
 
 
 

AArch64 Programmer's Guides 
Generic Timer 

 Version 0.0 

 

  



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Overview 

 
 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 2 of 22 

AArch64 Programmer's Guides 

Generic Timer 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 

Release Information 

Document History 

Version Date Confidentiality Change 

0.0 13 August 2019 Non-Confidential First release 

 

Non-Confidential Proprietary Notice 

This document is protected by copyright and other related rights and the practice or implementation of the information 
contained in this document may be protected by one or more patents or pending patent applications. No part of this document 
may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or 
implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.  

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use 
the information for the purposes of determining whether implementations infringe any third party patents. 

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, 
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, 
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE 
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to 
identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.  

This document may include technical inaccuracies or typographical errors. 

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING 
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, 
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS 
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure 
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion 
thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s 
customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to 
this document at any time and without notice. 

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written 
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes 
the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree 
that if there is any conflict between the English version of this document and any translation, the terms of the English version of 
the Agreement shall prevail. 

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its 
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Overview 

 
 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 3 of 22 

trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at 
33Thttp://www.arm.com/company/policies/trademarks33T.   

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.  

Arm Limited. Company 02557590 registered in England.  

110 Fulbourn Road, Cambridge, England CB1 9NJ.  

LES-PRE-20349 

Confidentiality Status 

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in 
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to. 

Unrestricted Access is an Arm internal classification. 

Product Status 

The information in this document is Final, that is for a developed product. 

Web Address 

33Thttp://www.arm.com33T 

http://www.arm.com/company/policies/trademarks
http://www.arm.com/


AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 4 of 22 

Contents 

1 Overview ................................................................................................................................................................................................................... 5 
1.1. Before you begin .............................................................................................................................................................................................................................. 5 

2 What is the Generic Timer? ................................................................................................................................................................................. 6 

3 The processor timers ............................................................................................................................................................................................. 7 
3.1. Count and frequency ..................................................................................................................................................................................................................... 7 
3.2. Timer registers .................................................................................................................................................................................................................................. 7 
3.2.1. Accessing the timers .................................................................................................................................................................................................................. 8 
3.3. Configuring a timer ......................................................................................................................................................................................................................... 9 
3.4. Interrupts ............................................................................................................................................................................................................................................. 9 
3.5. Timer virtualization ...................................................................................................................................................................................................................... 10 
3.6. Event stream .................................................................................................................................................................................................................................... 11 
3.7. Summary table ................................................................................................................................................................................................................................ 12 

4 System Counter .................................................................................................................................................................................................... 13 
4.1. Counter scaling ............................................................................................................................................................................................................................... 13 
4.2. Basic Programming ....................................................................................................................................................................................................................... 15 

5 External timers ..................................................................................................................................................................................................... 16 

6 Example using Arm Development Studio ..................................................................................................................................................... 17 

7 Check your knowledge ....................................................................................................................................................................................... 20 

8 Related information ............................................................................................................................................................................................ 21 

9 Next steps .............................................................................................................................................................................................................. 22 
 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Overview 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 5 of 22 

1 Overview 
This guide introduces the Generic Timer, the timer framework for A-profile PEs.  The guide introduces the different components 
of the timer framework within a modern SoC and covers the programming interfaces that are available to software.  

The guide is targeted at developers writing low-level software to initialize or use the timers in an Arm-based system.  Users of 
this guide will usually be working on low-level code. 

At the end of this guide, you can <check your knowledge>.  You will have learned the names and purposes of the different 
components that make up the timer sub-system.  You will be able to write code to set up the timers in a bare metal environment.  
You will also be able to describe which timers are present, based on the implemented architectural features.  

1.1. Before you begin 

We assume that you are familiar with the Arm exception model. If you are not, you might want to first read our Arm v8-A 
Exception model guide. 

This guide includes a short code example written in C and assembler. If you are unfamiliar with Arm assembler syntax, you can 
review our Armv8-A Instruction Set Architecture (ISA) guide for a brief introduction.  The example requires Arm Development 
Studio. If you do not already have a copy, you can download an evaluation copy. 

