Skip navigation

Oftentimes, developing an end application is like a scary game of maze. One can easily get lost in its winding paths lined with unseen twists and obstacles. A wrong choice can lead you to start all over again, making the journey grim, and the goal out of reach.

 

For developers, the challenges are real and huge, turning the development process into a difficult chase to fulfill performance and time to market objectives while achieving customer expectations as well.

From prototype, integration to development, there are a multitude of bottlenecks lurking in every path. With so many design challenges to overcome, developers often find it hard to integrate cutting edge technologies in their end applications and optimize their designs with the best performance and features.

 

At iWave, we are poised to ease these challenges and turn them into opportunities for innovation. A win-win situation for all.

And that’s the reason we have launched a new SBC, powerful enough to address even the most pressing development challenges and help transform your ideas into a stunning reality. The SBC is the fourth addition to our growing portfolio of NXP i.MX based single board computers – high-efficiency industrial platforms superior in performance.

 

Powered by NXP i.MX8 Processor, the iWave SBC is equipped with up to eight Armv8 64-Bit heterogeneous CPU cores (2 x Arm Cortex- A72, 4 x Arm Cortex-A53 & 2 x Arm Cortex-M4F).It highlights the extremely powerful computational capability of the SBC, making it an awaited platform for unleashing complex to implement applications with utmost efficiency and ease. Advanced use cases include High-Speed Networking, Edge Computing, Industrial Automation,4K imaging, e-Cockpit, Intelligent Data Centre, etc.,

 

i.MX8 Quad MAX/Quad Plus Pico ITX SBC

Adding new dimensions to innovate:

Intelligent Edge:

The future is at the edge. With immense inbound advantages, edge computing is paving the way to a new era of connected, intelligent devices.iWave SBC has been designed,  keeping in mind the revolutionary transition that edge computing can realize in new-age applications. Be it medical, industrial or automotive, the i.MX8 SBC with its intuitive real-time processing, flexible high-speed memory, and robust connectivity can smartify your end application in just a matter of seconds.

The key to unlocking edge intelligence in the i.MX8 SBC lies within the powerful Cortex-M4F cores. This high-performance MCU is run RTOS to accelerate real-time intelligence in edge applications. The MCU is proficient at handling critical real-time tasks associated with an application e.g. monitor of sensor circuitry.The signal is subsequently decoded and processed by the A cores running Linux / Android OS, with non-critical tasks shared to the Cloud servers for advanced analytics.

To know more about Cortex-M4F and its amazing features in i.MX8 SoC click the following link: https://www.iwavesystems.com/cortexm4f-real-time-processing-imx8qm

Rich Interactive GUI:

Native to the SBC is an integrated high-performance dual GC7000 3D GPU and 4K H.265 capable VPU that combines to offer rich interactive graphical experience on up to 4 x HD or one 4K display. Dual failover-ready SafeAssure display controller ensures critical displays are always on with reliable high-quality content. An additional HIFI4 DSP module further offloads the main cores and adds flexibility for a variety of end applications. These capabilities, coupled with the highly integrated form factor, makes the iWave SBC a leader for building cutting-edge machine vision systems, IIoT solutions, and advanced robotics.

Hardware Virtualization:

When there is a powerful heterogeneous processing platform to take care of the computing performance, it is very important to ensure that all the hardware resources are utilized efficiently and to its full potential. This is achieved by hardware virtualization.iWave has successfully integrated open-source type 1 Xen hypervisor to enable a versatile multi-OS implementation on the i.MX8 SoC.The generated domains are fully secure and independent from others,  ensuring a multi-application platform running on independent displays offering failover safe performance.

For more details about XEN virtualization check the following link https://www.iwavesystems.com/xen-on-imx8qm-som

Ample Connectivity

When it comes to I/O connectivity, the iWave SBC excels with its wide range of on-board and external connector interfaces. Included on the SBC is a Gigabit Ethernet PHY, USB 3.0 hub and IEEE 802.11a/b/g/n/ac Wi-Fi & Bluetooth 5.0 module for high-speed network connectivity. In addition, on-board CAN and RS232 interfaces accelerate applications in automotive and industrial automation systems. Multiple audio and video interfaces combine to enhance the multimedia performance of the SBC.  Key multimedia interfaces onboard include HDMI/eDP Display and I2S Audio Codec with Audio In/Out jack while interfaces over Expansion Connector include MIPI CSI, MIPI DSI, SPI, UART, LVDS, I2C, etc.

