# This for Copper Wire Qualification of MSDISWA

Freescale Part Numbers: MC33972ATEK/R2 MC33972ATEW/R2

FREESCALE INTERNAL TRACKING NUMBER: 201350130A\_0\_0

TSMC Fab 2 / Mask N39B

**32 SOIC Assembly and Test at Freescale Tianjin, China** 

TEMPE, AZ January 15, 2014



FORMPPAP021DOC Freescale Rev G

## **Table of Contents**

Reference PDF Bookmarks, which link directly to the key elements and contents and are essentially a table of contents for an electronic PDF file.

#### PURPOSE AND BACKGROUND STATEMENT

| Customer Part Number: Standard Part | Date: 10 December 2013                 |
|-------------------------------------|----------------------------------------|
| Part Name: MSDISWA                  | Freescale Part Number: MC33972ATEK/R2, |
|                                     | MC33972ATEW/R2                         |
| Customer Ref : NA                   | Title: MSDISWA Cu Wire Qualification   |

#### **PURPOSE:**

This PPAP package is intended to present data and information required for the qualification of MSDISWA Cu wire in the TSMC facility in the SOIC package from FSL-TJN-FM.

#### **BACKGROUND:**

Reliability Qualification testing was performed to qualify the addition of Copper Wire as a wirebond material and Sumitomo EME-G630AY Molding Compound as mold material for SMOS5 SOIC32 300ML 4.6EP and Non-EP package devices. These products were previously assembled with Gold (Au) wire and Hitachi CEL9220HF13 Molding compound at Freescale TJN assembly site, Tianjin, China. These products are now qualified for assembly with Copper (Cu) wire and EME-G630AY Molding Compound at Freescale TJN assembly site, Tianjin, China.

The PPAP manufacturing documentation (e.g., control plans, FMEA's, etc.) included in this PPAP File were current when retrieved and reviewed by Freescale during component-level qualification. This documentation (when reviewed by the Customer) may not reflect the latest revision in our document repository. These documents are intended to reflect semiconductor manufacturing processing and capability. In addition, this PPAP submission may contain documents and data generated both before and after Freescale Semiconductor, Inc was organized as a separate business entity from its predecessor company, Motorola. As such, documentation contained herein may contain references to both Freescale and Motorola, depending on the time the document was originally created.

# **Design Records**

Document Number: MC33972

Rev. 19.0, 3/2012

## **√**RoHS

## Multiple Switch Detection Interface with Suppressed Wake-up

The 33972 Multiple Switch Detection Interface with suppressed wake-up is designed to detect the closing and opening of up to 22 switch contacts. The switch status, either open or closed, is transferred to the microprocessor unit (MCU) through a serial peripheral interface (SPI). The device also features a 22-to-1 analog multiplexer for reading inputs as analog. The analog input signal is buffered and provided on the AMUX output pin for the MCU to read.

The 33972 device has two modes of operation, Normal and Sleep. Normal mode allows programming of the device and supplies switch contacts with pull-up or pull-down current as it monitors switch change of state. The Sleep mode provides low quiescent current, which makes the 33972 ideal for automotive and industrial products requiring low sleep-state currents.

#### **Features**

- Designed to operate 5.5 V ≤ V<sub>PWR</sub> ≤ 26 V
- Switch input voltage range -14 V to V<sub>PWR</sub>, 40 V Max
- Interfaces directly to MPU using 3.3 V/5.0 V SPI protocol
- · Selectable wake-up on change of state
- Selectable wetting current (16 or 2.0 mA)
- 8 programmable inputs (switches to battery or ground)
- · 14 switch-to-ground inputs
- Typical standby current V<sub>PWR</sub> = 100 μA and V<sub>DD</sub> = 20 μA
- Active interrupt (INT) on change-of-switch state

#### 33972/A/T

## MULTIPLE SWITCH DETECTION INTERFACE





EW SUFFIX (Pb-FREE) 98ARH99137A 32-PIN SOICW

98ASA10556D 32-PIN SOICW EP

| ORDE           | RING INFORMAT                          | ION         |
|----------------|----------------------------------------|-------------|
| Device         | Temperature<br>Range (T <sub>A</sub> ) | Package     |
| MC33972TEW/R2  |                                        | 32 SOICW    |
| MC33972ATEW/R2 | -40 °C to 125 °C                       | 32 3010W    |
| MC33972ATEK/R2 |                                        | 32 SOICW EP |

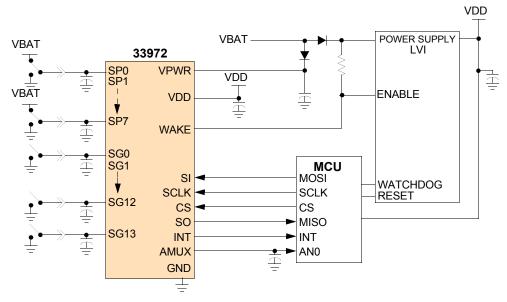



Figure 1. 33972 Simplified Application Diagram

Freescale Semiconductor, Inc. reserves the right to change the detail specifications, as may be required, to permit improvements in the design of its products.

© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.



## **DEVICE VARIATIONS**

**Table 1. Device Variations** 

| Device | Switch Input Voltage Range | Reference Location |
|--------|----------------------------|--------------------|
| 33972  | -14 to 38 V <sub>DC</sub>  | <u>5, 6</u>        |
| 33972A | -14 to 40 V <sub>DC</sub>  | <u>5, 6</u>        |

#### INTERNAL BLOCK DIAGRAM

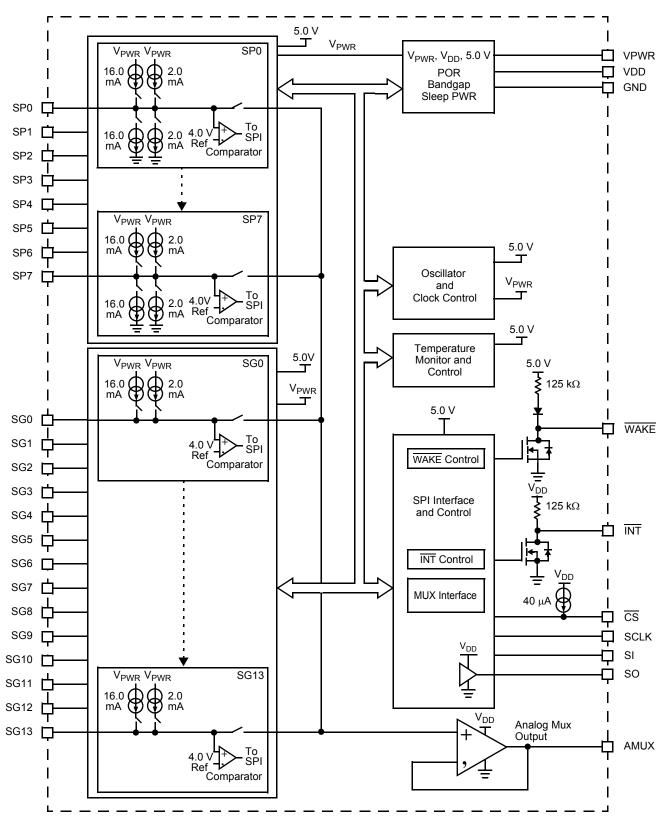



Figure 2. 33972 Simplified Internal Block Diagram

#### **PIN CONNECTIONS**

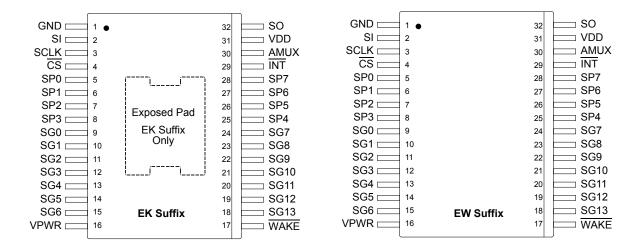



Figure 3. 33972 Pin Connections

Table 2. 33972 Pin Definitions

A functional description of each pin can be found in the Functional Pin Description section beginning on page 10.

| Pin Number     | Pin Name         | Pin Function | Formal Name                     | Definition                                                                                                                                                                         |
|----------------|------------------|--------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | GND              | Ground       | Ground                          | Ground for logic, analog, and switch to battery inputs.                                                                                                                            |
| 2              | SI               | Input        | SPI Slave In                    | SPI control data input pin from the MCU to the 33972.                                                                                                                              |
| 3              | SCLK             | Input        | Serial Clock                    | SPI control clock input pin.                                                                                                                                                       |
| 4              | <u>cs</u>        | Input        | Chip Select                     | SPI control chip select input pin from the MCU to the 33972. Logic [0] allows data to be transferred in.                                                                           |
| 5–8<br>25–28   | SP0-3<br>SP4-7   | Input        | Programmable<br>Switches 0–7    | Programmable switch-to-battery or switch-to-ground input pins.                                                                                                                     |
| 9–15,<br>18–24 | SG0-6,<br>SG13-7 | Input        | Switch-to-Ground<br>Inputs 0–13 | Switch-to-ground input pins.                                                                                                                                                       |
| 16             | VPWR             | Input        | Battery Input                   | Battery supply input pin. Pin requires external reverse battery protection.                                                                                                        |
| 17             | WAKE             | Input/Output | Wake-up                         | Open drain wake-up output. Designed to control a power supply enable pin.                                                                                                          |
| 29             | ĪNT              | Input/Output | Interrupt                       | Open-drain output to MCU. Used to indicate an input switch change of state.                                                                                                        |
| 30             | AMUX             | Output       | Analog Multiplex Output         | Analog multiplex output.                                                                                                                                                           |
| 31             | VDD              | Input        | Voltage Drain Supply            | 3.3/5.0 V supply. Sets SPI communication level for the SO driver.                                                                                                                  |
| 32             | SO               | Output       | SPI Slave Out                   | Provides digital data from the 33972 to the MCU.                                                                                                                                   |
|                | EP               | Ground       | Exposed Pad                     | It is recommended that the exposed pad is terminated to GND (pin 1) and system ground, however, the device will perform as specified with the exposed pad unterminated (floating). |

#### **ELECTRICAL CHARACTERISTICS**

#### **MAXIMUM RATINGS**

#### Table 3. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

| Ratings                                                                              | Symbol            | Value       | Unit            |
|--------------------------------------------------------------------------------------|-------------------|-------------|-----------------|
| ELECTRICAL RATINGS                                                                   | 1                 |             | •               |
| VDD Supply Voltage                                                                   |                   |             | V <sub>DC</sub> |
| $\overline{\text{CS}}$ , SI, SO, SCLK, $\overline{\text{INT}}$ , AMUX <sup>(1)</sup> | _                 | -0.3 to 7.0 |                 |
| WAKE <sup>(1)</sup>                                                                  | _                 | -0.3 to 40  | V <sub>DC</sub> |
| VPWR Supply Voltage <sup>(1)</sup>                                                   | _                 | -0.3 to 50  | V <sub>DC</sub> |
| VPWR Supply Voltage at -40 °C <sup>(1)</sup>                                         | _                 | -0.3 to 45  | V <sub>DC</sub> |
| Switch Input Voltage Range                                                           | _                 | -14 to 40   | V <sub>DC</sub> |
| Frequency of SPI Operation (V <sub>DD</sub> = 5.0 V)                                 | _                 | 6.0         | MHz             |
| ESD Voltage <sup>(3)</sup>                                                           |                   |             | V               |
| Human Body Model <sup>(2)</sup>                                                      | V <sub>ESD</sub>  | ±2000       |                 |
| Applies to all non-input pins                                                        |                   | ±2000       |                 |
| Machine Model                                                                        |                   | ±200        |                 |
| Charge Device Model                                                                  |                   |             |                 |
| Corner Pins                                                                          |                   | 750         |                 |
| Interior Pins                                                                        |                   | 500         |                 |
| THERMAL RATINGS                                                                      |                   |             | •               |
| Operating Temperature                                                                |                   |             | °C              |
| Ambient                                                                              | T <sub>A</sub>    | -40 to 125  |                 |
| Junction                                                                             | T <sub>J</sub>    | -40 to 150  |                 |
| Storage Temperature                                                                  | T <sub>STG</sub>  | -55 to 150  | °C              |
| Power Dissipation (T <sub>A</sub> = 25 °C) <sup>(4)</sup>                            | P <sub>D</sub>    | 1.7         | W               |
| Thermal Resistance                                                                   |                   |             | °C/W            |
| Non-Exposed Pad                                                                      |                   |             |                 |
| Junction to Ambient                                                                  | $R_{	hetaJA}$     | 74          |                 |
| Junction to Lead                                                                     | $R_{\theta JL}$   | 25          |                 |
| Exposed Pad                                                                          | UOL               |             |                 |
| Junction to Ambient                                                                  | $R_{	hetaJA}$     | 71          |                 |
| Junction to Exposed Pad                                                              | $R_{\theta JC}$   | 1.2         |                 |
| Peak Package Reflow Temperature During Reflow <sup>(5), (6)</sup>                    | T <sub>PPRT</sub> | Note 6      | °C              |

#### Notes

- 1. Exceeding these limits may cause malfunction or permanent damage to the device.
- 2. ESD data available upon request.
- 3. ESD1 testing is performed in accordance with the Human Body Model ( $C_{ZAP}$  = 100 pF,  $R_{ZAP}$  = 1500  $\Omega$ ), and ESD2 testing is performed in accordance with the Machine Model ( $C_{ZAP}$  = 200 pF,  $R_{ZAP}$  = 0  $\Omega$ ).
- 4. Maximum power dissipation at  $T_J = 150^{\circ}$ C junction temperature with no heat sink used.
- 5. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.
- Freescale's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow
  Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes
  and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

#### STATIC ELECTRICAL CHARACTERISTICS

**Table 4. Static Electrical Characteristics** 

Characteristics noted under conditions 3.1 V  $\leq$  V<sub>DD</sub>  $\leq$  5.25 V, 8.0 V  $\leq$  V<sub>PWR</sub>  $\leq$  16 V, -40 °C  $\leq$  T<sub>C</sub>  $\leq$  125 °C, unless otherwise noted.(7) Where applicable, typical values reflect the parameter's approximate average value with V<sub>PWR</sub> = 13 V, T<sub>A</sub> = 25 °C.

| Characteristic                                                     | Symbol                | Min                  | Тур  | Max   | Unit |
|--------------------------------------------------------------------|-----------------------|----------------------|------|-------|------|
| POWER INPUT                                                        |                       |                      |      |       |      |
| Supply Voltage                                                     |                       |                      |      |       | V    |
| Supply Voltage Range Quasi-functional <sup>(8)</sup>               | $V_{PWR(QF)}$         | 5.5                  | _    | 8.0   |      |
| Fully Operational                                                  | V <sub>PWR</sub> (FO) | 8.0                  | -    | 26    |      |
| Supply Voltage Range Quasi-functional <sup>(8)</sup>               | $V_{PWR(QF)}$         | 26                   | _    | 38/40 |      |
| Supply Current                                                     | I <sub>PWR(ON)</sub>  |                      |      |       | mA   |
| All Switches Open, Normal Mode, Tri-state Disabled                 |                       | -                    | 2.0  | 4.0   |      |
| Sleep State Supply Current                                         | I <sub>PWR(SS)</sub>  |                      |      |       | μА   |
| Scan Timer = 64 ms, Switches Open                                  |                       | 40                   | 70   | 100   |      |
| Logic Supply Voltage                                               | $V_{DD}$              | 3.1                  | _    | 5.25  | V    |
| Logic Supply Current                                               | I <sub>DD</sub>       |                      |      |       | mA   |
| All Switches Open, Normal mode                                     |                       | _                    | 0.25 | 0.5   |      |
| Sleep State Logic Supply Current                                   | I <sub>DD(SS)</sub>   |                      |      |       | μΑ   |
| Scan Timer = 64 ms, Switches Open                                  |                       | _                    | 10   | 20    |      |
| SWITCH INPUT                                                       |                       |                      |      |       |      |
| Pulse Wetting Current Switch-to-Battery (Current Sink)             | I <sub>PULSE</sub>    | 12                   | 15   | 18    | mA   |
| Pulse Wetting Current Switch-to-Ground (Current Source)            | I <sub>PULSE</sub>    | 12                   | 16   | 18    | mA   |
| Sustain Current Switch-to-Battery Input (Current Sink)             | I <sub>SUSTAIN</sub>  | 1.8                  | 2.0  | 2.2   | mA   |
| Sustain Current Switch-to-Ground Input (Current Source)            | I <sub>SUSTAIN</sub>  | 1.8                  | 2.0  | 2.2   | mA   |
| Sustain Current Matching Between Channels on Switch-to-Ground I/Os | I <sub>MATCH</sub>    |                      |      |       | %    |
| I <sub>SUS(MAX)</sub> - I <sub>SUS(MIN)</sub> X 100                |                       | _                    | 2.0  | 4.0   |      |
| I <sub>SUS(MIN)</sub>                                              |                       |                      |      |       |      |
| Input Offset Current When Selected as Analog                       | I <sub>OFFSET</sub>   | -2.0                 | 1.4  | 2.0   | μА   |
| Input Offset Voltage When Selected as Analog                       | V <sub>OFFSET</sub>   |                      |      |       | mV   |
| V <sub>(SP&amp;SGINPUTS)</sub> to AMUX Output                      |                       | -10                  | 2.5  | 10    |      |
| Analog Operational Amplifier Output Voltage                        | V <sub>OL</sub>       |                      |      |       | mV   |
| Sink 250 μA                                                        |                       | _                    | 10   | 30    |      |
| Analog Operational Amplifier Output Voltage                        | V <sub>OH</sub>       |                      |      |       | V    |
| Source 250 μA                                                      |                       | V <sub>DD</sub> -0.1 | _    | _     |      |
| Switch Detection Threshold                                         | V <sub>TH</sub>       | 3.70                 | 4.0  | 4.3   | V    |
| Switch Input Voltage Range                                         | V <sub>IN</sub>       |                      |      |       | V    |
| 33972                                                              |                       | -14                  | _    | 38    |      |
| 33972A                                                             |                       | -14                  | -    | 40    |      |
| Temperature Monitor <sup>(9), (10)</sup>                           | T <sub>LIM</sub>      | 155                  | _    | 185   | °C   |
| Temperature Monitor Hysteresis <sup>(10)</sup>                     | T <sub>LIM(HYS)</sub> | 5.0                  | 10   | 15    | °C   |
|                                                                    | ` '                   | 1                    |      | 1     |      |

#### Notes

- 7.  $T_C$  is the  $T_{CASE}$  of the package
- 8. Device operational. Table parameters may be out of specification.
- 9. Thermal shutdown of 16 mA pull-up and pulldown current sources only. 2.0 mA current source/sink and all other functions remain active.
- 10. This parameter is guaranteed by design but is not production tested.

#### **Table 4. Static Electrical Characteristics (continued)**

Characteristics noted under conditions 3.1 V  $\leq$  V<sub>DD</sub>  $\leq$  5.25 V, 8.0 V  $\leq$  V<sub>PWR</sub>  $\leq$  16 V, -40 °C  $\leq$  T<sub>C</sub>  $\leq$  125 °C, unless otherwise noted.(7) Where applicable, typical values reflect the parameter's approximate average value with V<sub>PWR</sub> = 13 V, T<sub>A</sub> = 25 °C.

| Characteristic                                                         | Symbol                                                      | Min                  | Тур | Max             | Unit |
|------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|-----|-----------------|------|
| DIGITAL INTERFACE                                                      |                                                             |                      |     | II.             |      |
| Input Logic Voltage Thresholds <sup>(11)</sup>                         | V <sub>INLOGIC</sub>                                        | 0.8                  | -   | 2.2             | V    |
| SCLK, SI, Tri-state SO Input Current 0 V to V <sub>DD</sub>            | I <sub>SCLK,</sub> I <sub>SI,</sub><br>I <sub>SO(TRI)</sub> | -10                  | _   | 10              | μА   |
| CS Input Current<br>CS = V <sub>DD</sub>                               | I <del>CS</del>                                             | -10                  | _   | 10              | μΑ   |
| CS Pull-up Current CS = 0 V                                            | I <del>CS</del>                                             | 30                   | _   | 100             | μА   |
| SO High-state Output Voltage<br>I <sub>SO(HIGH)</sub> = -200 μA        | V <sub>SO(HIGH)</sub>                                       | V <sub>DD</sub> -0.8 | _   | V <sub>DD</sub> | V    |
| SO Low-state Output Voltage I <sub>SO(HIGH)</sub> = 1.6mA              | V <sub>SO(LOW)</sub>                                        | _                    | _   | 0.4             | V    |
| Input Capacitance on SCLK, SI, Tri-state SO <sup>(12)</sup>            | C <sub>IN</sub>                                             | -                    | -   | 20              | pF   |
| INT Internal Pull-up Current                                           | -                                                           | 15                   | 40  | 100             | μА   |
| INT Voltage INT = Open Circuit                                         | V <sub>INT</sub> (HIGH)                                     | V <sub>DD</sub> -0.5 | _   | V <sub>DD</sub> | V    |
| INT Voltage I <sub>INT</sub> = 1.0 mA                                  | V <sub>INT</sub> (LOW)                                      | -                    | 0.2 | 0.4             | V    |
| WAKE Internal Pull-up Current                                          | IWAKE(PU)                                                   | 20                   | 40  | 100             | μА   |
| WAKE Voltage WAKE = Open Circuit                                       | VWAKE(HIGH)                                                 | 4.0                  | 4.3 | 5.3             | V    |
| WAKE Voltage IWAKE = 1.0 mA                                            | VWAKE(LOW)                                                  | _                    | 0.2 | 0.4             | V    |
| WAKE Voltage  Maximum Voltage Applied to WAKE Through External Pull-up | V <sub>WAKE</sub> (MAX)                                     | _                    | -   | 40              | V    |

#### Notes

<sup>11.</sup> Upper and lower logic threshold voltage levels apply to SI,  $\overline{\text{CS}}$ , and SCLK.

<sup>12.</sup> This parameter is guaranteed by design but is not production tested.

#### **DYNAMIC ELECTRICAL CHARACTERISTICS**

#### **Table 5. Dynamic Electrical Characteristics**

Characteristics noted under conditions 3.1 V  $\leq$  V<sub>DD</sub>  $\leq$  5.25 V, 8.0 V  $\leq$  V<sub>PWR</sub>  $\leq$  16 V, -40 °C  $\leq$  T<sub>C</sub>  $\leq$  125 °C, unless otherwise noted. Where applicable, typical values reflect the parameter's approximate average value with V<sub>PWR</sub> = 13 V, T<sub>A</sub> = 25 °C.

| Characteristic                                                                       | Symbol                  | Min | Тур | Max | Unit |
|--------------------------------------------------------------------------------------|-------------------------|-----|-----|-----|------|
| SWITCH INPUT                                                                         | 1                       |     |     | l . | I .  |
| Pulse Wetting Current Time                                                           | t <sub>PULSE(ON)</sub>  | 15  | 16  | 20  | ms   |
| Interrupt Delay Time                                                                 | t <sub>INT-DLY</sub>    |     |     |     | μS   |
| Normal Mode                                                                          |                         | _   | 5.0 | 16  |      |
| Sleep Mode Switch Scan Time                                                          | t <sub>SCAN</sub>       | 100 | 200 | 300 | μS   |
| Calibrated Scan Timer Accuracy                                                       | t <sub>SCAN</sub> TIMER |     |     |     | %    |
| Sleep Mode                                                                           |                         | _   | _   | 10  |      |
| Calibrated Interrupt Timer Accuracy                                                  | t <sub>INT TIMER</sub>  |     |     |     | %    |
| Sleep Mode                                                                           |                         | _   | _   | 10  |      |
| DIGITAL INTERFACE TIMING <sup>(13)</sup>                                             | ·                       |     |     |     |      |
| Required Low-state Duration on V <sub>PWR</sub> for Reset <sup>(14)</sup>            | t <sub>RESET</sub>      |     |     |     | μS   |
| $V_{PWR} \le 0.2 \text{ V}$                                                          |                         | _   | _   | 10  |      |
| Falling Edge of CS to Rising Edge of SCLK                                            | t <sub>LEAD</sub>       |     |     |     | ns   |
| Required Set-up Time                                                                 |                         | 100 | _   | _   |      |
| Falling Edge of SCLK to Rising Edge of CS                                            | t <sub>LAG</sub>        |     |     |     | ns   |
| Required Set-up Time                                                                 |                         | 50  | -   | _   |      |
| SI to Falling Edge of SCLK                                                           | t <sub>SI(SU)</sub>     |     |     |     | ns   |
| Required Set-up Time                                                                 |                         | 16  | -   | _   |      |
| Falling Edge of SCLK to SI                                                           | t <sub>SI(HOLD)</sub>   |     |     |     | ns   |
| Required Hold Time                                                                   |                         | 20  | -   | _   |      |
| SI, CS, SCLK Signal Rise Time <sup>(15)</sup>                                        | t <sub>R(SI)</sub>      | _   | 5.0 | _   | ns   |
| SI, CS, SCLK Signal Fall Time <sup>(15)</sup>                                        | t <sub>F(SI)</sub>      | _   | 5.0 | _   | ns   |
| Time from Falling Edge of $\overline{\text{CS}}$ to SO Low-impedance <sup>(16)</sup> | t <sub>SO(EN)</sub>     | -   | _   | 55  | ns   |
| Time from Rising Edge of $\overline{\text{CS}}$ to SO High-impedance <sup>(17)</sup> | t <sub>SO(DIS)</sub>    | _   | _   | 55  | ns   |
| Time from Rising Edge of SCLK to SO Data Valid <sup>(18)</sup>                       | t <sub>VALID</sub>      | _   | 25  | 55  | ns   |

#### Notes

- 13. These parameters are guaranteed by design. Production test equipment uses 4.16 MHz, 5.0 V SPI interface.
- 14. This parameter is guaranteed by design but not production tested.
- 15. Rise and Fall time of incoming SI, CS, and SCLK signals suggested for design consideration to prevent the occurrence of double pulsing.
- 16. Time required for valid output status data to be available on SO pin.
- 17. Time required for output states data to be terminated at SO pin.
- 18. Time required to obtain valid data out from SO following the rise of SCLK with 200 pF load.

