

© 2016 NXP B.V.

COMPANY PROPRIETARY

COMPANY INTERNAL

PRELIMINARY

S32K1xx Safety Cookbook

1. Introduction

The purpose of this document is to show how the

assumptions of the S32K1xx series Safety Manual could

be implemented. In the Safety Manual, assumptions for

different software requirements are described and the

implementation hints and rationales are given.

To show how those assumptions could be covered with

software, a set of examples was created. In this document

pieces of those codes are shown in tables with the

corresponding assumption and implementation. This was

done to make the Safety Manual easier to understand and

to implement.

It is assumed that the reader has already read the

S32K1xx series Safety Manual.

NXP Semiconductors Document Number: AN00000000000001

Application Notes. Rev. n , 01/2020

Contents

1. Introduction .. 1
2. Software requirements.. 2

2.1. Code organization ... 2
2.2. Table structure .. 2
2.3. Summary of implemented assumptions................... 3
2.4. Power .. 5
2.5. Clock ... 8
2.6. Flash .. 11
2.7. SRAM ... 14
2.8. Processing modules ... 15
2.9. Peripheral .. 31

3. References .. 36

, Application Notes., Rev. n, 01/2020

2 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

2. Software requirements

The codes developed in this application note are intended to exemplify how the assumptions from the

Safety Manual could be implemented. The codes were classified in a way that one example covers many

assumptions.

 Code organization

Family Project name Modules Assumptions

S32K11x

S32K116_Safety_Clock CLK 80, 83, 84, 100, 140

S32K116_Safety_Configuration RCM, SCG 140

S32K116_Safety_eDMA eDMA, CRC 101, 104

S32K116_Safety_FTM_Double_PWM FTM 133, 137

S32K116_Safety_PMC_LVD ADC, CRC, PMC 70, 84, 85, 100, 204

S32K116_Safety_RAM ERM, LPIT 48, 98, 99, 100, 113, 140

S32K116_Safety_Stack DWT 100, 139

S32K116_Safety_VLPS_WDOG_LPIT CLK, LPIT, VLPS, WDOG 48, 67, 69, 82, 100, 107, 140, 202

S32K116_Safety_MPU MPU 94,95

S32K14x

S32K142_Safety_Clock CLK 78, 80, 81, 84, 100, 213

S32K142_Safety_Configuration RCM, SCG 140

S32K142_Safety_eDMA eDMA, CRC 101, 104

S32K142_Safety_FTM_Double_PWM FTM 133, 137

S32K142_Safety_PMC_LVD ADC, CRC, PMC 70, 84, 85, 100, 204

S32K142_Safety_RAM ERM, LPIT 48, 99, 100, 113

S32K142_Safety_Stack DWT 100, 139

S32K142_Safety_VLPS_WDOG_LPIT CLK, LPIT, VLPS, WDOG 48, 67, 69, 82, 100, 107, 202

S32K142_Safety_MPU MPU 94, 95

 Table structure

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 3

COMPANY PROPRIETERY

COMPANY INTERNAL

The next table shows how the tables in document are divided. Each assumption is explained as in the

S32K1xx Safety Manual, a piece of code which covers the assumption is shown and an explanation of the

code is given.

Assumptions

SM_XXX

(Assumption

number as

written in

the

S32K1XX

Safety

Manual)

Description Code

(Assumption description as

written in the S32K1XX Safety

Manual)

In red it is explained if the piece of code applies

for the entire S32K1 family or if it only applies

to a subset of the family.

S32K1xx - Entire family

S32K11x - S32K116 and S32K118

S32K14x - S32K142, S32K144, S32K146 and

… S32K148

(Piece of code which covers the assumption, the

rest can be found in the projects attached)

Implementation

(Explanation of the code which

covers the assumption)

 Summary of implemented assumptions

Assumptions

Category Number Implemented Category Number Implemented

Power

SM_084 Yes
MPU

SM_094 Yes

SM_204 Yes SM_095 Yes

SM_085 Yes

NVIC

SM_098 Yes

Clocks

SM_078 Yes SM_099 Yes

SM_213 Yes SM_100 Yes

SM_083 Yes

eDMA

SM_101 Yes

SM_080 Yes SM_102 Yes

SM_081 Yes SM_104 Yes

Flash

SM_114 Yes

WDOG

SM_067 Yes

SM_116 In progress SM_202 Yes

SM_117 Yes SM_069 Yes

SM_119 In progress LPIT SM_107 Yes

SM_118 In progress Low power SM_082 Yes

RAM SM_113 Yes CRC SM_070 Yes

Debug mode
SM_047 NA Communications SM_051 NA

SM_048 Yes
I/O functions

SM_133 Yes

Stack SM_139 Yes SM_137 Yes

S32K1XX config SM_140 Yes ADC SM_130 Yes

AWIC/External NMI SM_126 Yes

, Application Notes., Rev. n, 01/2020

4 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

NA: This assumptions do not need code to be covered.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 5

COMPANY PROPRIETERY

COMPANY INTERNAL

 Power

The S32K1xx family uses the PMC module that manages the supply voltages for all modules on the

device. This unit includes the internal regulator for the logic power supply and a set of voltage monitors

for low voltage detector (LVD) and low voltage reset (LVR).

2.4.1. Power Management Controller (PMC)

The Power Management Controller has monitors to detect when the voltage goes below the Low Voltage

Detect and Low Voltage Reset thresholds. If the voltage goes below the LVR a reset is triggered to prevent

a potential failure. If the voltage goes below the LVD a warning, an interrupt or a reset can be triggered.

The table below summarizes how to implement the assumptions related to the Power section of the Safety

Manual in section 5.2.

, Application Notes., Rev. n, 01/2020

6 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

Assumptions

SM_084

Description Code

The application software must

check the status registers of the

RCM for error flags.

S32K1xx_ADC_CRC_PMC -> main.c

LVD_status_t Sanity_check(void)
{
 /* Check if the LVD bit on the RCM_SRS register
is set */
 if(True == ((RCM->SRS & RCM_SSRS_SLVD_MASK) >>
RCM_SSRS_SLVD_SHIFT))
 {
 /* Return the LVD_NOT_OK status */
 return LVD_NOT_OK;
 }

 /* By default return the LVD_OK status*/
 return LVD_OK;
}

Implementation

After a reset a sanity check is

performed. The RCM_SRS

register is checked to determine

if a low voltage detect (LVD)

triggered the past reset.

SM_204

Description Code

It is assumed that the ADCs are

used to monitor the bandgap

reference voltage of the PMC

and to monitor the internal

supplies connected to ADCs.

S32K1xx_ADC_CRC_PMC -> main.c

/* Get the PMC reference voltage */
PMC_reference_voltage = ADC_Get_Internal_Supply();

S32K1xx_ADC_CRC_PMC -> ADC.c

uint16_t ADC_Get_Internal_Supply(void)
{
 uint16_t Bandgap_reference_voltage = 0;

 /* Wait for the conversion to be ready */
 while (False == ((ADC0->SC1[0] &
ADC_SC1_COCO_MASK) >> ADC_SC1_COCO_SHIFT));

 /* Read the conversion */
 Bandgap_reference_voltage = ADC0->R[0];

 return Bandgap_reference_voltage;
}

Implementation

The ADC0 internal channel 0 is

connected to the internal supply

monitoring and used to measure

the bandgap. This bandgap

voltage should be the same value

as the one stated in the S32K1xx

Data Sheet.

SM_085

Description Code

Software must not disable the

direct transition by the RCM

into a safe state due to an

overvoltage or undervoltage

indication.

