LIN Stack Package

For 8/16/32 bit MCU User's Guide

Document Number: LIN_STACK_UG Rev2.5.7 1/2017

Table of Contents

Cha	pter 1	Introduction	4
1.1	Revisi	on History	5
1.2		tions, Acronyms, and Abbreviation	
1.3	Refere	ences	7
Cha	pter 2	Overview	8
2.1	System	n Architecture	9
2.2	Suppor	rted Derivatives	
2.3	LIN St	tack Package Components	
	2.3.1 N	Node Configuration Tool	
	2.3.2 L	LIN Stack Architecture	
Cha	pter 3	LIN Stack Package	16
3.1	Stack S	Source Code	
	3.1.1 E	Board Support Package	
	3.1.2 L	Low Level layer	
	3.1.3 0	Core API Layer	
	3.1.4 T	Fransport Layer	19
	3.1.5 E	Diagnostic Service	
	3.1.6 I	nclude folder	
Cha	pter 4	How to use LIN Package	20
4.1	- Enviro	onment requirements	
4.2		vare configuration file generation	
4.3		setup	
4.4		guration Files and LIN Stack Source Code Integration	
	-	Create an empty project of the target MCU board	
		Create a folder containing configuration files	
		Create a group containing LIN Stack source code	
4.5		guration in CW10.6	
4.6	-	g Started with LIN application	
		nitialization of hardware utilities	
	4.6.2 I	nitialization of LIN system	
	4.6.3 T	Fimer for LIN schedule execution (Master mode only)	
	4.6.4 L	LIN_PHY Enable	51
	4.6.5 L	LIN Applications	
Cha	pter 5	Demo Application	58
5.1	LIN Pr	rotocol demo application	
	5.1.1 I	ntroduction	
	5.1.2 E	Demo Environment Setup	59
	5.1.3 E	Detail Description of Nodes	59
	5.1.4 L	LIN System Initialization	60
	5.1.5 F	Functionality Description	
	5.1.6 0	Operation	66
5.2	LIN di	iagnostic demo application	70

	5.2.1 Introduction	
	5.2.2 Diagnostic services support	
	5.2.3 Demo setup	
	5.2.4 Operation description	
5.3	Resynchronization demo application	
	5.3.1 Introduction	
	5.3.2 Demo setup	
	5.3.3 Operation description	
Арре	ndix A	85
Арре	ndix B	87
Арре	ndix C	90

Chapter 1 Introduction

This document details the implementation of LIN 2.0/2.1/2.2A and SAE J2602 compliant (see [1],[2],[3],[4]) SW drivers for NXP 8, 16 and 32 bit microcontroller portfolio. Throughout the text the stack will be called LIN2.x/J2602. The aim of the documents is to help the user to easily utilize these stacks in the project and explain the configuration flow.

The information in this document is subject of change without notice and does not represent a commitment on the part of NXP Semiconductors. The software describes in this document is furnished under a license agreement and may be used or copied in accordance with the terms of that license agreement. No part of this manual may be reproduced in any form or by any means, electronically or mechanically, including photocopying and recording for any purpose without the express written permission of NXP Semiconductors.

1.1 Revision History

Revision	Date	Author	Description
1.0	2009-09-24	B26340-Cong Tran	Initial release
2.0	2011-03-21	B26340-Cong Tran	Update chapter 2 for new HW supported
			Update chapter 3.1 for NPF structure, 3.2 for SCI folder and add RESYN feature
			Update chapter 4.5 for diagnostic example application
			Add demo application for diagnostic and resynchronization to chapter 6
2.0.1	2011-03-24	B26340-Cong Tran	Update table 2.1
2.1	2011-12-19	B26340-Cong Tran	Update chapter 3.1.2 for NCF tool
			Update table MCU support for MM912xxx, VR64, GN32, SC4, LG32
2.2	2012-06-11	B26340-Cong Tran	Update chapter 4.5 for new CW support
			Update support 9S12ZVM128 MCU
2.3	2013-07-13	B26340-Cong Tran	Update table MCU support for Lumen, QuIBSJ638, RN60, VR64 SCIv6, Knox
			Update chapter 4 for LIN_PHY using
2.4	2013-09-17	B26340-Cong Tran	Update application for LIN master, slave tasks, goto sleep/wake up, multi timer selection
2.5	2014-08-11	B26340- Cong Tran	Add Kinetis platform support
			Add AUTOBAUD feature in LIN Driver
2.5.1	2014-09-11	B26340- Cong Tran	Add Hearst platform support
2.5.2	2015-04-15	B39392- Lan Bui	Update to support 9S12ZVML31, 9S12VR32 MCUs
2.5.3	2015-06-01	B39392- Lan Bui	Changed name of the LIN Driver Package to LIN Stack Package
2.5.4	2015-09-26	B39392- Lan Bui	Update to support 9S12ZVL128, 9S12ZVMC256 MCUs
2.5.5	2015-11-18	B39392- Lan Bui	Update SCI Version of S12ZVHY64 to SCIV6
			Add max message_length and support_sid field to network description in npf files
2.5.6	2016-06-23	B39392- Lan Bui	Update to support 9S12ZVMA, 9S12ZVMB
			Family MCUs
2.5.7	2017-01-13	B54556- Dat Bui	Update to support MC9S12VRP64, MC9S12VRP48
			Update copyright to NXP

Table 1-1. Revision history

1.2 Definitions, Acronyms, and Abbreviation

BSP	Board Support Package
CAN	Controller Area Network
DTC	Diagnostic Trouble Code.
GPIO	General Purpose Input Output
LIN	Local Interconnect Network
LDF	LIN Description File
MCU	Microcontroller unit
NAD	Node Address for slave nodes. Diagnostic frames are broadcasted and the NAD specifies the addressed, respectively responding slave node. The NAD is the address of a logical node.
NCF	Node Capability File
NPF	Node Private File
PCI	Protocol Control Information
PDU	Packet Data Unit
PID	Protected Identifier
RISC	Reduced Instruction Set Computer
SAE	Society of Automotive Engineers
SCI	Serial Communication Interface
SLIC	Slave LIN Interface Controller
SNPD	Slave Node Position Detection. Defines a recommended practice to position and separate identical slave nodes.
UART	Universal Asynchronous Receiver/Transmitter
UDS	Unified Diagnostic Service.
XGATE	RISC coprocessor that allows autonomous high-speed data processing and transfers.

1.3 References

- [1] LIN Specification Package, rev. 2.1, November 24, 2006
- [2] LIN Specification Package, rev. 1.3, December 12, 2002
- [3] LIN Specification Package, rev. 2.0, September 23, 2003
- [4] LIN Specification Package, rev. 2.2A, December 31, 2010
- [5] SAE J2602/1 LIN Network for Vehicle Application, September 2005
- [6] MISRA-C:2004 Guidelines for the use of the C language in critical systems, October 2004
- [7] MC9S12HZ256 Data Sheet, rev. 2.05, 04/2008
- [8] MC9S12P128 Reference Manual, rev. 1.08, 2 July 2008
- [9] MC9S12XEP100 Reference Manual, rev. 1.18, 09/2008
- [10] MC9S12XDP512 Data Sheet, rev. 2.17, July 2007
- [11] MC9S08SG32 Data Sheet, rev. 4, 5/2008
- [12] MC9S08SG8 Data Sheet, rev. 5, 6/2008
- [13] MC9S08DZ60 Data Sheet, rev. 4, 6/2008
- [14] MC9S08DZ128 Data Sheet, rev. 1, 5/2008
- [15] MC9S08AW60 Data Sheet, rev. 2, 12/2006
- [16] MC9S08QD4 Data Sheet, rev. 3, 11/2007
- [17] MC9S08EL32 Data Sheet, rev. 3, 7/2008
- [18] MC9S08MP16 Reference Manual, rev.1, 9/2009
- [19] MC9S12XHY256 Reference Manual, rev 0.1, 11/2009
- [20] MM912F634 Advanced Information, Rev. 4.0, 10/2010
- [21] Surface vehicle recommended practice.
- [22] CodeWarrior™ Development Studio 8/16-Bit IDE User's Guide
- [23] CANoe as a diagnostic tool, v.1.2, June 06,2006
- [24] ISO 14229-1, Road vehicles Unified diagnostic services (UDS), December 2006
- [25] Application note AN3756, Rev. 0, 10/2008

Chapter 2 Overview

This chapter provides a high-level description of LIN Stack architecture with hardware independence. This chapter contains information about following:

- System architecture of LIN Stack
- Node configuration Tool which is used for generation hardware configuration files.

2.1 System Architecture

The layered architecture of the LIN2.x/J2602 Stack package is shown on Figure 2-1. Such architecture approach aims maximum reusability of common code base for LIN2.x and J2602 standards for 8 bit, 16 bit and 32 bit NXP automotive MCU portfolio.

The core API layer of LIN2.x/J2602 handles initialization, processing and signal based interaction between application and LIN Core. The LIN2.x TL (Transport Layer) provides methods for tester to transmit diagnostic requests.

The low level layer offers method of handling signal transmission between user application and hardware independence such as byte sending, response receiving, break symbol detection, etc.

The physical transport layer of the Driver supports three standard interfaces SCI, SLIC, GPIO to operate with 8 bit and 16 bit MCU hardware.

Refer to Chapter 2.3.2 LIN Stack for detail information.

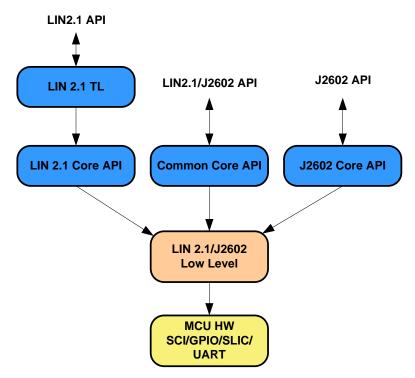


Figure 2-1. LIN Stack Architecture diagram

2.2 Supported Derivatives

The following table displays the list of supported MCU derivatives including the functionalities Note that all derivatives support the LIN2.x and J2602 specifications.

For some derivatives, this table displays the MCU family names only. For detailed list of supported derivatives, please see the Release note.

No.	Туре	MCU	LIN Module	Ма	ster M	ode	Slave Mode		
			Version	Diagnostic			Diagnostic		
				Class I	Class II	Class III	Class I	Class II	Class III
1		9S08AW16A	SCI_V4						
2		9S08SG32	SCI_V4						
3		9S08SG8*	SCI_V4		$\mathbf{\succ}$			$\mathbf{\succ}$	$\overline{}$
4		9S08DZ60	SCI_V4						
5		9S08DZ128	SCI_V4						
6		9S08AW60	SCI_V2						
7		9S08QD4**	GPIO	$\mathbf{\succ}$			$\mathbf{\succ}$	$\mathbf{\succ}$	$\mathbf{\succ}$
8	8 bit MCU	9S08EL32***	SCI_V4						
			SLIC	$\mathbf{\succ}$					
9		9S08MP16	SCI_V4						
10		9S08SG4	SCI_V4						
11		9S08SG8	SCI_V4						
12		9S08LG32	SCI_V4						
13		9S08SC4**	SCI_V4	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			$\mathbf{\succ}$	$\mathbf{\succ}$	$\overline{}$
14		9S08RN60	SCI_V4	$\overline{}$					
15		9S12HY64	SCI_V5						
16		9S12XHY256	SCI_V5						
17		9S12P128	SCI_V5						
18		9S12XS128	SCI_V5						
19		9S12XS256	SCI_V5						
20		9S12XEP100	SCI_V5						
21		9S12XEQ512	SCI_V5						
22	16 bit	9S12XET256	SCI_V5						
23	MCU	9S12XDP512	SCI_V5						
24		9S12XF512	SCI_V5						
25		9S12G128	SCI_V5						
26		9S12G240	SCI_V5						
27		9S12GN32	SCI_V5	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			
28		9S12G64	SCI_V5						
29		9S12VR64	SCI_V6 LINPHY_V1						

Table 2-1.	Target	Platform
------------	--------	----------

Overview

30		9S12VR32 Tomarino	SCI_V6						
			LINPHY_V2						
31	-	9S12VRP64	SCI_V6						
		9S12VRP48	LINPHY_V2						
32	-	MM912F634****	SCI_V4	$\mathbf{\succ}$	\times	\times			
33		MM912G634	SCI_V4	$\overline{}$	$\boldsymbol{\succ}$	$\boldsymbol{\succ}$			
34		MM912H634	SCI_V4						
35		MM912J637	SCI_V4						
36		MM9Z1J638	D2D+SCI4						
37	-	9S12ZVML128_Carcassonne	SCI_V5						
38	-	9S12ZVL_Knox	SCI_V6						
39	-	9S12ZVL128	SCI_V6						
	_		LINPHY V2						
40		9S12ZVHY64_Lumen	SCI_V6						
41	16 bit	9S12ZVH128_Lumen	SCI_V6						
42	MCU	9S12ZVC64 Hearst	SCI_V6						
43	S12Z	9S12ZVML31 Obidos	SCI_V6						
			LINPHY_V3						
44	-	9S12ZVMC256	SCI_V6						
45	-	9S12ZVMA	SCI_V6						
			LINPHY_V2						
46		9S12ZVMB	SCI_V6						
			LINPHY_V2						
47		SKEAZN84		$\mathbf{\succ}$	\times	$\mathbf{\times}$	\times	\times	$\mathbf{\times}$
48	Kinetis	SKEAZN642	UART						
49	-	SKEAZ1284							

Mark:

: Support

```
⊠ : Not support
```

* 9S08SG8 Supports master and slave modes in diagnostic class I only due

to memory limitation

** 9S08QD4, 9S08SC4 supports LIN protocol only

*** 9S08EL32 contains SCI and SLIC interfaces. SLIC supports slave mode only due to its function to support slave LIN interface.

**** MM912 integrated LIN frontend / Quest / Quicksilver

2.3 LIN Stack Package Components

LIN Stack Package consists of two major parts:

- <u>Node Configuration Tool</u> PC based script for LIN Stack configuration generation.
- <u>LIN Stack</u> Embedded SW package supporting the LIN2.x and J2602 communication

2.3.1 Node Configuration Tool

• The Node Configuration Tool is a built-in script of the LIN Stack package which allows user to easily generate the node configuration .h and .c files based on LIN Configuration Description File (LCF) and Node Private Description File (LPF) (see more in □

Generation Configuration). Those files are then in compiler integrated with LIN Stack source code and user application and after compilation downloaded to the target derivative. Figure 2-2 shows the diagram of configuration data flow.

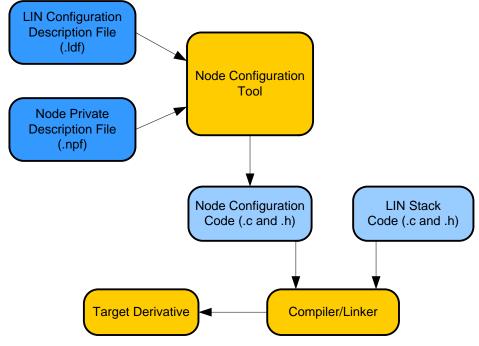


Figure 2-2. Configuration data

The LDF file describes a complete LIN cluster including Master/slave mode definition and contains information to handle the cluster.

The NPF file contains information about LIN nodes – such as node name, number of interface, MCU clock frequency, used communication channel (e.g. SCI channel) and port (e.g. GPIO port), etc., required for full description of the node.

2.3.2 LIN Stack Architecture

The Figure 2-3. shows the details of modules in the LIN Stack package. It also demonstrates the relationship among modules and the direction of function call among them.

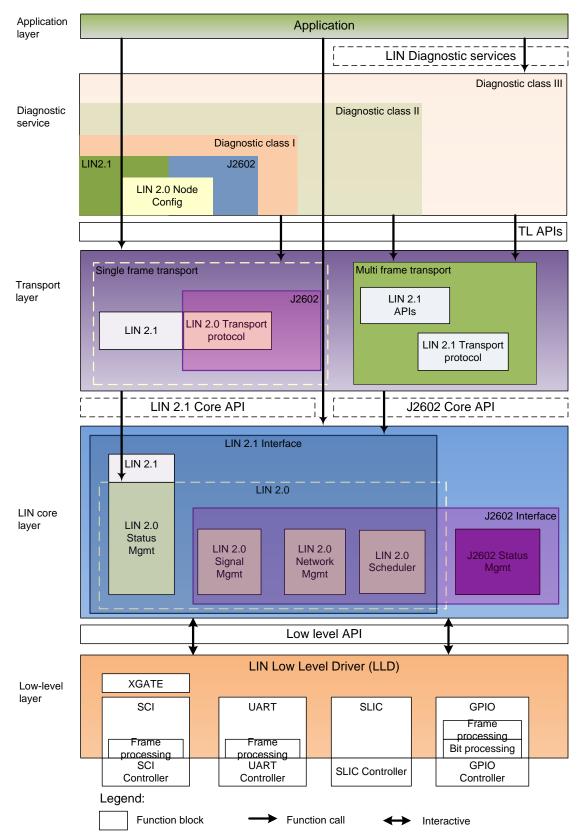


Figure 2-3. LIN Stack Layer Diagram

LIN Stack software package provides support for LIN2.x and J2602 communication protocols. The Stack package is divided into the layers as follows:

1. The lowest layer – <u>Board Support Package (BSP)</u> layer is comprised of codes, which implements the tasks dedicated to specific MCU platform: interrupt service routines, i/o

port setup, memory handling and so on. There are three interfaces implemented within the Stack package: SCI, SLIC and GPIO.

- 2. <u>Low level</u> layer consists of core functions for the LIN protocol such as the frames handling, signals transmission and reception, data preparation, etc. Besides, this layer contains common implementation functions for the lowest layer to provide the interface abstraction. Function for LIN cluster setup can be found here as well. This layer interacts with the core API layer through low level API functions.
- 3. <u>Core API layer</u> consists of API functions as defined by the LIN2.x/J2602 specification enabling the user to utilize the LIN2.x/J2602 communication within the user application. Both the static and dynamic modes for calling the API functions are supported. The core API layer interacts with the low level layer and can be called by such upper layers as LIN2.x TL API, LIN TL J2602 or application for diagnostic implementation.
- 4. <u>Transport layer</u> stands between the application layer and the core API layer including LIN2.x TL API and LIN TL J2602. This layer provides APIs for the transport protocol, node configuration and diagnostic. For LIN2.x, all components will be extended from LIN 2.0 specification. The node configuration for J2602 implements only some functions of LIN 2.0 specification. The layer contains some main components below:
 - Transport protocol:

- Transport protocol presented in LIN2.x Stack supports single and full frame transmission. Single frame transmission is applied for diagnostic class I, whereas the full frame is applied for diagnostic classes II and III.

- 5. <u>Diagnostic services</u> layer presented in the Stack supports all diagnostic classes as defined in [1].
 - Diagnostic class I: Node configuration and Identification

- LIN2.x extends slave configuration and assign frame with ID range to LIN 2.0. The assign frame with ID is removed.

- J2602 simplifies LIN 2.0 Node configuration.
- Diagnostic classes II and III:

- The diagnostic services are implemented based on standard diagnostic specification [24]. The layer supports API functions and OEMs will add to application source code to complete base on their specific application.

The table below shows the services supported in the LIN Stack

Diagnostic Class	I	II	ш	UDS ser- vice index [Hex]	Data Identifier				
Diagnostic Transport Protocol Requirements									
Single frame transport only	+								
Full transport protocol (multi-segment)		+	+						
Required	Configura	tion Serv	ices						
Assign frame identifier range	+	+	+	0xB7					
Read by identifier (0 = product id)	+	+	+	0xB2 0x00					
Read by identifier (all others)	optional	optional	+	0xB2 0xXX					
Assign NAD	optional	optional	optional	0xB0					
Conditional change NAD	optional	optional	optional	0xB3					
Positive response on	+	+	+	service +					

NXP Semiconductors

Overview

supported configuration services				0x40			
Requ							
Read data by identifier		+	+	0x22	0x0091		
					0x0092		
Write data by identifier		+	+	0x2F	0x0092		
Session control			+	0x10	0x01		
Read by identifier for sensor and actuator data			+	0x22	Implemented by OEM		
I/O control by identifier			+	0x2F	0x08		
Read DTC (fault memory)			+	0x19	0x01		
Clear DTC (fault memory)			+	0x14	N/A		
Routine control			if applicable	0x31			
Other diagnostic services			if applicable				
Flash Reprogramming Services							
Flash programming services			optional	0xXX			

Table 2-2. LIN2.x diagnostic service specification

Note

* The blue color shows the services are supported by Stack

** The orange color shows the services are not supported by Stack

(+) Plugs are mandatory services for LIN Stack

6. <u>Application layer</u> is the highest layer which stands for user's applications.

