10 #define SEQFIFOSTORE(program, data, encrypt_flags, length, flags
) rta_fifo_store(program, data, encrypt_flags, 0, length, flags|SEQ)

Configures SEQ FIFOSTORE command, to move data from Output Data FIFO to external memory via
DMA.

22
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in data output data type to store:

• PKHA registers, IFIFO, OFIFO, RNG, RNGOFIFO, AFHA_SB←↩
OX, MDHA_SPLIT_KEY, MSG, KEY1, KEY2, METADATA, SK←↩
IP.

in encrypt_flags Store data encryption mode:

• EKT, TK

in length Number of bytes to load; can be set to 0 for SEQ command w/ VLF set
(uint32_t).

in flags Operational flags:

• VLF, CONT, EXT, CLASS1, CLASS2, BOTH.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.11 #define KEY(program, key_dst, encrypt_flags, src, length, flags
) rta_key(program, key_dst, encrypt_flags, src, length, flags)

Configures KEY and SEQ KEY commands.

Parameters

in,out program Pointer to struct program.
in key_dst Key store location:

• KEY1, KEY2, PKE, AFHA_SBOX, MDHA_SPLIT_KEY.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

23

SEC Commands Routines

in encrypt_flags Key encryption mode:

• ENC, EKT, TK, NWB, PTS.

in src Pointer or actual data in case of immediate load (uint64_t); IMMED,
COPY, and DCOPY flags indicate action taken (inline imm data, inline
ptr, inline from ptr).

in length Number of bytes to load; can be set to 0 for SEQ command w/ VLF set
(uint32_t).

in flags Operational flags:

• for KEY: SGF, IMMED, COPY, DCOPY;
• for SEQKEY: SEQ, VLF, AIDF.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.12 #define SEQINPTR(program, src, length, flags) rta_seq_in_ptr(program,
src, length, flags)

Configures SEQ IN PTR command.

Parameters

in,out Program pointer to struct program
in src Starting address for Input Sequence (uint64_t)
in length Number of bytes in (or to be added to) Input Sequence (uint32_t).
in flags Operational flags:

• RBS, INL, SGF, PRE, EXT, RTO, RJD, SOP (when PRE, RTO or
SOP are set, src parameter must be 0).

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

24
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

3.5.3.13 #define SEQOUTPTR(program, dst, length, flags) rta_seq_out_ptr(program,
dst, length, flags)

Configures SEQ OUT PTR command.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

25

SEC Commands Routines

Parameters

in,out program Pointer to struct program.
in dst Starting address for Output Sequence (uint64_t).
in length Number of bytes in (or to be added to) Output Sequence (uint32_t).
in flags Operational flags:

• SGF, PRE, EXT, RTO, RST, EWS (when PRE or RTO are set, dst
parameter must be 0).

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.14 #define ALG_OPERATION(program, cipher_alg, aai, algo_state, icv_check,
enc) rta_operation(program, cipher_alg, aai, algo_state, icv_check, enc)

Configures ALGORITHM OPERATION command.

Parameters

in,out program Pointer to struct program.
in cipher_alg Algorithm to be used.
in aai Additional Algorithm Information: contains mode information that is

associated with the algorithm (check desc.h for specific values).
in algo_state Algorithm state: defines the state of the algorithm that is being executed

(check desc.h file for specific values).
in icv_check ICV checking: selects whether the algorithm should check calculated

ICV with known ICV:

• ICV_CHECK_ENABLE, ICV_CHECK_DISABLE.

26
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

in enc Selects between encryption and decryption:

• DIR_ENC, DIR_DEC.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.15 #define PROTOCOL(program, optype, protid, protoinfo
) rta_proto_operation(program, optype, protid, protoinfo)

Configures PROTOCOL OPERATION command.

Parameters

in,out program Pointer to struct program
in optype Operation type:

• OP_TYPE_UNI_PROTOCOL / OP_TYPE_DECAP_PROTOC←↩
OL / OP_TYPE_ENCAP_PROTOCOL.

in protid Protocol identifier value (check desc.h file for specific values).
in protoinfo Protocol dependent value (check desc.h file for specific values).

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.16 #define DKP_PROTOCOL(program, protid, key_src, key_dst, keylen,
key, key_type) rta_dkp_proto(program, protid, key_src, key_dst, keylen, key,
key_type)

Configures DKP (Derived Key Protocol) PROTOCOL command.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

27

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in protid Protocol identifier value - one of the following: OP_PCLID_DKP_{M←↩

D5 | SHA1 | SHA224 | SHA256 | SHA384 | SHA512}.
in key_src How the initial ("negotiated") key is provided to the DKP protocol.

Valid values - one of OP_PCL_DKP_SRC_{IMM, SEQ, PTR, SGF}.
Not all (key_src,key_dst) combinations are allowed.

in key_dst How the derived ("split") key is returned by the DKP protocol. Valid
values - one of OP_PCL_DKP_DST_{IMM, SEQ, PTR, SGF}. Not all
(key_src,key_dst) combinations are allowed.

in keylen Length of the initial key, in bytes (uint16_t).
in key Address where algorithm key resides;

• virtual address if key_type is RTA_DATA_IMM;
• physical (bus) address if key_type is RTA_DATA_PTR or RT←↩

A_DATA_IMM_DMA.

in key_type enum rta_data_type

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.17 #define PKHA_OPERATION(program, op_pkha) rta_pkha_operation(program,
op_pkha)

Configures PKHA OPERATION command.

Parameters

in,out program Pointer to struct program
in op_pkha PKHA operation; indicates the modular arithmetic function to execute

(check desc.h file for specific values).

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

28
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

3.5.3.18 #define JUMP(program, addr, jump_type, test_type, cond
) rta_jump(program, addr, jump_type, test_type, cond, NONE)

Configures JUMP command.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

29

SEC Commands Routines

Parameters

in,out program Pointer to struct program.
in addr Local offset for local jumps or address pointer for non-local jumps; I←↩

MM or PTR macros must be used to indicate type.
in jump_type Type of action taken by jump (enum rta_jump_type).
in test_type Defines how jump conditions are evaluated (enum rta_jump_cond)
in cond Jump conditions:

• operational flags DONE1, DONE2, BOTH;
• various sharing and wait conditions (JSL = 1): NIFP, NIP, NOP,

NCP, CALM, SELF, SHARED, JQP;
• Math and PKHA status conditions (JSL = 0): Z, N, NV, C, PK0,

PK1, PKP.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.19 #define JUMP_INC(program, addr, test_type, cond, src_dst
) rta_jump(program, addr, LOCAL_JUMP_INC, test_type, cond, src_dst)

Configures JUMP_INC command.

Parameters

in,out program Pointer to struct program
in addr Local offset; IMM or PTR macros must be used to indicate type
in test_type Defines how jump conditions are evaluated (enum rta_jump_cond)
in cond Jump conditions:

• Math status conditions (JSL = 0): Z, N, NV, C.

in src_dst Register to increment / decrement:

• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ.

30
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.20 #define JUMP_DEC(program, addr, test_type, cond, src_dst
) rta_jump(program, addr, LOCAL_JUMP_DEC, test_type, cond, src_dst)

Configures JUMP_DEC command.

Parameters

in,out program Pointer to struct program
in addr Local offset; IMM or PTR macros must be used to indicate type
in test_type Defines how jump conditions are evaluated (enum rta_jump_cond)
in cond Jump conditions:

• Math status conditions (JSL = 0): Z, N, NV, C.

in src_dst Register to increment / decrement:

• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.21 #define LOAD(program, addr, dst, offset, length, flags) rta_load(program,
addr, dst, offset, length, flags)

Configures LOAD command to load data registers from descriptor or from a memory location.

Parameters

in,out program Pointer to struct program

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

31

SEC Commands Routines

in addr immediate value or pointer to the data to be loaded; IMMED, CO←↩
PY, and DCOPY flags indicate action taken (inline imm data, inline ptr,
inline from ptr).

in dst Destination register (uint64_t).
in offset Start point to write data in destination register (uint32_t).
in length Number of bytes to load (uint32_t).
in flags Operational flags:

• VLF, IMMED, COPY, DCOPY.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.22 #define SEQLOAD(program, dst, offset, length, flags) rta_load(program,
NONE, dst, offset, length, flags|SEQ)

Configures SEQ LOAD command to load data registers from descriptor or from a memory location.

Parameters

in,out program pointer to struct program.
in dst Destination register (uint64_t).
in offset Start point to write data in destination register (uint32_t).
in length Number of bytes to load (uint32_t).
in flags Operational flags: SGF.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.23 #define STORE(program, src, offset, dst, length, flags
) rta_store(program, src, offset, dst, length, flags)

Configures STORE command to read data from registers and write them to a memory location.

32
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in src Immediate value or source register for data to be stored:

• KEY1SZ, KEY2SZ, DJQDA, MODE1, MODE2, DJQCTRL, DA←↩
TA1SZ, DATA2SZ, DSTAT, ICV1SZ, ICV2SZ, DPID, CCTRL, I←↩
CTRL, CLRW, CSTAT, MATH0-MATH3, PKHA registers, CON←↩
TEXT1, CONTEXT2, DESCBUF, JOBDESCBUF, SHAREDES←↩
CBUF. In case of immediate value, IMMED, COPY and DCOPY
flags indicate action taken (inline imm data, inline ptr, inline from
ptr).

in offset Start point for reading from source register (uint16_t).
in dst Pointer to store location (uint64_t).
in length Number of bytes to store (uint32_t).
in flags Operational flags:

• VLF, IMMED, COPY, DCOPY.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.24 #define SEQSTORE(program, src, offset, length, flags) rta_store(program,
src, offset, NONE, length, flags|SEQ)

Configures SEQ STORE command to read data from registers and write them to a memory location.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

33

SEC Commands Routines

Parameters

in,out program Pointer to struct program.
in src Immediate value or source register for data to be stored:

• KEY1SZ, KEY2SZ, DJQDA, MODE1, MODE2, DJQCTRL, DA←↩
TA1SZ, DATA2SZ, DSTAT, ICV1SZ, ICV2SZ, DPID, CCTRL, I←↩
CTRL, CLRW, CSTAT, MATH0-MATH3, PKHA registers, CON←↩
TEXT1, CONTEXT2, DESCBUF, JOBDESCBUF, SHAREDES←↩
CBUF. In case of immediate value, IMMED, COPY and DCOPY
flags indicate action taken (inline imm data, inline ptr, inline from
ptr).

in offset Start point for reading from source register (uint16_t).
in length Number of bytes to store (uint32_t).
in flags Operational flags:

• SGF, IMMED, COPY, DCOPY.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.25 #define MATHB(program, operand1, operator, operand2, result, length,
opt)

Value:

rta_math(program, operand1, MATH_FUN_##operator, operand2, result, \
length, opt)

Configures MATHB command to perform binary operations.

34
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in operand1 First operand:

• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ, ZERO, ONE, NONE, Immediate value .
IMMED must be used to indicate immediate value.

in operator Function to be performed:

• ADD, ADDC, SUB, SUBB, OR, AND, XOR, LSHIFT, RSHIFT,
SHLD.

in operand2 Second operand:

• MATH0-MATH3, DPOVRD, VSEQINSZ, VSEQOUTSZ, ABD,
OFIFO, JOBSRC, ZERO, ONE, Immediate value.
IMMED2 must be used to indicate immediate value.

in result Destination for the result:

• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, NONE, V←↩
SEQINSZ, VSEQOUTSZ.

in length Length in bytes of the operation and the immediate value, if there is one
(int).

in opt Operational flags: IFB, NFU, STL, SWP, IMMED, IMMED2.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.26 #define MATHI(program, operand, operator, imm, result, length, opt)

Value:

rta_mathi(program, operand, MATH_FUN_##operator, imm, result, length, \
opt)

Configures MATHI command to perform binary operations.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

35

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in operand

• If !SSEL: MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ,
VSEQINSZ, VSEQOUTSZ, ZERO, ONE.

• If SSEL: MATH0-MATH3, DPOVRD, VSEQINSZ, VSEQOUTSZ,
ABD, OFIFO, JOBSRC, ZERO, ONE.

in operator Function to be performed:

• ADD, ADDC, SUB, SUBB, OR, AND, XOR, LSHIFT, RSHIFT,
FBYT (for !SSEL only).

in imm Immediate value (uint8_t).
IMMED must be used to indicate immediate value.

in result Destination for the result:

• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, NONE, V←↩
SEQINSZ, VSEQOUTSZ.

in length Length in bytes of the operation and the immediate value, if there is one
(int). imm is left-extended with zeros if needed.

in opt Operational flags:

• NFU, SSEL, SWP, IMMED.
• If !SSEL, operand < operator > imm -> result
• If SSEL, imm < operator > operand -> result

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.27 #define MATHU(program, operand1, operator, result, length, opt)

Value:

rta_math(program, operand1, MATH_FUN_##operator, NONE, result, length, \
opt)

Configures MATHU command to perform unary operations.

36
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Commands Routines

Parameters

in,out program Pointer to struct program
in operand1 Operand:

• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ, ZERO, ONE, NONE, Immediate value .
IMMED must be used to indicate immediate value.

in operator Function to be performed:

• ZBYT, BSWAP.

in result Destination for the result:

• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, NONE, V←↩
SEQINSZ, VSEQOUTSZ.

in length Length in bytes of the operation and the immediate value, if there is one
(int).

in opt Operational flags:

• NFU, STL, SWP, IMMED.

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.28 #define SIGNATURE(program, sign_type) rta_signature(program, sign_type)

Configures SIGNATURE command.

Parameters

in,out program Pointer to struct program
in sign_type Signature type:

• SIGN_TYPE_FINAL, SIGN_TYPE_FINAL_RESTORE, SIGN_←↩
TYPE_FINAL_NONZERO, SIGN_TYPE_IMM_2, SIGN_TYPE←↩
_IMM_3, SIGN_TYPE_IMM_4.
After SIGNATURE command, DWORD, or WORD must be
used to insert signature in descriptor buffer.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

37

SEC Commands Routines

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.29 #define NFIFOADD(program, src, data, length, flags
) rta_nfifo_load(program, src, data, length, flags)

Configures NFIFO command, a shortcut of RTA Load command to write to iNfo FIFO.