S32K1xx_ADC_CRC_PMC -> main.c

/* If the status of the Sanity_check is LVD_NOT_OK then
execute the safe state */
LVD_status = Sanity_check();
if(LVD_NOT_OK == LVD_status)
{
 /* Execute the safe state */
 Safe_state();
}

LVD_status_t Sanity_check(void)
{
 /* Check if the LVD bit on the RCM_SRS register
is set */
 if(True == ((RCM->SRS & RCM_SSRS_SLVD_MASK) >>
RCM_SSRS_SLVD_SHIFT))
 {
 /* Return the LVD_NOT_OK status */
 return LVD_NOT_OK;
 }

 /* By default return the LVD_OK status*/

Implementation

The sanity check jumps to a safe

sate if the past reset was

triggered by LVD. The safe state

is application specific.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 7

COMPANY PROPRIETERY

COMPANY INTERNAL

 return LVD_OK;
}

, Application Notes., Rev. n, 01/2020

8 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

 Clock

The S32K1xx family uses the System Clock Generator (SCG) module to generate most of the clocks used

by the device. The SCG module controls which clock source (internal references, external crystals,

external clocks) is used to derive system clocks. The SCG also divides the selected clock source into a

variety of clock domains, including clocks for system bus masters, system bus slaves, and flash memory.

2.5.1. Clock

For safety applications it is important to have a high quality and reliable clock source. For the S32K14x

the System Phase-Locked Loop (SPLL) should be used, it has a monitor to detect if there is a loss of clock.

For the S32K11x the FIRC with the CMU should be used. The CMU can detect if there is a loss of FIRC

and if the FIRC frequency is between a certain range.

The table below summarizes how to implement the assumptions related to the Clocks section of the Safety

Manual in section 5.3.

Assumptions

SM_078

Description Code

Before executing any safety

function, a high quality clock

(low

noise, low likelihood for

glitches) based on an external

clock source shall be configured

as the system clock of the

S32K14x.

S32K14x_CLK -> main.c

/* Initialize the SPLL and its monitor */
SPLL_init();

S32K14x_CLK -> clocks.c

/* Disable the SPLL so changes can be made */
SCG->SPLLCSR &= ~SCG_SPLLCSR_SPLLEN_MASK;

/* Divide by 1 the SPLL in the DIV 1 and 2 */
SCG->SPLLDIV |= SCG_SPLLDIV_SPLLDIV1(1) |
SCG_SPLLDIV_SPLLDIV2(1);

/* Set the multiply factor to 20 and the divide factor
to 2 */
SCG->SPLLCFG |= SCG_SPLLCFG_MULT(4) |
SCG_SPLLCFG_PREDIV(1);

/* Enable the SPLL */
SCG->SPLLCSR |= SCG_SPLLCSR_SPLLSEL_MASK |
SCG_SPLLCSR_SPLLEN_MASK;

/* Wait until the SPLL is considered valid */
while(False == ((SCG->SPLLCSR &
SCG_SPLLCSR_SPLLVLD_MASK) >>
SCG_SPLLCSR_SPLLVLD_SHIFT));

Implementation

The PLL should be used for

functional safety applications. It

is configured at 80 MHz by

receiving a frequency of 8MHz

from the external oscillator and

by multiplying it 10 times.

SM_213

Description Code

A check should be implemented

to verify that with an intended

PLL configuration the PLL

locks with the correct output

clock.

S32K14x_CLK -> clocks.c

/* Map the CLKOUT to the PTB5 */
/* Enable the clock to the port B */
PCC->PCCn[PCC_PORTB_INDEX] = PCC_PCCn_CGC_MASK;
/* Set the Port B pin 5 as output */
PTB->PDDR |= 1 << PTB5;
/* Select the CLKOUT option -> ALT5*/ Implementation

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 9

COMPANY PROPRIETERY

COMPANY INTERNAL

The PLL is routed to the PTB5

GPIO in order to verify if the

PLL frequency is 80 MHz.

PORTB->PCR[PTB5] = PORT_PCR_MUX(5);

SM_083

Description Code

The following supervisor

functions are required:

• Loss of fast internal reference

clock

• System FIRC frequency higher

than the (programmable) upper

frequency reference

• System FIRC frequency lower

than the (programmable) lower

frequency reference

S32K11x_CLK -> clocks.c

CMU0 configuration
void CMU0_init(void)
{
 CMU_FC_0->RCCR = 7;

 /* Enable the CMU0 interrupt */
 CMU_FC_0->IER |= CMU_FC_IER_FHHAEE_MASK |
CMU_FC_IER_FLLAEE_MASK;

 /* Enable the frequency check */
 CMU_FC_0->GCR = CMU_FC_GCR_FCE_MASK;

 /* Wait until the frequency check starts
running */
 while(False == (CMU_FC_0->SR &
CMU_FC_SR_RS_MASK) >> CMU_FC_SR_RS_SHIFT);
}

CMU1 configuration
void CMU1_init(void)
{
 /* Enable the clock gate of the CMU1 */
 PCC->PCCn[PCC_CMU1_INDEX] = PCC_PCCn_CGC_MASK;

 CMU_FC_1->RCCR = 7;

 CMU_FC_1->HTCR = 47;
 CMU_FC_1->LTCR = 37;

 /* Enable the CMU1 interrupt */
 CMU_FC_1->IER = CMU_FC_IER_FHHIE_MASK |
CMU_FC_IER_FLLIE_MASK;

 /* Enable the frequency check */
 CMU_FC_1->GCR = CMU_FC_GCR_FCE_MASK;

 /* Wait until the frequency check starts
running */
 while(False == (CMU_FC_1->SR &
CMU_FC_SR_RS_MASK) >> CMU_FC_SR_RS_SHIFT);
}

Implementation

The two modules of the CMU

are enabled. The CMU0 is used

to determine if there is a loss of

FIRC.

The CMU1 is used to determine

if the FIRC frequency is within

a certain range.

SM_080

Description Code

For safety-relevant applications,

the use of the clock monitors is

mandatory. If the modules that

the SCG monitors are used by

the application safety

function, the user shall verify

that the clock monitors are not

disabled and their faults are

managed by the software.

S32K11x_CLK -> clocks.c

FIRC monitor
/* Enable the clock gate of the CMU0 */
PCC->PCCn[PCC_CMU0_INDEX] = PCC_PCCn_CGC_MASK;

CMU_FC_0->RCCR = 7;

/* Enable the CMU0 interrupt */
CMU_FC_0->IER |= CMU_FC_IER_FHHAEE_MASK |
CMU_FC_IER_FLLAEE_MASK;

/* Enable the frequency check */

CMU_FC_0->GCR = CMU_FC_GCR_FCE_MASK;
 Implementation

, Application Notes., Rev. n, 01/2020

10 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

The corresponding clock

monitors are enabled before

executing any functional safety

application. The clock sources

with clock monitors are the

SPLL (S32K14x only), the

FIRC(S32K11x only) and the

SOSC.

S32K14x_CLK -> clocks.c

SOSC monitor
/* Enable the SOSC clock monitor */
SCG->SOSCCSR |= SCG_SOSCCSR_SOSCCM_MASK;

/* Configure the SOSC clock monitor to trigger an
interruption when an error is detected*/
SCG->SOSCCSR &= ~SCG_SOSCCSR_SOSCCMRE_MASK;

SPLL monitor
/* Enable the SPLL monitor */
SCG->SPLLCSR |= SCG_SPLLCSR_SPLLCM_MASK;

/* Configure the SPLL Clock Monitor to trigger an
interruption when an error is detected */
SCG->SPLLCSR &= ~SCG_SPLLCSR_SPLLCMRE_MASK;

SM_081

Description Code

The following supervisor

functions are required: Loss of

external clock, SPLL frequency

higher than the (programmable)

upper frequency

reference and SPLL frequency

lower than the (programmable)

lower frequency reference.

