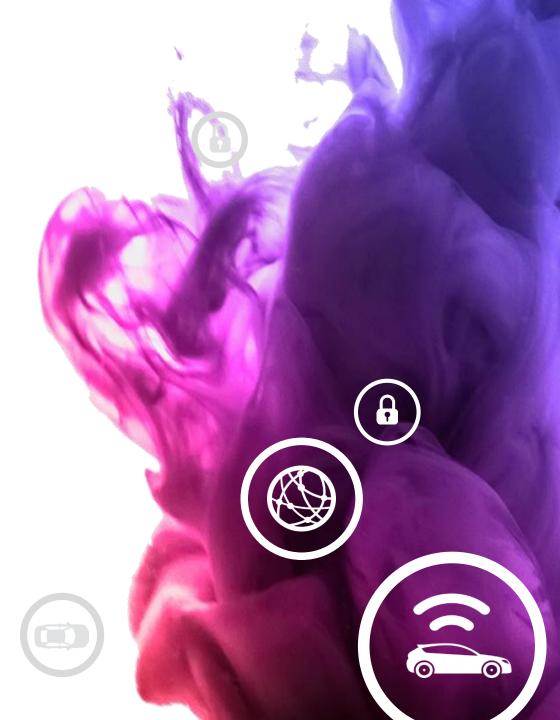
NXP AUTOMOTIVE Technical Training and Cross Selling Camp


NXP FUNCTIONAL SAFETY ANALOG FOCUS

YVES LEGRAND MARKETING & SYSTEMS

APRIL 2017

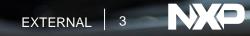
EXTERNAL

Agenda

Market needs for safety
 Functional safety foundations
 Safe Assure solutions
 Safety system solution
 Evolution of functional safety

Agenda

Ģ


Market needs for safety
 Functional safety foundations
 Safe Assure solutions
 Safety system solution
 Evolution of functional safety

What is Functional Safety?

Functional safety is the absence of unreasonable risk due to hazards caused by malfunctioning behavior of electrical or electronic systems

THINK SAFETY

Why is it important for society?

In 2020, road traffic accidents will be the 3rd worldwide Disability Adjusted Life Years (DALYs)

1.24 MILLION

road traffic deaths occur every year

#1

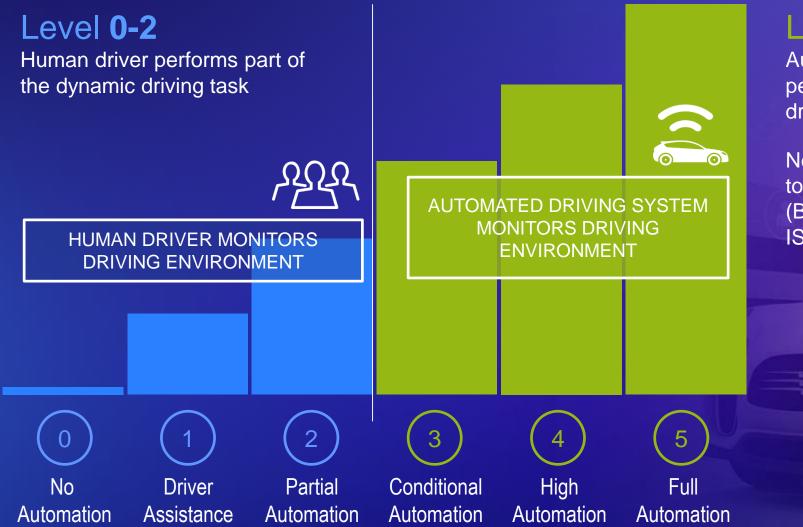
cause of death among those aged 15-29 years

3 out of 4

road deaths are among men

EXTERNAL 4

Why Functional Safety Is Important For the Automotive Market


Legal – question of responsibility Trust – knowing your car will do what it's meant to do

Standardization – platform consolidation and system harmonization

Trends – autonomous driving, electric vehicles

WHAT IS DRIVING FUNCTIONAL SAFETY TODAY?

Level 3-5

Automated driving system performs the entire dynamic driving task

Needs more performance and towards fail operational safety (Beyond ASIL D as defined by ISO 26262)

Agenda

Ģ

Market needs for safety
Functional safety foundations
Safe Assure solutions
Safety system solution
Evolution of functional safety

SO WHAT DOES FUNCTIONAL SAFETY ACTUALLY MEAN?

SYSTEM, SERVICE

Prevents risks of electronic system malfunctions

Measures failures, mitigates impact, predict effects

 \bigtriangledown

Industry defined standard: ISO 26262 for EE systems

HARM

QUANTIFY A RISK: AUTOMOTIVE SAFETY INTEGRITY LEVEL (ASIL) DEFINITION

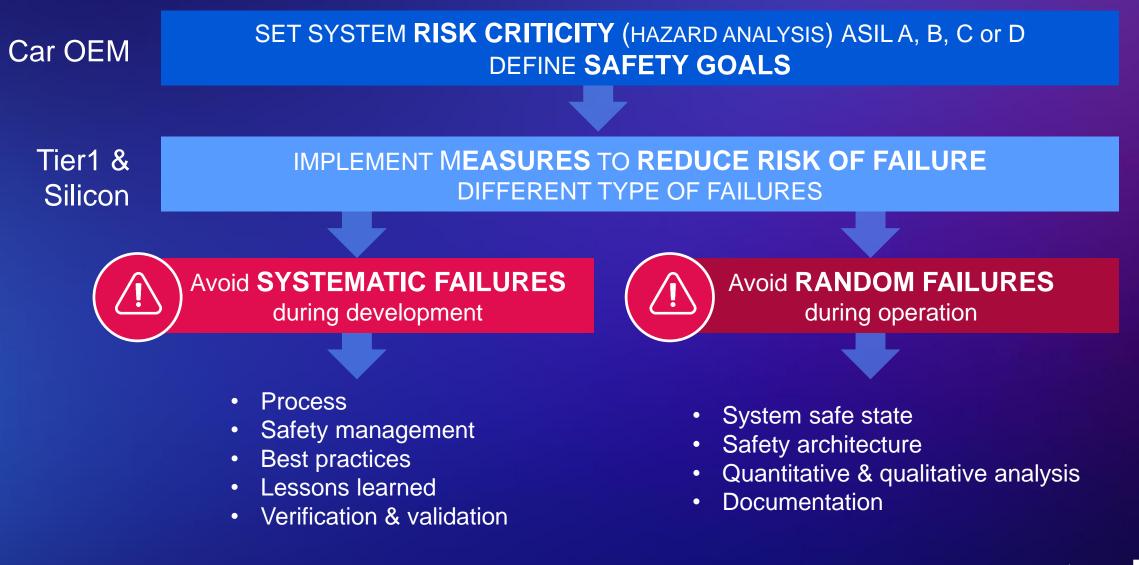
harm is done?

likely to happen?

be controlled

QUANTIFY A RISK: ASIL DEFINITION

Severity	Exposure		Controllability	
		C1 – SIMPLE	C2 – NORMAL	C3 – DIFFICULT
	E1 (very low)	QM	QM	QM
S1 LIGHT	E2 (low)	QM	QM	QM
	E3 (medium) QM QM	A		
	E4 (high)	QM	А	В
	E1 (very low)	QM	QM	QM
S2 SEVERE	E2 (low)	QM	QM	A
JEVERE	E3 (medium)	QM	QM A B	В
	E4 (high)	А	В	С
	E1 (very low)	QM	QM	A
S3 FATAL	E2 (low)	QM	А	В
S3 FATAL	E3 (medium)	А	В	C
	E4 (high)	В	С	D


(QM: "quality managed" \rightarrow no requirements from standard applied explicitly)

EXAMPLES OF A SYSTEM DREADED EVENT AND ASIL LEVELS

<image/>		<image/>
ADAS Sensor	Battery Management	Power Steering
Phantom detection	Fire	Auto steering, lock, loss
ASIL B	ASIL C	ASIL D

REDUCE THE RISK: TRACK AND UNDERSTAND THE FAILURES

Agenda

Ģ

Market needs for safety
Functional safety foundations
Safe Assure solutions
Safety system solution
Evolution of functional safety

NXP'S SAFE ASSURE PROGRAM

Simplify Customer experience

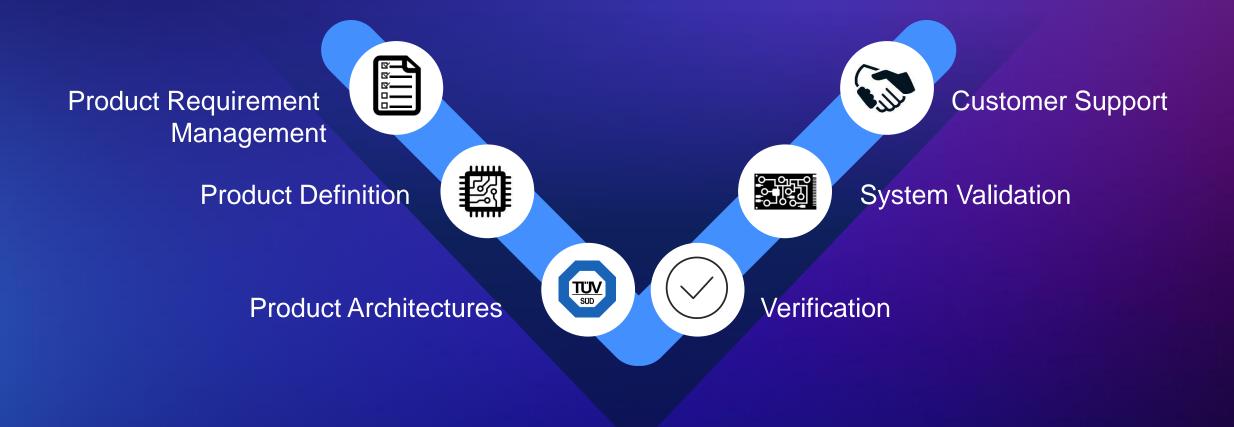
ISO26262 system compliance process

Optimize Customer R&D efficiency

Reduces time and complexity required to develop ISO26262 safety systems

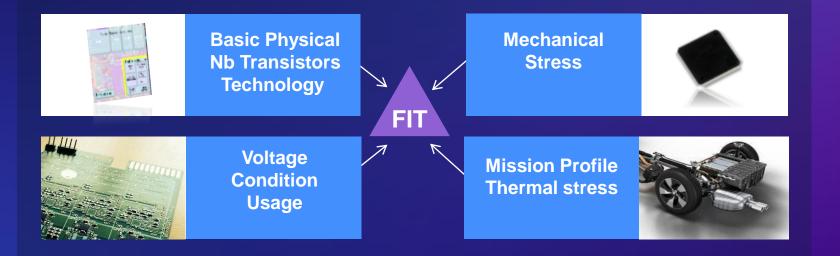
Reduce risk of Harm

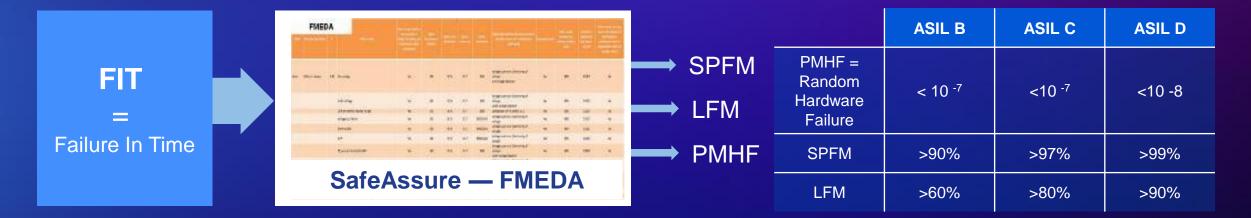
Supports the most stringent Automotive Safety Integrity Levels (ASILs)


Safety starts with Quality

Zero defect methodology from design to manufacturing to help ensure our products meet the stringent demands of safety applications

SAFE ASSURE HW SOLUTIONS: FROM DEFINITION TO CUSTOMER SUPPORT

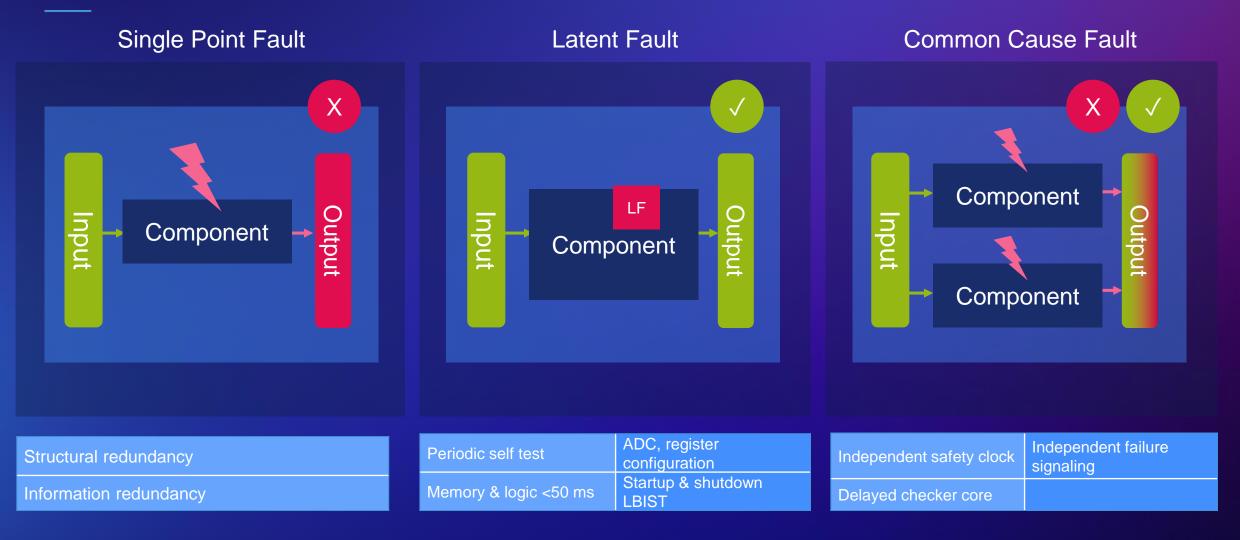




FUNCTIONAL SAFETY IS BASED ON QUALITY QUANTITATIVE ANALYSIS

EXTERNAL | 16

FAULT MANAGEMENT & ASIL POWER SUPPLY QUANTITATIVE ANALYSIS



Single Point Fault **Common Cause Fault** Latent Fault **Power Supply Power Supply** Input Output **!**Output BG1 supply 1 supply supply **Power Supply** BG2 Voltage Input Input Voltage Output supply supply supervisor supervisor Supply LF Input LF supply 2 Voltage supervisor **LBIST & ABIST LBIST & ABIST** Safe state Safe state activation Safe state activation activation ISO26262 ASIL level **ASIL B** ASIL D ISO26262 ASIL level ISO26262 ASIL level ASIL B ASIL D ASIL D ASIL B SPFM (Single Point Failure PMHF (Probability Metric of > 90% > 60% LFM (Latent Point Failure Metric) > 90% > 99% < 10E-7 < 10E-8 Hardware Failure)

FAULT MANAGEMENT & ASIL MCU & SW QUANTITATIVE ANALYSIS

DEPENDABILITY: SAFETY VS AVAILABILITY QUALITATIVE ANALYSIS

MPC5744P + MC33907

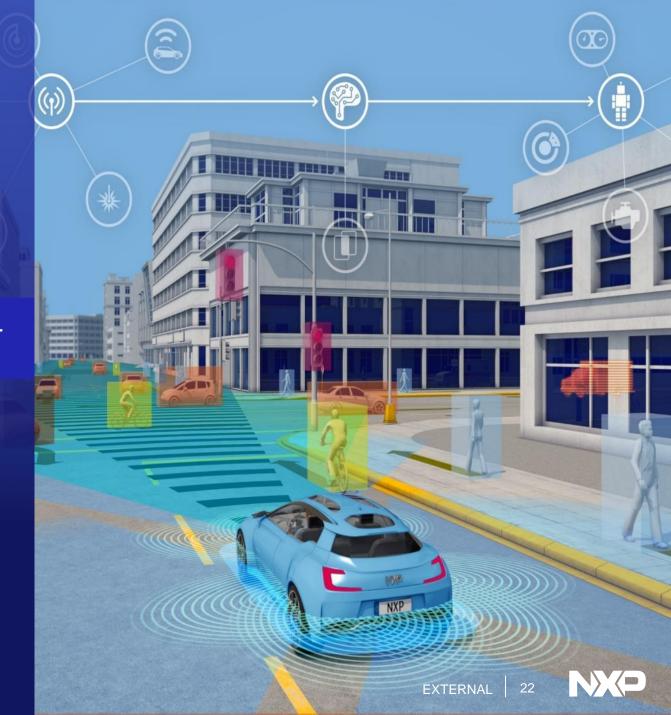
EXTERNAL | 19

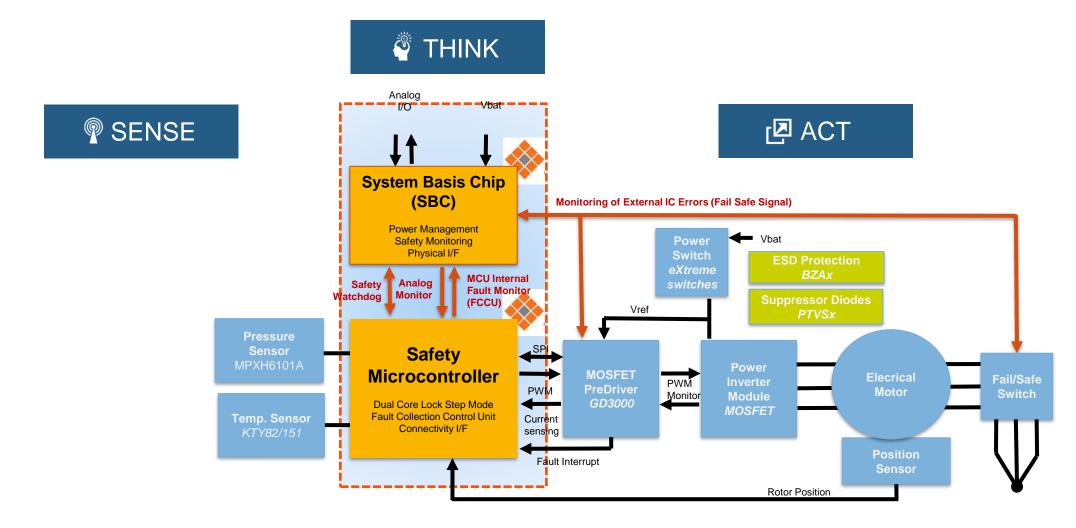
Agenda

Ģ

Market needs for safety
Functional safety foundations
Safe Assure solutions
Safety system solution
Evolution of functional safety