 

https://developer.arm.com/architectures/learn-the-architecture/exception-model
https://developer.arm.com/architectures/learn-the-architecture/exception-model
https://developer.arm.com/architectures/learn-the-architecture/armv8-a-instruction-set-architecture
https://developer.arm.com/tools-and-software/embedded/arm-development-studio


AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

What is the Generic Timer? 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 6 of 22 

2  What is the Generic Timer? 
The Generic Timer provides a standardized timer framework for Arm cores. The Generic Timer includes a System Counter and 
set of per-core timers, as shown in the following diagram: 

 

The System Counter is an always-on device, which provides a fixed frequency incrementing system count. The system count 
value is broadcast to all the cores in the system, giving the cores a common view of the passage of time. The system count value 
is between 56 bits and 64 bits in width, with a frequency typically in the range of 1MHz to 50MHz. 

Note: The Generic Timer only measures the passage of time. It does not report the time or date. Usually, an SoC 
would also contain a Real-Time Clock (RTC) for time and date. 

Each core has a set of timers. These timers are comparators, which compare against the broadcast system count that is provided 
by the System Counter. Software can configure timers to generate interrupts or events in set points in the future. Software can 
also use the system count to add timestamps, because the system count gives a common reference point for all cores. 

In this guide, we will explain the operation and configuration of both the timers and the System Counter. 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

The processor timers 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 7 of 22 

3 The processor timers 
The number of timers that a core provides depends on which extensions are implemented, as shown in the following table: 

Timer name When is the timer present? 

EL1 physical timer Always 

EL1 virtual timer Always 

Non-secure EL2 physical timer Implements EL2 

Non-secure EL2 virtual timer Implements ARMv8.1-VHE 

EL3 physical timer Implements EL3 

Secure EL2 physical timer Implements ARMv8.4-SecEL2 

Secure EL2 virtual timer Implements ARMv8.4-SecEL2 

 

<add text here> 

3.1. Count and frequency 

The CNTPCT_EL0 system register reports the current system count value.  

Reads of CNTPCT_EL0 can be made speculatively. This means that they can be read out of order regarding the program flow. 
This could be important in some cases, for example comparing timestamps. When the ordering of the counter read is important, 
an ISB can be used, as the following code shows: 

loop:   // Polling for some communication to indicate a requirement to read 
                  // the timer 
  LDR X1, [X2] 
  CBZ x1, loop 
  ISB   // Without this, the CNTPCT could be read before the memory location in 
                  // [X2] has had the value 0 written to it 
  MRS X1, CNTPCT_EL0 
 

CNTFRQ_EL0 reports the frequency of the system count. However, this register is not populated by hardware. The register is 
write-able at the highest implemented Exception level and readable at all Exception levels. Firmware, typically running at EL3, 
populates this register as part of early system initialization. Higher-level software, like an operating system, can then use the 
register to get the frequency. 

3.2. Timer registers 

Each timer has the following three system registers: 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

The processor timers 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 8 of 22 

Register Purpose 

<timer>_CTL_EL<x> Control register 

<timer>_CVAL_EL<x> Comparator value 

<timer>_TVAL_EL<x> Timer value 

 

In the register name, <timer> identifies which timer is being accessed.  The following table shows the possible values: 

Timer Register 
prefix 

EL<x> 

EL1 physical timer CNTP EL0 

EL1 virtual timer CNTV EL0 

Non-secure EL2 physical timer CNTHP EL2 

Non-secure EL2 virtual timer CNTHV EL2 

EL3 physical timer CNTPS EL1 

Secure EL2 physical timer CNTHPS EL2 

Secure EL2 virtual timer CNTHVS EL2 

 

For example, CNTP_CVAL_EL0 is the Comparator register of the EL1 physical timer. 

Test yourself: What is the name of the control register for the EL3 physical timer and Non-secure EL2 virtual timer? 

3.2.1. Accessing the timers 

For some timers, it is possible to configure which Exception levels can access the timer: 

• EL1 Physical and Virtual Timers 
EL0 access to these timers is controlled by CNTKCTL_EL1. 

• EL2 Physical and Virtual Timers 
When HCR_EL2.{TGE,E2H}=={1,1}, EL0 access to these timers is controlled by CNTKCTL_EL2. These timers 
were added as part of the support for the Armv8.1-A Virtualization Host Extension, which is beyond the scope of this 
guide 

• EL3 physical timer 
S.EL1 and S.EL2 access to this timer is controlled by SCR_EL3.ST. 