Refer to Stack Source Code for detail about source code files of each layer.

Chapter 3 LIN Stack Package

This section presents more detail description of products in the package. The content is focused how to construct input files for Node configuration tool and explore deeply in the source code.

The chapter contains sections:

- Generation Configuration Files
- Stack Source Code
- Generation Configuration Files

The language described in this section is used in order to create input files for the Node configuration tool to generation configuration files. To understand how to run this tool, refer to Chapter 4.2, Hardware configuration file generation for more information.

NOTE

The LDF and NPF files could be created in notepad or wordpad text editors in window and saved into .ldf and .npf extension files.

3.1 Stack Source Code

The Stack source code is organized to five folders: bsp, coreapi, diagnostics, include and transport as shown in Figure 3-1. The structure of source code is based on the LIN system architecture (see more in <u>Chapter 2.2, LIN Stack</u>).

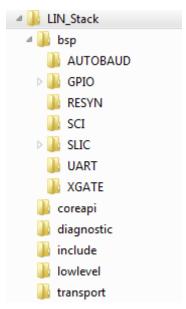


Figure 3-1. LIN Stack Source Code Directory Structure

3.1.1 Board Support Package

Board Support Package (BSP) layer is the lowest layer, which is comprised of functions related to the specific hardware. Here you could find out the special interrupt service routines, IO parameters, memory handling and so on. There are three interfaces implemented within the stack package: SCI, SLIC and GPIO.

3.1.1.1 GPIO

There is only one MCU name 9S08QD4 in the support derivative table (see more in Table 2-1) support GPIO interface. The source code in this folder is served for this MCUs.

In this folder, there are four files, including lin_lld_gpio.c, lin_lld_gpio.h, timer.c and timer.h. Namely

- lin_lld_gpio.c define initialization, data sending flow of GPIO interface
- timer.c define timeout management, counter for user application, and timer interrupt.
- lin_lld_gpio.h, timer.h includes the prototypes for functions served for .c files.

3.1.1.2 RESYN

The source code in this folder support resynchronization feature of LIN Driver as the application note [25]. The folder contains two source files lin_lld_resyn.c and lin_lld_resyn.h. The MCUs support this feature include 9S08SG32, 9S08EL32, 9S08DZ60, 9S08DZ128 and 9S08MP16.

3.1.1.3 SCI

There three SCI communication versions supported in the LIN Driver and the version has been combined in a single module of SCI.

The folder contains files lin_lld_sci.c which implements all the functions universally used for all MCUs with SCI interface. The lin_lld_sci.h contains the prototypes for functions implemented in lin_lld_sci.c. The lin_lld_timesrv.c consists of timing and board frequency setup functions; lin_lld_timesrv.h consists of the prototypes for functions implemented in lin_lld_timesrv.c and lin_reg.h contains the registry map declaration for the MCU. The lin isr.c contains interrupt service routines for SCI communication and timer.

The folder to the target MCU contains the file lin_isr.c which implements the interrupt service routines and other initial tasks dedicatedly.

3.1.1.4 SLIC

Slave LIN Interface Controller is embedded module that automates LIN message handling to help increase performance while reducing development time and cost.

In this folder, there are four files, including lin_lld_slic.c, lin_lld_slic.h, slic_isr.c and slic_isr.h. The contents of the files are described below:

- lin_lld_slic.c includes all the initial functions and other related task handling functions which will be used to directly interact with the physical hardware.
- lin_lld_slic.h includes the prototypes for functions implemented in the file lin_lld_gpio.c, constant declarations and macros.
- slic_isr.c consists of interrupt service routines for the physical board.

• slic_isr.c consists of the prototypes for functions implemented in the file
slic_isr.h, constant declaration and macros.

3.1.1.5 XGATE

The XGATE module on the advanced S12X family of 16-bit MCUs is a highly flexible, high performance and cost-sensitive parallel processing solution. The XGATE module is a peripheral coprocessor that allows autonomous high-speed data processing and transfer between the MCU's peripherals and the internal RAM and I/O ports. XGATE uses SCI for I/O communication and handling interrupt.

Similar to modules in the SCI structure, the XGATE folder contains modules specific for XGATE xlin_sci.cxgate, xvector.cxgate. The source code in these modules is stored in the RISC core.

3.1.1.6 UART

The UART layer provides physical hardware communication handling for Kinetis MCU platforms. This is based on SCI version-4 communication specified for 32 bit ARM architecture.

3.1.1.7 AUTOBAUD

The signal on the UART receive pin (RX pin) can be internally routed to an Input Capture module to time the edges of the incoming signal. From that timing the layer can set up the UART at the correct baud rate.

3.1.2 Low Level layer

Low level layer consists of core functions for the LIN protocol such that frames handling, signals transmission and reception, data preparation, etc. It also contains the functions used to set up the LIN cluster. There are two files included in:

- lin.c contains the functions for initialization of LIN core features, preparation of current transmission and interaction with hardware modules.
- lin.h consists of function declaration, macro definitions and so on which are implemented within the lin.c file.

3.1.3 Core API Layer

Core API layer is a set of functions which are intended to be used to develop the applications interacting with the LIN bus. There are six files in this folder, including:

- lin_common_api.c contains the common API functions which are applicable for all three versions LIN2.x and J2602.
- lin_common_proto.c contains the functions which are used to set up the session environment based on the low level layer.
- lin_lin21_api.c contains the API functions for LIN2.x communication protocol.
- lin_lin21_proto.c contains the functions which prepares the background tasks for LIN2.x API functions.
- lin_j2602_api.c contains the API functions for J2602 communication protocol.

• lin_j2602_proto.c contains the functions which prepares the background tasks for J2602 API functions.

3.1.4 Transport Layer

Transport layer comprises of functions, which represent the transport layer specification within the LIN protocol. This layer is only applicable for some types of communication within the LIN bus. The other types will not use the transport layer but the API and the low-level layer for opening a working session for transmission and reception of data within the LIN bus.

There are four files in this folder, including:

- Lin_commontl_api.c consists of function calls for data preparation, node identification and configuration and others which are the implementation of the transport layer specification.
- Lin_commontl_proto.c consists of functions which do the background tasks for setting up the transport layer.
- lin_21tl_api.c consists of functions which implements the transport layer for LIN2.x communication protocol.
- lin_j2602tl_api.c consists of functions which implements the transport layer for J2602 communication protocol.

3.1.5 Diagnostic Service

The transport layer is also complemented with the diagnostic services, which implement full diagnostic nodes defined in the LIN specification. Three diagnostic classes are supported where Class I is using normal signaling and class II and class III uses the transport layer.

This set of functions is built to support the mandatory diagnostic services described in the communications protocol specification. This folder contains the file lin_diagnostic _service.c, which implements the diagnostic class I for node configuration and identification mentioned above.

3.1.6 Include folder

This folder contains all the function declarations, macros and constants definitions and global variables which could be used throughout the source code. There are eleven files, including lin_common_api.h, lin_common_proto.h, lin_commontl_api.h, lin_commontl_proto.h, lin_j2602_api.h, lin_j2602_proto.h, lin_j2602tl_api.h, lin_lin21_api.h, lin_lin21_proto.h and lin_lin21tl _api.h. Among of them, lin_common_proto.h is key one which plays a gateway role to connect others for handling the protocol layer.

Chapter 4 How to use LIN Package

The objective of this chapter is to provide user with instructions on how to set up and run LIN applications as quick as possible. This chapter contains the following sections:

- Environment requirement Recommendation regarding CodeWarrior versions for each target derivative.
- Hardware configuration file generation Steps to generate configuration files from input files by using node configuration tool.
- Target setup Steps to setup a target hardware platform
- Configuration files and LIN Stack source code integration Steps to integrate to a project
- Getting start with LIN application Using API functions for user application

4.1 Environment requirements

The scope of this section is limited to recommend some notices when creating LIN application projects using Code Warrior. For more detail information about the CodeWarrior Integrated Development Environment (IDE) and computer programming, refer to the Reference [22].

The four Code Warrior versions 6.2, 5.1, 5.2 and 4.7 are recommended environments applicable for LIN Stack respectively with MCU 8/16 bit families as shown in Table 4-1. MCUs respective with Code Warrior Version

CW10.6	CW4.7	CW5.1	CW5.2
9S12ZVM128	9S12HY64	9S12G64	9S12VRP64
			9S12VRP48
9S08RN60	9S12P128	9\$12G128	
9S12ZVL32	9S12XS128	9S12G240	
9S12ZVL128	9S12XS256	9\$12GN32	
MM9Z1J638	9S12XEP100	9S12XHY256	
9S12ZVHY64	9S12XEQ512	MM912F634	
9S12ZVH128	9S12XET256	MM912G634	
SKEAZN84	9S12XDP512	MM912H634	
SKEAZN642	9S12XF512	MM912J637	
SKEAZ1284	9S12XF512	9S12VR64	
9S08AW16A			
9S08AW60			
9S08SG32			
9S08SG8			
9S08SG4			
9S08DZ60			
9S08DZ128			
9S08QD4			
9S08EL32			
9S08MP16			
9S08LG32			
9S08SC4			
9S12ZVC64			
9S12ZVMC256			
9S12ZVMA			
9S12ZVMB			

Table 4-1. MCUs respective with Code Warrior Version

NXP Semiconductors

NOTE 1

Check USB interface type of the target hardware platform to match with connection types in CW (P&E Multilink/Cyclone Pro, SofTec HCS08/16 or HCS08/16 Open Source BDM) for downloading source code action.

NOTE 2

For MCU with XGATE coprocessor support, it is recommended to selecting the source code of HCS12X and XGATE in RAM (Multi Core selection) for purpose of faster operation.

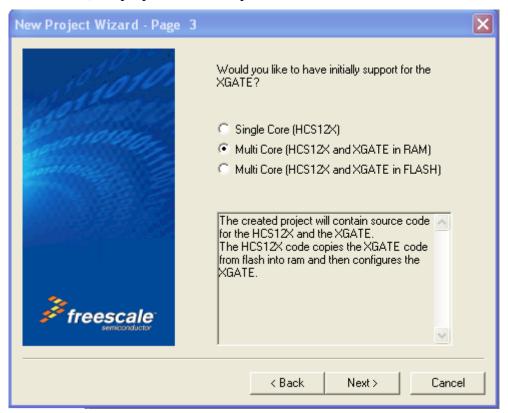


Figure 4-1 XGATE option in Code Warrior Studio

NOTE 3

The data type in Standard Types Settings of CW4.7 is selected as 16 bit. Whereas, it is selected as 8bit in CW6.2 (Choose **Standard Settings-**>**Compiler for H08/12-**>**Type sizes**).

Standard 7	Fypes S	Settings				×
char	8bit	16bit	32bit	64bit	🔽 signed	OK
short int	0	•	C C	00		Defaults
long long long	0	0	•	00		Cancel
enum	c	۲	0	0	▼ signed	Help
plain bit fie	ld	DSP	IEEE32	IEEE6	i igned ⊠ 54	
float double		0	•	0		
long doubl		00	•	0		
,g						

Figure 4-2 Data type option in CW4.7 and CW6.2

NOTE 4

When a CPU running with XGATE support, a warning message often appears as shown in below:

Marning : Cl2056: SP debug info incorrect because of optimization or inline assembler lin_common_proto.c line 690

Figure 4-3. Warning message appears in project with XGATE support

To remove this warning, choose **SofTec HCS12 Settings -> Compiler for H12 ->Options-> Optimizations** and select **Main Optimize Target** then click **Optimize for execution time** option.

NOTE 5

For 9S12HY64 and 9S12P128 MCUs, in order to compliant with Code Warrior V4.7, two Code Warrior patches (CW12 V4 7 HCS12 HY64 HA64 SP.exe, CW12 V4 7 HCS12 P128 SP.exe) need to be installed. (Access website: http://www.nxp.com and download these two files).

4.2 Hardware configuration file generation

This section describes steps for generation configuration files (lin_cfg.h, lin_cfg.c, lin_hw_cfg.c) for a node in LIN network. The input files include one NPF file and one or several LDF files which the node participates in. These two files could be edited in a text editor and they must be saved with .ldf and .npf extensions respectively instead of .txt.

In order to start generation files, perform following tasks.

 Define target MCU (as shown in Table 2-1) used for emulation and its interface type (GPIO, SCI and SLIC). If SCI interface is selected, verify the SCI version and channel used as given in Table 4-2 below (This information is also mentioned in MCU_config.cfg file in NCF tool folder).

MCU	SCI Version	MCU	Number of SCI/UART	Address	
	Version	Туре	channel	Address	
9S08AW16A				SCI0 0x0038	
9S08AW60	SCI_V2	_\$08_	2	SCI1 0x0040	
9S08DZ60	SCI_V4	_\$08_	2	SCI0 0x0038	
9S08DZ128 9S08LG32				SCI1 0x0040 SCI1 0x0010	
9506L052	SCI_V4	_S08_	2	SCI1 0x0010 SCI2 0x0018	
9S08SG8					
9S08SG32 9S08EL32	SCI_V4	_\$08_	1	SCI0 0x0038	
9S08SC4		508	1	SCI0.00068	
9S08MP16 9S12I32	SCI_V4 SCI_V4		1	SCI0 0x0068 SCI0 0x0240	
9812132 9812HY64	<u>SCI_V4</u>		1	SC10 0X0240	
9S12P128	SCI_V5	_\$12_	1	SCI0 0x00C8	
9S12GN32					
9S12XS128					
9S12XS256	SCI_V5	_S12_	2	SCI0 0x00C8	
9S12XHY256 9S12G64				SCI0 0x00D0	
9\$12G04 9\$12G128				SCI0 0x00C8	
9S12G240	SCI_V5	_S12_	3	SCI0 0x00C8 SCI1 0x00D0	
/0120240	ber_v5	_512_	5	SCI2 0x00E8	
9S12XEP100				SCI0 0x00C8	
9S12XEQ512				SCI1 0x00D0	
9S12XET256	SCI V5	C12V	6	SCI2 0x00B8	
9S12XDP512	SCI_V5	_S12X_	0	SCI3 0x00C0	
				SCI4 0x0130	
				SCI5 0x0138	
9S12XF512	SCI V5	_S12X_	2	SCI0 0x00C8	
				SCI1 0x00D0	
MM912F634		~			
MM912G634	SCI_V4	_\$12_	1	SCI0 0x0240	
MM912H634					
MM912J637	SCI_V4	D2D	1	SCI0 0x0218	
9S12VR64 9S12VR32	SCI_V6	_S12_	2	SCI0 0x00C8 SCI1 0x00D0	
9S12VR32 9S12VRP64				SCI1 0x00D0 SCI0 0x00C8	
9S12VRP48	SCI_V6	_\$12_	2	SCI0 0x00C8 SCI1 0x00D0	
9S08RN60				SCI1 0x00D0	
250011100	SCI_V4	_\$08_	3	SCI0 0x3088	
				SCI2 0x3090	
MM9Z1J638	SCI_V4		1	SCI0 0x0E18	
9S12ZVMA	SCI_V6		1	SCI0 0x0700	
9S12ZVC64			2	SCI0 0x0700	
9S12ZVHY64	SCI_V6	_S12_	2	SCI1 0x0710	

Table 4-2. List of MCUs with SCI number and its memory address

NXP Semiconductors

9S12ZVL32 9S12ZVL128 9S12ZVMB 9S12ZVMC256 9S12ZVML31				
9S12ZVML128	SCI_V5	_S12_	2	SCI0 0x0700 SCI1 0x0710
SKEAZN84			1	0x4006A000
SKEAZN642	UART	K	3	0x4006A000
SKEAZ1284	OTAXI	_ r _	3	0x4006B000
			5	0x4006C000

- 2. Edit LDF and save to a folder.
- 3. Edit and NPF file and save to the same folder with LDF file above.

The sample .npf code below is targeted for S12ZVML128 platform using SCI0 channel for LIN communication, 5 second timeouts, 8MHz bus clock, diagnostic class I, and the LDF which this node participate is LIN21.ldf as **master** node:

```
/* Initiator: CONG TRAN B26340 */
/* This example is used for S12ZVML128 as Master node */
/*** GENERAL DEFINITION ***/
LIN node config file;
/*** MCU DEFINITION ***/
mcu {
       /* Must check the correct MCU name */
    mcu name = MC9S12ZVML128;
    bus clock = 8000000;
                            /* Frequency bus of system Hz*/
    xgate support = no;
                            /* Support XGATE Co-Processor */
}
/*** LIN HARDWARE DEFINITION ***/
/* SCI config */
sci{
     s12_sci0{
         }
}
/*** NETWORK DEFINITION ***/
network {
    idle timeout = 5s;
    diagnostic class = 1;
    resynchronization support = no;
    autobaud support = no;
    max message length = 6;
    LIO{
         node = SeatECU; /* Name of node described in LDF (must check
consistence with LDF) */
         file = "LIN21.ldf";
                           /* Path to LDF file */
         device = s12 sci0; /* Identifier to LIN Hardware, related to LIN
HARDWARE DEFINITION */
         support sid {
             READ BY IDENTIFIER
                                = 178;
```

NXP Semiconductors

	ASSIGN_FRAME_ID_RANGE	= 183;
	ASSIGN NAD	= 176;
	CONDITIONAL CHANGE NAD	= 179;
	SAVE CONFIGURATION	= 182; }
}	_	
}		
}		

The *max_message_length* property applies to the diagnostic transport layer only. It defines the maximum length of a diagnostic message that is number of used data bytes plus one (for the SID or RSID). For diagnostic class I, *max_message_length* should be less than or equal to 6. For diagnostic class II and III, *max_message_length* should be less than or equal to 4095.

The *support_sid* lists all SID values (node configuration, identification and diagnostic services) that are supported by the slave node. For diagnostic class 3, users also can add their User Defined Diagnostics SIDs. NPF files of Master nodes should list all SID values that are supported by the slave nodes in the LIN Cluster. For convenience, users can use Eclipse Plugin to list supported SID according to the supported diagnostic class. In NPF files, *support_sid* can be listed using decimal values as above or hexadecimal values, e.g READ_BY_IDENTIFIER = 0xB2. On Eclipse Plugin GUI, users can only input *support_sid* using decimal values.

Generate configuration files

There are three different ways to generate configure files that was integrated in the package: Windows Command Line, Standalone GUI and Eclipse plug-in. This use manual presents the steps to use Standalone GUI, for more detail of two remain methods, refer to the user guide of NCF tool in the package.

4. Open the execution file **NCFGui.jar** in Node Configuration Tool at location: ...\NCFGUI. The execution program window appears as shown in Figure 4.4.

How to use LIN Package

🥕 Node Config	guration Tool		
<u>E</u> ile <u>H</u> elp			
<u>N</u> PF input file:			···· •
<u>O</u> utput folder:			
	Over <u>w</u> rite output folder	Generate Clear errors	. <u>V</u> iew log E <u>x</u> it
Welcome to LIN N	lode configuration tool		Feb 24,2011 09:42:58

Figure 4-4 NCF main window

- 5. Click **File => Select NPF file** in File menu or press **Ctrl + N** to include the NPF file.
- 6. Click **File => Select output folder** in File menu or press **Ctrl + O** to select target folder which contains output files.
- 7. Click Generate or press Ctrl + G button to generate files

If the NPF file is correct, a message will be displayed as shown in Figure

```
-----Thu Feb 24, 2011 09:48:56-----
NPF file : E:\NCFGui\Examples\Master_XDP512_SCI_DiagnosticClass2.npf
LDF file : E:\NCFGui\Examples\TurnIndicator.ldf
Output folder : C:\Documents and Settings\linhnvl\Desktop\out
Processing is completed!
```

Figure 4-5. Successful generation message

Otherwise, an error message will appear to show a brief description of error type. Figure shows an example of error message when lacking the interface field in the NPF file.

