
Application Development based on BareMetal framework in

Real-time Edge Software

The BareMetal framework targets to support the scenarios that need low latency,

real-time response, and high-performance. There is no OS running on the cores

and customer-specific application runs on that directly. The figure below depicts the

BareMetal framework architecture

The main features of the BareMetal framework are as follows:

• Core0 runs as master, which runs the operating system such as Linux, Vxworks.

• Slave cores run the BareMetal application.

• Easy assignment of different IP blocks to different cores.

• Interrupts between different cores and high-performance mechanism for data transfer.

• Different UART for core0 and slave cores for easy debug.

• Communication via shared memory.

The master core0 runs the U-Boot, it then loads the BareMetal application to the slave

cores and starts the BareMetal application. The following figure depicts the boot flow

diagram:

This document describes how to develop customer-specific application based on BareMetal

framework. The directory “app” stored in u-boot repository includes the use cases for testing

GPIO, I2C, IRQ init, QSPI, Ethernet, USB, PCIe, CAN, ENETC and SAI features.

1. GPIO use case

The file app/test_gpio.c is one example to test the GPIO feature.

On ls1021aiot board, first you need the GPIO header file, asm-generic/gpio.h, which includes

all interfaces for the GPIO. Then, configure GPIO25 to OUT direction, and configure GPIO24

to IN direction. Last, by writing the value 1 or 0 to GPIO25, you can receive the same value

from GPIO24.

The table below shows the APIs used in the file test_gpio.c example

2. I2C use case

app/test_i2c.c can be used as a sample to test the I2C feature.

On ls1021aiot board, include the I2C header file, i2c.h, which contains all interfaces for

I2C. Then, read a fixed data from offset 0 of Audio codec device (0x2A). If the data is

0xa0, the message, [ok]I2C test ok, is displayed on the console.

On ls1043ardb board, read a fixed data from offset 0 of INA220 device(0x40). If the data

is 0x39, a message, [ok]I2C test ok is displayed on the console.

The table below shows the APIs used in the sample file, test_i2c.c.

3. IRQ use case

The file app/test_irq_init.c is a sample to test the IRQ and IPI (Inter-Processor

Interrupts) feature. The process is described in brief below.

The file asm/interrupt-gic.h, is the header file of IRQ, and includes all its

interfaces. Then, register an IRQ function for SGI 0. After setting an SGI signal, the CPU gets

this IRQ and runs the IRQ function. Then, register a hardware interrupt function to

show how to use the external hardware interrupt.

SGI IRQ is used for inter-processor interrupts, and it can only be used between bare

metal cores. SGI IRQ id is 0-15. The SGI IRQ id '8' is reserved for ICC.

4. QSPI Use case

The file app/test_qspi.c provides a sample that can be used to test the QSPI feature. The

below steps show how to write a QSPI application:

1. First, locate the QSPI header files spi_flash.h and spi.h, which include all interfaces

for QSPI.

2. Then, initialize the QSPI flash. Subsequently, erase the corresponding flash area and

confirm that the erase operation is successful.

3. Now, read or write to the flash with an offset of 0x3f00000 and size of 0x40000.

The table below shows the APIs used in the file test_qsip.c example.

5. Ethernet use case

The file app/test_net.c provides a sample to test the Ethernet feature and shows

how to write a net application for using this feature.

Here is an example for the LS1043ARDB (or LS1046ARDB) board.

1. Connect one Ethernet port of LS1043ARDB board to one host machine using

Ethernet cable.

• (For LS1046ARDB, the default ethact is FM1@DTSEC5. Network cable should

be connected to SGMII1 port.

• For LS1043ARDB, the default ethact is FM1@DTSEC3. Network cable should be

connected to RGMII1 port.

2. Configure the IP address of the host machine as 192.168.1.2.

3. Power up the LS1043ARDB board. If the network is connected, the message host

192.168.1.2 is alive is displayed on the console.

4. The IP addresses of the board and host machine are defined in the file test_net.c.

In this file, modify the IP address of LS1043ARDB board using variable ipaddr and

change the IP address of host machine using variable ping_ip.

The table below lists the Net APIs and their description.

6. USB Use case

The file uboot/app/test_usb.c provides an example that can be used to test the

USB features. The steps below show how to write a USB application:

1. Connect a USB disk to the USB port.

2. Include the header file, usb.h, which includes all APIs for USB.

3. Initialize the USB device using the usb_init API.

4. Scan the USB storage device on the USB bus using the usb_stor_scanAPI.

5. Get the device number using the blk_get_devnum_by_type API.

6. Read data from the USB disk using the blk_dread API.

7. Write data to the USB disk using the blk_dwrite API.

The table below shows the APIs used in the file test_usb.c example:

7. PCIe use case

The file app/test_pcie.c provides a sample code to test PCIe and network card

(such as e1000) features. The steps below show how to write a PCIe and net application:

1. Insert a PCIe network card (such as e1000) into PCIe2, or PCIe3 slot (if it exists).

2. Configure the IP address of the host machine to 192.168.1.2.

3. Include the files include/pci.h and include/ netdev.h.

4. Initialize the PCIe controller using the pci_init API.

5. Get uclass device by its name using the uclass_get_device_by_seq API.

6. Initialize the PCIe network device using the pci_eth_init API.

7. Begin pinging the host machine using the net_loop API.

The table below shows the APIs used in the file test_pcie.c example.