#### **TIMING DIAGRAMS**

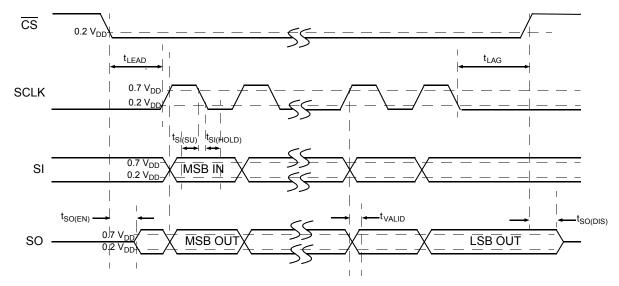



Figure 4. SPI Timing Characteristics

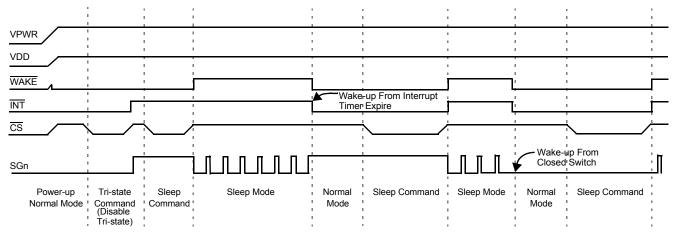



Figure 5. Sleep Mode to Normal Mode Operation

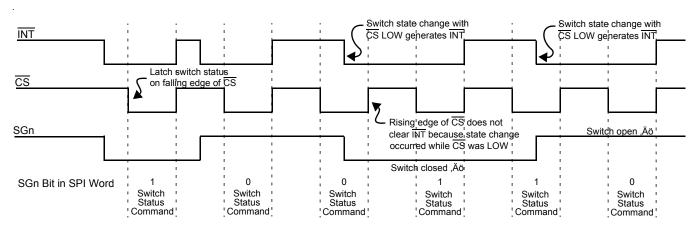



Figure 6. Normal Mode Interrupt Operation

#### **FUNCTIONAL DESCRIPTION**

#### INTRODUCTION

The 33972 device is an integrated circuit designed to provide systems with ultra-low quiescent sleep/wake-up modes, and a robust interface between switch contacts and a microprocessor. The 33972 replaces many of the discrete components required when interfacing to microprocessor-based systems, while providing switch ground offset protection, contact wetting current, and a system wake-up.

The 33972 features 8-programmable switch-to-ground or switch-to-battery inputs and 14 switch-to-ground inputs. All

switch inputs may be read as analog inputs through the analog multiplexer (AMUX). Other features include a programmable wake-up timer, programmable interrupt timer, programmable wake-up/interrupt bits, and programmable wetting current settings.

This device is designed primarily for automotive applications, but may be used in a variety of other applications such as computer, telecommunications, and industrial controls.

#### **FUNCTIONAL PIN DESCRIPTION**

#### CHIP SELECT (CS)

The system MCU selects the 33972 to receive communication using the chip select ( $\overline{CS}$ ) pin. With the  $\overline{CS}$  in a logic LOW state, command words may be sent to the 33972 via the serial input (SI) pin, and switch status information can be received by the MCU via the serial output (SO) pin. The falling edge of  $\overline{CS}$  enables the SO output, latches the state of the  $\overline{INT}$  pin, and the state of the external switch inputs.

Rising edge of the  $\overline{\text{CS}}$  initiates the following operation:

- 1. Disables the SO driver (high-impedance)
- INT pin is reset to logic [1], except when additional switch changes occur during CS LOW. (See <u>Figure 6</u> on page <u>9</u>.)
- 3. Activates the received command word, allowing the 33972 to act upon new data from switch inputs.

To avoid any spurious data, it is essential the HIGH-to-LOW and LOW-to-HIGH transitions of the  $\overline{CS}$  signal occur only when SCLK is in a logic LOW state. A clean  $\overline{CS}$  is needed to ensure no incomplete SPI words are sent to the device. Internal to the 33972 device is an active pull-up to  $V_{DD}$  on  $\overline{CS}$ .

In Sleep mode, the negative edge of  $\overline{\text{CS}}$  (V<sub>DD</sub> applied) will wake up the 33972 device. Data received from the device during  $\overline{\text{CS}}$  wake-up may not be accurate.

#### SYSTEM CLOCK (SCLK)

The system clock (SCLK) pin clocks the internal shift register of the 33972. The SI data is latched into the input shift register on the falling edge of SCLK signal. The SO pin shifts the switch status bits out on the rising edge of SCLK. The SO data is available for the MCU to read on the falling edge of SCLK. False clocking of the shift register must be avoided to ensure validity of data. It is essential the SCLK pin be in a logic LOW state whenever  $\overline{\text{CS}}$  makes any transition. For this reason, it is recommended, that the SCLK pin is commanded to a logic LOW state as long as the device is not accessed and  $\overline{\text{CS}}$  is in a logic HIGH state. When the  $\overline{\text{CS}}$  is in

a logic HIGH state, any signal on the SCLK and SI pins will be ignored and the SO pin is tri-state.

#### SPI SLAVE IN (SI)

The SI pin is used for serial instruction data input. SI information is latched into the input register on the falling edge of SCLK. A logic HIGH state present on SI will program a *one* in the command word on the rising edge of the  $\overline{\text{CS}}$  signal. To program a complete word, 24 bits of information must be entered into the device.

#### **SPI SLAVE OUT (SO)**

The SO pin is the output from the shift register. The SO pin remains tri-stated until the  $\overline{\text{CS}}$  pin transitions to a logic LOW state. All open switches are reported as zero, all closed switches are reported as one. The negative transition of CS enables the SO driver.

The first positive transition of SCLK will make the status data bit 24 available on the SO pin. Each successive positive clock will make the next status data bit available for the MCU to read on the falling edge of SCLK. The SI/SO shifting of the data follows a first-in, first-out protocol, with both input and output words transferring the most significant bit (MSB) first.

#### INTERRUPT (INT)

The  $\overline{\text{INT}}$  pin is an interrupt output from the 33972 device. The  $\overline{\text{INT}}$  pin is an open-drain output with an internal pull-up to  $\underline{V_{DD}}.$  In Normal mode, a switch state change will trigger the INT pin (when enabled). The  $\overline{\text{INT}}$  pin and  $\overline{\text{INT}}$  bit in the SPI register are latched on the falling edge of  $\overline{\text{CS}}.$  This permits the MCU to determine the origin of the interrupt. When two 33972 devices are used, only the device initiating the interrupt will have the INT bit set. The  $\overline{\text{INT}}$  pin is cleared on the rising edge of  $\overline{\text{CS}}.$  The  $\overline{\text{INT}}$  pin will not clear with rising edge of  $\overline{\text{CS}}$  if a switch contact change has occurred while  $\overline{\text{CS}}$  was LOW.

In a multiple 33972 device system with  $\overline{\text{WAKE}}$  HIGH and  $V_{DD}$  in (Sleep Mode), the falling edge of  $\overline{\text{INT}}$  will place all 33972s in Normal mode.

#### WAKE-UP (WAKE)

The WAKE pin is an open-drain output and a wake-up input. The pin is designed to control a power supply Enable pin. In the Normal mode, the WAKE pin is LOW. In the Sleep mode, the WAKE pin is HIGH. The WAKE pin has a pull-up to the internal +5.0 V supply.

In Sleep mode with the  $\overline{\text{WAKE}}$  pin HIGH, the falling edge of  $\overline{\text{WAKE}}$  will place the 33972 in Normal mode. In Sleep mode with  $V_{DD}$  applied, the  $\overline{\text{INT}}$  pin must be HIGH for negative edge of  $\overline{\text{WAKE}}$  to wake up the device. If  $V_{DD}$  is not applied to the device in Sleep mode,  $\overline{\text{INT}}$  does not affect  $\overline{\text{WAKE}}$  operation.

#### **BATTERY INPUT (VPWR)**

The VPWR pin is battery input and Power-ON Reset to the 33972 IC. The VPWR pin requires external reverse battery and transient protection. Maximum input voltage on VPWR is 50 V. All wetting, sustain, and internal logic current is provided from the VPWR pin.

#### **VOLTAGE DRAIN SUPPLY (VDD)**

The VDD input pin is used to determine logic levels on the microprocessor interface (SPI) pins. Current from VDD is used to drive SO output and the pull-up current for  $\overline{CS}$  and  $\overline{INT}$  pins. VDD must be applied for wake-up from negative edge of  $\overline{CS}$  or  $\overline{INT}$ .

#### **GROUND (GND)**

The GND pin provides ground for the IC as well as ground for inputs programmed as switch-to-battery inputs.

#### PROGRAMMABLE SWITCHES (SP0:SP7)

The 33972 device has 8 switch inputs capable of being programmed to read switch-to-ground or switch-to-battery contacts. The input is compared with a 4.0 V reference. When programmed to be switch-to-battery, voltages greater than 4.0 V are considered closed. Voltages less than 4.0 V are considered open. The opposite holds true when inputs are programmed as switch-to-ground. Programming features are defined in Table 6 through Table 11 in the Functional Device Operation section of this datasheet beginning on page 13. Voltages greater than the VPWR supply voltage will source current through the SP inputs to the VPWR pin. Transient battery voltages greater than 38/40 V must be clamped by an external device. This is not a normal operating condition and can damage the IC.

#### SWITCH-TO-GROUND INPUTS (SG0:SG13)

The SGn pins are switch-to-ground inputs only. The input is compared with a 4.0 V reference. Voltages greater than 4.0 V are considered open. Voltages less than 4.0 V are considered closed. Programming features are defined in Table 6 through Table 11 in the Functional Device Operation section of this datasheet beginning on page 13. Voltages greater than the VPWR supply voltage will source current through the SG inputs to the VPWR pin. Transient battery voltages greater than 40 V must be clamped by an external device. This is not a normal operating condition and can damage the IC.

#### FUNCTIONAL INTERNAL BLOCK DESCRIPTION

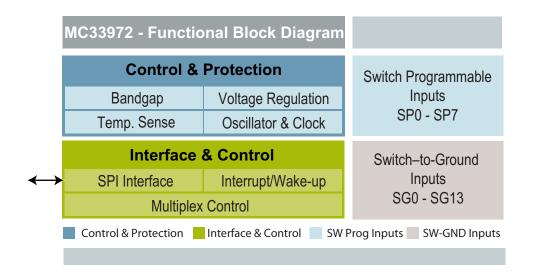



Figure 7. Functional Internal Block Description

#### CONTROL AND PROTECTION CIRCUITRY:

The 33972 is designed to operate from 5.5 V to 38/40 V on the VPWR terminal. Characteristics are provided for  $V_{PWR}$  from 8.0 to 26 V for the IC (parametric tests are done from 8.0 to 16.0v). Switch contact currents and the internal logic supply are generated from the VPWR terminal. The VDD supply terminal is used to set the SPI communication voltage levels, current source for the SO driver, and pull-up current on  $\overline{INT}$  and  $\overline{CS}$ .

The on-chip voltage regulator and bandgap supplies the required voltages to the internal monitor circuitry. The temperature monitor is active in the Normal mode.

#### **INTERFACE AND CONTROL:**

The 33972 Multiple Switch Detection Interface with Suppressed Wake-up is designed to detect the closing and opening of up to 22 switch contacts. The switch status, either open or closed, is transferred to the microprocessor unit (MCU) through a serial peripheral interface (SPI).

The device also features a 22-to-1 analog multiplexer for reading inputs as analog. The 33972 device has two modes of operation, Normal and Sleep.

#### **SWITCH PROGRAMMABLE INPUTS:**

Programmable switch detection inputs. These 8 inputs can selectively detect switch closures to Ground or Battery. The 33972 device has 8 switch inputs capable of being programmed to read switch-to-ground or switch-to-battery contacts. The input is compared with a 4.0 V reference. When programmed to be switch-to-battery, voltages greater than 4.0 V are considered closed. Voltages less than 4.0 V are considered open. The opposite holds true when inputs are programmed as switch-to-ground.

#### SWITCH-TO-GROUND INPUTS:

Switch detection interface inputs. These 14 inputs can detect switch closures to ground only. The input is compared with a 4.0 V reference. Voltages greater than 4.0 V are considered open. Voltages less than 4.0 V are considered closed. Note: Each of these inputs may be used to supply current to sensors external to a module.

#### **FUNCTIONAL DEVICE OPERATION**

#### **OPERATIONAL MODES**

#### MCU INTERFACE DESCRIPTION

The 33972 device directly interfaces to a 3.3 or 5.0 V microcontroller unit (MCU). SPI serial clock frequencies up to 6.0 MHz may be used for programming and reading switch input status (production tested at 4.16 MHz). Figure 8 illustrates the configuration between an MCU and one 33972.

Serial peripheral interface (SPI) data is sent to the 33972 device through the SI input pin. As data is being clocked into the SI pin, status information is being clocked out of the device by the SO output pin. The response to a SPI command will always return the switch status, interrupt flag, and thermal flag. Input switch states are latched into the SO register on the falling edge of the chip select  $(\overline{\text{CS}})$  pin. Twenty-four bits are required to complete a transfer of information between the 33972 and the MCU.

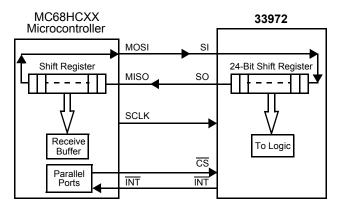



Figure 8. SPI Interface with Microprocessor

Two or more 33972 devices may be used in a module system. Multiple ICs may be SPI-configured in parallel or serial. Figures 9 and 10 show the configurations. When using the serial configuration, 48-clock cycles are required to transfer data in/out of the ICs.

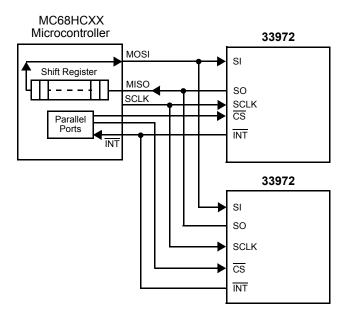



Figure 9. SPI Parallel Interface with Microprocessor

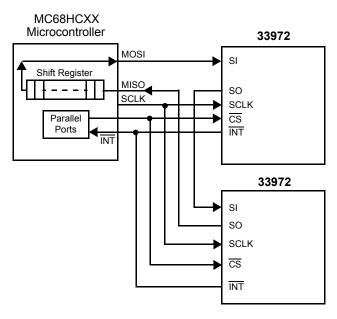



Figure 10. SPI Serial Interface with Microprocessor

#### **POWER SUPPLY**

The 33972 is designed to operate from 5.5 to 40 V on the VPWR pin. Characteristics are provided from 8.0 to 16 V for the device. Switch contact currents and the internal logic supply are generated from the VPWR pin. The VDD supply pin is used to set the SPI communication voltage levels, current source for the SO driver, and pull-up current on  $\overline{\text{INT}}$  and  $\overline{\text{CS}}$ .

The VDD supply may be removed from the device to reduce quiescent current. If  $V_{DD}$  is removed while the device is in Normal mode, the device will remain in Normal mode. If  $V_{DD}$  is removed in Sleep mode, the device will remain in Sleep mode until a wake-up input is received (WAKE HIGH to LOW, switch input or interrupt timer expires).

Removing  $V_{DD}$  from the device disables SPI communication and will not allow the device to wake up from  $\overline{INT}$  and  $\overline{CS}$  pins.

#### **POWER-ON RESET (POR)**

Applying  $V_{\text{PWR}}$  to the device will cause a Power-ON Reset and place the device in Normal mode.

Default settings from Power-ON Reset via  $V_{PWR}$  or the Reset Command are as follows:

- · Programmable switch set to switch to battery
- · All inputs set as wake-up
- Wetting current on (16 mA)
- Wetting current timer on (20 ms)
- · All inputs tri-state
- · Analog select 00000 (no input channel selected)

#### **NORMAL AND SLEEP MODES**

The 33972 has two operating modes, Normal mode and Sleep mode. A discussion on Normal mode begins below. A discussion on Sleep mode begins on page 19.

#### **Normal Mode**

Normal mode may be entered by the following events:

- Application of V<sub>PWR</sub> to the IC
- · Change-of-switch state (when enabled)

- Falling edge of WAKE
- Falling edge of INT (with V<sub>DD</sub> = 5.0 V and WAKE at Logic [1])
- Falling edge of CS (with V<sub>DD</sub> = 5.0 V)
- · Interrupt timer expires

Only in Normal mode with  $V_{\rm DD}$  applied can the registers of the 33972 be programmed through the SPI.

The registers that may be programmed in Normal mode are listed below. Further explanation of each register is provided in subsequent paragraphs.

- •Programmable Switch Register (Settings Command)
- •<u>Wake-Up/Interrupt Register</u> (*Wake-up/Interrupt Command*)
- Wetting Current Register (Metallic Command)
- •Wetting Current Timer Register (Wetting Current Timer Enable Command)
- •<u>Tri-State Register</u> (*Tri-state Command*)
- Analog Select Register (Analog Command)
- •Calibration of Timers (Calibration Command)
- •Reset (Reset Command)

<u>Figure 6</u>, page 9, is a graphical description of the device operation in Normal mode. Switch states are latched into the input register on the falling edge of  $\overline{CS}$ . The  $\overline{INT}$  to the MCU is cleared on the rising edge of  $\overline{CS}$ . However,  $\overline{INT}$  will not clear on rising edge of  $\overline{CS}$  if a switch has closed during SPI communication ( $\overline{CS}$  LOW). This prevents switch states from being missed by the MCU.

#### PROGRAMMABLE SWITCH REGISTER

Inputs SP0 to SP7 may be programmable for switch-to-battery or switch-to-ground. These inputs types are defined using the *settings command* (Table 6). To set an SPn input for switch-to-battery, a logic [1] for the appropriate bit must be set. To set an SPn input for switch-to-ground, a logic [0] for the appropriate bit must be set. The MCU may change or update the programmable switch register via software at any time in Normal mode. Regardless of the setting, when the SPn input switch is closed a logic [1] will be placed in the serial output response register (Table 17, page 19).

**Table 6. Settings Command** 

|    |    | Sett | ings ( | Comm | nand |    |    | Not used |                       |   |   |   |   |   |   | Battery/Ground Select |     |     |     |     |     |     |     |
|----|----|------|--------|------|------|----|----|----------|-----------------------|---|---|---|---|---|---|-----------------------|-----|-----|-----|-----|-----|-----|-----|
| 23 | 22 | 21   | 20     | 19   | 18   | 17 | 16 | 15       | 15 14 13 12 11 10 9 8 |   |   |   |   |   |   |                       | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| 0  | 0  | 0    | 0      | 0    | 0    | 0  | 1  | Χ        | Χ                     | Χ | Χ | Χ | Χ | Χ | Х | sp7                   | sp6 | sp5 | sp4 | sp3 | sp2 | sp1 | sp0 |

#### WAKE-UP/INTERRUPT REGISTER

The wake-up/interrupt register defines the inputs that are allowed to wake the 33972 from Sleep Mode or set the INT pin LOW in Normal mode. Programming the wake-up/interrupt bit to logic [0] will disable the specific input from generating an interrupt and will disable the specific input from

waking the IC in Sleep mode (<u>Table 7</u>). Programming the wake-up/interrupt bit to logic [1] will enable the specific input to generate an interrupt with switch change of state and will enable the specific input as wake-up. The MCU may change or update the wake-up/interrupt register via software at any time in Normal mode.

Table 7. Wake-up/Interrupt Command

|    | Wak | e-up | /Inter | rupt ( | Comm | nand |    |    |    |      |      |      |      | Co  | omma | nd Bi | ts  |     |     |     |     |     |     |
|----|-----|------|--------|--------|------|------|----|----|----|------|------|------|------|-----|------|-------|-----|-----|-----|-----|-----|-----|-----|
| 23 | 22  | 21   | 20     | 19     | 18   | 17   | 16 | 15 | 14 | 13   | 12   | 11   | 10   | 9   | 8    | 7     | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| 0  | 0   | 0    | 0      | 0      | 0    | 1    | 0  | Χ  | Х  | Х    | Х    | Х    | Х    | Χ   | Χ    | sp7   | sp6 | sp5 | sp4 | sp3 | sp2 | sp1 | sp0 |
| 0  | 0   | 0    | 0      | 0      | 0    | 1    | 1  | Х  | Χ  | sg13 | sg12 | sg11 | sg10 | sg9 | sg8  | sg7   | sg6 | sg5 | sg4 | sg3 | sg2 | sg1 | sg0 |

#### WETTING CURRENT REGISTER

The 33972 has two levels of switch contact current, 16 and 2.0 mA (see Figure 11). The metallic command is used to set the switch contact current level (Table 8). Programming the metallic bit to logic [0] will set the switch wetting current to 2.0 mA. Programming the metallic bit to logic [1] will set the switch contact wetting current to 16 mA. The MCU may change or update the wetting current register via software at any time in Normal mode.

Wetting current is designed to provide higher levels of current during switch closure. The higher level of current is designed to keep switch contacts from building up oxides that form on the switch contact surface.

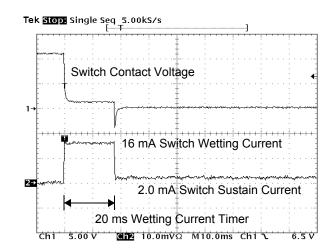



Figure 11. Contact Wetting and Sustain Current

**Table 8. Metallic Command** 

|    |    | Meta | allic C | omm | nand |    |    |    |    |      |      |      |      | Co  | omma | nd Bit | s   |     |     |     |     |     |     |
|----|----|------|---------|-----|------|----|----|----|----|------|------|------|------|-----|------|--------|-----|-----|-----|-----|-----|-----|-----|
| 23 | 22 | 21   | 20      | 19  | 18   | 17 | 16 | 15 | 14 | 13   | 12   | 11   | 10   | 9   | 8    | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| 0  | 0  | 0    | 0       | 0   | 1    | 0  | 0  | Х  | Х  | Х    | Х    | Х    | Х    | Х   | Х    | sp7    | sp6 | sp5 | sp4 | sp3 | sp2 | sp1 | sp0 |
| 0  | 0  | 0    | 0       | 0   | 1    | 0  | 1  | Х  | Х  | sg13 | sg12 | sg11 | sg10 | sg9 | sg8  | sg7    | sg6 | sg5 | sg4 | sg3 | sg2 | sg1 | sg0 |

#### WETTING CURRENT TIMER REGISTER

Each switch input has a designated 20 ms timer. The timer starts when the specific switch input crosses the comparator threshold (4.0 V). When the 20 ms timer expires, the contact current is reduced from 16 to 2.0 mA. The wetting current timer may be disabled for a specific input. When the timer is disabled, 16 mA of current will continue to flow through the

closed switch contact. With multiple wetting current timers disabled, power dissipation for the IC must be considered.

The MCU may change or update the wetting current timer register via software at any time in Normal mode. This allows the MCU to control the amount of time wetting current is applied to the switch contact. Programming the wetting current timer bit to logic [0] will disable the wetting current timer. Programming the wetting current timer bit to logic [1] will enable the wetting current timer (Table 9).

Table 9. Wetting Current Timer Enable Command

| ٧  | Vettin | g Cur | rent 7 | Гimer | Com | mand | s  |    |    |      |      |      |      | Co  | mma | nd Bit | s   |     |     |     |     |     |     |
|----|--------|-------|--------|-------|-----|------|----|----|----|------|------|------|------|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|
| 23 | 22     | 21    | 20     | 19    | 18  | 17   | 16 | 15 | 14 | 13   | 12   | 11   | 10   | 9   | 8   | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| 0  | 0      | 0     | 0      | 0     | 1   | 1    | 1  | Χ  | Х  | Х    | Х    | Х    | Х    | Χ   | Х   | sp7    | sp6 | sp5 | sp4 | sp3 | sp2 | sp1 | sp0 |
| 0  | 0      | 0     | 0      | 1     | 0   | 0    | 0  | Х  | Х  | sg13 | sg12 | sg11 | sg10 | sg9 | sg8 | sg7    | sg6 | sg5 | sg4 | sg3 | sg2 | sg1 | sg0 |

#### TRI-STATE REGISTER

The tri-state command is use to set the SPn or SGn input node as high-impedance (<u>Table 10</u>). By setting the tri-state register bit to logic [1], the input will be high-impedance regardless of the metallic command setting. The comparator

on each input remains active. This command allows the use of each input as a comparator with a 4.0 V threshold. The MCU may change or update the tri-state register via software at any time in Normal mode.

Table 10. Tri-State Command

|    |    | Tri-S | tate C | omm | ands |    |    |    |    |      |      |      |      | Co  | mma | nd Bit | s   |     |     |     |     |     |     |
|----|----|-------|--------|-----|------|----|----|----|----|------|------|------|------|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|
| 23 | 22 | 21    | 20     | 19  | 18   | 17 | 16 | 15 | 14 | 13   | 12   | 11   | 10   | 9   | 8   | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| 0  | 0  | 0     | 0      | 1   | 0    | 0  | 1  | Χ  | Χ  | Х    | Х    | Х    | Х    | Х   | Х   | sp7    | sp6 | sp5 | sp4 | sp3 | sp2 | sp1 | sp0 |
| 0  | 0  | 0     | 0      | 1   | 0    | 1  | 0  | Χ  | Х  | sg13 | sg12 | sg11 | sg10 | sg9 | sg8 | sg7    | sg6 | sg5 | sg4 | sg3 | sg2 | sg1 | sg0 |

#### **ANALOG SELECT REGISTER**

The analog voltage on switch inputs may be read by the MCU using the analog command (Table 11). Internal to the IC is a 22-to-1 analog multiplexer. The voltage present on the selected input pin is buffered and made available on the AMUX output pin. The AMUX output pin is clamped to a maximum of VDD volts regardless of the higher voltages present on the input pin. After an input has been selected as the analog, the corresponding bit in the next SO data stream will be logic [0]. When selecting a channel to be read as analog, the user must also set the desired current (16 mA, 2.0 mA, or high-impedance). Setting bit 6 and bit 5 to 0,0

selects the input as high-impedance. Setting bit 6 and bit 5 to 0,1 selects 2.0 mA, and 1,0 selects 16 mA. Setting bit 6 and bit 5 to 1,1 in the analog select register is not allowed and will place the input as an analog input with high-impedance.

Analog currents set by the analog command are pull-up currents for all SGn and SPn inputs (<u>Table 11</u>). The analog command does not allow pull-down currents on the SPn inputs. Setting the current to 16 or 2.0 mA may be useful for reading sensor inputs. Further information is provided in the <u>Typical Applications</u> section of this datasheet beginning on page <u>21</u>. The MCU may change or update the analog select register via software at any time in Normal mode.

**Table 11. Analog Command** 

|    |    | Ana | log C | omm | and |    |    |    |    |    | N  | ot use | ed |   |   |   | Curren | t Select | Ana | log C | hann | el Se | lect |
|----|----|-----|-------|-----|-----|----|----|----|----|----|----|--------|----|---|---|---|--------|----------|-----|-------|------|-------|------|
| 23 | 22 | 21  | 20    | 19  | 18  | 17 | 16 | 15 | 14 | 13 | 12 | 11     | 10 | 9 | 8 | 7 | 6      | 5        | 4   | 3     | 2    | 1     | 0    |
| 0  | 0  | 0   | 0     | 0   | 1   | 1  | 0  | Χ  | Х  | Х  | Х  | Χ      | Х  | Х | Х | Х | 16 mA  | 2.0 mA   | 0   | 0     | 0    | 0     | 0    |

Table 12. Analog Channel

| Bits 43210 | Analog Channel Select |
|------------|-----------------------|
| 00000      | No Input Selected     |
| 00001      | SG0                   |
| 00010      | SG1                   |
| 00011      | SG2                   |
| 00100      | SG3                   |
| 00101      | SG4                   |
| 00110      | SG5                   |
| 00111      | SG6                   |
| 01000      | SG7                   |
| 01001      | SG8                   |
| 01010      | SG9                   |
| 01011      | SG10                  |
| 01100      | SG11                  |
| 01101      | SG12                  |
| 01110      | SG13                  |
| 01111      | SP0                   |
| 10000      | SP1                   |
| 10001      | SP2                   |
| 10010      | SP3                   |
| 10011      | SP4                   |
| 10100      | SP5                   |
| 10101      | SP6                   |
| 10110      | SP7                   |

#### **CALIBRATION OF TIMERS**

In cases where an accurate time base is required, the user may calibrate the internal timers using the calibration command (Table 13). After the 33972 device receives the calibration command, the device expects 512  $\mu s$  logic [0] calibration pulse on the  $\overline{\text{CS}}$  pin. The pulse is used to calibrate the internal clock. No other SPI pins should transition during

this 512  $\mu$ s calibration pulse. Because the oscillator frequency changes with temperature, calibration is required for an accurate time base. Calibrating the timers has no affect on the quiescent current measurement. The calibration command simply makes the time base more accurate. The calibration command may be used to update the device on a periodic basis.