S32K14x_CLK -> clocks.c

SPLL monitor
/* Enable the SPLL monitor */
 SCG->SPLLCSR |=
SCG_SPLLCSR_SPLLCM_MASK;

 /* Configure the SPLL Clock Monitor to
trigger an interruption when an error is detected */
 SCG->SPLLCSR &=
~SCG_SPLLCSR_SPLLCMRE_MASK;

Implementation

The SPLL clock monitor is

enabled after the configuration

of the clock is done and before

executing any functional safety

application.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 11

COMPANY PROPRIETERY

COMPANY INTERNAL

 Flash

The S32K1xx has a nonvolatile flash memory to store program code. The flash memory is protected using

Error Correcting Codes (ECC), it is capable of correcting single bit errors and of detecting double bit

errors.

2.6.1. Flash memory

The S32K1xx has no way of injecting an ECC error on flash, the Error Injection Module is only for the

ECC on RAM. Therefore it is suggested to follow the recommendations that are stated in the S32K1xx

Reference Manual.

Assumptions

SM_114

Description Code

The software using the

EEPROM for storage of

information will use checks to

detect incorrect data returned

from the EEPROM emulation.

S32K1xx_Flash -> eeprom.c

/* Verify if both CRCs are equal, if not
then return an error */
 if(Before_store_CRC != After_store_CRC)
 {
 status = EEPROM_ERROR;
 }

Implementation

A write function was

implemented, it performs the

data storing and internally

verifies the data. This is done,

creating a CRC before writing

the data and an other one after.

They are compared, if the

CRCs are not equal, an error is

returned.

SM_116

Description Code

A software test should be

implemented to check for

potential multi-bit errors

introduced by permanent

failures in the flash controller. It

is assumed that if the embedded

controller is classified as safety

relevant, the activation of

embedded controller is

accompanied by flash integrity

checks. First, one shall check

that the started flash related

command was completed and

returned with a pass status.

-

https://www.nxp.com/docs/en/reference-manual/S32K-RM.pdf
https://www.nxp.com/docs/en/reference-manual/S32K-RM.pdf

, Application Notes., Rev. n, 01/2020

12 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

Depending on the safety

application, the flash integrity

checks shall be done for code

flash or/and data flash. Safety

relevant code and data shall be

saved in flash with a CRC or

hash signature to detect any

integrity violation.

Implementation

Bootloader crea un CRC del

Código, lo almacena en una

direccion conocida. Despues se

calcula de nuevo el CRC y se

compara.

SM_117

Description Code

A software safety mechanism

shall be implemented to ensure

the correctness of any write

operation to the flash memory.

S32K1xx_Flash -> eeprom.c

while(wordQty)
 {
 Read_Buffer[index] = *eeprom_ptr;

/*Data form the EEPROM and initial buffer
are compared*/
/*If the data are equal, increment the
variable*/
 if(Read_Buffer[index] == *buff)
 read_verify++;
/*Increment the value and the address
direction*/
 index++;
 eeprom_ptr++;
 buff++;
 /*Decrease variable*/
 wordQty--;
 }

/*If the value of read verify is equal to
the elements into the array*/
if(BUFFER_SIZE == read_verify)
 return EEPROM_OK;
else
 return EEPROM_ERROR;

Implementation

Read after writing and

verifying the data is correct.

SM_119

Description Code

The Flash memory ECC failure

reporting path should be

checked to validate if detected

ECC faults are correctly

reported.

-

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 13

COMPANY PROPRIETERY

COMPANY INTERNAL

Implementation

Codigo con interrupcion y todo

listo para recibir un error de

ECC en flash

SM_118

Description Code

Depending on the application

type and its safety requirements

regarding the security

subsystem, a set of software

checks is recommended to be

implemented to guarantee data

integrity involved in a security

operation.
-

Implementation

-

, Application Notes., Rev. n, 01/2020

14 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

 SRAM

The on-chip RAM is split in two regions: SRAM_L and SRAM_U. The RAM is implemented such that

the SRAM_L and SRAM_U ranges from a contiguous block in the memory map.

2.7.1. Error Correction Code (ECC)

For the S32K11x there is only ECC for the SRAM_U, for the S32K14x there is ECC support for the

SRAM_L and SRAM_U. The Error Reporting Module (ERM) is responsible for providing notifications

of ECC errors detected in the SRAM channels.

The table below summarizes how to implement the assumptions related to the SRAM section of the Safety

Manual in section 5.5.

Assumptions

SM_113

Description Code

It is assumed that if safety

relevant data are stored in this

memory, additional integrity

checks are done.

S32K14x_ERM_LPIT -> main.c

/* Initialize the Error Reporting Module */
ERM_init();

S32K14x_ERM_LPIT -> ERM.c

void ERM_init(void)
{
 /* Clear the pending interruptions before they
are enabled */
 ERM->SR0 |= ERM_SR0_SBC0_MASK
|ERM_SR0_NCE0_MASK | ERM_SR0_SBC1_MASK
|ERM_SR0_NCE1_MASK;

 /* Enable the Single Error Correction Interrupt
for the SRAM_L */
 ERM->CR0 |= ERM_CR0_ESCIE0_MASK;

 /* Enable the Non-Correctable Interrupt for the
SRAM_L */
 ERM->CR0 |= ERM_CR0_ENCIE0_MASK;

 /* Enable the Single Error Correction Interrupt
for the SRAM_U */
 ERM->CR0 |= ERM_CR0_ESCIE1_MASK;

 /* Enable the Non-Correctable Interrupt for the
SRAM_U */
 ERM->CR0 |= ERM_CR0_ENCIE1_MASK;
}

Implementation

To protect the safety relevant

data that could be stored in this

memory, the single and double

bit errors interrupts are enabled.

If any of these errors is detected

by the Error Reporting Module

(ERM) an interrupt is triggered

and the system should jump to a

safe state.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 15

COMPANY PROPRIETERY

COMPANY INTERNAL

 Processing modules

2.8.1. Debug mode

The debugging mode is a possible source of failure if it is activated during functional safety applications.

In this mode the core could be halted, breakpoints could stop the execution, the core registers could be

modified and the registers from functional safety modules could be modified while running. Therefore,

the application should not enter debugging mode during functional safety applications.

The table below summarizes how to implement the assumptions related to the debug mode section of the

Safety Manual in section 5.6.2.1.

Assumptions

SM_047

Description Code

Debugging will be disabled

in the field while the device

is being used for safety-

relevant functions.

NA
Implementation

When a functional safety

application is running in the

field, no debugging device

should be connected. Debugging

should be disabled to avoid

interruption the execution.

SM_048

Description Code

If modules like the Watchdog

Timer (WDOG), Low Power

Serial Peripheral Interface

(LPSPI), Low Power Periodic

Interrupt Timer (LPIT),

FlexCAN, or in general any

modules which can be frozen in

debug mode, are functional

safety relevant, it is required that

application software configure

these modules to continue

execution during debug mode,

and not freeze the module

operation if debug mode is

entered.