8. CAN Use Case

The file app/test_flexcan.c provides a sample test case to test flexCAN and CANopen

features. The following steps show the design process:

1. Register the receive interruption function for flexCAN.

2. Register an overflow interruption function for flextimer.

3. Initialize a list of callback functions.

4. Set the node ID of this node.

The table below shows the APIs used in the file test_flexcan.c example

The following log shows the CANopen slave node state:

=> flexcan error: 0x42242!

Note: slave node entry into the stop mode!

Note: slave node initialization is complete!

Note: slave node entry into the preOperation mode!

Note: slave node entry into the operation mode!

Note: slave node initialization is complete!

Note: slave node entry into the preOperation mode!

Note: slave node entry into the operation mode!

9. ENETC Use Case

The file app/test_net.c provides an example to test ENETC Ethernet feature and

shows how to write a net application for using this feature. This example is a special case

of using Net APIs.

The file test_net for ENETC is an example for the LS1028ARDB board with

(CONFIG_ENETC_COREID_SET enabled).

1. Connect ENETC port of LS1028ARDB board to one host machine using Ethernet

cable.

2. Configure the IP address of the host machine as 192.168.1.2.

3. Power up the LS1028ARDB board. If the network is connected, the message host

192.168.1.2 is alive is displayed on the console.

4. The IP addresses of the board and host machines are defined in the file

test_net.c. In this file, modify the IP address of LS1028ARDB board using

variable ipaddr and change the IP address of host machine using variable

ping_ip.

The table below lists the Net APIs for ENETC and their description.

10. SAI Use Case

The audio feature needs SAI module and codec drivers. The following sections provide

an introduction to SAI module and the audio codec (SGTL5000). These sections also

describe the steps for integrating audio with BareMetal and running an audio application

on BareMetal.

Synchronous Audio Interface (SAI)

The LS1028A integrates six SAI modules, but only SAI4 is used by LS1028ARDB board.

The synchronous audio interface (SAI) supports full duplex serial interfaces with frame

synchronization. The bit clock and frame sync of SAI are both generated externally

(SGTL5000).

• Transmitter with independent bit clock and frame sync supporting 1 data line

• Receiver with independent bit clock and frame sync supporting 1 data line

• Maximum Frame Size of 32 words

• Word size of between 8-bits and 32-bits

• Word size configured separately for first word and remaining words in frame

• Asynchronous 32 × 32-bit FIFO for each transmit and receive channel

• Supports graceful restart after FIFO error

Audio codec (SGTL5000)

The SGTL5000 is a low-power stereo codec with headphone amplifier from NXP. It is

designed to provide a complete audio solution for products requiring LINEIN, MIC_IN,

LINEOUT, headphone-out, and digital I/Os. It allows an 8.0 MHz to 27 MHz system clock

as input. The codec supports 8.0 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz,

32 kHz, 44.1 kHz, 48 kHz, and 96 kHz sampling frequencies. The LS1028ARDB board

provides a 25 MHz crystal oscillator to the SGTL5000.

The SGTL5000 provides two interfaces (I2C and SPI) to setup registers. The

LS1028ARDB board uses I2C interface.

Play a demo audio file in slave core after booting the board:

=> wavplayer

audioformat: PCM nchannels: 1 samplerate: 16000 bitrate:

256000 blockalign: 2 bps: 16 datasize: 67968 datastart: 44

sgtl5000 revision 0x11 fsl_sai_ofdata_to_platdata

Probed sound 'sound' with codec 'codec@a' and

i2s 'sai@f130000' i2s_transfer_tx_data The

music waits for the end! The music is finished!

11. Build and run the baremetal application.

1. Download the project source from the following path:

https://github.com/real-time-edge-sw/real-time-edge-uboot.git

2. Check it out to the tag:

• Real-Time-Edge-v2.3-baremetal-202207

3. Deploy baremetal application.

4. Configure cross-toolchain on your host environment.

5. Then, run the following commands:

/* build BareMetal image for LS1021A-IoT board */

$ make ls1021aiot_bm_defconfig

$ make

/* build BareMetal image for LS1028ARDB board */

$ make ls1028ardb_bm_defconfig

$ make

/* build BareMetal image with SAI for LS1028ARDB board */

$ make ls1028ardb_bm_sai_defconfig

$ make

/* build BareMetal image for LS1043ARDB board */

$ make ls1043ardb_bm_defconfig

$ make

/* build BareMetal image for LS1046ARDB board */

$ make ls1046ardb_bm_defconfig

$ make

/* build BareMetal image for LX2160ARDB board */

$ make lx2160ardb_bm_defconfig

$ make

5. Finally, the file u-boot.bin (or u-boot-dtb.bin, only for lx2160ardb) used for BareMetal is

generated.

perform the steps below to run the BareMetal

binary from U-Boot prompt of master core. See the below example run on Layerscape

platform:

1. After starting U-Boot on the master, download the bare metal image: u-boot.bin on

0x84000000 using the command below:

=> tftp 0x84000000 xxxx/u-boot.bin

Where

– xxxx is your tftp server directory.

– 0x84000000 is the address of CONFIG_SYS_TEXT_BASE on bare metal for

Layerscape platforms.

2. Then, start the BareMetal cores using the command below:

=> cpu 1 start 0x84000000

Note: in command "cpu <num> start 0x84000000", the 'num' can be 1, 2, 3, ... to

the max cpu number.

The figure below displays a sample output log.