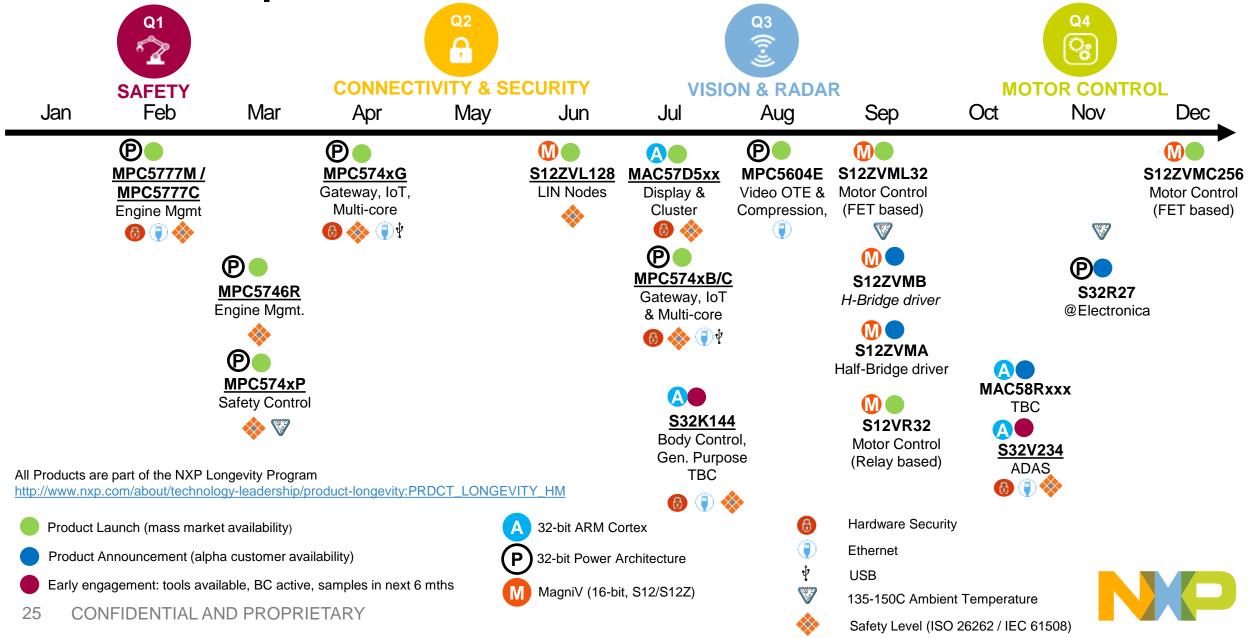
ARCHITECTING OUR FUTURE


More than a brain on 4 wheels. The core of safe and secure mobility.

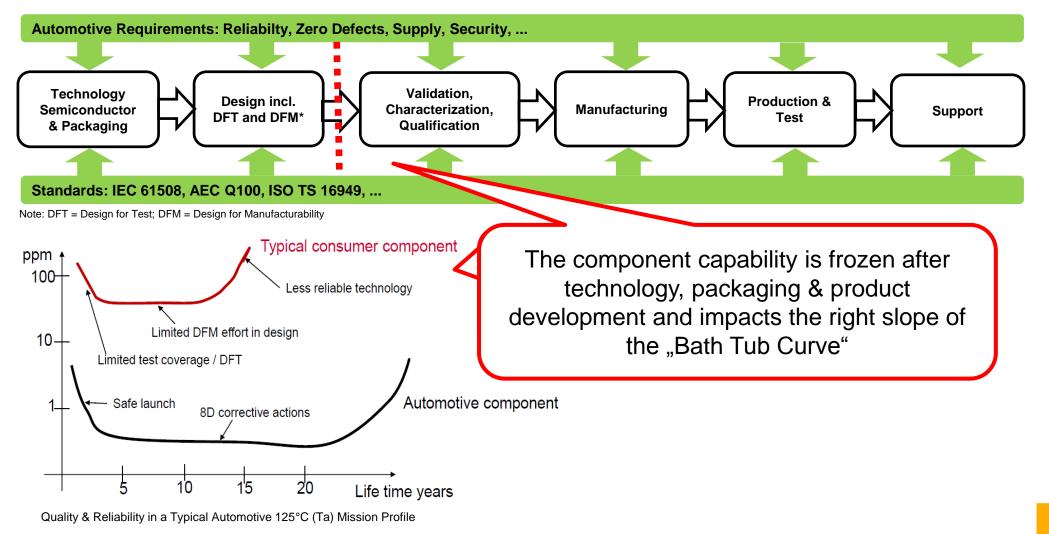


- Safety MCU
- System Basis Chip
- Motor Control
- Valve Control
- Engine (Solenoid) Control
- Battery Management
- Load Driver
- Add-on Wireless Connectivity

SAFETY MCU AND SBC AS A BACKBONE OF NXP SAFETY SOLUTIONS For a Safer World


23

FUNCTIONAL SAFETY MCU



Auto MCU | 2016 Mass Market Launch Calendar

Truly Different | Auto MCU vs. Consumer Components

• ZVEI work group classified 6 categories for potenial 66 differences

MPC574xP | Safety MCU Introduction

Key Technical Characteristics

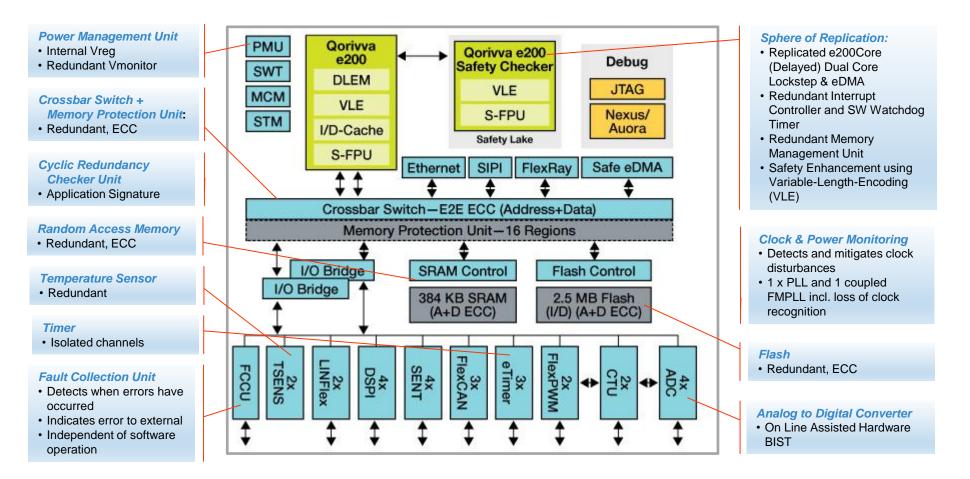
- Multi-core architecture (2x e200z4 up to 200MHz) with local memory (64KB)
- Scalable Embedded Flash (up to 2.5MB) with EE emulation (up to 384KB SRAM)
- Delayed lock-step architecture, duplicated periphery, LBIST / MBIST, ADC self test & FCCU for highest safety integrity level (ASIL D, SIL 4 or PL e)
- Developed according to the ISO 26262 automotive safety norm (derived from generic IEC 61508)
- Option for extended temperature up to 165°C Tj

Integration and Peripherals

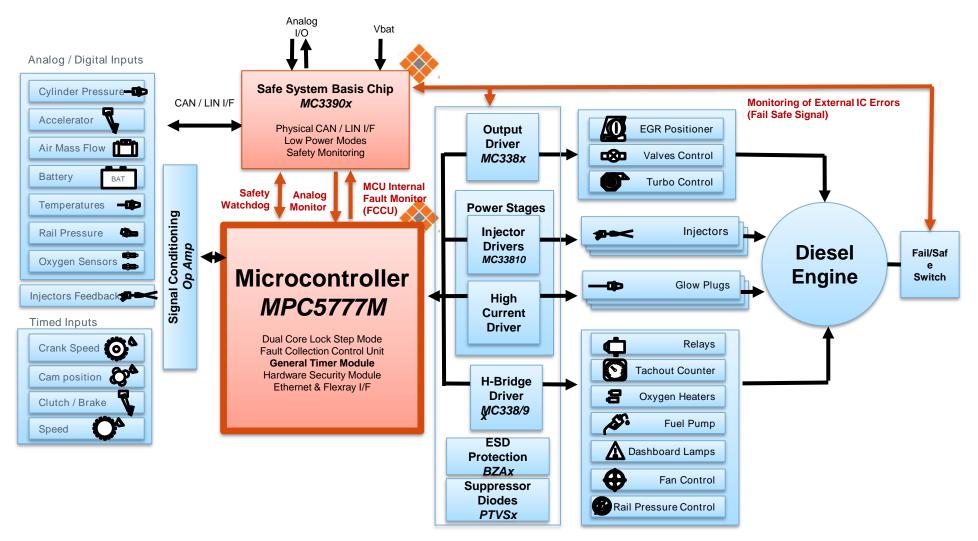
- Maximum compatibility to previous NXP safety generation (MPC5643L)
- Supporting up to 2 motors
- Inter-processor high speed serial I/F (SIPI)
- SENT I/F for Chassis applications
- Ethernet (in BGA package), LIN, CAN & Flexray I/F options
- 4x multi-chip DSPI for ASIC communication

Target Applications

- Safety Critical Domain / Gateway Control e.g.
 - Industrial Automation
 - Building Control
 - Braking & Stability
 - DCDC Converter
 - Medical


Packages

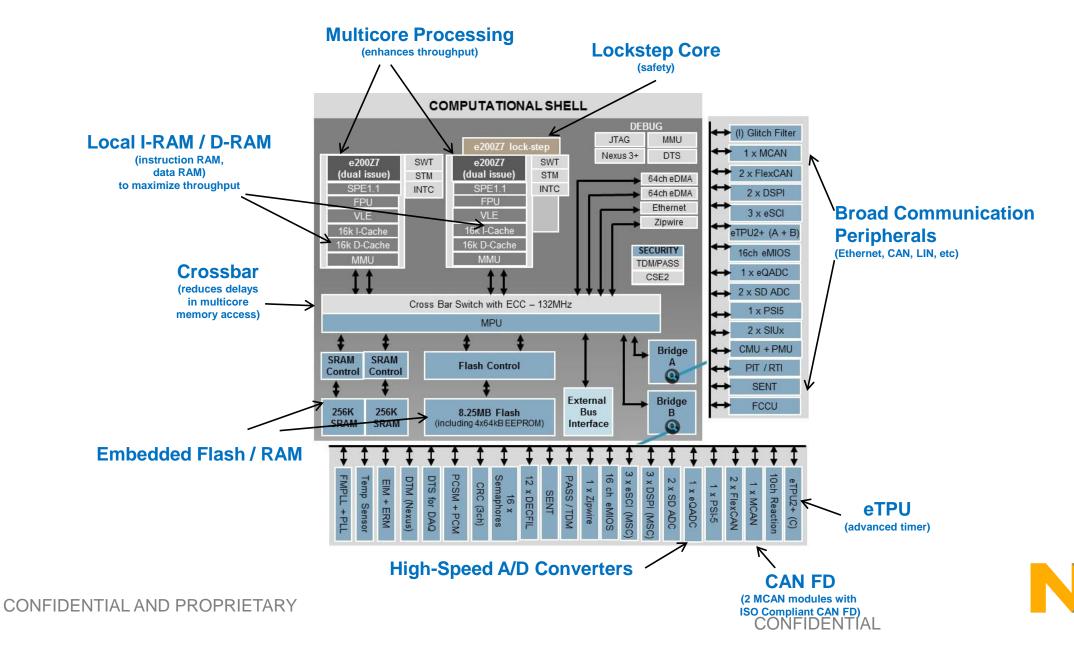
144LQFP257MAPBGA

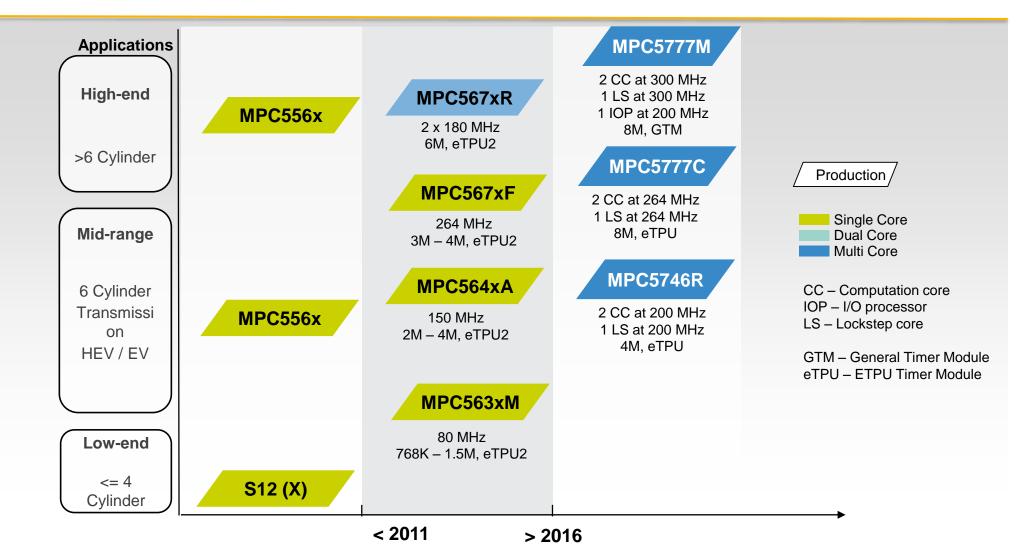

MPC574xP | Safety Features

More details in MPC5744P Safety Manual

Example | Fct Safety | Diesel Engine | MPC5777M

MPC57xx Powertrain | Device Comparison


Feature	MPC5777M	MPC5777C	MPC5746R
Cores	2x z7 1x z7 Lockstep 1z z4 IO	2x z7 1x z7 Lockstep	2x z4 1x z4 Lockstep
Speed	300MHz z7 200MHz z4	264MHz	200MHz
Flash	8M	8M	2M-4M
Timer	GTM	eTPU	eTPU
FlexRay	Yes	No	No
Ethernet	Yes	Yes	Yes
ISO CAN FD	No	Yes	No
Security	HSM	CSE	No
Temperature	125°C Ta / 150°C Tj	125°C Ta / 150°C Tj	125°C Ta / 150°C Tj
Package	416 / 512 BGA	416 / 516 BGA	144 / 176 LQFP 252 BGA
Qualified Product Availability	Launched 2016	Launched 2016	Launched 2016


30 CONFIDENTIAL AND PROPRIETARY

MPC5777C | Advanced Architecture

31

Powertrain | MCU Portfolio

FUNCTIONAL SAFETY SBC (FS65)

FS65/FS45 – Functional Safety SBC

Advanced Power Management

- Buck/Boost Vpre from 2.7 to 36V
- 2.0A / 6.5V Vpre capable
- FS65xx with Vcore 2.4MHz SMPS 0.8/1.5/2.2A
- FS450x with Vcore LDO 0.5A
- Configurable Vcore (external resistor bridge)
- Multiple LDO and Tracker
- Ultra Low Standby Current 30µA

System Solution

- Analog Multiplexer to sense multiple critical signal
- Small package size :49 mm²
- Robust CAN PHY FD 2M
- Configurable I/Os
- Long Duration Timer, Keep Alive memory supply

PROVEN

Designed at OEMs

SCALABLE
Family concept

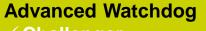
VPRE DC/DC 6.5V / 2.0A Buck	VCORE DC/DC or LDO From 1V to 5.0V 0.5/0.8/1.5/2.2A versions	
LV124 compliant	Vcca (100 / 300mA) 3.3V or 5.0V LDO	
Boost Driver	VAUX – tracker (400mA) 5.0V or 3.3V LDO	
Battery Sense before RBP	VCOM (100mA) 5.0V LDO	
AMUX (Battery, I/O, Temp, Vref)		
Flexible (I/O) Wake / INH	Secured SPI	
Advanced Low Power Modes / Vkam		
System Solutions (LDT, FS1)		
Fail Safe State Machine (RST, FS0)		
0 or 1 CAN HS w FD2M		
0 or 1 LIN 2.x, J2602-2		

SAFE

Flexible Fail Silent

Independent Safety Monitoring

- Single Point Failure : UV/OV Monitoring Unit
- Latent Failure : ABIST & LBIST
- **Common Cause Failure :** Independent electrical and physical fail safe circuitry and state machine
- **Reset, Fail Safe** pin to set system in predictive state when system is failing.
- **Configurable Fail Safe State**, while allowing system availibility, diagnostic and possible recovery.
- •Optional Fail Silent operation
- Second Fail Safe pin to manage safe delay after failure event
- Advanced SafeAsssure documentation to fit for safety assessment
- **BOM cost savings :** No need for external MCU challenger
- MCU & external IC Safety Monitoring


ROBUST PASS 4200h HTOL SIMPLIFIED Tools & Documents

Safety SBC Integrate External Safety Monitoring

Independent Fail Safe State Machine

- Physical & Electrical independance to fit for ASILD
- Power Management Monitoring Unit (UV / OV)
- Analog & Digital Built In Self
 Test to minimize Latent Faults
- ✓ Own Reference & Supply to Reduce Common Cause Failure

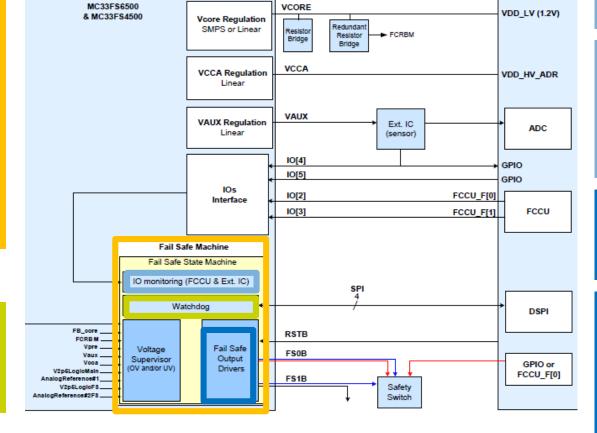
 Challenger
 Replace external MCU Monitoring