Parameters

in,out program Pointer to struct program
in src Source for the input data in Alignment Block:

• IFIFO, OFIFO, PAD, MSGOUTSNOOP, ALTSOURCE, OFIF←↩
O_SYNC, MSGOUTSNOOP_ALT .

in data Type of data that is going through the Input Data FIFO:

• MSG, MSG1, MSG2, IV1, IV2, ICV1, ICV2, SAD1, AAD1, AAD2,
AFHA_SBOX, SKIP, PKHA registers, AB1, AB2, ABD.

in length Length of the data copied in FIFO registers (uint32_t).
in flags select options between:

• operational flags: LAST1, LAST2, FLUSH1, FLUSH2, OC, BP.
• When PAD is selected as source: BM, PR, PS.
• Padding type: PAD_ZERO, PAD_NONZERO, PAD_INCREME←↩

NT, PAD_RANDOM, PAD_ZERO_N1, PAD_NONZERO_0, P←↩
AD_N1, PAD_NONZERO_N .

Returns

• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor

buffer where the instruction should have been written.

3.5.3.30 #define DCOPY BIT(30)

(AIOP only) Command param is pointer to external memory.

CDMA must be used to transfer the key via DMA into Workspace Area. Valid only in combination with
IMMED flag.

38
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Self Referential Code Management Routines

3.5.4 Enumeration Type Documentation

3.5.4.1 enum rta_jump_type

sec_run_time_asm.h

Types of action taken by JUMP command.

3.5.4.2 enum rta_jump_cond

sec_run_time_asm.h

How the test conditions are evaluated by JUMP command.

3.5.4.3 enum rta_share_type

sec_run_time_asm.h

Types of sharing for JOB_HDR and SHR_HDR commands.

3.5.4.4 enum rta_data_type

sec_run_time_asm.h

Indicates how the data is provided and how to include it in the descriptor.

3.6 Self Referential Code Management Routines

3.6.1 Overview

Contains details of RTA self referential code routines.

Macros

• #define REFERENCE(ref) int ref = -1
• #define LABEL(label) unsigned label = 0
• #define SET_LABEL(program, label) label = rta_set_label(program)
• #define PATCH_JUMP(program, line, new_ref) rta_patch_jmp(program, line, new_ref)
• #define PATCH_MOVE(program, line, new_ref) rta_patch_move(program, line, new_ref)
• #define PATCH_LOAD(program, line, new_ref) rta_patch_load(program, line, new_ref)
• #define PATCH_STORE(program, line, new_ref) rta_patch_store(program, line, new_ref)
• #define PATCH_HDR(program, line, new_ref) rta_patch_header(program, line, new_ref)
• #define PATCH_RAW(program, line, mask, new_val) rta_patch_raw(program, line, mask, new_←↩

val)

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

39

Self Referential Code Management Routines

3.6.2 Detailed Description

Contains details of RTA self referential code routines.

3.6.3 Macro Definition Documentation

3.6.3.1 #define REFERENCE(ref) int ref = -1

Initialize a variable used for storing an index inside a descriptor buffer.

Parameters

out ref Reference to a descriptor buffer's index where an update is required with
a value that will be known latter in the program flow.

3.6.3.2 #define LABEL(label) unsigned label = 0

Initialize a variable used for storing an index inside a descriptor buffer.

Parameters

out label Label stores the value with what should be updated the REFERENCE
line in the descriptor buffer.

3.6.3.3 #define SET_LABEL(program, label) label = rta_set_label(program)

Set a LABEL value.
Parameters

in,out program Pointer to struct program
in label Value that will be inserted in a line previously written in the descriptor

buffer.

3.6.3.4 #define PATCH_JUMP(program, line, new_ref) rta_patch_jmp(program, line,
new_ref)

Auxiliary command to resolve self referential code.

Parameters

40
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Self Referential Code Management Routines

in,out program Buffer to be updated (struct program ∗).
in line Position in descriptor buffer where the update will be done; this value is

previously retained in program flow using a reference near the sequence
to be modified.

in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For JUMP com-
mand, the value represents the offset field (in words).

Returns

- 0 in case of success.
• A negative error code if it fails.

3.6.3.5 #define PATCH_MOVE(program, line, new_ref) rta_patch_move(program,
line, new_ref)

Auxiliary command to resolve self referential code.

Parameters

in,out program Buffer to be updated (struct program ∗)
in line Position in descriptor buffer where the update will be done; this value is

previously retained in program flow using a reference near the sequence
to be modified.

in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For MOVE com-
mand, the value represents the offset field (in words).

Returns

- 0 in case of success.
• A negative error code if it fails.

3.6.3.6 #define PATCH_LOAD(program, line, new_ref) rta_patch_load(program, line,
new_ref)

Auxiliary command to resolve self referential code.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

41

Self Referential Code Management Routines

Parameters

in,out program Buffer to be updated (struct program ∗).
in line Position in descriptor buffer where the update will be done; this value is

previously retained in program flow using a reference near the sequence
to be modified.

in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For LOAD com-
mand, the value represents the offset field (in words).

Returns

- 0 in case of success.
• A negative error code if it fails.

3.6.3.7 #define PATCH_STORE(program, line, new_ref) rta_patch_store(program,
line, new_ref)

Auxiliary command to resolve self referential code.

Parameters

in,out program Buffer to be updated (struct program ∗)
in line position in descriptor buffer where the update will be done; this value is

previously retained in program flow using a reference near the sequence
to be modified.

in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For STORE com-
mand, the value represents the offset field (in words).

Returns

- 0 in case of success.
• A negative error code if it fails.

3.6.3.8 #define PATCH_HDR(program, line, new_ref) rta_patch_header(program,
line, new_ref)

Auxiliary command to resolve self referential code.

42
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

Parameters

in,out program Buffer to be updated (struct program ∗)
in line Position in descriptor buffer where the update will be done; this value is

previously retained in program flow using a reference near the sequence
to be modified.

in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For HEADER
command, the value represents the start index field.

Returns

- 0 in case of success.
• A negative error code if it fails.

3.6.3.9 #define PATCH_RAW(program, line, mask, new_val) rta_patch_raw(program,
line, mask, new_val)

Auxiliary command to resolve self referential code.

Parameters

in,out program Buffer to be updated (struct program ∗)
in line Position in descriptor buffer where the update will be done; this value is

previously retained in program flow using a reference near the sequence
to be modified.

in mask Mask to be used for applying the new value (unsigned). The mask
selects which bits from the provided new_val are taken into consider-
ation when overwriting the existing value.

in new_val Updated value that will be masked using the provided mask value and
inserted in descriptor buffer at the specified line.

Returns

- 0 in case of success.
• A negative error code if it fails.

3.7 Shared Descriptor Example Routines
3.7.1 Overview

Functions

• static int cnstr_shdsc_snow_f8 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction)

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

43

Shared Descriptor Example Routines

• static int cnstr_shdsc_snow_f9 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗authdata,
uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction, uint32_t datalen)

• static int cnstr_shdsc_blkcipher (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
uint8_t ∗iv, uint32_t ivlen, uint8_t dir)

• static int cnstr_shdsc_hmac (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗authdata, uint8←↩
_t do_icv, uint8_t trunc_len)

• static int cnstr_shdsc_kasumi_f8 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction)

• static int cnstr_shdsc_kasumi_f9 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗authdata,
uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction, uint32_t datalen)

• static int cnstr_shdsc_crc (uint32_t ∗descbuf, bool swap)
• static int cnstr_shdsc_gcm_encap (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,

uint32_t ivlen, uint32_t icvsize)
• static int cnstr_shdsc_gcm_decap (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,

uint32_t ivlen, uint32_t icvsize)
• static int cnstr_shdsc_ipsec_encap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share_type

share, struct ipsec_encap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_decap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share_type

share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_encap_des_aes_xcbc (uint32_t ∗descbuf, struct ipsec_encap_pdb ∗pdb,

struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_decap_des_aes_xcbc (uint32_t ∗descbuf, struct ipsec_decap_pdb ∗pdb,

struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_new_encap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share←↩

_type share, struct ipsec_encap_pdb ∗pdb, uint8_t ∗opt_ip_hdr, struct alginfo ∗cipherdata, struct
alginfo ∗authdata)

• static int cnstr_shdsc_ipsec_new_decap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share_←↩
type share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata)

• static int cnstr_shdsc_authenc (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
struct alginfo ∗authdata, uint16_t ivlen, uint16_t auth_only_len, uint8_t trunc_len, uint8_t dir)

• static int cnstr_shdsc_macsec_encap (uint32_t ∗descbuf, bool swap, struct alginfo ∗cipherdata,
uint64_t sci, uint16_t ethertype, uint8_t tci_an, uint32_t pn)

• static int cnstr_shdsc_macsec_decap (uint32_t ∗descbuf, bool swap, struct alginfo ∗cipherdata,
uint64_t sci, uint32_t pn)

• static int cnstr_shdsc_mbms (uint32_t ∗descbuf, bool ps, bool swap, unsigned ∗preheader_len, enum
mbms_pdu_type pdu_type)

• static int cnstr_shdsc_pdcp_c_plane_encap (uint32_t ∗descbuf, bool ps, bool swap, uint32_t hfn,
unsigned char bearer, unsigned char direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata,
struct alginfo ∗authdata, unsigned char era_2_sw_hfn_override)

• static int cnstr_shdsc_pdcp_c_plane_decap (uint32_t ∗descbuf, bool ps, bool swap, uint32_t hfn,
unsigned char bearer, unsigned char direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata,
struct alginfo ∗authdata, unsigned char era_2_sw_hfn_override)

• static int cnstr_shdsc_pdcp_u_plane_encap (uint32_t ∗descbuf, bool ps, bool swap, enum pdcp_sn←↩
_size sn_size, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn_threshold,
struct alginfo ∗cipherdata, unsigned char era_2_sw_hfn_override)

• static int cnstr_shdsc_pdcp_u_plane_decap (uint32_t ∗descbuf, bool ps, bool swap, enum pdcp_sn←↩
_size sn_size, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn_threshold,
struct alginfo ∗cipherdata, unsigned char era_2_sw_hfn_override)

• static int cnstr_shdsc_pdcp_short_mac (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo

44
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

∗authdata)
• static int cnstr_shdsc_rlc_encap (uint32_t ∗descbuf, bool ps, enum rlc_mode mode, uint32_t hfn,

unsigned short bearer, unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata)
• static int cnstr_shdsc_rlc_decap (uint32_t ∗descbuf, bool ps, enum rlc_mode mode, uint32_t hfn,

unsigned short bearer, unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata)
• static int cnstr_shdsc_rsa (uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct protcmd
∗protcmd)

• static int cnstr_shdsc_srtp_encap (uint32_t ∗descbuf, bool swap, struct alginfo ∗authdata, struct
alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint8_t ∗cipher_salt)

• static int cnstr_shdsc_srtp_decap (uint32_t ∗descbuf, bool swap, struct alginfo ∗authdata, struct
alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint16_t seq_num, uint8_t ∗cipher_salt)

• static int cnstr_shdsc_tls (uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct protcmd
∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata)

• static int cnstr_shdsc_cwap_dtls (uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct
protcmd ∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata)

• static int cnstr_shdsc_wifi_encap (uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac_hdr_len,
uint64_t pn, uint8_t priority, uint8_t key_id, struct alginfo ∗cipherdata)

• static int cnstr_shdsc_wifi_decap (uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac_hdr_len,
uint64_t pn, uint8_t priority, struct alginfo ∗cipherdata)

• static int cnstr_shdsc_wimax_encap_era5 (uint32_t ∗descbuf, bool swap, uint8_t pdb_opts, uint32←↩
_t pn, uint16_t protinfo, struct alginfo ∗cipherdata)

• static int cnstr_shdsc_wimax_encap (uint32_t ∗descbuf, bool swap, uint8_t pdb_opts, uint32_t pn,
uint16_t protinfo, struct alginfo ∗cipherdata)

• static int cnstr_shdsc_wimax_decap (uint32_t ∗descbuf, bool swap, uint8_t pdb_opts, uint32_t pn,
uint16_t ar_len, uint16_t protinfo, struct alginfo ∗cipherdata)

3.7.2 Detailed Description

3.7.3 Function Documentation

3.7.3.1 static int cnstr_shdsc_snow_f8 (uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction
) [inline], [static]

SNOW/f8 (UEA2) as a shared descriptor.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true.
in swap Must be true when core endianness doesn't match SEC endianness.
in cipherdata Pointer to block cipher transform definitions.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

45

Shared Descriptor Example Routines

in dir Cipher direction (DIR_ENC/DIR_DEC).
in count UEA2 count value (32 bits).
in bearer UEA2 bearer ID (5 bits).
in direction UEA2 direction (1 bit).

Returns

Size of descriptor written in words or negative number on error.

3.7.3.2 static int cnstr_shdsc_snow_f9 (uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen) [inline], [static]

SNOW/f9 (UIA2) as a shared descriptor.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true.
in swap Must be true when core endianness doesn't match SEC endianness.
in authdata Pointer to authentication transform definitions.
in dir Cipher direction (DIR_ENC/DIR_DEC).
in count UEA2 count value (32 bits).
in fresh UEA2 fresh value ID (32 bits).
in direction UEA2 direction (1 bit).
in datalen Size of data.

Returns

Size of descriptor written in words or negative number on error.

3.7.3.3 static int cnstr_shdsc_blkcipher (uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ cipherdata, uint8_t ∗ iv, uint32_t ivlen, uint8_t dir) [inline],
[static]

Block cipher transformation.

Parameters

46
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true.
in swap Must be true when core endianness doesn't match SEC endianness.
in cipherdata Pointer to block cipher transform definitions.

Valid algorithm values one of OP_ALG_ALGSEL_∗ {DES, 3DES, A←↩
ES}
Valid modes for: AES: OP_ALG_AAI_∗ {CBC, CTR} DES, 3DES:
OP_ALG_AAI_CBC

in iv IV data; if NULL, "ivlen" bytes from the input frame will be read as IV.
in ivlen IV length.
in dir DIR_ENC/DIR_DEC.