**Table 13. Calibration Command** 

|    |    | Calib | ration | Com | mand |    |    |    |    |    |    |    |    | C | omma | nd Bi | ts |   |   |   |   |   |   |
|----|----|-------|--------|-----|------|----|----|----|----|----|----|----|----|---|------|-------|----|---|---|---|---|---|---|
| 23 | 22 | 21    | 20     | 19  | 18   | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7     | 6  | 5 | 4 | 3 | 2 | 1 | 0 |
| 0  | 0  | 0     | 0      | 1   | 0    | 1  | 1  | Х  | Χ  | Χ  | Х  | Х  | Х  | Х | Х    | Х     | Х  | Х | Х | Х | Х | Х | Х |

#### **RESET**

The reset command resets all registers to Power-ON Reset (POR) state. Refer to <u>Table 15</u>, page <u>18</u>, for POR

states or the paragraph entitled  $\underline{Power-ON\ Reset\ (POR)}$  on page  $\underline{14}$  of this datasheet.

Table 14. Reset Command

|    |    | Re | set Co | omma | nd |    |    |    |    |    |    |    |    | C | omma | nd Bi | ts |   |   |   |   |   |   |
|----|----|----|--------|------|----|----|----|----|----|----|----|----|----|---|------|-------|----|---|---|---|---|---|---|
| 23 | 22 | 21 | 20     | 19   | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7     | 6  | 5 | 4 | 3 | 2 | 1 | 0 |
| 0  | 1  | 1  | 1      | 1    | 1  | 1  | 1  | Χ  | Χ  | Χ  | Χ  | Х  | Χ  | Х | Х    | Χ     | Х  | Х | Χ | Х | Χ | Χ | Х |

#### **SPI COMMAND SUMMARY**

<u>Table 15</u> below provides a comprehensive list of SPI commands recognized by the 33972 and the reset state of each register. <u>Table 16</u> and <u>Table 17</u> contain the serial

output (SO) data for input voltages greater or less than the threshold level. Open switches are always indicated with a logic [0], closed switches are indicated with logic [1].

**Table 15. SPI Command Summary** 

|                                                           | MSB         |            | C   | omn | nand | Bits |     |     |     |     |      |      |      |      | Set | ting E | Bits |           |              |              |              |               |               | LSB           |
|-----------------------------------------------------------|-------------|------------|-----|-----|------|------|-----|-----|-----|-----|------|------|------|------|-----|--------|------|-----------|--------------|--------------|--------------|---------------|---------------|---------------|
|                                                           | 23          | 22         | 21  | 20  | 19   | 18   | 17  | 16  | 15  | 14  | 13   | 12   | 11   | 10   | 9   | 8      | 7    | 6         | 5            | 4            | 3            | 2             | 1             | 0             |
| Switch Status<br>Command                                  | 0           | 0          | 0   | 0   | 0    | 0    | 0   | 0   | х   | Х   | Х    | х    | х    | х    | х   | Х      | Х    | Х         | Х            | Х            | Х            | Х             | Х             | Х             |
| Settings Command<br>Bat=1, Gnd=0<br>(Default state = 1)   | 0           | 0          | 0   | 0   | 0    | 0    | 0   | 1   | х   | х   | х    | х    | х    | х    | х   | х      | SP7  | SP6       | SP5          | SP4          | SP3          | SP2           | SP1           | SP0           |
| Wake-Up/Interrupt Bit<br>Wake-Up=1                        | 0           | 0          | 0   | 0   | 0    | 0    | 1   | 0   | Х   | Х   | Х    | Х    | Х    | Х    | Х   | Х      | SP7  | SP6       | SP5          | SP4          | SP3          | SP2           | SP1           | SP0           |
| Non-Wake-Up=0<br>(Default state = 1)                      | 0           | 0          | 0   | 0   | 0    | 0    | 1   | 1   | х   | х   | SG13 | SG12 | SG11 | SG10 | SG9 | SG8    | SG7  | SG6       | SG5          | SG4          | SG3          | SG2           | SG1           | SG0           |
| Metallic Command Metallic = 1                             | 0           | 0          | 0   | 0   | 0    | 1    | 0   | 0   | х   | Х   | Х    | х    | Х    | Х    | Х   | Х      | SP7  | SP6       | SP5          | SP4          | SP3          | SP2           | SP1           | SP0           |
| Non-metallic = 0 (Default state = 1)                      | 0           | 0          | 0   | 0   | 0    | 1    | 0   | 1   | х   | Х   | SG13 | SG12 | SG11 | SG10 | SG9 | SG8    | SG7  | SG6       | SG5          | SG4          | SG3          | SG2           | SG1           | SG0           |
| Analog Command                                            | 0           | 0          | 0   | 0   | 0    | 1    | 1   | 0   | х   | х   | х    | х    | х    | х    | х   | х      | х    | 16mA<br>0 | 2.0mA<br>0   | 0            | 0            | 0             | 0             | 0             |
| Wetting Current Timer Enable Command                      | 0           | 0          | 0   | 0   | 0    | 1    | 1   | 1   | х   | Х   | Х    | х    | х    | Х    | Х   | Х      | SP7  | SP6       | SP5          | SP4          | SP3          | SP2           | SP1           | SP0           |
| Timer ON = 1 Timer OFF = 0 (Default state = 1)            | 0           | 0          | 0   | 0   | 1    | 0    | 0   | 0   | х   | х   | SG13 | SG12 | SG11 | SG10 | SG9 | SG8    | SG7  | SG6       | SG5          | SG4          | SG3          | SG2           | SG1           | SG0           |
| Tri-State Command                                         | 0           | 0          | 0   | 0   | 1    | 0    | 0   | 1   | Х   | Х   | Х    | Х    | х    | Х    | Х   | Х      | SP7  | SP6       | SP5          | SP4          | SP3          | SP2           | SP1           | SP0           |
| Input Tri-State=1 Input Active = 0 (Default state = 1)    | 0           | 0          | 0   | 0   | 1    | 0    | 1   | 0   | х   | Х   | SG13 | SG12 | SG11 | SG10 | SG9 | SG8    | SG7  | SG6       | SG5          | SG4          | SG3          | SG2           | SG1           | SG0           |
| Calibration Command<br>(Default state –<br>□uncalibrated) | 0           | 0          | 0   | 0   | 1    | 0    | 1   | 1   | x   | х   | х    | x    | х    | x    | х   | х      | х    | х         | х            | х            | х            | х             | х             | х             |
| Sleep Command<br>(Refer to Sleep Mode<br>on page 19.)     | 0           | 0          | 0   | 0   | 1    | 1    | 0   | 0   | х   | Х   | x    | х    | х    | х    | х   | x      | x    | х         | int<br>timer | int<br>timer | int<br>timer | scan<br>timer | scan<br>timer | scan<br>timer |
| Reset Command                                             | 0           | 1          | 1   | 1   | 1    | 1    | 1   | 1   | Х   | Х   | Х    | Х    | х    | Х    | х   | Х      | Х    | Х         | Х            | Х            | Х            | Х             | Х             | Х             |
| SO Response Will<br>Always Send                           | them<br>flg | int<br>flg | SP7 | SP6 | SP5  | SP4  | SP3 | SP2 | SP1 | SP0 | SG13 | SG12 | SG11 | SG10 | SG9 | SG8    | SG7  | SG6       | SG5          | SG4          | SG3          | SG2           | SG1           | SG0           |

Table 16. Serial Output (SO) Bit Data

| Type of Input | Input<br>Programmed | Voltage on<br>Input Pin | SO SPI Bit |
|---------------|---------------------|-------------------------|------------|
| SP            | Switch to Ground    | SPn < 4.0V              | 1          |
|               | Switch to Ground    | SPn > 4.0V              | 0          |
|               | Switch to Battery   | SPn < 4.0V              | 0          |
|               | Switch to Battery   | SPn > 4.0V              | 1          |
| SG            | N/A                 | SGn < 4.0V              | 1          |
|               | N/A                 | SGn > 4.0V              | 0          |

Table 17. Serial Output (SO) Response Register

| SO Response Will<br>Always Send | them<br>flg | int<br>flg | SP7 | SP6 | SP5 | SP4 | SP3 | SP2 | SP1 | SP0 | SG13 | SG12 | SG11 | SG10 | SG9 | SG8 | SG7 | SG6 | SG5 | SG4 | SG3 | SG2 | SG1 | SG0 |  |
|---------------------------------|-------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|---------------------------------|-------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|

#### **EXAMPLE OF NORMAL MODE OPERATION**

The operation of the device in Normal mode is defined by the states of the programmable internal control registers. A typical application may have the following settings:

- Programmable switch set to switch-to-ground
- · All inputs set as wake-up
- Wetting current on (16 mA)
- Wetting current timer on (20 ms)
- All inputs tri-state-disabled (comparator is active)
- Analog select 00000 (no input channel selected)

With the device programmed as above, an interrupt will be generated with each switch contact change of state (open-to-close or close-to-open) and 16 mA of contact wetting current will be source for 20 ms. The  $\overline{\text{INT}}$  pin will remain LOW until switch status is acknowledged by the microprocessor. It is critical to understand  $\overline{\text{INT}}$  will not be cleared on the rising edge of  $\overline{\text{CS}}$  if a switch closure occurs while  $\overline{\text{CS}}$  is LOW. The maximum duration a switch state change can exist without acknowledgement depends on the software response time to the interrupt. Figure 6, page 9, shows the interaction between changing input states and the  $\overline{\text{INT}}$  and  $\overline{\text{CS}}$  pins.

If desired the user may disable interrupts (wake up/interrupt command) from the 33972 device and read the switch states on a periodic basis. Switch activation and deactivation faster than the MCU read rate will not be acknowledged.

The 33972 device will exit the Normal mode and enter the Sleep mode only with a valid sleep command.

#### **SLEEP MODE**

Sleep mode is used to reduce system quiescent currents. Sleep mode may be entered only by sending the sleep command. All register settings programmed in Normal mode will be maintained in Sleep mode.

The 33972 will exit Sleep mode and enter Normal mode when any of the following events occur:

- Input switch change of state (when enabled)
- · Interrupt timer expire
- Falling edge of WAKE
- Falling edge of INT (with V<sub>DD</sub> = 5.0 V and WAKE at Logic [1])
- Falling edge of CS (with V<sub>DD</sub> = 5.0 V)
- Power-ON Reset (POR)

The  $V_{DD}$  supply may be removed from the device during Sleep mode. However removing  $V_{DD}$  from the device in Sleep mode will disable a wake-up from falling edge of  $\overline{INT}$  and  $\overline{CS}$ .

**Note** In cases where  $\overline{\text{CS}}$  is used to wake the device, the first SO data message is not valid.

The sleep command contains settings for two programmable timers for Sleep mode, the interrupt timer and the scan timer, as shown in <u>Table 18</u> The interrupt timer is used as a periodic wake-up timer. When the timer expires, an interrupt is generated and the device enters Normal mode.

**Note** The interrupt timer in the 33972 device may be disabled by programming the interrupt bits to logic [1 1 1].

<u>Table 19</u> shows the programmable settings of the Interrupt timer.

Table 18. Sleep Command

|    |    | Sle | ep C | omma | nd |    |    |    |    |    |    |    |    | C | omma | nd Bi | ts |           |           |           |            |            |            |
|----|----|-----|------|------|----|----|----|----|----|----|----|----|----|---|------|-------|----|-----------|-----------|-----------|------------|------------|------------|
| 23 | 22 | 21  | 20   | 19   | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7     | 6  | 5         | 4         | 3         | 2          | 1          | 0          |
| 0  | 0  | 0   | 0    | 1    | 1  | 0  | 0  | Х  | Х  | Х  | Х  | Х  | Х  | Х | Х    | Х     | Х  | int timer | int timer | int timer | scan timer | scan timer | scan timer |

Table 19. Interrupt Timer

| Bits 543 | Interrupt Period     |
|----------|----------------------|
| 000      | 32 ms                |
| 001      | 64 ms                |
| 010      | 128 ms               |
| 011      | 256 ms               |
| 100      | 512 ms               |
| 101      | 1.024 s              |
| 110      | 2.048 s              |
| 111      | No interrupt wake-up |

The scan timer sets the polling period between input switch reads in Sleep mode. The period is set in the sleep command and may be set to 000 (no period) to 111 (64 ms). In Sleep mode when the scan timer expires, inputs will behave as programmed prior to sleep command. The 33972 will wake up for approximately 125  $\mu$ s and read the switch inputs. At the end of the 125  $\mu$ s, the input switch states are compared with the switch state prior to sleep command. When switch state changes are detected, an interrupt is generated (when enabled; refer to wake-up/interrupt command description on page 15), and the device enters Normal mode. Without switch state changes, the 33972 will reset the scan timer, inputs become tri-state, and the Sleep mode continues until the scan timer expires again.

<u>Table 20</u> shows the programmable settings of the Scan timer.

Table 20. Scan Timer

| Bits 210 | Scan Period |
|----------|-------------|
| 000      | No Scan     |
| 001      | 1.0 ms      |
| 010      | 2.0 ms      |
| 011      | 4.0 ms      |
| 100      | 8.0 ms      |
| 101      | 16 ms       |
| 110      | 32 ms       |
| 111      | 64 ms       |

**Note** The interrupt and scan timers are disabled in the Normal Mode.

Figure 5, page 9, is a graphical description of how the 33972 device exits Sleep mode and enters Normal mode. Notice that the device will exit Sleep mode when the interrupt timer expires or when a switch change of state occurs. The falling edge of  $\overline{\text{INT}}$  triggers the MCU to wake from Sleep state. Figure 12 illustrates the current consumed during Sleep mode. During the 125 μs, the device is fully active and switch states are read. The quiescent current is calculated by integrating the normal running current over scan period plus approximately 60 μA.

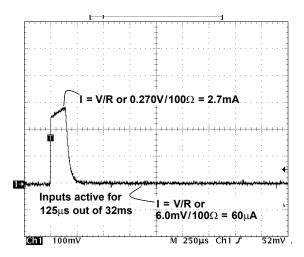



Figure 12. Sleep Current Waveform

#### **TEMPERATURE MONITOR**

With multiple switch inputs closed and the device programmed with the wetting current timers disabled, considerable power will be dissipated by the IC. For this reason, temperature monitoring has been implemented. The temperature monitor is active in the Normal mode only. When the IC temperature is above the thermal limit, the temperature monitor will do all of the following:

- · Generate an interrupt.
- Force all 16 mA pull-up and pull-down current sources to revert to 2.0 mA current sources.
- Maintain the 2.0 mA current source and all other functionality.
- · Set the thermal flag bit in the SPI output register.

The thermal flag bit in the SPI word will be cleared on rising edge of  $\overline{\text{CS}}$  provided the die temperature has cooled below the thermal limit. When die temperature has cooled below thermal limit, the device will resume previously programmed settings.

#### **TYPICAL APPLICATIONS**

#### **INTRODUCTION**

The 33972's primary function is the detection of open or closed switch contacts. However, there are many features that allow the device to be used in a variety of applications. The following is a list of applications to consider for the IC:

Sensor Power Supply

Switch Monitor for Metallic or Elastomeric Switches

Analog Sensor Inputs (Ratiometric)

Power MOSFET/LED Driver and Monitor

Multiple 33972 Devices in a Module System

The following paragraphs describe the applications in detail.

#### SENSOR POWER SUPPLY

Each input may be used to supply current to sensors external to a module. Many sensors such as Hall effect, pressure sensors, and temperature sensors require a supply voltage to power the sensor and provide an open collector or analog output. Figure 13 shows how the 33972 may be used to supply power and interface to these types of sensors. In an application where the input makes continuous transitions, consider using the wake-up/interrupt command to disable the interrupt for the particular input.

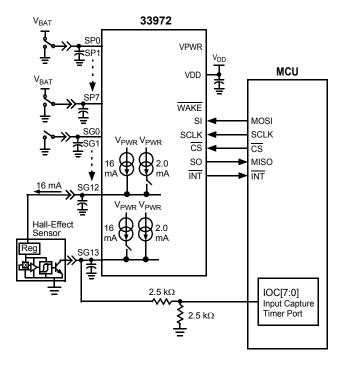



Figure 13. Sensor Power Supply

#### METALLIC/ELASTOMERIC SWITCH

Metallic switch contacts often develop higher contact resistance over time owing to contact corrosion. The corrosion is induced by humidity, salt, and other elements that exist in the environment. For this reason the 33972 provides two settings for contacts. When programmed for metallic switches, the device provides higher wetting current to keep switch contacts free of oxides. The higher current occurs for the first 20 ms of switch closure. Where longer duration of wetting current is desired, the user may send the wetting current timer command and disable the timer. Wetting current will be continuous to the closed switch. After the time period set by the MCU, the wetting current timer command may be sent again to enable the timer. The user must consider power dissipation on the device when disabling the timer. (Refer to the paragraph entitled Temperature Monitor, page <u>20</u>.)

To increase the amount of wetting current for a switch contact, the user has two options. Higher wetting current to a switch may be achieved by paralleling SGn or SPn inputs. This will increase wetting current by 16 mA for each input added to the switch contact. The second option is to simply add an external resistor pull-up to the  $V_{PWR}$  supply for switch-to-ground inputs or a resistor to ground for a switch-to-battery input. Adding an external resistor has no effect on the operation of the device.

Elastomeric switch contacts are made of carbon and have a high contact resistance. Resistance of 1.0 k $\Omega$  is common. In applications with elastomeric switches, the pull-up and pulldown currents must be reduced to prevent excessive power dissipation at the contact. Programming for a lower current settings is provided in the <u>Functional Device</u> <u>Operation</u> section beginning on page <u>13</u> under <u>Table 8</u>, Metallic Command.

#### **ANALOG SENSOR INPUTS (RATIOMETRIC)**

The 33972 features a 22-to-1 analog multiplexer. Setting the binary code for a specific input in the analog command allows the microcontroller to perform analog to digital conversion on any of the 22 inputs. On rising edge of CS the multiplexer connects a requested input to the AMUX pin. The AMUX pin is clamped to max of VDD volts regardless of the higher voltages present on the input pin. After an input has been selected as the analog, the corresponding bit in the next SO data stream will be logic [0].

The input pin, when selected as analog, may be configured as analog with high-impedance, analog with 2.0 mA pull-up, or analog with 16 mA pull-up. Figure 14, page 22, shows how the 33972 may be used to provide a ratiometric reading of variable resistive input.

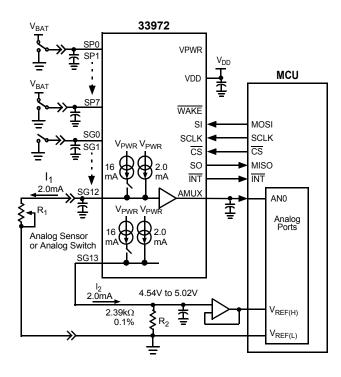



Figure 14. Analog Ratiometric Conversion

To read a potentiometer sensor, the wiper should be grounded and brought back to the module ground, as illustrated in <u>Figure 14</u>. With the wiper changing the impedance of the sensor, the analog voltage on the input will represent the position of the sensor.

Using the Analog feature to provide 2.0 mA of pull-up current to an analog sensor may induce error due to the accuracy of the current source. For this reason, a ratiometric conversion must be considered. Using two current sources (one for the sensor and one to set the reference voltage to the A/D converter) will yield a maximum error (owing to the 33972) of 4%.

Higher accuracy may be achieved through module level calibration. In this example, we use the resistor values from Figure 14 and assume the current sources are 4% from each other. The user may use the module end-of-line tester to calculate the error in the A/D conversion. By placing a 2.0 k $\Omega$ , 0.1% resistor in the end-of-line test equipment and assuming a perfect 2.0 mA current source from the 33972, a calculated A/D conversion may be obtained. Using the equation yields the following:

ADC = 
$$\frac{11 \times R1}{12 \times R2} \times 255$$
  
ADC =  $\frac{2.0 \text{mA} \times 2.0 \text{k}\Omega}{2.0 \text{mA} \times 2.39 \text{k}\Omega} \times 255$   
ADC = 213 counts

The ADC value of 213 counts is the value with 0% error (neglecting the resistor tolerance and AMUX input offset voltage). Now we can calculate the count value induced by the mismatch in current sources. From a sample device the maximum current source was measured at 2.05 mA and minimum current source was measured at 1.99 mA. This yields 3% error in A/D conversion. The A/D measurement will be as follows:

ADC = 
$$\frac{1.99\text{mA} \times 2.0\text{k}\Omega}{2.05\text{mA} \times 2.39\text{k}\Omega} \times 255$$
ADC = 207 counts

This A/D conversion is 3% low in value. The error correction factor of 1.03 may be used to correct the value:

An error correction factor may then be stored in  $E^2$  memory and used in the A/D calculation for the specific input. Each input used as analog measurement will have a dedicated calibrated error correction factor.

#### POWER MOSFET/LED DRIVER AND MONITOR

Because of the flexible programming of the 33972 device, it may be used to drive small loads like LEDs or MOSFET gates. It was specifically designed to power up in the Normal mode with the inputs tri-state. This was done to ensure the LEDs or MOSFETs connected to the 33972 power up in the off-state. The switch programmable inputs (SP0–SP7) have a source-and-sink capability, providing effective MOSFET gate control. To complete the circuit, a pull-down resistor should be used to keep the gate from floating during the Sleep modes. Figure 15, page 23, shows an application where the SG0 input is used to monitor the drain-to-source voltage of the external MOSFET. The 1.5 k $\Omega$  resistor is used to set the drain-to-source trip voltage. With the 2.0 mA current source enabled, an interrupt will be generated when the drain-to-source voltage is approximately 1.0 V.

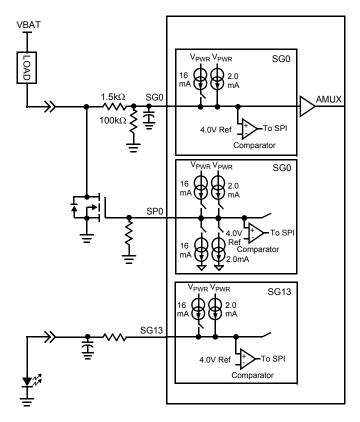



Figure 15. MOSFET or LED Driver Output

The sequence of commands (from Normal mode with inputs tri-state) required to set up the device to drive a MOSFET are as follows:

- wetting current timer enable command –Disable SPn wetting current timer (refer to <u>Table 9</u>, page <u>15</u>).
- metallic command –Set SPn to 16 or 2.0 mA gate drive current (refer to <u>Table 8</u>, page <u>15</u>).
- settings command –Set SPn as switch-to-battery (refer to <u>Table 6</u>, page <u>14</u>).
- tri-state command –Disable tri-state for SPn (refer to <u>Table 10</u>, page <u>16</u>).

After the tri-state command has been sent (tri-state disable), the MOSFET gate will be pulled to ground. From this point forward the MOSFET may be turned on and off by sending the settings command:

- settings command –SPn as switch-to-ground (MOSFET ON).
- settings command –SPn as switch-to-battery (MOSFET OFF).

Monitoring of the MOSFET drain in the OFF state provides open load detection. This is done by using an SGn input comparator. With the SGn input in tri-state, the load will pull up the SGn input to battery. With open load the SGn pin is pulled down to ground through an external resistor. The open load is indicated by a logic [1] in the SO data bit.

The analog command may be used to monitor the drain voltage in the MOSFET ON state. By sourcing 2.0 mA of

current to the 1.5 k $\Omega$  resistor, the analog voltage on the SGn pin will be approximately:

$$V_{SGn} = I_{SGn} \times 1.5 k\Omega + V_{DS}$$

As the voltage on the drain of the MOSFET increases, so does the voltage on the SGn pin. With the SGn pin selected as analog, the MCU may perform the A/D conversion.

Using this method for controlling unclamped inductive loads is not recommended. Inductive flyback voltages greater than  $V_{PWR}$  may damage the IC.

The SP0:SP7 pins of this device may also be used to send signals from one module to another. Operation is similar to the gate control of a MOSFET.

- For LED applications a resistor in series with the LED is recommended but not required. The switch-to-ground inputs are recommended for LED application. To drive the LED use the following commands:
- wetting current timer enable command –Disable SGn wetting current timer.
- metallic command –Set SGn to 16 mA.

From this point forward the LED may be turned on and off using the tri-state command:

- · tri-state command Disable tri-state for SGn (LED ON).
- tri-state command Enable tri-state for SGn (LED OFF).

These parameters are easily programmed via SPI commands in Normal mode.

#### **MULTIPLE 33972 DEVICES IN A MODULE SYSTEM**

Connecting power to the 33972 and the MCU for Sleep mode operation may be done in several ways. <u>Table 21</u> shows several system configurations for power between the MCU and the 33972 and their specific requirements for functionality.

Table 21. Sleep Mode Power Supply

| MCU<br>V <sub>DD</sub> | 33972<br>V <sub>DD</sub> | Comments                                                                                                                                                                                                               |
|------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.0 V                  | 5.0 V                    | All wake-up conditions apply. (Refer to <u>Sleep Mode</u> , page <u>19</u> .)                                                                                                                                          |
| 5.0 V                  | 0 V                      | SPI wake-up is not possible.                                                                                                                                                                                           |
| 0 V                    | 5.0 V                    | Sleep mode not possible. Current from $\overline{\text{CS}}$ pullup will flow through MCU to $\text{V}_{\text{DD}}$ that has been switched off. Negative edge of $\overline{\text{CS}}$ will put 33972 in Normal mode. |
| 0 V                    | 0 V                      | SPI wake-up is not possible.                                                                                                                                                                                           |

Multiple 33972 devices may be used in a module system. SPI control may be done in parallel or serial. However when parallel mode is used, each device is addressed independently (refer to MCU Interface Description, page 13). Therefore when sending the sleep command, one device will enter sleep before the other. For multiple devices in a system, it is recommended that the devices are controlled in serial (S0

## TYPICAL APPLICATIONS INTRODUCTION

from first device is connected to SI of second device). With two devices, 48 clock pulses are required to shift data in. When the WAKE feature is used to enable the power supply, both WAKE pins should be connected to the enable pin on the power supply. The INT pins may be connected to one interrupt pin on the MCU or may have their own dedicated interrupt to the MCU.