Safety MCU

HW Redundancy

✓ Vcore external Monitoring

MCU Monitoring

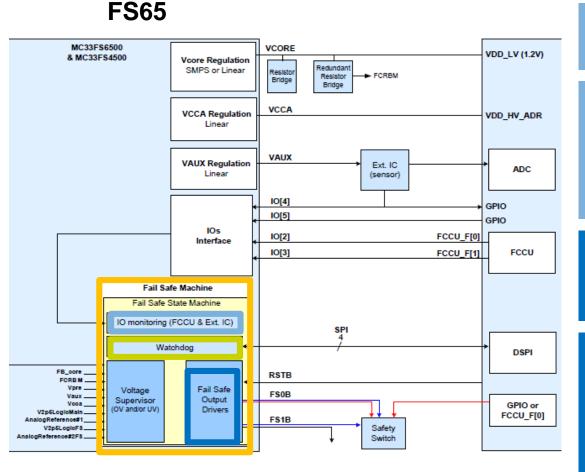

- ✓ FCCU : Fault Collection Control Unit
- Monitor Dual Core Lock Step Modes MCUs

 RSTb – Fail Silent Mode
 Configurable RSTb activation giving more system availability

Fail Safe Output Pins

- Redundant System Fail Safe enabler
- Second Fail Safe pin to assert safety path with configurable delay after failure

Safety SBC Integrate External Safety Monitoring


Safety SBC

Independent Fail Safe State Machine

- Physical & Electrical independance to fit for ASILD
- Power Management Monitoring Unit (UV / OV)
- Analog & Digital Built In Self
 Test to minimize Latent Faults
- ✓ Own Reference & Supply to Reduce Common Cause Failure

- ✓ Challenger
- Replace external MCU Monitoring

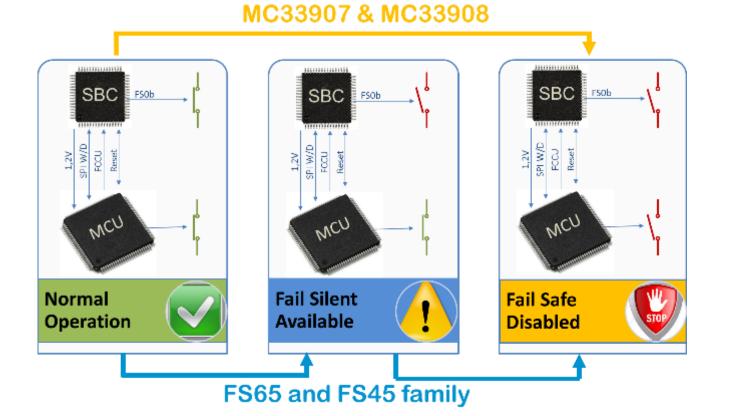
Safety MCU

HW Redundancy

✓ Vcore external Monitoring

MCU Monitoring

- ✓ FCCU : Fault Collection Control Unit
- Monitor Dual Core Lock Step Modes MCUs

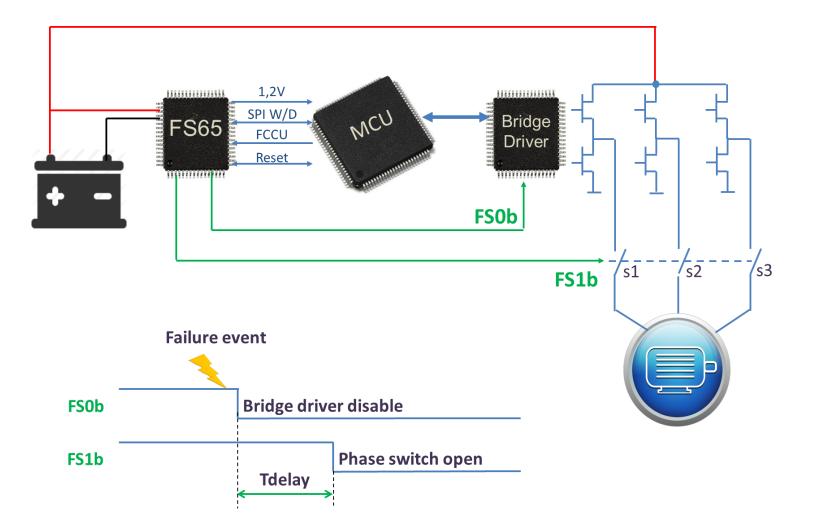

 RSTb – Fail Silent Mode
 Configurable RSTb activation giving more system availability

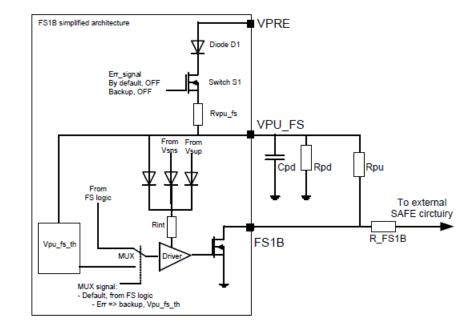
Fail Safe Pin (FS0b) :

- Redundant System Fail Safe enabler
- Second Fail Safe pin to assert safety path with configurable delay after failure

Dependability: Safety vs Availability Qualitative Analysis – Enabling Fail Silent Operations

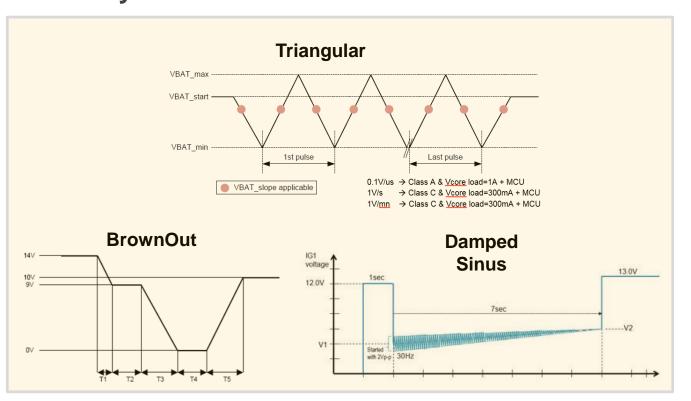
 Jud-Clutch Transmission use case

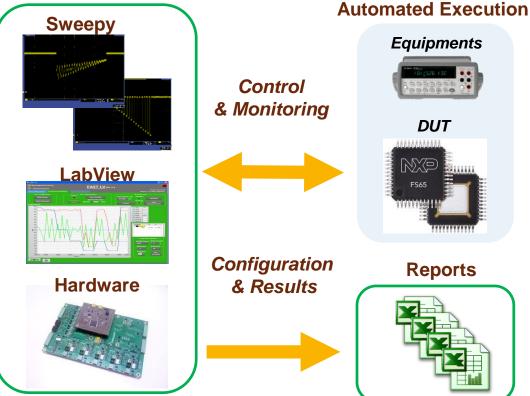

 Image: Clutch Creating of the state stat


- 1. **CONFIGURABLE RESET** at SAFE STATE activation to enable **MCU Diagnostic**.
- CONFIGURABLE SAFE STATE, independently for each failure with 2nd Fail Safe output.
- 3. HIGH AVAILABILITY : No MCU shutdown in case of multiple failures.
- 4. SMART DEGRADED MODE : Application is failing with safe and available operation

FS65 FS1B Tdelay Use Case: Motor Demagnetization

✓ UNIQUE VERSUS COMPETITION





- Digital Tdelay configurable from 0 to 3150 ms during INIT phase
- Analog Tdelay configurable through Rpd/Cpd in case of battery or oscillator loss (16 KΩ/ 3.3 uF for 35 ms)

Functional Robustness - Integrated & Automated Test Platform Battery environment & Non-ISO Pulses

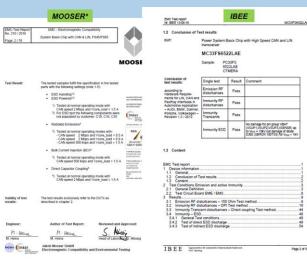
BENEFITS – EXTENDED VALIDATION

Car OEMs PULSES - Database INCREASE USE CASE Coverage - Break the limit. (x10) ACCELERATE VALIDATION – Reduce validation by 4 ISO26262 COMPLIANT - Full Traceability MULTIPURPOSE - Non-ISO, Funct. Validation

FS65/FS45 High Reliability Performance for Car Electrification Results higher than AEC-Q100 requirement

- ✓ FS65/FS45 family has been qualified with 2200Hrs of HTOL stress @Tj=150°C (PPAP)
- Extended reliability stress have been performed to cover more aggressive mission profiles like EV/HEV and transmission applications.

	HTOL @Tj=150°C (Grade 1)							
Minimum AEC-Q100	Safety Manual mission profile	Start/Stop alterno starter mission profile	EV/HEV mission profile	Transmission mission profile				
1000Hrs	1300Hrs	2200Hrs	4200Hrs	2700Hrs				
PASS	PASS	PASS	PASS	PASS				



Proven FS45 and FS65 PowerSBC 1st fit for ASIL D Industry Certifications

- Electrical Conformance
- CAN, LIN C&S granted
- CAN Velio granted

Testhouse C&S group GmbH Am Exer 19b D-38302 Wolfenbuettel	CAN	•••• C & S				
Phone: +49 5331/ 90 555 - 1 Fax: +49 5331/ 90 555 -	Testhouse C&S group GmbH Am Exer 19b D-38302 Wolfenbuettel	2602	• C & S			
Final	Phone: +49 5331/ 90 555 - 0 Fax: +49 5331/ 90 555 - 110		IN2.0,	···· C&S		
Test Report Device Under Test Object Family FS6500/F	Final	D-38302 Wolfenbuettel L Phone: +49 5331/ 90 555 - 0 Fax: +49 5331/ 90 555 - 110	IN 2.2	1.		
Manufacturer NXP Sen Type MC33FSI Sample marking PC33FSI	Test Report Device Under Test			LEA ETHICAGE (1 MAR		
Number of Pages Test Period	Object Family FS6500/FS4500 Manufacturer NXP Semiconduc Type MC33FS6522LAE	Final Test Report Device Under Test	P16	_0183-4_009_FS6500_L20_Report0 Date of Approval: 2016-June-2		
Test Method / Test Require	Sample marking PC33FS 6522LAE Number of Pages	Object Family FS6500/FS4500 Manufacturer NXP Semiconductors	Order No.	P16_0183 NXP Semiconductors		
Performed Tests and Refe	Test Period Test Method / Test Requirement	Type MC33FS6522LAE Sample marking PC33FS 6522LAE C	Address	Le Mirail - BP 72329 Toulouse Cedex 1, 31023 France		
Conformance Test Result: 1 Homogeneous Network Nodes	Performed Tests and References	Number of Pages	52			
2 Heterogeneous Network Nodes - Mix of 6	Conformance Test Results	Test Period Test Method / Test Requirement	from ww25/2016 until v LIN Conformance Test			
For detailed information see This Test Report shall not be unchanged.	1 SAE J2002-2 conformance test f J2002-1 devices -Physical Layer-	Performed Tests and References		Physical Layer al Layer Specification Revision 2.0 ersion 1.0 August 1, 2004		
Approved by	For detailed information see chapter This Test Report shall not be reprodu	Conformance Test Results 1 LIN OSI Layer 1 for Revision 2.0	The Test Results refer SLAVE. Pass	st Results refer to the delivered device configured as		
Bollati, President unchanged. Approved by		1 LIN OSI Layer 1 for Revision 2.0 Pass For detailed information see chapter Test List at the following pages.				
	L. Kukla, Project Manager	This Test Report shall not be reproduce unchanged. Approved by		I of the test house, except in full and		
		L. Kukla, Project Manager	1 Europe	ier. Project Engineer		

- EMC/ESD Conformance
- **IBEE** Zwickau granted
- MOOSER J2962 granted
- AN5238 PCB Design & EMC guideline

✓ UNIQUE VERSUS COMPETITION

- Safety Assessment
- Internal Positive assessment regarding design capability to be used in a safety application up to ASIL D based on TUV SAAR certified process

Documentation Available

NXP Semiconductors Data sheet: Advance Information

Safety Power System Basis Chip with CAN FD and LIN Transceivers

The FS6500/FS4500 SMARTMOS devices are a multi-output, power supply, integrated circuit, including CAN Flexible Data (FD) and/or LIN transceivers, dedicated to the automotive market.

Multiple switching and linear voltage regulators, including low-power mode (32 μ A) are available with various wake-up capabilities. An advanced power management scheme is implemented to maintain high efficiency over a wide range of input voltages (down to 2.7 V) and output current ranges (up to 2.2 A). The FSs600/FS4500 includes configurable Fail-safe/Fail silent safety behavior and features, with two fail-safe outputs, becoming a full part of a safety oriented system partitioning, to reach a high integrity safety level (up to ASIL D). The built-in CAN FD interface fulfills the ISO11898-2 and -5 standards. The LIN interface fulfills LIN protocol specifications 2.0, 2.1, 2.2, and SAEJ2602-2. Features

- Battery voltage sensing & MUX output pin
- Highly flexible SMPS pre-regulator, allowing two topologies: non-inverting buck-boost and standard buck
- Family of devices to supply MCU core from 1.0 V to 5.0 V, with SMPS (0.8 A, 1.5 A or 2.2 A) or LD0 (0.5 A)
- Linear voltage regulator dedicated to auxiliary functions, or to sensor supply (V_{CCA} tracker or independent), 5.0 V or 3.3 V
- Linear voltage regulator dedicated to MCU A/D reference voltage or I/Os supply (V_{CCA}), 5.0 V or 3.3 V
 3.3 V keep alive memory supply available in low-power mode
- 3.3 V keep alive memory supply available in low-power mode
 Long duration timer, counting up to 6 months with 1.0 s resolution
- Long duration timer, counting up to 6 months with 1.0 s resolution
 Multiple wake-up sources in low-power mode: CAN, LIN, IOs, LDT
- Multiple wake-up sources if
 Five configurable I/Os

Document Number: FS6500-FS4500 Rev. 5.0, 1/2017

V

FS6500 FS4500

Power System Basis Chip

AE SUFFIX (PB-FREE) 98ASA00173D 48-PIN LQFP-EP

Applications

- Drive Train Electrification (BMS, Hybrid EV and HEV, Inverter, DCDC, Alterno Starter)
 Drive Train - Chassis & Safety (Active Suspension, Steering, Safety Domain Gateway)
 Power Train (EMS, TCU, Gear Box)
 ADA(6) (MW, Dodor Sceneor Events Sofehustro)
- ADAS (LDW, Radar, Sensor Fusion Safety area)

NXP Semiconductors Application Note Document Number: AN5238 Rev. 3.0, 1/2017

> 34

52 53

FS6500 and FS4500 safe system basis chip hardware design and product guidelines

1 Introduction

This application note provides design guidelines for integrating the FS6500 and FS4500 system basis chip (SBC) family of devices into automotive and industrial electronic systems. It shows how to optimize PCB layouts and gives recommendations regarding external components.

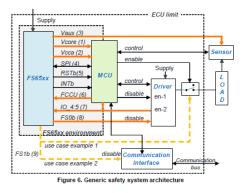
To minimize the EMC impact from embedded DC/DC converters, pay attention to PCB component routing when designing with the FS6500 and FS4500.

Contents

1 Introduction	
2 Overview	
3 Application Schematic	
4 Optional Configurations	
5 FS6500 and FS4500 External Components	
6 FS6500 and FS4500 vs. MC33907/8 Pinout Compatibility .	
7 FS6500 and FS4500 Long Duration Timer (LDT)	
8 MCU mapping with FS6500 and FS4500	
9 FS6500 and FS4500 Extended Use Cases	
10 PCB Lavout Recommendations	
11 ISO Pulses	
12 Physical Layers Certifications	
13 FS4500 and FS4500 Quick Starter Guide	
14 References	
15 Revision History	

KITFS6523CAEEVM

		1										SPFM =	99.3%					LFM -	96.9%
•	Function	Function Description	۰.	Failure mode	Failure mode that has the potential to violate the safety goal in absence of safety mechanism?	Safety Requiremen t Violated	Failure rate distribut ion	Failure mode rate	Applicable Safety mechanism	Safets Mechanism(s) alfowing to prevent the failure mode from violating the safety goals	\$150 26262	Failure mode coverage wit, violation of safety goals	Residual of single point fault failure rate/FIT	Failure mode that may lead to the violation of safety goals in combination with an independent failure of another block ?	Safety Requirement Violated (Latent)	Detection means ? Safety mechanism(s) allowing to prevent the failure mode from being latent ?	Safety Mechanism(s) allowing to prevent the latent failure mode from violating the safety goals	Failure mode coverage with respect to latent failures	Latent multiple point fault failure rate/FTT
FMI	Vccre	MCU core Supply	8.952	Overvoltage	Yes	SC1006	9.8%	0.877	SMI	Yokage supervisor (Monitoring of voltage) Overvoltage detection	D282	99%	0.0088	No					
FM2				Under soltage	Yes	SC0006	9.8%	0.877	SM2	Yokage supervisor (Monitoring of voltage) Undervoltage detection	D.2.8.2	99%	0.0088	No					
FMD				Drift on esternal resistor bridge	Yes	SC1006	0.0%	0.000	SMD	FB_core monitoring (Monitoring of voltage) Overvoltage and Undervoltage detections	D.2.8.2	99%	0.0000	No					
FM4				Yoltage oscillation	Yes	SC1006	9.8%	0.877	SMI16SM2	Yoltage supervisor (Monitoring of voltage)	D.2.8.2	99%	0.0088	No					
FM5				Pover spikes	Yes	SC1006	9.0%	0.877	SMILSM2	Voltage supervisor (Monitoring of voltage)	D.2.8.2	93%	0.0088	No					
FM6				Drift	Yes	SC1006	9.8%	0.877	SMIESM2	Yoltage supervisor (Monitoring of voltage)	D.2.8.2	9955	0.0088	No					
FM7				FB_core pin shorted to GND	Yes	SC0006	9.8%	0.877	SM2	Yoltage supervisor (Monitoring of voltage) Undervoltage detection	D.2.8.2	99%	0.0088	No					
FM8				FB_core pin shorted to High	Yes	SC0006	9.8%	0.877	SMI	Yoltage supervisor (Monitoring of voltage) Overvoltage detection	D.2.8.2	99%	0.0088	No					
FM9				FB_corepin open	Yes	SC1006	9.8%	0.877	SMD	FB_core monitoring (Monitoring of voltage) Overvoltage and Undervoltage detections	D282	99%	0.0088	No					
FMD				FB_core pin shorted to adjacent pin "comp_core"	Yes	SC1006	9.0%	0.877	SMD	FB_core monitoring (Monitoring of voltage) Overvoltage and Undervoltage detections	D282	99%	0.0088	No					
FMII				FB_core pin shorted to adjacent pin "HV_select"	Yes	SC0006	9.8%	0.877	SM2	Yoltage supervisor (Monitoring of voltage) Undervoltage detection	D.2.8.2	99%	0.0088	No					