Returns

Size of descriptor written in words or negative number on error.

3.7.3.4 static int cnstr_shdsc_hmac (uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ authdata, uint8_t do_icv, uint8_t trunc_len) [inline], [static]

HMAC shared.
Parameters

in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness.
in authdata Pointer to authentication transform definitions; message digest

algorithm: OP_ALG_ALGSEL_MD5/ SHA1-512.
in do_icv 0 if ICV checking is not desired, any other value if ICV checking is

needed for all the packets processed by this shared descriptor.
in trunc_len Length of the truncated ICV to be written in the output buffer, 0 if no

truncation is needed.

Warning

There's no support for keys longer than the block size of the underlying hash function, according to
the selected algorithm.

Returns

Size of descriptor written in words or negative number on error.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

47

Shared Descriptor Example Routines

3.7.3.5 static int cnstr_shdsc_kasumi_f8 (uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction
) [inline], [static]

KASUMI F8 (Confidentiality) as a shared descriptor (ETSI "Document 1: f8 and f9 specification").

48
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions
in dir Cipher direction (DIR_ENC/DIR_DEC)
in count Count value (32 bits)
in bearer Bearer ID (5 bits)
in direction Direction (1 bit)

Returns

Size of descriptor written in words or negative number on error

3.7.3.6 static int cnstr_shdsc_kasumi_f9 (uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen) [inline], [static]

KASUMI F9 (Integrity) as a shared descriptor (ETSI "Document 1: f8 and f9 specification").

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions
in dir Cipher direction (DIR_ENC/DIR_DEC)
in count Count value (32 bits)
in fresh Fresh value ID (32 bits)
in direction Direction (1 bit)
in datalen Size of data

Returns

Size of descriptor written in words or negative number on error

3.7.3.7 static int cnstr_shdsc_crc (uint32_t ∗ descbuf, bool swap) [inline],
[static]

CRC32 Accelerator (IEEE 802 CRC32 protocol mode).

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

49

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness

Returns

Size of descriptor written in words or negative number on error

3.7.3.8 static int cnstr_shdsc_gcm_encap (uint32_t ∗ descbuf, bool ps, bool swap,
struct alginfo ∗ cipherdata, uint32_t ivlen, uint32_t icvsize) [inline],
[static]

AES-GCM encap as a shared descriptor.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions Valid algorithm values -

OP_ALG_ALGSEL_AES ANDed with OP_ALG_AAI_GCM.
in ivlen Initialization vector length
in icvsize Integrity check value (ICV) size (truncated or full)

Returns

Size of descriptor written in words or negative number on error

3.7.3.9 static int cnstr_shdsc_gcm_decap (uint32_t ∗ descbuf, bool ps, bool swap,
struct alginfo ∗ cipherdata, uint32_t ivlen, uint32_t icvsize) [inline],
[static]

AES-GCM decap as a shared descriptor.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness

50
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
OP_ALG_ALGSEL_AES ANDed with OP_ALG_AAI_GCM.

in ivlen Initialization vector length
in icvsize Integrity check value (ICV) size (truncated or full)

Returns

Size of descriptor written in words or negative number on error.

3.7.3.10 static int cnstr_shdsc_ipsec_encap (uint32_t ∗ descbuf, bool ps, bool swap,
enum rta_share_type share, struct ipsec_encap_pdb ∗ pdb, struct alginfo ∗
cipherdata, struct alginfo ∗ authdata) [inline], [static]

IPSec ESP encapsulation protocol-level shared descriptor

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will

be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for a details of the encapsulation
PDB.

in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
one of OP_PCL_IPSEC_∗

in authdata Pointer to authentication transform definitions If an authentication key
is required by the protocol: -For SEC Eras 1-5, an MDHA split key must
be provided; Note that the size of the split key itself must be specified.
-For SEC Eras 6+, a "normal" key must be provided; DKP (Derived
Key Protocol) will be used to compute MDHA on the fly in HW. Valid
algorithm values - one of OP_PCL_IPSEC_∗

Returns

Size of descriptor written in words or negative number on error

3.7.3.11 static int cnstr_shdsc_ipsec_decap (uint32_t ∗ descbuf, bool ps, bool swap,
enum rta_share_type share, struct ipsec_decap_pdb ∗ pdb, struct alginfo ∗
cipherdata, struct alginfo ∗ authdata) [inline], [static]

IPSec ESP decapsulation protocol-level shared descriptor

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

51

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will

be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details about the decapsula-
tion PDB.

in cipherdata Pointer to block cipher transform definitions. Valid algorithm values -
one of OP_PCL_IPSEC_∗

in authdata Pointer to authentication transform definitions If an authentication key
is required by the protocol: -For SEC Eras 1-5, an MDHA split key must
be provided; Note that the size of the split key itself must be specified.
-For SEC Eras 6+, a "normal" key must be provided; DKP (Derived
Key Protocol) will be used to compute MDHA on the fly in HW. Valid
algorithm values - one of OP_PCL_IPSEC_∗

Returns

Size of descriptor written in words or negative number on error

3.7.3.12 static int cnstr_shdsc_ipsec_encap_des_aes_xcbc (uint32_t ∗ descbuf, struct
ipsec_encap_pdb ∗ pdb, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata)
[inline], [static]

IPSec DES-CBC/3DES-CBC and AES-XCBC-MAC-96 ESP encapsulation shared descriptor. Supported
only for platforms with 32-bit address pointers and SEC ERA 4 or higher. The tunnel/transport mode of
the IPsec ESP is supported only if the Outer/Transport IP Header is present in the encapsulation output
packet. The descriptor performs DES-CBC/3DES-CBC & HMAC-MD5-96 and then rereads the input
packet to do the AES-XCBC-MAC-96 calculation and to overwrite the MD5 ICV. The descriptor uses all
the benefits of the built-in protocol by computing the IPsec ESP with a hardware supported algorithms
combination (DES-CBC/3DES-CBC & HMAC-MD5-96). The HMAC-MD5 authentication algorithm
was chosen in order to speed up the computational time for this intermediate step.

Warning

The user must allocate at least 32 bytes for the authentication key (in order to use it also with HM←↩
AC-MD5-96),even when using a shorter key for the AES-XCBC-MAC-96.

52
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in pdb pointer to the PDB to be used with this descriptor This structure will be

copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for a details of the encapsulation
PDB.

in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
OP_PCL_IPSEC_DES, OP_PCL_IPSEC_3DES.

in authdata Pointer to authentication transform definitions Valid algorithm value:
OP_PCL_IPSEC_AES_XCBC_MAC_96.

Returns

Size of descriptor written in words or negative number on error

3.7.3.13 static int cnstr_shdsc_ipsec_decap_des_aes_xcbc (uint32_t ∗ descbuf, struct
ipsec_decap_pdb ∗ pdb, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata)
[inline], [static]

IPSec DES-CBC/3DES-CBC and AES-XCBC-MAC-96 ESP decapsulation shared descriptor. Supported
only for platforms with 32-bit address pointers and SEC ERA 4 or higher. The tunnel/transport mode of
the IPsec ESP is supported only if the Outer/Transport IP Header is present in the decapsulation input
packet. The descriptor computes the AES-XCBC-MAC-96 to check if the received ICV is correct, rereads
the input packet to compute the MD5 ICV, overwrites the XCBC ICV, and then sends the modified input
packet to the DES-CBC/3DES-CBC & HMAC-MD5-96 IPsec. The descriptor uses all the benefits of the
built-in protocol by computing the IPsec ESP with a hardware supported algorithms combination (DES-←↩
CBC/3DES-CBC & HMAC-MD5-96). The HMAC-MD5 authentication algorithm was chosen in order
to speed up the computational time for this intermediate step.

Warning

The user must allocate at least 32 bytes for the authentication key (in order to use it also with HM←↩
AC-MD5-96),even when using a shorter key for the AES-XCBC-MAC-96.

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in pdb pointer to the PDB to be used with this descriptor This structure will be

copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for a details of the encapsulation
PDB.

in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
OP_PCL_IPSEC_DES, OP_PCL_IPSEC_3DES.

in authdata Pointer to authentication transform definitions Valid algorithm value:
OP_PCL_IPSEC_AES_XCBC_MAC_96.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

53

Shared Descriptor Example Routines

Returns

Size of descriptor written in words or negative number on error

3.7.3.14 static int cnstr_shdsc_ipsec_new_encap (uint32_t ∗ descbuf, bool ps, bool
swap, enum rta_share_type share, struct ipsec_encap_pdb ∗ pdb, uint8_t ∗
opt_ip_hdr, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata) [inline],
[static]

IPSec new mode ESP encapsulation protocol-level shared descriptor

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will

be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details about the encapsula-
tion PDB.

in opt_ip_hdr Pointer to Optional IP Header -if OIHI = PDBOPTS_ESP_OIHI_PDB←↩
_INL, opt_ip_hdr points to the buffer to be inlined in the PDB. Number
of bytes (buffer size) copied is provided in pdb->ip_hdr_len. -if OIHI =
PDBOPTS_ESP_OIHI_PDB_REF, opt_ip_hdr points to the address of
the Optional IP Header. The address will be inlined in the PDB verba-
tim. -for other values of OIHI options field, opt_ip_hdr is not used.

in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
one of OP_PCL_IPSEC_∗

in authdata Pointer to authentication transform definitions. If an authentication key
is required by the protocol, a "normal" key must be provided; DKP (De-
rived Key Protocol) will be used to compute MDHA on the fly in HW.
Valid algorithm values - one of OP_PCL_IPSEC_∗

Returns

Size of descriptor written in words or negative number on error

Warning

L2 header copy functionality is implemented assuming that bits 14 (currently reserved) and 16-23
(part of Outer IP Header Material Length) in DPOVRD register are not used (which is usually the
case when L3 header is provided in PDB). When DPOVRD[14] is set, frame starts with an L2
header; in this case, the L2 header length is found at DPOVRD[23:16]. SEC uses this length to copy
[∗] the header and then it deletes DPOVRD[23:16] (so there is no side effect when later running

54
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

IPsec protocol). [∗] For this reason, L2 header copy won't work in case of mixed IPv4-in-IPv6 or
IPv6-in-IPv4 tunnels - where L2 header ETYPE field is different in input and output frames. Either
do not use this feature or fix ETYPE in output frame after descriptor is executed.

3.7.3.15 static int cnstr_shdsc_ipsec_new_decap (uint32_t ∗ descbuf, bool ps, bool
swap, enum rta_share_type share, struct ipsec_decap_pdb ∗ pdb, struct alginfo
∗ cipherdata, struct alginfo ∗ authdata) [inline], [static]

IPSec new mode ESP decapsulation protocol-level shared descriptor

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will

be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details about the decapsula-
tion PDB.

in cipherdata Pointer to block cipher transform definitions Valid algorithm values 0
one of OP_PCL_IPSEC_∗

in authdata Pointer to authentication transform definitions. If an authentication key
is required by the protocol, a "normal" key must be provided; DKP (De-
rived Key Protocol) will be used to compute MDHA on the fly in HW.
Valid algorithm values - one of OP_PCL_IPSEC_∗

Returns

Size of descriptor written in words or negative number on error

3.7.3.16 static int cnstr_shdsc_authenc (uint32_t ∗ descbuf, bool ps, bool swap,
struct alginfo ∗ cipherdata, struct alginfo ∗ authdata, uint16_t ivlen, uint16_t
auth_only_len, uint8_t trunc_len, uint8_t dir) [inline], [static]

authenc-like descriptor.

Parameters

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

55

Shared Descriptor Example Routines

in,out descbuf Pointer to buffer used for descriptor construction
in ps if 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions. Valid algorithm values one

of OP_ALG_ALGSEL_∗ {DES, 3DES, AES} Valid modes for: AES:
OP_ALG_AAI_∗ {CBC, CTR} DES, 3DES: OP_ALG_AAI_CBC

in authdata Pointer to authentication transform definitions. Valid algorithm values -
one of OP_ALG_ALGSEL_∗ {MD5, SHA1, SHA224, SHA256, SH←↩
A384, SHA512}

Warning

The key for authentication is supposed to be given as plain text.
There's no support for keys longer than the block size of the underlying hash function, according to
the selected algorithm.

Parameters

in ivlen Length of the IV to be read from the input frame, before any data to be
processed

in auth_only_len Length of the data to be authenticated-only (commonly IP header, IV,
Sequence number and SPI)

Warning

Extended Sequence Number processing is NOT supported.

Parameters

in trunc_len The length of the ICV to be written to the output frame. If 0, then the
corresponding length of the digest, according to the selected algorithm
shall be used.

in dir Protocol direction, encapsulation or decapsulation (DIR_ENC/DIR_←↩
DEC)

Returns

Size of descriptor written in words or negative number on error

Note

Here's how the input frame needs to be formatted so that the processing will be done correctly: For
encapsulation: Input:

56
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

+----+----------------+---+
| IV | Auth-only data | Padded data to be authenticated & Encrypted |
+----+----------------+---+

Output:

+--------------------------------------+
| Authenticated & Encrypted data | ICV |
+--------------------------------+-----+

For decapsulation: Input:

+----+----------------+--------------------------------+-----+
| IV | Auth-only data | Authenticated & Encrypted data | ICV |
+----+----------------+--------------------------------+-----+

Output:

+----+---------------------------+
| Decrypted & authenticated data |
+----+---------------------------+

This descriptor can use per-packet commands, encoded as below in the DPOVRD register:

32 24 16 0
+------+---------------------+
| 0x80 | 0x00| auth_only_len |
+------+---------------------+

This mechanism is available only for SoCs having SEC ERA >= 3. In other words, this will not work for
P4080TO2.

Warning

The descriptor does not add any kind of padding to the input data, so the upper layer needs to ensure
that the data is padded properly, according to the selected cipher. Failure to do so will result in the
descriptor failing with a data-size error.