 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

The processor timers 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 9 of 22 

3.3. Configuring a timer 

There are two ways to configure a timer, either using the comparator (CVAL) register, or using the timer (TVAL) register. 

The comparator register, CVAL, is a 64-bit register. Software writes a value to this register and the timer triggers when the 
count reaches, or exceeds, that value, as you can see here: 

 Timer Condition Met: CVAL <= System Count 

The timer register, TVAL, is a 32-bit register. When software writes TVAL, the processor reads the current system count 
internally, adds the written value, and then populates CVAL: 

 CVAL = TVAL + System Counter 
 Timer Condition Met: CVAL <= System Count 

You can see this populating of CVAL in software. If you read the current system count, write 1000 to TVAL, and then read 
CVAL, you will see that CVAL is approximately 1000 + system count. The count is approximate, because time will move on 
during the instruction sequence.  

Reading TVAL back will show it decrementing down to 0, while the system count increments.  TVAL reports a signed value, and 
will continue to decrement after the timer fires, which allows software to determine how long ago the timer fired. 

TVAL and CVAL gives software two different models for how to use the timer. If software needs a timer event in X ticks of the 
clock, software can write X to TVAL. Alternatively, if software wants an event when the system count reaches Y, software can 
write Y to CVAL.  

Remember that TVAL and CVAL are different ways to program the same timer. They are not two different timers. 

3.4. Interrupts 

Timers can be configured to generate an interrupt. The interrupt from a core’s timer can only be delivered to that core. This 
means that the timer of one core cannot be used to generate an interrupt that targets a different core. 

The generation of interrupts is controlled through the CTL register, using these fields: 

• ENABLE – Enables the timer. 

• IMASK   – Interrupt mask. Enables or disables interrupt generation. 

• ISTATUS  – When ENABLE==1, reports whether the timer is firing (CVAL <= System Count). 

To generate an interrupt, software must set ENABLE to 1 and clear IMASK to 0. When the timer fires (CVAL <= System 
Count), an interrupt signal is asserted to the interrupt controller. In Armv8-A systems, the interrupt controller is usually a 
Generic Interrupt Controller (GIC). 

The interrupt ID (INTID) that is used for each timer is defined by the Server Base System Architecture (SBSA), shown here: 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

The processor timers 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 10 of 22 

Timer SBSA recommended 
INTID 

EL1 Physical Timer 30 

EL1 Virtual Timer 27 

Non-secure EL2 Physical Timer 26 

Non-secure EL2 Virtual Timer 28 

EL3 Physical Timer 29 

Secure EL2 Physical Timer 20 

Secure EL2 Virtual Timer 19 

 

Note:  These INTIDs are in the Private Peripheral Interrupt (PPI) range. These INTIDs are private to a specific 
core. This means that each core sees its EL1 physical timer as INTID 30. This is described in more detail in our 
Generic Interrupt Controller guide. 

The interrupts generated by the timer behave in a level-sensitive manner. This means that, once the timer firing condition is 
reached, the timer will continue to signal an interrupt until one of the following situations occurs: 

• IMASK is set to one, which masks the interrupt. 

• ENABLE is cleared to 0, which disables the timer. 

• TVAL or CVAL is written, so that firing condition is no longer met. 

When writing an interrupt handler for the timers, it is important that software clears the interrupt before deactivating the 
interrupt in the GIC. Otherwise the GIC will re-signal the same interrupt again. 

The operation and configuration of the GIC is beyond the scope of this guide.  

3.5. Timer virtualization 

Earlier, we introduced the different timers that are found in a processor. These timers can be divided into two groups: virtual 
timers and physical timers. 

Physical timers, like the EL3 physical timer, CNTPS, compare against the count value provided by the System Counter. This value 
is referred to as the physical count and is reported by CNTPCT_EL0. 

Virtual timers, like the EL1 Virtual Timer, CNTV, compare against a virtual count. The virtual count is calculated as: 

 Virtual Count = Physical Count - <offset> 

The offset value is specified in the register CNTVOFF_EL2, which is only accessible at EL2 or EL3. This configuration is shown in 
the following diagram: 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

The processor timers 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 11 of 22 

 

Note:  If EL2 not implemented, the offset is fixed as 0. This means that the virtual and physical count values are 
always the same. 