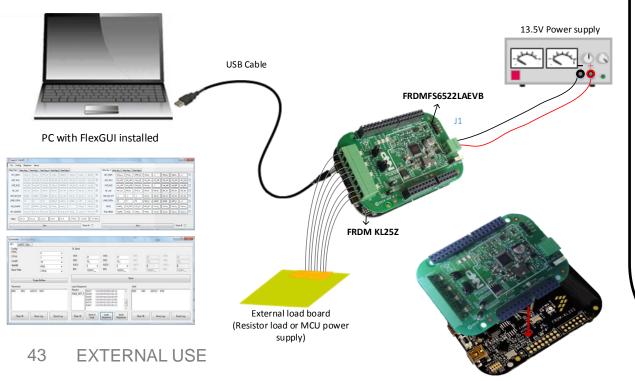

NXP Semiconductors Safety Manual Document Number: FS6500-FS4500SMUG Rev. 2.0, 6/2016

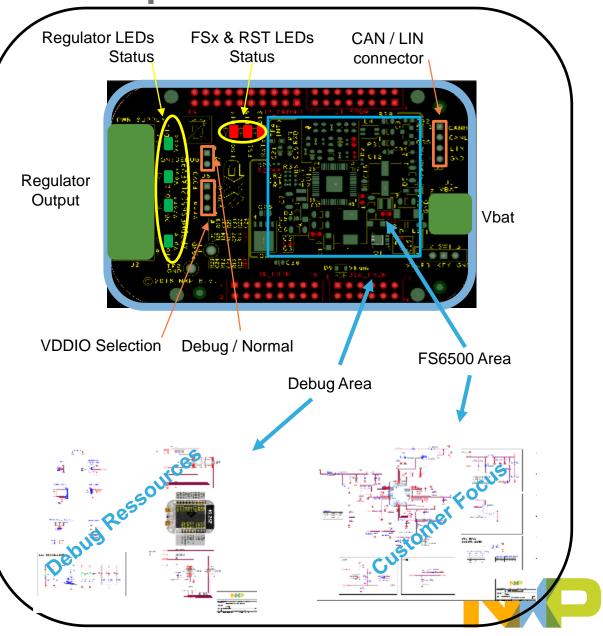
Safety Manual for FS6500 and FS4500

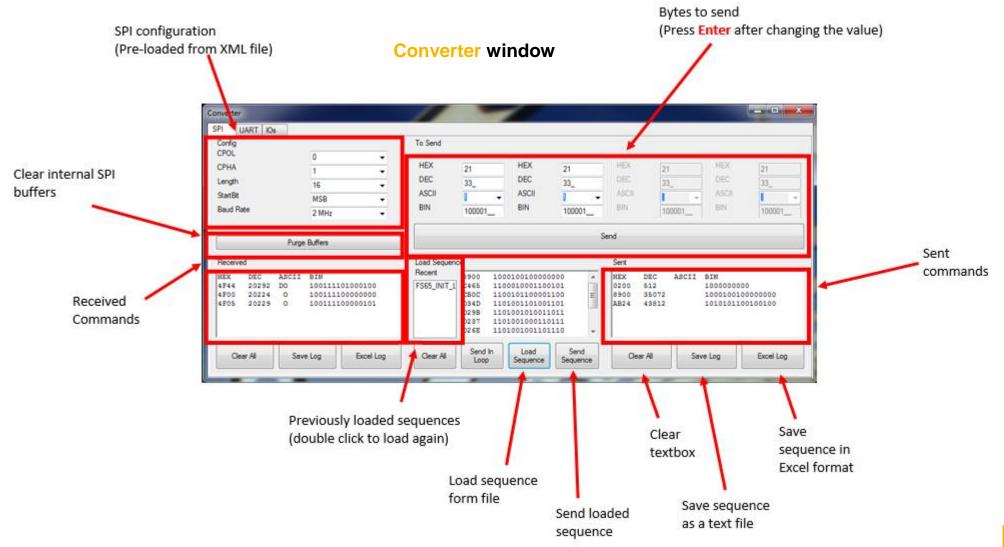
2.1 Generic safety system architecture

The FS6500 and FS4500 are designed to be used in automotive or industrial applications which are needed to fulfill functional safety requirements, as defined by functional safety integrity levels (for example, ASIL D of ISO 26262).

The Figure 6 shows a generic safety system architecture example. The FS6500 and FS4500 are intended to be the main power supply for the MCU (V_{CORE} and V_{COA}) and the sensor (V_{AUX}), with MCU monitoring (watchdog and FCCU) and Fail-safe outputs (FS0B and FS1B) to put the system in safe-state.




Safety Manual


FRDMFS6523CAEVM kit – Hardware description 1/2

- □ Size 33mm x 33mm
- □ Support wide range of FS65xx / FS45xx family
- Close partnership with best in class passive components suppliers (Coil, Capacitor, Diode, Transistor)
- □ Low cost evaluation board & Arduino compatible
- □ 2 kits available: FRDMFS6523CAEVM & FRDMFS4503CAEVM

FRDMFS6523CAEVM kit - FLEX GUI 1/2

FRDMFS6523CAEVM kit – FLEX GUI 2/2

Registers window

FlexGUI - FS650 File Config	0 Datasheet	About											1			_ 0	x
		Reg 3 Read Reg 4	Read Reg	5 Read Reg	6			Write Reg 1 Wri	e Reg 2 Wi	rite Reg 3 V	Vrite Reg 4						
INIT_VREG	ICCA_LI T	CCA_ IPFF_DI	VCAN_	RESER	TAUX_L	VAUX_	BATFAI	INIT_VREG	ICCA_LI	TCCA_	IPFF_DI	VCAN_	_0	TAUX_L	VAUX_	_0	
INIT_WU1	WU_IO0 V		IO2 1:0	WILL02	WILLO2	-WU_104	WU_IO4	INIT_WU1	WU_100	WU_IO0	WU_102	WU_102	WU_IO3	WU_IO3	WU_I04	WU_I04	
INIT_WU2	WU_IO5	VU 105 C/ Desc	ription IO_2 v O wake-up ca		guration	N_SR	LIN_SR	INIT_WU2	WU_105	WU_105	CAN_DI	CAN_W	_0	LIN_J26	LIN_SR	LIN_SR	
INIT_INT	INT_DU	NT_IN IN 01 W	U_G on rising U_G on fallin	edge only -			INT_IN	INIT_INT	INT_DU	INT_IN	INT_IN	INT_IN	INT_IN	INT_IN	INT_IN	INT_IN	
INIT_INH_INT	RESER	RESER RE 11 W	ake-up on ar	iy edge		IT_IN	INT_IN	INIT_INH_INT	_0	_0	_0	INT_IN	INT_IN	INT_IN	INT_IN	INT_IN	
LONG_DURA	F2 F		REG_S	LDT_R	MODE	LDT	LDT_IN	LONG_DURA	F2	F1	FO	REG_S	CLEAR	MODE	LDT_E	_0	
HW_CONFIG	LS_DE R	RESER VCCA_	VCCA_	VAUX_	1	DFS_H	DBG_H	MODE	VKAM_	LP_OFF	GO_LP	INT_RE	Secure_	Secure_	Secure_	Secure_	
WU_SOURCE	IO_5_W	0_4_W I0_3_W	IO_2_W	10_0_W	AUTO_	LDT_W	PHY_W	REG_MODE	VCORE	VCCA_	VAUX_	VCAN_	Secure_	Secure_	Secure_	Secure_	
Status SPI_	_G WU_C	G CAN_G	LIN-G	IO-G	VPRE-G	VCORE	- VOTHERS]									
		Read				Chec	k All 🔲				Write				Cheo	:k All 📃	

On the left side, read registers content:

- 1 by 1 by checking the individual register checkbox
- All together by checking the "Check All" checkbox

<u>Tips:</u>

Maintain the mouse on a bit to get on-line help

On the right side, write registers content

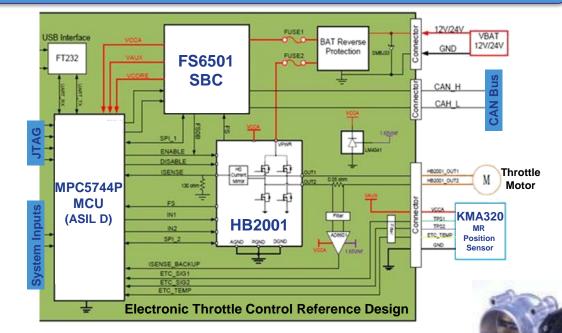
- 1 by 1 by checking the individual register checkbox
- All together by checking the "Check All" checkbox

<u>Tips:</u>

- The secure bits, and the parity bit, are <u>automatically</u> calculated by the tool

FUNCTIONAL SAFETY MOTOR CONTROL

MC33HB2000 & MC33HB2001 Motor Driver

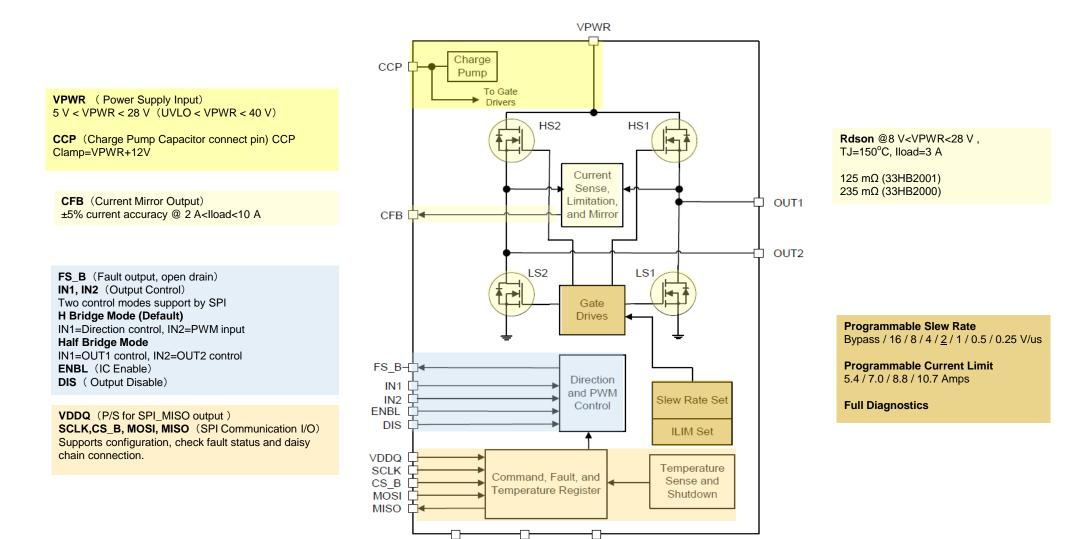

High availability 5 Amp H-Bridge driver with enhanced ISO26262 safety features, flexible SPI control, and patented thermal management for continuous operation

Differentiation

- ISO26262 qualifiable
- Current feedback with 5% real time accuracy
- Lowest $R_{DS(ON)}$ of 65 m Ω (typical)
- Lowest thermal resistance < 1°C/W
- Smallest package with 6 x 6mm QFN
- Patented thermal protection current limiting

Features

- 4.5 36V supply, 40V transient
- Pin compatible $R_{DS(ON)}$ options (65 / 120 m Ω)
- SPI selectable 4x current limits (5.4 10.7 A)
- SPI selectable 8x slew rates (0.25 16 V/µs)
- Optional 10 x 11mm SOIC-EP & 8 x 8mm PQFN



Applications

- Electronic throttle control (ETC)
- Electronic gas recirculation (EGR)
- Multi-port injection (MPI) flaps control
- Gasoline direct injection (GDI) swirl & whirl flaps
- Industrial, commercial & medical motor control

HB2000 & HB2001 H-Bridge Circuit Block Diagram

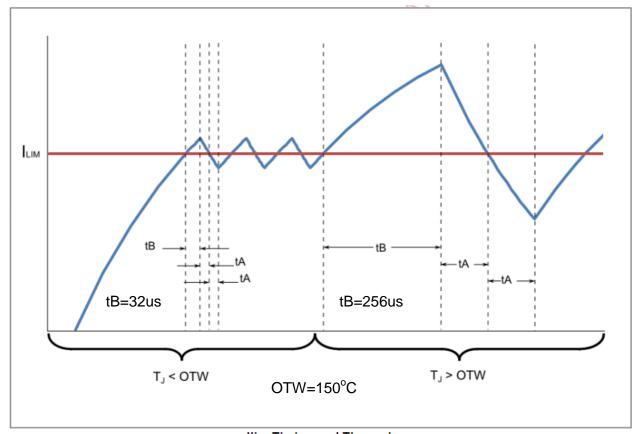
DGND

PGND

AGND

HB2000 & HB2001 Enhanced Diagnostics & Safety

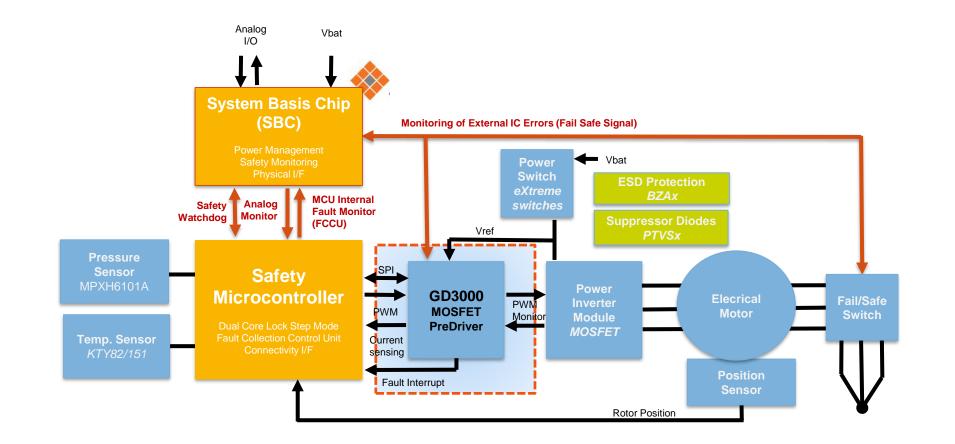
- Any status bit can be programmed to feedback via status pin
- SPI register always provides detailed status bits
 - -Over Temperature Shutdown
 - -Thermal Warning
 - -Over Current
 - -Open Load (in standby mode and in normal full H-bridge operating mode)
 - Short Circuit to Ground Output 1
 - Short Circuit to Ground Output 2
 - -Short Circuit to Power Output 1
 - Short Circuit to Power Output 2
 - -Vpwr Over Voltage
 - -Vpwr Under Voltage
 - -Charge Pump Under Voltage
 - -SPI Framing Error
 - -I/O withstands 36V



HB2000 & HB2001 Active Current Limit

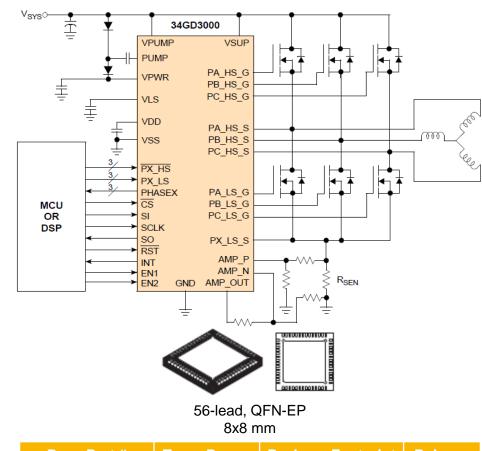
Programmable Current Limit

- 4 settings from nominal 5.4 A to 10.7 A average
- Short Circuit threshold scales up/down as per the current limit selected
- Patented thermal management does not compromise the current set point; delivers more torque


Setting	I _{LIM}	Short Circuit HS	Short Circuit LS	Units
00	5.4	11.9	10.9	Α
01	7.0	13.5	12.5	Α
10	8.8	15.3	14.3	Α
11	10.7	17.2	16.2	Α

Ilim Timing and Thermal response

GD3000 BRUSHLESS DC MOTOR MOSFET GATE DRIVER



GD3000 Brushless DC Motor MOSFET Gate Driver

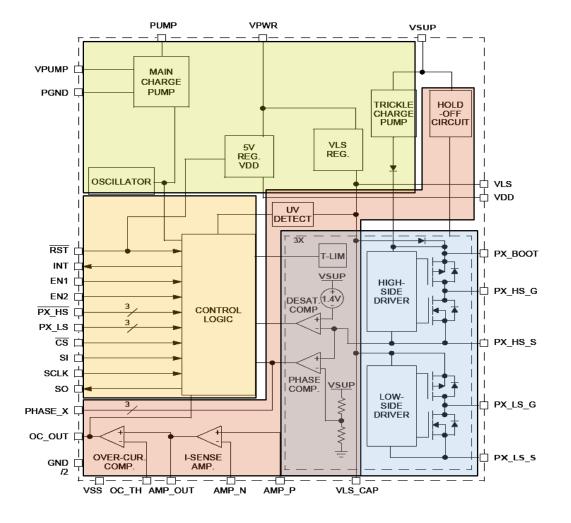
Features

- Small package: 8 x 8 mm with 6.75 x 6.75 mm exposed pad
- Up to 60 V operating voltage range
- PWM > 50 kHz
- 1.0 to 2.5A peak gate drive current
- Wide SPI programmable dead time
- Protection against transient spikes and reverse charge injection

Base Part #	Temp Range (°C)	Package Footprint (LxW mm)	Release
MC33GD3000EP	-40 to 125	QFN 56 (8X8)	Now
MC34GD3000EP	-20 to 105	QFN 56 (8X8)	Now

Typical Applications

- Electronic Power
 Steering
- ABS / Water / Oil / Fuel
 Pumps
- Transmission Pumps
- Air Conditioning Compressors
- Fans
- Quadcopters / UAVs / Drones