3.7.3.17 static int cnstr_shdsc_macsec_encap (uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ cipherdata, uint64_t sci, uint16_t ethertype, uint8_t tci_an, uint32_t pn
) [inline], [static]

MACsec(802.1AE) encapsulation.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

57

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions
in sci PDB Secure Channel Identifier
in ethertype PDB EtherType
in tci_an TAG Control Information and Association Number are treated as a sin-

gle field of 8 bits in PDB
in pn PDB Packet Number

Returns

Size of descriptor written in words or negative number on error.

3.7.3.18 static int cnstr_shdsc_macsec_decap (uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ cipherdata, uint64_t sci, uint32_t pn) [inline], [static]

MACsec(802.1AE) decapsulation.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions
in sci PDB Secure Channel Identifier
in pn PDB Packet Number

Returns

Size of descriptor written in words or negative number on error.

3.7.3.19 static int cnstr_shdsc_mbms (uint32_t ∗ descbuf, bool ps, bool swap,
unsigned ∗ preheader_len, enum mbms_pdu_type pdu_type) [inline],
[static]

MBMS PDU CRC checking descriptor.

Parameters

58
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
out preheader_len Length to be set in the corresponding preheader field. Unless the de-

scriptor is split in multiple parts, this will be equal to bufsize.
in pdu_type Type of the MBMS PDU required to be processed by this descriptor

Returns

Size of descriptor written in words or negative number on error.

Note

This function can be called only for SEC ERA >= 5.

3.7.3.20 static int cnstr_shdsc_pdcp_c_plane_encap (uint32_t ∗ descbuf, bool ps, bool
swap, uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata, unsigned
char era_2_sw_hfn_override) [inline], [static]

Function for creating a PDCP Control Plane encapsulation descriptor.

Parameters

in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in hfn Starting Hyper Frame Number to be used together with the SN from the

PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys

should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are

those from cipher_type_pdcp enum.
in authdata Pointer to authentication transform definitions Valid algorithm values

are those from auth_type_pdcp enum.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

59

Shared Descriptor Example Routines

in era_2_sw_←↩
hfn_override

If software HFN override mechanism is desired for this descriptor.

Note

Can only be used for SEC ERA 2.

Returns

Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.

Note

descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns, by
subtracting the actual number of bytes used, the user can reuse the remaining buffer space for other
purposes.

3.7.3.21 static int cnstr_shdsc_pdcp_c_plane_decap (uint32_t ∗ descbuf, bool ps, bool
swap, uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata, unsigned
char era_2_sw_hfn_override) [inline], [static]

Function for creating a PDCP Control Plane decapsulation descriptor.

Parameters

in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in hfn Starting Hyper Frame Number to be used together with the SN from the

PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys

should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are

those from cipher_type_pdcp enum.

60
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

in authdata Pointer to authentication transform definitions Valid algorithm values
are those from auth_type_pdcp enum.

in era_2_sw_←↩
hfn_override

If software HFN override mechanism is desired for this descriptor.

Note

Can only be used for SEC ERA 2.

Returns

Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.

Note

descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.

3.7.3.22 static int cnstr_shdsc_pdcp_u_plane_encap (uint32_t ∗ descbuf, bool ps,
bool swap, enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer,
unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗ cipherdata,
unsigned char era_2_sw_hfn_override) [inline], [static]

Function for creating a PDCP User Plane encapsulation descriptor.

Parameters

in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in sn_size Selects Sequence Number Size: 7/12/15 bits
in hfn Starting Hyper Frame Number to be used together with the SN from the

PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys

should be renegotiated at the earliest convenience.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

61

Shared Descriptor Example Routines

in cipherdata Pointer to block cipher transform definitions Valid algorithm values are
those from cipher_type_pdcp enum.

in era_2_sw_←↩
hfn_override

If software HFN override mechanism is desired for this descriptor. Can
only be used for SEC ERA 2.

Returns

Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.

Note

descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.

3.7.3.23 static int cnstr_shdsc_pdcp_u_plane_decap (uint32_t ∗ descbuf, bool ps,
bool swap, enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer,
unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗ cipherdata,
unsigned char era_2_sw_hfn_override) [inline], [static]

Function for creating a PDCP User Plane decapsulation descriptor.

Parameters

in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in sn_size Selects Sequence Number Size: 7/12/15 bits
in hfn Starting Hyper Frame Number to be used together with the SN from the

PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys

should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are

those from cipher_type_pdcp enum.

62
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

in era_2_sw_←↩
hfn_override

If software HFN override mechanism is desired for this descriptor.

Note

Can only be used for SEC ERA 2.

Returns

Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.

Note

descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.

3.7.3.24 static int cnstr_shdsc_pdcp_short_mac (uint32_t ∗ descbuf, bool ps, bool
swap, struct alginfo ∗ authdata) [inline], [static]

Function for creating a PDCP Short MAC descriptor.

Parameters

in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions Valid algorithm values

are those from auth_type_pdcp enum.

Returns

Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.

Note

descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.

3.7.3.25 static int cnstr_shdsc_rlc_encap (uint32_t ∗ descbuf, bool ps, enum rlc_mode
mode, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata) [inline], [static]

Function for creating a WCDMA RLC encapsulation descriptor.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

63

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in mode Indicates if ACKed or non-ACKed mode is used
in hfn Starting Hyper Frame Number to be used together with the SN from the

RLC frames.
in bearer Radio bearer ID
in direction The direction of the RLC PDU (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys

should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are

those from cipher_type_rlc enum.

Returns

Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.

Note

descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns, by
subtracting the actual number of bytes used, the user can reuse the remaining buffer space for other
purposes.

3.7.3.26 static int cnstr_shdsc_rlc_decap (uint32_t ∗ descbuf, bool ps, enum rlc_mode
mode, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata) [inline], [static]

Function for creating a WCDMA RLC decapsulation descriptor.

Parameters

in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in mode Indicates if ACKed or non-ACKed mode is used
in hfn Starting Hyper Frame Number to be used together with the SN from the

RLC frames.

64
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

in bearer Radio bearer ID
in direction The direction of the RLC PDU (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys

should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are

those from cipher_type_rlc enum.

Returns

Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.

Note

descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns, by
subtracting the actual number of bytes used, the user can reuse the remaining buffer space for other
purposes.

3.7.3.27 static int cnstr_shdsc_rsa (uint32_t ∗ descbuf, bool ps, bool swap, uint8_t ∗
pdb, struct protcmd ∗ protcmd) [inline], [static]

Function for creating a RSA encryption/decryption shared descriptor. Supports decryption implemented
in 3 forms.
Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in pdb Pointer to the Protocol Data Block to be used for descriptor construction.

Must be mapped over a defined rsa structure. The PDB is assumed to be
valid.

in protcmd Protocol Operation Command definitions

Returns

Size of descriptor written in words or negative number on error.

3.7.3.28 static int cnstr_shdsc_srtp_encap (uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ authdata, struct alginfo ∗ cipherdata, uint8_t n_tag, uint32_t roc,
uint8_t ∗ cipher_salt) [inline], [static]

Function for creating a SRTP encapsulation descriptor.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

65

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions
in cipherdata Pointer to block cipher transform definitions
in n_tag Value of ICV length
in roc Rollover Counter
in cipher_salt Salt value

Returns

Size of descriptor written in words or negative number on error

3.7.3.29 static int cnstr_shdsc_srtp_decap (uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ authdata, struct alginfo ∗ cipherdata, uint8_t n_tag, uint32_t roc,
uint16_t seq_num, uint8_t ∗ cipher_salt) [inline], [static]

Function for creating a SRTP decapsulation descriptor.

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions
in cipherdata pointer to block cipher transform definitions
in n_tag Value of ICV length
in roc Rollover Counter
in seq_num Sequence number
in cipher_salt Salt value

Returns

Size of descriptor written in words or negative number on error

3.7.3.30 static int cnstr_shdsc_tls (uint32_t ∗ descbuf, bool ps, bool swap, uint8_t ∗
pdb, struct protcmd ∗ protcmd, struct alginfo ∗ cipherdata, struct alginfo ∗
authdata) [inline], [static]

TLS family block cipher encapsulation / decapsulation shared descriptor. The following built-in protocols
are supported: SSL3.0 / TLS1.0 / TLS1.1 / TLS1.2 / DTLS1.0 / DTLS1.2

66
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in pdb Pointer to the PDB to be used in this descriptor. This structure will be

copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details of the PDB.

in protcmd Pointer to Protocol Operation Command definitions
in cipherdata Pointer to block cipher transform definitions
in authdata Pointer to authentication transform definitions

Returns

Size of descriptor written in words or negative number on error.

3.7.3.31 static int cnstr_shdsc_cwap_dtls (uint32_t ∗ descbuf, bool ps, bool swap,
uint8_t ∗ pdb, struct protcmd ∗ protcmd, struct alginfo ∗ cipherdata, struct
alginfo ∗ authdata) [inline], [static]

DTLS (in CAPWAP context) block cipher encapsulation / decapsulation shared descriptor.

Parameters

in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in pdb Pointer to the PDB to be used in this descriptor. This structure will be

copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details of the PDB.

in protcmd Pointer to Protocol Operation Command definitions. The following
built-in protocols are supported: DTLS1.0 / DTLS1.2

in cipherdata Pointer to block cipher transform definitions
in authdata Pointer to authentication transform definitions If an authentication key

is required by the protocol: -For SEC Eras 1-5, an MDHA split key must
be provided; Note that the size of the split key itself must be specified.
-For SEC Eras 6+, a "normal" key must be provided; DKP (Derived Key
Protocol) will be used to compute MDHA on the fly in HW.

Returns

Size of descriptor written in words or negative number on error.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

67

Shared Descriptor Example Routines

3.7.3.32 static int cnstr_shdsc_wifi_encap (uint32_t ∗ descbuf, bool ps, bool swap,
uint16_t mac_hdr_len, uint64_t pn, uint8_t priority, uint8_t key_id, struct
alginfo ∗ cipherdata) [inline], [static]

IEEE 802.11i WiFi encapsulation.

68
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap must be true when core endianness doesn't match SEC endianness
in mac_hdr_len PDB MAC header length (24 or 28 bytes)
in pn PDB Packet Number
in priority PDB Packet priority
in key_id PDB Key ID
in cipherdata Block cipher transform definitions

Returns

Size of descriptor written in words or negative number on error.

3.7.3.33 static int cnstr_shdsc_wifi_decap (uint32_t ∗ descbuf, bool ps, bool swap,
uint16_t mac_hdr_len, uint64_t pn, uint8_t priority, struct alginfo ∗ cipherdata)
[inline], [static]

IEEE 802.11 WiFi decapsulation.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap must be true when core endianness doesn't match SEC endianness
in mac_hdr_len PDB MAC header length (24 or 28 bytes)
in pn PDB Packet Number
in priority PDB Packet priority
in cipherdata Block cipher transform definitions

Returns

Size of descriptor written in words or negative number on error.

3.7.3.34 static int cnstr_shdsc_wimax_encap_era5 (uint32_t ∗ descbuf, bool swap,
uint8_t pdb_opts, uint32_t pn, uint16_t protinfo, struct alginfo ∗ cipherdata)
[inline], [static]

WiMAX(802.16) encapsulation descriptor for platforms with SEC ERA >= 5. This descriptor addresses
the prefetch problem when modifying the header of the input frame by invalidating the prefetch mecha-
nism. For performance reasons (due to the long read latencies), the JQ will prefetch the input frame if a
job cannot go immediately into a DECO. As a result, the rewind is rewinding into the prefetch buffer, not

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

69

Shared Descriptor Example Routines

into memory. Therefore, in those cases where prefetch is done, an unaware descriptor would update the
memory but read from the prefetched buffer and, as a result, it would not get the updated header. This
descriptor invalidates the prefetch data and reads the updated header from memory. The descriptor reads
enough data to read to the end of the prefetched data, dumps that data, rewinds the input frame and just
starts reading from the beginning again.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in pdb_opts PDB Options Byte
in pn PDB Packet Number
in cipherdata Pointer to block cipher transform definitions
in protinfo Protocol information: OP_PCL_WIMAX_OFDM/OFDMA

Returns

Size of descriptor written in words or negative number on error.

3.7.3.35 static int cnstr_shdsc_wimax_encap (uint32_t ∗ descbuf, bool swap, uint8_t
pdb_opts, uint32_t pn, uint16_t protinfo, struct alginfo ∗ cipherdata)
[inline], [static]

WiMAX(802.16) encapsulation.

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in pdb_opts PDB Options Byte
in pn PDB Packet Number
in cipherdata Pointer to block cipher transform definitions
in protinfo Protocol information: OP_PCL_WIMAX_OFDM/OFDMA

Returns

Size of descriptor written in words or negative number on error.

Warning

Descriptor is valid on platforms with support for SEC ERA 4. On platforms with SEC ERA 5 or
above, cnstr_shdsc_wimax_encap_era5 is automatically called.

70
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Example Routines

3.7.3.36 static int cnstr_shdsc_wimax_decap (uint32_t ∗ descbuf, bool swap, uint8_t
pdb_opts, uint32_t pn, uint16_t ar_len, uint16_t protinfo, struct alginfo ∗
cipherdata) [inline], [static]

WiMAX(802.16) decapsulation.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

71

Shared Descriptor Example Routines

Parameters

in,out descbuf Pointer to descriptor-under-construction buffer
in swap must be true when core endianness doesn't match SEC endianness
in pdb_opts PDB Options Byte
in pn PDB Packet Number
in cipherdata Pointer to block cipher transform definitions
in ar_len Anti-replay window length
in protinfo Protocol information: OP_PCL_WIMAX_OFDM/OFDMA

Returns

Size of descriptor written in words or negative number on error.

Warning

Descriptor valid on platforms with support for SEC ERA 4.