The virtual count allows a hypervisor to show virtual time to a Virtual Machine (VM). For example, a hypervisor could use the 
offset to hide the passage of time when the VM was not scheduled. This means that the virtual count can represent time 
experienced by the VM, rather than wall clock time. 

3.6. Event stream 

The Generic Timer can also be used to generate an event stream as part of the Wait for Event mechanism. The WFE instruction 
puts the core into a low power state, with the core woken by an event. 

Details about the WFE mechanism are beyond the scope of this guide. 

There are several ways to generate an event, including: 

• Executing the SEV (Send Event) instruction on a different core 

• Clearing the Global Exclusive Monitor of the core 
• Using the Event stream from the core’s the Generic Timer 

The Generic Timer can be configured to generate a stream of events at a regular interval. One use for this configuration is to 
generate a timeout. WFE is typically used when waiting for a resource to become available, when the wait is not expected to be 
long. The event stream from the timers means that the maximum time that the core will stay in the low power state is bounded. 

An event stream can be generated from the physical count, CNTPCT_EL0, or from the virtual count, CNTPVT_EL0: 

• CNTKCTL_EL1 - Controls event stream generation from CNTVCT_EL0 

• CNTKCTL_EL2 - Controls event stream generation from CNTPCT_EL0 

For each register, the controls are: 

• EVNTEN Enables or disables the generation of events 

• EVNTI  Controls the rate of events 

• EVNTDIR  Controls when the event is generated 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

The processor timers 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 12 of 22 

The control EVNTI specifies a bit position in the range 0 to 15. When the bit at the selected position changes, an event is 
generated. For example, if EVNTI is set to 3 then an event is generated when bit[3] of the count changes. 

The control EVNTDIR controls whether the event is generated when the selected bit transitions from 1-to-0 or from 0-to1. 

3.7. Summary table 

This table summarizes the information about the different timers discussed in this chapter: 

Timer Registers Typically used by Trappable? Using counter INTID 

EL1 Physical Timer CNTP_<>_EL0** EL0 and EL1 To EL2 CNTPCT_EL0 30 

EL2 Non-secure Physical 
Timer 

CNTHP_<>_EL2 NS.EL2 - CNTPCT_EL0 26 

EL2 Secure Physical Timer CNTHPS_<>_EL2 S.EL2 - CNTPCT_EL0 20 

EL3 Physical Timer CNTPS_<>_EL1 S.EL1 and EL3 To EL3 CNTPCT_EL0 29 

EL1 Virtual Timer CNTV_<>_EL0** EL0 and EL1 - CNTVCT_EL0 27 

EL2 Non-secure Virtual Timer CNTHV_<>_EL2 NS.EL2 - CNTPCT_EL0* 28 

EL2 Secure Virtual Timer CNTHVS_<>_EL2 S.EL2 - CNTPCT_EL0* 19 

 

*For these timers, the virtual offset (CNTVOFFSET_EL2) always behaves as 0. Therefore, although these timers compare 
against the virtual count value, they are in practice using the physical counter value. 

** Subjects to re-direction when HCR_EL2.E2H==1. . 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

System Counter 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 13 of 22 

4 System Counter 
In  What is the Generic Timer, we introduced the System Counter. The System Counter generates the system count value that is 
distributed to all the cores in the system, as shown in the following diagram: 

 

The SoC implementer is responsible for the design of the System Counter. Usually, the System Counter requires some 
initialization when a system boots up. Arm provides a recommended register interface for the System Counter, but you should 
check with your SoC implementer for details of a specific implementation. 

One physical system count value broadcasts to all cores. This means that all cores share the same view of the passing of time.  
Consider the following example: 

• Device A reads the current system count and adds it to a message as a timestamp, then sends the message to Device B. 

• When Device B receives the message, it compares the timestamp to the current system count. 

In this example, the system count value that is seen by Device B can never be earlier than the timestamp in the message. 

The System Counter measures real time. This means that it cannot be affected by power management techniques like Dynamic 
Voltage and Frequency Scaling (DVFS) or putting cores into a lower power state. The count must continue to increment at its 
fixed frequency. In practice, this requires the System Counter to be in an always-on power domain. 