MC33937/GD3000 Functional Block Diagram

Integrated Supplies

- -5 V regulator
- Main charge pump
- -VLS regulator
- Trickle charge pump

Logic, Control, and Reporting

- Phase control
- SPI communication
- Dead time control
- Mode control
- Fault status and reporting
- Reset / Enable / Interrupt
- Shoot-through protection / Cross conduction

Sensing and Protection

- Differential current sense
- Over-current
- Phase-error
- Desaturation detect
- Over-temperature
- Under-voltage

External HS / LS Outputs x 3

- Large gate charge drive
- Robustness against dV/dt transients
- Voltage transient immunity

Motor Control HW & SW References

PMSM & BLDC w/ S32K (sensorless)

PMSM w/ MPC5743P (sensorless)

A CONTRACTOR

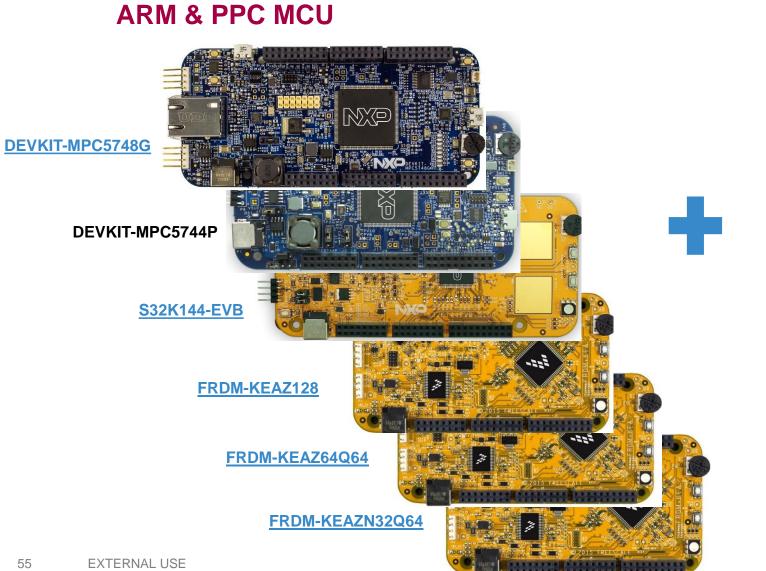
BLDC w/ MPC5604P

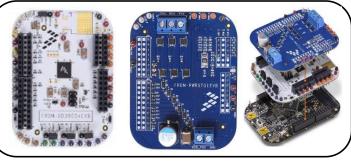
PMSM & BLDC w/ S12ZVM

Dual PMSM w/ MPC5643L

BLDC w/ MPC5643L

BLDC w/ MPC5606B



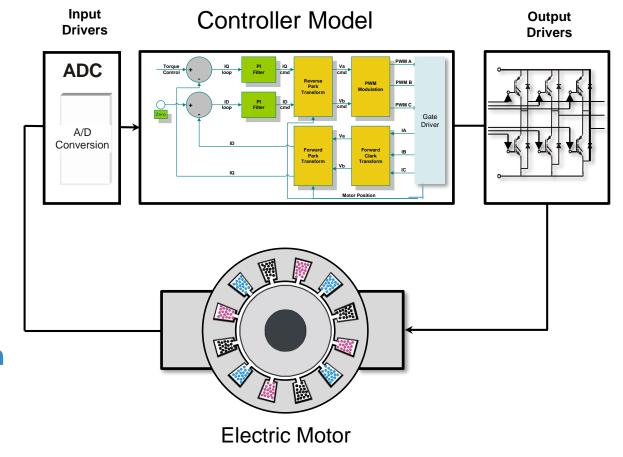

Dual BLDC w/ MPC5643L

GD3000 BDLC/PMSM Motor Control HW

Separate GD3000 and power MOSFET boards

FRDM-FRDM-**PWRSTG** GD3000EVB

GD3000 + MOSFET on one board


DEVKIT-MOTORGD GD3000 Shield supports S32K, KEA and MPC5744P

Motor Control Development Toolbox

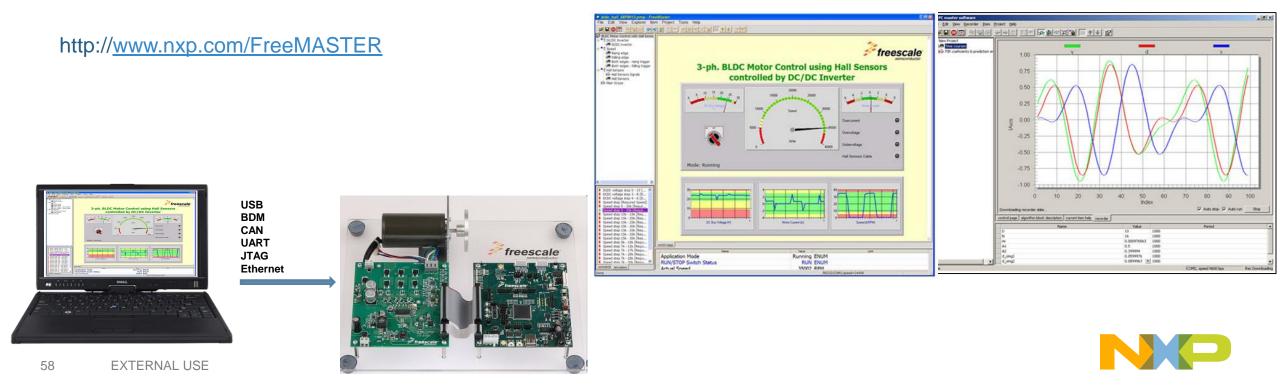
- MATLAB[™]/Simulink[™] model-based design environment for configuring and generating SW to execute motor control algorithms on NXP MCUs
- Software-in-the-loop (SIL) and processor-in-the-loop (PIL) support
- Auto code generation based on the Matlab Embedded Coder
- Bootloader support built in the tool
- Includes Automotive Math and Motor Control Library
- Integration with FreeMASTER for fine tuning

→ Model-based design & auto code generation
→ Reduce development & prototyping time
→ Faster Time to Market
→ Support migration between platforms

www.nxp.com/MCToolbox

Spin Any Motor With MCAT Tool

- Graphical User Interface, plug-in for FreeMASTER
- It interfaces with the target MCU and allows the user to modify software variables during runtime to tune flashed motor control algorithms in real time (e.g. PI parameters of the current loop) to achieve desired control objectives
- Finally generates the header file with static configuration of the tuned parameters
- → Simplifies tuning of the motor application (current / speed loops, sensorless algos)
 → Reduce development & prototyping time
 → Faster Time to Market


Itroduction Parameters Speed Loop Sensors Control Struc Output File App Control Loop Parameters D axis Recurrent PI Controller Q axis PI Controller - Recurrent Sample Time 0.0001 [sec] D_CC1sc 0.24945562 Q_CC1sc 0.39160462 F0 300 [H2] D_CC1sc 0.24945562 Q_CC2sc -0.26567207 § 0.707 [-] D axis ZC Constants Q axis ZC Constants Q axis ZC Constants Output limit 90 %1 D_B1 0.00000000 Q_B1 0.00000000 D_A1 -0.72909313 Q_A1 -0.78175883 -0.78175883 Manually control the loop behavior. The impact can be seen on step change response captured by FreeMASTER recorder V FreeMASTER recorder FreeMASTER recorder	Motor 1: PMSM	•						Tuning Mode	Expert
Loop Parameters D axis Recurrent PI Controller Q axis PI Controller - Recurrent Sample Time 0.0001 [sec] D_CC1sc 0.24945562 Q_CC1sc 0.39160462 F0 300 [Hz] D_CC2sc -0.17128835 Q_CC2sc -0.29567207 § 0.707 [-] D_B0 0.27090887 Q_B0 0.21824137 Output limit 90 [%] D_B1 0.0000000 Q_B1 0.0000000 D_A1 -0.72909313 Q_A1 -0.78175883 -0.78175883	troduction Paramet	ers Cur	rent Loop	Speed Loop	Sensors	Control Struc	Output File	App Control	
Sample Time 0.0001 [sec] D_CC1sc 0.24945562 Q_CC1sc 0.39160462 F0 300 [H2] D_CC2sc -0.1712835 Q_CC2sc -0.29567207 \$ 0.707 [-] D_axis ZC Constants Q axis ZC Constants Q axis ZC Constants Current Pl Controller Limits D_B0 0.27090837 Q_B0 0.21824137 Output limit 90 %1 D_B1 0.0000000 Q_B1 0.0000000 D_A1 -0.72909313 Q_A1 -0.78175863 -0.78175863				Curre	ent Contro	ol Loop			
F0 300 [Hz] D_CC2sc -0.17128835 Q_CC2sc -0.29567207 ξ 0.707 [-] D axis ZC Constants Q axis ZC Constants Q axis ZC Constants Current Pl Controller Limits D_B0 0.27090687 Q_B0 0.21824137 Output limit 90 1% D_B1 0.0000000 Q_B1 0.0000000 D_A1 -0.72909313 Q_A1 -0.78175863 -0.78175863	Loop Parameters			— D axis Re	ecurrent PI Co	ntroller —	— Q axis Pl	Controller - Re	ecurrent —
ξ 0.707 [-] D axis ZC Constants Q axis ZC Constants Current Pl Controller Limits D_B0 0.27090687 Q_B0 0.21824137 Output limit 90 % D_B1 0.0000000 Q_B1 0.0000000 D_A1 -0.72909313 Q_A1 -0.78175863	Sample Time	0.0001	[sec]	D_CC1sc		0.24945562	Q_CC1st	0	.39160462
Current Pl Controller Limits D_B0 0.27080887 Q_B0 0.21824137 Output limit 90 %1 D_B1 0.0000000 Q_B1 0.0000000 D_A1 -0.72909313 Q_A1 -0.78175863 Manually control the loop behavior. The impact can be seen on step change response captured by esponse captured by	FO	300	[Hz]	D_CC2sc		-0.17128835	Q_CC2sc	-0	29567207
Output limit 90 94 D_B1 0.00000000 Q_B1 0.00000000 D_A1 -0.72909313 Q_A1 -0.78175883	ξ	0.707	[-]	— D axis ZC	Constants		— Q axis Z(Constants -	
D_A1 -0.72909313 Q_A1 -0.78175863 Manually control the loop behavior. The impact can be seen on step change response captured by	Current PI Controlle	er Limits		D_B0		0.27090687	Q_80	0	21824137
Manually control the loop behavior. The impact can be seen on step change response captured by	Output limit	90	1961	and the second second		0.00000000	Q_B1	0	.000000000
behavior. The impact can be seen on step change response captured by		all all	/ '	D_A1		-0.72909313	Q_A1	-0	.78175863
					behavio be seer respons	or. The imp n on step cl se captured	act can hange d by		

www.nxp.com/MCAT

FreeMASTER – Run Time Debugging Tool

- User-friendly tool for real-time debug monitor and data visualization
 - -Completely non-intrusive monitoring of variables on a running system
 - -Display multiple variables changing over time on an oscilloscope-like display, or view the data in text form
 - -Communicates with an on-target driver via USB, BDM, CAN, UART

👤 Account 🗐 English * 🛛 🦐 Cart

Q

 $\boxtimes \leq$

Key URLs

NXP > Software and Tools > Run-time Software > Automotive Software and Tools > Motor Control Development Solutions

Automotive Motor Control Development Solutions

NXP automotive motor control development solutions are complete development kits allowing the rapid prototyping and evaluation of motor control applications without the need to wait for final hardware design.

The kits consists of two boards:

PRODUCTS

- 1. An NXP 32-bit MPC5xxx controller board or 16-bit S12 controller board (device specific and orderable separately in some cases - see individual product pages for details)
- 2. A 3-phase low-voltage power stage board (device independent)

The automotive motor control development kits support two major types of electric motors:

- Brushless DC (BLDC) Motors
- Permanent Magnet Synchronous Motors (PMSM)

An integral part of the automotive motor control development solution is the application software which provides a complete, easy-to-use solution for motor control application including use of the automotive math and motor control library set.

More

Motor Control Kits

- KEA128BLDCRD: 3-phase Sensorless BLDC Motor Control Reference Design Based on Kinetis KEA128
- MTRCKTDBN5643L: Dual 3-phase Sensorless BLDC Development Kit with NXP MPC5643L MCU
- MTRCKTDPS5643L: Dual 3-phase PMSM Development Kit with NXP MPC5643L MCU

 MTRCKTSBN5604P: 3-phase Sensorless BLDC Development Kit with NXP MPC5604P MCU

- MTRCKTSBN5606B: 3-phase Sensorless BLDC Development Kit with NXP MPC5606B MCU
- MTRCKTSBN5643L: Single 3-phase Sensorless BLDC Development Kit with NXP MPC5643L MCU
- MTRCKTSBNG128: 3-Phase Sensorless BLDC Development Kit with MC9S12G128 MCU
- MTRCKTSBNZVM128: 3-phase Sensorless BLDC I S12 MagniV MC9S12ZVML128 MCU

Getting Started

- NXP Motor Control Homepage
- Software and Tools
- Automotive Math and Motor Control Library Set
- Motor Control homepage
- Motor Control Toolbox
- FreeMASTER Run-Time Debugging Tool

ALL . Search.

CodeWarrior for Microcontrollers

Featured Videos

Automotive Motor Control Development Kits

(Video - 01:44 min) Fully-loaded motor control development kits are designed to give engineers a complete out-of-the-box experience for permanent magnet synchronous motor (PMSM) or brushed DC (BLDC) motor control solutions. These kits are targeted for automotive motor control applications.

www.nxp.com/AutoMCDevKits

👤 Account 🛛 🕮 English 🔻 🏾 🏣 Cart

Q

 $\bowtie <$

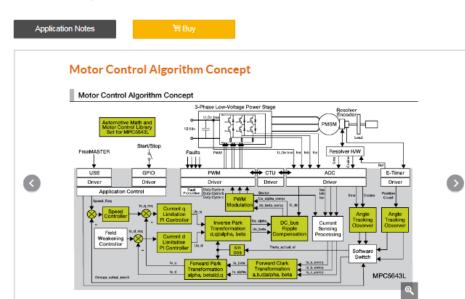
Ο

ALL · Search...

PRODUCTS APPLICATIONS SUPPORT ABO

NXP > Automotive Products > Microcontrollers and Processors > 32-bit Power Architecture > Ultra-Reliable MPC56xx 32-bit Automotive & Industrial Microcontrollers (MCUs)

MTRCKTDPS5643L: Dual 3-phase PMSM Development Kit with Freescale MPC5643L MCU


0	verview	Documentation	Downloads	Buy/Parametrics	Training & Support	
---	---------	---------------	-----------	-----------------	--------------------	--

Jump To

Overview

Overview Features Jump Start Your Design Supported Devices Kit Contains The MTRCKTDPS5643L motor control development kit is ideal for applications requiring two PMSM motors, like active suspension or electric powertrain. The kit is designed to enable rapid prototyping and evaluation of the motor control application without having to wait for the final hardware design. The kit includes a 32-bit NXP® MPC5643L based controller board and the 3-phase low-voltage power stage board.

An integral part of the automotive motor control development kit is the application software which provides a complete reference implementation of the PMSM motor control application and also takes advantage of the Automotive Math and Motor Control Library Set.

Features

The NXP[®] MTRCKTDPS5643L motor control development kit is ideal for applications requiring two PMSM motors, such as active suspension or electric powertrain.

- Designed to enable rapid prototyping and evaluation of the motor control application without having to wait for the final hardware design.
- Includes a 32-bit NXP MPC5643L based controller board and the 3-phase low-voltage power stage board.
- The application software is an integral part of the automotive motor control development kit as it provides a complete reference implementation of the PMSM motor control application and also takes advantage of the Automotive Math and Motor Control Library Set.

Kit Contains

- 3-phase low-voltage power stage based on SMARTMOS MC33397A pre-driver
- 32-bit NXP MPC5643L Dual Motor Controller Board (orderable separately as MTRCCBP5643L)
- AC/DC 24V Universal Power Supply Kit
- Two 3-phase PMSM low-voltage motors
- USB 2.0 A-A type cable, ribbon cables for power stage and controller board connection
- Fact sheet and quick start guide

MC DevKits documentation

MC DevKits example SW

MC DevKits Hardware

Supported Devices

- MC33905: SBC Gen2 with High-Speed CAN and LIN
- MC33937: 3 Phase Field Effect Transistor Pre-driver
- MPC564xL: Ultra-Reliable Dual-Core 32-bit MCU for Automotive and Industrial Applications

Jump Start Your Design

Get Started With MTRCKTDPS5643L Dual 3-phase PMSM Development Kit

This collection of resources will help you to get started with the MTRCKTDPS5643L Dual 3-phase PMSM Development Kit with Qorivva MPC5643L MCU.

- 1. An overview about the product can be found in the fact sheet document.
- Follow the quick start guide below to run the preprogrammed application and spin the PMSM motors using the FreeMASTER run-time debugging tool.

MTRCKTDPS5643L Fact Sheet

Provides an overview and look and feel about the content of the Dual 3-phase PMSM Development Kit with Qorivva MPC5843L MCU. Type: Fact Sheets Format: pdf Size: 240.0 kB

MTRCKTDP \$5643L Quick Start Guide

Provides an overview of the hardware, step-by-step instructions for running the out-of-box demo application and jumper settings quick reference table.

Type: Quick Reference Guides Format: pdf Size: 988.5 kB

AN4518, Dual 3-Phase PMSM Development Kit with MPC5643L

Provides the 3-phase PMSM Development Kit with Qorivva MPC5643L MCU system concept and software implementation details. Covers both single and dual motor control implementations.

Type: Application Notes Format: pdf Size: 7.7 MB

✗ MTRCKTDPS5643L Application Software

Complete motor control application software package.