S32K1xx_ERM_LPIT -> LPIT.c

LPIT
/* Allow the timer channels to continue to run in debug
mode */
LPIT0->MCR |= LPIT_MCR_DBG_EN_MASK;

S32K14x_CLK_LPIT_VLPS_WDOG -> WDOG.c

WDOG
/* Configure the WDOG */
WDOG->CS |= WDOG_CS_EN_MASK /* Enable the WDOG */
 | WDOG_CS_CLK(WDOG_CLK_LPO) /* Set the LPO as
the WDGO clock source */
 | WDOG_CS_UPDATE_MASK /* Enable the WDOG to
allow updates */
 | WDOG_CS_CMD32EN_MASK /* Enable the WDOG
support for 32 bit refresh/unlock command write words
*/
 | WDOG_CS_INT_MASK /* Enable the WDOG
interrupt, the reset is delayed 128 bus clocks */

Implementation

, Application Notes., Rev. n, 01/2020

16 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

The debug mode is enabled on

the LPIT and WDOG to ensure

they keep operating even if there

exists a debug session.

Functional safety applications

should not be halted due to

debugging.

 | WDOG_CS_STOP_MASK /* Enable the WDOG to
work on stop mode */
 | WDOG_CS_PRES_MASK /* Enable the WDOG
prescaler to divide the CLK by 256 */
 | WDOG_CS_DBG_MASK; /* Allow the WDOG
counter to continue running while debugging */

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 17

COMPANY PROPRIETERY

COMPANY INTERNAL

2.8.2. Stack

A common fault is the stack overflow or underflow, which is caused by systematic faults within the

application software. The overflow occurs when the application is using too much memory, also known

as pushing too much information into the stack. The underflow occurs when the application is reading too

much information, also known as popping too much information from the stack. These faults could be

detected using data watchpoints.

The table below summarizes how to implement the assumptions related to the stack section of the Safety

Manual in section 5.6.3.1.

Assumptions

SM_139

Description Code

When stack underflow and stack

overflow due to systematic

faults within the application

software endangers the system

level, functional safety

mechanisms may be

implemented to detect stack

underflow and stack overflow

faults.

S32K1xx_DWT -> main.c

/* Initialize the DWT module and set the watchpoint to
detect stack overflow */
DWT_init();

S32K1xx_DWT -> DWT.c

void DWT_init(void)
{
 /* Pointer to the StackPointer register */
 register uint32_t * stackPointer asm("sp");
 /* Volatile pointer to the memory address of the
DEMCR register */
 volatile uint32_t * DEMCR_reg = (volatile uint32_t
*) 0xE000EDFC;

 *DEMCR_reg = DEMCR_TRCENA_MASK |
DEMCR_MON_EN_MASK;

 /* Set comparator value to stack pointer value
minus 16 words (Addresses will be compared with this
value) */
 DWT->COMPn[0].COMP = (uint32_t)stackPointer -
(16 * sizeof(uint32_t));
 /* All bits are compared to find a specific
address */
 DWT->COMPn[0].MASK = 0;
 /*
 * Generate watchpoint debug event, see the
ARMv7-M Architecture Reference Manual,
 * Table C1-14 DWT address comparison functions
 */
 DWT->COMPn[0].FUNCTION =
DWT_FUNCTIONn_FUNCTION_(7);
 /* Perform address comparison and match for
address */
 DWT->COMPn[0].FUNCTION &=
~(DWT_FUNCTIONn_DATAVMATCH_MASK |
DWT_FUNCTIONn_CYCMATCH_MASK);

}

Implementation

The Debug Watchpoint and

Trace (DWT) was used to set

watchpoints in order to trigger

events when the SP is out of the

stack bounds. The DWT

watchpoints are used to monitor

if the SP reaches the stack

bounds by comparing the

addresses.

, Application Notes., Rev. n, 01/2020

18 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

2.8.3. S32K1xx configuration

Before executing functional safety application, it must be verified that the S32K1xx initialization is

correct. This must be done after the start up. The minimum checks that must be passed are:

• LPO enabled

• WDOG enabled

• WDOD fast test

• Error handling in SCG and RCM registers

• IRC_SW_CHECK

• ERM events notification

• Clock monitors enabled

The table below summarizes how to implement the assumption related to the S32K1xx configuration

section of the Safety Manual in section 5.6.3.2.

Assumptions

SM_140

Description Code

Application software must verify that the initialization

of the S32K1xx is correct before activating the safety-

relevant functionality.

S32K1xx_Safety_Configuration ->
main.c

Please refer to the Safety

Configuration project, because
it is al focused on covering

this assumption.

Implementation

Before executing any functional safety application, the

system should be initialized correctly. The section

2.7.3 Safety configuration requirements should be

covered.

The LPO needs to be enabled and configured.

The WDOG should be enabled with the appropriate

period to assure that FTTI will be covered. The

WDOG must pass the fast test.

The errors reported in the SCG and RCM registers

must be checked and safety measures must be taken

according to the results of those checks.

The FIRC frequency must be checked using two

timers with two different clock sources.

The ERM must be enabled, as well as their interrupts.

The clock monitors must be enabled. For the S32K11x

series the CMU must be used to check the FIRC. For

the S32K14x series the SPLL and the SOSC monitors

must be enabled.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 19

COMPANY PROPRIETERY

COMPANY INTERNAL

2.8.4. MPU

The Memory Protection Unit is a mechanism that prevents masters from accessing restricted memory

regions. The protection is done at the Crossbar Switch level. This module assigns access rights to the

different memory regions to the Crossbar switch masters.

The table below summarizes how to implement the assumptions related to the MPU section of the Safety

Manual in section 5.6.3.2.

Assumptions

SM_094

Description Code

It is assumed that the system

MPU is checked for correct

functionality before it is used in

safety applications. One can

configure the possible access

rights of each present master and

check for expected system

reaction. The check shall be

done once within L-FTTI (at

start up).

 S32K1x_mpu -> MPU.c

/* Start Address */
 MPU->RGD[2].WORD0 = 0x0003FF00;
 /* End Address */
 MPU->RGD[2].WORD1 = 0x0003FF1F;

 /* Core user mode WX
 * Core supervisor mode WX
 * DMA user mode RWX
 * DMA supervisor mode RWX */

 MPU->RGD[2].WORD2 |=
 MPU_RGD_WORD2_M0UM(3)
 | MPU_RGD_WORD2_M0SM(3)
 | MPU_RGD_WORD2_M2UM(7)
 | MPU_RGD_WORD2_M2SM(3);

 MPU->RGDAAC[2] |=
 MPU_RGD_WORD2_M0UM(3)
 | MPU_RGDAAC_M0SM(3)
 | MPU_RGDAAC_M2UM(7)
 | MPU_RGDAAC_M2SM(3);

//Enable the region2
MPU->RGD[2].WORD3 = MPU_RGD_WORD3_VLD_MASK;

Implementation

Enable the MPU and protect

different regions of memory for

the crossbar masters with the

different modes

(Supervisor/User)

SM_095

Description Code

System level functional safety

integrity measures must cover

bus operations to reduce the

likelihood of shared resources

being erroneously modified by

the present masters (Core,

eDMA).

-

Implementation

, Application Notes., Rev. n, 01/2020

20 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

-

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 21

COMPANY PROPRIETERY

COMPANY INTERNAL

2.8.5. Nested Vectored Interrupt Controller (NVIC)

The NVIC is responsible for prioritizing, blocking and directing the Interrupt Requests (IRQs). Before

executing functional safety applications, there must be a way to detect spurious or missing IRQs.

The table below summarizes how to implement the assumptions related to the Nested Vector Interrupt

Controller (NVIC) section of the Safety Manual in section 5.6.6.

Assumptions

SM_098

Description Code

It is assumed that application

software will detect the critical

failure modes of NVIC for all

safety critical interrupts.