The transition from Normal to Sleep mode is done by sending the sleep command. With the devices connected in serial and the sleep command sent, both will enter Sleep mode on the rising edge of  $\overline{CS}$ . When Sleep mode is entered, the  $\overline{WAKE}$  pin will be logic [1]. If either device wakes up, the  $\overline{WAKE}$  pin will transition LOW, waking the other device.

A condition exists where the MCU is sending the sleep command (CS logic [0]) and a switch input changes state. With this event the device that detects this input will not transition to Sleep mode, while the second device will enter Sleep mode. In this case two switch status commands must be sent to receive accurate switch status data. The first switch status command will wake the device in Sleep mode. Switch status data may not be valid from the first switch status command because of the time required for the input voltage to rise above the 4.0 V input comparator threshold. This time is dependant on the impedance of SGn or SPn node. The second switch status command will provide accurate switch status information. It is recommended that software wait 10 to 20 ms between the two switch status commands, allowing time for switch input voltages to stabilize. With all switch states acknowledged by the MCU. the sleep sequence may be initiated. All parameters for Sleep mode should be updated prior to sending the sleep command.

The 33972 IC has an internal 5.0 V supply from the VPWR pin. A POR circuit monitors the internal 5.0 V supply. In the

event of transients on the VPWR pin, an internal reset may occur. Upon reset the 33972 will enter Normal mode with the internal registers as defined in <a href="Table 15">Table 15</a>, page <a href="18">18</a>. Therefore it is recommended that the MCU periodically update all registers internal to the IC.

#### **USING THE WAKE FEATURE**

The 33972 provides a  $\overline{\text{WAKE}}$  output and wake-up input designed to control an enable pin on system power supply. While in the Normal mode, the  $\overline{\text{WAKE}}$  output is LOW, enabling the power supply. In the Sleep mode, the  $\overline{\text{WAKE}}$  pin is high, disabling the power supply. The  $\overline{\text{WAKE}}$  pin has a passive pull-up to the internal 5.0 V supply but may be pulled up through a resistor to the V<sub>PWR</sub> supply (see Figure 17, page 25)

When the  $\overline{\text{WAKE}}$  output is not used, the pin should be pulled up to the  $V_{DD}$  supply through a resistor as shown in Figure 16, page 25.

During the Sleep mode, a switch closure will set the WAKE pin LOW, causing the 33972 to enter the Normal mode. The power supply will then be activated, supplying power to the VDD pin and the microprocessor and the 33972. The microprocessor can determine the source of the wake-up by reading the interrupt flag.

#### **COST AND FLEXIBILITY**

Systems requiring a significant number of switch interfaces have many discrete components. Discrete components on standard PWB consume board space and must be checked for solder joint integrity. An integrated approach reduces solder joints, consumes less board space, and offers wider operating voltage, analog interface capability, and greater interfacing flexibility.

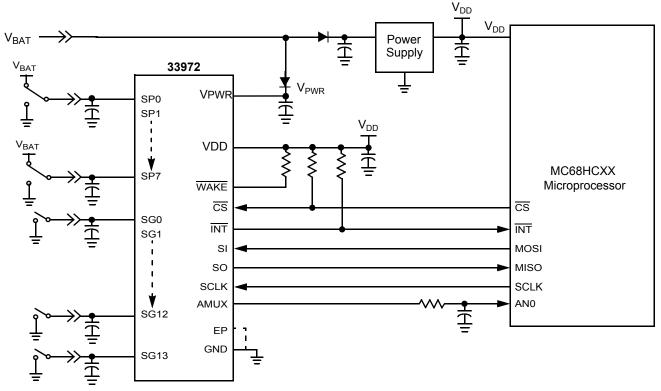



Figure 16. Power Supply Active in Sleep Mode

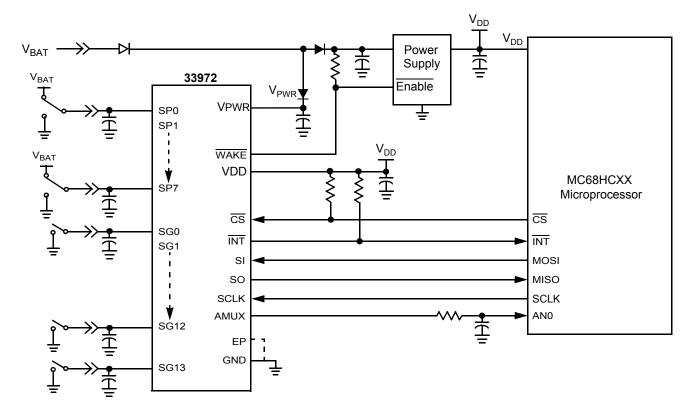
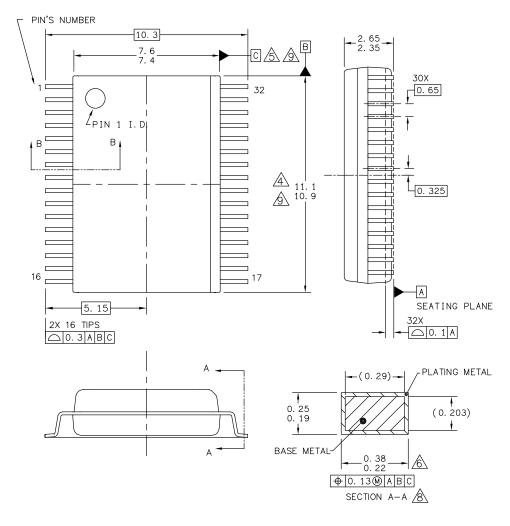
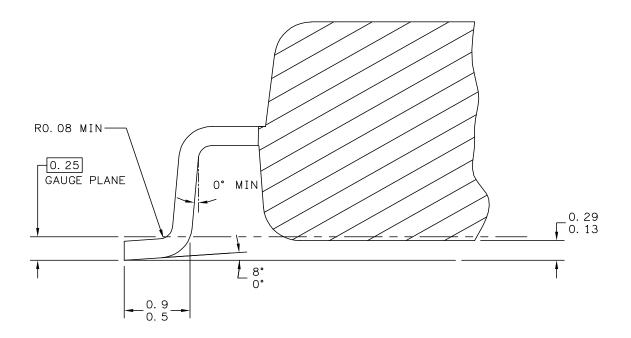




Figure 17. Power Supply Shutdown in Sleep Mode

#### **PACKAGING**

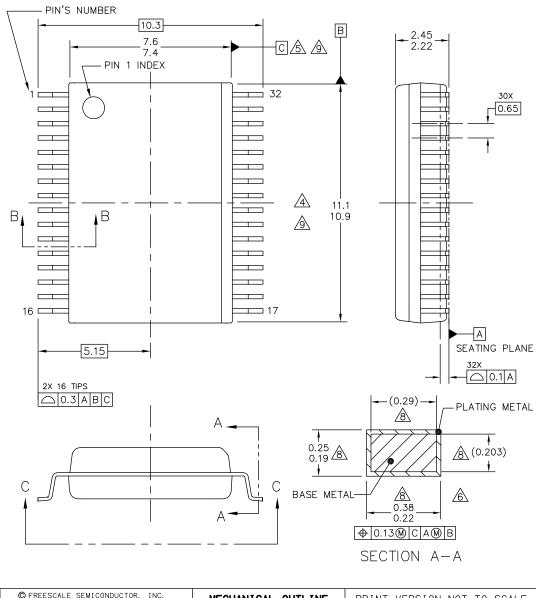
#### **PACKAGE DIMENSIONS**


For the most current package revision, visit <u>www.freescale.com</u> and perform a keyword search using the 98A listed below.



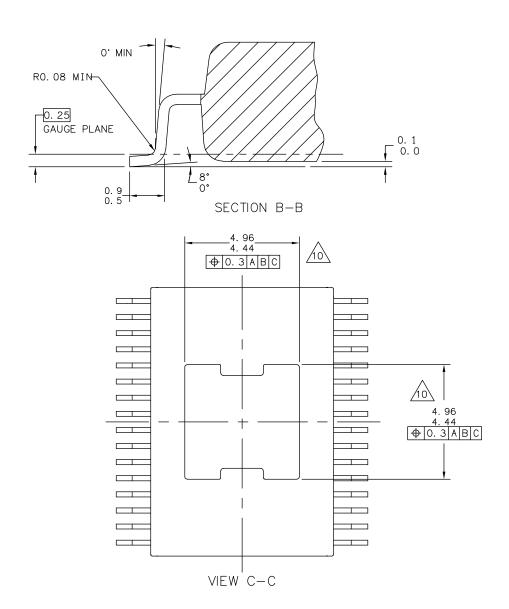
| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE    | PRINT VERSION NOT TO SCALE |             |  |
|---------------------------------------------------------|-----------|--------------|----------------------------|-------------|--|
| TITLE:                                                  |           | DOCUMENT NO  | ): 98ARH99137A             | REV: B      |  |
| 32LD SOIC W/B, 0.65<br>CASE OUTLINE                     | PLICH     | CASE NUMBER  | R: 1324–03                 | 07 APR 2005 |  |
| CASE OUTLINE                                            |           | STANDARD: FF | REESCALE                   |             |  |

EW SUFFIX (Pb-FREE) 32-LEAD SOIC WIDE BODY 98ARH99137A ISSUE B


## **PACKAGE DIMENSIONS (CONTINUED)**



SECTION B-B


| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE    | PRINT VERSION NO | OT TO SCALE |
|------------------------------------------------------|-----------|--------------|------------------|-------------|
| TITLE:                                               |           | DOCUMENT NO  | ): 98ARH99137A   | REV: B      |
| 32LD SOIC W/B, 0.65<br>CASE OUTLINE                  | PITCH     | CASE NUMBER  | R: 1324–03       | 07 APR 2005 |
| CASE OUTLINE                                         |           | STANDARD: FR | REESCALE         |             |

EW SUFFIX (Pb-FREE) 32-LEAD SOIC WIDE BODY 98ARH99137A ISSUE B



| TITLE: 32LD SOIC W/B, 0.65 PITCH 4.7 X 4.7 EXPOSED PAD, CASE—OUTLINE  DOCUMENT NO: 98ASA10556D REV: D CASE NUMBER: 1454-04 20 JUN 2008 STANDARD: NON-JEDEC | ALL RIGHTS RESERVED.      | MECHANICA   | L OUTLINE      | PRINT VERSION NO | OT TO SCALE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|----------------|------------------|-------------|
| 4.7 X 4.7 ÉXPOSED PAD, CASE NUMBER: 1454-04 20 JUN 2008                                                                                                    | TITLE: 32LD SOIC W/B. 0.6 | DOCUMENT NO | ): 98ASA10556D | REV: D           |             |
| CASE-OUTLINE STANDARD: NON-JEDEC                                                                                                                           |                           | CASE NUMBER | 2: 1454–04     | 20 JUN 2008      |             |
|                                                                                                                                                            | CASE-OUTLINE              |             | STANDARD: NO   | N-JEDEC          |             |

EK SUFFIX (Pb-FREE) 32-LEAD SOIC WIDE BODY EXPOSED PAD 98ASA10556D ISSUE D



| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA    | L OUTLINE      | PRINT VERSION NO | OT TO SCALE |
|------------------------------------------------------|--------------|----------------|------------------|-------------|
| TITLE: 32LD SOIC W/B, 0.6                            | DOCUMENT NO  | ): 98ASA10556D | REV: D           |             |
| 4.7 X 4.7 EXPOSE                                     | CASE NUMBER  | R: 1454–04     | 20 JUN 2008      |             |
| CASE-OUTLIN                                          | STANDARD: NO | N-JEDEC        |                  |             |

EK SUFFIX (Pb-FREE) 32-LEAD SOIC WIDE BODY EXPOSED PAD 98ASA10556D ISSUE D

#### NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS B AND C TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.



THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.



THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.



THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.4 mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT LESS THAN 0.07 mm.



EXACT SHAPE OF EACH CORNER IS OPTIONAL.



THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm AND 0.3 mm FROM THE LEAD TIP.



THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. THIS DIMENSION IS DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTER-LEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.



THESE DIMENSION RANGES DEFINE THE PRIMARY KEEP—OUT AREA. MOLD LOCKING AND RESIN BLEED CONTROL FEATURES MAY BE VISIBLE AND THEY MAY EXTEND TO 0.34mm FROM MAXIMUM EXPOSED PAD SIZE

| © FREESCALE SEMICONDUCTOR, INC.  ALL RIGHTS RESERVED.      | CHANICA      | L OUTLINE   | PRINT VERSION NO | OT TO SCALE |
|------------------------------------------------------------|--------------|-------------|------------------|-------------|
| TITLE: 32LD SOIC W/B, 0.65 PITCH<br>4.7 X 4.7 EXPOSED PAD, |              | DOCUMENT NO | : 98ASA10556D    | REV: D      |
|                                                            |              | CASE NUMBER | 1: 1454-04       | 20 JUN 2008 |
| CASE-OUTLINE                                               | STANDARD: NO | N-JEDEC     |                  |             |

EK SUFFIX (Pb-FREE)
32-LEAD SOIC WIDE BODY
EXPOSED PAD
98ASA10556D
ISSUE D

## **REVISION HISTORY**

| REVISION | DATE    | DESCRIPTION OF CHANGES                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.0      | 2/2006  | <ul> <li>Converted to Freescale format</li> <li>Added PC33972A version</li> <li>Changed Figure 15, Power Supply Active in Sleep Mode</li> <li>Changed Figure 16, Power Supply Shutdown in Sleep Mode</li> <li>Updated Outline Drawing for package</li> </ul>                                                                                                                                        |
| 5.0      | 6/2006  | Update to the prevailing Freescale form and style.                                                                                                                                                                                                                                                                                                                                                  |
| 6.0      | 7/2006  | <ul> <li>Added MC33972T devices.</li> <li>Updated StatiC Electrical Characteristics on page 6 with 33972T parameters.</li> </ul>                                                                                                                                                                                                                                                                    |
| 7.0      | 11/2006 | <ul> <li>Changed Human Body Model parameters in Maximum Ratings table.</li> <li>Replaced Part Number MC33972TEW/R2 with MCZ33972TEW/R2</li> <li>Removed Peak Package Reflow Temperature During Reflow (solder reflow) parameter from Maximum Ratings on page 5. Added note with instructions to obtain this information from www.freescale.com.</li> </ul>                                          |
| 8.0      | 12/2006 | Restated note (6)     Changed Part Number MCZ33972TEW/R2 with MC33972TEW/R2                                                                                                                                                                                                                                                                                                                         |
| 9.0      | 4/2007  | <ul> <li>Removed all references to the 33972T device.</li> <li>Removed the MC33972TDWB/R2, MC33972TEW/R2, and PC33972AEW/R2 from the ordering information.</li> <li>Added MCZ33972AEW/R2 to the ordering information.</li> </ul>                                                                                                                                                                    |
| 10.0     | 6/2007  | <ul> <li>Added MC33972EW/R2, MC33972TDWB/R2, MC33972TEW/R2, and MCZ33972TEW/R2 to the<br/>ordering information.</li> </ul>                                                                                                                                                                                                                                                                          |
| 11.0     | 11/2007 | <ul> <li>Updated to the current Freescale form and style</li> <li>Added MC33972AEK/R2 to the ordering information.</li> <li>Included device specific information relevant to the EK suffix on pages 1, 2, 4, 5, 6, 27, and 28.</li> <li>Added sentence to CHIP SELECT (CS) on page 10</li> <li>Made calculation corrections to Analog Sensor Inputs (Ratiometric)</li> </ul>                        |
| 12.0     | 12/2007 | Corrected Device Variation Table on page 2.                                                                                                                                                                                                                                                                                                                                                         |
| 13.0     | 12/2007 | Replaced Outline Drawing 98ARL10543D with 98ASA10556D.                                                                                                                                                                                                                                                                                                                                              |
| 14.0     | 6/2008  | Added Note 7, "T <sub>C</sub> is the T <sub>CASE</sub> of the package" to Electrical Characteristics Table.                                                                                                                                                                                                                                                                                         |
| 15.0     | 8/2008  | Updated package drawing 98ASA10556D                                                                                                                                                                                                                                                                                                                                                                 |
| 16.0     | 10/2009 | <ul> <li>Updated data sheet status from Advance Information to Technical Data</li> <li>Updated to the current Freescale form and style</li> </ul>                                                                                                                                                                                                                                                   |
| 17.0     | 2/2011  | <ul><li>Updated Freescale form and style</li><li>Added RoHS symbol</li></ul>                                                                                                                                                                                                                                                                                                                        |
| 18.0     | 8/2011  | <ul> <li>Revised Ordering Information Table by adding part numbers MC33972AEK/R2 and<br/>MC33972ATEW/R2, and removing part numbers MC33972DWB/R2 and MC33972TDWB/R2.</li> </ul>                                                                                                                                                                                                                     |
| 19.0     | 3/2012  | <ul> <li>Added the sentence "This condition in not a normal operating condition and can cause damage to the IC." to Programmable Switches (SP0:SP7) and Switch-to-ground Inputs (SG0:SG13)</li> <li>Changed sentence in Control and Protection Circuitry: "Characteristics are provided for V<sub>PWR</sub> from 8.0v to 26v for the IC (parametric tests are done from 8.0v to 16.0v)."</li> </ul> |

#### How to Reach Us:

Home Page: freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.req.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorlQ, Qorivva, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, Processor expert, QorlQ Qonverge, QUICC Engine, Ready Play, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

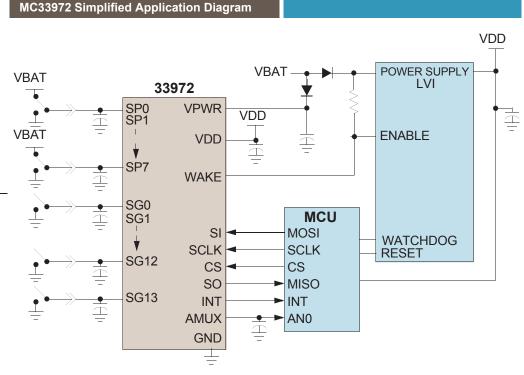
Document Number: MC33972

Rev. 19.0 3/2012



# MC33972

### Multiple Switch Detection Interface with Suppressed Wake-up


### **Applications**

- · Automotive Systems
- · Aircraft Systems
- · Industrial Control Systems
- · Process Control Systems
- · Security Systems
- Critical systems requiring switch status verification for safety, operation, or process control purposes

### Overview

The 33972 Multiple Switch Detection Interface with Suppressed Wake-up is designed to detect the closing and opening of up to 22 switch contacts. The switch status, either open or closed, is transferred to the microprocessor unit (MCU) through a serial peripheral interface (SPI). The device also features a 22-to-1 analog multiplexer for reading inputs as analog. The analog input signal is buffered and provided on the AMUX output terminal for the MCU to read.

The 33972 device has two modes of operation, Normal and Sleep. Normal mode allows programming of the device and supplies switch contacts with pullup or pulldown current as it monitors switch change of state. The Sleep mode provides low quiescent current, which makes the 33972 ideal for automotive and industrial products requiring low sleep state currents.



| Performance             | Typical Values                   |
|-------------------------|----------------------------------|
| Operating Voltage       | 5.5 V ≤ V <sub>PWR</sub> ≤ 26 V  |
| Switch Voltage Range    | -14 to V <sub>PWR</sub>          |
| Contact Wetting Current | 2.0 or 16 mA                     |
| Quiescent Current:      |                                  |
| VPWR                    | < 100 µA                         |
| VDD                     | < 20 µA                          |
| Control                 | SPI                              |
| Outputs                 | 4                                |
| Operating Temperature   | -40 °C ≤ T <sub>A</sub> ≤ 125 °C |



#### **Features**

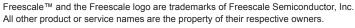
- Switch input voltage range -14 V to V<sub>PWR</sub>, 40 V Max
- Interfaces directly to microprocessor using 3.3 V/5.0 V SPI protocol
- Selectable wake-up on change of state
- Selectable wetting current (16 mA or 2.0 mA)
- 8 programmable inputs (switches to battery or ground)
- · 14 switch-to-ground inputs
- V<sub>PWR</sub> standby current 100 μA typical,
   V<sub>DD</sub> standby current 20 μA typical
- Active interrupt (INT) on change-ofswitch state
- Pb-free packaging designated by suffix code EW and EK
- Devices available for comparison are in the Analog Product Selector Guide -SG1002 and Automotive Product Selector Guide - SG187

#### **Customer Benefits**

- Optimized multiple switch OPEN/ CLOSE status verification with immediate reporting to the MCU
- Interfaces to 3.3 V/5.0 V MCUs with SPI
- Surface-mounted device, requires minimal PC board space, few components, enhanced application reliability, and lower costs
- Simple power conservation solution providing a WAKE output for system wake-up from Sleep mode

#### Questions

- Do you need to confirm the status of multiple switches in your system?
- Do you need to verify a switch is closed to battery or ground?
- Do you need a switch verification device capable of analog voltage multiplex readout of sensing inputs?
- Do you need a switch verification device that is also capable of controlling small LEDs as well as MOSFET transistors?
- Do you need a switch verification device programmed and controlled via SPI?
- Do you need a switch monitoring device that "sleeps" until switches change status and then alerts the MCU that a switch state has changed?


| Ordering Information |                          |             |
|----------------------|--------------------------|-------------|
| Device               | Remperature Range        | Package     |
| MC33972TEW/R2        | -40 to 125°C             | 32 SOICW    |
| MC33972ATEW/R2       | -40 to 125°C             | 32 SOICW    |
| MC33972ATEK/R2       | -40 to 125°C             | 32 SOICW-EP |
| Evaluation Board     |                          |             |
| KIT33972AEWEVBE      | Evaluation Board         |             |
| Documentation        |                          |             |
| MC33972              | Data sheet order number  |             |
| SG1002               | Analog Product Selector  | Guide       |
| SG 187               | Automotive Product Selec | ctor Guide  |

32 SOICW/EP



0.65 mm Pitch 7.5 x 11.0 mm Body

**Learn More**: For current information about Freescale products, please visit **www.freescale.com**.



 $\ensuremath{\mathbb{Q}}$  Freescale Semiconductor, Inc., 2011. All rights reserved.

Freescale Confidential Proprietary



**URL** for Additional Information

PART INFORMATION

Mfg Item Number

Mfg Item Name

KC33972ATEK

SOIC 32 300ML 4.6EP.

SUPPLIER Company Name Freescale Semiconductor Inc Company Unique ID 14-141-7928 Response Date 2013-12-27 Response Document ID 007YK10945D016A1.2 Contact Name Freescale Semiconductor Inc Contact Title Product Technical Support **Contact Phone** 1-800-521-6274 Contact Email support@freescale.com Daniel Binyon **Authorized Representative** Representative Title **EPP Customer Response** Representative Phone 512-895-3406 Representative Email eppanlst@freescale.com

DECLARATION

EU RoHS
Pb Free
Yes
HalogenFree
Plating Indicator
EU RoHS Exemption(s)

www.freescale.com

MANUFACTURING Mfg Item Number KC33972ATEK Mfg Item Name SOIC 32 300ML 4.6EP. Version ALL Weight 0.472000 UoM Unit Volume EACH J-STD-020 MSL Rating 3 Peak Processing Temperature 260 C Max Time at Peak Temperature 40 seconds Number of Processing Cycles 3