Thu	Feb 24, 2011 09:49:48
NPF file :	E:\AllConfigCase\ConfigFiles\Gateway_xep100.npf
LDF file :	E:\AllConfigCase\ConfigFiles\CANOE_LINDiagnostic.ldf
LDF file :	E:\AllConfigCase\ConfigFiles\LIN21.ldf
Output folder :	C:\Documents and Settings\linhnvl\Desktop\out
Error: Gateway_xe There is l error.	epl00.npf - Must have at least one master node for multi LIN channel.

Figure 4-6. An error message

4.3 Target setup

This section describes connection steps from a host PC to a demonstration board of target MCU and some notices when working with some specific boards. The MCU project boards might be different in hardware configuration such as system clock, mode operation, LIN connector, power supply, USB/PC interface. It is strongly recommended to check all jumpers setting before getting with LIN application.

- 1. **Install** all required system software for each MCU, it normally includes Code Warrior patch, SofTec/Multilink Microsystems DLL built-in with board support.
- 2. **Check** "POWER SEL" jumper is in the "USB" position. Otherwise a 12V DC power supply or I/O header connector of the LIN bus must be plugged.

Figure 4-7. POWER SEL jumper on DEMO9S12HY64 board

- 3. Insert one end of the USB cable into a free USB port of the host PC.
- 4. Insert the other end of the USB cable into the USB connector on the project board.

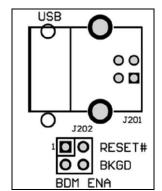


Figure 4-8. USB port on the DEMO9S12XSFRAME

- 5. Check operation modes. Several hardware platforms are available with two working modes: "Standalone" mode and "host" mode. In standalone mode, no PC connection is required. The microcontroller is factory programmed. In the other hand, in the host mode the program execution is controlled by the host PC through the "USB" connector. Refer to user manual of each board to see jumper and connector settings.
- 6. Check LIN/RS-232 SEL jumper. Make sure that the jumper is selected for LIN transceiver.

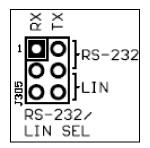


Figure 4-9. LIN Transceiver selection jumper on DEMO9S12PFRAME

7. For boards support **external clock** (EVB9S12XEP100, EVB9S12XDP512, DEMO-9S12XSFRAME, etc.) make sure that the OSC SEL jumper is selected as CLOCK instead of CRYSTAL.

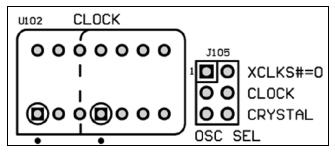


Figure 4-10. Oscillation selection jumper on DEMO9S12XSFRAME

8. Verify the LIN transceiver of the MCU project board to ensure it works properly by using built-in test project regarding the MCU and debug in Code Warrior Real Time Debugger environment. Figure shows an example of LIN transceiver testing on EVB9S12XDP512 board.

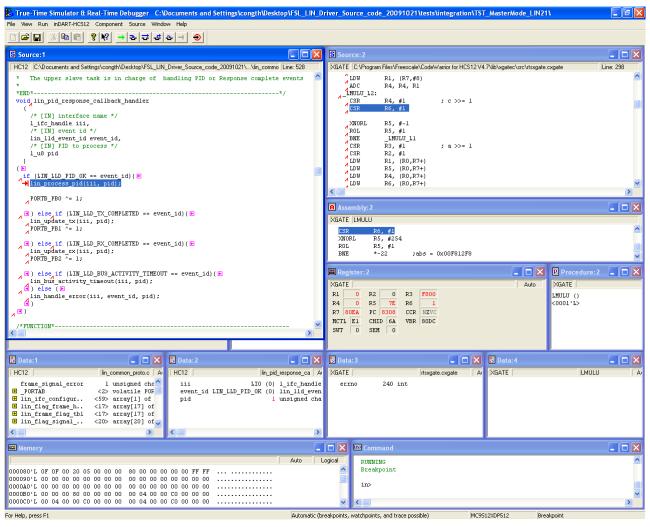


Figure 4-11. Breakpoint at lin_proccess_pid function to test LIN transceiver

o Open TST_9s12xdp512_SCI_XGATE_MasterMode_LIN21.mcp project file in location

```
...\tests\integration\TST_MasterMode_LIN21\TST_9s12xdp512_SCI_X
GATE_MasterMode_LIN21
```

- o Set active schedule table as LIO_SendTable in main function
- o Call 1 sch tick function in for (;;) loop, the sample code is below

```
l_sch_set(LIO, LIO_SendTable, 0); // For test LIN transceiver
for(;;) {
    /* Delay time */
    for(i = 0;i < 6000; i++) {
    }
    ret = l_sch_tick(LIO);
  } /* wait forever */
  /* please make sure that you never leave this function */
}</pre>
```

- o Download to MCU board and click Start/Continue button.
- Set breakpoint in lin_process_pid(iii,pid) code line of lin_pid_ response_callback_handler function and observe if the program pause at this breakpoint.

NXP Semiconductors

- 9. For MCU boards without LIN transceiver DEMO9S08AW60E, DEMO9S08QD4, DEMO9S08SG8, you must connect their Tx/Rx pins of interface used through another external LIN transceiver. For example, the GPIO pins in DEMO9S08QD4 board are connected to a LIN transceiver of the DEMO9S08EL32 board as shown in Figure below.
 - o Identify Tx/Rx pins in the schematic of DEMO9S08QD4
 - Connect these pins with Tx/Rx pins on DEMO9S08EL32 board (line1, 2)
 - Connect ground terminals between two boards (line 3)
 - Supply power 12V to DEMO9S08EL32 board, it is then ready for demonstration.

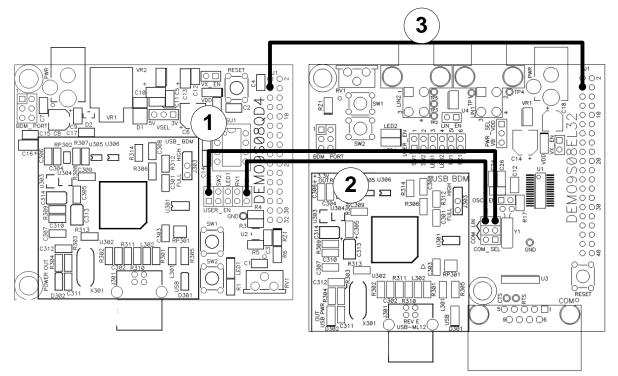


Figure 4-12. Connect LIN transceiver in DEMO9S08EL32 to DEMO9S08QD4 board.

4.4 Configuration Files and LIN Stack Source Code Integration

This section will provide a steps-by-steps guide on how to integrate configuration files with LIN Stack source code in your first project.

4.4.1 Create an empty project of the target MCU board


- 1. Open Code Warrior Studio V4.7 (or 6.2 refer to target MCU Table 4-2)
- 2. Create an empty project for a target MCU. Figure shows an example of MCU name 9S12XEP100.

9512XEP100_Slave_Node.mcp		E	×
🙍 SofTec HCS12 📃 🔝 🖋 🧇	\$		
Files Link Order Targets			_
💉 File	Code	Data 🕊 .	<u>=</u>
 readme.txt tips.txt Sources datapage.c datapage.c The Startup Code The Drm Linker Map The Linker Map The Debugger Project File Debugger Cmd Files 	n/a n/a 0 0 0 0 0 0	n/a 1 0 • 1	
18 files	0	0	7

Figure 4-13. Project Window

4.4.2 Create a folder containing configuration files

3. Create new folder with name **lin_cfg** in the project folder and copy configuration files (lin_cfg.h, lin_cfg.c, lin_hw_cfg.c) generated in <u>Section 4.2</u>, <u>Hardware configuration file generation</u> to this folder.

NXP Semiconductors

Figure 4-14. Create new folder with name lin_cfg

Add configuration files to this project (drag and drop lin_cfg folder into CodeWarrior project).

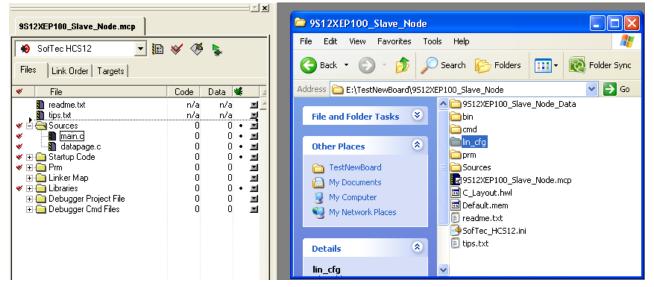


Figure 4-15. Add configuration files to the project

4.4.3 Create a group containing LIN Stack source code

This section will help user to add source code to the application. Notice that every change in the source code might create serious errors for application.

4. Create new group with name LIN_Stack

XEP100_Gate	way.mcp			
SofTec H	ICS12 -	ii 🗈	🎸	\
Files Link	Order Targets			
💉 🛛 File		Code	Data 💐	4
 ✓ ⊕ ⊡ Prm ⊕ ⊡ Linke ✓ ⊕ ⊡ Librar ⊕ ⊡ Debu 	es p Code r Map jes gger Project File gger Cmd Files ie.txt	0 0 0 0 0 0 n/a n/a	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • n/a	*
	Create Group		— ×	
	Enter name for new group	D:		
	LIN_Stack			
	OK		Cancel	

Figure 4-16. Create a group name LIN_Stack

5. Drag and drop five sub folders of LIN Stack folder (coreapi, diagnostic, include, lowlevel, transport) into created LIN_Stack group.

		_	x		100_Gateway.mcp			
LINDriver + LIN_Stack +	✓ Search LIN_Stat	sk	 9		SofTec HCS12	- 🛱 🔝	* *	\$
🔚 Open Share with 🔻 No	ew folder		2	Files	Link Order Targets			
Nama	Data wa difia d	T	C 1	*	File	Code	Data 💐	ŧ.
Name	Date modified	Туре	Siz		LIN_Stack	0	0	
📔 bsp	4/21/2015 10:25 AM	/ File folder			🚞 lin_cfg	0	0 •	
	.,,		_		Cources Code Startup Code	0		• 国
👅 coreapi	5/6/2015 5:57 PM	File folder			🔄 Stattup Code	0	0	· =
🌗 diagnostic	4/21/2015 10:25 AN	/ File folder			🔲 Linker Map	0	Ő	
include	5/6/2015 5:57 PM	File folder			🛅 Libraries	Ō	Ō.	
	-1-1		 _	+	🦲 Debugger Project File	0	0	
🕌 lowlevel	5/6/2015 5:57 PM	File folder			🧰 Debugger Cmd Files	0	0	
🔰 transport	5/11/2015 2:38 PM	File folder			📓 readme.txt	n/a	n/a	
mainpage.h	5/20/2015 10:36 AN	/I H File			🚺 tips.txt	n/a	n/a	

Figure 4-18. Drag and drop five sub folders of LIN Stack folder into LIN_Stack group

- 6. Create a new **bsp** group is subgroup of LIN_Stack and **bsp**'s subgroup with name of interface
 - Create bsp group

XEP100_Gateway.mcp			
SofTec HCS12	🛱 🔝	🍝	\$
Files Link Order Targets			
🖌 File	Code	Data 🕊	i i
✓ ⊡ ∰ LIN_Stack	0	0 •	
💉 🕀 🧰 transport	0	0 •	
🗄 🧰 include	0	0	N N N N N N N N N N N N
 ✓	0 0	0 • 0 •	드
♥ ⊕ <u>⊜</u> coreapi ♥ ⊕ <u>⊜</u> diagnostic	0	0.	
 ✓ ⊡ in_cfg 	ŏ	ŏ.	
🛩 🕀 🧰 Sources	0	0 •	
🛩 🕀 🚞 Startup Code	0	0 •	
👻 🖽 💭 Prm	0	0	
⊞ 🛅 Linker Map I 🗸 ⊞ 🇀 Libraries	0	0 0 •	프
	0	0	
	Ō	ō	
readme.txt	n/a	n/a	
🗈 tips.txt	n/a	n/a	
Create Group		(x
Enter name for new g	roup:		
bsp			
	ЭК	Cance	

Figure 4-19. Create bsp group is subgroup of LIN_Stack group

• SCI interface

Drag and drop **SCI** folder into **bsp** group.

				XE	P100_Gateway.mcp			
IN_Stack → bsp →	✓ ✓ Search bsp		م		SofTec HCS12	- 🛱 🔝	* *	
🗃 Open 🛛 Include in library 🔻	Share with 👻 New folder			File	es Link Order Targets			
Name	Date modified	Туре	Siz	*	File	Code	Data 📢	ŧ
AUTOBAUD	4/21/2015 10:25 AM	File folder		* ⊑	∃ 🥽 LIN_Stack ⊡ 🛅 transport	0		
GPIO	4/21/2015 10:25 AM	File folder			🕀 🧰 include	0	0	
RESYN	4/21/2015 10:25 AM	File folder		l 🏅	⊕ 🧰 lowlevel 使 🍙 coreapi	0 0		:
SCI	5/11/2015 2:39 PM	File folder		/	主 🧰 diagnostic	0 0	0 0	•
SLIC	4/21/2015 10:25 AM	File folder			<mark>len bsp</mark> ⊡r <u>en</u> lin_cfg	Ō	0	•
UART	5/6/2015 5:57 PM	File folder			⊡ 🛅 Sources ⊡ 🛅 Startup Code	0	0 0	:
XGATE	4/21/2015 10:25 AM	File folder		🖌 🖌 🗄	E 🦲 Prm	0	0	
					⊡• 🧰 Linker Map ⊡• 🧰 Libraries	0 0	0 0	•
					🛛 🫅 Debugger Project File	0	0	
				 [!]	E 🧰 Debugger Cmd Files	u n/a	n/a	
					🚺 tips.txt	n/a	n/a	

Figure 4-20. Drag and drop SCI folder into bsp group

After all steps above, we have file architecture of Code Warrior project like this

How to use LIN Package Freescale CodeWarrior File Edit View Search Project Processor Expert Device Initialization Window Help 🎦 🖆 🖬 여 여 🖂 🐂 🖷 🖓 🗍 🖉 🛄 🧭 🐂 💺 📰 🖻 🛍 - X 💼 main.c XEP100_Gateway.mcp 🗄 👻 {} 👻 M. 👻 💼 👻 🖬 💌 Path: D:\GIT_Repo\LINDriver\Examples\General_Demo_Appl SofTec HCS12 - 🏥 🗈 💉 🏈 #include <hidef.h> /* common defines and macros */ Files Link Order Targets /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12xep100" #include <MC9S12XEP100.h> Code 🛛 Data 😻 * File ✓ ⊡ LIN_Stack 0 • <u>1</u> Π 0 🗄 🔄 transport #include "lin.h" #include "lin_demo.h" #include "led_matrix.h" #include "stdio.h" 0 0. 📓 lin_commontl_api.c * lin_commontl_proto.c 0 0. In_j2602tl_api.c In_lin21tl_api.c 0. ø 0 0 0 ٠ ø 😋 include 0 0 ÷ #define GOTO_SLEEP_DURATION #define WAKEUP_DURATION 10 21 lin_commontl_api.h Π Π 🚺 lin_commontl_proto.h 0 0 #define CLUSTER1_ACTIVE_REQUEST #define CLUSTER2_ACTIVE_REQUEST #define CLUSTER1_CLUSTER2_ACTIVE_I #define CLUSTER1_CLUSTER2_DISABLE lin_common_api.h Ō Ō Ω lin_common_proto.h 0 0 1 2 3 Iin_diagnostic_service.h Iin_j2602tl_api.h REQUEST 0 0 0 0 🚺 lin_j2602_api.h 0 0 extern 1_u8 count; 🚺 lin_j2602_proto.h Π 0 0 🚺 lin lin21tl api.h. 0 /* Main entrt of application */ in_lin21_api.h Ō Ō void main(void) { L_u8 ret,mode, led_control1 = 0, control1 = 0, control2 L_u8 slave1info, sw4 = 0; L_u16 i,j, counter = 0; L_u8 data[4] = {0xAA, 0xAA, 0xAA, 0xAA}; 📓 lin_lin21_proto.h 0 0 Π 0. i I 🗄 🈋 lowlevel 0 0 ٠ ø 🔊 lin.c Ō Ō 🚺 lin.h 🗄 🈋 coreapi 0 0. ø 0 • 🖬 Col 1 0 Line 1 ø 🔊 lin common api.c in_common_proto.c lin_j2602_api.c Ý Ō 0 • 🖬 0 0 • 🔳 * lin_j2602_proto.c 0 • 🔳 0 Ŭ • 🖬 Ō Ý lin_lin21_proto.c Ō Ō• ¥ 🖻 😋 diagnostic 0 0. 0 0 • 🔳 ø in_diagnostic_service.c 🖌 🖃 🔄 p 0 0 • 🔳 ø 🖻 🍓 SCI 0 0 • in_isr.c 0 • 1 0 • 1 ø 0 Ō ø 🗿 lin_lld_sci.h 0 0 🚺 lin_lld_timesrv.c ø Π 0. in_lld_timesrv.h 0 0 Ō Ō ¥ ⊞ 🚞 lin_cfg 0 0. 🗸 🖃 🤤 Sources 0 0. derivative.h ō 0 0 0 ٠ ø 🚺 led_matrix.h 0 Π 0 0 • 🔳 ø 📳 lin_demo.c lin_demo.h 0 0 0 0 . indin.c datapage.c Π Π ٠ ø 0 ø 0 ٠ Ō 0 🛿 🕀 🧰 Startup Code ٠ 🛩 🕀 🧰 Prm 0 0 💷 🦳 Linker Man Π Π πI.

Figure 4-21. Overview of LIN Stack files architecture.

• Resynchronization feature

Resynchronization feature currently supports 9S08DZ60, 9S08DZ128, 9S08EL32 and 9S08SG32 boards. To use this feature, drag and drop **RESYN** folder into **bsp** group.