Optimized Power Consumption:

Thanks to the use of multiple low-power technologies, the iWave SBC intelligently manages the power efficiency of the entire system.  Firstly, the Cortex-M4F cores are configured to monitor the system in low power mode, while the main processors are deactivated. The main cores can be activated either using predefined wake-up time or when there is a user-defined interrupt. Power is also kept to a minimum with the use of high-speed LPDDR, and the incorporation of NXP’s dual PF8100 Power Management Integrated Circuit.

Secure and Safe platform

Ensuring all-around security of the software stack is a high –priority requirement of new-age applications. With the explosion of connected devices and the IoT revolution, the amount of possible attack vectors are also growing exponentially. This further emphasizes the need to secure embedded platforms with reliable and fool-proof security mechanisms.

iWave’s SBC includes a dedicated Security Microcontroller (SECO) to perform the security functions. The SECO controller verifies the authenticity of the Uboot, Linux, and RTOS binaries. The binaries are signed with a certificate that is stored in the module's immutable storage. The security controller also contains a Cryptographic Acceleration and Assurance Module (CAAM) to implement secure and validated cryptography mechanisms and further enhance data security in the SBC platform.

Key Security features in iWave’s SBC include:

  • High Assurance Boot – HAB
  • Encryption and Decryption using HW cryptography Engine
  • Encryption of keys for protecting sensitive data
  • Secure FOTA (Firmware Over the Air Update)

For more details refer our article on Security-Optimized Embedded Solutions

i.MX8 Quad MAX/Quad Plus Pico ITX SBC 2

Conclusion:

Armed with high speed multimedia processing and intelligent real time capabilities , the iWave i.MX8 SBC is all geared up to unleash innovative use cases that intuitively perform and keep security and energy concerns at bay.

To learn more, check out the full specification of the product in the following link: https://www.iwavesystems.com/product/single-board-computer/i-mx8qm-qp-picoitxsbc/i-mx8-quadmax-quadplus-picoitx-sbc.html

For further information or inquiries, please write to mktg@iwavesystems.com or contact our Regional Partners.

QNX is a Unix-like Real Time Operating System primarily developed for safety and mission critical embedded systems and includes the following unique features;

Microkernel architecture

  • Dynamically upgradable services and applications
  • Fine-grained fault isolation and recovery
  • Message-passing design for modular, well-formed systems

Instrumented microkernel

  •  System-wide performance analysis and optimization
  •  Fast detection of timing conflicts, hidden faults, etc.

 File encryption and Resource manager framework

  •  Device drivers are implemented in user space not kernel in space
  •  Drivers can be started, stopped, and debugged like any standard application

Adaptive time partitioning

  • Guaranteed system resources to build secure, reliable systems without compromising performance and flexibility

High availability frameworks

  • Heartbeating for early fault detection and Intelligent restart and transparent reconnection.

 

These unique features make QNX SDP as most advanced and secure embedded OS. QNX’s modular architecture enables customers to create highly optimized and reliable systems with low total cost of ownership. Hence QNX Platform is perfect for the following application segments;

  • Aerospace
  • Automobiles
  • Connected & Autonomous Vehicles
  • Robotics & Industrial Automation
  • Drones
  • Military
  • Nuclear Power Plants
  • Railway Transportation
  • Life-Critical Medical Devices
  • Telecommunication Market Segments

 

Build secure, safe and reliable systems with QNX RTOS:

Use adaptive partitioning to guarantee system resources for your applications. Build secure, reliable embedded systems without compromising realtime performance and flexibility. To achieve the highest level of performance, adaptive partitioning allows applications to use all available CPU cycles under normal operating conditions. During overload conditions, adaptive partitioning enforces hard resource guarantees, ensuring applications receive their budgeted share of resources.

iWave's i.MX8QM/QP SMARC Module

iWave is glad to announce the QNX 7.0.0 RTOS update for iWave’s i.MX8 Quad Max and Quad Plus SMARC module. iWave Systems successfully ported the QNX 7.0.0 to iWave’s i.MX8QM/QP SMARC development board. This development board has up to 8GB LPDDR4 RAM and 128GB eMMC storage with built in 802.11ac Wi-Fi module and dual gigabit ethernet support. The SMARC carrier board supports multiple display options including 4K HDMI, video input, CAN ports, Dual Gigabit Ethernet, multiple PCIe devices, SATA, USB3.0, Serial interfaces and Audio.