| RoHS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RoHS Directive                        | 2011/65/EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RoHS Definition                       | RoHS Definition: Quantity limit of 0.1% by mass (1000 PPM) of homogeneous material for: Lead (Pb), Mercury, Hexavalent Chromium, Polybrominated Biphenyls (PBB), Polybrominated Diphenyl Ethers (PBDE) and quantity limit of 0.01% by mass (100 PPM) of homogeneous material of Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RoHS Legal Definition                 | Please indicate whether any homogeneous material (as defined by the RoHS Directive, EU 2011/65/EU and implemented by the laws of the European Union member states) of the part(s) identified on this form contains lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls and/or polybrominated diphenyl ethers (each a RoHS restricted substance) in excess of the applicable quantity limit, please indicate below which, if any, RoHS exemption you believe may apply. If the part is an assembly with lower level components, the declaration shall encompass all such components. Supplier certifies that it gathered the information it provides in this form using appropriate methods to ensure its accuracy and that such information is true and correct to the best of its knowledge and belief, as of the date that Supplier completes this form. Supplier acknowledges that Company will rely on this certification in determining the compliance of its products with European Union member state laws that implement the RoHS Directive. Company acknowledges that Supplier may have relied on information provided by others in completing this form, and that Supplier may not have independently verified such information. However, in situations where Supplier has not independently verified information provided by others, Supplier agrees that, at a minimum, its suppliers have provided certifications regarding their contributions to the part(s), and those certifications are at least as comprehensive as the certification in this paragraph. If the Company and the Supplier enter into a written agreement with respect to the identified part(s), the terms and conditions of that agreement, including any warranty rights and/or remedies provided as part of that agreement, will be the sole and exclusive source of the Suppliers liability and the Companys remedies for issues that arise regarding information the Supplier provides in this form. In the absence of such written agreement, the warranty rights and/or remedies of Suppliers Standard Terms and Co |
| RoHS Declaration                      | 1 - Item(s) do not contain RoHS restricted substances per the definition above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Supplier Acceptance                   | Accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Signature                             | Daniel Binyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Exemption List Version                | 2012/51/EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| List of Freescale Accepted Exemptions | 6(a): Lead as an alloying element in steel for machining purposes and in galvanized steel containing up to 0.35% lead by weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exemptions                            | 6(b): Lead as an alloying element in aluminium containing up to 0.4% lead by weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 6(c): Copper alloy containing up to 4% lead by weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | 7(a): Lead in high melting temperature type solders (i.e. lead-based alloys containing 85% by weight or more lead)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 7(b): Lead in solders for servers, storage and storage array systems, network infrastructure equipment for switching, signaling, transmission, and network management for telecommunications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | 7(c)-I : Electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors, e.g. piezoelectronic devices, or in a glass or ceramic matrix compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 7(c)-II: Lead in dielectric ceramic in capacitors for a rated voltage of 125 V AC or 250 V DC or higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 7(c)-III: Lead in dielectric ceramic in capacitors for a rated voltage of less than 125 V AC or 250 V DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | 7(c)-IV: Lead in PZT based dielectric ceramic materials for capacitors being part of integrated circuits or discrete semiconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 15: Lead in solders to complete a viable electrical connection between semiconductor die and carrier within integrated circuit flip chip packages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Homogeneous Material          | Weight | SubstanceClass                           | Substance                                                             | CAS        | Exemption | SubstanceWeight | UoM | SubPart<br>PPM | SubPart% | ARTICLEPPM | ARTICLE% |
|-------------------------------|--------|------------------------------------------|-----------------------------------------------------------------------|------------|-----------|-----------------|-----|----------------|----------|------------|----------|
| Epoxy Die Attach              | 0.0008 |                                          |                                                                       |            |           |                 | g   |                |          |            |          |
| Epoxy Die Attach              |        | Cadmium/Cadmium Compounds                | Cadmium                                                               | 7440-43-9  |           | 0               | g   | 3              | 0.0003   | 0          | 0        |
| Epoxy Die Attach              |        | Plastics/polymers                        | Phenolic Polymer Resin, Epikote 155                                   | 9003-36-5  |           | 0.00014913      | g   | 186411         | 18.6411  | 315        | 0.0315   |
| Epoxy Die Attach              |        | Lead/Lead Compounds                      | Lead                                                                  | 7439-92-1  |           | 0.00000001      | g   | 7              | 0.0007   | 0          | 0        |
| Epoxy Die Attach              |        | Metals                                   | Silver, metal                                                         | 7440-22-4  |           | 0.00065086      | g   | 813579         | 81.3579  | 1378       | 0.1378   |
| Copper Lead Frame             | 0.126  |                                          |                                                                       |            |           |                 | g   |                |          |            |          |
| Copper Lead Frame             |        | Metals                                   | Copper, metal                                                         | 7440-50-8  |           | 0.12145833      | g   | 963955         | 96.3955  | 257326     | 25.7326  |
| Copper Lead Frame             |        | Solvents, additives, and other materials | Phosphorus                                                            | 7723-14-0  |           | 0.00010395      | g   | 825            | 0.0825   | 220        | 0.022    |
| Copper Lead Frame             |        | Metals                                   | Iron, metal                                                           | 7439-89-6  |           | 0.002961        | g   | 23500          | 2.35     | 6273       | 0.6273   |
| Copper Lead Frame             |        | Lead/Lead Compounds                      | Lead                                                                  | 7439-92-1  |           | 0.00002142      | g   | 170            | 0.017    | 45         | 0.0045   |
| Copper Lead Frame             |        | Metals                                   | Silver, metal                                                         | 7440-22-4  |           | 0.00126         | g   | 10000          | 1        | 2669       | 0.2669   |
| Copper Lead Frame             |        | Metals                                   | Tin, metal                                                            | 7440-31-5  |           | 0.0000378       | g   | 300            | 0.03     | 80         | 0.008    |
| Copper Lead Frame             |        | Metals                                   | Zinc, metal                                                           | 7440-66-6  |           | 0.0001575       | g   | 1250           | 0.125    | 333        | 0.0333   |
| Lead Frame Plating            | 0.0032 |                                          |                                                                       |            |           |                 | g   |                |          |            |          |
| Lead Frame Plating            |        | Lead/Lead Compounds                      | Lead                                                                  | 7439-92-1  |           | 0.00000064      | g   | 200            | 0.02     | 1          | 0.0001   |
| Lead Frame Plating            |        | Metals                                   | Tin, metal                                                            | 7440-31-5  |           | 0.00319936      | g   | 999800         | 99.98    | 6778       | 0.6778   |
| Silicon Semiconductor Die     | 0.0098 |                                          |                                                                       |            |           |                 | g   |                |          |            |          |
| Silicon Semiconductor Die     |        | Solvents, additives, and other materials | Other miscellaneous substances (less than 5%).                        | -          |           | 0.000196        | g   | 20000          | 2        | 415        | 0.0415   |
| Silicon Semiconductor Die     |        | Glass                                    | Silicon, doped                                                        | -          |           | 0.009604        | g   | 980000         | 98       | 20347      | 2.0347   |
| Die Encapsulant, Halogen-free | 0.3311 |                                          |                                                                       |            |           |                 | g   |                |          |            |          |
| Die Encapsulant, Halogen-free |        | Solvents, additives, and other materials | Acrylonitrile/Butadiene copolymer, carboxyl terminated (26/74)        | 68891-46-3 |           | 0.0003311       | g   | 1000           | 0.1      | 701        | 0.0701   |
| Die Encapsulant, Halogen-free |        | Plastics/polymers                        | Ortho-Cresol, Polymer with 1-Chloro-2,3-Epoxypropane and Formaldehyde | 29690-82-2 |           | 0.0072842       | g   | 22000          | 2.2      | 15432      | 1.5432   |
| Die Encapsulant, Halogen-free |        | Plastics/polymers                        | Proprietary Material-Other Epoxy resins                               | -          |           | 0.0109263       | g   | 33000          | 3.3      | 23148      | 2.3148   |
| Die Encapsulant, Halogen-free |        | Solvents, additives, and other materials | Carbon Black                                                          | 1333-86-4  |           | 0.0009933       | g   | 3000           | 0.3      | 2104       | 0.2104   |
| Die Encapsulant, Halogen-free |        | Plastics/polymers                        | Proprietary Material-Other phenolic resins                            | -          |           | 0.0142373       | g   | 43000          | 4.3      | 30163      | 3.0163   |
| Die Encapsulant, Halogen-free |        | Glass                                    | Silicon dioxide                                                       | 7631-86-9  |           | 0.013244        | g   | 40000          | 4        | 28059      | 2.8059   |
| Die Encapsulant, Halogen-free |        | Glass                                    | Silica, vitreous                                                      | 60676-86-0 |           | 0.2840838       | g   | 858000         | 85.8     | 601884     | 60.1884  |
| Bonding Wire, Copper          | 0.0011 |                                          |                                                                       |            |           |                 | g   |                |          |            |          |
| Bonding Wire, Copper          |        | Metals                                   | Copper, metal                                                         | 7440-50-8  |           | 0.001067        | g   | 970000         | 97       | 2260       | 0.226    |
| Bonding Wire, Copper          |        | Solvents, additives, and other materials | Other miscellaneous substances (less than 5%).                        | -          |           | 0.000033        | g   | 30000          | 3        | 69         | 0.0069   |

LINKS

MCD LINK

http://www.freescale.com Freescale website

GENERAL ENVIRONMENTAL COMPLIANCE LINKS

http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_ROHS\_Freescale\_Response.pdf RoHS signed letter

China RoHS http://www.freescale.com/chinarohs

REACH signed letter  $http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_REACH\_Freescale\_Response.pdf$ ELV signed letter http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_ELV\_Freescale\_Reponse.pdf

**Conflict Minerals statement**  $http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_CONFLICT\_METAL\_Freescale\_Response.pdf$ 

FREESCALE ENVIRONMENTAL INFORMATION

EPP website http://www.freescale.com/epp

FAQ http://www.freescale.com/webapp/sps/site/overview.jsp?code=ENVIRON\_FAQ

Technical Service Request https://www.freescale.com/webapp/servicerequest.create\_SR.framework?defaultCategory=Hardware Product Support&defaultTopic=Environmentally Preferred Prod

LINKS TO BLANK IPC1752 FORMS

Blank IPC1752 v1.1 Form http://www.freescale.com/files/abstract/corporate/ehs\_epp/IPC-1752-2\_v1.1\_MCD\_Template.pdf

### IPC1752 XML LINKS

http://www.freescale.com/mcds/KC33972ATEK\_IPC1752\_v11.xml

http://www.freescale.com/mcds/KC33972ATEK\_IPC1752A.xml

**URL** for Additional Information

PART INFORMATION

Mfg Item Number

Mfg Item Name

SOIC 32 300ML

SUPPLIER Company Name Freescale Semiconductor Inc Company Unique ID 14-141-7928 Response Date 2013-11-15 Response Document ID 2013K10517D034A1.1 Contact Name Freescale Semiconductor Inc Contact Title Product Technical Support **Contact Phone** 1-800-521-6274 Contact Email support@freescale.com **Authorized Representative** Daniel Binyon Representative Title **EPP Customer Response** Representative Phone 512-895-3406 Representative Email eppanlst@freescale.com

DECLARATION

EU RoHS
Pb Free
Yes
HalogenFree
Plating Indicator
EU RoHS Exemption(s)

www.freescale.com

MANUFACTURING Mfg Item Number KC33972ATEW Mfg Item Name SOIC 32 300ML Version ALL Weight 0.510000 UoM Unit Volume EACH J-STD-020 MSL Rating 3 Peak Processing Temperature 260 C Max Time at Peak Temperature 40 seconds Number of Processing Cycles 3

| RoHS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RoHS Directive                        | 2011/65/EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RoHS Definition                       | RoHS Definition: Quantity limit of 0.1% by mass (1000 PPM) of homogeneous material for: Lead (Pb), Mercury, Hexavalent Chromium, Polybrominated Biphenyls (PBB), Polybrominated Diphenyl Ethers (PBDE) and quantity limit of 0.01% by mass (100 PPM) of homogeneous material of Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RoHS Legal Definition                 | Please indicate whether any homogeneous material (as defined by the RoHS Directive, EU 2011/65/EU and implemented by the laws of the European Union member states) of the part(s) identified on this form contains lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls and/or polybrominated diphenyl ethers (each a RoHS restricted substance) in excess of the applicable quantity limit, please indicate below which, if any, RoHS exemption you believe may apply. If the part is an assembly with lower level components, the declaration shall encompass all such components. Supplier certifies that it gathered the information it provides in this form using appropriate methods to ensure its accuracy and that such information is true and correct to the best of its knowledge and belief, as of the date that Supplier completes this form. Supplier acknowledges that Company will rely on this certification in determining the compliance of its products with European Union member state laws that implement the RoHS Directive. Company acknowledges that Supplier may have relied on information provided by others in completing this form, and that Supplier may not have independently verified such information. However, in situations where Supplier has not independently verified information provided by others, Supplier agrees that, at a minimum, its suppliers have provided certifications regarding their contributions to the part(s), and those certifications are at least as comprehensive as the certification in this paragraph. If the Company and the Supplier enter into a written agreement with respect to the identified part(s), the terms and conditions of that agreement, including any warranty rights and/or remedies provided as part of that agreement, will be the sole and exclusive source of the Suppliers liability and the Companys remedies for issues that arise regarding information the Supplier provides in this form. In the absence of such written agreement, the warranty rights and/or remedies of Suppliers Standard Terms and Co |
| RoHS Declaration                      | 1 - Item(s) do not contain RoHS restricted substances per the definition above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Supplier Acceptance                   | Accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Signature                             | Daniel Binyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Exemption List Version                | 2012/51/EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| List of Freescale Accepted Exemptions | 6(a): Lead as an alloying element in steel for machining purposes and in galvanized steel containing up to 0.35% lead by weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exemptions                            | 6(b): Lead as an alloying element in aluminium containing up to 0.4% lead by weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 6(c): Copper alloy containing up to 4% lead by weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | 7(a): Lead in high melting temperature type solders (i.e. lead-based alloys containing 85% by weight or more lead)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 7(b): Lead in solders for servers, storage and storage array systems, network infrastructure equipment for switching, signaling, transmission, and network management for telecommunications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | 7(c)-I : Electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors, e.g. piezoelectronic devices, or in a glass or ceramic matrix compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 7(c)-II: Lead in dielectric ceramic in capacitors for a rated voltage of 125 V AC or 250 V DC or higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 7(c)-III: Lead in dielectric ceramic in capacitors for a rated voltage of less than 125 V AC or 250 V DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | 7(c)-IV: Lead in PZT based dielectric ceramic materials for capacitors being part of integrated circuits or discrete semiconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 15: Lead in solders to complete a viable electrical connection between semiconductor die and carrier within integrated circuit flip chip packages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Homogeneous Material         | Weight |                                          |                                                                       |            | SubstanceWeight | UoM | SubPart<br>PPM | SubPart% | ARTICLEPPM | ARTICLE% |
|------------------------------|--------|------------------------------------------|-----------------------------------------------------------------------|------------|-----------------|-----|----------------|----------|------------|----------|
| Epoxy Die Attach             | 0.0011 |                                          |                                                                       |            |                 | g   |                |          |            |          |
| Epoxy Die Attach             |        | Cadmium/Cadmium Compounds                | Cadmium                                                               | 7440-43-9  | 0               | g   | 3              | 0.0003   | 0          | 0        |
| Epoxy Die Attach             |        | Plastics/polymers                        | Phenolic Polymer Resin, Epikote 155                                   | 9003-36-5  | 0.00020505      | g   | 186411         | 18.6411  | 402        | 0.0402   |
| Epoxy Die Attach             |        | Lead/Lead Compounds                      | Lead                                                                  | 7439-92-1  | 0.00000001      | g   | 7              | 0.0007   | 0          | 0        |
| poxy Die Attach              |        | Metals                                   | Silver, metal                                                         | 7440-22-4  | 0.00089494      | g   | 813579         | 81.3579  | 1754       | 0.1754   |
| Copper Lead Frame            | 0.1359 |                                          |                                                                       |            |                 | g   |                |          |            |          |
| opper Lead Frame             |        | Metals                                   | Copper, metal                                                         | 7440-50-8  | 0.13100148      | g   | 963955         | 96.3955  | 256865     | 25.6865  |
| opper Lead Frame             |        | Solvents, additives, and other materials | Phosphorus                                                            | 7723-14-0  | 0.00011212      | g   | 825            | 0.0825   | 219        | 0.0219   |
| opper Lead Frame             |        | Metals                                   | Iron, metal                                                           | 7439-89-6  | 0.00319365      | g   | 23500          | 2.35     | 6262       | 0.6262   |
| opper Lead Frame             |        | Lead/Lead Compounds                      | Lead                                                                  | 7439-92-1  | 0.0000231       | g   | 170            | 0.017    | 45         | 0.0045   |
| opper Lead Frame             |        | Metals                                   | Silver, metal                                                         | 7440-22-4  | 0.001359        | g   | 10000          | 1        | 2664       | 0.2664   |
| opper Lead Frame             |        | Metals                                   | Tin, metal                                                            | 7440-31-5  | 0.00004077      | g   | 300            | 0.03     | 79         | 0.0079   |
| opper Lead Frame             |        | Metals                                   | Zinc, metal                                                           | 7440-66-6  | 0.00016988      | g   | 1250           | 0.125    | 333        | 0.0333   |
| ead Frame Plating            | 0.0032 |                                          |                                                                       |            |                 | g   |                |          |            |          |
| ead Frame Plating            |        | Lead/Lead Compounds                      | Lead                                                                  | 7439-92-1  | 0.00000064      | g   | 200            | 0.02     | 1          | 0.0001   |
| ead Frame Plating            |        | Metals                                   | Tin, metal                                                            | 7440-31-5  | 0.00319936      | g   | 999800         | 99.98    | 6273       | 0.6273   |
| licon Semiconductor Die      | 0.0098 |                                          |                                                                       |            |                 | g   |                |          |            |          |
| licon Semiconductor Die      |        | Solvents, additives, and other materials | Other miscellaneous substances (less than 5%).                        | -          | 0.000196        | g   | 20000          | 2        | 384        | 0.0384   |
| licon Semiconductor Die      |        | Glass                                    | Silicon, doped                                                        | -          | 0.009604        | g   | 980000         | 98       | 18831      | 1.8831   |
| e Encapsulant, Halogen-free  | 0.3589 |                                          |                                                                       |            |                 | g   |                |          |            |          |
| ie Encapsulant, Halogen-free |        | Solvents, additives, and other materials | Acrylonitrile/Butadiene copolymer, carboxyl terminated (26/74)        | 68891-46-3 | 0.0003589       | g   | 1000           | 0.1      | 703        | 0.0703   |
| ie Encapsulant, Halogen-free |        | Plastics/polymers                        | Ortho-Cresol, Polymer with 1-Chloro-2,3-Epoxypropane and Formaldehyde | 29690-82-2 | 0.0078958       | g   | 22000          | 2.2      | 15481      | 1.5481   |
| e Encapsulant, Halogen-free  |        | Plastics/polymers                        | Proprietary Material-Other Epoxy resins                               |            | 0.0118437       | g   | 33000          | 3.3      | 23222      | 2.3222   |
| e Encapsulant, Halogen-free  |        | Solvents, additives, and other materials | Carbon Black                                                          | 1333-86-4  | 0.0010767       | g   | 3000           | 0.3      | 2111       | 0.2111   |
| e Encapsulant, Halogen-free  |        | Plastics/polymers                        | Proprietary Material-Other phenolic resins                            |            | 0.0154327       | g   | 43000          | 4.3      | 30260      | 3.026    |
| e Encapsulant, Halogen-free  |        | Glass                                    | Silicon dioxide                                                       | 7631-86-9  | 0.014356        | g   | 40000          | 4        | 28149      | 2.8149   |
| ie Encapsulant, Halogen-free |        | Glass                                    | Silica, vitreous                                                      | 60676-86-0 | 0.3079362       | g   | 858000         | 85.8     | 603806     | 60.3806  |
| onding Wire, Copper          | 0.0011 |                                          |                                                                       |            |                 | g   |                |          |            |          |
| onding Wire, Copper          |        | Metals                                   | Copper, metal                                                         | 7440-50-8  | 0.001067        | g   | 970000         | 97       | 2092       | 0.2092   |
| onding Wire, Copper          |        | Solvents, additives, and other materials | Other miscellaneous substances (less than 5%).                        |            | 0.000033        | q   | 30000          | 3        | 64         | 0.0064   |

LINKS

MCD LINK

http://www.freescale.com Freescale website

GENERAL ENVIRONMENTAL COMPLIANCE LINKS

http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_ROHS\_Freescale\_Response.pdf RoHS signed letter

China RoHS http://www.freescale.com/chinarohs

REACH signed letter  $http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_REACH\_Freescale\_Response.pdf$ ELV signed letter http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_ELV\_Freescale\_Reponse.pdf

**Conflict Minerals statement**  $http://www.freescale.com/files/abstract/corporate/ehs\_epp/ENV\_CONFLICT\_METAL\_Freescale\_Response.pdf$ 

FREESCALE ENVIRONMENTAL INFORMATION

EPP website http://www.freescale.com/epp

FAQ http://www.freescale.com/webapp/sps/site/overview.jsp?code=ENVIRON\_FAQ

Technical Service Request https://www.freescale.com/webapp/servicerequest.create\_SR.framework?defaultCategory=Hardware Product Support&defaultTopic=Environmentally Preferred Prod

LINKS TO BLANK IPC1752 FORMS

Blank IPC1752 v1.1 Form http://www.freescale.com/files/abstract/corporate/ehs\_epp/IPC-1752-2\_v1.1\_MCD\_Template.pdf IPC1752 XML LINKS

http://www.freescale.com/mcds/KC33972ATEW\_IPC1752\_v11.xml

http://www.freescale.com/mcds/KC33972ATEW\_IPC1752A.xml

# **Engineering Change Documents**



# AEC Q100 Certification of Design, Construction and Qualification Q100base-revG; -001revC, -002revD, -003revE, -004revC, -005recC, -006revD, -007revA, -008revA, -009revB, -010revA, -011revB, -012Rev.

| П    | Supplier Name: Freescale Semiconductor                           | Date:                                                                                |
|------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|      | Item Name                                                        | Supplier Response                                                                    |
| 1.   | User's Part Number:                                              | See PPAP                                                                             |
| 2.   | Supplier's Part Number/Data Sheet:                               | MC33972ATEKR2/48ASA12749D                                                            |
| 3.   | Device Description:                                              | MSDISW_N39B SM5AP(EP)                                                                |
| 4.   | Wafer/Die Fab Facility & Process ID:                             | MSDISW_NSBI SWISAI (EL)                                                              |
| Ι*   | •                                                                |                                                                                      |
|      | a. Facility name/plant #:                                        | TSMC                                                                                 |
|      | b. Street address:                                               | .No. 121 Park Ave. III, Hsinchu Science Park;<br>Hsinchu, Taiwan 300, R.O.C. (TSMC2) |
|      | c. Country:                                                      | Taiwan                                                                               |
|      | c. country.                                                      | Taiwan                                                                               |
| 5.   | Wafer Probe Location:                                            |                                                                                      |
|      |                                                                  |                                                                                      |
|      | - F114                                                           | Freescale-Qualified Probe Site(s); Available Upon                                    |
|      | a. Facility name/plant #:                                        | Request                                                                              |
|      | b. Street address:                                               | Available Upon Request                                                               |
|      | c. Country:                                                      | Available Upon Request                                                               |
| 6.   | Assembly Location & Process ID:                                  |                                                                                      |
|      | a. Facility name/plant #:                                        | FSL-TJN-FM                                                                           |
|      | b. Street address:                                               | No.15, Xing Hua Avenue; XiQing 300385 Tianjin<br>China (TJN)                         |
|      | c. Country:                                                      | China                                                                                |
| 7.   | Final Quality Control A (Test) Facility:                         |                                                                                      |
|      | a. Facility name/plant #:                                        | FSL-TJN-FM                                                                           |
|      | b. Street address:                                               | No.15, Xing Hua Avenue; XiQing 300385 Tianjin<br>China (TJN)                         |
|      | c. Country:                                                      | China                                                                                |
| 8.   | Wafer/Die:                                                       | Cinia                                                                                |
|      | a. Wafer Size:                                                   | 150 mm                                                                               |
|      | h Die femilier                                                   | MCDI N20D                                                                            |
|      | b. Die family:                                                   | MSDI-N39B                                                                            |
|      | c. Die mask set revision & name:                                 | N39B-MASK                                                                            |
|      | d. Die photo:                                                    | Available upon request-linrick                                                       |
| 9.   | Die Technology Description:                                      |                                                                                      |
|      | a. Wafer/Die process technology:                                 | u065                                                                                 |
|      | b. Die channel length (μM):                                      | 1.6um                                                                                |
|      | c. Die gate length (µM):<br>d. Die supplier process ID (mask #): | 1.6um<br>N39B                                                                        |
|      | e. Number of transistors or gates:                               | 26917                                                                                |
|      |                                                                  | 18                                                                                   |
| 10   | f. Number of mask steps:<br>Die Dimensions:                      | 10                                                                                   |
| 1.0. | a. Die width (mm):                                               | 2.9464 mm                                                                            |
| 1    | b. Die length (mm):                                              | 4.04622 mm                                                                           |
| 1    | c. Die thickness (finished) (mm):                                | 0.381 mm                                                                             |
| 11.  | Die Metallization:                                               |                                                                                      |
| 1    | a. Die metallization materials:                                  | AlCuSi                                                                               |
| 1    | b. Number of layers:                                             | 2                                                                                    |
|      | c. Thickness (per layer):                                        | M1: 6kA<br>M2: 20kA                                                                  |
| 1    | d. % of alloys (if present):                                     | 99.5% Al/0.5% Cu                                                                     |
| 1    | a. // or anoys (ii present).                                     | 22.0 % 1110.0 % Cu                                                                   |



# AEC Q100 Certification of Design, Construction and Qualification Q100base-revG; -001revC, -002revD, -003revE, -004revC, -005recC, -006revD, -007revA, -

|     | 008revA, -009revB, -010revA, -011revB, -012Rev                  |                                          |  |  |  |  |
|-----|-----------------------------------------------------------------|------------------------------------------|--|--|--|--|
|     | Supplier Name: Freescale Semiconductor                          | Date:                                    |  |  |  |  |
| 12. | Die Passivation:                                                |                                          |  |  |  |  |
|     | a. Number of passivation layers:                                | 2                                        |  |  |  |  |
|     | b. Die passivation material(s):                                 | SiO2/Si3N4                               |  |  |  |  |
|     | c. Thickness (es) & tolerances:                                 | 2kÅ /7kÅ                                 |  |  |  |  |
| 13. | Die Overcoat Material (e.g., Polyimide)                         | Polyimide                                |  |  |  |  |
|     | Die Cross-Section Photo/Drawing:                                | Available upon request                   |  |  |  |  |
| 15. | Die Prep Backside:                                              |                                          |  |  |  |  |
|     | a. Die prep method:                                             | None                                     |  |  |  |  |
|     | b. Die metallization:                                           | None                                     |  |  |  |  |
|     | c. Thickness(es) & tolerances:                                  | N/A                                      |  |  |  |  |
| 16. | Die Separation Method (Kerf Depth):                             |                                          |  |  |  |  |
|     | a. Kerf width (um):                                             | 20 - 100um                               |  |  |  |  |
|     | b. Kerf depth (if not 100% saw):                                | 100% Sawn                                |  |  |  |  |
|     | c. Saw method:                                                  | Dual                                     |  |  |  |  |
| 17. | Die Attach:                                                     |                                          |  |  |  |  |
|     | a. Die attach material ID:                                      | Sumitomo CRM-1064MBL                     |  |  |  |  |
|     | b. Die attach method:                                           | Epoxy                                    |  |  |  |  |
|     | c. Die placement diagram:                                       | Available upon request                   |  |  |  |  |
| 18. | Package:                                                        |                                          |  |  |  |  |
|     | <ul> <li>Type of package (e.g. plastic, ceramic,</li> </ul>     | Plastic                                  |  |  |  |  |
|     | unpackaged):                                                    |                                          |  |  |  |  |
|     | b. Ball/lead count:                                             | 32LD SOIC EP                             |  |  |  |  |
|     | <ul> <li>JEDEC designation (e.g., MS029, MS034,</li> </ul>      | NON-JEDEC                                |  |  |  |  |
|     | d. Lead (Pb) free (<.1% homogenouse material)                   | Yes                                      |  |  |  |  |
|     | e. Package outline drawing                                      | See PPAP                                 |  |  |  |  |
| 19. | Mold Compound:                                                  |                                          |  |  |  |  |
|     | <ul> <li>a. Plastic mold compound supplier &amp; ID:</li> </ul> | Sumitomo EME-G630AY                      |  |  |  |  |
|     | b. Mold compound type:                                          | Epoxy Resin                              |  |  |  |  |
|     | c. Flammability rating:                                         | UL 94 V0                                 |  |  |  |  |
|     | d. Fire Retardant type/composition                              | Resin system                             |  |  |  |  |
|     | e. Tg (glass transition temperature) (°C):                      | Tg=120C                                  |  |  |  |  |
|     | f. CTE (above & below Tg) (ppm/°C):                             | CTE1 (below Tg) = 10 ppm/°C, CTE2 (above |  |  |  |  |
|     |                                                                 | Tg) = 40 ppm/ °C                         |  |  |  |  |
| 20. | Wire Bond:                                                      |                                          |  |  |  |  |
|     | a. Wire bond material:                                          | Cu                                       |  |  |  |  |
|     | b. Wire bond diameter (mm):                                     | 0.033                                    |  |  |  |  |
|     | c. Type of wire bond at die:                                    | Ball bond                                |  |  |  |  |
|     | d. Type of wire bond at leadframe:                              | Stitch bond                              |  |  |  |  |
| L   | e. Wire bonding diagram:                                        | Available upon request                   |  |  |  |  |
| 21. | Leadframe (if applicable):                                      |                                          |  |  |  |  |
|     | a. Paddle/flag material:                                        | Cu                                       |  |  |  |  |
|     | b. Paddle/flag width (mils):                                    | 5.1562 mm                                |  |  |  |  |
|     | c. Paddle/flag length (mils):                                   | 5.1562 mm                                |  |  |  |  |
|     | d. Paddle/flag plating composition:                             | None                                     |  |  |  |  |
|     | e. Paddle/flag plating thickness (μin):                         | NA                                       |  |  |  |  |
|     | f. Leadframe material:                                          | Cu                                       |  |  |  |  |
|     | g. Leadframe bonding plating composition:                       | Ag                                       |  |  |  |  |
|     | h. Leadframe bonding plating thickness (um):                    | 1.78 - 7.62                              |  |  |  |  |
| l   | <ol> <li>External lead plating composition:</li> </ol>          | Sn                                       |  |  |  |  |
|     | j. External lead plating thickness (um):                        | 7.62 - 17.8                              |  |  |  |  |



# AEC Q100 Certification of Design, Construction and Qualification Q100base-revG; -001revC, -002revD, -003revE, -004revC, -005recC, -006revD, -007revA, -