Type: Apps Software vendor:

MPC5643L Dual Motor Controller Board User Guide

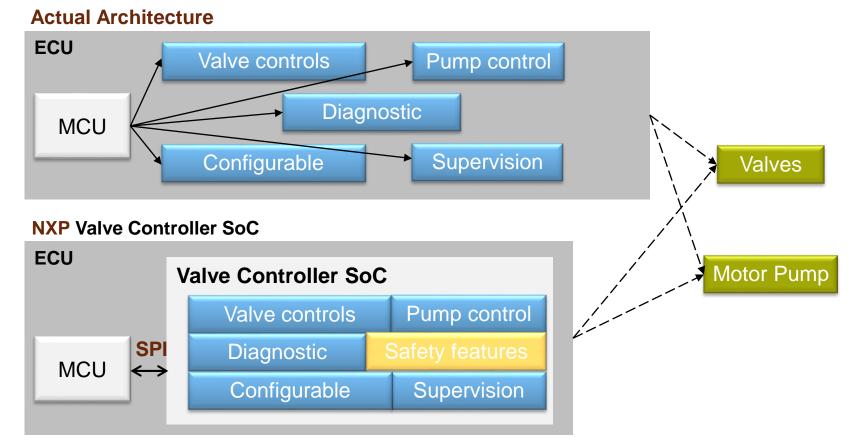
Complete reference for the hardware design and features of the MPC5643L dual motor controller board.

Type: Users Guides Format: pdf Size: 3.5 MB

3-Phase BLDC/PMSM Low Voltage Power Sta User Manual

Complete reference for the hardware design and features of the 3-phase low-voltage power stage.

Type: Users Guides Format: pdf Size: 2.3 MB


Less -

FUNCTIONAL SAFETY VALVE CONTROL

Valve Controller SoC family – System Architecture Overview

- NP

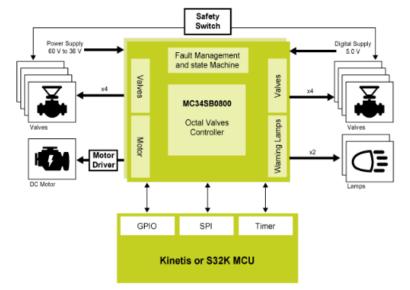
One single analog device to manage the overall Hydraulic / Pneumatic system (Valves + Motor Pump) with safety features

- ✓ BOM cost reduction
- ✓ Design-in simplicity thanks to SPI interface to speed time to market
- ✓ Safe switching off mode for safety and robustness
- 62 CONFIDENTIAL AND PROPRIETARY

MC34SB0410/0800 Valve Controller SoC Solution

Unique system solution to manage Hydraulic or Pneumatic systems (valves, DC motor pump control) with safety features, SPI interface, watchdog and PWM capability

Differentiation


- Fully integrated solution **replacing discrete** solutions for digital and proportional valves control for BOM **cost reduction**
- Best thermal efficiency due to exposed pad (<2°/W) and low Rds(on) $(<300 \text{m}\Omega)$
- Design-in simplicity thanks to **SPI** interface ٠
- Real-time valve current regulation ٠
- Robust and secure solution thanks to **safe MOSFET** switching off all the valves in case of issue

Features

- 5.3V to 36V continuous operation, 40V transient
- 8x valve drivers •

 \Box 4x current regulated +/- 2% up to 2.25A (300m Ω) \Box 4x PWM up to 5 kHz, 5A (225m Ω)

- Integrated valve protection including HS pre-driver
- Integrated **DC pump motor pre-driver** controller 500Hz PWM ٠
- MC34SB0800 in LQFP64 package / MC34SB0410 in LQFP48 package

Applications

- Heavy Equipment and Construction Machinery
- Forklifts
- Water control system for irrigation
- Food control in animal farms
- Hydraulic Press
- Petrol Pump dispenser
- ATM

63 CONFIDENTIAL AND PROPRIETARY http://www.nxp.com/products/automotive-products/discretes-and-logic/low-side-switches/hydraulic-pneumatic-valves-controller-system-with-safetyand-monitoring:VALVE-CONTROLLER-SYSTEM?fsrch=1&sr=2&pageNum=1#featuresExpand

TYPICAL APPLICATIONS

Medical

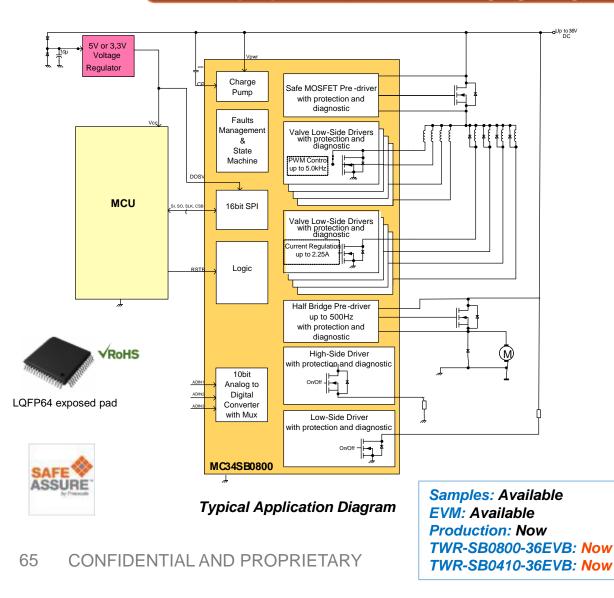
- Oxygen concentrators
- Medical test equipment
- Dialysis machines
- Blood pressure monitoring

Commercial

- 3D printers
- Soda dispensers
- High end showers and baths: water temperature control

Industrial

- Heavy Equipment and Construction Machinery
- Forklifts
- Water control system for irrigation (connected to farm tractors)
- Food control in animal farms
- Cooling systems
- Hydraulic Press
- ATM
- Petrol pump dispenser



Valves Controller SoC: MC34SB0800 / MC34SB0410

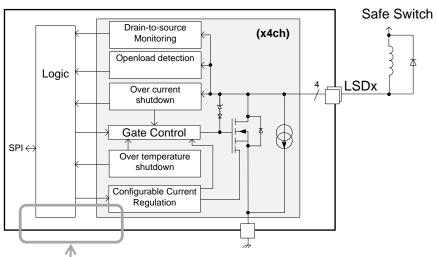
Thermally efficient, Valve Controller with SPI for driving compressor motors, PWM & proportional valves leveraging integrated Safe Assure functional safety features

Differentiating Points

- Best thermal efficiency due to exposed pad (<2°/W) and low Rds(on) (<300mΩ)
- · Design-in simplicity thanks to SPI interface
- Real-time valve current regulation
- Robust and secure solution thanks to safe MOSFET switching off all the valves in case of issue

Key Characteristics

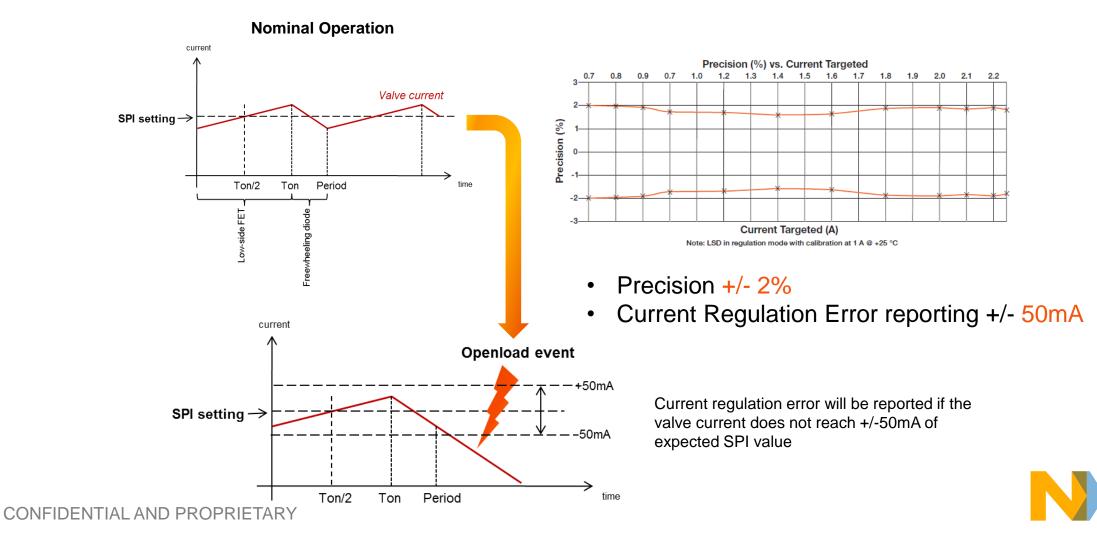
- 8x valve drivers
 - **4x** current regulated **+/- 2%** up to 2.25A (300mΩ)
 - **a 4x PWM** up to 5 kHz, 5A (225m Ω)
- Integrated valve protection including HS pre-driver
- Integrated **DC pump motor pre-driver** controller 500Hz PWM
- Self protected high-side driver (1.0Ω)
- Self protected low-side drivers (14Ω)
- Die temperature warning
- Fault management & State Machine
- 5.3V to 36V continuous operation, 40V transient
- 10-bit Analog-to-Digital Converter
- 16-bit SPI interface with watchdog & challenger (octal only
- MC34SB0800: LQFP64 package
- MC34SB0410: LQFP48 package


Protection - Embedded Supervision overview

66 CONFIDENTIAL AND PROPRIETARY

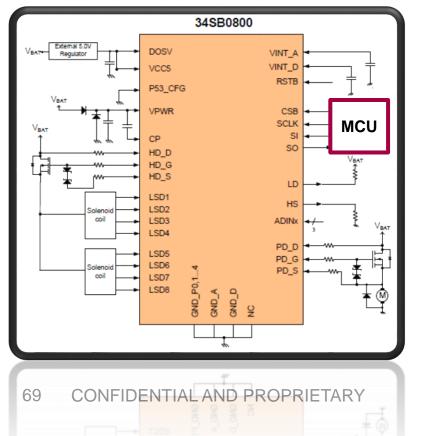
MC34SB0800/0410: Accurate Current Regulated Valves Drivers (x4Ch) (1/2)

- Current Regulated Valves (x4Ch)
 - Solenoid driver composed by low-side switch which is controlled by SPI
 - Low-side driver (300mΩ max Rds(on) for SB0800 and 225mΩ max Rds(on) for SB0410 @ 150°C) either as current regulator or as digital
 - Accurate current regulation up to 2.25A
 - Configurable PWM frequency up to 5.0kHz
 - PWM duty-cycle resolution 0.1%
 - External freewheeling diode needed
- Diagnostic and Protection per Driver
 - Openload detection in off-state
 - Drain-to-source state monitoring
 - Over-current shutdown (5.0A min)
 - Over-temperature shutdown
 - Error current regulation


Thanks to configurable digital PI-controller (proportionalintegral) for all the valves, the response time for current regulation can be optimized:

$$\frac{KI}{(z-1)} + KF$$

MC34SB0800/0410: Accurate Current Regulated Valves Drivers (2/2)


The current regulation is based on Ton/2 current measurement (through the low-side)

68

VALVE DRIVER: SW COMPONENT OVERVIEW

- Direct Valves Controller MCU agnostic Analog software component
 - Supported technology: Processor Expert AML (KSDK 2.0, S32K SDK)

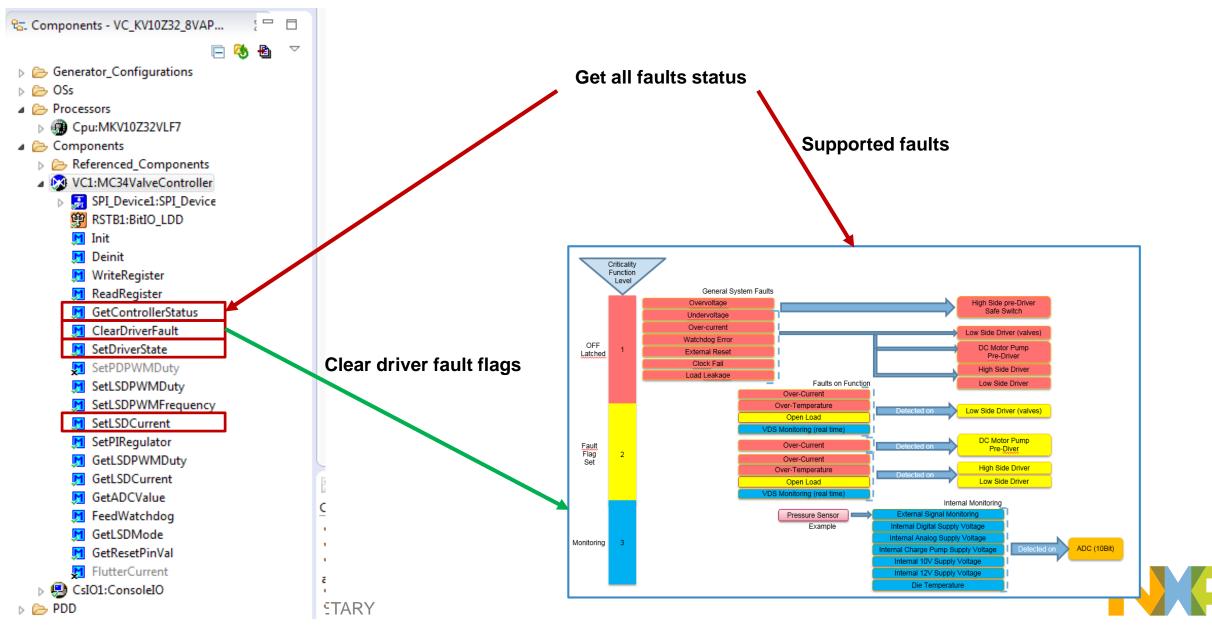
MCU cross-sell enablement tools

- KL25Z CW10.6 project examples
- KL25Z, KL43Z Freemaster project examples
- KL25Z, K20, KV31, KL43Z KDS project examples
- KL25Z IAR project example
- Compatible with KV10, K64, K22, K70
- Projects Compatible with TWR-SB0800-36EVB & TWR-SB0410-36EVB

Fast & Easy customer complex system enablement

- Control and monitoring up to 12 outputs
- Safety features (watchdog w/ challenger, protections & diagnostics)
- Flutter frequency to prevent valves friction

MC34SB0800 Safety Methods overview (1)


Method	Description
Init	Initializes the device with predefined values.
Deinit	Deinitializes the device. It sets reset pin (RSTB) to LOW. Valve controller consequently clears all registers of valve con- troller device.
WriteRegister	This method writes a value to selected SI register. It allocates SPI bus and calls internal function VC_write_register.
ReadRegister	This method reads a value from selected SO register. It allo- cates SPI bus and calls internal function VC_read_register.
GetControllerStatus	Gets selected status information. It reads content of two se- lected device registers and returns them. Then you can check possible faults.
ClearDriverFault	Clears selected fault flags. This method handles only faults related to driver modules (all lowside drivers, highside driver, pump motor predriver). It is not intended to clear faults of supervision module (i.e. RST_WD, RST_ALU, RST_EXT, RST_CLK, VINT_UV, VCC5_UV, DOSV_UV, OT, GND_LOSS, VPWR_UV, VPWR_OV).
SetDriverState	This method sets selected driver output value. It handles driver either by SPI bit (SPI control mode) or directly by output of the MCU (Direct control mode). In case of PWM control, "dsON" stands for predefined PWM duty, "dsOFF" means 0 percent duty.
SetPDPWMDuty	This method sets PWM duty cycle for pump motor predriver. It is available only when property "Input Control" of pump mo- tor predriver is set to "PWM".
SetLSDPWMDuty	This method sets PWM duty cycle for selected lowside driver (LSD) for inductive loads. An error is returned when the se- lected LSD is not in PWM mode. It also reports an error when the PWM duty converted to target current is above limit (see property "Maximum Current").

SetLSDPWMFrequency	This method sets PWM frequency for selected lowside driver (LSD) for inductive loads.
SetLSDCurrent	This method sets current target for selected lowside driver for inductive loads (LSD). This method is blocking. When the low- side driver is in PWM mode the software PI regulation is uti- lized to reach current target. An error is returned when the cur- rent target is above limit (see property "Maximum Current").
SetPIRegulator	This method sets parameters of PI regulator.
GetLSDPWMDuty	This method returns PWM duty cycle for selected lowside
	driver for inductive loads (LSD). It can be used only when se-
	lected LSD is in current regulation mode.
GetLSDCurrent	This method returns current value for selected lowside driver
	for inductive loads. It can be used only when selected LSD is in
	PWMed mode.
GetADCValue	This method gets and interprets selected ADC value from a
	valve controller register.
FeedWatchdog	This method handles watchdog of valve controller. It sends
	MCU monitoring result computed for LFSR output received
	from the device.
GetLSDMode	This method returns mode for selected lowside driver for induc-
	tive loads (LSD).
GetResetPinVal	This method returns value of reset pin. When the pin is LOW
	the valve controller is in fault state. You can use method Init
	for recovery.
FlutterCurrent	This method checks whether to adjust the current of lowside
	driver and sets new current target to create sinusiodal current
	curve. Call this method as often as possible.

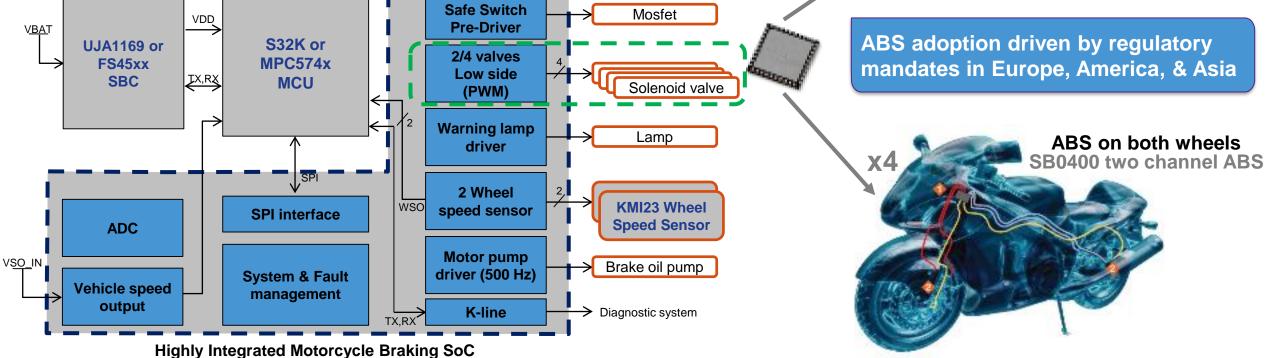
Extract of the MC34ValveController.pdf Pages 3 and 4.