XEP100_Gateway.mcp				<u> </u>
SofTec HCS12	- 🗰	B 😽	🤏 🍃	ĸ
Files Link Order Targets				
🖌 File		Code	Data ا	ŧ 🚊
		0	0	• 🔳 🛎
💉 😟 🧰 transport		0	0	• 🔳 🗌
🔃 🧰 include		0	0	
💉 😟 🧰 lowlevel		0	0	• 🔳
💉 🕀 🧰 coreapi		0	· · ·	• 🔳 👘
< 🚊 💼 diagnostic		0		• 🔳
🖋 🖃 🤤 bsp		0		• 🔳
✓ ⊕		0	~	• 🔳
🖋 🛛 🛐 lin_lld_resyn.c		0	0	• •
lin_lld_resyn.h		0	0	
🖌 🖻 🤤 SCI		0	~	• •
💉 🔛 lin_isr.c		0	~	• •
💉 🔤 lin_lld_sci.c		0		• •
🔤 lin_lld_sci.h		0	0	
V lin_lld_timesrv.c		0	~	• •
📲 lin_lld_timesrv.h		0	0	
🛄 lin_reg.h		0	0	1
✓ ⊞· a lin_cfg		0 0	0 0	• 国
♥ ⊞ 🛅 Sources		0	0	· =
≪ ⊞ 🛅 Startup Code ≪ ⊞ 🛅 Prm		0	0	· =
✓ ⊡· inker Map		0	0	
✓ ⊕ intermap		0	0	· 피
		0	0	
🖅 🛄 Debugger I toject nie 🖅 🧰 Debugger Cmd Files		n n	ň	N N
readme.txt		n/a	n/a	
tips.txt		n/a	n/a	1
				_

Figure 4-22. drag and drop RESYN folder into bsp group

• SLIC interface

If SLIC interface is chose, the source code added to project is shown in Figure

EL32_Slave2.mcp			I I X
😽 Standard 🔽 🏥	i 😽	🤏 💺	
Files Link Order Targets			
💉 🛛 File	Code	Data 😻	1
🖃 😂 LIN_Stack	0	0	
🕀 🧰 diagnostic	0	0	
🗈 🧰 include	0	0	
🗈 🧰 lowlevel	0	0	
⊡ <u>e</u> coreapi	0 0	0 0	
🕀 🛄 transport 🖻 🌀 bsp	0	0	1
E Carlos P	0	0	
⊡ 🤤 9s08el32	ŏ	ŏ	
🔚 🛄 lin_lld_slic.h	n/a	n/a	
📲 lin_lld_timesrv.c	n/a	n/a	
📲 lin_lld_timesrv.h	n/a	n/a	
- 📓 slic_isr.c	n/a	n/a	
📲 slic_isr.h	n/a	n/a	
ⁱ ™ lin_lld_slic.c ⊡⊡ Sources	n/a O	n/a O	픤
⊞ <u>in_</u> cfg	0	0	- 11 - 11
erreige ≪ ⊕·⊡ Includes	0	0	
✓ III III IIIIIIIIIIIIIIIIIIIIIIIIIIII	ŏ	ŏ	$\overset{\scriptscriptstyle (1)}{\rightarrow}$
🖌 🔄 🧰 Project Settings	Ō	Ō	

• GPIO interface

If GPIO interface is chose, the source code added to project is shown in Figure

QD4_SlaveB.mcp			<u> </u>
	1	🌾 💺	
Files Link Order Targets			
💉 🛛 File	Code	Data 🕊	
⊡-🚍 LIN_Stack	0	0	
🗄 🧰 diagnostic	0	0	
🕀 🧰 include	0	0	
庄 🧰 lowlevel	0	0	
庄 🧰 coreapi	0	0	
🔁 🧰 transport	0	0	
🖻 🥽 bsp	0	0	
🖻 🥽 GPIO	0	0	
⊡ 🥽 <u>9</u> s08qd4	0	0	
📲 lin_lld_gpio.c	n/a	n/a	
📲 lin_lld_gpio.h	n/a	n/a	
timer.c	n/a	n/a	
🛄 timer.h	n/a	n/a	
🕀 🧰 Sources	0	0	
. ⊞ 🥮 lin_cfg	0	0	
	0	0	
👻 🕀 🦲 Libs	0	0	<u>, </u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
🖋 🕀 🧰 Project Settings	0	0	
I			

Figure 4-24. Add all Stack source code to GPIO interface (applied to 9S08QD4 MCU only)

NOTE

Due to limitation in memory space, the RAM/ROM areas in QD4 MCU need to be reallocated in Project.prm file to match with the Stack source code. Namely, $Z_RAM = 0x0060$ to 0x0060, RAM = 0x0061 to 0x15F. See more in Figure 4-25.

SEGMENTS /* Here all RAM/RO	í ar	eas of the	device are	e li	isted. 1	Used	in PL	ACEME	NT below.	*/	
Z_RAM		READ_WRITE									
RAM		READ_WRITE									
ROM		READ_ONLY	$0 \times F000$								
ROM1		READ_ONLY	0xFFC0								
/* INTVECTS	=	READ_ONLY	0xFFD0	TO	0xFFFF	; Res	erved	for	Interrupt	Vectors	*/
END											

Figure 4-25. RAM/ROM areas relocation in QD4 MCU

• XGATE + SCI interface

If XGATE is selected, the Code Warrior Studio will automatically generate a default file xgate.cxgate which defines XGATE interrupt handle functions and XGATE vector table.

Freescale CodeWarrior - [xg	ate.cxga	te]		
📄 File Edit View Search Projec	t Processo	or Expert 👋	Window	Help _ 🗗 🗙
🎦 🏝 🖻 🔳 여 여 🖂 🛛	h 🖷 名		/ 🎟 🍕	🎽 🐂 💺 🔳 🖻 🔢
		NIG4 44-	===]	👌 = {} = M. = 🖹 = 🖬
TST_9s12xep100_SCI_XGATE_Mas	stermode_L	IN21_test.n	ncp	<pre>#include <hidef. "xgate.<="" #include="" pre=""></hidef.></pre>
Files Link Order Targets	·- ·	Data 🔞	sat.	<pre>// put your hand typedef struct { int counter; } MyDataType;</pre>
readme.txt tips.txt ✓ □-← Sources	n/a n/a 0	Data ₩ 3) n/a • n/a • 0 •	* 	<pre>} MyDataType, static MyDataTyp 0 };</pre>
 ✓ main.c ✓ datapage.c ✓ xgate.cxgate 	0 0 0	0 • 0 • 0 •	• = = = =	// interrupt han interrupt void S
✓ ⊕ _ Startup Code ✓ ⊕ _ Prm ⊕ _ Linker Map ✓ ⊕ _ Libraries	0 0 0 0	0 • 0 • 0 • 0 •	•	// put your ow pData->counter if (pData->cou pData->count
⊕	0 0 0		2 2 2	shared_count }
				Line 1 Col 1

Figure 4-26. Remove xgate.cxgate file in the project with XGATE support

This file has been modified which serves for SCI interrupt and request interrupt from S12X_CPU and saved in location ...\LIN_Stack\ bsp\XGATE\common.Therefore, remove this default file and add the modified file to a group with name **common** in SCI_XGATE group as the figure bellow.

NOTE

Remove **NEAR** segment pointer name by **near** in **xgate.h** file to make XGATE vector table entry works properly. See Figure 4-27.

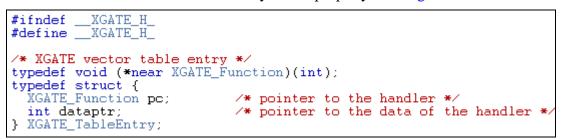


Figure 4-27. Remove NEAR segment pointer name by near

		<u>×</u>	🔥 🗸 {} 🖌 M 💼 - 🖆 - Path: E:\FSL_LIN_3\FSL_LIN3
9S12XEP100_Slave_Node.mcp			
			<pre>{ErrorHandler, 0x1F}, // Channel 1F {ErrorHandler, 0x20}, // Channel 20</pre>
🏟 SofTec HCS12 🛛 🔻 🔝	🛛 🞸 🌾		{ErrorHandler, 0x20}, // Channel 21
	· ·	- W.	{ErrorHandler, 0x22}, // Channel 22
Files Link Order Targets			{ErrorHandler, 0x23}, // Channel 23
			{ErrorHandler, 0x24}, // Channel 24
🖌 File	Code I	Data	{ErrorHandler, 0x25}, // Channel 25
	0		{ErrorHandler, 0x26}, // Channel 26
🗲 📻 Libraries	0	0	{ErrorHandler, 0x27}, // Channel 27
🗲 🖃 lin ofa	0	0	{ErrorHandler, 0x28}, // Channel 28
/ In_cfg.c	0	0	{ErrorHandler, 0x29}, // Channel 29
lin_cfg.h	ō	ō	{ErrorHandler, 0x2A}, // Channel 2A
lin_hw_cfg.h	õ	ō	{ErrorHandler, 0x2B}, // Channel 2E
E Clin_Stack	ŏ	ŏ	{ErrorHandler, 0x2C}, // Channel 20
	Õ	ŏ	{ErrorHandler, 0x2D}, // Channel 2I
	0	ŏ	{ErrorHandler, 0x2E}, // Channel 2H
	0	ŏ	ErrorHandler, 0x2F}, // Channel 2H
in_isr.c	0	Ő	ErrorHandler, 0x30}, // Channel 30
	0	Ő	{ErrorHandler, 0x31}, // Channel 31
in_lld_timesrv.h	-		{ErrorHandler, 0x32}, // Channel 32
in_lld_xgate.c	0	0	{ErrorHandler, 0x33}, // Channel 33
lin_lid_xgate.h	0	0	{ErrorHandler, 0x34}, // Channel 34
reg_s12x.h	0	0	{ErrorHandler, 0x35}, // Channel 35
🖌 🛄 xlin_sci.cxgate	0	0	{ErrorHandler, 0x36}, // Channel 36
- 🛅 xlin_sci.h	0	0	{ErrorHandler, 0x37}, // Channel 37
🖌 📓 xvector.cxgate	0	0	{ErrorHandler, 0x38}, // Channel 38
🕐 🔃 coreapi	0	0	{(XGATE_Function)lin_outgoing_reques
🕐 🔃 🛅 diagnostic	0	0	{ErrorHandler, 0x3A}, // Channel 34
吏 🧰 include	0	0	{ErrorHandler, 0x3B}, // Channel 3B
🖞 🗄 🧰 lowlevel	0	0	{ErrorHandler, 0x3C}, // Channel 30
🖆 🧰 transport	0	0	{(XGATE_Function)xlin_timer_handler,
🕀 🧰 Linker Map	0	0	{ErrorHandler, 0x3E}, // Channel 3E {ErrorHandler, 0x3E}, // Channel 3E
≠ 📻 Prm	0	ol	(,,,,,,
readme.txt	n/a	n/a	<pre>{ErrorHandler, 0x40}, // Channel 40 {ErrorHandler, 0x41}, // Channel 41</pre>
	0	Ö	{ErrorHandler, 0x41}, // Channel 41 {(XGATE_Function)xlin_sci_handler, 0
 Material and the second se second second sec	ň	ő l	(AGAIE_runction)xiin_sci_handler, U

Figure 4-28. Final source code adding window for the project with XGATE support

Once you completed adding LIN Stack source and compiled without error and warning, you are now ready for writing LIN applications.

4.5 Configuration in CW10.6

MC**9S12ZVM128** is developed base on Code Warrior 10.6. These steps below show how to configure a LIN application by LIN Stack package in CW10.6.

1. Create empty project target for MC9S12ZVM128 in CW

PC/C++ - CodeWarrior Deve	lopment Studio		
File Edit Source Refactor Nav	🏁 New Bareboard Project		
: C • C •	Select the derivative or board you would like to use		日本 Debug ■ C/C++
File Name 🔺	Device or board to be used: type filter text ColdFire V4 ColdFire V4 ColdFire Vx Evaluation Boards ColdFire Vx Evaluation Boards ColdFire Vx Tower Boards ColdFire+ V1 HCS08 Kinetis PX Qorivva RS08 S122 S122VM Family MC9S122VMC64 MC9S122VMC64		- H ⊛
Components Library S	MC95122VMC128 MC95122VML128	Cancel	isass Progre C
i ∎*		1	

Figure 4-29. Select 9S12ZVM128 in Code Warrior

2. Click "Next" button following suggestion from CW default wizard

The final view is shown below

P C/C++ - S12ZVM_LIN_Slave/Sources/main.c - (File Edit Source Refactor Navigate Search Project	
: ◘ • 🔜 🕼 🕒 🛍 : 🖉 : 💋 • Ⅲ • 🏧 : 券 • O • Q • : 🙋 🔗 • : ⊿ 🗉 🗊 🖨	
😼 CodeWarrior Projec 🛛 😵 Project Panel 📃 🗖	
Image: Second secon	<pre>#include <hidef.h> /* for EnableInterrupts me #include "derivative.h" /* include peripheral</hidef.h></pre>
S12ZVM_LIN_Slave	
🗉 🎆 Binaries	
 Includes 	void main(void) {
 Project_Headers Project_Settings SaAnalysispointsManager.apconfig Sources 	EnableInterrupts; /* include your code here */
🕀 🗈 main.c	
	🔝 Pro 🛛 🖉 Tas 🖳 Co 🔲 Pro 📕 Re 💷 Dis 🖏 Pro 👘 🗖
	0 errors, 2 warnings, 0 others 👘 🗢
	Description A Resource Path
	🗄 🚯 Warnings (2 items)
💊 Components Library 🛛 📑 🍸 🍟 🗖	
: D*	

Figure 4-30. 9S12ZVM128 project in Code Warrior 10

3. Copy "LIN Stack" to project folder in workspace:

LIN_Stack + LIN_Stack + + +	Search LIN_Stack	٩
rary 🔻 Share with 💌 New folder		=
Name	Date modified	Туре
🐌 bsp	4/21/2015 10:25 AM	File folder
퉬 coreapi	5/6/2015 5:57 PM	File folder
퉬 diagnostic	4/21/2015 10:25 AM	File folder
퉬 include	5/6/2015 5:57 PM	File folder
🐌 lowlevel	5/6/2015 5:57 PM	File folder
퉬 transport	5/11/2015 2:38 PM	File folder
📄 mainpage.h	5/20/2015 10:36 AM	H File

Figure 4-31. Add LIN Stack to workspace

4. Keep SCI folder and remove all other folders in "bsp" folder

			- • •
► LIN_Stack ► bsp ►	- - 4 	Search bsp	م
y 🔻 Share with 👻	New folder	:== ▼	
Name	^	Date modified	Туре
i sci		5/25/2015 3:06 PM	File folder

Figure 4-31. Remove GPIO, SLIC, XGATE interfaces

- 5. Create empty "lin_cfg" folder with the same level directory with LIN_Stack folder
- 6. Generate configuration files and copy these three files to this folder as mention in $\frac{\text{Section}}{4.2}$

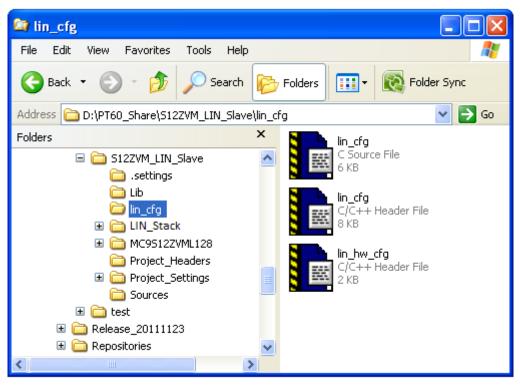


Figure 4-32. Generate configuration files and copy to project folder

- 7. Back to CW10.6 window, press "F5" in project workspace to update new folders created
- 8. Click to project selected (S12ZVM_LIN_Slave) ->Right Click -> choose properties
- 9. **Go to** C/C++ build item in left sigh of new window, **double click** to "Settings" item, the new window is displayed below

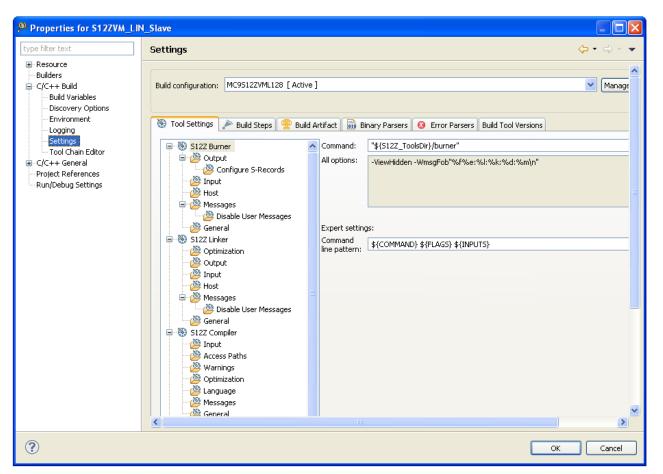


Figure 4-33. Setting path for new folder in project properties

10. Go to S12Z Compiler option, double click to "Access Paths"

In the "Access Paths" right sight view, add the paths for new files in the folders created above

How to use LIN Package

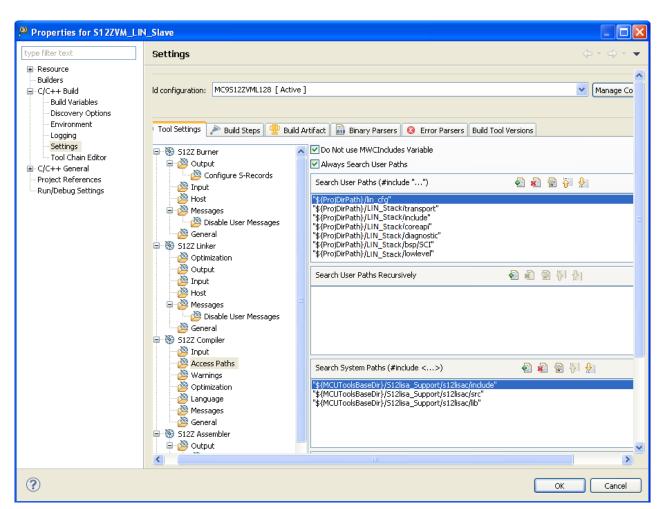
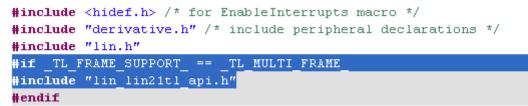



Figure 4-34. Add path for LIN Stack and configure files

11. Click to "OK" button to finish file configuration

12. Add include files in "main.c"

13. **Create** vectors.c file and save in Source folder (see example in the package for full implementation)

How to use LIN Package

```
* Vectors.c
 *
 *
   Created on: May 2, 2012
 *
       Author: CongTH
*/
#include <hidef.h> /* for EnableInterrupts macro */
volatile int isr idx = 0;
                             /* Stores the identifier of the interrupt that was
interrupt 1U void ISR1() { isr_idx = 1;
                                              HALT; }
                                                         //SPARE
                                                         //TRAP
interrupt 2U void ISR2() { isr idx = 2;
                                              HALT; }
interrupt 3U void ISR3() { isr idx = 3;
                                              HALT; }
                                                         //SWI
interrupt 4U void ISR4() { isr idx = 4;
                                              HALT; }
                                                         //SYS
interrupt 5U void ISR5() { isr idx = 5;
                                              HALT; }
                                                         //Machine Exception
interrupt 6U void ISR6() { isr idx = 6;
                                              HALT:
                                                         //Reserved
                                                    }
interrupt 7U void ISR7() { isr idx = 7;
                                              HALT;
                                                         //Reserved
                                                    }
                                              HALT; }
                                                         //Spurious Interrupt
interrupt 8U void ISR8() { isr idx = 8;
                                                         //XIRQ interrupt
interrupt 9U void ISR9() { isr idx = 9;
                                              HALT; }
                             isr idx = 10;
                                                         //IRQ interrupt
interrupt 10U void ISR10() {
                                              HALT; }
                             isr idx = 11;
                                              HALT;
                                                         //RTI
interrupt 11U void ISR11() {
                                                     }
```

Figure 4-35. Interrupt function implementation

14. Add interrupt vector table in .prm file (see example in the package for full implementation)

VECTOR O _Startup /* reset vector: this is the default
//VECTOR O Entry /* reset vector: this is the default
<pre>//INIT Entry /* for assembly applications: that t</pre>
VECTOR 1 ISR1
VECTOR 2 ISR2
VECTOR 3 ISR3
VECTOR 4 ISR4
VECTOR 5 ISR5
VECTOR 6 ISR6
VECTOR 7 ISR7
VECTOR 8 ISR8
VECTOR 9 ISR9
VECTOR 10 ISR10
VECTOR 11 ISR11
VECTOR 12 TIMchanO_ISR //TimerO Channel O (ISR12)
//VECTOR 13 TIMchan1_ISR //TimerO Channel 1 (ISR13)
VECTOR 13 ISR13
VECTOR 14 ISR14
VECTOR 15 ISR15
VECTOR 16 ISR16
VECTOR 17 ISR17
VECTOR 18 ISR18
VECTOR 19 ISR19
VECTOR 20 ISR20
VECTOR 21 ISR21
VECTOR 22 ISR22

Figure 4-36. Interrupt vector table redefinition

You are ready for creating application.

4.6 Getting Started with LIN application

4.6.1 Initialization of hardware utilities

Before getting start with LIN application, some hardware unities must be initialized such as system clock, timer, I/O ports for demonstration.