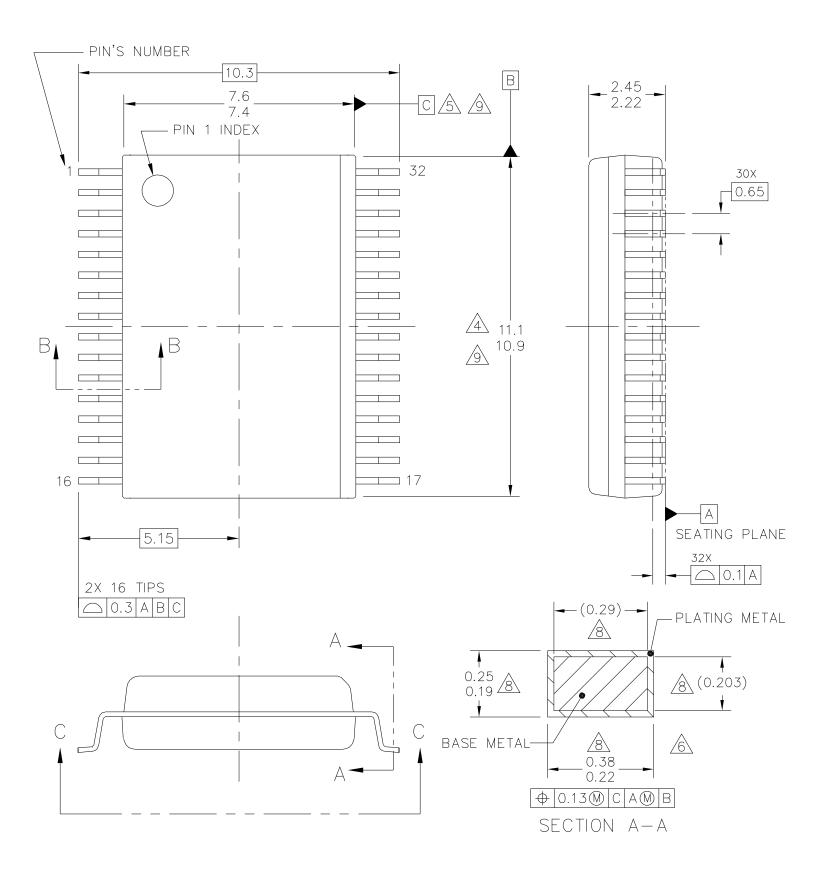
|          | 008revA, -009revB, -010revA, -011revB, -012Rev     |                                                                                           |  |  |  |  |
|----------|----------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
|          | Supplier Name: Freescale Semiconductor             | Date:                                                                                     |  |  |  |  |
| 22.      | Substrate (if applicable):                         | Not applicable                                                                            |  |  |  |  |
|          | a. Substrate material (e.g., FR5, BT, etc.):       |                                                                                           |  |  |  |  |
|          | b. Substrate thickness (mm):                       |                                                                                           |  |  |  |  |
|          | c. Number of substrate metal layers:               |                                                                                           |  |  |  |  |
|          | d. Plating composition of ball solderable surface: |                                                                                           |  |  |  |  |
|          | e. Panel singulation method:                       |                                                                                           |  |  |  |  |
|          | f. Solder ball composition:                        |                                                                                           |  |  |  |  |
|          | g: Solder ball diameter (mm):                      |                                                                                           |  |  |  |  |
| 23.      | Unpackaged Die (if not packaged):                  | Not Applicable                                                                            |  |  |  |  |
|          | a. Under Bump Metallurgy (UBM):                    |                                                                                           |  |  |  |  |
|          | b. Thickness of UBM metal:                         |                                                                                           |  |  |  |  |
|          | c. Bump composition:                               |                                                                                           |  |  |  |  |
|          | d. Bump size:                                      |                                                                                           |  |  |  |  |
|          | Header material (if applicable):                   | Not Applicable                                                                            |  |  |  |  |
| 25.      | Thermal Resistance:                                | Leave blank                                                                               |  |  |  |  |
|          | a. ØJA °C/W (approx):                              | 74                                                                                        |  |  |  |  |
|          | b. ØJC °C/W (approx):                              | 26                                                                                        |  |  |  |  |
|          | c. Special thermal dissipation construction        | Not Applicable                                                                            |  |  |  |  |
|          | techniques:                                        | 1vot repricasio                                                                           |  |  |  |  |
|          | Test circuits, bias levels and operational         |                                                                                           |  |  |  |  |
| 26.      | conditions imposed during the supplier's life and  | Available upon request                                                                    |  |  |  |  |
|          | environmental tests:                               |                                                                                           |  |  |  |  |
| 27.      | Fault grade coverage (%):                          |                                                                                           |  |  |  |  |
| 28.      | Maximum Process Exposure Conditions:               | Note: Temperatures are as measured on the center of the plastic package body top surface. |  |  |  |  |
|          | a. MSL @ rated SnPb temperature:                   | NA                                                                                        |  |  |  |  |
|          | b. MSL @ rated Pb-free temperature:                | MSL3 at 260°C                                                                             |  |  |  |  |
|          | c. Maximum dwell time @ maximum process            | 40                                                                                        |  |  |  |  |
|          | temperature:                                       | 40                                                                                        |  |  |  |  |
|          | Attachments:                                       | Requirements:                                                                             |  |  |  |  |
|          | Die Photo:                                         | <ol> <li>A separate Certification of Design,</li> </ol>                                   |  |  |  |  |
|          | Available Upon Request                             | Construction & Qualification must be submitted                                            |  |  |  |  |
|          | Package Outline Drawing:                           | for each part number, wafer fab, and assembly                                             |  |  |  |  |
|          | See PPAP                                           | location.                                                                                 |  |  |  |  |
|          | Die Cross-Section Photos/Drawing:                  |                                                                                           |  |  |  |  |
|          | Available Upon Request                             |                                                                                           |  |  |  |  |
|          | Wire Bonding Diagram                               | Design, Construction & Qualification shall be                                             |  |  |  |  |
|          | Available Upon Request                             | compiled by the responsible individual at the                                             |  |  |  |  |
|          | Die Placement Diagram                              | supplier who can verify the above information is                                          |  |  |  |  |
|          | See PPAP                                           | accurate and complete.                                                                    |  |  |  |  |
|          | Test Circuits, Bias Levels, & Conditions           |                                                                                           |  |  |  |  |
| <u> </u> | Available Upon Request                             |                                                                                           |  |  |  |  |
|          | Completed by and Date:                             | Completed by: Wang Brenda / 11-DEC-2013                                                   |  |  |  |  |
|          | Certified by (electronic signature) and Date:      | Completed by: Wang Brenda / 11-DEC-2013                                                   |  |  |  |  |



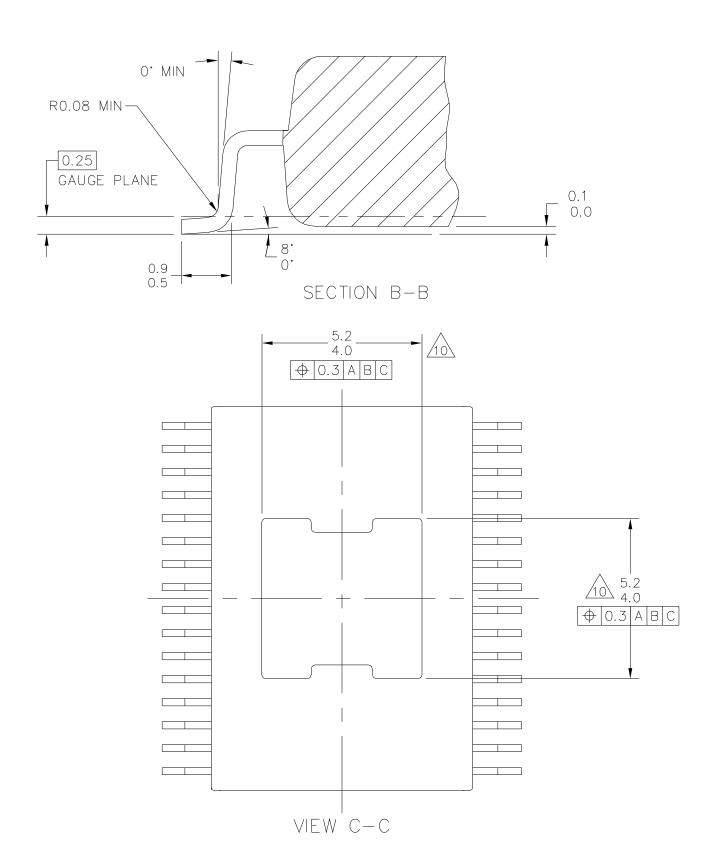
# AEC Q100 Certification of Design, Construction and Qualification Q100base-revG; -001revC, -002revD, -003revE, -004revC, -005recC, -006revD, -007revA, -008revA, -009revB, -010revA, -011revB, -012Rev.

|     | Supplier Name: Freescale Semiconductor                                                    | Date:                                                                                                            |
|-----|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|     | Item Name                                                                                 | Supplier Response                                                                                                |
| 1.  | User's Part Number:                                                                       | See PPAP                                                                                                         |
| 2.  | Supplier's Part Number/Data Sheet:                                                        | MC33972ATEWR2/48ASA12749D                                                                                        |
| 3.  | Device Description:                                                                       | MSDISW_N39B SM5AP(non EP)                                                                                        |
| 4.  | Wafer/Die Fab Facility & Process ID:                                                      |                                                                                                                  |
|     | a. Facility name/plant #:                                                                 | TSMC                                                                                                             |
|     | b. Street address:                                                                        | No. 121 Park Ave. III, Hsinchu Science Park;<br>Hsinchu, Taiwan 300, R.O.C. (TSMC2)                              |
|     | c. Country:                                                                               | Taiwan                                                                                                           |
| 5.  | Wafer Probe Location:                                                                     |                                                                                                                  |
|     | a. Facility name/plant #: b. Street address: c. Country:                                  | Freescale-Qualified Probe Site(s); Available Upon<br>Request<br>Available Upon Request<br>Available Upon Request |
| 6.  | Assembly Location & Process ID:                                                           | Available Opoli Request                                                                                          |
|     | a. Facility name/plant #:                                                                 | FSL-TJN-FM                                                                                                       |
|     | b. Street address:                                                                        | No.15, Xing Hua Avenue; XiQing 300385 Tianjin<br>China (TJN)                                                     |
|     | c. Country:                                                                               | China                                                                                                            |
| 7.  | Final Quality Control A (Test) Facility:                                                  |                                                                                                                  |
|     | a. Facility name/plant #:                                                                 | FSL-TJN-FM                                                                                                       |
|     | b. Street address:                                                                        | No.15, Xing Hua Avenue; XiQing 300385 Tianjin China (TJN)                                                        |
|     | c. Country:                                                                               | China                                                                                                            |
| 8.  | Wafer/Die:                                                                                |                                                                                                                  |
|     | a. Wafer Size:                                                                            | 150 mm                                                                                                           |
|     | b. Die family:                                                                            | MSDI-N39B                                                                                                        |
| L   | c. Die mask set revision & name:<br>d. Die photo:                                         | N39B-MASK<br>Available upon request                                                                              |
| 9.  | Die Technology Description:                                                               | -065                                                                                                             |
|     | <ul> <li>a. Wafer/Die process technology:</li> <li>b. Die channel length (μM):</li> </ul> | u065<br>1.6um                                                                                                    |
|     | c. Die gate length (µM):                                                                  | 1.6um                                                                                                            |
|     | d. Die supplier process ID (mask #):                                                      | N39B                                                                                                             |
|     | e. Number of transistors or gates:                                                        | 26917                                                                                                            |
|     | f. Number of mask steps:                                                                  | 18                                                                                                               |
| 10. | Die Dimensions:                                                                           | <u> </u>                                                                                                         |
|     | a. Die width (mm):                                                                        | 2.9464 mm                                                                                                        |
|     | b. Die length (mm):<br>c. Die thickness (finished) (mm):                                  | 4.04622 mm<br>0.381 mm                                                                                           |
| 11. | Die Metallization:                                                                        | 5.551 MIII                                                                                                       |
|     | a. Die metallization materials:                                                           | AlCuSi                                                                                                           |
|     | b. Number of layers:                                                                      | 2                                                                                                                |
|     | c. Thickness (per layer):                                                                 | M1: 6kA<br>M2: 20kA                                                                                              |
|     | d. % of alloys (if present):                                                              | 99.5% Al/0.5% Cu                                                                                                 |




# AEC Q100 Certification of Design, Construction and Qualification Q100base-revG; -001revC, -002revD, -003revE, -004revC, -005recC, -006revD, -007revA, -008revA. -009revB. -010revA. -011revB. -012Rev.

|     | 008revA, -009revB, -010re                       | evA, -011revB, -012Rev                   |
|-----|-------------------------------------------------|------------------------------------------|
|     | Supplier Name: Freescale Semiconductor          | Date:                                    |
| 12. | Die Passivation:                                |                                          |
|     | a. Number of passivation layers:                | 2                                        |
|     | b. Die passivation material(s):                 | SiO2/Si3N4                               |
|     | c. Thickness (es) & tolerances:                 | 2kÅ /7kÅ                                 |
| 13. | Die Overcoat Material (e.g., Polyimide)         | Polyimide                                |
| 14. | Die Cross-Section Photo/Drawing:                | Available upon request                   |
| 15. | Die Prep Backside:                              |                                          |
|     | a. Die prep method:                             | None                                     |
|     | b. Die metallization:                           | None                                     |
|     | c. Thickness(es) & tolerances:                  | N/A                                      |
| 16. | Die Separation Method (Kerf Depth):             |                                          |
|     | a. Kerf width (um):                             | 20 - 100um                               |
|     | b. Kerf depth (if not 100% saw):                | 100% Sawn                                |
|     | c. Saw method:                                  | Dual                                     |
| 17. | Die Attach:                                     |                                          |
|     | a. Die attach material ID:                      | Sumitomo CRM-1064MBL                     |
|     | b. Die attach method:                           | Epoxy                                    |
|     | c. Die placement diagram:                       | Available upon request                   |
| 18. | Package:                                        |                                          |
|     | a. Type of package (e.g. plastic, ceramic,      |                                          |
|     | unpackaged):                                    | Plastic                                  |
|     | b. Ball/lead count:                             | 32LD SOIC                                |
|     | c. JEDEC designation (e.g., MS029, MS034,       | NON-JEDEC                                |
|     | d. Lead (Pb) free (<.1% homogenouse material)   | Yes                                      |
|     | e. Package outline drawing                      | See PPAP                                 |
| 19. | Mold Compound:                                  |                                          |
|     | a. Plastic mold compound supplier & ID:         | Sumitomo EME-G630AY                      |
|     | b. Mold compound type:                          | Epoxy Resin                              |
|     | c. Flammability rating:                         | UL 94 V0                                 |
|     | d. Fire Retardant type/composition              | Resin system                             |
|     | e. Tg (glass transition temperature) (°C):      | Tg=120C                                  |
|     | c. 1g (glass transition temperature) ( C).      | CTE1 (below Tg) = 10 ppm/°C, CTE2 (above |
|     | f. CTE (above & below Tg) (ppm/°C):             | Tg) = 40 ppm/ $^{\circ}$ C               |
| 20. | Wire Bond:                                      |                                          |
|     | a. Wire bond material:                          | Cu                                       |
|     | <ul><li>b. Wire bond diameter (mils):</li></ul> | 0.033                                    |
|     | c. Type of wire bond at die:                    | Ball bond                                |
|     | d. Type of wire bond at leadframe:              | Stitch bond                              |
|     | e. Wire bonding diagram:                        | Available upon request                   |
| 21. | Leadframe (if applicable):                      |                                          |
|     | a. Paddle/flag material:                        | Cu                                       |
|     | b. Paddle/flag width (mils):                    | 5.1562 mm                                |
|     | c. Paddle/flag length (mils):                   | 5.1562 mm                                |
|     | d. Paddle/flag plating composition:             | None                                     |
|     | e. Paddle/flag plating thickness (µin):         | NA                                       |
|     | f. Leadframe material:                          | Cu                                       |
|     | g. Leadframe bonding plating composition:       | Ag                                       |
|     | h. Leadframe bonding plating thickness (um):    | 1.78 - 7.62                              |
|     | i. External lead plating composition:           | Sn                                       |
|     | j. External lead plating thickness (um):        | 7.62 - 17.8                              |
| _   | J. LACTIMI read placing unekness (uiil).        |                                          |




# AEC Q100 Certification of Design, Construction and Qualification Q100base-revG; -001revC, -002revD, -003revE, -004revC, -005recC, -006revD, -007revA, -

|          | 008revA, -009revB, -010revA, -011revB, -012Rev      |                                                  |  |  |  |  |  |
|----------|-----------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
|          | Supplier Name: Freescale Semiconductor              | Date:                                            |  |  |  |  |  |
| 22.      | Substrate (if applicable):                          | Not applicable                                   |  |  |  |  |  |
|          | a. Substrate material (e.g., FR5, BT, etc.):        |                                                  |  |  |  |  |  |
|          | b. Substrate thickness (mm):                        |                                                  |  |  |  |  |  |
|          | c. Number of substrate metal layers:                |                                                  |  |  |  |  |  |
|          | d. Plating composition of ball solderable surface:  |                                                  |  |  |  |  |  |
|          | e. Panel singulation method:                        |                                                  |  |  |  |  |  |
|          | f. Solder ball composition:                         |                                                  |  |  |  |  |  |
|          | g: Solder ball diameter (mm):                       |                                                  |  |  |  |  |  |
| 23.      | Unpackaged Die (if not packaged):                   | Not Applicable                                   |  |  |  |  |  |
|          | <ul> <li>a. Under Bump Metallurgy (UBM):</li> </ul> |                                                  |  |  |  |  |  |
|          | b. Thickness of UBM metal:                          |                                                  |  |  |  |  |  |
|          | c. Bump composition:                                |                                                  |  |  |  |  |  |
|          | d. Bump size:                                       |                                                  |  |  |  |  |  |
|          | Header material (if applicable):                    | Not Applicable                                   |  |  |  |  |  |
| 25.      | Thermal Resistance:                                 | Leave blank                                      |  |  |  |  |  |
|          | a. ØJA °C/W (approx):                               | 74                                               |  |  |  |  |  |
|          | b. ØJC °C/W (approx):                               | 26                                               |  |  |  |  |  |
|          | c. Special thermal dissipation construction         | Not Applicable                                   |  |  |  |  |  |
|          | techniques:                                         | Not Applicable                                   |  |  |  |  |  |
|          | Test circuits, bias levels and operational          |                                                  |  |  |  |  |  |
| 26.      | conditions imposed during the supplier's life and   | Available upon request                           |  |  |  |  |  |
|          | environmental tests:                                |                                                  |  |  |  |  |  |
|          |                                                     |                                                  |  |  |  |  |  |
| 27.      | Fault grade coverage (%):                           |                                                  |  |  |  |  |  |
|          |                                                     |                                                  |  |  |  |  |  |
| 28.      | Maximum Process Exposure Conditions:                | Note: Temperatures are as measured on the center |  |  |  |  |  |
|          | •                                                   | of the plastic package body top surface.         |  |  |  |  |  |
|          | a. MSL @ rated SnPb temperature:                    | NA                                               |  |  |  |  |  |
|          | b. MSL @ rated Pb-free temperature:                 | MSL-3 at 260C                                    |  |  |  |  |  |
|          | c. Maximum dwell time @ maximum process             | 40                                               |  |  |  |  |  |
|          | temperature:                                        |                                                  |  |  |  |  |  |
|          | Attachments:                                        | Requirements:                                    |  |  |  |  |  |
|          | Die Photo:                                          | A separate Certification of Design,              |  |  |  |  |  |
|          | Available Upon Request                              | Construction & Qualification must be submitted   |  |  |  |  |  |
|          | Package Outline Drawing:                            | for each part number, wafer fab, and assembly    |  |  |  |  |  |
|          | See PPAP                                            | location.                                        |  |  |  |  |  |
|          | Die Cross-Section Photos/Drawing:                   |                                                  |  |  |  |  |  |
|          | Available Upon Request                              | - D   G                                          |  |  |  |  |  |
|          | Wire Bonding Diagram                                | Design, Construction & Qualification shall be    |  |  |  |  |  |
|          | Available Upon Request                              | compiled by the responsible individual at the    |  |  |  |  |  |
|          | Die Placement Diagram                               | supplier who can verify the above information is |  |  |  |  |  |
|          | See PPAP                                            | accurate and complete.                           |  |  |  |  |  |
|          | Test Circuits, Bias Levels, & Conditions            |                                                  |  |  |  |  |  |
| -        | Available Upon Request                              | g 1 1 1 W P 1 100 P 5                            |  |  |  |  |  |
|          | Completed by and Date:                              | Completed by:Wang Brenda/ 09-Dec-2013            |  |  |  |  |  |
| <u> </u> | Certified by (electronic signature) and Date:       | Completed by: Wang Brenda/ 09-Dec-2013           |  |  |  |  |  |
|          | Typed/Printed:                                      |                                                  |  |  |  |  |  |
|          | Signature:                                          |                                                  |  |  |  |  |  |
|          | Title:                                              |                                                  |  |  |  |  |  |



| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | NICAL OUTLINE | PRINT VERSION NO     | OT TO SCALE |  |  |  |
|------------------------------------------------------|---------------|----------------------|-------------|--|--|--|
| TITLE:                                               |               | D: 98ASAO0259D       | REV: 0      |  |  |  |
| 32LD SOIC W/B, 0.65 PITC<br>4 6 X 4 6 FXPOSED PAD    | I CASE NUMBER | CASE NUMBER: 2150-01 |             |  |  |  |
| T.O X T.O EXIOSED I AD                               |               | STANDARD: NON-JEDEC  |             |  |  |  |



| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE    | PRINT VERSION NO | OT TO SCALE |
|------------------------------------------------------|-----------|--------------|------------------|-------------|
| TITLE:                                               | 5 DITOLI  | DOCUMENT NO  | REV: 0           |             |
| 32LD SOIC W/B, 0.6<br>4.6 X 4.6 FXPOSFI              |           | CASE NUMBER  | R: 2150-01       | 29 JUL 2010 |
| 7.0 X 4.0 LXI 03LI                                   |           | STANDARD: NO | N-JEDEC          |             |

### NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS B AND C TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.



THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.



THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.



THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.4 mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT LESS THAN 0.07 mm.



EXACT SHAPE OF EACH CORNER IS OPTIONAL.



THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm AND 0.3 mm FROM THE LEAD TIP.



THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. THIS DIMENSION IS DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTER-LEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.



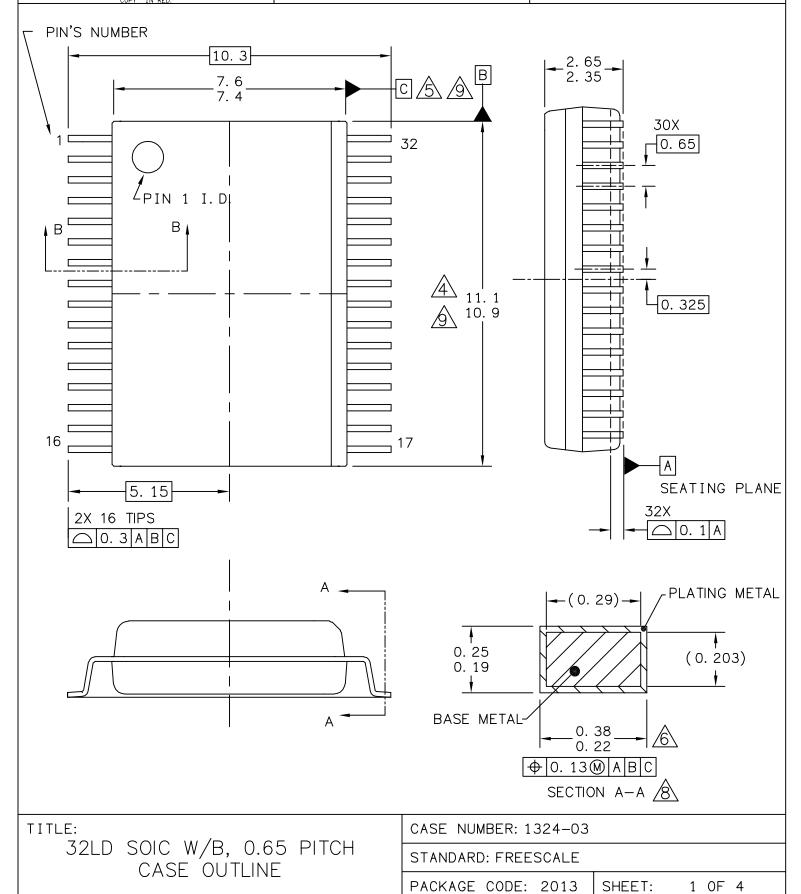
THESE DIMENSION RANGES DEFINE THE PRIMARY PCB KEEP-OUT AREA. MOLD LOCKING AND RESIN BLEED CONTROL FEATURES MAY BE VISIBLE.

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE    | PRINT VERSION NO | OT TO SCALE |
|---------------------------------------------------------|-----------|--------------|------------------|-------------|
| TITLE:                                                  |           | DOCUMENT NO  | ): 98ASA00259D   | REV: 0      |
| 32LD SOIC W/B, 0.6<br>4.6 X 4.6 FXPOSE                  |           | CASE NUMBER  | 2: 2150-01       | 29 JUL 2010 |
| 4.0 X 4.0 LXI USL                                       | DIAD      | STANDARD: NO | N-JEDEC          |             |

# Treescale semiconductor ALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVE VERSIONS ARE INCONTROLLED EXCEPT WHEN ACCE

Semiconductor

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED
DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED
VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED


# MECHANICAL OUTLINES DICTIONARY

DO NOT SCALE THIS DRAWING

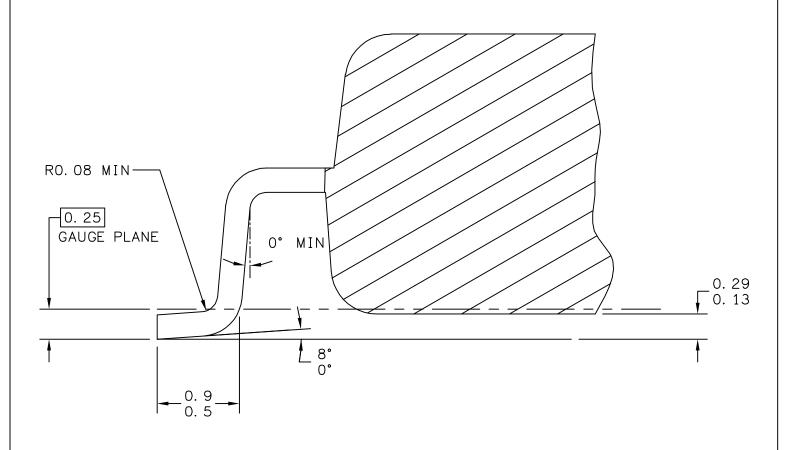
DOCUMENT NO: 98ARH99137A

PAGE: 1324

REV: B






### MECHANICAL OUTLINES **DICTIONARY**

DOCUMENT NO: 98ARH99137A PAGE:

1324

DO NOT SCALE THIS DRAWING

REV: В



SECTION B-B

TITLE:

32LD SOIC W/B, 0.65 PITCH CASE OUTLINE

CASE NUMBER: 1324-03

STANDARD: FREESCALE

PACKAGE CODE: 2013 SHEET: 2 OF 4



# MECHANICAL OUTLINES DICTIONARY

| DOCUMENT | NO: 98ARH99137A |
|----------|-----------------|
| PAGE:    | 1324            |
| <br>REV. | R               |

DO NOT SCALE THIS DRAWING | REV:

### NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS B AND C TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.4 mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT LESS THAN 0.07 mm.
- EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm AND 0.3 mm FROM THE LEAD TIP.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. THIS DIMENSION IS DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTER—LEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

32LD SOIC W/B, 0.65 PITCH, CASE OUTLINE CASE NUMBER: 1324-03

STANDARD: FREESCALE

PACKAGE CODE: 2013 | SHEET: 3 OF 4



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED
DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS
ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.