72
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Chapter 4
RTA Descriptors Library
4.1 Overview
Modules

• Shared Descriptor Example Routines
• Auxiliary Data Structures
• SEC Protocol Data Block Data Structures
• Auxiliary Defines
• Job Descriptor Example Routines
• Shared Descriptor Helper Routines

4.2 Detailed Description
4.3 Auxiliary Data Structures

4.3.1 Overview

Data Structures

• struct alginfo
• struct protcmd
• struct mbms_type_0_pdb
• struct mbms_type_1_3_pdb

Enumerations

Functions

• static int rta_inline_query (unsigned sd_base_len, unsigned jd_len, unsigned ∗data_len, uint32_t
∗inl_mask, unsigned count)

• static uint8_t rta_dtls_pdb_ars (uint32_t options)
• static enum tls_cipher_mode rta_tls_cipher_mode (uint16_t protinfo)

4.3.2 Detailed Description

4.3.3 Data Structure Documentation

4.3.3.1 struct alginfo

Container for algorithm details.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

73

Auxiliary Data Structures

Data Fields

uint32_t algtype Algorithm selector; for valid values, see documentation of the
functions where it is used

uint32_t keylen Length of the provided algorithm key, in bytes
uint64_t key Address where algorithm key resides; virtual address if key_type

is RTA_DATA_IMM, physical (bus) address if key_type is RT←↩
A_DATA_PTR or RTA_DATA_IMM_DMA

uint32_t key_enc_flags Key encryption flags; see encrypt_flags parameter of KEY com-
mand for valid values

enum
rta_data_type

key_type enum rta_data_type

uint16_t algmode Algorithm mode selector; for valid values, see documentation of
the functions where it is used

4.3.3.2 struct protcmd

Container for Protocol Operation Command fields.

Data Fields

uint32_t optype Command type
uint32_t protid Protocol identifier
uint16_t protinfo Protocol information

4.3.3.3 struct mbms_type_0_pdb

MBMS Type 0 PDB

Data Fields

uint32_t crc_header_fail Number of PDUs with incorrect header CRC

4.3.3.4 struct mbms_type_1_3_pdb

MBMS Type 1 and Type 3 PDB

Data Fields

uint32_t crc_header_fail Number of PDUs with incorrect header CRC
uint32_t crc_payload_←↩

fail
Number of PDUs with incorrect payload CRC

74
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Auxiliary Data Structures

4.3.4 Enumeration Type Documentation

4.3.4.1 enum ipsec_icv_size

ipsec.h

Type selectors for icv size in IPsec protocol

Enumerator

IPSEC_ICV_MD5_SIZE Full-length MD5 ICV
IPSEC_ICV_MD5_TRUNC_SIZE Truncated MD5 ICV

4.3.4.2 enum cipher_type_macsec

macsec.h

Type selectors for cipher types in MACSEC protocol.

Enumerator

MACSEC_CIPHER_TYPE_GCM MACsec to use GCM as algorithm
MACSEC_CIPHER_TYPE_GMAC MACsec to use GMAC as algorithm

4.3.4.3 enum mbms_pdu_type

mbms.h

Type selectors for MBMS PDUs in SYNC protocol.

Enumerator

MBMS_PDU_TYPE0 MBMS PDU type 0
MBMS_PDU_TYPE1 MBMS PDU type 1
MBMS_PDU_TYPE2 MBMS PDU type 2 is not supported
MBMS_PDU_TYPE3 MBMS PDU type 3
MBMS_PDU_TYPE_INVALID Invalid option

4.3.4.4 enum cipher_type_pdcp

pdcp.h

Type selectors for cipher types in PDCP protocol OP instructions.

Enumerator

PDCP_CIPHER_TYPE_NULL NULL

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

75

Auxiliary Data Structures

PDCP_CIPHER_TYPE_SNOW SNOW F8
PDCP_CIPHER_TYPE_AES AES
PDCP_CIPHER_TYPE_ZUC ZUCE
PDCP_CIPHER_TYPE_INVALID Invalid option

4.3.4.5 enum auth_type_pdcp

pdcp.h

Type selectors for integrity types in PDCP protocol OP instructions.

Enumerator

PDCP_AUTH_TYPE_NULL NULL
PDCP_AUTH_TYPE_SNOW SNOW F9
PDCP_AUTH_TYPE_AES AES CMAC
PDCP_AUTH_TYPE_ZUC ZUCA
PDCP_AUTH_TYPE_INVALID Invalid option

4.3.4.6 enum pdcp_dir

pdcp.h

Type selectors for direction for PDCP protocol.

Enumerator

PDCP_DIR_UPLINK Up-link direction
PDCP_DIR_DOWNLINK Down-link direction
PDCP_DIR_INVALID Invalid option

4.3.4.7 enum pdcp_plane

pdcp.h

PDCP domain selectors.

Enumerator

PDCP_CONTROL_PLANE Control Plane
PDCP_DATA_PLANE Data Plane
PDCP_SHORT_MAC Short MAC

76
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Auxiliary Data Structures

4.3.4.8 enum pdcp_sn_size

pdcp.h

Sequence Number Size selectors for PDCP protocol.

Enumerator

PDCP_SN_SIZE_5 5bit sequence number
PDCP_SN_SIZE_7 7bit sequence number
PDCP_SN_SIZE_12 12bit sequence number
PDCP_SN_SIZE_15 15bit sequence number

4.3.4.9 enum rlc_mode

rlc.h

WCDMA RLC mode selector

Enumerator

RLC_UNACKED_MODE Unacknowledged mode
RLC_ACKED_MODE Acknowledged mode

4.3.4.10 enum rlc_dir

rlc.h

WCDMA RLC direction selector

Enumerator

RLC_DIR_UPLINK Up-link direction
RLC_DIR_DOWNLINK Down-link direction

4.3.4.11 enum cipher_type_rlc

rlc.h

Type selectors for cipher types in RLC protocol OP instructions.

Enumerator

RLC_CIPHER_TYPE_NULL NULL
RLC_CIPHER_TYPE_KASUMI Kasumi
RLC_CIPHER_TYPE_SNOW SNOW F8
RLC_CIPHER_TYPE_INVALID Invalid option

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

77

Auxiliary Data Structures

4.3.4.12 enum rsa_decrypt_form

rsa.h

Type selectors for decrypt forms in RSA protocol.

Enumerator

RSA_DECRYPT_FORM1 g, f, n, d
RSA_DECRYPT_FORM2 g, f, d, p, q, tmp1, tmp2
RSA_DECRYPT_FORM3 g, f, c, p, q, dp, dq, tmp1, tmp2

4.3.4.13 enum tls_cipher_mode

tls.h

(D)TLS cipher mode

4.3.5 Function Documentation

4.3.5.1 static int rta_inline_query (unsigned sd_base_len, unsigned jd_len, unsigned ∗
data_len, uint32_t ∗ inl_mask, unsigned count) [inline], [static]

Provides indications on which data items can be inlined and which shall be referenced in a shared descrip-
tor.
Parameters

in sd_base_len Shared descriptor base length - bytes consumed by the commands, ex-
cluding the data items to be inlined (or corresponding pointer if an item
is not inlined). Each cnstr_∗ function that generates descriptors should
have a define mentioning corresponding length.

in jd_len Maximum length of the job descriptor(s) that will be used together with
the shared descriptor

in data_len Array of lengths of the data items trying to be inlined
out inl_mask 32bit mask with bit x = 1 if data item x can be inlined, 0 otherwise
in count Number of data items (size of data_len array); must be <= 32.

Returns

0 if data can be inlined / referenced, negative value if not. If 0, check inl_mask for details.

4.3.5.2 static uint8_t rta_dtls_pdb_ars (uint32_t options) [inline], [static]

Get DTLS anti-replay scorecard size.

78
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Protocol Data Block Data Structures

Parameters

in options 1st word in the DTLS PDB

Returns

Anti-replay scorecard (ARS) size in units of 32bit entries

4.3.5.3 static enum tls_cipher_mode rta_tls_cipher_mode (uint16_t protinfo)
[inline], [static]

Get TLS cipher mode based on IANA cipher suite value.

Parameters

in protinfo Protocol information

Returns

TLS cipher mode

4.4 SEC Protocol Data Block Data Structures

4.4.1 Overview

Modules

• ipsec_encap_pdb
• ipsec_decap_pdb
• rsa_pdb
• tls_pdb

4.4.2 Detailed Description

4.4.3 ipsec_encap_pdb

4.4.3.1 Overview

Data Structures

• struct ipsec_encap_cbc
• struct ipsec_encap_ctr
• struct ipsec_encap_ccm
• struct ipsec_encap_gcm
• struct ipsec_encap_pdb

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

79

SEC Protocol Data Block Data Structures

4.4.3.2 Detailed Description

4.4.3.3 Data Structure Documentation

4.4.3.3.1 struct ipsec_encap_cbc

PDB part for IPsec CBC encapsulation

80
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Protocol Data Block Data Structures

Data Fields

uint8_t iv[16] 16-byte array initialization vector

4.4.3.3.2 struct ipsec_encap_ctr

PDB part for IPsec CTR encapsulation

Data Fields

uint8_t ctr_nonce[4] 4-byte array nonce
uint32_t ctr_initial Initial count constant
uint64_t iv Initialization vector

4.4.3.3.3 struct ipsec_encap_ccm

PDB part for IPsec CCM encapsulation

Data Fields

uint8_t salt[4] 3-byte array salt (lower 24 bits)
uint32_t ccm_opt CCM algorithm options - MSB-LSB description: b0_flags (8b)←↩

: CCM B0; use 0x5B for 8-byte ICV, 0x6B for 12-byte ICV, 0x7B
for 16-byte ICV (cf. RFC4309, RFC3610) ctr_flags (8b): counter
flags; constant equal to 0x3 ctr_initial (16b): initial count constant

uint64_t iv Initialization vector

4.4.3.3.4 struct ipsec_encap_gcm

PDB part for IPsec GCM encapsulation

Data Fields

uint8_t salt[4] 3-byte array salt (lower 24 bits)
uint32_t rsvd Reserved, do not use
uint64_t iv Initialization vector

4.4.3.3.5 struct ipsec_encap_pdb

PDB for IPsec encapsulation

Data Fields

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

81

SEC Protocol Data Block Data Structures

uint32_t options MSB-LSB description (both for legacy and new modes):
• hmo (header manipulation options): 4b
• reserved: 4b
• next header (legacy) / reserved (new): 8b
• next header offset (legacy) / AOIPHO (actual outer IP header

offset): 8b
• option flags (depend on selected algorithm): 8b

uint32_t seq_num_ext←↩
_hi

(optional) IPsec Extended Sequence Number (ESN)

uint32_t seq_num IPsec sequence number
union ipsec_←↩

encap_pdb
__unnamed_←↩
_

uint32_t spi IPsec SPI (Security Parameters Index)
uint32_t ip_hdr_len Optional IP Header length (in bytes): reserved - 16b Opt. IP Hdr

Len - 16b
uint8_t ip_hdr[0] Optional IP Header content (only for IPsec legacy mode)

4.4.4 ipsec_decap_pdb

4.4.4.1 Overview

Data Structures

• struct ipsec_decap_cbc
• struct ipsec_decap_ctr
• struct ipsec_decap_gcm
• struct ipsec_decap_pdb

4.4.4.2 Detailed Description

4.4.4.3 Data Structure Documentation

4.4.4.3.1 struct ipsec_decap_cbc

PDB part for IPsec CBC decapsulation

Data Fields

uint32_t rsvd[2] Reserved, do not use

4.4.4.3.2 struct ipsec_decap_ctr

PDB part for IPsec CTR decapsulation

82
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

SEC Protocol Data Block Data Structures

PDB part for IPsec CCM decapsulation

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

83

Auxiliary Defines

Data Fields

uint8_t ctr_nonce[4] 4-byte array nonce
uint32_t ctr_initial Initial count constant

4.4.4.3.3 struct ipsec_decap_gcm

PDB part for IPsec GCN decapsulation

Data Fields

uint8_t salt[4] 4-byte salt
uint32_t rsvd Reserved, do not use

4.4.4.3.4 struct ipsec_decap_pdb

PDB for IPsec decapsulation

Data Fields

uint32_t options MSB-LSB description (both for legacy and new modes) hmo
(header manipulation options): 4b IP header length: 12b next
header offset (legacy) / AOIPHO (actual outer IP header offset):
8b option flags (depend on selected algorithm): 8b

union ipsec_←↩
decap_pdb

__unnamed_←↩
_

uint32_t seq_num_ext←↩
_hi

(Optional) IPsec Extended Sequence Number (ESN)

uint32_t seq_num IPsec sequence number
uint32_t anti_replay[4] Anti-replay window; size depends on ARS (option flags); format

must be big-endian, irrespective of platform

4.5 Auxiliary Defines

4.5.1 Overview

Macros

• #define PDBOPTS_ESP_ESN 0x10
• #define PDBOPTS_ESP_IPVSN 0x02
• #define PDBOPTS_ESP_TUNNEL 0x01
• #define PDBOPTS_ESP_UPDATE_CSUM 0x80
• #define PDBOPTS_ESP_DIFFSERV 0x40
• #define PDBOPTS_ESP_IVSRC 0x20
• #define PDBOPTS_ESP_IPHDRSRC 0x08
• #define PDBOPTS_ESP_INCIPHDR 0x04
• #define PDBOPTS_ESP_OIHI_MASK 0x0c