NOTE

In order to make the LIN system runs properly, the frequency of each MCU board should **be greater equal to 8MHz**. See user manual of each MCU to setup this value.

```
MCU clock speed: 7987000 Hz
Block Module Name
                     Address Range
                                     Status
  0 FLASH 4000
                       4000 - 7FFF
                                     Blank - Unselected
  1 FLASH COOO
                       COOO - FFFF
                                     Programmed - Unselected
  2 ALL PPAGES
                    E08000 -FFBFFF
                                     Programmed - Unselected
  3 EEPROM COO
                       COO -
                              FFF
                                     Blank - Unselected
   4 ALL EPAGES
                    FCO8OO -FFOBFF
                                     Blank - Unselected
   5 EEPROM 800
                       800 - BFF
                                     Blank - Unselected
   6 FLASH 8000
                       8000 - BFFF
                                     Programmed - Unselected
```

Figure 4-37. MCU clock speed displayed in Command window of CW real time debugger

In the example below, the system clock in DEMO9S08AW60 board is configured as 16MHz and ports c and d is set as input for press buttons.

```
void cpu init() {
  /* PE initialization code after reset */
  /* Common initialization of the write once registers */
  SOPT = 0x53;
  // Low-voltage detect
  SPMSC1 = 0 \times 1C;
 SPMSC2 = 0x00;
  /* System clock initialization */
 SMCLK = 0x17;
     Init internal frequency equal to 16Mhz */
  /*
  ICGC1 = 0x78
 ICGFLT = 0xC0;
 ICGC2 = 0x20;
  /* Initialize ICGTRM register from a non volatile memory */
 ICGTRM = *(unsigned char*)0xFFBE;
}
void init keyboard()
{
 PTCDD = 0x10; // set port c as inputs for push button switch input except
for C4 which is accelerometer ST
 PTCPE = 0xEF; // enable port c pullups for push button switch operation
except for C4 which is accelerometer ST
  PTDDD = 0x00; // set port d as inputs for push button switch and
accelerometer inputs
```

```
PTDPE = 0 \times 0C; // enable port d pullups on D2 and D3 for push button switch operation
```

4.6.2 Initialization of LIN system

Before the APIs functions of the LIN2.x, J2602 are used, the LIN system must be initialized. In the example below for EVB9S12XEP100 MCU board, the LIN system is initialized when the microcomputer is reset. Note that this reflects the points where the API functions for LIN are called.

```
#include <hidef.h> /* for EnableInterrupts macro */
#include "derivative.h" /* include peripheral declarations */
#include "lin.h"
void init keyboard()
{
 PTCDD = 0x10; // set port c as inputs for push button switch input except
for C4 which is accelerometer ST
 PTCPE = 0xEF; // enable port c pullups for push button switch operation
except for C4 which is accelerometer ST
 PTDDD = 0x00; // set port d as inputs for push button switch and
accelerometer inputs
 PTDPE = 0 \times 0C; // enable port d pullups on D2 and D3 for push button switch
operation
void cpu init() {
 /* PE initialization code after reset */
  /* Common initialization of the write once registers */
 SOPT = 0x53;
  // Low-voltage detect
 SPMSC1 = 0 \times 1C;
 SPMSC2 = 0 \times 00;
  /* System clock initialization */
 SMCLK = 0 \times 17;
  /* Init internal frequency equal to 16Mhz */
 ICGC1 = 0x78;
 ICGFLT = 0xC0;
 ICGC2 = 0x20;
  /* Initialize ICGTRM register from a non volatile memory */
 ICGTRM = *(unsigned char*)0xFFBE;
}
 /* .....Something to define */
void main(void) {
 l u8 ret;
 EnableInterrupts; /* enable interrupts */
  /* include your code here */
 /* LIN initialization for h_w utilities */
```

```
init_keyboard();
cpu_init();
/* LIN initialization for timer */
ret = l_sys_init();
/* LIN initialization for interface */
ret = l_ifc_init(LIO);
for(;;) {
   /* .....Something to do */
   /* loop forever */
   /* please make sure that you never leave main */
```

NOTE

If using diagnostic services class II or III you must init transport layer first. Add this command before using LIN API init transport layer:

For master node:

ld_init(LI0);

- For slave node:

ld_init();

4.6.3 Timer for LIN schedule execution (Master mode only)

This section is just applied for Master Mode only. In any LIN system, the API function for schedule execution must be called regularly. The table below lists MCUs with timer names which could be used for this execution.

MCU	Timer	Version	Number of channel	Channel used
9S08AW16A 9S08AW60	S08TPM	V2	8	0
9S08DZ60 9S08DZ128 9S08SG8 9S08SG32 9S08EL32	S08TPM	V3	8	0
9S08MP16	S08FTM	V2	2	0
9S12HY64 9S12P128 9S12G128 9S12XHY256	TIM16B8C	V2	8	7
9S12XEP100 9S12XEQ512 9S12XET256 9S12XDP512 9S12XF512	S12PIT24B8C	V2	8	0
9S12XS128 9S12XS256	S12PIT24B4C	V 1	4	0
9S12I32	TIM16B4C		4	3
9S12ZVML128 9S12ZVL32	TIM0	V3	4	2

Table 4-3: Timer used for LIN Driver

9S12ZVHY64 9S12ZVML31				
9S08RN60	S08TPM	V3	8	0
9S12VR64 9S12VR32	TIM16B8C	V3	4	0
9S12VRP64 9S12VRP48	TIM16B2C TIMER 1	V3	2	0
MM9Z1J638	TIM16B4C		4	3
SKEAZN84	FTM		4	2
SKEAZN642	FTM		4	2
SKEAZ1284	FTM		4	2
9S12ZVC64	TIM16B8C		4	2
9S12ZVL128	TIM16B6C	V3	6	3
9S12ZVMC256	TIM16B4C TIMER 0	V3	4	2
9S12ZVMA	TIM16B2C TIMER 1	V3	2	0
9S12ZVMB	TIM16B4C TIMER 0	V3	4	2

NOTE

In the table, the *channel used* column shows the channel name in the highlight timer has been used for the timeout management in each MCU with interrupt period as 500 micro seconds. In order to use another timer, user could use another timer type with same time base value.

In the sample code below, TIM timer channel 2 is used to count-up and generate interrupts at an approximately 2.5ms interval for S12VR64 -Tomar board. Also, in the function (main processing) for schedule-table execution, the API function for schedule-table execution must be called at or multiple of the corresponding time-base interval. (See more from demo of S12VR64 in the package)

Initialized timer function for LIN schedule tick:

```
void TIM_channel2_init(void){
   TIOS |= TIOS_IOS2_MASK;
   CFORC |= CFORC_FOC2_MASK;
   TTOV |= TTOV_TOV2_MASK;
   TIE |= TIE_C2I_MASK;
   /* Set counter as 2.5ms timing */
   TC2 = 20000;
}
```

This application code will be defined by user for period of each LIN frame sent in the bus. The sample code use a loop to increate tick to 15ms for every LIN frame transmission

```
#pragma CODE SEG NEAR SEG NON BANKED
```

How to use LIN Package

```
interrupt VectorNumber Vtimch2 void TIM TIMER2 ISR(void) {
  if (LIN counter>=6) {
    /* Activate LIN frame transfer for every 15ms */
   ret = 1 sch tick(LI0);
    /* Reset counter */
   LIN counter = 0;
 if (LED counter>=50) {
    /* Activate LIN frame transfer for every 15ms */
      PTT PTTO =~ PTT PTTO;
    /* Reset counter \overline{*}/
   LED counter = 0;
  }
 LIN counter++;
 LED_counter++;
  /* Clear timer flag */
 TFLG1 |= TFLG1_C2F_MASK;
  /* Reset timer counter */
       = (TC2 + 20000) &0xFFFF;
 TC2
#pragma CODE_SEG DEFAULT /* Return to default code segment */
```

4.6.4 LIN_PHY Enable

For those MCUs which support LIN_PHY to replace LIN transceiver (9S12VR64, 9S12Zs), there are two ways to drive this interface. The first one is using SCI to control LIN_PHY and the second one is directly handle through the LPDR register provided by hardware silicon.

To easy porting and maintenance, this scope of Stack use the first way where SCI physical layer has been existed.

In order to enable LIN_PHY working with SCI, the steps as below:

- 1. Enable LIN_PHY
- 2. Enable LIN Pull-up
- 3. LIN Slew Rate selection

Due to range of LIN baudrate from 2000bps to 20000 bps, the LIN slew rate bit selection is defined to mapping optimally with LIN baudrate working.

For more information, refer to LIN Slew Rate Mode Register (LPSRM) of 9S12Zs Reference Manual.

LIN_PHY Enable example:

Here is code for enabling LIN_PHY in 9S12VR64:

```
void LIN_Phy(void){
   LPCR_LPE = 1;   /* Enable LIN Phy */
   LPCR_LPPUE = 1;   /* Pull up to strong signal */
   LPSLRM = 0x01;   /* Select Slew Rate */
```

4.6.5 LIN Applications

This section describes sample codes for LIN application using API function (refer to <u>Appendix A</u>) after initializing hardware utilities and LIN system as well as timer for schedule execution. The application focuses on contents (frame) transferred on the LIN bus and how to process data depends on LIN system configuration which is acquired from the status of various nodes, peripheral devices, and other applications.

4.6.5.1 Master task

This example code below for master task is taken from S12VR64 demo code in the package. For more application, please refer to directory:

LIN_Package\Examples\VR64_MagniV\VR64_Master_LIN21.

Base on LDF definition for schedule table, the master task will require user to select which schedule will be active and the frames associated will be processed.

In this example, here is the table of scheduler defined in the lin_cfg.h file

```
typedef enum {
    /* Interface_name = LIO */
    LI0_LIN_NULL_SCHEDULE
    ,LI0_GOTO_SLEEP_SCHEDULE
    ,LI0_MasterReqTable
    ,LI0_SlaveRespTable
    ,LI0_NormalTable
    ,LI0_ETFCollisionResolving
    ,LI0_InitTable
}l_schedule_handle;
```

In the main.c file, the schedule is active as the code below

```
/* Set active schedule table, */
l sch set(LI0,LI0 NormalTable, 0);
```

In this example, the LIN NormalTable is active. There are two more default schedule generated by tool are LI0_LIN_NULL_SCHEDULE used for no activity in LIN bus request and LI0_GOTO_SLEEP_SCHEDULE used to send goto sleep request.

In this application, the master will control temperature of motor by reading temperature data stored in signal MotorlTemp in MotorlState_Cycl frame. If the returned temperature is greater than maximum value, master will request slave to reduce temperature or if greater than broken value, master will request slave to stop motor.

```
if (l flg tst LIO Motor1Temp flag()) {
    /* Clear this flag... */
   l flg clr LIO Motor1Temp flag();
    /\overline{*} Store temperature data */
   Motor1 temp = 1 u8 rd LIO Motor1Temp();
    /* The application will change Motor selection in case
           the temperature is greater than maximum value to release motor power
           This will be transfered by sporadic frame type in LIN bus */
     if (MOTOR1 OVER TEMP<Motor1 temp) {
          /* Request stop motor by power off */
           1 u8 wr LIO Motor1Selection (MOTOR SELECTION STOP);
     }else if ((MOTOR1 MAX TEMP<Motor1 temp)&(MOTOR1 OVER TEMP > Motor1 temp)){
          /* Request to reduce motor speed */
          1 u8 wr LIO Motor1Selection (MOTOR SELECTION DECREASE);
     } else {
          /* Request to increase motor speed if user request */
```

How to use LIN Package

.

}

l_u8_wr_LI0_Motor1Selection(MOTOR_SELECTION_INCREASE);

4.6.5.2 Slave task

This example code below for LIN slave tasks is used to check control signal from Master on temperature selection modes. See VR64_Slave_LIN21 example in the package.

```
/* Check if temp signal is updated */
if (l_flg_tst_LI0_MotorlSelection_flag()){
    /* Clear this flag... */
    l_flg_clr_LI0_MotorlSelection_flag();
    /* Store selection data */
    Motorl_Selection = l_u8_rd_LI0_MotorlSelection();
    /* The application will change Motor selection in case
      the temperature is greater than maximum value to
      release motor power
      This will be transfered by sporadic frame type in LIN bus */
    l_u8_wr_LI0_MotorlTemp(Motorl_temp);
      /* Check if power off motor due to high temperature */
    if (Motorl_Selection == MOTOR_SELECTION_STOP) {
      /*------------*/
      }
    }
}
```

4.6.5.3 Goto Sleep and Wakeup applications

This section is taken from the application code of General demo application. Please refer to directory **Examples\General_Demo_Application\XEP100_**Gateway for code of master node and **Examples\General_Demo_Application\DZ128_Slave1**\ for slave node.

The feature Goto Sleep is only call by master and after this function is called, the LIN status word which contain a bit for Goto Sleep will be updated. Therefore user can check by reading this word.

NOTE

The call is a read-reset call; meaning that after the call has returned, the status word is set to 0.

If user press button PB4 in XEP100 EVB board, the Goto Sleep, wakeup features will be enable and press one more time, it will disable the features.

```
/* Use the button PB4 in the EVB board to demonstrate goto sleep/wakeup
feedture */
    if (!SW4) {
        for(i = 0; i<60000;i++) {
            for(j = 0; j<10;j++);
            };
        if (0 == (sw4%2)) {
            (void)printf("Enable free counter for test goto sleep\n");
            l_sch_set(LI1, LI1_PeriodicalWakeupTable, 0);
            l_sch_set(LI2, LI2_PeriodicalWakeupTable, 0);
            count = 10;
            freecntr_enable();
        } else {
        </pre>
```

```
(void)printf("Disable free counter\n");
control1 = 0;
control2 = 0;
l_sch_set(LI1, LI1_LIN_NULL_SCHEDULE, 0);
l_sch_set(LI2, LI2_LIN_NULL_SCHEDULE, 0);
count = 10;
freecntr_disable();
}
sw4++;
}
```

There two ways for wake up LIN bus:

- a- The master node issue a break field, e.g. by issuing an ordinary header since the break will act as a wake up signal
- b- Master node or slave call API function l ifc wake up to send wake up signal in the bus

In this example, the master issue a break field by active LI1_PeriodicalWakeupTable schedule. By using and reseting counter variable count, the LIN network will be wakeup and in sleep mode periodically.

```
/* Send goto sleep command */
if (GOTO SLEEP DURATION == count) {
   (void)printf("Send goto sleep command\n");
   l ifc goto sleep(LI2);
   l ifc goto sleep(LI1);
   count++;
}
  /* Run Periodical Wakeup table */
if (WAKEUP DURATION == count) {
   (void)printf("Run Periodical Wakeup table\n");
   l sch set(LI1, LI1 PeriodicalWakeupTable, 0);
  l sch set(LI2, LI2 PeriodicalWakeupTable, 0);
  count = 0;
  }
  counter++;
  if (5 == counter) {
   counter = 0;
```

In order to check Goto sleep flag, the code below uses a LED in the board to display the status.

If LED is on, mean the node in the sleep state and if the LED is off, the node is in wakeup state.

```
/* Check if any sleep mode on two cluster by reading the LIN word status */
  LIN1 word status = 1 ifc read status(LI1);
  LIN2 word status = 1 ifc read status(LI2);
  if (LIN1 word status != 0) {
    if((LIN1 word status>>3)&0x0001){
      LED3 = ON; /* cluster1 bus is in sleep mode */
    }else{
      LED3 = OFF; /* cluster1 bus is in wakeup mode */
    }
  }
  if (LIN2 word status != 0) {
    if((LIN2 word status>>3)&0x0001){
                  /* cluster2 bus is in sleep mode */
      LED4 = ON;
    }else{
      LED4 = OFF; /* cluster2 bus is in wakeup mode */
```

At the slave site (DZ128_Slave1) the code to check goto sleep and request send a wakeup signal as below:

```
/* Check if the goto sleep command sent by master node */
LIN word status = 1 ifc read status(LIO);
/* The word status is presented below
  -----Word status-----
                                        _____
  15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
                       | | | | | | | -- Error in response
                       | | | | | | | ---- Successful tranfer
                       | | | | | |----- Overun
                       | | | | |----- Goto sleep
                         | | |----- Bus activity
                       | | |----- Event trigger collision
                         |----- Save configuration
                       |----- 0
                         ----- Las frame PID
                                                      */
/* Check if any update from LIN word status*/
if(LIN word status != 0){
 /* Check if the LIN bus in the sleep mode */
  if((LIN word status>>3)&0x01){
   LED3 = ON;
   /* Press PTA4 to wakeup LIN node */
   if (!PTAD PTAD4) {
    /* Call wakeup function */
   l ifc wake up(LI0);
   }
  }else{
   LED3 = OFF;
```

4.6.5.4 Multi LIN master with different timers for S12X MCUs

For S12x MCU family including XEP100, XDP512, XF512, XEQ512 and XET256 contain a PIT timer with 8 channels.

If those MCUs are used for multi LIN Master, the timer for timeout activity can be selected one PIT timer channel for all LIN networks or separated channels for each network.

The figure 4-38 below shows a configuration of Multi LIN master with different Time base required in each network.

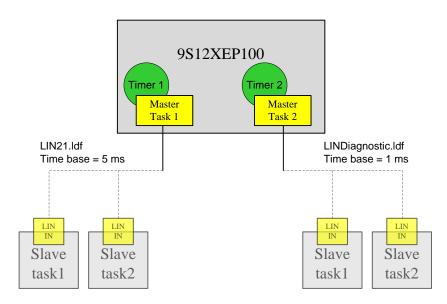


Figure 4-38. Configuration of multi LIN Master in 9S12XEP100

To select timer channel for each network, user just add timer_channel definition to interface configuration of npf file

```
/*** LIN HARDWARE DEFINITION ***/
/* SCI config */
sci{
    sl2_scil{
        sci_channel = 1; /* Check validation of sci_channel */
        timer_channel = 1; /* PIT timer */
    }
    sl2_sci3{
        sci_channel = 3; /* Channel setting */
        timer_channel = 2; /* PIT timer */
    }
}
```

NOTE

This timer selection is for **timeout activity** which time base is defined in LDF file. In the main.c application, user must define another timer for scheduler as mention in section <u>Timer for LIN</u> schedule execution (Master mode only)

If no timer selection defined, the Driver is default to use only one channel where time base is taken from smallest value of time bases defined in LDF files.

4.6.5.5 AUTOBAUD feature for S12Z MCU family as Slave Node

How to use LIN Package

AUTOBAUD is an extensive feature in LIN Driver which allows a MCU to detect baud rate of LIN bus and adapt its original baud rate to bus value.

Auto Baud is applied when the baud rate of the incoming data is unknown or the baud rate is fixed with some specific values. Each LIN network might have different configuration on such baud rates. One MCU can work with different configurations without flashing.

In this scope of LIN Driver version, two baud rate are supported: **9600 and 19200 bps** and verified on S12Z MCU family.

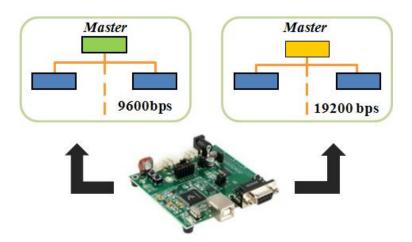


Figure 4-39. Two baud rate supports for AUTOBAUD feature

In order to use this feature, user just enables an option in NPF file as below:

```
/*** NETWORK DEFINITION ***/
network {
    idle_timeout = 5s;
    diagnostic_class = 1; /* Class selection to use diagnostic services */
    autobaud_support = yes;
    LIO{
        node = Motor1; /* Name of node described in LDF (must
    check consistence with LDF) */
        file = "LIN21.ldf"; /* Path to LDF file */
        device = s12_sci0; /* LIN Hardware
interface, related to INTERFACE SECTION */
    }
}
```

For more application usage case, refer to demo application attached in the package:

Chapter 5 Demo Application

This section gives detailed instructions on how to set up a LIN node from the source code provided. By following these guidelines and the referenced documents, the application developers could build any images for the nodes working on the supported MCUs listed in the scope of work for this document.

5.1 LIN Protocol demo application

5.1.1 Introduction

The demo application demonstrates a typical application of the LIN. The application covers functionalities in HVAC and door application, such as control of door locks, mirrors and window lifters. The best representative application is a gateway, such as one shown in Figure 5-1.