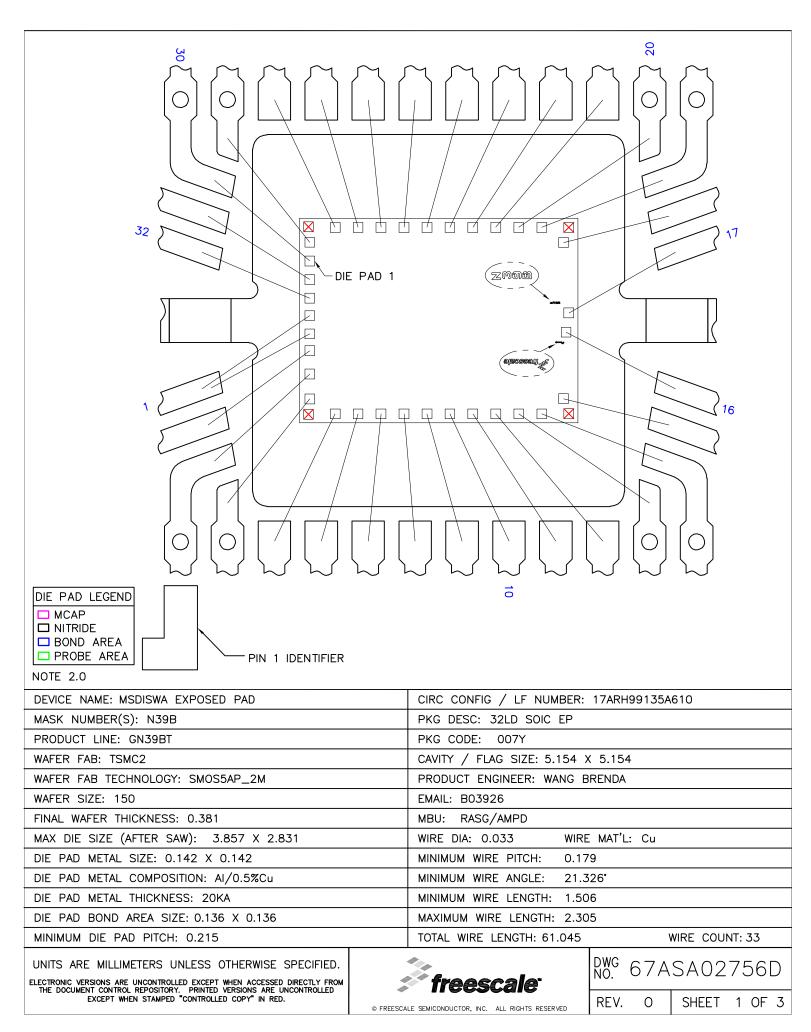
### REVISION HISTORY

DOCUMENT NO: 98ARH99137A
PAGE: 1324

В

REV:

| LTR | ORIGINATOR   | REVISIONS                                                                                                                                                                                                                                                                     | DRAI | FTER  |       | DATE    |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|---------|
| 0   | GARY JOHNSON | RELEASED FOR PRODUCTION                                                                                                                                                                                                                                                       |      | CUPID | LEE   | 02NOV00 |
| A   | GARY JOHNSON | UPDATED TO NEW DRAWING FORMAT. CHANGED LEADFRAME THICKNESS FROM 0.152 TO 0.203 MM CHANGED CASE NO. FROM 1324-01 TO 1324-02 CHANGED LEAD WIDTH FROM 0.24 TO 0.29 MM CHANGED STAND-OFF FROM 0.15/0.05 TO 0.29/0.13 ADDED SECTION A-A CHANGED NOTE 2, 3, 4, 5 AND 6 ADDED NOTE 9 |      | CUPID | LEE   | 28AUG01 |
| В   | TAYLOR LIU   | UPDATED TO FREESCALE FORMAT. SHO1, ADDED DIMENSION 0.325 SHO1, CHANGED TOLERANCE FROM +0.13@ C A@ B TO +0.13@ A B C  CREATED EXTERNAL CASE OUTLINE.                                                                                                                           |      | TAYLO | R LIU | 07APR05 |


TITLE:

32LD SOIC W/B, 0.65 PITCH, CASE OUTLINE

CASE NUMBER: 1324-03

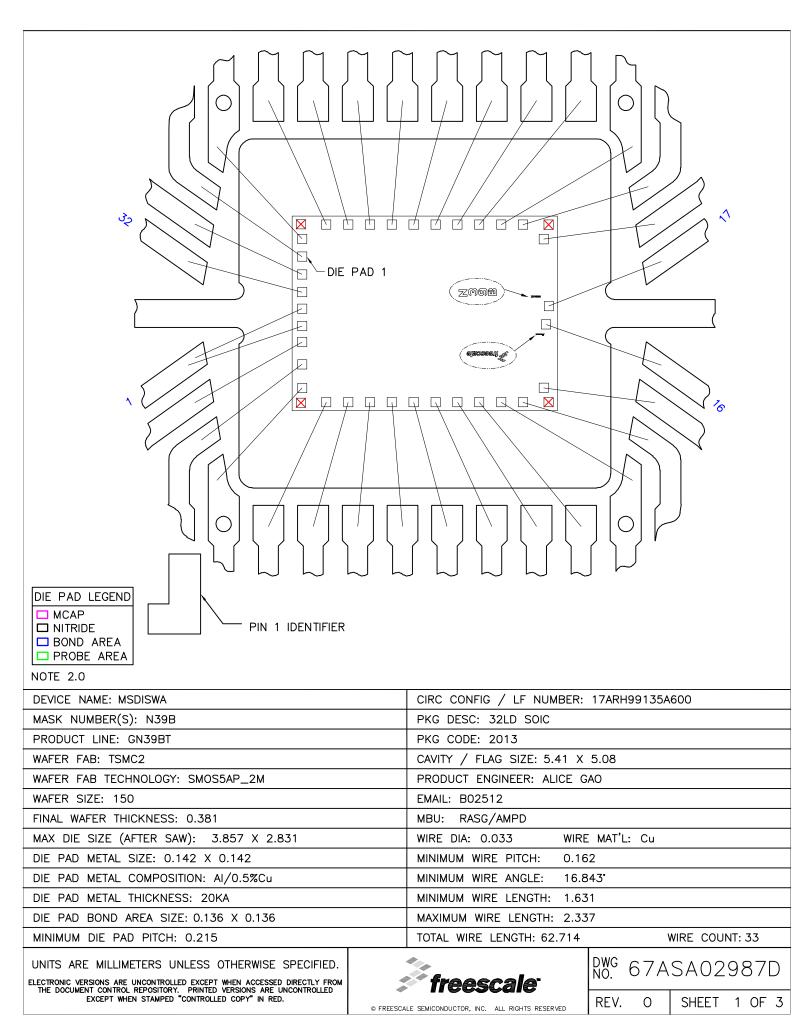
STANDARD: FREESCALE

PACKAGE CODE: 2013 | SHEET: 4 OF 4



### NOTES:

- 1.0 BONDING ALLOWED ONLY WITHIN DESIGNATED DIE BOND PAD AREAS. AUTO-CENTERING ON DIE PADS THAT HAVE SEPARATE BOND AND PROBE AREAS IS NOT ALLOWED.
- 2.0 ONLY THE DIE NITRIDE LAYER SHOWN. SEE OLP FOR OTHER COLOR CODED LAYERS. NOTE SOME DIE TECHNOLOGIES MAY NOT HAVE BOND AND PROBE LAYERS.
- 3.0 "X" LOCATED ON DIE PADS OR BOND FINGERS INDICATES NON-BONDED LOCATION.
- 4.0 DIE METAL PAD SIZE AND DIE BOND AREA SIZE DIMENSIONS IN THE TABLE ARE THE SMALLEST THAT OCCUR ON THIS DEVICE.
- 5.0 QUALIFICATION TIER: AEC1
- 6.0 ASSEMBLY DESIGN RULE DEVIATIONS:
  - 6.1 DIE TECHNOLOGY SMOS5AP\_2M IS NOT QUALIFIED WITH CU WIRE. DESIGN RULES USED ARE QUALIFIED FOR THIS DESIGN ONLY. DO NOT USE FOR NEW PRODUCT INTRODUCTION (NPI) DESIGNS. MOVED TO PRODUCTION BASED ON CAB# 13120651M






# REVISION HISTORY

DOCUMENT NO: 67ASA02756D 3 OF 3 SHEET:

| ©FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED. |                  | DIQUITO DECEDVED                                                                                                                     |                                                                                                                                                                                                                                                                                                         |                                                          | 3 01 0      |             |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|-------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                              |                  | CEPT WHEN ACCESSED<br>TORY, PRINTED VERSIONS                                                                                         |                                                                                                                                                                                                                                                                                                         | REV.                                                     | 0           |             |  |  |  |  |  |  |
| LTR                                                                                                                                                                                                                                          | ORIGINATOR       |                                                                                                                                      | REVISIONS                                                                                                                                                                                                                                                                                               |                                                          | DRAFTER     | DATE        |  |  |  |  |  |  |
| XO                                                                                                                                                                                                                                           | MARIANO<br>CHING | RELEASED<br>(DAR #205                                                                                                                | TO ENGINEERING EVALUATION<br>92)                                                                                                                                                                                                                                                                        | GIDEON                                                   | 04 JUN 2013 |             |  |  |  |  |  |  |
| 0                                                                                                                                                                                                                                            | MARIANO<br>CHING | REVISION IS<br>WITH NO CO<br>BEEN RUNI<br>FOR SEVER<br>VIOLATIONS<br>DESIGN RU<br>NOT CHECK<br>TEAMS HAS<br>CONVERSICE<br>HISTORY. F | FOR PRODUCTION.THIS BONDING DIS FOR CU WIRE DOCUMENTATION OF THANGE TO THE DESIGN. THIS DESIGNING IN HIGH VOLUME MANUFACTURES TO CURRENT FSL DIE AND PACKALES, HOWEVER THE DESIGN RULES OF APPROVED THESE LEGACY PARTINS BASED ON THEIR MANUFACTURES REFERENCED CU BOND DIAGRAM IS 56D_XO. (DAR #21398) | NLY<br>GN HAS<br>RING<br>TAIN<br>AGE<br>WERE<br>PPE<br>T | NS          | 17 DEC 2013 |  |  |  |  |  |  |



### NOTES:

- 1.0 BONDING ALLOWED ONLY WITHIN DESIGNATED DIE BOND PAD AREAS. AUTO-CENTERING ON DIE PADS THAT HAVE SEPARATE BOND AND PROBE AREAS IS NOT ALLOWED.
- 2.0 ONLY THE DIE NITRIDE LAYER SHOWN. SEE OLP FOR OTHER COLOR CODED LAYERS. NOTE SOME DIE TECHNOLOGIES MAY NOT HAVE BOND AND PROBE LAYERS.
- 3.0 "X" LOCATED ON DIE PADS OR BOND FINGERS INDICATES NON-BONDED LOCATION.
- 4.0 DIE METAL PAD SIZE AND DIE BOND AREA SIZE DIMENSIONS IN THE TABLE ARE THE SMALLEST THAT OCCUR ON THIS DEVICE.
- 5.0 QUALIFICATION TIER: AEC1
- 6.0 ASSEMBLY DESIGN RULE DEVIATIONS:
  - 6.1 DIE TECHNOLOGY SMOS5AP\_2M IS NOT QUALIFIED WITH CU WIRE. DESIGN RULES USED ARE QUALIFIED FOR THIS DESIGN ONLY. DO NOT USE FOR NEW PRODUCT INTRODUCTION (NPI) DESIGNS. MOVED TO PRODUCTION BASED ON CAB# 13120651M.





# REVISION HISTORY

DOCUMENT NO: 67ASA02987D 3 OF 3 SHEET:

| ©FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. |                                                                                                   | DIQUITE DECEDVED                                                                                        |                                                                                                                                                                                                                                                                                                                                                     | 0112211                                                  |        |             |  |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------|-------------|--|--|--|--|--|
| ELECTRONIC<br>DIRECTLY FROM                         | VERSIONS ARE UNCONTROLLED EXT<br>M THE DOCUMENT CONTROL REPOSI'<br>OLLED EXCEPT WHEN STAMPED "COI | CEPT WHEN ACCESSED TORY. PRINTED VERSIONS                                                               |                                                                                                                                                                                                                                                                                                                                                     | REV.                                                     | 0      |             |  |  |  |  |  |
| LTR                                                 | ORIGINATOR                                                                                        |                                                                                                         | REVISIONS                                                                                                                                                                                                                                                                                                                                           | DRAFTER                                                  | DATE   |             |  |  |  |  |  |
| 0                                                   | MARIANO<br>CHING                                                                                  | REVISION I WITH NO C BEEN RUNI FOR SEVEF VIOLATIONS DESIGN RU NOT CHECI TEAMS HA' CONVERSION HISTORY. F | FOR PRODUCTION.THIS BONDING DIS FOR CU WIRE DOCUMENTATION OF THANGE TO THE DESIGN. THIS DESIGNING IN HIGH VOLUME MANUFACTURED YEARS. THIS DESIGN MAY CONSTRUCTOR OF THE PROPURE AND PACKALES, HOWEVER THE DESIGN RULES OF THE PROPURE APPROVED THESE LEGACY PARTICLES BASED ON THEIR MANUFACTURES REFERENCED AU BOND DIAGRAM IS TOD_O. (DAR #21200) | NLY<br>GN HAS<br>RING<br>TAIN<br>AGE<br>WERE<br>PPE<br>T | GIDEON | 03 OCT 2013 |  |  |  |  |  |

# Customer Engineering Approval

# **Design FMEA**

### POTENTIAL FAILURE MODE AND EFFECTS ANLAYSIS (Design FMEA)

| System Subsystem |                               |                                                                    | Control Number / Issue: 83AS | SA10126D/O |
|------------------|-------------------------------|--------------------------------------------------------------------|------------------------------|------------|
| ✓ Component:     | MSDI                          | Erik Thompson  Prepared By: RS585 (480) 413-8408                   | FMEA Date (Orig.) :          | 10/15/01   |
|                  |                               | Motorola SPS, TSPG,                                                |                              |            |
|                  | Compar                        | y, Group, Site/Business Unit: APD                                  | (Rev.) :                     | 11/11/02   |
| Core Tean        | : Frik Thompson (Design) Robe | ert Divon (Design) Peter Bills (Applications) Tiffany Le (Product) |                              |            |

|                  |              | 1                      |                                             |             |                  |                                                 |             |                                             |                       |             |                          |                                         | ACTIO           | N RE   | SUL.   | TS     |             |
|------------------|--------------|------------------------|---------------------------------------------|-------------|------------------|-------------------------------------------------|-------------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|--------|--------|--------|-------------|
| L<br>i<br>n<br>e | Item Pin     | POTENTIAL FAILURE MODE | POTENTIAL EFFECT(S) OF<br>FAILURE           | S<br>E<br>V | C<br>L<br>A<br>S | POTENTIAL CAUSE(S)/<br>MECHANISIM(S) OF FAILURE | C<br>U<br>R |                                             | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN | E      | c      | E      | R<br>P<br>N |
| 1                | Pin 1 / GND  | Open                   | Drive MCU I/O to VPWR                       | 8           |                  | Open bond wire, metal migration                 | 1           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |        |        |        |             |
| 2                |              | Short Ground           | N/A                                         |             |                  |                                                 |             |                                             |                       |             |                          |                                         |                 |        |        |        |             |
| 3                |              | Short Vdd              | AMUX non-functional, SPI non-<br>functional | - 5         |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 4                |              | Short Vpwr             | IC non-functional                           | 8           |                  | IC Metalization/process                         | 1           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |        |        |        |             |
| 5                |              | Short to Pin 2<br>SI   | SPI non-functional                          | 5           |                  | IC Metalization/process short, Bond wire short  | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        |        |             |
| 6                | Pin 2 / SI   | Open                   | SPI non-functional                          | 5           |                  | Open bond wire, metal migration                 | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        |        |             |
| 7                |              | Short Ground           | SPI non-functional                          | 5           |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        |        |             |
| 8                |              | Short Vdd              | SPI non-functional                          | 5           |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        |        |             |
| 9                |              | Short Vpwr             | Permanent Damage to IC                      | 8           |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |        |        | T      |             |
| 10               |              | Short to Pin 3<br>SCLK | SPI non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 11               | Pin 3 / SCLK | Open                   | SPI non-functional                          | 5           |                  | Open bond wire, metal migration                 | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 12               |              | Short Ground           | SPI non-functional                          | 5           |                  | IC Metalization/process                         | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 13               |              | Short Vdd              | SPI non-functional                          | 5           |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 14               |              | Short Vpwr             | Permanent Damage to IC                      | 8           |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |        |        | T      |             |
| 15               |              | Short to Pin 4<br>CSB  | SPI non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 16               | Pin 4 / CSB  | Open                   | SPI non-functional                          | 5           |                  | Open bond wire, metal migration                 | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 17               |              | Short Ground           | SO in unknown state, SPI non-<br>functional | 5           |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |        |        | T      |             |
| 18               |              | Short Vdd              | SPI non-functional                          | 5           |                  | IC Metalization/process<br>short                | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 | $\Box$ | $\top$ | $\top$ |             |
| 19               |              | Short Vpwr             | Permanent Damage to IC                      | 8           |                  | IC Metalization/process short                   | 1           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |        | $\top$ | $\top$ |             |
| 20               |              | Short to Pin 5<br>SP0  | SPI non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 | П      | $\top$ | $\top$ |             |
| 21               | Pin 5 / SP0  | Open                   | SP0 non-functional                          | 5           |                  | Open bond wire, metal migration                 | 1           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 | П      | $\top$ | $\top$ |             |

### POTENTIAL FAILURE MODE AND EFFECTS ANLAYSIS (Design FMEA)

| System Subsystem |                    |                                                                                | Control Number / Issue: 83A | SA10126D/O |
|------------------|--------------------|--------------------------------------------------------------------------------|-----------------------------|------------|
| ✓ Component:     | MSDI               | Erik Thompson                                                                  | FMFA Data (Origin)          | 10/15/01   |
|                  | MSDI               | Prepared By: RS585 (480) 413-8408  Motorola SPS, TSPG.                         | FMEA Date (Orig.) :         | 10/15/01   |
|                  |                    | Company, Group, Site/Business Unit: APD                                        | (Rev.) :                    | 11/11/02   |
| Core Tean        | n: Erik Thompson / | (Dosign) Pobort Divon (Dosign) Potor Bills (Applications) Tiffany Lo (Product) |                             |            |

|             |             |                        |                                                     |             |                  |                                                |           |                                             |                       |             |                          |                                         | ACTIO           | N RE        | SUL    | .TS         |             |
|-------------|-------------|------------------------|-----------------------------------------------------|-------------|------------------|------------------------------------------------|-----------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|-------------|--------|-------------|-------------|
| L<br>i<br>n | Item Pin    | POTENTIAL FAILURE MODE | POTENTIAL EFFECT(S) OF<br>FAILURE                   | S<br>E<br>V | C<br>L<br>A<br>S | MECHANISIM(S) OF FAILURE                       | O C C U R |                                             | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN | S<br>E<br>V | С      | D<br>E<br>T | R<br>P<br>N |
| 22          |             | Short Ground           | SP0 non-functional                                  | 5           | ľ                | IC Metalization/process                        | 1         | Testing at probe and again at               | 1                     | 5           | None                     |                                         |                 | П           | $\neg$ | $\exists$   | $\neg$      |
|             |             |                        |                                                     |             |                  | short                                          |           | assembly site                               |                       |             |                          |                                         |                 |             |        |             |             |
| 23          |             | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 24          |             | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 25          |             | Short to Pin 6<br>SP1  | SP0 and SP1 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        | T           | $\Box$      |
| 26          | Pin 6 / SP1 | Open                   | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 27          |             | Short Ground           | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 28          |             | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 29          |             | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 30          |             | Short to Pin 7<br>SP2  | SP1 and SP2 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        | T           |             |
| 31          | Pin 7 / SP2 | Open                   | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        | $\Box$      |             |
| 32          |             | Short Ground           | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 33          |             | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 34          |             | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 35          |             | Short to Pin 8<br>SP3  | SP2 and SP3 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 36          | Pin 8 / SP3 | Open                   | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 37          |             | Short Ground           | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 38          |             | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |
| 39          |             | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        | $\top$      |             |
| 40          |             | Short to Pin 9<br>SG0  | SP3 and SG0 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |        |             |             |

| System       |                     |                                                                               |                             |            |
|--------------|---------------------|-------------------------------------------------------------------------------|-----------------------------|------------|
| Subsystem    |                     |                                                                               | Control Number / Issue: 83A | SA10126D/O |
|              |                     | Erik Thompson                                                                 |                             |            |
| ✓ Component: | MSDI                | Prepared By: RS585 (480) 413-8408                                             | FMEA Date (Orig.) :         | 10/15/01   |
|              |                     | Motorola SPS, TSPG,                                                           |                             |            |
|              |                     | Company, Group, Site/Business Unit: APD                                       | (Rev.) :                    | 11/11/02   |
| Core Tear    | m: Frik Thompson (I | Design) Robert Dixon (Design) Peter Bills (Applications) Tiffany Le (Product) |                             |            |

|                  |              |                        |                                                     |             |                  |                                                 |           |                                             |                       |             |                          |                                         | ACTIO           | N RE        | SUL | .TS         |             |
|------------------|--------------|------------------------|-----------------------------------------------------|-------------|------------------|-------------------------------------------------|-----------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|-------------|-----|-------------|-------------|
| L<br>i<br>n<br>e | Item Pin     | POTENTIAL FAILURE MODE | POTENTIAL EFFECT(S) OF<br>FAILURE                   | S<br>E<br>V | C<br>L<br>A<br>S | POTENTIAL CAUSE(S)/<br>MECHANISIM(S) OF FAILURE | O C C U R |                                             | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN | S<br>E<br>V | С   | D<br>E<br>T | R<br>P<br>N |
| 41               | Pin 9 / SG0  | Open                   | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     | $\top$      |             |
| 42               |              | Short Ground           | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     | T           |             |
| 43               |              | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     | T           | $\exists$   |
| 44               |              | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     | 1           |             |
| 45               |              | Short to Pin 10<br>SG1 | SG0 and SG1 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     | T           |             |
| 46               | Pin 10 / SG1 | Open                   | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 47               |              | Short Ground           | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 48               |              | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     |             | None                     |                                         |                 |             |     |             |             |
| 49               |              | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 50               |              | Short to Pin 11<br>SG2 | SG1 and SG2 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     | $\top$      | $\Box$      |
| 51               | Pin 11 / SG2 | Open                   | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 52               |              | Short Ground           | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 53               |              | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 54               |              | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 55               |              | Short to Pin 12<br>SG3 | SG2 and SG3 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     | T           |             |
| 56               | Pin 12 / SG3 | Open                   | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 57               |              | Short Ground           | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 58               |              | Short Vdd              | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |
| 59               |              | Short Vpwr             | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |             |     |             |             |

| System Subsystem |                     |                                                                              | Control Number / Issue: 83A | SA10126D/O |
|------------------|---------------------|------------------------------------------------------------------------------|-----------------------------|------------|
| ✓ Component:     | MSDI                | Erik Thompson Prepared By: RS585 (480) 413-8408                              | FMEA Date (Orig.) :         | 10/15/01   |
|                  |                     | Motorola SPS, TSPG,                                                          |                             |            |
|                  |                     | Company, Group, Site/Business Unit: APD                                      | (Rev.) :                    | 11/11/02   |
| Core Tean        | n: Frik Thompson (D | esign) Robert Divon (Design) Peter Rills (Applications) Tiffany Le (Product) | <del></del>                 |            |

|                  |               | 1                       |                                                     |             |                  |                                                 |           |                                             |                       |             |                          |                                         | ACTIO           | N RE | SULT    | rs      |             |
|------------------|---------------|-------------------------|-----------------------------------------------------|-------------|------------------|-------------------------------------------------|-----------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|------|---------|---------|-------------|
| L<br>i<br>n<br>e | Item Pin      | POTENTIAL FAILURE MODE  | POTENTIAL EFFECT(S) OF<br>FAILURE                   | S<br>E<br>V | C<br>L<br>A<br>S | POTENTIAL CAUSE(S)/<br>MECHANISIM(S) OF FAILURE | 0 C C U R | CURRENT PROCESS CONTROLS                    | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN | E    |         | E   1   | R<br>P<br>N |
| 60               |               | Short to Pin 13<br>SG4  | SG3 and SG4 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | T       | T       | ٦           |
| 61               | Pin 13 / SG4  | Open                    | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | T       | T       |             |
| 62               |               | Short Ground            | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | T       | T       |             |
| 63               |               | Short Vdd               | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | T       | T       |             |
| 64               |               | Short Vpwr              | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |         |         |             |
| 65               |               | Short to Pin 14<br>SG5  | SG4 and SG5 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |         |         |             |
| 66               | Pin 14 / SG5  | Open                    | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |         |         |             |
| 67               |               | Short Ground            | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | $\perp$ |         |             |
| 68               |               | Short Vdd               | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |         | $\perp$ |             |
| 69               |               | Short Vpwr              | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |         |         |             |
| 70               |               | Short to Pin 15<br>SG6  | SG5 and SG6 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | T       | Τ       |             |
| 71               | Pin 15 / SG6  | Open                    | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | I       | $\Box$  |             |
| 72               |               | Short Ground            | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |         |         |             |
| 73               |               | Short Vdd               | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |         |         |             |
| 74               |               | Short Vpwr              | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     |             | None                     |                                         |                 |      |         |         |             |
| 75               |               | Short to Pin 16<br>VPWR | SG6 non-functional                                  | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | $\perp$ | $\perp$ |             |
|                  | Pin 16 / VPWR | Open                    | IC non-functional, remains in reset                 | 8           |                  | Open bond wire, metal migration                 |           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |      | $\perp$ | $\perp$ |             |
| 77               |               | Short Ground            | AMUX non-functional, SPI non-<br>functional         | 5           |                  | IC Metalization/process short                   |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | $\perp$ | $\perp$ |             |
| 78               |               | Short Vdd               | Permanent Damage to IC                              | 8           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |      |         |         |             |