To save power, the System Counter can vary the rate at which it updates the count. For example, the System Counter could 
update the count by 10 every 10th tick of the clock.  This can be useful when the connected cores are all in low power state. The 
system count still needs to reflect time advancing, but power can be saved by broadcasting fewer counter updates. 

4.1. Counter scaling 

The option to scale the system count was introduced in Armv8.4-A. Instead of incrementing by one on every tick of the clock, the 
count can increment by X, where X is configured by software during system initialization. This feature allows the count to 
effectively increment faster or slower than the frequency of the counter. 

To support scaling, the System Counter internally expands the counter value to 88 bits, as you can see in the following diagram: 

https://developer.arm.com/architectures/learn-the-architecture/generic-timer/what-is-the-generic-timer


AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

System Counter 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 14 of 22 

 

The count is represented as an 88-bit fixed point number, with 64 bits for the integer part and 24 bits for the fractional part. The 
integer portion of the count is what is reported by CNTPCT_EL0 on the connected processors. The fractional part is used 
internally by the System Counter. 

The increment amount comes from a 32-bit register called CNTSCR, and its format is shown below: 

 

Figure 1 - Format of scaling factor 

The increment value is split into an integer part of 8 bits and a fractional part of 24 bits. 

When scaling is enabled, on every tick the count is incremented by the value in CNTSCR. For example, if CNTSCR is set to 
0x0180_0000, that means that the count increments by 1.5 (integer part 0x01, fraction part 0x80_0000) on every tick. This is 
illustrated in the following table: 

Tick Internal counter value 
Integer part / Fractional part 

Exported counter value  
(Visible via CNTPCT_EL0) 

0 0x0000_0000_0000_0000_0000_00 0x0000_0000_0000_0000 

1 0x0000_0000_0000_0001_8000_00 0x0000_0000_0000_0001 

2 0x0000_0000_0000_0003_0000_00 0x0000_0000_0000_0003 

3 0x0000_0000_0000_0004_8000_00 0x0000_0000_0000_0004 

4 0x0000_0000_0000_0006_0000_00 0x0000_0000_0000_0006 

5 0x0000_0000_0000_0007_8000_00 0x0000_0000_0000_0007 

6 0x0000_0000_0000_0009_0000_00 0x0000_0000_0000_0009 

 

Scaling can only be configured while the System Counter is disabled. Changing whether scaling is enabled, or the scaling factor, 
while the counter is running can result in unknown count values being returned. 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

System Counter 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 15 of 22 

4.2. Basic Programming 

The guidance in this section assumes that the System Counter implements the recommended Arm register interface. 

The System Counter provides two register frames: CNTControlBase and CNTReadBase.  

The register frame CNTControlBase is used to configure the System Counter and is Secure access only on systems that 
support TrustZone. The registers in this frame are shown in the following table: 

Register Description 

CNTCR Control register, includes: 

• Counter enable 

• Counter scaling enable (Armv8.4-A or later) 

• Update frequency selection 

• Halt-on-debug control. Stops the counter from 
incrementing when requested by debugger. 

CNTSCR Increment value when using scaling (Armv8.4-A or later) 

CNTID ID register, reports which features are implemented. 

CNTSR Status register. Reports whether the timer is running or 
stopped. 

CNTCV Reports the current count value. 
Returns only the integer portion of the count. 

CNTFID<n> Reports the available update frequencies. 

 

To enable the System Counter, software must select an update frequency and set the counter enable.  

CNTReadBase is a copy of CNTControlBase that only includes the CNTCV register. This means that CNTReadBase only 
reports the current system count value. However, unlike CNTControlBase, CNTReadBase is accessible to Non-secure 
accesses. This means that Non-secure software can read the current count, but cannot otherwise configure the System Counter. 

 

 

 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

External timers 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 16 of 22 

5 External timers 
In What is the Generic Timer, we introduced the timers that are in the processor. A system can also contain additional external 
timers. The following diagram shows an example of this: 

 

The programming interface for these timers mirrors that of the internal timers, but these timers are accessed via memory-
mapped registers. The location of these registers is determined by the SoC implementor, and should be reported in the 
datasheet for the SoC that you are working with. 