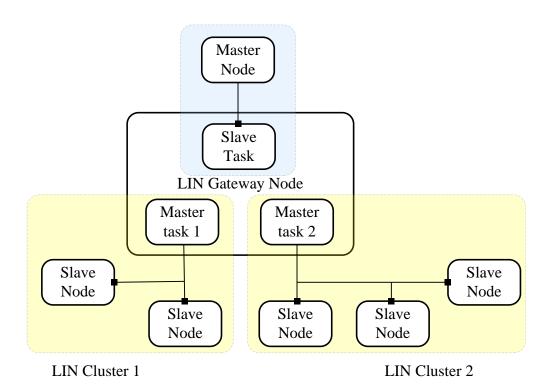


Figure 5-1. Demo application configuration

The LIN gateway node is one of the controllers with multiple LIN interfaces. It provides connection to a higher level car network, receiving commands via the slave LIN task. In the same time the two or more master tasks are specified in the scheduler, allowing transferring the commands further to the slave LIN clusters.

A set of procedures in transferring messages is implemented in this application:

- 1. From the Master node to Slave nodes via the Gateway (for example, potentiometer).
- 2. From the Gateway to request current potentiometer from the slave nodes.
- 3. Send sleep and wakeup signals from the gateway to the slave nodes.
- 4. Send diagnostic frames from the gateway to the slave nodes.

- 5. The node configuration utility must describe the network configuration and the required properties of the nodes. This configuration should be compiled with the project files to create the Demonstration Application executable.
- 6. The LIN gateway node shall log the events and output it in a readable form for the demonstration and traceability of the LIN functioning.

5.1.2 Demo Environment Setup

The hardware platform for each node is identical based on the demo application configuration as shown in the Figure 5-2. Three are seven hardware platforms named from B1 to B7 respectively.

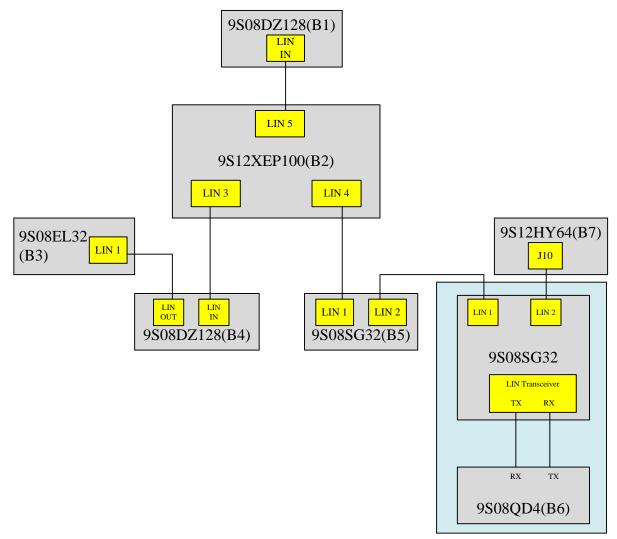


Figure 5-2. Master/Slave/Gateway hardware

NOTE

The 9S08SG32 board in the cluster 2 is not involved to the network but acts as intermediary role to connect nodes B5, B6 and B7.

5.1.3 Detail Description of Nodes

The table 6-9 below illustrate in detail description of boards participating in the network including name, ID, functionality and the buttons used for the application.

Demo Application

Table 5-1. Master

Board	Board ID	Functionality	User I/O
9S08DZ128	B1	Master	Push button: PTA4, PTA5, PTA6, PTA7

Table 5-2. Gateway

Board	Board ID	Functionality	User I/O
9S12XEP100	B2	Slave on LIN 5	Push button: PB4, PB5, PB6, PB7
		Master on LIN 4	
		Master on LIN 3	

Table 5-3. Cluster1

Board	Board ID	Functionality	User I/O
9S08DZ128	B4	Slave1	Push button: PTA4, PTA5, PTA6,
			PTA7
9S08EL32	B3	Slave2	Potentiometer: RV1
			Led: LED1, LED2

Table 5-4. Cluster2

Board	Board ID	Functionality	User I/O
9S08SG32	B5	Slave A	Potentiometer: RV1
			Led: LED1, LED2
9S08QD4	B6	Slave B	Potentiometer: RV1
9S12HY64	B7	Slave C	Potentiometer: RV1
			Led: LED1, LED2

5.1.4 LIN System Initialization

Table 5-5 shows the expected hardware and software used for demo application.

Table 5-5. List of hardware and software for demo application

CW6.2	CW4.7
9S08AW16A	9S12XEP100
9S08SG32	9S12HY64
9S08DZ128	
9S08QD4	
9S08EL32	

NOTE

All derivatives use 12V power supply except 9S08QD4 board with 5V power supply.

The steps to initialize the demo from LIN Stack package are detailed in this section. For other LIN network applications, refer to <u>Chapter 4</u>, <u>How to use LIN Package</u> to create single application for each derivative involving the network. The remaining steps are similar to this section.

1. Open Code Warrior V4.7 and V6.2 environments.

The MCUs run on Code Warrior V4.7 are 9S12XEP100, 9S12HY64

The MCUs run on Code Warrior V6.2 are 9S08DZ128, 9S08EL32, 9S08SG32, 9S08QD4

2. Open folder for target board in Demo folder as shown in Figure 5-3 (e.g...\tests \integration\Demo\Cluster1_Slave1_9s08dz128) and drag Code Warrior project file (.mcp) to one of two Code Warrior environments.

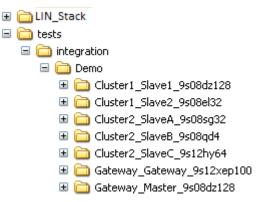


Figure 5-3. Demo Source Code Directory Structure

3. Attach power and turn on the target board. The board must be connected to the PC through a Multilink or SofTec Interface Device Application. The Combined Interface Device Application is configured by default to use the USB connector for serial communication.

- 4. Download source code to the board.
- 5. Dispose the boards as illustrated in Figure 5-4 and connect boards via LIN bus wires.
- 6. Jumper setting:

All boards have their jumper set as default except 9S12XEP100 board whose function as Gateway.

In 9S12XEP100 board, the OSC SEL jumper is set as CLOCK and LIN TRANCEIVER SUPPLY SEL jumper is 12V.

7. Attach power to 9S12XEP100 board and make sure that all power led of boards is turn on which is ready for operation.

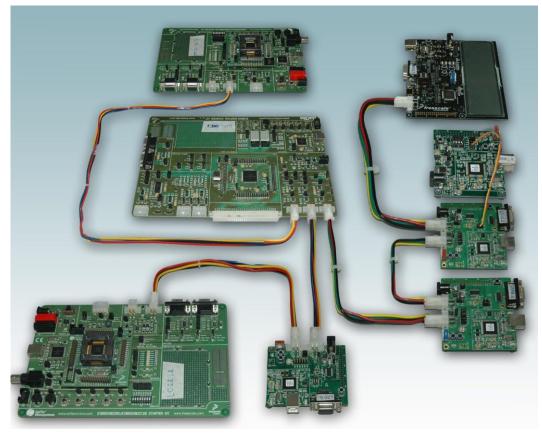


Figure 5-4. A disposition of seven hardware platforms to match with the configuration

5.1.5 Functionality Description

This section describes in details functionalities and procedures of the Demo Application. It includes descriptions of PID sending and direction of message transmitting between physical nodes of the network.

5.1.5.1 Sequence of Frames between Master Node, Gateway and Slave Nodes

All frames in communication are defined in table below:

PID	Publisher	Subscriber	Description
0x01	Master	Gateway	Change schedule table
0x02	Gateway	Master	Master requests potentiometer status from all slave nodes
0x04	Gateway	Slave 1 Slave 2	Reset signal
0x05	Gateway	Slave 1 Slave 2	Data byte with 2 bit information about push button
0x06	Slave 1	Gateway	Potentiometer status
0x07	Slave 2	Gateway	Potentiometer status
0x08	Gateway	Slave A Slave B Slave C	Reset signal

Table 5-6. Define functionality of each node respectively with its pid

0x09	Gateway	Slave A Slave B Slave C	Data byte with 2 bit information about push button
0x0A	Slave A	Gateway	Potentiometer status
0x0B	Slave B	Gateway	Potentiometer status
0x0C	Slave C	Gateway	Potentiometer status
0x3C	Gateway	All slaves	Sleep command

5.1.5.2 Reset Status

After resetting the MCU, the node is ready for communication. The LED status of each board after resetting is:

Table 5-7. Status of each MCU board after reset

Board	Responsibility	LED1	LED2
9S08EL32	Slave 1 in Cluster 1	OFF	OFF
9S08DZ128	Slave 2 in Cluster 1	OFF	OFF
9S08SG32	Slave A in Cluster 2	OFF	OFF
9S12HY64	Slave C in Cluster 2	OFF	OFF

5.1.5.3 Demonstration use cases

In this chapter we present several typical use cases for the demo setup. The communication between the nodes in these use cases is explained in form of time diagrams.

Reset signal is to set OFF status for LED1 and LED2 on all Slave boards

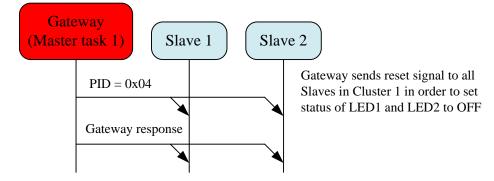


Figure 5-5. Timing Diagrams for Reset LED signal from Gateway to Slaves in Cluster 1

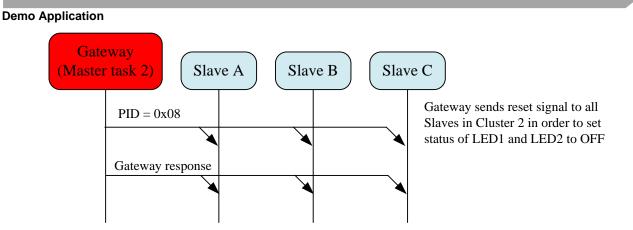


Figure 5-6. Timing Diagrams for Reset LED signal from Gateway to Slaves in Cluster 2

Message from Master node to Gateway

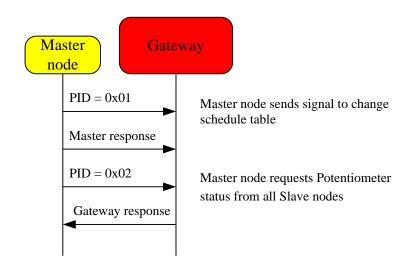


Figure 5-7. Timing Diagrams for frames from Master node to Gateway

Message from Gateway to Slave nodes in Cluster 1

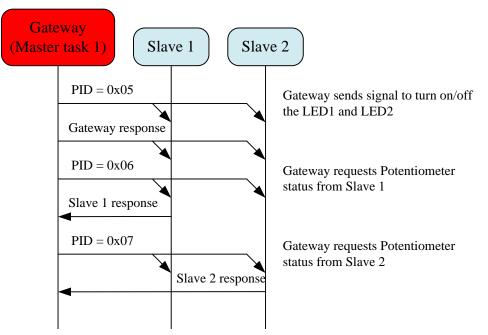


Figure 5-8. Timing Diagrams for frames from Gateway to Slaves in Cluster 1

Message from Gateway to Slave nodes in Cluster 2

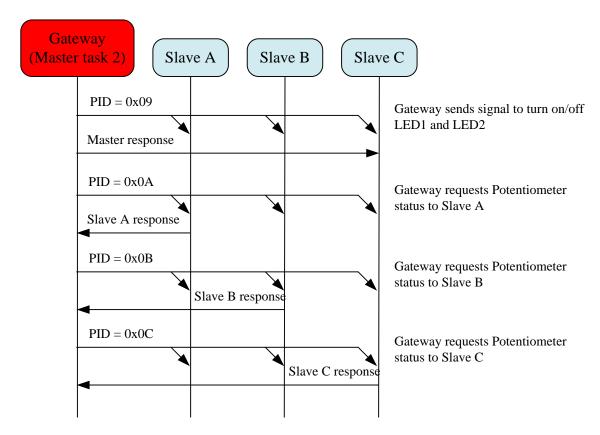


Figure 5-9. Timing Diagrams for frames from Gateway to Slaves in Cluster 2

Sleep signal from Gateway to Slave nodes

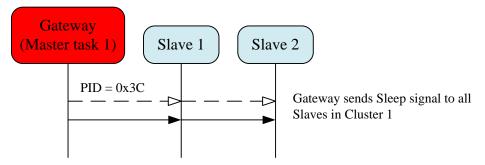


Figure 5-10. Timing Diagrams for Sleep signal from Gateway to Slaves in Cluster 1

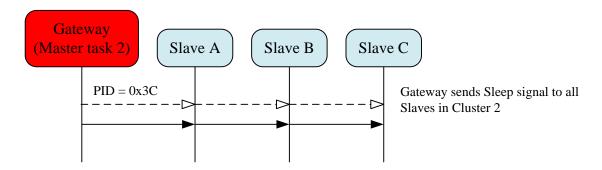


Figure 5-11. Timing Diagrams for Sleep signal from Gateway to Slaves in Cluster 2

5.1.6 Operation

Operation on push buttons of this demo is very simple. By pushing the buttons on board 9S08DZ128 (Master node) user can change the schedule table between the following ones:

- Operates only Cluster 1
- Operates only Cluster 2
- Operates both clusters
- Not operate both clusters

5.1.6.1 Actions on All Boards Before Resetting the LEDs Status

Table 5-8. List of actions and results before resetting the LEDs status

Action	Result
Push button PTA4	Schedule in Cluster 1 is active
Push button PTA5	Schedule in Cluster 2 is active
Push button PTA6	Schedules in both Clusters are active
Push button PTA7	Schedules in both Clusters are inactive

By pressing the buttons on 9S12XEP100 board (Gateway), the user can change the LEDs on slave nodes as follows:

Table 5-9. List of actions and results after pressing buttons on 9S12XEP100 board

Demo	Application
------	-------------

Action	Re	sult									
Push button PB4 in the first time		Jun	R	oard	B3		B4				
(data = 0x00)				ED1			ON ON				
		·		ED1 ED2	10		ON				
Push button PB4 in the second time				oard	B3		B4				
(data = 0x01)				ED1	OF		OFF				
				ED1 ED2			ON				
Push button PB4 in the third time				oard	B3		B4				
(data = 0x10)				ED1	IO		ON				
			L	ED2	OF	FF	OFF				
Push button PB4 in the fourth time			В	oard	B 3	;	B4				
(data = 0x11)			L	ED1	OF	ŦF	OFF				
			L	ED2	OF	F	OFF				
Push button PB5 in the first time			Board		B5	5	B7				
(data = 0x00)			L	ED1	10	Ν	ON				
			L	ED2	0	N	ON				
Push button PB5 in the second time			Board		B5	i	B7				
(data = 0x01)			L	ED1	OF	FF	OFF				
			LED2		LED2 ON		N	ON			
Push button PB5 in the third time			Board		B5	i	B7				
(data = 0x10)			L	ED1	IO	V	ON				
			LED2		OFF		OFF				
Push button PB5 in the fourth time			В	oard	ard B5		B7				
(data = 0x11)			L	ED1	OF	ŦF	OFF				
			L	ED2	OF	F	OFF				
Push button PB6		Board	1	B3	F	34	B5		B7		
		LED		OFF		OFF	OFF		OFF		
		LED		OFF		OFF	OFF	2	OFF		
Push button PB7	Send GOTOSLEEP command										
	After that the application will be in charge of										
			-	he netv							
	schedule will send the header to query states of Slaves										
	Sla	ves									

The data content sent to the slave boards wraps around and is controlled by pressing the PB4 and PB5 buttons on the gateway node.

To demonstrate the data direction from slave to master, user can change the data content of the messages by changing the potentiometer. This information is accessible via Hyper terminal window.

Table 5-10. List of actions and results when	changing the potentiometer
--	----------------------------

Action	Result
Change the Potentiometer on board	Value of Potentiometer for Slave 1 will be
B3	changed in log information
Change the Potentiometer on board	Value of Potentiometer for Slave 2 will be
B4	changed in log information
Change the Potentiometer on board	Value of Potentiometer for Slave A will be
B5	changed in log information
Change the Potentiometer on board	Value of Potentiometer for Slave B will be
B6	changed in log information

Dem	o Application	
	Change the Potentiometer on board	Value of Potentiometer for Slave C will be
	B7	changed in log information

5.1.6.2 Actions on All Boards After Resetting LEDs Status

After PTA4 on S08DZ128 master board press (Schedule in Cluster 1 is active)

Action	Res	ult								
PB4 pressed in the first time		Board	F	33	B4		B5		B7	
-		LED1	(DN	ON		OFF		OFF	
		LED2	(DN	ON		OFF		OFF	
PB4 pressed in the second time		Board		B3	B4	F	35	F	37	
		LED1		OFF	OFF	()FF	(OFF	
		LED2		ON	ON	()FF	(OFF	
PB4 pressed in the third time		Board	[B3	B4	E	35	F	37	
		LED1		ON	ON	()FF	(OFF	
		LED2		OFF	OFF	()FF	(OFF	
PB4 pressed in the fourth time		Board	F	33	B4		B5		B7	
		LED1	(OFF	OFF		OFF		OFF	
		LED2	(OFF	OFF		OFF		OFF	
PB5 pressed in the first time/		Board		B3	B4	E	35	E	37	
second time/ third time/ forth		LED1		OFF	OFF	(OFF	0	OFF	
time		LED2		OFF	OFF	()FF	0	OFF	
Change the Potentiometer on	Value of Potentiometer for Slave 1 will be changed in									
board B3	log information									
Change the Potentiometer on	Value of Potentiometer for Slave 2 will be changed in									
board B4	log information									
Change the Potentiometer on		Value of Potentiometer for Slave A, B and C will not						l not		
board B5/ B6/ B7	be changed in log information									

Table 5-11. List of actions and results after resetting LEDs status

After PTA5 on S08DZ128 master board press (Schedule in Cluster 2 is active)

Table 5-12. List of actions and results after pressing the button PTA5 of S08DZ128 board

Action	Result						
PB4 pressed in the first time/]	Board	B3	B4	B5	B7	
second time/ third time/ forth]	LED1	OFF	OFF	OFF	OFF	
time]	LED2	OFF	OFF	OFF	OFF	
PB5 pressed in the first time]	Board	B3	B4	B5	B7	
]	LED1	OFF	OFF	ON	ON	
]	LED2	OFF	OFF	ON	ON	
PB5 pressed in the second time]	Board	B3	B4	B5	B7	
]	LED1	OFF	OFF	OFF	OFF	
]	LED2	OFF	OFF	ON	ON	
PB5 pressed in the third time]	Board	B3	B4	B5	B7	
]	LED1	OFF	OFF	ON	ON	
]	LED2	OFF	OFF	OFF	OFF	
PB5 pressed in the fourth time]	Board	B3	B4	B5	B7	

Demo Application

	LED1OFFOFFOFFOFFLED2OFFOFFOFFOFF
Change the Potentiometer on board B3/ B4	Value of Potentiometer for Slave 1, 2 will not be changed in log information
Change the Potentiometer on board B5	Value of Potentiometer for Slave A will be changed in log information
Change the Potentiometer on board B6	Value of Potentiometer for Slave B will be changed in log information
Change the Potentiometer on board B7	Value of Potentiometer for Slave C will be changed in log information

After PTA6 on S08DZ128 master board press (Schedules in both Clusters are active)

Action	Resul	t					
PB4 pressed in the first time	Resul	Board	B3	B4	B5	B7	
		LED1	ON ON	ON	OFF	OFF	
		LED1 LED2	ON	ON	OFF	OFF	
PB4 pressed in the second time		Board	B3	B4	B5	B7	
		LED1	OFF	OFF	OFF	OFF	
		LED1	ON	ON	OFF	OFF	
PB4 pressed in the third time		Board	B3	B4	B5	B7	
r		LED1	ON	ON	OFF	OFF	
		LED2	OFF	OFF	OFF	OFF	
PB4 pressed in the fourth time		Board	B3	B4	B5	B7	
L		LED1	OFF	OFF	OFF	OFF	
		LED2	OFF	OFF	OFF	OFF	
PB5 pressed in the first time		Board	B3	B4	B5	B7	
-		LED1	OFF	OFF	ON	ON	
		LED2	OFF	OFF	ON	ON	
PB5 pressed in the second time		Board	B3	B4	B5	B7	
_		LED1	OFF	OFF	OFF	OFF	
		LED2	OFF	OFF	ON	ON	
PB5 pressed in the third time		Board	B3	B4	B5	B7	
		LED1	OFF	OFF	ON	ON	
		LED2	OFF	OFF	OFF	OFF	
PB5 pressed in the fourth time		Board	B3	B4	B5	B7	
		LED1	OFF	OFF	OFF	OFF	
		LED2	OFF	OFF	OFF	OFF	
Change the Potentiometer on board B3	Value of Potentiometer for Slave 1 will be changed in log information						
Change the Potentiometer on board B4	Value of Potentiometer for Slave 2 will be changed in log information						
Change the Potentiometer on board B5	Value of Potentiometer for Slave A will be changed in log information						
Change the Potentiometer on board B6	Value of Potentiometer for Slave B will be changed						
Semiconductors							

Table 5-13. List of actions and results after pressing the button PTA6 of S08DZ128 board

	in log information
e	Value of Potentiometer for Slave C will be changed in log information

After PTA7 on S08DZ128 master board press (Periodically wakeup both clusters.)