S32K14x_ERM_LPIT -> main.c

/* Verify if the interrupt request is valid */
Verification_result =
Interrupt_verification(Current_channel);

S32K14x_ERM_LPIT -> main.c

/* If the interruption is enabled, the
verification_status is Verification_pass */
if(True == (ERM->CR0 & ERM_CR0_ESCIE0_MASK) >>
ERM_CR0_ESCIE0_SHIFT)
{
 /* If the module has a pending interrupt */
 if(True == (ERM->SR0 & ERM_SR0_SBC0_MASK) >>
ERM_SR0_SBC0_SHIFT)
 {
 /* If the interruption is enabled in
the NVIC module, the verification_status is
Verification_pass */
 if(True == (S32_NVIC->ISER[1] & (1 <<
(ERM_single_fault_IRQn % 32))) >>
(ERM_single_fault_IRQn % 32))
 {
 /* If the currently executing
interrupt is the one that triggered the ISR */
 if(CurrentInterrupt ==
(ERM_single_fault_IRQn + 16))
 {
 /* It passed all the
verifications, therefore the interrupt request is
correct */
 Verification_status =
Verification_pass;
 }
 }
 }
}

Implementation

A function was implemented to

verify if the interruption should

be performed or if it was

triggered erroneously. It is

checked if the interrupt was

enabled in the module, if there is

a pending interruption in the

module, if the interruption was

enabled in the NVIC module and

if the currently executed

interruption is the one that

triggered the ISR.

SM_099

Description Code

Periodic low latency IRQs will

use a running timer/counter to

ensure their call period is

expected.

S32K1xx_ERM_LPIT -> main.c

/* If it is the first time that the IRQ is executed
start the LPIT */
if(False == First_IRQ_flag)
{
 /* The flag is set */ Implementation

, Application Notes., Rev. n, 01/2020

22 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

The LPIT is used to measure the

period of time it takes to the

ERM IRQ to repeat. Based on

that measurement it can be

determined if the period was not

the expected one.

 First_IRQ_flag = 1;

 /* Start the timer if the flag is equal to zero
*/
 LPIT_start();
}
/* If it is the second time that the IRQ is executed
stop the LPIT */
else if(True == First_IRQ_flag)
{
 /* The flag is cleared */
 First_IRQ_flag = 0;

 /* Stop the timer if the flag is set and save
the counter value */
 ERM_IRQ_period = LPIT_MAX_PERIOD - LPIT_stop();
}

SM_100

Description Code

Applications that are not

resilient against spurious or

missing interrupt requests may

need to include detection or

protection measures on the

system level.

S32K1xx_ADC_CRC_PMC -> main.c

void LVD_LVW_IRQHandler(void)
{
 if(True == ((PMC->LVDSC2 &
PMC_LVDSC2_LVWF_MASK) >> PMC_LVDSC2_LVWF_SHIFT))
 {
 /* Turn the blue LED on to show that
the Low Voltage Warning Interrupt was triggered */
 PTD->PSOR |= 1 << BLUE_LED;

 /* Erase the LVWF which triggers the
interruption */
 PMC->LVDSC2 |= PMC_LVDSC2_LVWACK_MASK;

 for(;;)
 {

 }
 }
}

Implementation

In each handler it must be

verified that the interrupt was

triggered by the corresponding

request.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 23

COMPANY PROPRIETERY

COMPANY INTERNAL

2.8.6. Enhanced Direct Memory Access (eDMA)

The eDMA is a modules capable of performing complex data transfers with almost no intervention from

the core. This modules computes the source and destination addresses.

The table below summarizes how to implement the assumptions related to the Enhanced Direct Memory

Access section of the Safety Manual in section 5.6.7.

Assumptions

SM_101

Description Code

The eDMA will be supervised

by software which detects

spurious, excessive, or constant

activation.

S32K1xx_eDMA_CRC -> main.c

/* Initialize the DMA Transfer Control Descriptors */
DMA_TCD_init((uint32_t) Source1, Size1, (uint32_t *)
&Dest);

/* Turn the blue LED on two times to show that the
signature will be send */
RGB_blink(BLUE_LED);

/* Transmit the source1 using the eDMA*/
DMA_send();

Implementation

A check sum is calculated before

the data transfer, recalculated

after the transfer and then both

values are compared. If the

result is not the same, then a

problem occurred during the

data transfer and the data should

not be used.

SM_102

Description Code

Applications that are not

resilient to spurious, or missing

functional safety-relevant,

eDMA requests cannot use the

LPIT module to trigger

functional safety-relevant

eDMA transfer requests. NA

Implementation

In these cases, the eDMA should

be triggered by any module

other than the LPIT. The

TRGMUX or other modules

could be used.

SM_104

Description Code

If safety-relevant software is

using the eDMA to transfer data

to a non-replicated peripheral or

within the RAM, the following

holds: "always on" channels of

the eDMA Channel Mux should

S32K1xx_eDMA_CRC -> eDMA.c

void DMA_send(void)
{
 /* Loop till DONE = 1 (Major loop is completed) */

while (!((DMA->TCD[0].CSR >>
DMA_TCD_CSR_DONE_SHIFT) & 1))

, Application Notes., Rev. n, 01/2020

24 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

not be used. Instead, the eDMA

should be triggered by software.

If "always on" channels are

used, their failure has to be

detected by software. In this

case, software must ensure that

the eDMA transfer was triggered

as expected at the correct rate

and the correct number of times.

This test should detect

unexpected, spurious interrupts.

{
/* Set channel 0 START bit to initiate next
minor loop */
DMA->SSRT = 0;

/* Wait for a minor loop to be completed */
while (((DMA->TCD[0].CSR >>
DMA_TCD_CSR_START_SHIFT) & 1) | /*
Wait for START = 0 */
((DMA->TCD[0].CSR >>
DMA_TCD_CSR_ACTIVE_SHIFT) & 1)); /* and
ACTIVE = 0 */

}

/* Clear DONE bit of channel 0 */
DMA->CDNE = 0;

}
Implementation

Instead of using always on

channels, the data transfer is

triggered by software. This is

done by using the Transfer

Control Descriptor (TCD) of the

eDMA.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 25

COMPANY PROPRIETERY

COMPANY INTERNAL

2.8.7. Watchdog timer (WDOG)

The WDOG is a safety feature that ensures that the application is executing as planned. It detects if the

CPU is stuck in an infinite loop or executing non planned code. This is done using a refresh mechanism

that prevents the timer from completing the count and therefore resetting the system.

The table below summarizes how to implement the assumptions related to the WDOG section of the Safety

Manual in section 5.6.9.

Assumptions

SM_067

Description Code

Before the safety function is

executed, the WDOG must be

enabled and configuration

registers hard-locked against

modification. Additionally, it

should be verified that the clock

source is configured as LPO.