QNX RTOS on iWave’s i.MX8QM/QP SMARC Module 1

Porting of QNX on iWave i.MX8 QM/QP SMARC platform:

Porting of the QNX to iWave i.MX8 QM/QP platform includes kernel & driver porting, driver development, unit test application development. iWave’s strong partnership with NXP and QNX helped to fasten the porting & development activity. Following drivers are supported in the QNX BSP with iWave i.MX8QM/QP SMARC platform.

  • CPU and MCU – Dual Cortex A72, Quad Cortex A53 and Dual Cortex-M4
  • Block/Storage devices – SD/eMMC, USB, SATA
  • Multimedia support – HDMI Display, GPU, VPU, Audio, Camera
  • Network interfaces – Ethernet, CAN, PCIe, 802.11ac Wi-Fi
  • Misc. Drivers – Serial, HID, SPI, I2C.

 

QNX RTOS on iWave’s i.MX8QM/QP SMARC Module 2

i.MX8QuadMax SMARC Development platform

 

Following is few snapshots of Crank Application running on QNX RTOS in iWave’s i.MX8QM SMARC development board:

QNX RTOS on iWave’s i.MX8QM/QP SMARC Module 3

Benefits by choosing iWave for Platforms:                                                      

  • 10+ years long term product longevity 
  • Technical support
  • Recognized skills and know-how with QNX platforms 
  • Turnkey hardware, software services and manufacturing support

 

iWave offers customisation services, technical support for QNX porting to various i.MX8 family such as i.MX8X, i.MX8M, i.MX8M mini etc. For further information and inquiries, please write to mktg@iwavesystems.com

We are pleased to announce that Config Tools for i.MX Application Processors v7 are now available.

 

The Config Tools for i.MX is a set of configuration tools that provide an efficient method
for evaluation and configuration of pins routing and DDR memory settings when designing
with NXP's application processors based on Arm® Cortex®-A cores, including i.MX MPUs.

 

The following tools are currently available:

 

Memory Tool

DDR Configuration and Validation tool allows you to create a configuration for the DDR component
and to validate the DDR configuration using various validation scenarios
Features:

  • Support for iMX8MM
  • Allow users to import DDR controller and phy configuration from RPA tool
  • DDR controller Registers View support
  • Auto-detect of available COM ports
  • USB target connection
  • DDR phy support for LPDDR4
  • Basic validation tests support (Write-Read-Compare, Walking Ones, Walking Zeros)
  • Stress tests support (beta version)
  • vTSA (Virtual Timing Signal Analysis) support- RX data eye, TX data eye
  • Export tests results in JPEG format

 

Pins Tool

The Pins Tool is used for pin routing configuration, validation and code generation, including pin
functional/electrical properties, power rails, run-time configurations.
Features:

  • Desktop application
  • Muxing and pin configuration with consistency checking
  • Multicore support
  • Localized for English and Simplified Chinese
  • Mostly Connected: On-Demand device data download
  • Integrates with any compiler and IDE
  • Supports English and Chinese (simplified) languages, based on locale settings. Please refer to user manual for details.
  • ANSI-C initialization code
  • Graphical processor package view
  • Multiple configuration blocks/functions
  • Easy-to-use device configuration
    • Selection of Pins and Peripherals
    • Package with IP blocks
    • Routed pins with electrical characteristics
    • Registers with configured and reset values
    • Power Groups with assigned voltage levels
    • Source code for C/C++ applications
  • Documented and easy to understand source code
  • CSV Report and Device Tree File

 

Downloads & links

  • To download the installer for all platforms, please login to our download site via: 
  • Please refer to Documentation  for installation and quick start guides.
  • For further information about DDR config and validation, please go to this blog post.

 

Whats new in v7

  • Product renamed to Config Tools for i.MX
  • Memory Tool added, supports DDR configuration and validation
  • Added "Help | Kit/Board Information" option that displays information about currently used kit or board.
  • Clickable Part number, Board and Kit name supported. It displays information about currently used processor, board and kit.
  • Data Manager - supports clearing locally cached processors, boards, kit and components content.
  • Configuration Preferences - supports custom copyright in generated sources
  • Preferences - Added Dark theme support
  • Pins tool: Added automatic routing feature which can be used for conflict resolution in the current functional group.