Action	Resu	lt					
PB4 pressed in the first time/		Board	B3	B4	B5	B7	
second time/ third time/ forth		LED1	OFF	OFF	OFF	OFF	
time		LED2	OFF	OFF	OFF	OFF	
PB5 pressed in the first time/		Board	B3	B4	B5	B7	
second time/ third time/ forth		LED1	OFF	OFF	OFF	OFF	
time		LED2	OFF	OFF	OFF	OFF	

Table 5-14. List of actions and results after pressing the button PTA7 of S08DZ128 board
--

5.1.6.3 Log Description

The LIN gateway node shall log the events and output it in a readable form for the demonstration and traceability of the LIN functioning via the hyper terminal. There are 3 types of communication that shall be logged:

Message	Log description
Gateway gets request	"Master node requested only cluster 1 active"
from Master node	"Master node requested only cluster 2 active"
	"Master node requested cluster1 and cluster2 active"
	"Master node requested cluster1 and cluster2 inactive"
	"Control LED of Cluster1 from Master node"
	"Control LED of Cluster2 from Master node"
Gateway sends requests	"Control LED of Cluster1 from GateWay"
to slaves	"Control LED of Cluster2 from GateWay"
	"Reset Leds of all slave"
	"Send goto sleep command"
Gateway gets response	"Potentiometer value of SlaveX = XXX"
from slaves	

The log information will be printed through COM port (RS_232_0 connector on 9S12XEP100 board) and displayed on Hyper Terminal window.

5.2 LIN diagnostic demo application

5.2.1 Introduction

The diagnostic classes are introduced in the LIN Specification Package v2.1 [1], chapter 5. Diagnostics functionality such as node identification and enhanced application functions are added.

The scope of this demo application is specific for diagnostic implementation. In the last phase development of LIN Stack, the diagnostic class I was supported for slave node and class II was developed for master node only. In the phase 3 of LIN Stack, the full diagnostic classes will be implemented. This demo application is aimed to expose the diagnostic classes II and III.

Demo Application

The diagnostic data in this demo is based on diagnostic description file (UDS-ExampleEcu-4.0.1.cdd) of CANdela Studio integrated in CANoeLIN version 7.1 sp5.

They can be found from *Start menu/Programs/CANoe/Demos/CANoeLIN- Diagnostics tester*, or as files directly *C:\Documents* and *Settings\congth\My Documents\Vector\CANoe\7.1\CANoe Demos\Demo_LIN_CN\LINDiagnosticsTester\CDD*.

With this alignment, any LIN physical nodes in the demo could be replaced by CANoe HW to demonstrate diagnostic communication (see

Table 2-2. LIN2.x diagnostic service specification).

5.2.2 Diagnostic services support

5.2.2.1 Diagnostic class II

Diagnostic class covers services in class II and addition services is listed below

- 1. Read data by Identifier (0x22)
 - Mater node sends Read data by Identifier service- Development data Read (0x22, 0x0091)
 - Slave processes the request and send response to master
- 2. Read data by Identifier (0x22)
 - Mater node sends Read data by Identifier service Serial data Read (0x22, 0x0092)
 - \circ $\,$ Slave processes the request and send response to master $\,$
- *3.* Write data by Identifier (0x2E)
 - Mater node sends Write data by Identifier service- Serial data Write (0x2E, 0x0092)
 - Slave processes the request and send response to master

5.2.2.2 Diagnostic class III

Diagnostic class covers services in class I, II and addition services for class III only is listed below

- 1. Session control (0x10)
 - \circ Mater node sends Section Control Default section start (0x10, 0x01)
 - Slave processes the request and send response to master
- 2. *I/O control by identifier(0x2F)*
 - Mater node sends I/O control by identifier Door status read (0x2F, 0x08)
 - Slave processes the request and send response to master
- 3. Read DTC (0x19) (fault memory)
 - Mater node sends read DTC by identifier Fault memory read (0x19, 0x01)
 - o Slave processes the request and send response to master
- 4. Write DTC (0x14) (fault memory)
 - \circ Mater node sends write DTC by identifier Fault memory write (0x14)
 - Slave processes the request and send response to master

5.2.3 Demo setup

Figure 5-12 The setup of the Diagnostic Demonstration Applicationshows the setup for diagnostic communication in the network. The network contains one master node with name LINMaster and two slave nodes: FontLeftDoor and RearLeftDoor with node address (NAD) are 0x11 and 0x12 respectively.

The slave node *RearLeftDoor* is configured for execution diagnostic class II. The slave node *FontLeftDoor* is configured for execution diagnostic class III.

Due to the diagnostic class III cover services of class II and add some more services, the service of class II is reused combination with new serviced added.

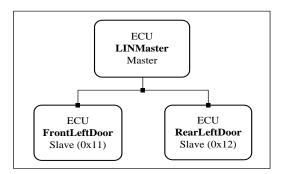


Figure 5-12 The setup of the Diagnostic Demonstration Application

5.2.3.1 Hardware description

Base on the demo setup above, the hardware for each node is identical as shown in the figure and table below.

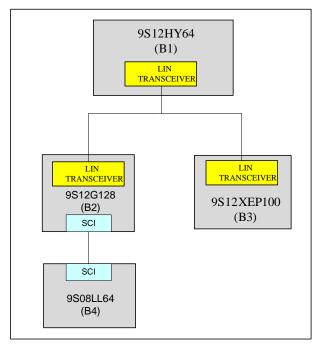


Figure 5-13: Master/Slave hardware configuration

The application utilizes three FSL hardware platforms MC9S12HY64, TWR 9S12G128 and EVB9S12XEP100 to set up a LIN network as Figure 5-12 The setup of the Diagnostic Demonstration Application. However, the TWR 9S12G128 board doesn't have LCD or enough LEDs to display the signals of FrontLeftDoor node. For this reason, the TWR 9S08LL64 is used. These boards (9S12G128 & 9S08LL64) are joined together through tower, and

communicated via SCI. The real hardware sets up as the following Figure 5-14: The real demo application hardware:

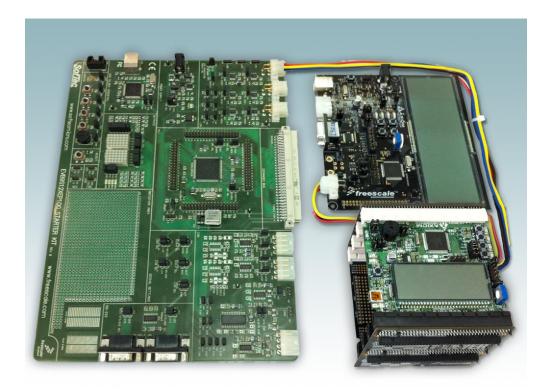


Figure 5-14: The real demo application hardware

5.2.3.2 LCD display

5.2.3.2.1 TWR 9S08LL64 (FrontLeftDoor slave)

The LCD in TWR 9S08LL64 is utilized with two display areas shown in the figure below:

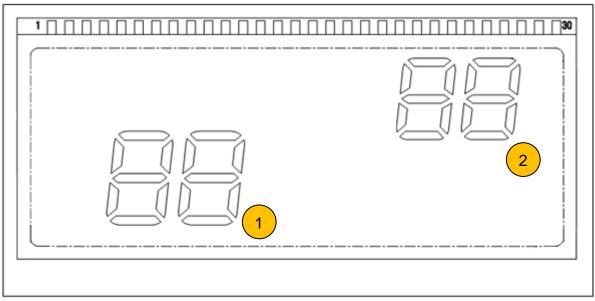


Figure 5-15: The LCD GD-5360P (on the LL64 board) specification

Display description:

1. The LEDs at the position No.1 display the NAD of the target slave

2. The LEDs at the position No.2 display the value of FrontLeftDoorSignal of FrontLeftDoor slave. The signal is sent from the TWR 9S12G128 board.

5.2.3.2.2 DEMO9S12HY64 (RearLeftDoor slave)

The LCD display features in DEMO9S12HY64 are utilized with two display areas which shown in figures below:

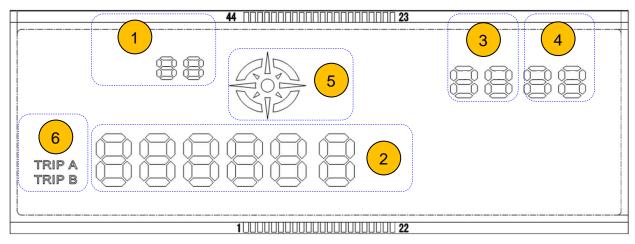


Figure 5-16: The LCD GD-5560P (on the HY64 board) specification

Display description:

- 1. The LEDs at the position No.1 display the operation mode
- 2. The LEDs at the position No.2 display the master request (or slave response) data
- 3. The LEDs at the position No.3 & No.4 display the FrontLeftDoorSignal and RearLeftDoorSignal
- 4. The icon at the position No.5 turns on when the master waits the slave's response
- 5. The icon "TRIP A" at the position No.6 turns on when the master's request is sent to FrontLeftDoor Node (or slave's response is received from FrontLeftDoor Node)
- 6. The icon "TRIP B" at the position No.6 turns on when the master's request is sent to RearLeftDoor Node (or slave's response is received from RearLeftDoor Node)

All peripheral devices, which are used in demo application, are listed in Table 4-1:

Board	Board ID	Responsibility	User I/O
9S12HY64	B1	Master node	Push button: SW1, SW2, SW3, SW4
			LED: LED1, LED2, LED3, LED4
			LCD: GD5560P
			Potentiometer: RV1
9S12G128	B2	Slave node (0x11)	LED: LED1, LED2, LED3, LED4
			Push button: SW1, SW2, SW3, SW4
			Potentiometer: RV1
9S12XEP100	B2	Slave node (0x12)	Potentiometer: RV1
			LED: LED-matrix
9S08LL64	B4	Display the	LCD: GD5360P
		Potentiometer's value of	
		9S12G128	

Table 5-16: Hardware configuration list

5.2.4 Operation description

Figure 5-17: Diagnostic operation shows the principle of diagnostic operation in the LIN network. This is explained in more details in Figure 5-18: Read data by Identifier: UDS = 0x22, SID = 0x0091, Data record is a sample and Figure 5-19.

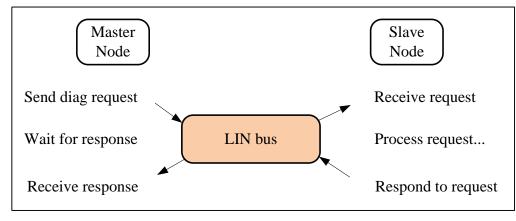


Figure 5-17: Diagnostic operation

The diagnostic sequence is to send a request and to wait for a response before continuing with the next request.

The master node sends a request to slave node via LIN bus. Base on the service definition, the slave node receives the request and start to process request. After a while, the master requests response from slave, the data prepared by slave previously will be transmitted by LIN bus.

5.2.4.1 Sequences of frame between Master node and Slave nodes

All frames in communication are defined in table below:

No.	Operation Mode	Description	Frame Type/PID	Publisher	Subscriber
1	0x00	The LIN network operates in normal schedule. The master node reads: FrontLeftDoorSignal from FrontLeftDoor Node; RearLeftDoorSignal from RearLeftDoor Node and displays them to LCD. These signals can be changed by adjusted the slave node's Potentiometer	Unconditio nal Frame	FrontLeftD oor & RearLeftD oor	Master
2	0x20	The Master node prepares data for master's request for service: " <i>Read</i> data by Identifier - Serial number read (SID = $0x22$ & sub-ID = 0x0092)" and displays them on the LCD.	Master Request/ 0x3C	Master	RearLeftDoo r
3	0x21	- The Slave will response to the master's request (0x22) with two types: <i>Positive response</i> : response data <i>Negative response</i> : response error	Slave Response/ 0x3D	RearLeftD oor	Master

 Table 5-17: Operation mode in the demo

NXP Semiconductors

	Application				
		code - The Master node will wait until received slave's response and then display the response to the LCD.			
4	0x22	The Master node prepares data for master's request for service: "Write data by Identifier - Serial number write (SID = $0x2E$ & sub-ID = 0x0092)" and outputs them to the LCD. The serial number can be changed by changing the define SERIAL_NUMBER on the source code	Master Request/ 0x3C	Master	RearLeftDoo r
5	0x23	- The Slave will response to the master's request (0x2E) with two types: Positive response: response data Negative response: response error code (If slave response's type is positive response, the serial number will be updated – the master node can read the updated serial number by calling the service "read by identifier (SID = $0x22$) with sub-ID = 0092 ") - The Master node will wait until received slave's response and then display the response to the LCD.	Slave Response/ 0x3D	RearLeftD oor	Master
6	0x30	- The Master node prepares data for master's request for service: "IO control by identifer – IO status read (SID = 0x22 & sub-ID = 0x0080)" and displays them to the LCD.	Master Request/ 0x3C	Master	FrontLeftDoo r
7	0x31	 The Slave will response to the master's request (0x22) with two types: <i>Positive response</i>: response data <i>Negative response</i>: response error code The Master node will wait until received slave's response and then display the response to the LCD. If the positive response is returned, the LED status on the master node (HY64 board) will be updated as the LED status on the FrontLeftDoor node (the LL64 board) 	Slave Response/ 0x3D	FrontLeftD oor	Master
8	0x32	- The Master node prepares data for master's request for service: "IO control by identifier – IO status write (SID = 0x2F & sub-ID = 0x0080)" and displays them to the LCD	Master Request/ 0x3C	Master	FrontLeftDoo r

		The IO states' selection has			
		- The IO status' value can be changed by adjusting the potentiometer. The value is displayed both LEDs and LCD (the last byte on master requested data)			
9	0x33	 The Slave will response to the master's request (0x2F) with two types: <i>Positive response</i>: response data <i>Negative response</i>: response error code The Master node will wait until received slave's response and then display the response to the LCD. If the positive response is returned, the LED status on the FrontLeftDoor node (HY64 board) will be updated as the LED status on the master node (the G128 board) 	Slave Response/ 0x3D	FrontLeftD oor	Master
10	0x34	- The Master node prepares data for master's request for service: <i>"Session control (0x10), Sub-ID:</i> <i>(0x01)"</i> and displays them to the LCD	Master Request/ 0x3C	Master	FrontLeftDoo r
11	0x35	 The Slave will response to the master's request (0x10) with two types: <i>Positive response</i>: response data <i>Negative response</i>: response error code The Master node will wait until received slave's response and then display the response to the LCD. 	Slave Response/ 0x3D	FrontLeftD oor	Master
12	0x36	- The Master node prepares data for master's request for service: " <i>Read</i> <i>DTC</i> (0x19) Sub-ID (0x01)" and displays them to the LCD	Master Request/ 0x3C	Master	FrontLeftDoo r
13	0x37	 The Slave will response to the master's request (0x10) with two types: <i>Positive response</i>: response data <i>Negative response</i>: response error code The Master node will wait until received slave's response and then display the response to the LCD. 	Slave Response/ 0x3D	FrontLeftD oor	Master
14	0x38	 The Master node prepares data for master's request for service: "Clear 	Master Request/	Master	FrontLeftDoo r

		DTC (0x14)" and displays them to the LCD	0x3C		
15	0x39	 The Slave will response to the master's request (0x10) with two types: <i>Positive response</i>: response data <i>Negative response</i>: response error code The Master node will wait until received slave's response and then display the response to the LCD. 	Slave Response/ 0x3D	FrontLeftD oor	Master

Note

The LCD on the master node (the HY64 board) displays the mode operation at the position No.1, the FrontLeftDoorSignal at the position No.3, the RearLeftDoorSignal at the No.4 and Master's request (or Slave's response) data at No.2

The LCD on LL64 board (the Front Left Door Node) displays the NAD at the position No.1, the FrontLeftDoorSignal's value at No.2. These signals are sent from TWR 9S12G128 board.

The Led matrix on XEP100 board (the Rear Left Door Node) displays the NAD or the RearLeftDoorSignal's value (Press button SW1 to display NAD, and SW2 to display RearLeftDoorSignal).

5.2.4.2 Reset signal

After resetting the MCU, the node is ready for communication. The status of each board is described below:

- The LCD on HY64 board displays the mode 0x00. (Please see Table 5.1 for details)
- The LCD on LL64 board displays the value of FrontLeftDoorSignal and the NAD.
- The LED matrix on XEP100 board displays the value of RearLeftDoorSignal.

The LED status of all boards after resetting is OFF.

5.2.4.3 Service Operation

Read data by Identifier: UDS = 0x22, SID = 0x0092

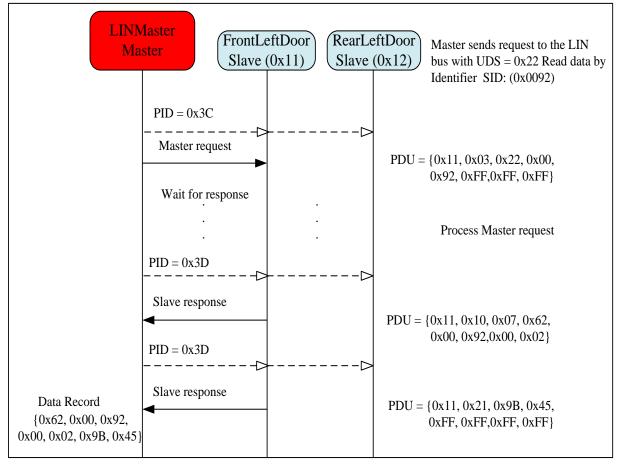


Figure 5-18: Read data by Identifier: UDS = 0x22, SID = 0x0091, Data record is a sample

Write data by Identifier: UDS = 0x2E, SID = 0x0092

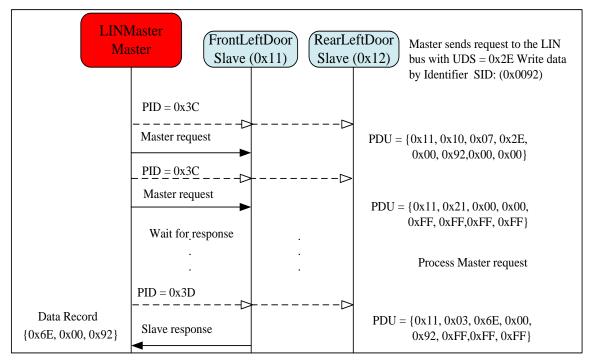


Figure 5-19: Write data by Identifier: UDS = 0x2E, SID = 0x0092, Data record is a sample

5.2.4.4 Operation on Push button

Action	Result			
Push button SW1	The Master node returns to normal schedule, none diagnostic service is selected. The LCD displays the ForntLeftDoorSignal & RearLeftDoorSignal from two slave nodes.			
Push button SW2	Selecting the diagnostic services for class II. The master request's data is displayed on LCD			
Push button SW3	Selecting the diagnostic services for class III. The master request's data is displayed on LCD			
Push button SW4	Sending master request, which is displayed on LCD, to slave node, and display the slave response's data which is received on the LCD.			