S32K1xx_CLK_LPIT_VLPS_WDOG -> main.c

/* Configure the WDOG */
WDOG_init();

S32K1xx_CLK_LPIT_VLPS_WDOG -> WDOG.c

void WDOG_init(void)
{
 /* Disable the interrupts */
 DisableInterrupts;

 /* Unlock WDOG */
 WDOG->CNT = WDOG_UNLOCK_VAL;

 /* Wait until registers are unlocked */
 while(False == ((WDOG->CS & WDOG_CS_ULK_MASK)
>> WDOG_CS_ULK_SHIFT));

 /* Set the WDOG timeout value according to the
FTTI */
 WDOG->TOVAL = WDOG_PERIOD;

 /* Configure the WDOG */
 WDOG->CS |= WDOG_CS_EN_MASK
 /* Enable the WDOG */
 | WDOG_CS_CLK(WDOG_CLK_LPO)
 /* Set the LPO as the WDGO clock source */
 | WDOG_CS_UPDATE_MASK
 /* Enable the WDOG to allow updates */
 | WDOG_CS_CMD32EN_MASK
 /* Enable the WDOG support for 32 bit
refresh/unlock command write words */
 | WDOG_CS_INT_MASK
 /* Enable the WDOG interrupt, the
reset is delayed 128 bus clocks */
 | WDOG_CS_STOP_MASK
 /* Enable the WDOG to work on stop
mode */
 | WDOG_CS_PRES_MASK
 /* Enable the WDOG prescaler to divide
the CLK by 256 */
 | WDOG_CS_DBG_MASK;
 /* Allow the WDOG counter to continue
running while debugging */

 /* Wait until the configuration takes effect */

Implementation

The WDOG should always be a

backup in a functional safety

application. In case the

execution is trapped in a code

section, the WDOG will not be

refreshed therefore causing a

reset. In this example, before

entering into the VLPS mode,

the watchdog is unlocked,

configured and enabled. The

LPO is set as the WDOG clock.

If the core does not wakeup from

VLPS in a certain period of time,

the WDOG will trigger a reset.

, Application Notes., Rev. n, 01/2020

26 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

 while(False == ((WDOG->CS & WDOG_CS_RCS_MASK)
>> WDOG_CS_RCS_SHIFT));

 /* Enable the interrupts */
 EnableInterrupts;
}

SM_202

Description Code

The WDOG time window

settings must be set to a value

less than the FTTI. Detection

latency shall be smaller than the

FTTI.

S32K1xx_CLK_LPIT_VLPS_WDOG -> WDOG.c

/* Configure the WDOG */
WDOG->CS |= WDOG_CS_EN_MASK /* Enable the WDOG */
 | WDOG_CS_CLK(WDOG_CLK_LPO) /* Set the LPO as
the WDGO clock source */
 | WDOG_CS_UPDATE_MASK /* Enable the WDOG to
allow updates */
 | WDOG_CS_CMD32EN_MASK /* Enable the WDOG
support for 32 bit refresh/unlock command write words
*/
 | WDOG_CS_INT_MASK /* Enable the WDOG
interrupt, the reset is delayed 128 bus clocks */
 | WDOG_CS_STOP_MASK /* Enable the WDOG to
work on stop mode */
 | WDOG_CS_PRES_MASK /* Enable the WDOG
prescaler to divide the CLK by 256 */
 | WDOG_CS_DBG_MASK; /* Allow the WDOG counter
to continue running while debugging */

Implementation

The FTTI is application specific.

It must be calculated and set as

the WDOG timeout value. In the

SM_211 it is assumed that the

FTTI is 100 ms.

SM_069

Description Code

It is the responsibility of the

application software to insert

control flow checkpoints with

the required granularity as

required by the application.

S32K1xx_CLK_LPIT_VLPS_WDOG -> WDOG.c

void LPIT0_Ch0_IRQHandler(void)
{
 /* Stop the LPIT channel 1 and get the counter
value */
 LPIT_CH1_current_value = LPIT_MAX_PERIOD -
LPIT_CH1_stop();

 /* Verify if the LPIT interrupt flag caused the
interruption */
 if(True == ((LPIT0->MSR & LPIT_MSR_TIF0_MASK)
>> LPIT_MSR_TIF0_SHIFT))
 {
 /* Disable the interrupts */
 DisableInterrupts;

 /* Reconfiguration to restore the RUN
mode after VLPS */
 SCG->RCCR = SCG_RCCR_SCS(2)
 /* Set the SIRC as the system clock source */
 |
SCG_RCCR_DIVCORE(1) /* Set the CORE_CLK to (4MHz)
by dividing the SIRC (8MHz) by 2 */
 |
SCG_RCCR_DIVBUS(1) /* Set the BUS_CLK
to (4MHz) by dividing the CORE_CLK (4MHz) by 1 */
 |
SCG_RCCR_DIVSLOW(3); /* Set the FLASH_CLK to (1MHz)
by dividing the CORE_CLK (4MHz) by 4 */

 /* Set the PTD16 pin */
 PTD->PTOR |= 1 << RED_LED;

 /* Clear the flag which produced the
interrupt */
 LPIT0->MSR |= LPIT_MSR_TIF0_MASK;

 /* Refresh the WDOG */
 WDOG->CNT = WDOG_REFRESH_VAL;

Implementation

The WDOG should be used to

monitor the application,

therefore it should be refreshed

periodically to ensure the correct

functionality. The watchdog

refresh is done periodically

using the LPIT interrupt. This

period should always be smaller

than the application FTTI.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 27

COMPANY PROPRIETERY

COMPANY INTERNAL

 /* Enable the interrupts */
 EnableInterrupts;
 }

 /* Restart the LPIT channel 1 */
 LPIT_CH1_start();
}

, Application Notes., Rev. n, 01/2020

28 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

2.8.8. Low Power Periodic Interrupt Timer (LPIT)

The LPIT is a timer with multiple channels that have a configurable 32 bit count which can trigger other

modules on the device or trigger interrupts periodically. It has two modes of operation, the compare and

the capture modes.

The table below summarizes how to implement the assumptions related to the LPIT section of the Safety

Manual in section 5.6.10.

Assumptions

SM_107

Description Code

When using the LPIT module, it

should be used in such a way

that a possible functional safety-

relevant failure is detected by

the Watchdog Timer (WDOG).

S32K1xx_CLK_LPIT_VLPS_WDOG -> WDOG.c

void LPIT0_Ch0_IRQHandler(void)
{
 /* Stop the LPIT channel 1 and get the counter
value */
 LPIT_CH1_current_value = LPIT_MAX_PERIOD -
LPIT_CH1_stop();

 /* Verify if the LPIT interrupt flag caused the
interruption */
 if(True == ((LPIT0->MSR & LPIT_MSR_TIF0_MASK)
>> LPIT_MSR_TIF0_SHIFT))
 {
 /* Disable the interrupts */
 DisableInterrupts;

 /* Reconfiguration to restore the RUN
mode after VLPS */
 SCG->RCCR = SCG_RCCR_SCS(2)
 /* Set the SIRC as the system clock source */
 |
SCG_RCCR_DIVCORE(1) /* Set the CORE_CLK to (4MHz)
by dividing the SIRC (8MHz) by 2 */
 |
SCG_RCCR_DIVBUS(1) /* Set the BUS_CLK
to (4MHz) by dividing the CORE_CLK (4MHz) by 1 */
 |
SCG_RCCR_DIVSLOW(3); /* Set the FLASH_CLK to (1MHz)
by dividing the CORE_CLK (4MHz) by 4 */

 /* Set the PTD16 pin */
 PTD->PTOR |= 1 << RED_LED;

 /* Clear the flag which produced the
interrupt */
 LPIT0->MSR |= LPIT_MSR_TIF0_MASK;

 /* Refresh the WDOG */
 WDOG->CNT = WDOG_REFRESH_VAL;

 /* Enable the interrupts */
 EnableInterrupts;
 }

 /* Restart the LPIT channel 1 */
 LPIT_CH1_start();
}

Implementation

The LPIT handler is used to

refresh the WDOG one a FTTI.

Therefore if a fault occurs

during the execution, the

WDOG will timeout, trigger an

interruption and reset the

system.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 29

COMPANY PROPRIETERY

COMPANY INTERNAL

2.8.9. Low Power Mode Monitoring

The table below summarizes how to implement the assumption related to the Low Power Mode

Monitoring section of the Safety Manual in section 5.6.11.

Assumptions

SM_082

Description Code

If application uses Low Power

mode, it is required to monitor

the duration of LP mode. If the

system does not wakeup within

a specified period, the system

will be reset by the monitoring

circuitry.