84
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Auxiliary Defines

• #define PDBOPTS_ESP_OIHI_PDB_INL 0x0c
• #define PDBOPTS_ESP_OIHI_PDB_REF 0x08
• #define PDBOPTS_ESP_OIHI_IF 0x04
• #define PDBOPTS_ESP_NAT 0x02
• #define PDBOPTS_ESP_NUC 0x01
• #define PDBOPTS_ESP_ARS_MASK 0xc0
• #define PDBOPTS_ESP_ARSNONE 0x00
• #define PDBOPTS_ESP_ARS64 0xc0
• #define PDBOPTS_ESP_ARS128 0x80
• #define PDBOPTS_ESP_ARS32 0x40
• #define PDBOPTS_ESP_VERIFY_CSUM 0x20
• #define PDBOPTS_ESP_TECN 0x20
• #define PDBOPTS_ESP_OUTFMT 0x08
• #define PDBOPTS_ESP_AOFL 0x04
• #define PDBOPTS_ESP_ETU 0x01
• #define PDBHMO_ESP_DECAP_DTTL (0x02 << PDBHMO_ESP_DECAP_SHIFT)
• #define PDBHMO_ESP_DIFFSERV (0x01 << PDBHMO_ESP_DECAP_SHIFT)
• #define PDBHMO_ESP_SNR (0x01 << PDBHMO_ESP_ENCAP_SHIFT)
• #define PDBHMO_ESP_DFBIT (0x04 << PDBHMO_ESP_ENCAP_SHIFT)
• #define PDBHMO_ESP_DFV (0x04 << PDBHMO_ESP_DECAP_SHIFT)
• #define PDBHMO_ESP_ODF (0x08 << PDBHMO_ESP_DECAP_SHIFT)
• #define MBMS_HEADER_POLY 0xBC000000
• #define MBMS_PAYLOAD_POLY 0x8CC00000
• #define MBMS_TYPE0_HDR_LEN 18
• #define MBMS_TYPE1_HDR_LEN 11
• #define MBMS_TYPE3_HDR_LEN 19
• #define DUMMY_BUF_BASE 0xDEADC000
• #define HDR_CRC_MASK 0xFC00000000000000ll
• #define FM_RX_PRIV_SIZE 0x10
• #define FM_RX_EXTRA_HEADROOM 0x40
• #define IC_PR_OFFSET 0x20
• #define PR_L4_OFFSET 0x1E
• #define BUF_IC_OFFSET (FM_RX_PRIV_SIZE + FM_RX_EXTRA_HEADROOM)
• #define BUF_PR_OFFSET (BUF_IC_OFFSET + IC_PR_OFFSET)
• #define BUF_L4_OFFSET (BUF_PR_OFFSET + PR_L4_OFFSET)
• #define UDP_HDR_LEN 8
• #define GTP_HDR_LEN 8
• #define MBMS_HDR_OFFSET (UDP_HDR_LEN + GTP_HDR_LEN)
• #define MBMS_CRC_HDR_FAIL 0xAA
• #define MBMS_CRC_PAYLOAD_FAIL 0xAB
• #define PDCP_NULL_MAX_FRAME_LEN 0x00002FFF
• #define PDCP_MAC_I_LEN 0x00000004
• #define PDCP_MAX_FRAME_LEN_STATUS 0xF1
• #define PDCP_C_PLANE_SN_MASK 0x0000001F
• #define PDCP_U_PLANE_15BIT_SN_MASK 0x00007FFF
• #define PDCP_BEARER_MASK 0xFFFFFFFF04000000ull
• #define PDCP_DIR_MASK 0xF800000000000000ull
• #define PDCP_NULL_INT_MAC_I_VAL 0x00000000
• #define PDCP_NULL_INT_ICV_CHECK_FAILED_STATUS 0x0A
• #define PDCP_DPOVRD_HFN_OV_EN 0x80000000
• #define PDCP_P4080REV2_HFN_OV_BUFLEN 4
• #define CRC_8_ATM_POLY 0x07000000
• #define WIMAX_GMH_EC_MASK 0x4000000000000000ull
• #define WIMAX_ICV_LEN 0x0000000000000008ull
• #define WIMAX_FCS_LEN 0x00000000000000004ull
• #define WIMAX_PN_LEN 0x0000000000000004ull

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

85

Auxiliary Defines

• #define WIMAX_PDBOPTS_FCS 0x01
• #define WIMAX_PDBOPTS_AR 0x40

4.5.2 Detailed Description

4.5.3 Macro Definition Documentation

4.5.3.1 #define PDBOPTS_ESP_ESN 0x10

Extended sequence included

4.5.3.2 #define PDBOPTS_ESP_IPVSN 0x02

Process IPv6 header valid only for IPsec legacy mode

4.5.3.3 #define PDBOPTS_ESP_TUNNEL 0x01

Tunnel mode next-header byte valid only for IPsec legacy mode

4.5.3.4 #define PDBOPTS_ESP_UPDATE_CSUM 0x80

Update ip header checksum valid only for IPsec legacy mode

4.5.3.5 #define PDBOPTS_ESP_DIFFSERV 0x40

Copy TOS/TC from inner iphdr valid only for IPsec legacy mode

4.5.3.6 #define PDBOPTS_ESP_IVSRC 0x20

IV comes from internal random generation

4.5.3.7 #define PDBOPTS_ESP_IPHDRSRC 0x08

IP header comes from PDB valid only for IPsec legacy mode

4.5.3.8 #define PDBOPTS_ESP_INCIPHDR 0x04

Prepend IP header to output frame valid only for IPsec legacy mode

86
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Auxiliary Defines

4.5.3.9 #define PDBOPTS_ESP_OIHI_MASK 0x0c

Mask for Outer IP Header Included valid only for IPsec new mode

4.5.3.10 #define PDBOPTS_ESP_OIHI_PDB_INL 0x0c

Prepend IP header to output frame from PDB (where it is inlined) valid only for IPsec new mode

4.5.3.11 #define PDBOPTS_ESP_OIHI_PDB_REF 0x08

Prepend IP header to output frame from PDB (referenced by pointer) valid only for IPsec new mode

4.5.3.12 #define PDBOPTS_ESP_OIHI_IF 0x04

Prepend IP header to output frame from input frame valid only for IPsec new mode

4.5.3.13 #define PDBOPTS_ESP_NAT 0x02

Enable RFC 3948 UDP-encapsulated ESP valid only for IPsec new mode

4.5.3.14 #define PDBOPTS_ESP_NUC 0x01

Enable NAT UDP Checksum valid only for IPsec new mode

4.5.3.15 #define PDBOPTS_ESP_ARS_MASK 0xc0

Antireplay window mask

4.5.3.16 #define PDBOPTS_ESP_ARSNONE 0x00

No antireplay window

4.5.3.17 #define PDBOPTS_ESP_ARS64 0xc0

64-entry antireplay window

4.5.3.18 #define PDBOPTS_ESP_ARS128 0x80

128-entry antireplay window valid only for IPsec new mode

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

87

Auxiliary Defines

4.5.3.19 #define PDBOPTS_ESP_ARS32 0x40

32-entry antireplay window

4.5.3.20 #define PDBOPTS_ESP_VERIFY_CSUM 0x20

Validate ip header checksum valid only for IPsec legacy mode

4.5.3.21 #define PDBOPTS_ESP_TECN 0x20

Implement RRFC6040 ECN tunneling from outer header to inner header; valid only for IPsec new mode

4.5.3.22 #define PDBOPTS_ESP_OUTFMT 0x08

Output only decapsulation valid only for IPsec legacy mode

4.5.3.23 #define PDBOPTS_ESP_AOFL 0x04

Adjust out frame len valid only for IPsec legacy mode and for SEC >= 5.3.

4.5.3.24 #define PDBOPTS_ESP_ETU 0x01

EtherType Update - add corresponding ethertype (0x0800 for IPv4, 0x86dd for IPv6) in the output frame;
valid only for IPsec new mode

4.5.3.25 #define PDBHMO_ESP_DECAP_DTTL (0x02 << PDBHMO_ESP_DECAP_SHIFT)

IPsec ESP decrement TTL (IPv4) / Hop limit (IPv6) HMO option

4.5.3.26 #define PDBHMO_ESP_DIFFSERV (0x01 << PDBHMO_ESP_DECAP_SHIFT)

(Decap) DiffServ Copy - Copy the IPv4 TOS or IPv6 Traffic Class byte from the outer IP header to the
inner IP header.

4.5.3.27 #define PDBHMO_ESP_SNR (0x01 << PDBHMO_ESP_ENCAP_SHIFT)

(Encap) Sequence Number Rollover control Configures behavior in case of SN / ESN rollover: error if
SNR = 1, rollover allowed if SNR = 0. Valid only for IPsec new mode.

88
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Auxiliary Defines

4.5.3.28 #define PDBHMO_ESP_DFBIT (0x04 << PDBHMO_ESP_ENCAP_SHIFT)

(Encap) Copy DF bit - if an IPv4 tunnel mode outer IP header is coming from the PDB, copy the DF bit
from the inner IP header to the outer IP header.

4.5.3.29 #define PDBHMO_ESP_DFV (0x04 << PDBHMO_ESP_DECAP_SHIFT)

(Decap) - DF bit value If ODF = 1, DF bit in output frame is replaced by DFV. Valid only from SEC Era
5 onwards.

4.5.3.30 #define PDBHMO_ESP_ODF (0x08 << PDBHMO_ESP_DECAP_SHIFT)

(Decap) Override DF bit in IPv4 header of decapsulated output frame If ODF = 1, DF is replaced with the
value of DFV bit. Valid only from SEC Era 5 onwards.

4.5.3.31 #define MBMS_HEADER_POLY 0xBC000000

CRC6 polynomial for MBMS PDU header. Equals to D∧6 + D∧5 + D∧3 + D∧2 + D∧1 + 1.

4.5.3.32 #define MBMS_PAYLOAD_POLY 0x8CC00000

CRC10 polynomial for MBMS PDU header. Equals to D∧10 + D∧9 + D∧5 + D∧4 + D∧1 + 1.

4.5.3.33 #define MBMS_TYPE0_HDR_LEN 18

The length of a MBMS Type 0 PDU header

4.5.3.34 #define MBMS_TYPE1_HDR_LEN 11

The length of a MBMS Type 1 PDU header

4.5.3.35 #define MBMS_TYPE3_HDR_LEN 19

The length of a MBMS Type 3 PDU header

4.5.3.36 #define DUMMY_BUF_BASE 0xDEADC000

A dummy address used as immediate value when reading the parser result from before the frame buffer

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

89

Auxiliary Defines

4.5.3.37 #define HDR_CRC_MASK 0xFC00000000000000ll

Mask to be used for extracting only the header CRC from the corresponding field in the MBMS Type 1 &
3 PDUs SYNC headers

4.5.3.38 #define FM_RX_PRIV_SIZE 0x10

Size of the private part, reserved for DPA ETH in the buffer before the frame

4.5.3.39 #define FM_RX_EXTRA_HEADROOM 0x40

The size of the extra space reserved by Frame Manager at the beginning of a data buffer on the receive
path

4.5.3.40 #define IC_PR_OFFSET 0x20

Offset of the Parser Results field in the Internal Context field

4.5.3.41 #define PR_L4_OFFSET 0x1E

Offset of the L4 header offset result in the Parser Results field

4.5.3.42 #define BUF_IC_OFFSET (FM_RX_PRIV_SIZE + FM_RX_EXTRA_HEADRO←↩
OM)

Offset of the Internal Context in the buffer before the frame

4.5.3.43 #define BUF_PR_OFFSET (BUF_IC_OFFSET + IC_PR_OFFSET)

Offset of the Parser Results in the buffer before the frame

4.5.3.44 #define BUF_L4_OFFSET (BUF_PR_OFFSET + PR_L4_OFFSET)

Offset of the L4 header offset in the buffer before the frame

4.5.3.45 #define UDP_HDR_LEN 8

The length of the UDP header

90
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Auxiliary Defines

4.5.3.46 #define GTP_HDR_LEN 8

The length of the GTP header with no options and no sequence number

4.5.3.47 #define MBMS_HDR_OFFSET (UDP_HDR_LEN + GTP_HDR_LEN)

MBMS header offset in the frame buffer

4.5.3.48 #define MBMS_CRC_HDR_FAIL 0xAA

Status returned by SEC in case the header CRC of the MBMS PDU failed

4.5.3.49 #define MBMS_CRC_PAYLOAD_FAIL 0xAB

Status returned by SEC in case the payload CRC of the MBMS PDU failed

4.5.3.50 #define PDCP_NULL_MAX_FRAME_LEN 0x00002FFF

The maximum frame frame length that is supported by PDCP NULL protocol.

4.5.3.51 #define PDCP_MAC_I_LEN 0x00000004

The length of the MAC-I for PDCP protocol operation.

4.5.3.52 #define PDCP_MAX_FRAME_LEN_STATUS 0xF1

The status returned in FD status/command field in case the input frame is larger than PDCP_NULL_M←↩
AX_FRAME_LEN.

4.5.3.53 #define PDCP_C_PLANE_SN_MASK 0x0000001F

This mask is used in the PDCP descriptors for extracting the sequence number (SN) from the PDCP
Control Plane header. For PDCP Control Plane, the SN is constant (5 bits) as opposed to PDCP Data
Plane (7/12/15 bits).

4.5.3.54 #define PDCP_U_PLANE_15BIT_SN_MASK 0x00007FFF

This mask is used in the PDCP descriptors for extracting the sequence number (SN) from the PDCP
User Plane header. For PDCP Control Plane, the SN is constant (5 bits) as opposed to PDCP Data Plane
(7/12/15 bits).

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

91

Auxiliary Defines

4.5.3.55 #define PDCP_BEARER_MASK 0xFFFFFFFF04000000ull

This mask is used masking out the bearer for PDCP processing with SNOW f9 in LTE.

Note

The value on which this mask is applied is formatted as below: Count-C (32 bit) | Bearer (5 bit) |
Direction (1 bit) | 0 (26 bits) Applying this mask is done for creating the upper 64 bits of the IV
needed for SNOW f9. The lower 32 bits of the mask are used for masking the direction for AES
CMAC IV.

4.5.3.56 #define PDCP_DIR_MASK 0xF800000000000000ull

This mask is used masking out the direction for PDCP processing with SNOW f9 in LTE.

Note

The value on which this mask is applied is formatted as below: Bearer (5 bit) | Direction (1 bit) | 0
(26 bits) Applying this mask is done for creating the lower 32 bits of the IV needed for SNOW f9.
The upper 32 bits of the mask are used for masking the direction for AES CMAC IV.

4.5.3.57 #define PDCP_NULL_INT_MAC_I_VAL 0x00000000

The value of the PDCP PDU MAC-I in case NULL integrity is used.

4.5.3.58 #define PDCP_NULL_INT_ICV_CHECK_FAILED_STATUS 0x0A

The status used to report ICV check failed in case of NULL integrity Control Plane processing.

4.5.3.59 #define PDCP_DPOVRD_HFN_OV_EN 0x80000000

Value to be used in the FD status/cmd field to indicate the HFN override mechanism is active for the frame.

4.5.3.60 #define PDCP_P4080REV2_HFN_OV_BUFLEN 4

The length in bytes of the supplementary space that must be provided by the user at the beginning of the
input frame buffer for P4080 REV 2.