MC34SB0800 Safety Methods overview (2)

Scalable Valves Controller Offer

	SB0421	SB0420	SB0410 SB0800		SB1200	
Regulated Valves Driver	NA	NA	X4 +/-2% accuracy up to 2.25A- 300mΩ With external Freewheeling diode (Mode 1)	X4 +/-2% accuracy up to 2.25A – $300m\Omega$ With external Freewheeling diode	X8 +/-1.5% accuracy up to 2.25A – 200&300m Ω - High side for recirculation integrated.	
PWM Valves Driver	X2 up to 5kHz up to 5A- 160m Ω - 56mJ capable	X4 up to 5kHz up to 5A-160m Ω - 56mJ capable	X4 up to 5kHz up to 5A- 225mΩ - 40mJ capable (Mode 2)	X4 up to 5kHz up to 5A-225m Ω - 40mJ capable	X4 up to 10kHz up to 5A- 300m Ω - 40mJ capable	
Motor Control	X1 Up to 500Hz	X1 Up to 500Hz	Jp to 500Hz X1 Up to 16kHz X		X1 Up to 16kHz with active recirculation	
High Side Safe switch	X1	X1	NA	X1	X1	
PMIC	NA	NA	NA	NA	X1 DCDC buck 440kHz configurable 1.2 to 3.3V up to 1.0A X1 LDO 5V up to 200mA X1 LDO 3.3V up to 200mA X1 LDO 5V external up to 100mA with short to VBAT protection	
CAN Physical Layer	NA	NA	NA	NA	X2 chokeless capable up to 36dBm	
ADC	X1 10bits 3 inputs	X1 10bits 3 inputs	X1 10bits 3 inputs	X1 10bits 3 inputs	X1 10bits 3 inputs	
SPI	X1 16bits with Challenger watchdog			X1 16bits with Challenger watchdog	X1 32bits with challenger watchdog and CRC	
Safety	All hardware monitoring (OV,UV,overtemp, overcurrent)	All hardware monitoring (OV,UV,overtemp, overcurrent)	Safe Assure All hardware monitoring (OV,UV,overtemp, overcurrent)	Safe assure All hardware monitoring (OV,UV,overtemp, overcurrent)	Safe assure All hardware monitoring (OV,UV,overtemp, overcurrent) LBIST & ABIST	

72 CONFIDENTIAL AND PROPRIETARY


Motorcycle Braking SoC

Differentiation

- HW & SW compatible solution for 1W & 2W
- Low system BOM w/ integrated safety functions
- Small footprint 7x7mm 48 pin QFN package

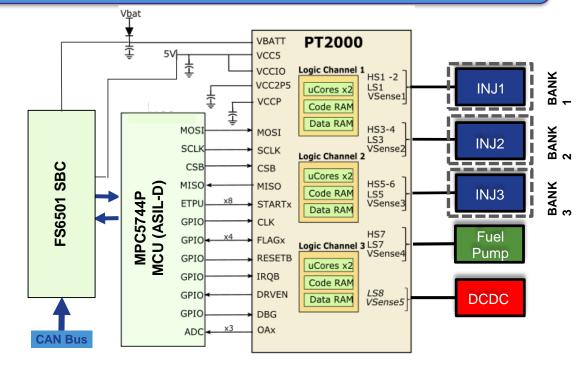
ABS on front wheel only SB0401 one channel ABS

х2

FUNCTIONAL SAFETY ENGINE (SOLENOID) CONTROL

PT2000 / MC33816 Programmable Solenoid Controller

Programmable DFI controllers with 72V high & low side pre-drivers for driving up to 8 solenoids with precision output current profiles in dynamic load environments targeting 3, 4 & 6 cylinder engines


Differentiation

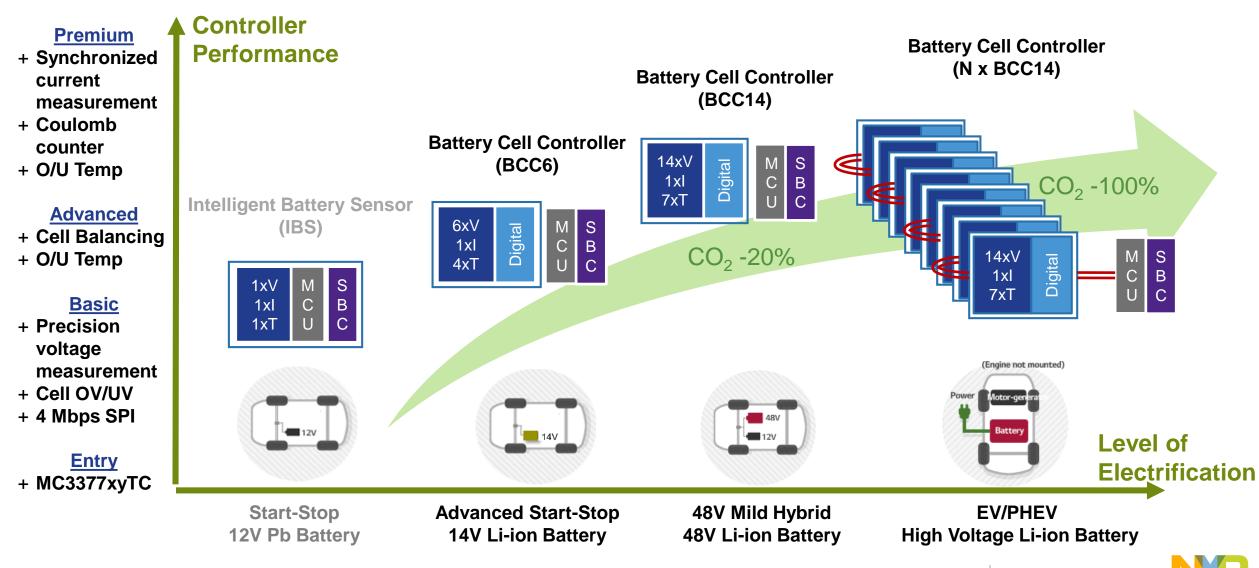
- High precision drive in dynamic load environments
- Low latency feedback with <900 ns response time
- + Flexible current profiles through programmable μCores
- Redundant drive disable for functional safety compliance
- Programmable End-of-Injection measurement (PT2000)

Features

- + 5 72V operation w/ 12 72V DC/DC boost converter
- Supports 2 or 3 bank Vboost configurations w/ full overlap
- Programmable diagnostics: OV, UV, OC, OT, Open Load
- 16-bit SPI control with IRQB and interrupt flags
- · Integrated microcode encryption for enhanced security
- LQFP with exposed pad (PB-free):
 - PT2000 6 channel: 12 x 12 mm 80 pin
 - MC33816 4 channel 10 x 10 mm 65 pin

Typical Applications

- Gasoline direct injection (GDI) for 3, 4 & 6 cylinders
- Diesel direct injection (DDI)
- CNG / LNG engines & variable valve actuators (VVA)
- Active suspension & transmissions (CVT, DCT, AT)



FUNCTIONAL SAFETY BATTERY MANAGEMENT SYSTEM

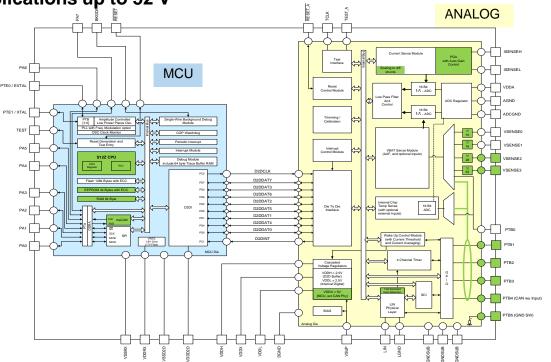
Battery Cell Controllers - Portfolio Overview

Scalable system solution addressing all battery management applications – maximizing reuse

INTERNAL/PROPRIETARY 77

Intelligent Battery Sensors MM912J637 / MM9Z1J638

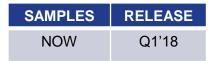
Precision battery monitoring solution enabling lower system power consumption with operating redundancy for mission-critical applications up to 52 V


Differentiating Points

- LIN conformance and ESD/EMC robustness
- Configurable ADC HW filters reduce Software complexity
- Input voltage flexibility to address variety of applications Operating voltage redundancy with 3 ADC paths
- 70% stop duty cycle operation
- 20% lower system current consumption

Product Features

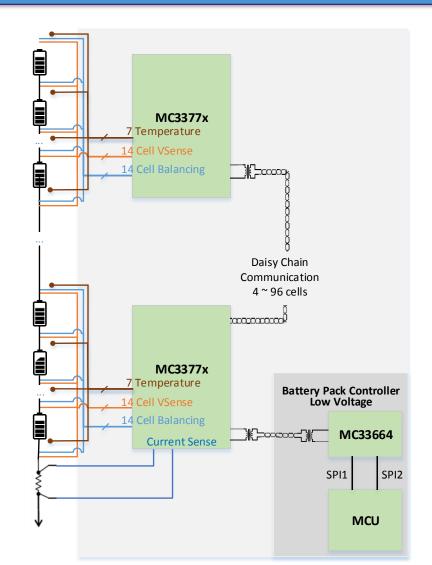
- Integrated MCU, Flash, RAM, communication
- 3x 16-bit ADC for Current, Voltage and Temperature
- Low-power features
- Multiple wake-up features (Current, temp, etc)
- Configurable HW filters (voltage and current SD ADC)
- Robust LIN physical layer
- MM912J637: 16-bit MCU targeting lead acid battery management over LIN interface
- MM9Z1J638: High-end 16-/32-bit MCU targeting a wide range of battery applications over CAN or LIN interface



Typical Applications

- Automotive
 - 12 V Lead Acid, 14 V Li-Ion
 - 48 V HV BMS, Battery Junction Box
- Trucks & Utilities
 - 24 V Lead Acid
- Industrial
 - Energy Storage Systems (ESS), UPS
 - Industrial Automation precision monitor
 - Cordless tools & appliances

MC33771 - 14 Cell Li-ion Battery Cell Controller


Scalable, reliable, safe and BOM optimized Li-ion cell control with low-cost, robust, high-speed Isolated communication

Differentiation

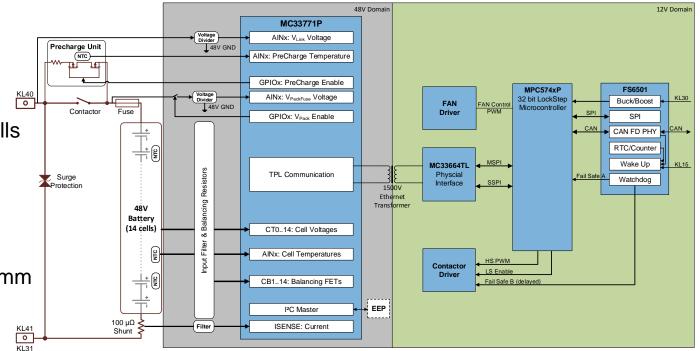
- Scalable platform from 14V to > 1000 V
- 0.5% current sensors w/ 300mA cell balancing FETs
- 2 mV voltage measurement accuracy
- 65µs one shot synchronized impedance acquisition
- Fast data acquisition: 3.6 ms/96 cells, 4.5 ms/112 cells
- ASIL-C functional safety compliant

Features

- Single chip 48 V battery control scalable to > 1000 V
- 3750V isolated 2 Mbps differential or 4 Mbps SPI comm
- 9.6 V \leq VPWR \leq 61.6 V operation, 70V transient
- 14x differential + stack voltage measurement
- 7x ADC + GPIO + temperature sensor Inputs
- Low power modes
- 64 pin QFP package
- Low-level drivers for simplified SW development

MC33771 – 48V Li-ion Battery Cell Controller

SAMPLESRELEASENOWQ1'18


Scalable, reliable, safe and BOM optimized Li-ion cell control with low-cost, robust, high-speed Isolated communication

Differentiation

- Scalable platform from 14V to > 1000 V
- 0.5% current sensors w/ 300mA cell balancing FETs
- 2 mV voltage measurement accuracy
- 65µs one shot synchronized impedance acquisition
- Fast data acquisition: 3.6 ms/96 cells, 4.5 ms/112 cells
- ASIL-C functional safety compliant

Features

- Single chip 48 V battery control scalable to > 1000 V
- 3750V isolated 2 Mbps differential or 4 Mbps SPI comm
- 9.6 V \leq VPWR \leq 61.6 V operation, 70V transient
- 14x differential + stack voltage measurement
- 7x ADC + GPIO + temperature sensor Inputs
- Low power modes
- 64 pin QFP package
- Low-level drivers for simplified SW development

System solution with BCC, IsoPHY, MCU, SBC

NXP BCC Solution

NXP BCC offers state-of-the-art diagnostics & functional safety => safety guarantee

Differentiating Points

- Battery topology flexibility
- High integration

•

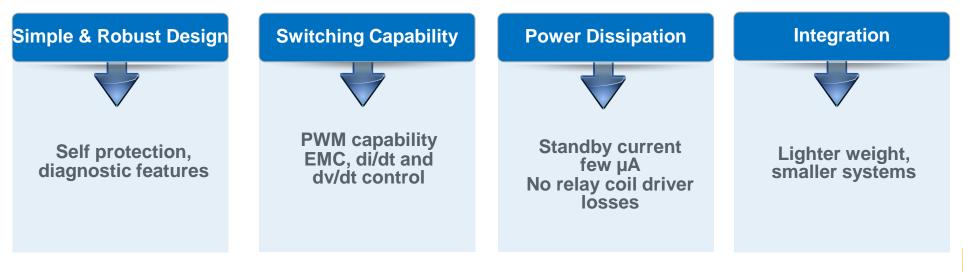
•

- High measurement accuracy
- Fast data acquisition and communication
 - Superior daisy chain communication
 - System diagnostics and functional safety supporting ISO26262 w/ single chip

Best diagnostics in the market (ISO26262) Single chip ASIL C capable (Easy ASIL D)

Safety feature	Normal mode	Sleep mode	Diagnostic mode	Fault detected	Method and action	Safety feature	Normal mode			Fault detected	Method and action	
VPWR OV/UV	x	x	x	VPWR overvoltage and undervoltage	VPWR_OV_FLT or VPWR_UV_FLT flag activated, FAULT pin activated, bus wake-up	Coulomb counter overflow	x	x x		Overflow on the coulomb count registers	CC_OVR_FLT error flag. FAULT pin activated	
Cell OV/UV detection	x	x	With on demand	Cell overvoltage and undervoltage	CT_OV_FLT or CT_UV_FLT error flag activated. FAULT pin activated. bus	VCOM short/UV protection detection	x	х	x	Undervoltage on the VCOM power supply	FAULT pin activated	
	^	^	conversion With on	Cell overvoltage and undervoltage	AN OV FLT or AN UV FLT error flag	VANA short/UV protection detection	x	х	x	Undervoltage on the VANA power supply	VANA_UV_FLT flag, FAULT pin activated, bus wake-up	
OT/UT detection	x	x	demand conversion	External over/undertemperature	activated, FAULT pin activated, bus wake-up	VANA short/OV protection detection	x	х	x	Overvoltage on the VANA dpower supply	VANA_OV_FLT error flag. FAULT pin activated, bus wake-up	
FAULT pin heart beat	x	x	x	FAULT pin in stuck at 0 or 1.	FAULT pin toggles if no fault; FAULT pin stuck at logic 1 if fault is present	GPIO short detection protection	x	х	MCU control	GPIO opposite of the commanded state	GPIO_SH_FLT error flag. FAULT pin activated, bus wake-up	
CTx OV/UV functional verification			MCU control	Fault on digital comparators used for OV/UV detection	If no fault, then CTx_OV_FLT or CTx_OV_FLT activated; else missing activation. FAULT pin activated	GPIO open detection			MCU control	Disconnected analog input	AN_OPEN_FLT error flag. FAULT pin activated	
CTx open detection			MCU control	Open path from a cell to a CT pin	MCU checks cell voltages after diagnostic switch positioning. A value close to 0V means open line	Onboard temperature protection mode	x	x	x	Overtemperature of the silicon	FAULT pin activated: bus wake-up and IC_TSD_FLT error flag activated when normal temperature resumes	
CTx open detection functional verification			MCU control	Broken switch of CTx Open Detection safety mechanism	MCU checks cell voltages against expected results to detect a latent fault.	Exit diagnostic mode safety timer			x	Unauthorized permanence in diagnostic mode.	Trace left in the PREVIOUS_STATE upon timer expiration	
CTx leakage test			MCU control	MCU verifies the input structures on the CTx pins have not degraded by measuring the input leakage	If the MCU detects leakages exceeding the OV/U safety margin	Idle mode fault (init to idle)				Indicator the device has entered idle mode without being programmed	FAULT pin activated for time period	
Cell voltage channel functional verification			MCU control	Lack of integrity of level-shifters embedded in the Analog Front End	MCU checks voltages of diagnostic Zener diodes against voltage of the reference Zener diode	Loss of ground detection has a fault bit and can generate a wake-up. No activation of output	x	x	x	Loss of ground on DGND and AGND pins	FAULT pin activated, bus wake-up	
ADC1-A, ADC1-B functional verification	x	x	With on demand	ADC out of compliance due to	ADC1_A_FLT or ADC1_B_FLT error flag activated. FAULT pin activated,	TAG ID for conversion data	x		x	Wrong sequencing of the requested conversions	MCU detects incorrect TAG ID in the message	
(precision reference to ADC)	<u>^</u>	<u>^</u>	conversion	band-gap deviation or other error	bus wake-up	Register address identification in message frame	x		x	Faulty decoder of data register addressing	MCU detects an incorrect physical address	
Oscillator clock monitoring	x	x	x	Low frequency clock failure	OSC_ERR_FLT flag activated, FAULT pin activated	Eight Bit CRC with non-zero seed	х		x	Corrupted communication frame	MCU/33771 detect incorrect CRC	
Cell balance shorted load protection/ detection	x	x	x	Overcurrent condition on CB switches	CB_SHORT_FLT error flag activated, FAULT pin activated, bus wake-up	Unique identifiable start-of message and end-of-message	x		x	Wrong message delimitation	MCU/33771 detect incorrect message frame	
Cell balance open detection	x	x	MCU Control	Open cell balance circuit	CB_OPEN_FLT error flag activated. FAULT pin activated	Communication confirmation architecture	x		x	R/W register bits stuck at 0/1	MCU checks received data content after a write command	
End of time CB notification (EOT_CBx)	x	x	x	Expiration of a cell balance timer	EOT_CBx flag activated. FAULT pin activated, bus wake-up	Communication loss fault	x		x	Stopped or slow communication from the MCU to the IC	COM_LOSS_FLT flag. FAULT pin activate	
ISENSE ± precision reference			MCU Control	Current measurement out of compliance due to PGA or ADC2 or digital processing failure	Conversion of a known reference at the input of the PGA. MCU checks for an expected value	Communication error register overflow	x		x	Incorrect number of bits of the frame, incorrect clock phase	COM_ERR_FLT fault flag. FAULT pin activated	
ISENSE ± open detect			MCU control	Open circuit on ISENSE ± input pins	CPin current injection. IS_OL_FLT error flag. FAULT pin activated	I ² C error fault (init mode)				Error when trying to load EEPROM data into memory mirror	I2C_ERR_FLT error flag. FAULT pin activated	
$ISENSE \pm overcurrent \ fault$		x		Overcurrent condition during sleep mode	I_OC_FLT error flag. FAULT pin activated, bus wake-up	ECC check	x			Corrupted calibration data. A double error has been detected (and only one corrected)	DED_ERR_FLT error flag. FAULT pin activated	

FUNCTIONAL SAFETY LOAD DRIVERS



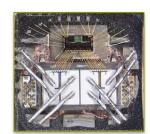
Energy Distribution with SmartPower

SmartPower device is a Power IC with some digital content. It interfaces between an MCU and a load.