S32K1xx_CLK_LPIT_VLPS_WDOG -> WDOG.c

void LPIT0_Ch0_IRQHandler(void)
{
 /* Stop the LPIT channel 1 and get the counter
value */
 LPIT_CH1_current_value = LPIT_MAX_PERIOD -
LPIT_CH1_stop();

 /* Verify if the LPIT interrupt flag caused the
interruption */
 if(True == ((LPIT0->MSR & LPIT_MSR_TIF0_MASK)
>> LPIT_MSR_TIF0_SHIFT))
 {
 /* Disable the interrupts */
 DisableInterrupts;

 /* Reconfiguration to restore the RUN
mode after VLPS */
 SCG->RCCR = SCG_RCCR_SCS(2)
 /* Set the SIRC as the system clock source */
 |
SCG_RCCR_DIVCORE(1) /* Set the CORE_CLK to (4MHz)
by dividing the SIRC (8MHz) by 2 */
 |
SCG_RCCR_DIVBUS(1) /* Set the BUS_CLK
to (4MHz) by dividing the CORE_CLK (4MHz) by 1 */
 |
SCG_RCCR_DIVSLOW(3); /* Set the FLASH_CLK to (1MHz)
by dividing the CORE_CLK (4MHz) by 4 */

 /* Set the PTD16 pin */
 PTD->PTOR |= 1 << RED_LED;

 /* Clear the flag which produced the
interrupt */
 LPIT0->MSR |= LPIT_MSR_TIF0_MASK;

 /* Refresh the WDOG */
 WDOG->CNT = WDOG_REFRESH_VAL;

 /* Enable the interrupts */
 EnableInterrupts;
 }

 /* Restart the LPIT channel 1 */
 LPIT_CH1_start();
}

Implementation

While the systems is in Very

Low Power Stop, the LPIT

continues running and it is

configured to wake up the

processor once every FTTI.

While the system is awake the

watchdog is refreshed. If a

problems occurs with the LPIT

the watchdog will timeout and

trigger an interruption and then a

reset.

, Application Notes., Rev. n, 01/2020

30 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

2.8.10. Cyclic Redundancy Check (CRC)

The Cyclic Redundancy Check module generates 16/32 bits CRC code for error detection without using

the CPU. It is useful for detecting corrupted data during transmission or storage. It has a programable

polynomial and a transpose feature.

The table below summarizes how to implement the assumption related to the Cyclic Redundancy Check

(CRC) section of the Safety Manual in section 5.6.12.

Assumptions

SM_070

Description Code

The safety-relevant

configuration registers shall be

checked at least once per FTTI

to verify their proper content.

S32K1xx_ADC_CRC_PMC -> ADC.c

 /* Calculate the CFG2 CRC */
 CRC_CFG2_result = CRC_32_bit(CRC_polynomial,
CRC_seed, ADC0->CFG2);

 /* Verify the CRC */
 if(CFG2_CRC_OFFLINE_VAL != CRC_CFG2_result)
 {
 /* If they are different jump to the
safe state */
 ADC_safe_state();
 }

 /* Calculate the SC1 CRC */
 CRC_SC1_result = CRC_32_bit(CRC_polynomial,
CRC_seed, ADC0->SC1[0]);

 /* Verify the CRC */
 if(SC1_CRC_OFFLINE_VAL != CRC_SC1_result)
 {
 /* If they are different jump to the
safe state */
 ADC_safe_state();
 }

Implementation

For the registers of the ADC a

CRC is calculated offline and

then recalculated after the

registers are configured. A

comparison is done between the

offline and the online CRC

result. This is done to verify that

they match, if the do not match

the system jumps to a safe state.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 31

COMPANY PROPRIETERY

COMPANY INTERNAL

 Peripheral

2.9.1. Communications

For any communication peripheral used in a safety relevant application the software needs to provide the

safety measures to ensure they meet the safety requirements. A proper fault tolerant communication layer

should be implemented for each protocol.

The table below summarizes how to implement the assumption related to the Communications section of

the Safety Manual in section 5.7.1.

Assumptions

SM_051

Description Code

It is recommended that

communication over CAN

interfaces is to be protected by a

fault-tolerant communication

protocol.

NA

Implementation

The CAN physical layer in the

S32K1xx family is capable of

handling errors. The CAN frame

has checksums that detect if

there is an erroneous bit in the

data transfer. There is also an

Error Counter that disables the

node when it detects 255 errors.

, Application Notes., Rev. n, 01/2020

32 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

2.9.2. I/O functions

The functional safety relevant peripherals must be ensured by the application. They are assumed to be

used redundantly, to ensure that the information is transmitted or received correctly. Many approaches

exist, therefore, it can be chosen the one that best fits the application requirements.

The table below summarizes how to implement the assumption related to the I/O functions section of the

Safety Manual in section 5.7.2.

Assumptions

SM_133

Description Code

Comparison of redundant

operation of I/O modules is the

responsibility of the application

software, as no hardware

mechanism is provided for this.

S32K1xx_FTM -> ADC.c

/* Infinite loop */
for(;;)
{
 /* Save the last edges */
 Past_rising_edge_0 = Rising_edge_0;
 Past_rising_edge_1 = Rising_edge_1;

 /* Verify if a rising edge was detected */
 Rising_edge_0 = FTM0_CH6_input_capture();
 /* Verify if a rising edge was detected */
 Rising_edge_1 = FTM1_CH3_input_capture();

 /* Verify if edges were detected */
 if(False != (Rising_edge_0 & Rising_edge_0))
 {
 /* Calculate the PWM period */
 Edge_to_edge_0 = Rising_edge_0 -
Past_rising_edge_0;
 Edge_to_edge_1 = Rising_edge_1 -
Past_rising_edge_1;

 if(Edge_to_edge_0 != Edge_to_edge_1)
 {
 /* Jump to the safe state if
the periods are not equal */
 Safe_state();
 }
 }
}

Implementation

To achieve redundancy, multiple

peripherals are used to read the

same signal. Then the values are

compared to verify the correct

functionality of those GPIOs.

For this assumption three FTM

channels were used. One as

PWM generator and two as input

capture. They are used to

measure the period of a PWM

signal. Both periods are

compared, they should be equal.

SM_137

Description Code

When safety functions use

digital input, system level

functional safety mechanisms

have to be implemented to

achieve required functional

safety integrity.

S32K1xx_FTM -> ADC.c

/* Infinite loop */
for(;;)
{
 /* Save the last edges */
 Past_rising_edge_0 = Rising_edge_0;
 Past_rising_edge_1 = Rising_edge_1;

 /* Verify if a rising edge was detected */
 Rising_edge_0 = FTM0_CH6_input_capture();
 /* Verify if a rising edge was detected */
 Rising_edge_1 = FTM1_CH3_input_capture();

 /* Verify if edges were detected */
 if(False != (Rising_edge_0 & Rising_edge_0))

Implementation

In this case it is consider that the

PWM that is being produced

with the FTM is safety relevant.

Therefore it should be covered

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 33

COMPANY PROPRIETERY

COMPANY INTERNAL

with a functional level

mechanism. A redundancy

check between two channels

from different FTMs is

performed to ensure the correct

functionality.