92
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Auxiliary Defines

Note

The format of the frame buffer is the following:

|<---PDCP_P4080REV2_HFN_OV_BUFLEN-->|
//===================================||============||==============\
|| PDCP_DPOVRD_HFN_OV_EN | HFN value || PDCP Header|| PDCP Payload ||
\===================================||============||==============//

If HFN override mechanism is not desired, then the MSB of the first 4 bytes must be set to 0b.

4.5.3.61 #define CRC_8_ATM_POLY 0x07000000

This CRC Polynomial is used for the GMH Header Check Sequence.

4.5.3.62 #define WIMAX_GMH_EC_MASK 0x4000000000000000ull

This mask is used in the WiMAX encapsulation/decapsulation descriptor for setting/clearing the Encryp-
tion Control bit from the Generic Mac Header.

4.5.3.63 #define WIMAX_ICV_LEN 0x0000000000000008ull

The length of the Integrity Check Value for WiMAX.

4.5.3.64 #define WIMAX_FCS_LEN 0x00000000000000004ull

The length of the Frame Check Sequence for WiMAX.

4.5.3.65 #define WIMAX_PN_LEN 0x0000000000000004ull

The length of the Packet Number for WiMAX.

4.5.3.66 #define WIMAX_PDBOPTS_FCS 0x01

Options Byte with FCS enabled.

4.5.3.67 #define WIMAX_PDBOPTS_AR 0x40

Options Byte with AR enabled.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

93

Job Descriptor Example Routines

4.6 Job Descriptor Example Routines

4.6.1 Overview

Functions

• static int cnstr_jobdesc_mdsplitkey (uint32_t ∗descbuf, bool ps, bool swap, uint64_t alg_key, uint8←↩
_t keylen, uint32_t cipher, uint64_t padbuf)

4.6.2 Detailed Description

4.6.3 Function Documentation

4.6.3.1 static int cnstr_jobdesc_mdsplitkey (uint32_t ∗ descbuf, bool ps, bool swap,
uint64_t alg_key, uint8_t keylen, uint32_t cipher, uint64_t padbuf) [inline],
[static]

Generate an MDHA split key. Split keys are IPAD/OPAD pairs. For details, refer to MDHA Split Keys
chapter in SEC Reference Manual.

Parameters

in,out descbuf Pointer to buffer to hold constructed descriptor
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in alg_key Pointer to HMAC key to generate ipad/opad from
in keylen HMAC key length
in cipher HMAC algorithm selection, one of OP_ALG_ALGSEL_∗ The algo-

rithm determines key size (bytes):
• OP_ALG_ALGSEL_MD5 - 16
• OP_ALG_ALGSEL_SHA1 - 20
• OP_ALG_ALGSEL_SHA224 - 28
• OP_ALG_ALGSEL_SHA256 - 32
• OP_ALG_ALGSEL_SHA384 - 48
• OP_ALG_ALGSEL_SHA512 - 64

94
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Helper Routines

in padbuf Pointer to buffer to store generated ipad/opad

Returns

Size of descriptor written in words or negative number on error.

4.7 Shared Descriptor Helper Routines
4.7.1 Overview

Functions

• static uint32_t split_key_len (uint32_t hash)
• static uint32_t split_key_pad_len (uint32_t hash)
• static void get_mbms_stats (uint32_t ∗descbuf, void ∗stats, enum mbms_pdu_type pdu_type)

4.7.2 Detailed Description

4.7.3 Function Documentation

4.7.3.1 static uint32_t split_key_len (uint32_t hash) [inline], [static]

Compute MDHA split key length for a given algorithm.

Parameters

in hash Hashing algorithm selection, one of OP_ALG_ALGSEL_∗ or OP_P←↩
CLID_DKP_∗ - MD5, SHA1, SHA224, SHA256, SHA384, SHA512.

Returns

MDHA split key length.

4.7.3.2 static uint32_t split_key_pad_len (uint32_t hash) [inline], [static]

Compute MDHA split key pad length for a given algorithm.

Parameters

in hash Hashing algorithm selection, one of OP_ALG_ALGSEL_∗ - MD5, S←↩
HA1, SHA224, SHA384, SHA512.

Returns

MDHA split key pad length.

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

95

Shared Descriptor Helper Routines

4.7.3.3 static void get_mbms_stats (uint32_t ∗ descbuf, void ∗ stats, enum
mbms_pdu_type pdu_type) [inline], [static]

Helper function for retrieving MBMS descriptor statistics.

96
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Helper Routines

Parameters

in,out descbuf Pointer to descriptor buffer, previously populated by the cnstr_shdsc_←↩
mbms() function

out stats Points to a statistics structure matching the MBMS PDU type, as speci-
fied by the pdu_type parameter

in pdu_type MBMS PDU type

4.7.4 rsa_pdb

4.7.4.1 Overview

Data Structures

• struct rsa_encrypt_pdb_64b
• struct rsa_encrypt_pdb
• struct rsa_dec_pdb_form1_64b
• struct rsa_dec_pdb_form1
• struct rsa_dec_pdb_form2_64b
• struct rsa_dec_pdb_form2
• struct rsa_dec_pdb_form3_64b
• struct rsa_dec_pdb_form3

4.7.4.2 Detailed Description

4.7.4.3 Data Structure Documentation

4.7.4.3.1 struct rsa_encrypt_pdb_64b

RSA encryption PDB for 64 bits addresses.

Data Fields

uint32_t header Contains sgf, rsv, #e, #n fields
union

rsa_encrypt_←↩
pdb_64b

__unnamed_←↩
_

union
rsa_encrypt_←↩

pdb_64b

__unnamed_←↩
_

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

97

Shared Descriptor Helper Routines

union
rsa_encrypt_←↩

pdb_64b

__unnamed_←↩
_

union
rsa_encrypt_←↩

pdb_64b

__unnamed_←↩
_

uint32_t f_len Input length

4.7.4.3.2 struct rsa_encrypt_pdb

RSA encryption PDB for 32 bits addresses.

Data Fields

uint32_t header Contains sgf, rsv, #e, #n fields
uint32_t f_ref Reference to input
uint32_t g_ref Reference to output
uint32_t n_ref Reference to modulus
uint32_t e_ref Reference to public key
uint32_t f_len Input length

4.7.4.3.3 struct rsa_dec_pdb_form1_64b

RSA decryption form1 PDB for 64 bits addresses.

Data Fields

uint32_t header Contains sgf, rsv, #d, #n fields
union

rsa_dec_pdb_←↩
form1_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form1_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form1_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form1_64b

__unnamed_←↩
_

4.7.4.3.4 struct rsa_dec_pdb_form1

RSA decryption form1 PDB for 32 bits addresses

98
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Helper Routines

Data Fields

uint32_t header Contains sgf, rsv, #d, #n fields
uint32_t g_ref Reference to input
uint32_t f_ref Reference to output
uint32_t n_ref Reference to modulus
uint32_t d_ref Reference to private key

4.7.4.3.5 struct rsa_dec_pdb_form2_64b

RSA decryption form2 PDB for 64 bits addresses

Data Fields

uint32_t header Contains sgf, rsv, #d, #n fields
union

rsa_dec_pdb_←↩
form2_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form2_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form2_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form2_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form2_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form2_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form2_64b

__unnamed_←↩
_

uint32_t trailer Contains rsv, #q, #p fields

4.7.4.3.6 struct rsa_dec_pdb_form2

RSA decryption form2 PDB for 32 bits addresses

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

99

Shared Descriptor Helper Routines

Data Fields

uint32_t header Contains sgf, rsv, #d, #n fields
uint32_t g_ref Reference to input
uint32_t f_ref Reference to output
uint32_t d_ref Reference to private key
uint32_t p_ref Reference to prime p
uint32_t q_ref Reference to prime q
uint32_t tmp1_ref Reference to tmp1
uint32_t tmp2_ref Reference to tmp2
uint32_t trailer Contains rsv, #q, #p fields

4.7.4.3.7 struct rsa_dec_pdb_form3_64b

RSA decryption form3 PDB for 64 bits addresses

Data Fields

uint32_t header Contains sgf, rsv, #n fields
union

rsa_dec_pdb_←↩
form3_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

100
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Helper Routines

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

union
rsa_dec_pdb_←↩

form3_64b

__unnamed_←↩
_

uint32_t trailer Contains rsv, #q, #p fields

4.7.4.3.8 struct rsa_dec_pdb_form3

RSA decryption form3 PDB for 32 bits addresses

Data Fields

uint32_t header Contains sgf, rsv, #n fields
uint32_t g_ref Reference to input
uint32_t f_ref Reference to output
uint32_t c_ref Reference to c
uint32_t p_ref Reference to prime p
uint32_t q_ref Reference to prime q
uint32_t dp_ref Reference to dp
uint32_t dq_ref Reference to dq
uint32_t tmp1_ref Reference to tmp1
uint32_t tmp2_ref Reference to tmp2
uint32_t trailer Contains rsv, #q, #p fields

4.7.5 tls_pdb

4.7.5.1 Overview

Data Structures

• struct tls_block_enc
• struct dtls_block_enc
• struct tls_block_dec
• struct dtls_block_dec
• struct tls_block_pdb
• struct tls_stream_enc
• struct tls_stream_dec
• struct tls_stream_pdb
• struct tls_ctr_enc
• struct tls_ctr
• struct tls_ctr_pdb
• struct tls12_gcm_encap
• struct tls12_gcm_decap
• struct dtls_gcm_enc
• struct dtls_gcm_dec

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

101

Shared Descriptor Helper Routines

• struct tls_gcm_pdb
• struct tls12_ccm_encap
• struct tls_ccm
• struct tls_ccm_pdb

4.7.5.2 Detailed Description

4.7.5.3 Data Structure Documentation

4.7.5.3.1 struct tls_block_enc

SSL3.0/TLS1.0/TLS1.1/TLS1.2 block encapsulation PDB part.

Data Fields

union
tls_block_enc

__unnamed_←↩
_

uint64_t seq_num Protocol sequence number; big endian format

4.7.5.3.2 struct dtls_block_enc

DTLS1.0/DTLS1.2 block encapsulation PDB part.

Data Fields

union
dtls_block_enc

__unnamed_←↩
_

union
dtls_block_enc

__unnamed_←↩
_

uint32_t seq_num_lo Protocol sequence number (lower 32 bits)

4.7.5.3.3 struct tls_block_dec

SSL3.0/TLS1.0/TLS1.1/TLS1.2 block decapsulation PDB part.

Data Fields

union
tls_block_dec

__unnamed_←↩
_

uint64_t seq_num Protocol sequence number; big endian format

4.7.5.3.4 struct dtls_block_dec

DTLS1.0/DTLS1.2 block decapsulation PDB part.

102
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Helper Routines

Data Fields

union
dtls_block_dec

__unnamed_←↩
_

union
dtls_block_dec

__unnamed_←↩
_

uint32_t seq_num_lo Protocol sequence number (lower 32 bits)

4.7.5.3.5 struct tls_block_pdb

SSL3.0/TLS1.0/TLS1.1/TLS1.2/DTLS1.0/DTLS1.2 block encapsulation / decapsulation PDB.

Data Fields

union
tls_block_pdb

__unnamed_←↩
_

uint8_t iv[16] Initialization vector; for CBC-mode cipher suites, the IV field is
only 8 bytes if the PROTINFO field of the Operation Command
selects DES/3DES.

uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size
depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format

uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set

4.7.5.3.6 struct tls_stream_enc

SSL3.0/TLS1.0/TLS1.1/TLS1.2 stream encapsulation PDB part.

4.7.5.3.7 struct tls_stream_dec

SSL3.0/TLS1.0/TLS1.1/TLS1.2 stream decapsulation PDB part.

4.7.5.3.8 struct tls_stream_pdb

SSL3.0/TLS1.0/TLS1.1/TLS1.2 stream encapsulation / decapsulation PDB.

Data Fields

union
tls_stream_pdb

__unnamed_←↩
_

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

103

Shared Descriptor Helper Routines

uint64_t seq_num Protocol sequence number
uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is

set

4.7.5.3.9 struct tls_ctr_enc

TLS1.1/TLS1.2 AES CTR encapsulation PDB part.

Data Fields

union
tls_ctr_enc

__unnamed_←↩
_

uint64_t seq_num Protocol sequence number; big-endian format

4.7.5.3.10 struct tls_ctr

PDB part for TLS1.1/TLS1.2 AES CTR decapsulation and DTLS1.0/DTLS1.2 AES CTR encapsula-
tion/decapsulation.

Data Fields

union tls_ctr __unnamed_←↩
_

union tls_ctr __unnamed_←↩
_

uint32_t seq_num_lo Protocol sequence number (lower 32 bits)

4.7.5.3.11 struct tls_ctr_pdb

TLS1.1/TLS1.2/DTLS1.0/DTLS1.2 AES CTR encapsulation / decapsulation PDB. TLS1.1/TLS1.2/DT←↩
LS1.0/DTLS1.2 AES CTR encryption processing is supported starting with SEC ERA 5.

Data Fields

union
tls_ctr_pdb

__unnamed_←↩
_

uint32_t write_iv_hi Server write IV / client write IV (upper 32 bits)
union

tls_ctr_pdb
__unnamed_←↩
_

uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size
depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format

104
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Helper Routines

uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set

4.7.5.3.12 struct tls12_gcm_encap

TLS1.2 AES GCM encapsulation PDB part.

Data Fields

union tls12_←↩
gcm_encap

__unnamed_←↩
_

uint64_t seq_num Protocol sequence number; big endian format

4.7.5.3.13 struct tls12_gcm_decap

TLS1.2 AES GCM decapsulation PDB part.

Data Fields

union tls12_←↩
gcm_decap

__unnamed_←↩
_

uint64_t seq_num Protocol sequence number; big endian format

4.7.5.3.14 struct dtls_gcm_enc

DTLS1.2 AES GCM encapsulation PDB part.