"eXtreme Switch" is NXP's brand name for high-current "SmartPower".

Why use SmartPower devices instead of relays?

eXtreme Switch composition


SMARTMOS™

□ Protection and diagnostic

- Over temperature (175°C)
- Over current shutdown
- Over/under voltage
- Short circuit
- Reverse battery
- Loss of ground/Vbat
- Energy discharge protection

SPI Interface

- · Easy connection to the uP
- Programmability
- Daisy chain using SPI
- Programmable over current trip level
- Watchdog
- Embedded PWM module

Vertical Power Stage

Best-in-class technology

- Planar HDTMOS and TrenchFet
 LFET
- 45V & 65V BV

□ Protection in the power stage

- Temperature sensor
- Current sensor
- Voltage sensor (Gen4)

Power Package

□ PQFN low cost power package

CERERERRERRERRE EXCERTERRE

□ SOICeP32 and 54

0.5 mm thick lead frame

Die soldered attached

Designed for high
 power

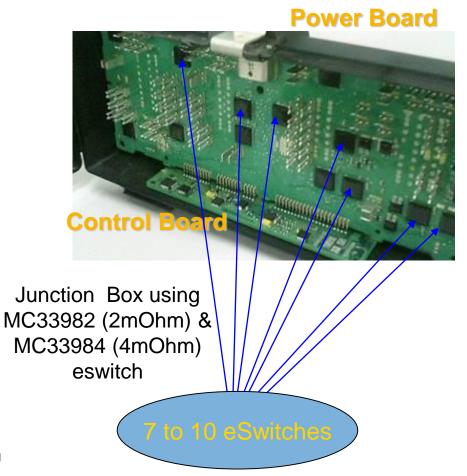
• Rthj-c $< 0.5^{\circ}$ C/W

- Large al wire capability
- Pb-free compliancy

84 EXTERNAL USE

12V Automotive eXtreme Switches

12V multiple HSS


Family	Part Number	Outputs # and On-Resistance	Total Outputs #	Operating Voltage (V)	Max continuous current (A)	Max PWM frequency	Package	Pin to Pin Compatibility	SW Compatibility		
MC12XS3	MC07XS3200EK	Dual 7mΩ	2	6-20	21	800Hz	32-pin SOICEP	-			
	MC10XS3425EK	Dual 10m Ω , Dual 25m Ω	4	6-20	19-9	800Hz	32-pin SOICEP	-			
	MC10XS3412DHFK	Dual 10m Ω , Dual 12m Ω	4	6-20	19	1kHz	24-pin PQFN		\checkmark		
	MC10XS3435DHFK	Dual 10m Ω , Dual 35m Ω	4	6-20	19-9	1kHz	24-pin PQFN				
	MC15XS3400DHFK	Quad 15mΩ	4	6-20	19	1kHz	24-pin PQFN	\checkmark			
	MC35XS3400DHFK	Quad 35mΩ	4	6-20	9	1kHz	24-pin PQFN				
	MC09XS3400AFK	Quad 9mΩ	4	6-20	21	800Hz	24-pin PQFN				
	MC10XS3535HFK	Triple 10m Ω , Dual 35m Ω	5	7-20	12-6	400Hz	24-pin PQFN				
MC12XS3	MC35XS3500HFK	Penta 35mΩ	5	7-20	6	400Hz	24-pin PQFN	\checkmark	\checkmark		
	MC06XS3517AFK	Triple 6m Ω , Dual 17m Ω	5	7-20	17-9	400Hz	24-pin PQFN				
	MC07XS6517BEK	Triple 7m Ω , Dual 17m Ω	5	7-18	18-9	400Hz	54-pin SOICEP		V		
MC12XS6	MC17XS6500BEK	Penta 17mΩ	5	7-18	9	400Hz	32-pin SOICEP				
	MC40XS6500EK	Penta 40mΩ	5	7-18	6	400Hz	32-pin SOICEP				
	MC08XS6421BEK	Dual 08m Ω , Dual 21m Ω	4	7-18	18-9	400Hz	32-pin SOICEP				
	MC17XS6400BEK	Quad 17mΩ	4	7-18	9	400Hz	32-pin SOICEP	\checkmark			
	MC25XS6300EK	Triple 25mΩ	3	7-18	8	400Hz	32-pin SOICEP				
	MC10XS6325EK	Dual 10m Ω , Single 25m Ω	3	7-18	16-8	400Hz	32-pin SOICEP	l			
	MC10XS6200EK	Dual 10mΩ	2	7-18	16	400Hz	32-pin SOICEP				
	MC10XS6225EK	Single 10m Ω , Single 25m Ω	2	7-18	16-8	400Hz	32-pin SOICEP				
Main Switches											
MC12XS2	MC33981ABHFK	Single 4mΩ	1	6-27	75	60kHz	16-pin PQFN	-	-		
	MC33982CHFK	Single 2mΩ	1	6-27	41	1kHz	16-pin PQFN				
	MC33984CHFK	Dual 4mΩ	2	6-27	21	1kHz	16-pin PQFN	\checkmark	\checkmark		
	MC33988CHFK	Dual 8mΩ	2	6-27	10.5	1kHz	16-pin PQFN				

Customer challenges for power distribution

CO2 savings:

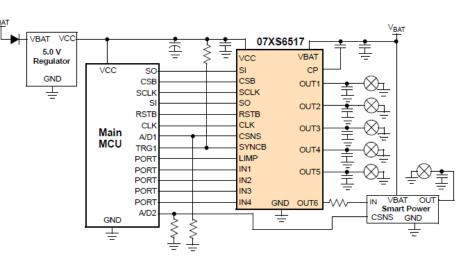
- Weight savings.
- PCB space saving
- Cost and Quality:
 - Simple design with few external components and high integration density.
- Flexibility:
 - reuse for different platform
- Safety :
 - Overall system protection
- Robustness :
 - Power dissipation
 - Current consumption
 - fully protected switches with high reliability with embedded protection

MC12XS6 – Gen4 eXtreme Switches

Latest generation of programmable high-side switches with wide range diagnostic current sensing and lowest RDSon for up to 30% smaller PCB

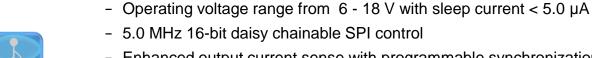
Differentiating Points

Product Features


- Robustness: Unique over-current latch-off protection, full digital and analog diagnostics, and protection features
- Integration: 7 m Ω / 8 m Ω / 10 m Ω / 17 m Ω / 21 m Ω / 25 m Ω / 40 m Ω outputs in, Penta/ Quad/ Triple/ Dual configurations
- Accuracy: Advanced accurate current monitoring from 25mA to 22A
- Flexibility: Xenon / LED / Halogen from 25 Hz to 400 Hz
- Scalability: Pin and SW driver compatible family

Q.

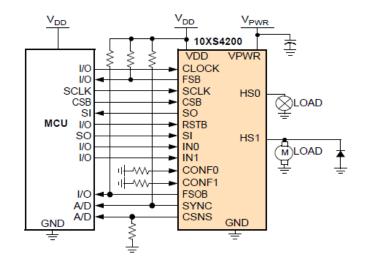
- Enhanced output current sense with programmable synchronization signal, ±5°C temperature and ± 1% battery voltage feedback
 Full diagnostic and protection including over surrent profiles, output ON and OEE
- Full diagnostic and protection including over-current profiles, output-ON and –OFF open load detections, thermal shut-down, pre-warning, and fault reporting
- Individually programmable external PWM signals with 8 bit duty cycle control (Phase, prescaler, duty cycle, slew rate per channel)
- Watchdog and failsafe mode
- External smart power switch control



◦ Valves

54 & 32-pin eSOIC package

MC24XS4 eXtreme Switches


Scalable, programmable family of 24A/36V SPI-driven, dual-channel, smart high-side switches with lowest RDSon for up to a 30% board reduction

Differentiating Points

- Robustness: Unique over-current latch-off protection, full digital & analog diagnostic and protection features
- Integration: 6 m Ω / 10 m Ω / 20 m Ω / 22 m Ω / 50 m Ω outputs in Dual configuration
- Accuracy: 5X better current sensing accuracy with unique accurate temperature sensing capability
- Flexibility: lighting or DC motor mode up to 1kHz
- Scalability: SW driver compatible family & pin compatibility

Product Features

- Normal operating range: 8 -36 V, (ext range: 6 -58 V) Sleep mode current < 10 μA
- 3.3 V and 5.0 V compatible 16-bit Daisy chainable SPI control
- Parallel output operating modes
- Full diagnostic and protection including programmable over-current profiles, output-ON and -OFF open load detections, thermal shut-down, pre-warning, and fault reporting
- ±5°C temperature and synchronous / asynchronous current (±10%) sensing
- Individually programmable internal/external signals with 8 bit duty cycle control & slew rate
- Watchdog and failsafe mode

24-pin PQFN package 32-pin eSOIC package

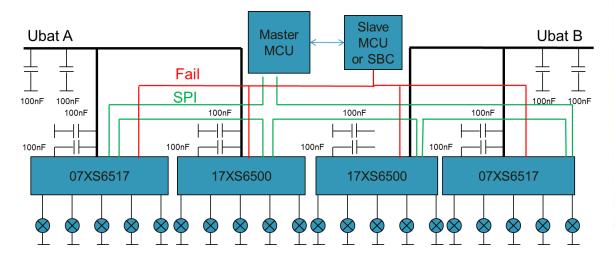
88

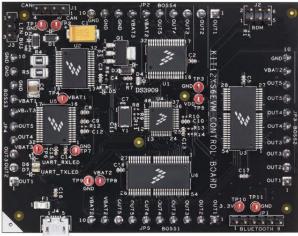
eXtreme switch - EcoSystem

- Evaluation kits
- Reference design
 - Lighting reference design 4 eXtreme Switch devices (Gen4), MCU: S12G SBC: 33903
 - Light Control Module 1 eXtreme Switch device (Gen3) MCU: KEA
 - 16-bit MCU S12G, 4 eXtreme Switch devices, CAN Physical Layer, 5V regulator
- Freedom board
 - FRDM-12XSF-EVB: MC17XSF500, Freedom shield PeX component/ Freemaster GUI /Spigen compatible.
 - FRDM-32XSF-EVB: MC17XSG500 (30V version). Freedom w/ Arduino compatibility (Resale through PremierFarnell Element14). Launch in Q1 2017

Tower board

- TWR-MC36XSDEVB: Tower System for 36VeXtreme Switch
- Application Notes and tools
 - Application notes
 - Training package
 - Microsoft Excel© Thermal Calculator
 - Cadence Orcad© Behavioral models


eXtreme Switch reference designs


MISO-SCLK CS1 -MOSI-

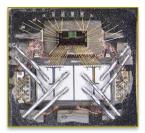
MISO SCLK CS1 MOSI

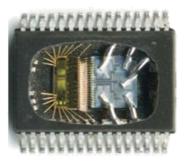
A/D1

μC

KIT12XS6EVM reference design

SPDxx reference design




OUT4

ω

ŝ

Top reasons to choose eXtreme Switch:

- Robustness: unique diagnostic and protection features with embedded failsafe mode
- Flexibility: to accommodate with the large variations of modules (SPI, CSNS accuracy)
- Diagnostics: able to support ASIL B/C designs thanks to embedded protections, diagnostics, failmode
- Accuracy: very accurate current sensing over temperature and supply voltage range
- Integration: multiple configurable channels "Daisy-chainable SPI control" per package with low Rdson
- Expanding product roadmap: Q100 family, next gen ultra low RDSon, 48V family, smart low RDSon switches
- Automotive expertise: highly skilled technical development & support teams

Driving total system cost reduction (HW, SW...)

ADD-ON WIRELESS CLOUD CONNECTIVITY

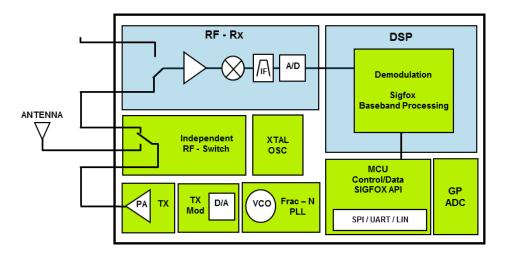
SIGFOX Use Cases: Unleashing The Full Potential of the IoT

The Power of Low Energy & Low Cost

Examples:

- Smart Building management
- Smart Agriculture
- Industry 4.0
- Asset Track & Trace

OL2385 - System-on-Chip Sigfox Solution


System-on-Chip Sigfox Solution with best RF performances, low BOM cost and ultra low-power

Differentiation

- Best in class RF performance and low BOM cost
 - -128 dBm FSK sensitivity @ 600 bps
 - Excellent Phase Noise allows easy add-on of external PA
 - Good blocking performance and strong image rejection (no SAW filter)
 - Reference design not requiring TCXO
- Ultra low-power
 - Tx current at 14 dBm: 29 mA / receive mode: 10 mA

Features

- System-on-Chip HW and SW solution
 - Pre-loaded Sigfox modem SW with ID & PAC numbers
 - 16-bit RISC integrated µC & DSP core
 - Multiple ISM zones support (ETSI, FCC, LATAM, JPN,...)
- Sigfox approved reference design
- 94 Ht/QEN48_package; temperature range: -40 °C to + 85 °C

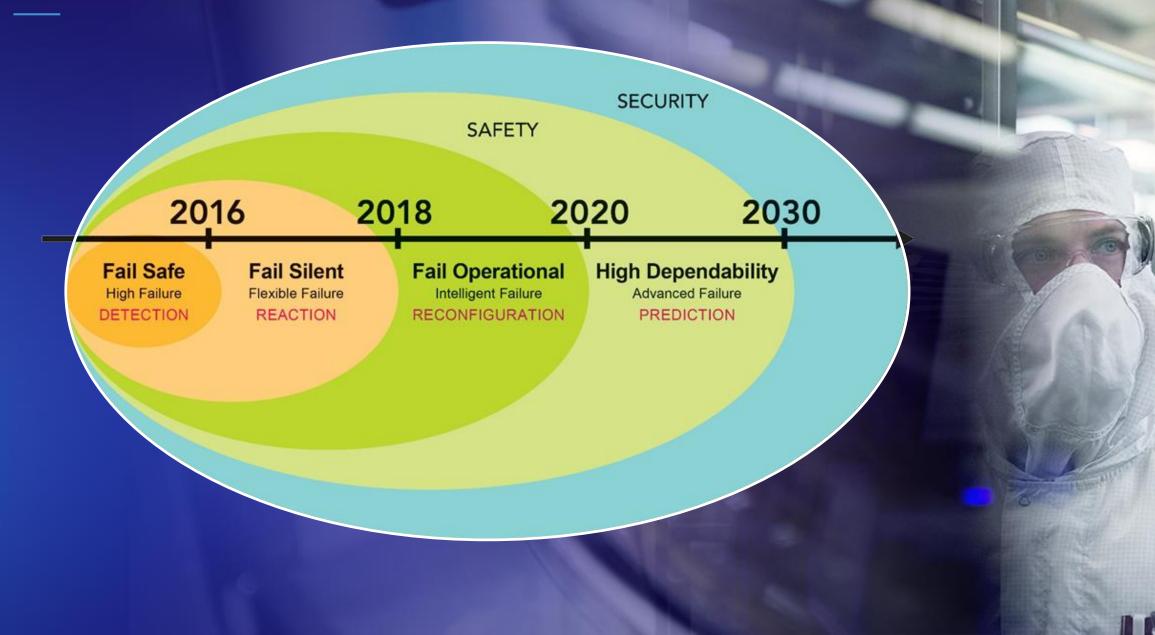
Applications

- Water metering, electricity metering, smart building management, renewable energy monitoring
- Automotive & fleet management
- Smart irrigation, weather stations, wind monitoring
- Road side management, parking slot monitoring
- Home alarm system, smoke detector
- Smart button, connected defibrillators

OM2385: SIGFOX Development Kit with KL43Z MCU

- Orderable on-line for \$99 at nxp.com
 <u>order here</u>
- Kit Contains
 - OL2385 Arduino shield board
 - Freedom KL43Z MCU board (pre-loaded with demo application SW sending accelerometer sensor data, temperature and illuminance)
 - Quick reference card (how to activate kit)
 - USB A-to-MiniB cable
 - Antenna
- On-line ressources
 - Instructions to activate Sigfox account with ID and PAC (two years pre-paid Platinum subscription)
 - Hardware and software user guides
 - Downloadable example demo code to be used with Kinetis Design Studio IDE tool (KSDK2.0) and example code for LPC8xx (free)
 - REST HTML5 demo for data display from Sigfox back-end server
 - Printed Circuit Board, bill of material and design files

📜 Buy



Agenda

Market needs for safety
Functional safety foundations
Safe Assure solutions
Safety system solution
Evolution of functional safety

LEADING THE INDUSTRY TOWARDS ZERO ACCIDENTS

CONCLUSION

Functional safety is about **RISK** assessment, prevention, protection

Car OEMs set risk of HAZARD and SAFETY GOALS at System Level

 \checkmark

There are market driven reasons that mean that functional safety is a requirement for the future of **EVERY** automotive development

ISO 26262 process and ASIL definition provide the **FRAMEWORK** and **EVIDENCES** to demonstrate that safety objectives are met

Safety Requirements and Standard will continue to evolve as the industry moves towards full autonomous drive

SECURE CONNECTIONS FOR A SMARTER WORLD