 {
 /* Calculate the PWM period */
 Edge_to_edge_0 = Rising_edge_0 -
Past_rising_edge_0;
 Edge_to_edge_1 = Rising_edge_1 -
Past_rising_edge_1;

 if(Edge_to_edge_0 != Edge_to_edge_1)
 {
 /* Jump to the safe state if
the periods are not equal */
 Safe_state();
 }
 }
}

, Application Notes., Rev. n, 01/2020

34 PRELIMINARY NXP Semiconductors

 COMPANY PROPRIETARY

 COMPANY INTERNAL

2.9.3. Analog to Digital Converter (ADC)

The ADC module is not fully covered by functional safety, therefore, the software application must ensure

that the needed safety level is achieved.

The table below summarizes how to implement the assumption related to the Analog to Digital Converter

(ADC) section of the Safety Manual in section 5.7.4.

Assumptions

SM_130

Description Code

When Analog-to-Digital

Converter (ADC) of the

S32K1xx are used in a safety

function, suitable system level

functional safety integrity

measures must be implemented

once per L-FTTI.

S32K1xx_ADC_CRC_PMC -> main.c

/* Start the ADC self-calibration sequence */
ADC_self_calibration();

S32K1xx_ADC_CRC_PMC -> ADC.c

void ADC_self_calibration(void)
{
 /* Enable FIRCDIV 1 and 2 */
 SCG->FIRCDIV |= SCG_FIRCDIV_FIRCDIV2(1) |
SCG_FIRCDIV_FIRCDIV1(1);

 /* Disable the clock for the ADC0 to make
changes */
 PCC->PCCn[PCC_ADC0_INDEX] &=
~PCC_PCCn_CGC_MASK;
 /* Select the FIRCDIV2_CLK as clock source */
 PCC->PCCn[PCC_ADC0_INDEX] |= PCC_PCCn_PCS(3);
 /* Enable the clock for the ADC0 */
 PCC->PCCn[PCC_ADC0_INDEX] |= PCC_PCCn_CGC_MASK;

 ADC0->SC3 = ADC_SC3_CAL_MASK /* Start
calibration sequence */
 | ADC_SC3_AVGE_MASK /* Enable
hardware averaging */
 | ADC_SC3_AVGS(3); /* Average 32
samples */

 /* Wait for the ADC self-calibration sequence
to finish */
 while(0 == ((ADC0->SC1[0] &
ADC_SC1_COCO_MASK)>>ADC_SC1_COCO_SHIFT));

}

Implementation

When the ADC is used in a

safety relevant application, the

calibration function should be

used. This is done to ensure the

correct functionality of the

ADC. This calibration should be

done once after every reset.

, Application Notes., Rev. n, 01/2020

NXP Semiconductors PRELIMINARY 35

COMPANY PROPRIETERY

COMPANY INTERNAL

2.9.4. Asynchronous Wake-up Interrupt Controller (AWIC) / External NMI

The table below summarizes how to implement the assumption related to the Asynchronous Wake-up

Interrupt Controller (AWIC) / External section of the Safety Manual in section 5.7.5.

Assumptions

SM_126

Description Code

If external NMI and Wake-up

are used as a safety mechanism,

especially if waking up within a

certain timespan or at all is

considered safety-relevant, it is

required to implement

corresponding system level

measures to detect latent faults

in the AWIC.

S32K1xx_CLK_LPIT_VLPS_WDOG -> main.c

void LPIT0_IRQHandler(void)
{
 /* Stop the LPIT channel 1 and get the counter
value which is equal to the time it took the MCU to
wake up from VLPS */
 LPIT_CH1_current_value = LPIT_MAX_PERIOD -
LPIT_CH1_stop();

 /* Verify if the LPIT interrupt flag caused the
interruption */
 if(True == ((LPIT0->MSR & LPIT_MSR_TIF0_MASK)
>> LPIT_MSR_TIF0_SHIFT))
 {
 /* Disable the interrupts */
 DisableInterrupts;

 /* Reconfiguration to restore the RUN
mode after VLPS */
 SCG->RCCR = SCG_RCCR_SCS(2)
 /* Set the SIRC as the system clock source */
 |
SCG_RCCR_DIVCORE(1) /* Set the CORE_CLK to (4MHz)
by dividing the SIRC (8MHz) by 2 */
 |
SCG_RCCR_DIVBUS(1) /* Set the BUS_CLK
to (4MHz) by dividing the CORE_CLK (4MHz) by 1 */
 |
SCG_RCCR_DIVSLOW(3); /* Set the FLASH_CLK to (1MHz)
by dividing the CORE_CLK (4MHz) by 4 */

 /* Set the PTD16 pin */
 PTD->PTOR |= 1 << RED_LED;

 /* Clear the flag which produced the
interrupt */
 LPIT0->MSR |= LPIT_MSR_TIF0_MASK;

 /* Refresh the WDOG */
 WDOG->CNT = WDOG_REFRESH_VAL;

 /* Enable the interrupts */
 EnableInterrupts;

 }

 /* Restart the LPIT channel 1 */
 LPIT_CH1_start();
}

Implementation

A LPIT channel is used to

measure the timespan it takes to

another LPIT channel to wake

up the MCU from VLPS. The

timespan value is application

dependent but should be one per

FTTI. The time measured using

the LPIT should be less than the

application timespan.

3. References

1. S32K1xx Series Safety Manual Rev. 4, 09/2018, by NXP Semiconductors.

2. S32K1xx Series Reference Manual Rev. 9, 09/2018, by NXP Semiconductors.

3. S32K1xx Data Sheet Rev. 9, 09/2018, by NXP Semiconductors.

4. S32K1xx ADC guidelines, spec and configuration Rev. 0, 08/2018, by NXP Semiconductors.

5. S32K1xx ECC Error Handling Rev. 0, 07/2019, bye NXP Semiconductors.

https://www.nxp.com/docs/en/reference-manual/S32K-RM.pdf
https://www.nxp.com/docs/en/data-sheet/S32K1XX.pdf
https://www.nxp.com/docs/en/application-note/AN12217.pdf
https://www.nxp.com/docs/en/application-note/AN12522.pdf

Document Number: AN00000000000001

Rev. n
01/2020

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Registered trademarks: NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A

SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS,

MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG,

ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE,

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-

Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and

UMEMS are trademarks of NXP B.V. All other product or service names are the property of

their respective owners.

ARM, the ARM logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries)

in the EU and/or elsewhere. mbed is a trademark of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved.

IEEE nnn, nnn, and nnn are registered trademarks of the Institute of Electrical and Electronics

Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org

word marks and the Power and Power.org logos and related marks are trademarks and service

marks licensed by Power.org. (Add contract language here, as necessary.)

© 2016 NXP B.V.

COMPANY PROPRIETARY
COMPANY INTERNAL
PRELIMINARY

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Software requirements
	2.1. Code organization
	2.2. Table structure
	2.3. Summary of implemented assumptions
	2.4. Power
	2.4.1. Power Management Controller (PMC)

	2.5. Clock
	2.5.1. Clock

	2.6. Flash
	2.6.1. Flash memory

	2.7. SRAM
	2.7.1. Error Correction Code (ECC)

	2.8. Processing modules
	2.8.1. Debug mode
	2.8.2. Stack
	2.8.3. S32K1xx configuration
	2.8.4. MPU
	2.8.5. Nested Vectored Interrupt Controller (NVIC)
	2.8.6. Enhanced Direct Memory Access (eDMA)
	2.8.7. Watchdog timer (WDOG)
	2.8.8. Low Power Periodic Interrupt Timer (LPIT)
	2.8.9. Low Power Mode Monitoring
	2.8.10. Cyclic Redundancy Check (CRC)

	2.9. Peripheral
	2.9.1. Communications
	2.9.2. I/O functions
	2.9.3. Analog to Digital Converter (ADC)
	2.9.4. Asynchronous Wake-up Interrupt Controller (AWIC) / External NMI

	3. References