Interrupts from the external memory-mapped timers will typically be delivered as Shared Peripheral Interrupts (SPIs) by the 
GIC. 

https://developer.arm.com/architectures/learn-the-architecture/generic-timer/what-is-the-generic-timer


AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Example using Arm Development Studio 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 17 of 22 

6 Example using Arm Development Studio 
This section of the guide includes a short example, to demonstrate the configuration of the System Counter and the generation 
of interrupts using TVAL and CVAL. 

The example requires Arm Development Studio. If you do not already have a copy of Arm Development Studio, you can 
download  an evaluation copy. 

The example includes a ReadMe.txt file which lists the included files, and instructions for building and running the example.  

Within main.c is the code for configuring the Timers. Going through main(), it starts with: 

  // 
  // Configure the interrupt controller 
  // 
  rd = initGIC(); 
 
  // Secure Physical Timer (INTID 29) 
  setIntPriority(29, rd, 0); 
  setIntGroup(29, rd, 0); 
  enableInt(29); 
 
  // Non-secure EL1 Physical Timer (INTID 30) 
  setIntPriority(30, rd, 0); 
  setIntGroup(30, rd, 0); 
  enableInt(30, rd); 
 
 
The previous code configures the GIC. The operation of the GIC is beyond the scope of this guide, but configuring the GIC is 
necessary to generate timer interrupts.  

The function initGIC() performs top-level initialization of the interrupt controller. The following calls configure and enable 
the interrupt sources associated with the Secure physical timer and Non-secure EL1 physical timer. Each interrupt is configured 
as follows:  

• Group 0. This means the interrupt will be signaled as a FIQ. 
• Priority 0. This is the highest priority value in the GIC architecture. 
• Enabled. This allows the interrupt to be signaled to the core. 

Next, the System Counter is initialized, as shown here: 

 
  // 
  // Configure and enable the System Counter 
  // 
  setSystemCounterBaseAddr(0x2a430000);  // Address of the System Counter 
  initSystemCounter(SYSTEM_COUNTER_CNTCR_HDBG, 
                    SYSTEM_COUNTER_CNTCR_FREQ0 
                    SYSTEM_COUNTER_CNTCR_nSCALE); 
 
The first call sets the location of the System Counter, so that the driver functions can access its registers. This address is based 
on the Arm Base Platform Model. More information on this model’s memory map can be found in the Fast Models Reference 
Manual. 

  

https://developer.arm.com/tools-and-software/embedded/arm-development-studio
https://developer.arm.com/docs/100964/latest/base-platform/base-memory/base-memory-map
https://developer.arm.com/docs/100964/latest/base-platform/base-memory/base-memory-map


AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Example using Arm Development Studio 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 18 of 22 

The second call writes the CNTCR register. The code selects frequency update scheme 0, disables scaling and sets the enable bit. 
After this point, the system count will start incrementing. 

Next main() has the following: 

 // 
 // Configure timer 
 // 
 
 // Configure the Secure Physical Timer 
 // This uses the CVAL/comparator to set an absolute time for the timer to fire 
 current_time = getPhysicalCount(); 
 setSEL1PhysicalCompValue(current_time + 10000); 
 setSEL1PhysicalTimerCtrl(CNTPS_CTL_ENABLE); 
 
 // Configure the Non-secure Physical Timer 
 // This uses the TVAL/timer to fire the timer in X ticks 
 setNSEL1PhysicalTimerValue(20000); 
 setNSEL1PhysicalTimerCtrl(CNTP_CTL_ENABLE); 
 

The preceding code configures two of the timers: 

• Sets up the Secure physical timer, CNTPS, using the CVAL. 

• Sets up the Non-secure EL1 physical timer, CNTP, using TVAL. 

The code in main()then waits for both interrupts to be generated before exiting. 

The interrupt handler is also within main.c: 

void fiqHandler(void) 
{ 
  uin32_t ID; 
 
  // Read the IAR to get the INTID of the interrupt taken 
  ID = readIARGrp0(); 
 
  printf("FIQ: Received INTID %d\n", ID); 
 
  switch (ID) 
  { 
    case 29: 
      setSEL1PhysicalTimerCtrl(0);  // Disable timer to clear interrupt 
      printf("FIQ: Secure Physical Timer\n"); 
      break; 
    case 30: 
      setNSEL1PhysicalTimerCtrl(0);  // Disable timer to clear interrupt 
      printf("FIQ: Non-secure EL1 Physical Timer\n"); 
      break; 
    case 1023: 
      printf("FIQ: Interrupt was spurious\n"); 
      return; 
    default: 
      printf("FIQ: Panic, unexpected INTID\n"); 
  } 
 