Data Fields

union
dtls_gcm_enc

__unnamed_←↩
_

union
dtls_gcm_enc

__unnamed_←↩
_

uint32_t seq_num_lo Protocol sequence number (lower 32 bits)

4.7.5.3.15 struct dtls_gcm_dec

DTLS1.2 AES GCM decapsulation PDB part.

Data Fields

union
dtls_gcm_dec

__unnamed_←↩
_

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

105

Shared Descriptor Helper Routines

union
dtls_gcm_dec

__unnamed_←↩
_

uint32_t seq_num_lo Protocol sequence number (lower 32 bits)

4.7.5.3.16 struct tls_gcm_pdb

TLS1.2/DTLS1.2 AES GCM encapsulation / decapsulation PDB.

Data Fields

union
tls_gcm_pdb

__unnamed_←↩
_

uint8_t salt[4] 4-byte array salt
uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size

depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format

uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set

4.7.5.3.17 struct tls12_ccm_encap

TLS1.2 AES CCM encapsulation PDB part.

Data Fields

union tls12_←↩
ccm_encap

__unnamed_←↩
_

uint64_t seq_num Protocol sequence number; big endian format

4.7.5.3.18 struct tls_ccm

PDB part for TLS12 AES CCM decapsulation PDB and DTLS1.2 AES CCM encapsulation / decapsula-
tion.
Data Fields

union tls_ccm __unnamed_←↩
_

union tls_ccm __unnamed_←↩
_

106
Writing Descriptors for NXP CAAM using RTA Library

NXP Semiconductors

Shared Descriptor Helper Routines

uint32_t seq_num_lo Protocol sequence number (lower 32 bits)

4.7.5.3.19 struct tls_ccm_pdb

TLS1.2/DTLS1.2 AES CCM encapsulation / decapsulation PDB.

Data Fields

union
tls_ccm_pdb

__unnamed_←↩
_

uint32_t write_iv Server write IV / client write IV
union

tls_ccm_pdb
__unnamed_←↩
_

union
tls_ccm_pdb

__unnamed_←↩
_

uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size
depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format

uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set

NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library

107

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP
assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. NXP does
not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address:
nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, Layerscape, and
QorIQ are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. Arm, Cortex, and TrustZone
are registered trademarks of Arm Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved.

© 2018 NXP B.V.

Document Number: WDNCRL
Rev 18.03
Mar 2018

http://www.nxp.com

http://www.nxp.com/support

http://www.nxp.com/SalesTermsandConditions

		Chapter 1 Introduction

		Chapter 2 User Manual

		Chapter 3 RTA API

		Overview

		Detailed Description

		Data Structure Documentation

		struct program

		Descriptor Buffer Management Routines

		Overview

		Detailed Description

		Macro Definition Documentation

		PROGRAMCNTXTINIT

		PROGRAMFINALIZE

		PROGRAMSET36BITADDR

		PROGRAMSETBSWAP

		WORD

		DWORD

		COPYDATA

		DESCLEN

		DESCBYTES

		INTLSECERA

		Enumeration Type Documentation

		rtasecera

		Function Documentation

		rtasetsecera(enum rtasecera era)

		rtagetsecera(void)

		Variable Documentation

		rtasecera

		SEC Commands Routines

		Overview

		Detailed Description

		Macro Definition Documentation

		SHRHDR

		JOBHDR

		JOBHDREXT

		MOVE

		MOVEB

		MOVEDW

		FIFOLOAD

		SEQFIFOLOAD

		FIFOSTORE

		SEQFIFOSTORE

		KEY

		SEQINPTR

		SEQOUTPTR

		ALGOPERATION

		PROTOCOL

		DKPPROTOCOL

		PKHAOPERATION

		JUMP

		JUMPINC

		JUMPDEC

		LOAD

		SEQLOAD

		STORE

		SEQSTORE

		MATHB

		MATHI

		MATHU

		SIGNATURE

		NFIFOADD

		DCOPY

		Enumeration Type Documentation

		rtajumptype

		rtajumpcond

		rtasharetype

		rtadatatype

		Self Referential Code Management Routines

		Overview

		Detailed Description

		Macro Definition Documentation

		REFERENCE

		LABEL

		SETLABEL

		PATCHJUMP

		PATCHMOVE

		PATCHLOAD

		PATCHSTORE

		PATCHHDR

		PATCHRAW

		Shared Descriptor Example Routines

		Overview

		Detailed Description

		Function Documentation

		cnstrshdscsnowf8(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint8t dir, uint32t count, uint8t bearer, uint8t direction)

		cnstrshdscsnowf9(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata, uint8t dir, uint32t count, uint32t fresh, uint8t direction, uint32t datalen)

		cnstrshdscblkcipher(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint8t *iv, uint32t ivlen, uint8t dir)

		cnstrshdschmac(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata, uint8t doicv, uint8t trunclen)

		cnstrshdsckasumif8(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint8t dir, uint32t count, uint8t bearer, uint8t direction)

		cnstrshdsckasumif9(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata, uint8t dir, uint32t count, uint32t fresh, uint8t direction, uint32t datalen)

		cnstrshdsccrc(uint32t *descbuf, bool swap)

		cnstrshdscgcmencap(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint32t ivlen, uint32t icvsize)

		cnstrshdscgcmdecap(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint32t ivlen, uint32t icvsize)

		cnstrshdscipsecencap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecencappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecdecap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecdecappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecencapdesaesxcbc(uint32t *descbuf, struct ipsecencappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecdecapdesaesxcbc(uint32t *descbuf, struct ipsecdecappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecnewencap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecencappdb *pdb, uint8t *optiphdr, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecnewdecap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecdecappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscauthenc(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, struct alginfo *authdata, uint16t ivlen, uint16t authonlylen, uint8t trunclen, uint8t dir)

		cnstrshdscmacsecencap(uint32t *descbuf, bool swap, struct alginfo *cipherdata, uint64t sci, uint16t ethertype, uint8t tcian, uint32t pn)

		cnstrshdscmacsecdecap(uint32t *descbuf, bool swap, struct alginfo *cipherdata, uint64t sci, uint32t pn)

		cnstrshdscmbms(uint32t *descbuf, bool ps, bool swap, unsigned *preheaderlen, enum mbmspdutype pdutype)

		cnstrshdscpdcpcplaneencap(uint32t *descbuf, bool ps, bool swap, uint32t hfn, unsigned char bearer, unsigned char direction, uint32t hfnthreshold, struct alginfo *cipherdata, struct alginfo *authdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpcplanedecap(uint32t *descbuf, bool ps, bool swap, uint32t hfn, unsigned char bearer, unsigned char direction, uint32t hfnthreshold, struct alginfo *cipherdata, struct alginfo *authdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpuplaneencap(uint32t *descbuf, bool ps, bool swap, enum pdcpsnsize snsize, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpuplanedecap(uint32t *descbuf, bool ps, bool swap, enum pdcpsnsize snsize, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpshortmac(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata)

		cnstrshdscrlcencap(uint32t *descbuf, bool ps, enum rlcmode mode, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata)

		cnstrshdscrlcdecap(uint32t *descbuf, bool ps, enum rlcmode mode, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata)

		cnstrshdscrsa(uint32t *descbuf, bool ps, bool swap, uint8t *pdb, struct protcmd *protcmd)

		cnstrshdscsrtpencap(uint32t *descbuf, bool swap, struct alginfo *authdata, struct alginfo *cipherdata, uint8t ntag, uint32t roc, uint8t *ciphersalt)

		cnstrshdscsrtpdecap(uint32t *descbuf, bool swap, struct alginfo *authdata, struct alginfo *cipherdata, uint8t ntag, uint32t roc, uint16t seqnum, uint8t *ciphersalt)

		cnstrshdsctls(uint32t *descbuf, bool ps, bool swap, uint8t *pdb, struct protcmd *protcmd, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdsccwapdtls(uint32t *descbuf, bool ps, bool swap, uint8t *pdb, struct protcmd *protcmd, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscwifiencap(uint32t *descbuf, bool ps, bool swap, uint16t machdrlen, uint64t pn, uint8t priority, uint8t keyid, struct alginfo *cipherdata)

		cnstrshdscwifidecap(uint32t *descbuf, bool ps, bool swap, uint16t machdrlen, uint64t pn, uint8t priority, struct alginfo *cipherdata)

		cnstrshdscwimaxencapera5(uint32t *descbuf, bool swap, uint8t pdbopts, uint32t pn, uint16t protinfo, struct alginfo *cipherdata)

		cnstrshdscwimaxencap(uint32t *descbuf, bool swap, uint8t pdbopts, uint32t pn, uint16t protinfo, struct alginfo *cipherdata)

		cnstrshdscwimaxdecap(uint32t *descbuf, bool swap, uint8t pdbopts, uint32t pn, uint16t arlen, uint16t protinfo, struct alginfo *cipherdata)

		Chapter 4 RTA Descriptors Library

		Overview

		Detailed Description

		Auxiliary Data Structures

		Overview

		Detailed Description

		Data Structure Documentation

		struct alginfo

		struct protcmd

		struct mbms_type_0_pdb

		struct mbms_type_1_3_pdb

		Enumeration Type Documentation

		ipsecicvsize

		ciphertypemacsec

		mbmspdutype

		ciphertypepdcp

		authtypepdcp

		pdcpdir

		pdcpplane

		pdcpsnsize

		rlcmode

		rlcdir

		ciphertyperlc

		rsadecryptform

		tlsciphermode

		Function Documentation

		rtainlinequery(unsigned sdbaselen, unsigned jdlen, unsigned *datalen, uint32t *inlmask, unsigned count)

		rtadtlspdbars(uint32t options)

		rtatlsciphermode(uint16t protinfo)

		SEC Protocol Data Block Data Structures

		Overview

		Detailed Description

		ipsec_encap_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct ipsec_encap_cbc

		struct ipsec_encap_ctr

		struct ipsec_encap_ccm

		struct ipsec_encap_gcm

		struct ipsec_encap_pdb

		ipsec_decap_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct ipsec_decap_cbc

		struct ipsec_decap_ctr

		struct ipsec_decap_gcm

		struct ipsec_decap_pdb

		Auxiliary Defines

		Overview

		Detailed Description

		Macro Definition Documentation

		PDBOPTSESPESN

		PDBOPTSESPIPVSN

		PDBOPTSESPTUNNEL

		PDBOPTSESPUPDATECSUM

		PDBOPTSESPDIFFSERV

		PDBOPTSESPIVSRC

		PDBOPTSESPIPHDRSRC

		PDBOPTSESPINCIPHDR

		PDBOPTSESPOIHIMASK

		PDBOPTSESPOIHIPDBINL

		PDBOPTSESPOIHIPDBREF

		PDBOPTSESPOIHIIF

		PDBOPTSESPNAT

		PDBOPTSESPNUC

		PDBOPTSESPARSMASK

		PDBOPTSESPARSNONE

		PDBOPTSESPARS64

		PDBOPTSESPARS128

		PDBOPTSESPARS32

		PDBOPTSESPVERIFYCSUM

		PDBOPTSESPTECN

		PDBOPTSESPOUTFMT

		PDBOPTSESPAOFL

		PDBOPTSESPETU

		PDBHMOESPDECAPDTTL

		PDBHMOESPDIFFSERV

		PDBHMOESPSNR

		PDBHMOESPDFBIT

		PDBHMOESPDFV

		PDBHMOESPODF

		MBMSHEADERPOLY

		MBMSPAYLOADPOLY

		MBMSTYPE0HDRLEN

		MBMSTYPE1HDRLEN

		MBMSTYPE3HDRLEN

		DUMMYBUFBASE

		HDRCRCMASK

		FMRXPRIVSIZE

		FMRXEXTRAHEADROOM

		ICPROFFSET

		PRL4OFFSET

		BUFICOFFSET

		BUFPROFFSET

		BUFL4OFFSET

		UDPHDRLEN

		GTPHDRLEN

		MBMSHDROFFSET

		MBMSCRCHDRFAIL

		MBMSCRCPAYLOADFAIL

		PDCPNULLMAXFRAMELEN

		PDCPMACILEN

		PDCPMAXFRAMELENSTATUS

		PDCPCPLANESNMASK

		PDCPUPLANE15BITSNMASK

		PDCPBEARERMASK

		PDCPDIRMASK

		PDCPNULLINTMACIVAL

		PDCPNULLINTICVCHECKFAILEDSTATUS

		PDCPDPOVRDHFNOVEN

		PDCPP4080REV2HFNOVBUFLEN

		CRC8ATMPOLY

		WIMAXGMHECMASK

		WIMAXICVLEN

		WIMAXFCSLEN

		WIMAXPNLEN

		WIMAXPDBOPTSFCS

		WIMAXPDBOPTSAR

		Job Descriptor Example Routines

		Overview

		Detailed Description

		Function Documentation

		cnstrjobdescmdsplitkey(uint32t *descbuf, bool ps, bool swap, uint64t algkey, uint8t keylen, uint32t cipher, uint64t padbuf)

		Shared Descriptor Helper Routines

		Overview

		Detailed Description

		Function Documentation

		splitkeylen(uint32t hash)

		splitkeypadlen(uint32t hash)

		getmbmsstats(uint32t *descbuf, void *stats, enum mbmspdutype pdutype)

		rsa_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct rsa_encrypt_pdb_64b

		struct rsa_encrypt_pdb

		struct rsa_dec_pdb_form1_64b

		struct rsa_dec_pdb_form1

		struct rsa_dec_pdb_form2_64b

		struct rsa_dec_pdb_form2

		struct rsa_dec_pdb_form3_64b

		struct rsa_dec_pdb_form3

		tls_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct tls_block_enc

		struct dtls_block_enc

		struct tls_block_dec

		struct dtls_block_dec

		struct tls_block_pdb

		struct tls_stream_enc

		struct tls_stream_dec

		struct tls_stream_pdb

		struct tls_ctr_enc

		struct tls_ctr

		struct tls_ctr_pdb

		struct tls12_gcm_encap

		struct tls12_gcm_decap

		struct dtls_gcm_enc

		struct dtls_gcm_dec

		struct tls_gcm_pdb

		struct tls12_ccm_encap

		struct tls_ccm

		struct tls_ccm_pdb