Table 5-18: Master node operation on Push button

Table 5-19: FrontLeftDoor node (LL64 board) operation on Push button

Action	Result
Push button SW1	Turn on/off LED 1
Push button SW2	Turn on/off LED 2
Push button SW3	Turn on/off LED 3
Push button SW4	Turn on/off LED 4

Table 5-20: RearLeftDoor node (XEP100 board) operation on Push button

Action	Result
Push button SW1	To display NAD on the LED matrix
Push button SW2	To display RearLeftDoorSignal's value on the LED matrix

5.3 Resynchronization demo application

5.3.1 Introduction

Local interconnect network (LIN) is widely used standard for low cost automotive networks. In order to ensure reliable communication via LIN bus, a MCU bus clock needs to be accurate enough to avoid errors. MCU can use crystal or ceramic resonator to provide very accurate bus clocks. However, LIN protocol was designed to allow more cost-effective solution. An automatic resynchronization feature allows a cost-effective solution: MCUs can use on-chip oscillators to implement LIN slaves, even though the on-chip oscillators have less accuracy than a crystal.

The demo application will show the different between the LIN operations with and without resynchronization feature.

5.3.2 Demo setup

Figure 5-20 Nodes setup of the Resynchronization Demonstration Application shows the setup for communication in the LIN network. The network contains one master node with name LINMaster and two slave nodes: FontLeftDoor and RearLeftDoor with node address (NAD) are 0x11 and 0x12 respectively.

The slave node *FrontLeftDoor* is configured to support the resynchronization feature. But, the slave node *RearLeftDoor* is configured without resynchronization feature support.

The master node *LINMaster* could be able to change baud rate by pressing button.

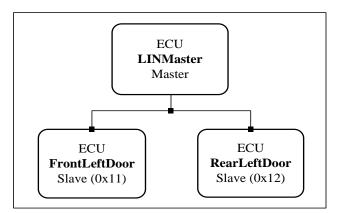


Figure 5-20 Nodes setup of the Resynchronization Demonstration Application

5.3.2.1 Hardware description

Base on the demo setup above, the hardware for each node is identical as shown in the figure and table below.

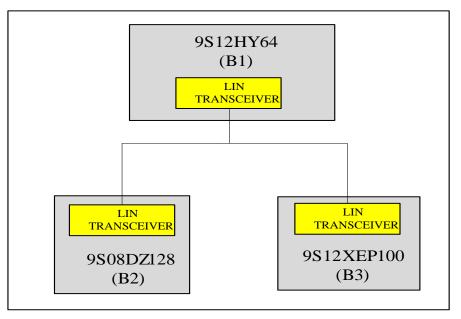


Figure 5-21: Master/Slave hardware configuration

The application utilizes three FSL hardware platforms MC9S12HY64, DEMO9S08DZ128 and EVB9S12XEP100.

The real hardware sets up as the following Figure 5-22:

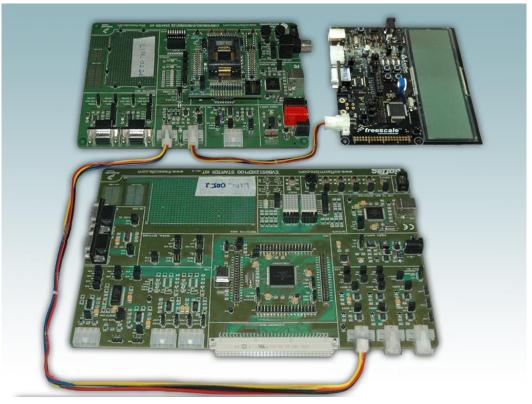


Figure 5-22: The real demo application hardware

5.3.2.2 LCD Display

5.3.2.2.1 DEMO9S12HY64

The LCD display features in DEMO0S12HY64 are utilized with display areas which shown in figures below:

44 000000000000000000000000000000000000	
4 TRIP A TRIP B	
1	

Figure 5-23: The LCD GD-5560P (on the HY64 board) specification

Display description:

- 1 The LEDs at the position No.1 & No.2 display the FrontLeftDoorSignal and RearLeftDoorSignal
- 2 The LEDs at the position No.3 display the current baud-rate of master node
- *3* The icon "TRIP A" at the position No.4 turns off when the master node can't receive the signal from FrontLeftDoor Node

4 The icon "TRIP B" at the position No.4 turns off when the master node can't receive the signal from RearLeftDoor Node

All peripheral devices, which are used in demo application, are listed in Table 4-1:

Board	Board ID	Responsibility	User I/O
9S12HY64	B1	Master node	Push button: SW1, SW2, SW3, SW4
			LED: LED1, LED2, LED3, LED4
			LCD: GD5560P
			Potentiometer: RV1
9S12XEP100	B2	Slave node (0x12)	Potentiometer: RV1
			LED: LED-matrix
9S08DZ128	B3	Slave node (0x11)	LED: LED0-7
			Potentiometer: RV1

Table 5-21: Hardware configuration list	Table 5-21:	5-21: Hardward	configuration	list
---	-------------	----------------	---------------	------

5.3.3 Operation description

This section describes in details functionalities and procedures of each node in Demo application. The descriptions of each frame and direction of message transmitting between physicals nodes of the network is listed on the following table

PID	Frame's Name	Publisher	Subscriber	Description
0x01	FrontLeftDoorMessag e	FrontLeftDoor	Master	The current POT value of FrontLeftDoor Node
0x02	RearLeftDoorMessage	RearLeftDoor	Master	The current POT value of RearLeftDoor Node
0x05	MastertoRearControl	Master	RearLeftDoor	Master sends a "verify" data to RearLeftDoor Signal
0x07	ReartoMasterMessage	RearLeftDoor	Master	RearLeftDoorSignal sends a "verify" data, which is received from master node, back to master node.
0x06	MastertoFrontControl	Master	FrontLeftDoo r	Master sends a "verify" data to FrontLeftDoor Signal
0x08	FronttoMasterMessage	FrontLeftDoor	Master	FrontLeftDoorSignal sends a "verify" data, which is received from master node, back to master node.

Table 5-22: Sequence frames between nodes of the network

To verify that LIN network works correctly when the baud-rate is changed, the master node sends a signal to each slave node. Then, the slave node sends it back, the master node will compare two signals, one which is sent to slave node, one which is received from slave node. If the two signals is not equal, the master-node turns LEDs on to notify that the LIN network doesn't work correctly. Besides, the user can check by change the POT value. The master node displays the POT values which are received from two slave nodes on the LCD. When the values which are displayed on master node's LCD, is not match with the POT's values which are displayed on LED of each board, it is stated that the transmitting and receiving signal via the network is not correctly.

Note

- The LED 1&2 on the HY64 board is turned on when the master cannot receive signals from FrontLeftDoor correctly

- The LED 3&4 on the HY64 board is turned on when the master cannot receive signals from RearLeftDoor correctly

5.3.3.1 Reset signal

After resetting the MCU, the node is ready for communication. The status of each board is described below:

- The LCD on HY64 board displays the network's baud-rate, and the RearLeftDoorSignal 's and FrontLeftDoorSignal's values which are received from two slave node.
- The LED matrix on XEP100 board displays the value of RearLeftDoorSignal.
 - The LED on DZ128 board displays the value of FrontLeftDoorSignal

The LED status of all boards after resetting is OFF.

5.3.3.2 Operation on Push button

Table 5-23: Master no	de operation on Push button
-----------------------	-----------------------------

Action	Result
Push button SW1	Increase the master baud-rate and the baud-rate is displays on the LCD
Push button SW2	Decrease the master baud-rate and the baud-rate is displays on the LCD

Appendix A

List of API function

Name of API function	Master Support	Slave Support	LIN2.x Support	J2602 Support	Description
l_sys_init					Initializes the LIN
-					system
l_bool_rd					Reads a 1-bit signal
1_u8_rd					Reads a 2- to 8-bit signal
l_u16_rd					Reads a 9- to 16-bit
					signal
l_bytes_rd					Reads byte assignment
					signals
l_bool_wr					Writes a 1-bit signal
1_u8_wr					Writes a 2- to 8-bit
					signals
1_u16_wr					Writes a 9- to 16-bit
					signals
l_bytes_wr					Writes data for a byte-
					assignment signal
l_flg_tst					Tests a flag
l_flg_clr					Clears a flag
l_sch_set		\searrow			Sets a schedule
l_sch_tick					Executes a schedule
l_ifc_goto_sleep		$\langle \rangle$	>		Reserves a sleep
F		$\left \right\rangle$			command
l_ifc_init					Initializes the interface
l_ifc_wake_up					Outputs a wake-up signal
l_ifc_read_status					Acquires state
I_II0_IOud_Status					information
l_sys_irq_disable					Disable LIN related IRQ
l_sys_irq_restore					Enable LIN related IRQ
l_ifc_connect			\setminus		Connect the interface to
I_IIC_CONNECT			\rightarrow		the LIN cluster
l_ifc_disconnect			$\langle \rangle$		Disconnect the interface
1_fie_disconnect			\rightarrow		to the LIN cluster
ld_assign_NAD					Assigns NAD value
ld_conditional_change_NAD		$\langle \rangle$			Assigns conditional
		\times			NAD value
ld_read_by_id		$\langle \rangle$	»		Read property associated
Id_Icad_0y_Id		\times			with id
ld_is_ready		$\langle \rangle$	>		Verifies a state of node
Id_IS_ICady		\times			setting
ld_check_response		$\langle \rangle$	>		Acquires the state
		\sim			information on response
ld_assign_frame_id_range		$\langle \rangle$	>		Assigns the protected
		\times		\times	identifier by range
ld_assign_frame_id		$\langle \rangle$			Assigns the protected
		\times			identifier
diag_read_data_by_identifier	1	$\langle \rangle$			Read data by identifier
					diagnostic class II
					service
	1				

diag_write_data_by_identifie r		Write data by identifier diagnostic class II service
diag_session_control		Session control diagnostic class III service
diag_fault_memory_read		Read fault memory diagnostic service
diag_fault_memory_clear		Clear fault memory diagnostic service
diag_IO_control		Input/Output control by identifier diagnostic service
diag_get_flag		Get diagnostic service's flag.
diag_clear_flag		Clear diagnostic service's flag.

Appendix B

LIN Configure File (LDF) for sample application

The completed sample LDF file for LIN2.x network demo master gateway is as follows

```
LIN description file;
LIN_protocol_version = "2.1";
LIN_language_version = "2.1";
LIN speed = 19.2 kbps;
Nodes {
  Master: MasterNode, 5 ms, 0.1 ms;
  Slaves: Gateway ;
}
Signals {
  Cluster1Potentiometer1: 8, 0, Gateway, MasterNode;
  Cluster1LightSensor1: 8, 0, Gateway, MasterNode;
  Cluster1Potentiometer2: 8, 0, Gateway, MasterNode;
  Cluster2PotentiometerA: 8, 0, Gateway, MasterNode;
  Cluster2LightSensorA: 8, 0, Gateway, MasterNode;
  Cluster2PotentiometerB: 8, 0, Gateway, MasterNode;
  Cluster2PotentiometerC: 8, 0, Gateway, MasterNode;
  GatewayError: 1, 0, Gateway, MasterNode;
  ClusterIdentifier: 2, 0, MasterNode, Gateway;
}
Diagnostic signals {
  MasterReqB0: 8, 0 ;
  MasterRegB1: 8, 0 ;
  MasterReqB2: 8, 0 ;
  MasterReqB3: 8, 0 ;
  MasterReqB4: 8, 0 ;
  MasterReqB5: 8, 0 ;
  MasterReqB6: 8, 0 ;
  MasterReqB7: 8, 0 ;
  SlaveRespB0: 8, 0 ;
  SlaveRespB1: 8, 0 ;
  SlaveRespB2: 8, 0 ;
  SlaveRespB3: 8, 0 ;
  SlaveRespB4: 8, 0 ;
  SlaveRespB5: 8, 0 ;
  SlaveRespB6: 8, 0 ;
  SlaveRespB7: 8, 0 ;
}
Frames {
  GatewayControl: 1, MasterNode, 1 {
    ClusterIdentifier, 0;
  }
  PotentiometerInfo: 2, Gateway, 5 {
     Cluster1Potentiometer1, 0;
     Cluster1Potentiometer2, 8;
     Cluster2PotentiometerA, 16;
     Cluster2PotentiometerB, 24;
     Cluster2PotentiometerC, 32;
  }
  LightSensorInfo: 3, Gateway, 3 {
     Cluster1LightSensor1, 0;
     Cluster2LightSensorA, 8;
```

```
GatewayError, 16;
  }
}
Sporadic frames {
  SporadicControlFrame: GatewayControl;
}
Diagnostic frames {
 MasterReq: 0x3c {
    MasterReqB0, 0 ;
    MasterReqB1, 8 ;
    MasterReqB2, 16 ;
    MasterReqB3, 24 ;
    MasterReqB4, 32 ;
    MasterReqB5, 40 ;
    MasterReqB6, 48;
    MasterReqB7, 56 ;
  }
  SlaveResp: 0x3d {
    SlaveRespB0, 0 ;
    SlaveRespB1, 8 ;
    SlaveRespB2, 16;
    SlaveRespB3, 24 ;
    SlaveRespB4, 32 ;
    SlaveRespB5, 40 ;
    SlaveRespB6, 48;
    SlaveRespB7, 56;
  }
}
Node attributes {
  Gateway{
    LIN protocol = "2.1";
    configured NAD = 0x1;
    initial NAD = 0xa;
    product id = 0x1e, 0x1, 0;
     response error = GatewayError;
    P2 min = 100 ms;
    ST min = 20 ms;
    N As timeout = 1000 ms;
    N_Cr_timeout = 1000 ms;
    configurable frames {
       GatewayControl;
      PotentiometerInfo;
       LightSensorInfo;
    }
  }
}
Schedule tables {
NormalTable {
    PotentiometerInfo delay 50 ms;
    LightSensorInfo delay 50 ms;
    SporadicControlFrame delay 20 ms;
  }
```

Node Private File (NPF) for sample application

The NPF of the node which participates in the gateway is given as follow (the node might participate to other LIN networks)

```
/*** GENERAL DEFINITION ***/
LIN node config file;
/*** MCU DEFINITION ***/
        /* Must check the correct MCU name */
mcu {
     mcu name = MC9S12XEP100;
     bus clock = 8000000;
                               /* Frequency bus of system Hz*/
                               /* Support XGATE Co-Processor */
     xgate support = no;
}
/*** LIN HARDWARE DEFINITION ***/
/* SCI config */
sci{
      s12 sci0{
          sci channel = 1; /* Check validation of sci channel */
          timer channel = 0;
}
     s12 sci1{
          sci channel = 3; /* Channel setting */
          timer channel = 1;
}
     s12 sci2{
          sci channel = 5; /* Channel setting */
          timer channel = 2;
}
}
/*** NETWORK DEFINITION ***/
network {
     idle timeout = 4s;
     diagnostic class = 1; /* Class selection to use diagnostic
services */
     LIO{
          node = Gateway;
          file = "Demo Master Gateway.ldf";
          device = s12 sci0;
     }
     LI1{
          node = Gateway;
          file = "Demo Cluster1.ldf";
          device = s12 sci1;
     }
     LI2{
          node = Gateway;
          file = "Demo Cluster2.ldf";
          device = s12 sci2;
     }
}
```

Appendix C

Data Reference for Node Configuration Tool

mcu info sci{						
MC9S12XEP100,	SCT V5	S12X	020008	0~0000	0×00B8	0×0000
0x0130, 0x0138;		/	01100000	0100000	0100000	0.00000,
MC9S12XEQ512,	SCT V5	S12X	020008	0~0000	0×00B8	0×0000
0x0130, 0x0138;	bei_vo/	/	0X0000,	0X00D0,	0200000	0.00000,
MC9S12XDP512,	CCT V5	C12V	0.20008	0.200000	0.20000	0.20000
0x0130, 0x0138;	SCT_VJ,	_312A_/	020000,	0X00D0,	020000,	020000,
	CCT VE	010V 00	0.00 000		0 00120.	
MC9S12XET256,					80, UXUISU;	
MC9S12XF512,						
MC9S12XS128,	SCI_V5,	_SIZ_, UXU	0C8, 0X00	DU;		
MC9S12XS256,				D0;		
MC9S12GN32,				- 0		
MC9S12G64,	SCI_V5, _	_S12_, 0x0	0C8, 0x00	D0;		
MC9S12HY64,	SCI_V5, _	_S12_, 0x0	0C8;			
MC9S12P128, MC9S12XHY256,	SCI_V5, _	_S12 _, 0x0	0C8;			
MC9S12XHY256,	SCI_V5, _	_S12_, 0x0	0C8, 0x00	D0;		
MC9SIZGIZ8,	SCI_VS, _	_SIZ_, UXU	UC8, UXUU	DU, UXUUE	18 <i>;</i>	
MC9S12G240,	SCI_V5, _	_S12 _, 0x0	0C8, 0x00	D0, 0x00E	18 ;	
MC9S12VR64,	SCI_V6, _	_S12_, 0x0	0C8, 0x00	D0;		
MC9S12VR32,	SCI_V6,	S12 , 0x0	0C8, 0x00	D0;		
MC9S12ZVML128	,SCI V6,	S12 , 0x07	00,0x0710	;		
MM912F634,	SCI V4,	S12, 0x0	240;			
MM912G634,	SCI V4,	S12, 0x0	240;			
MM912H634,	SCI V4,		240;			
MM912J637,						
MC9S12I64,	SCT_V4,	s12, 0x0	240:			
MM971,T638	SCT V4	$S12 - 0 \times 0$	E18:			
MC9508D760	SCT_V4	$508 \cdot 0x0$	038, 0x00	40:		
MC9S08DZ60, MC9S08DZ128,	SCT_V4	, 0x0 	038 0x00	40.		
MC9S08EI 32	SCT_VI	,, ,,	038.	10,		
MC9S08EL32,	SCI_V4,	_300 _, 0x0 _308 0v0	038.			
MC9S08SG4,		, 0x0	030,			
MC9S08SG8,		_300_ , 0x0	0.20,			
MC9S08SG32,						
MC9S08MP16,				F 0 .		
MC9S08LL64,						
MC9S08LG32,				τα ;		
MC9S08SC4,				4.0		
MC9S08AW60,						
MC9S08AW16A,						
MC9S08RN60,)U;	
MC9S12ZVL32,						
MC9S12ZVL128,	SCI_V6, _	_S12_, 0x07	00,0x0710	;		
MC9S12ZVML31,	SCI_V6, _	_S12_, 0x07	00,0x0710	;		
MC9S12ZVHY64,	SCI_V6, _	_S12_, 0x07	00, 0x071	0;		
MC9S12ZVH128,	SCI_V6, _	_S12_, 0x07	00, 0x071	0;		
MC9S12ZVC64,	SCI_V6, _	_S12_, 0x07	00, 0x071	0;		
MC9S12ZVMC256						
MC9S12ZVMAL16						
MC9S12ZVMA16,						
MC9S12ZVMAL32	_					
MC9S12ZVMA32,	_	, 0x				
MC9S12ZVMBA64	_			10;		
MC9S12ZVMB64,						
NXP Semiconductors		/ 0/1	, 011	- /		90

NXP Semiconductors

	MC9S12ZVMBA48, MC9S12ZVMB48, MC9S12VRP48,	SCI_V6, _S12_ SCI_V6, _S12_ SCI_V6, _S12_ SCI_V6, _S12_	, 0x700,	0x710;
	MC9S12VRP64,	SCI_V6, _S12_	, 0x00C8,	0x00D0;
} mcu	info gpio{			
- mou	MC9S08QD4;			
}				
mcu_	_info_slic{ MC9S08EL32;			
}				
mcu_	_info_uart{ SKEAZN84, K	, 0x4006A000;		
	SKEAZN642, K	_, 0x4006A000,	0x4006B000	, 0x4006C000;
	SKEAZ1284, K	_, 0x4006A000,	0x4006B000	, 0x4006C000;
}				

How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: LIN_STACK_UG Rev. 2.5.7