  // Write EOIR to deactivate interrupt 
  writeEOIGrp0(ID); 
 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Example using Arm Development Studio 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 19 of 22 

  flag++; 
  return; 
} 
 

The interrupt handler reads the Interrupt Acknowledge Register (IAR) of the GIC to get the ID of the interrupt that has been 
taken. Based on the returned value, the handler then disables the appropriate timer to clear the interrupt. An alternative 
approach would be to set IMASK, and mask the interrupt, or update the comparator. 

Finally, the interrupt handler writes the End of Interrupt register (EOIR) of the GIC. This updates the internal state machine of 
the GIC for the taken interrupt. 

 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Check your knowledge 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 20 of 22 

7 Check your knowledge 
1) CNTFRQ_EL0 is automatically set by hardware to report the frequency of the system count. True or False? 

FALSE. It is the responsibility of boot software in EL3 to populate the register with the correct value. 
 

2) Describe the two ways to configure a given timer. 
a) TVAL sets the timer to trigger in X ticks (where X is the written value).  
b) CVAL sets the comparator in the timer to an absolute value, the timer fires when the count reaches that number. 

 
3) In an interrupt handler, how can software clear a timer interrupt? 

a) It can set IMASK (masking interrupts), it can clear ENABLE (disabling the timer) or update CVAL/TVAL.  
 

4) Do the Generic Timer interrupts have edge-triggered or level-sensitive semantics? 
a) Level-sensitive 

 
5) When the Generic Timer is used to generate an event stream, how is the rate of events controlled? 

a) EVNTI controls the rate of events by selecting which bit in the count must change for the event to be generated. 
EVNTDIR controls whether it is a 0-to1 or a 1-to-0 transition of that bit which triggers the event. 



AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 

Related information 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 21 of 22 

8 Related information 
Here are some resources related to material in this guide: 

Arm Community (ask development questions, and find articles and blogs on specific topics from Arm experts) 

 
Here are some resources related to topics in this guide: 

Interrupts 

The Generic Timer generates interrupts, which are handled by the GIC. For more information on the operation of the GIC, and 
how to configure it, refer to our GIC  guide. 

Virtualization 

Support for the Armv8.1-A Virtualization Host Extensions, and the topic of virtualization generally, is discussed in our 
Virtualization guide. 

 

Event stream 

This guide introduced the Generic Timer’s ability to generate an event stream as part of the Wait for Event mechanism. More 
information on Wait for Event can be found in our Synchronization guide. 

Example using Arm Development Studio 

Learn about the memory map of the Arm Base Platform Model. 

 

 

 

 

https://community.arm.com/
https://developer.arm.com/docs/dai0492/latest
https://developer.arm.com/architectures/learn-the-architecture/armv8-a-virtualization
https://developer.arm.com/docs/100964/latest/base-platform/base-memory/base-memory-map


AArch64 Programmer's Guides Generic Timer ARM062-1010708621-30 
Version 0.0 
Next steps 

 

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 22 of 22 

9 Next steps 
 

The Generic Timer provides a common timer framework for Arm systems. In this guide, we have learned about the different 
components of the Generic Timer and their programming interfaces. You can put this learning into practice when you write your 
own code for low-level system initialization.  

We reference the Generic Interrupt Controller (GIC) in this guide. If you want to learn more, read the first in our series of guides 
on the GIC. 

To keep learning about the Armv8-A architecture, see more in our series of guides. 

https://developer.arm.com/docs/dai0492/latest
https://developer.arm.com/architectures/learn-the-architecture

	1 Overview
	1.1. Before you begin

	2  What is the Generic Timer?
	3 The processor timers
	3.1. Count and frequency
	3.2. Timer registers
	3.2.1. Accessing the timers

	3.3. Configuring a timer
	3.4. Interrupts
	3.5. Timer virtualization
	3.6. Event stream
	3.7. Summary table

	4 System Counter
	4.1. Counter scaling
	4.2. Basic Programming

	5 External timers
	6 Example using Arm Development Studio
	7 Check your knowledge
	8 Related information
	9 Next steps