| System Subsystem |                  |                                                                                                                                               | Control Number / Issue: 83A | SA10126D/O |
|------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
| Component:       | MSDI             | Erik Thompson  Prepared By: RS585 (480) 413-8408                                                                                              | FMEA Date (Orig.) :         | 10/15/01   |
| Core Tean        | n: Frik Thompson | Motorola SPS, TSPG,  Company, Group, Site/Business Unit: APD  (Design) Robert Dixon (Design) Peter Bills (Applications). Tiffany Le (Product) | (Rev.) :                    | 11/11/02   |

|             |                | 1                               |                                                     |             |                  |                                                 |           |                                             | П                     |             |                          |                                         | ACTIO           | N RE | SUL         | TS |             |
|-------------|----------------|---------------------------------|-----------------------------------------------------|-------------|------------------|-------------------------------------------------|-----------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|------|-------------|----|-------------|
| L<br>i<br>n | Item Pin       | POTENTIAL FAILURE MODE Function | POTENTIAL EFFECT(S) OF<br>FAILURE                   | S<br>E<br>V | C<br>L<br>A<br>S | POTENTIAL CAUSE(S)/<br>MECHANISIM(S) OF FAILURE | O C C U R | CURRENT PROCESS CONTROLS                    | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN |      | 0<br>C<br>C | E  | R<br>P<br>N |
| 79          |                | Short Vpwr                      | N/A                                                 |             |                  |                                                 |           |                                             |                       |             |                          |                                         |                 |      |             |    |             |
| 80          |                | Short to Pin 17<br>WAKEB        | Permanent Damage to WAKEB pin                       | 8           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |      |             | T  |             |
| 81          | Pin 17 / WAKEB | Open                            | WAKEB non-functional                                | 5           |                  | Open bond wire, metal migration                 |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 82          |                | Short Ground                    | WAKEB non-functional                                | 5           |                  | IC Metalization/process short                   |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 83          |                | Short Vdd                       | WAKEB non-functional                                | 5           |                  | IC Metalization/process short                   |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 84          |                | Short Vpwr                      | Permanent Damage to WAKEB pin                       | 8           |                  | IC Metalization/process short                   |           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |      |             |    |             |
| 85          |                | Short to Pin 18<br>SG13         | WAKEB and SG13 non-<br>functional                   | 5           |                  | Solder short, Bond wire short, short PCB trace  |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 86          | Pin 18 / SG13  | Open                            | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 87          |                | Short Ground                    | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 88          |                | Short Vdd                       | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 89          |                | Short Vpwr                      | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 90          |                | Short to Pin 19<br>SG12         | SG13 and SG12 non-<br>functional                    | 5           |                  | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 91          | Pin 19 / SG12  | Open                            | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 92          |                | Short Ground                    | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 93          |                | Short Vdd                       | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 94          |                | Short Vpwr                      | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 95          |                | Short to Pin 20<br>SG11         | SG12 and SG11 non-<br>functional                    | 5           |                  | Solder short, Bond wire short, short PCB trace  |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 96          | Pin 20 / SG11  | Open                            | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 97          |                | Short Ground                    | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             |    |             |
| 98          |                | Short Vdd                       | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                   |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |             | T  |             |

| System Subsystem |                               | , · · · · · · · · · · · · · · · · · · ·                              | Control Number / Issue: 83AS | SA10126D/O |
|------------------|-------------------------------|----------------------------------------------------------------------|------------------------------|------------|
| ✓ Component:     | MSDI                          | Erik Thompson Prepared By: RS585 (480) 413-8408                      | FMEA Date (Orig.) :          | 10/15/01   |
|                  |                               | Motorola SPS, TSPG,                                                  |                              |            |
|                  | Compa                         | ny, Group, Site/Business Unit: APD                                   | (Rev.) :                     | 11/11/02   |
| Core Tean        | : Frik Thompson (Design) Robe | ert Dixon (Design), Peter Rills (Applications), Tiffany Le (Product) |                              |            |

|             |               | 1                                     |                                                     |             |               |                                                 |           |                                             |                       |             |                          |                                         | ACTIO           | N RES    | SULT | rs                |
|-------------|---------------|---------------------------------------|-----------------------------------------------------|-------------|---------------|-------------------------------------------------|-----------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|----------|------|-------------------|
| L<br>i<br>n | Item Pin      | POTENTIAL<br>FAILURE MODE<br>Function | POTENTIAL EFFECT(S) OF<br>FAILURE                   | S<br>E<br>V | CLASS         | POTENTIAL CAUSE(S)/<br>MECHANISIM(S) OF FAILURE | O C C U R |                                             | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN | E        |      | D R<br>E P<br>T N |
| 99          |               | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      |                   |
| 100         |               | Short to Pin 21<br>SG10               | SG11 and SG10 non-<br>functional                    | 5           |               | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      |                   |
| 101         | Pin 21 / SG10 | Open                                  | SP0 non-functional                                  | 5           | $\overline{}$ | Open bond wire, metal                           | 1         | Testing at probe and again at               | 1                     | 5           | None                     |                                         |                 | $\vdash$ | +    | +                 |
|             | 217 0010      | Opon                                  |                                                     | Ü           |               | migration                                       | ١.        | assembly site                               | '                     |             | 110110                   |                                         |                 |          |      |                   |
| 102         |               | Short Ground                          | SP0 non-functional                                  | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 103         |               | Short Vdd                             | SP0 non-functional                                  | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 104         |               | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |               | IC Metalization/process<br>short                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | 1    |                   |
| 105         |               | Short to Pin 22<br>SG9                | SG10 and SG9 non-functional                         | 5           |               | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 106         | Pin 22 / SG9  | Open                                  | SP0 non-functional                                  | 5           |               | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 107         |               | Short Ground                          | SP0 non-functional                                  | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 108         |               | Short Vdd                             | SP0 non-functional                                  | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 109         |               | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      | $\top$            |
| 110         |               | Short to Pin 23<br>SG8                | SG9 and SG8 non-functional                          | 5           |               | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 111         | Pin 23 / SG8  | Open                                  | SP0 non-functional                                  | 5           |               | Open bond wire, metal migration                 | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | T    |                   |
| 112         |               | Short Ground                          | SP0 non-functional                                  | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      |                   |
| 113         |               | Short Vdd                             | SP0 non-functional                                  | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          | 1    |                   |
| 114         |               | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |               | IC Metalization/process<br>short                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      |                   |
| 115         |               | Short to Pin 24<br>SG7                | SG8 and SG7 non-functional                          | 5           |               | Solder short, Bond wire short, short PCB trace  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      |                   |
| 116         | Pin 24 / SG7  | Open                                  | SP0 non-functional                                  | 5           |               | Open bond wire, metal migration                 |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      |                   |
| 117         |               | Short Ground                          | SP0 non-functional                                  | 5           |               | IC Metalization/process short                   | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |          |      |                   |

| System Subsystem |                     |                                                                              | Control Number / Issue: 83A | SA10126D/O |
|------------------|---------------------|------------------------------------------------------------------------------|-----------------------------|------------|
| ✓ Component:     | MSDI                | Erik Thompson Prepared By: RS585 (480) 413-8408                              | FMEA Date (Orig.) :         | 10/15/01   |
|                  |                     | Motorola SPS, TSPG,                                                          |                             |            |
|                  |                     | Company, Group, Site/Business Unit: APD                                      | (Rev.) :                    | 11/11/02   |
| Core Tean        | n: Frik Thompson (D | esign) Robert Divon (Design) Peter Rills (Applications) Tiffany Le (Product) | <del></del>                 |            |

|             |              |                                       |                                                     |             |                  |                                                |           |                                             |                       |             |                          |                                         | ACTIO           | N RE | SUL | TS     |             |
|-------------|--------------|---------------------------------------|-----------------------------------------------------|-------------|------------------|------------------------------------------------|-----------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|------|-----|--------|-------------|
| L<br>i<br>n | Item Pin     | POTENTIAL<br>FAILURE MODE<br>Function | POTENTIAL EFFECT(S) OF<br>FAILURE                   | S<br>E<br>V | C<br>L<br>A<br>S | MECHANISIM(S) OF FAILURE                       | 0 C C U R |                                             | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN | E    |     | E      | R<br>P<br>N |
| 118         |              | Short Vdd                             | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 | П    | T   | Т      | ٦           |
| 119         |              | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process<br>short               | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | 1      |             |
| 120         |              | Short to Pin 25<br>SP4                | SG7 and SP4 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\top$ | ٦           |
| 121         | Pin 25 / SP4 | Open                                  | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      | $\exists$   |
| 122         |              | Short Ground                          | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      | П           |
| 123         |              | Short Vdd                             | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      |             |
| 124         |              | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     |        |             |
| 125         |              | Short to Pin 26<br>SP5                | SP4 and SP5 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\top$ | $\exists$   |
| 126         | Pin 26 / SP5 | Open                                  | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      | П           |
| 127         |              | Short Ground                          | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      |             |
| 128         |              | Short Vdd                             | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      |             |
| 129         |              | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     |        |             |
| 130         |              | Short to Pin 27<br>SP6                | SP5 and SP6 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\top$ | ٦           |
| 131         | Pin 27 / SP6 | Open                                  | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      | $\Box$      |
| 132         |              | Short Ground                          | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      |             |
| 133         |              | Short Vdd                             | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 | П    |     | T      | $\neg$      |
| 134         |              | Short Vpwr                            | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     |        |             |
| 135         |              | Short to Pin 28<br>SP7                | SP6 and SP7 non-functional                          | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\top$ |             |
| 136         | Pin 28 / SP7 | Open                                  | SP0 non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T      | $\exists$   |

| System Subsystem |                                                                                                                                                                 | Control Number / Issue: 83ASA10126D/O |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| ✓ Component:     | Erik Thompson  MSDI                                                                                                                                             | FMEA Date (Orig.) : 10/15/01          |
| Core Teen        | Motorola SPS, TSPG,  Company, Group, Site/Business Unit: APD  Frilk Thompson (Design), Robert Diver (Design), Robert Pills (Applications), Tiffony Lo (Product) | (Rev.):11/11/02                       |

|             |               |                         |                                                     |             |                  |                                                |           |                                             |                       |             |                          |                                         | ACTIO           | N RE | SUL | TS           |             |
|-------------|---------------|-------------------------|-----------------------------------------------------|-------------|------------------|------------------------------------------------|-----------|---------------------------------------------|-----------------------|-------------|--------------------------|-----------------------------------------|-----------------|------|-----|--------------|-------------|
| L<br>i<br>n | Item Pin      | POTENTIAL FAILURE MODE  | POTENTIAL EFFECT(S) OF<br>FAILURE                   | S<br>E<br>V | C<br>L<br>A<br>S | MECHANISIM(S) OF FAILURE                       | 0 C C U R |                                             | D<br>E<br>T<br>E<br>C | R<br>P<br>N | RECOMMENDED<br>ACTION(S) | RESPONSIBILITY & TARGET COMPLETION DATE | ACTION<br>TAKEN |      | c   |              | R<br>P<br>N |
| 137         |               | Short Ground            | SP0 non-functional                                  | 5           |                  | IC Metalization/process                        | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 | П    | Т   | T            | $\neg$      |
| 138         |               | Short Vdd               | SP0 non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T            |             |
| 139         |               | Short Vpwr              | SP0 non-functional, VDD clamped to pad zener (~10V) | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     |              |             |
| 140         |               | Short to Pin 29<br>INTB | INTB and SP7 clamped to pad zener (~10V)            | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | T            | $\neg$      |
| 141         | Pin 29 / INTB | Open                    | INTB non-functional                                 | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     |              |             |
| 142         |               | Short Ground            | INTB non-functional, excessive current in VDD       | 5           |                  | IC Metalization/process short                  |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     |              |             |
| 143         |               | Short Vdd               | INTB non-functional                                 | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     |              |             |
| 144         |               | Short Vpwr              | Permanent Damage to IC                              | 8           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |      |     | $\perp$      |             |
| 145         |               | Short to Pin 30<br>AMUX | INTB non-functional, AMUX non-functional            | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\perp$      |             |
| "           | Pin 30 / AMUX | Open                    | AMUX non-functional                                 | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\perp$      |             |
| 147         |               | Short Ground            | AMUX non-functional                                 | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     |             | None                     |                                         |                 |      |     | $\perp$      |             |
| 148         |               | Short Vdd               | AMUX non-functional                                 | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\perp$      |             |
| 149         |               | Short Vpwr              | Possible IC damage, excessive voltage on VDD        | 8           |                  | IC Metalization/process short                  |           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 | Ш    |     | $\perp$      |             |
| 150         |               | Short to Pin 31<br>VDD  | AMUX non-functional                                 | 5           |                  | Solder short, Bond wire short, short PCB trace |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\downarrow$ | _           |
|             | Pin 31 / VDD  | Open                    | AMUX non-functional, SPI non-functional             |             |                  | Open bond wire, metal migration                |           | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\downarrow$ | _           |
| 152         |               | Short Ground            | Permanent damage to IC,<br>excessive current in VDD | 8           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |      |     | $\downarrow$ | _           |
| 153         |               | Short Vdd               | N/A                                                 |             |                  |                                                |           | -                                           |                       |             | N                        |                                         |                 |      | _   | $\perp$      | $\Box$      |
| 154         |               | Short Vpwr              | Permanent damage to IC                              | 8           |                  | IC Metalization/process<br>short               |           | Testing at probe and again at assembly site | 1                     | 8           | None                     |                                         |                 |      |     | $\perp$      | $\Box$      |
| 155         |               | Short to Pin 32<br>SO   | SPI non-functional, excessive current in VDD        | 5           |                  | Solder short, Bond wire short, short PCB trace | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      | _   | $\perp$      |             |
|             | Pin 32 / SO   | Open                    | SPI non-functional                                  | 5           |                  | Open bond wire, metal migration                | 1         | Testing at probe and again at assembly site | 1                     |             | None                     |                                         |                 |      | _   | $\perp$      | $\perp$     |
| 157         |               | Short Ground            | SPI non-functional                                  | 5           |                  | IC Metalization/process short                  | 1         | Testing at probe and again at assembly site | 1                     | 5           | None                     |                                         |                 |      |     | $\perp$      |             |

| System Subsystem |                                                                                                                                          | Control Number / Issue: 83ASA10126D/O |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| ✓ Component:     | Erik Thompson  MSDI                                                                                                                      | FMEA Date (Orig.) :10/15/01           |  |
| Core Team:       | Company, Group, Site/Business Unit: APD  Erik Thompson (Design), Robert Dixon (Design), Peter Bills (Applications), Tiffany Le (Product) | (Rev.):11/11/02                       |  |

|     |            |                |                        |   |   |                          |   |                               |   |   |             |                  | ACTIO  | N RE | SUL | TS             |   |
|-----|------------|----------------|------------------------|---|---|--------------------------|---|-------------------------------|---|---|-------------|------------------|--------|------|-----|----------------|---|
| ı,  | Item Pin   | POTENTIAL      | POTENTIAL EFFECT(S) OF |   | С |                          | 0 | CURRENT PROCESS CONTROLS      | D |   | RECOMMENDED | RESPONSIBILITY & | ACTION |      |     | $\blacksquare$ |   |
| 7   | item i iii | FAILURE MODE   | FAILURE                | S | L | MECHANISIM(S) OF FAILURE | С |                               | E | R | ACTION(S)   | TARGET           | TAKEN  | S    |     | D              |   |
| '   |            | Function       |                        | Е | Α |                          | С |                               | T | Р |             | COMPLETION DATE  |        | Е    |     |                | Р |
| l n |            | runction       |                        | ٧ | S |                          | U |                               | E | N |             |                  |        | ٧    | c   | т              | N |
| e   |            |                |                        |   | S |                          | R |                               | C |   |             |                  |        |      | _   | 4              |   |
| 15  | 3          | Short Vdd      | SPI non-functional     | 5 |   | IC Metalization/process  | 1 | Testing at probe and again at | 1 | 5 | None        |                  |        |      |     |                |   |
|     |            |                |                        |   |   | short                    |   | assembly site                 |   |   |             |                  |        |      |     |                |   |
| 15  | 9          | Short Vpwr     | Permanent damage to IC | 8 |   | IC Metalization/process  | 1 | Testing at probe and again at | 1 | 8 | None        |                  |        |      |     |                |   |
|     |            |                | _                      |   |   | short                    |   | assembly site                 |   |   |             |                  |        |      |     |                |   |
| 16  |            | Short to Pin 1 | SPI non-functional     | 5 |   | Solder short, Bond wire  | 1 | Testing at probe and again at | 1 | 5 | None        |                  |        |      | П   | Т              | П |
|     |            | GND            |                        |   |   | short, short PCB trace   |   | assembly site                 |   |   |             |                  |        |      |     |                |   |
| 16  | 1          |                |                        |   |   |                          |   |                               |   |   |             |                  |        |      |     | $\Box$         |   |

# **Process Flow Diagrams**

High Level Flow

(Detailed Process Flow Diagrams are part of the Freescale Control Plans, if applicable to this PPAP)



#### HIGH LEVEL FLOW CHART

| Customer Part<br>Number: | Various | Date:                  | 12 December, 2013                   |
|--------------------------|---------|------------------------|-------------------------------------|
| Part Name:               | MSDISWA | Freescale Part Number: | MC33972ATEK(R2)/<br>MC33972ATEW(R2) |

| Process                           | Location   | City, State or Country |
|-----------------------------------|------------|------------------------|
| Design                            | FSL-AMPD   | Tempe,Arizona,USA      |
| Wafer Fab                         | TSMC2 FAB  | Hsinchu, Taiwan        |
| Assembly                          | FSL-TJN-FM | Tianjin, China         |
| Burn-in                           | NA         | NA                     |
| Final Test                        | FSL-TJN-FM | Tianjin, China         |
| Tape & Reel                       | FSL-TJN-FM | Tianjin, China         |
| Final Inspection                  | FSL-TJN-FM | Tianjin, China         |
| Any Subcontractor Process         | TSMC2 FAB  | Hsinchu, Taiwan        |
| PDC (Product Distribution Center) | Various    | Various                |
| Customer Ship-to Locations        | Various    | Various                |

Note: This is a sequential listing of the major process steps, including all subcontractor processes and may include any alternate sites which are used for processing. There may be multiple sites listed for the various process steps.

# **Process FMEA**

# **TSMC PPAP Documents**

- TSMC PPAP documents (FMEAs, Control Plans, Cpks, and GR&R) are considered proprietary information by TSMC, classified as "TSMC INTERNAL USE ONLY" and cannot be distributed with Freescale PPAPs in accordance with an agreement with TSMC.
- The PPAP documents are pulled by Freescale External Manufacturing Quality and checked for compliance with TS16949 requirements.
- For special requests, Freescale may be able to review these documents on a limited basis with customers at the local Freescale sales office.
- If there are any questions, please contact:

Sally Cadena Massey, Freescale MSG NPI Reliability, 512-895-7310 sally.cadena.massey@freescale.com

Jeff Martsching, Freescale External Manufacturing, 512-996-4282 <u>Jeff.Martsching@freescale.com</u>



| Item:          | SOIC16/28/32/54   | 4ld                                    |      |      |                         |     |                     |                                 | (   | Contr      | ol Number/Issue:  | 83MCT00002A/B     | Y               |     |     |          |    |
|----------------|-------------------|----------------------------------------|------|------|-------------------------|-----|---------------------|---------------------------------|-----|------------|-------------------|-------------------|-----------------|-----|-----|----------|----|
| Type:          | Design            | _x_ Process                            |      |      |                         |     |                     | Company,                        | Gro | up,Si      | te/Business Unit: | Freescale, TJN-FM | 1               |     |     |          |    |
| Prepared By:   | Amanda Wang       |                                        |      |      |                         |     |                     |                                 |     |            | FMEA Date:        | 05-Oct-94         | (Orig.)         |     |     |          |    |
|                |                   | I.J. Liu,Ivory Guo                     | o,JU | N YI | ING ZHENG,XIA           | \OI | HUI KANG,SHUAI      | N YAO,Cyndi Hu,Grayson          | Ch  | en,L       | ANPING BAI,JIN    | 14-Nov-13         | (Rev.)          |     |     |          |    |
| •              |                   | -                                      |      |      |                         |     |                     | •                               |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     |                     |                                 |     |            |                   |                   | Action R        | esu | lts |          | _  |
| Process        | Potential Failure | Potential                              | S    | С    | Potential               | О   | Current Design/     | Current Design/ Process         | D   | R          | Recommended       | Responsibility &  | Actions Taken & |     | 0   | nΤ       | R  |
| Function/      | Mode              | Effect(s) of                           | E    | 1    | Cause(s)/               | C   | Process Controls    | Controls Detection              | E   |            | Action(s)         | Target            | Effective Date  | E   |     | E        |    |
|                | Mode              | Failure                                | V    |      |                         |     |                     | Controls Detection              | T   |            | Action(s)         |                   |                 | V   | C   |          |    |
| Requirements   |                   | ranure                                 | v    | a    | Mechanism(s)            | C   | Prevention          |                                 | 1   | IN         |                   | Completion Date   |                 | V   |     | 1        | IN |
|                |                   |                                        |      | S    | of Failue               |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      | S    |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
| 1. Wafer Mount | wafer broken      | Yield lost.(6)                         | 6    |      |                         | 2   | Quarterly PM        | Machine auto alarm (2)          | 2   | 24         | None              |                   |                 |     |     |          |    |
|                |                   |                                        |      |      | table problem           |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      | (wrong clamp            |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        | 6    |      | gan)<br>Roller pressure | 1   | Quarterlly PM       | Machine auto alarm(2)           | 2.  | 12         | None              |                   |                 |     | -   | +        |    |
|                |                   |                                        | O    |      | Roller pressure         | 1   | Quarterny 1 W       | Macinic auto alami(2)           | _   | 12         | None              |                   |                 |     |     |          |    |
|                |                   |                                        | 6    |      | Higher/uneven           | 1   | Quarterly PM        | Machine auto alarm(2)           | 2   | 12         | None              |                   |                 |     |     | 1        |    |
|                |                   |                                        |      |      | attachment table        |     | ,                   | ( )                             |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        | 6    |      | Improper vacuum         | 1   | Check per           | Machine auto alarm(2)           | 2   | 12         | None              |                   |                 |     |     |          |    |
|                |                   |                                        |      |      | pressure                |     | TCM/device change   |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     | _        |    |
|                |                   | dicing saw                             | 4    |      | Wafer mount             | 2   | Use wafer           | 25 points detection for the     | 2   | 16         | None              |                   |                 |     |     |          |    |
|                |                   | failure(4)                             |      |      | wrong orientation       |     | orientation system  | first piece of wafer by lot (4) |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     | with bar code scan. | Mount orientation auto          |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     |                     | check (2)                       |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                | bubble            | die fly-off(5)                         | 8    |      | Contaminated            | 1   |                     | Check every piece of wafer      | 4   | 32         | None              |                   |                 |     |     | <b>-</b> |    |
|                |                   | die                                    |      |      | Mylar                   |     |                     | by lot(4)                       |     |            |                   |                   |                 |     |     |          |    |
|                |                   | chipping&crack(5                       |      |      | •                       |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   | )                                      |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   | electrical                             |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
| 2 11/1 6       | G. 1 1 C          | failure(8)                             | 0    |      | , DI .                  | _   | CI 1 TCD ( 1 '01    | 05 1 1 1 1 6 1                  | _   | <i>C</i> 1 | N.T.              |                   |                 |     |     | 4        |    |
|                |                   | electrical failure                     | 8    |      | Improper DI water       | 2   | Check TCM shiftly   | 25 points detection for the     | 4   | 64         | None              |                   |                 |     |     |          |    |
| UV             | topside           | due to corrosion                       |      |      | pressure during         |     |                     | first piece of wafer by lot(4)  |     |            |                   |                   |                 |     |     |          |    |
|                |                   | or weak bond(8)<br>Reliability failure |      |      | saw                     |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   | due to corrosion                       |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   | or weak bond(8)                        |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   | NSOP in WB                             |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   | 11301 III WD                           |      |      |                         |     |                     |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        | 8    |      | Improper cleaning       | 2   | Check TCM shiftly.  | 25 points detection for the     | 4   | 64         | None              |                   |                 |     |     |          |    |
|                |                   |                                        |      |      | parameter               |     | Quarterly PM.       | first piece of wafer by lot(4)  | 1   |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     | Implement two-fluid |                                 |     |            |                   |                   |                 |     |     |          |    |
|                |                   |                                        |      |      |                         |     | nozzle clean.       |                                 | 1   |            | 1                 |                   |                 |     |     |          |    |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|              |                   |                            |   |   |                  |    |                      |                                |     |     |             |                  | Action I       |          |   |   |   |
|--------------|-------------------|----------------------------|---|---|------------------|----|----------------------|--------------------------------|-----|-----|-------------|------------------|----------------|----------|---|---|---|
| Process      | Potential Failure |                            | S |   | Potential        | О  | Current Design/      | Current Design/ Process        | D   |     | Recommended | Responsibility & |                |          | O |   |   |
| Function/    | Mode              | Effect(s) of               | Е | 1 | Cause(s)/        | C  | Process Controls     | Controls Detection             | Е   | P   | Action(s)   | Target           | Effective Date |          |   | E |   |
| Requirements |                   | Failure                    | V | a | Mechanism(s)     | C  | Prevention           |                                | T   | N   |             | Completion Date  |                | V        | C | T | N |
|              |                   |                            |   | s | of Failue        |    |                      |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   | s |                  |    |                      |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            | 8 |   | Foreign matter   | 2  | Implement a cover    | 25 points detection for the    | 4   | 64  | None        |                  |                |          |   |   | _ |
|              |                   |                            |   |   |                  |    | on the top of wafer  | first piece of wafer by lot(4) |     |     |             |                  |                |          |   |   | ı |
|              | 1                 |                            |   |   |                  | _  | cassette.            | 25                             | ļ., |     |             |                  |                |          |   |   | _ |
|              | die scratch       | electrical                 | 8 |   | blade breakage   | 2  | Check BBD sensor     | 25 points detection for the    | 4   | 64  | None        |                  |                |          |   |   | ı |
|              |                   | failure.(8)<br>Reliability |   |   |                  |    | BBD sensor auto      | first piece of wafer by lot(4) |     |     |             |                  |                |          |   |   | ı |
|              |                   | failure(8)                 |   |   |                  |    | alarm.               |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   | ranure(o)                  |   |   |                  |    | alaim.               |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            | 8 |   | blade worn out.  | 1  | Check and control    | Machine auto alarm(2)          | 2   | 16  | None        |                  |                |          |   |   | 1 |
|              |                   |                            |   |   |                  |    | remained exposure    |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | length per TCM.      |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | Blade wore out auto  |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            | 8 |   | die fly-off      | 2  | Check cutting table  | 25 points detection for the    | 4   | 64  | None        |                  |                |          |   |   | _ |
|              |                   |                            |   |   | ,                |    | surface condition    | first piece of wafer by lot(4) |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | during yearly PM.    |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | Visual check bubble  |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | after mount.         |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    |                      |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            | 8 |   | BBD sensor fail  | 1  | Check and clean      | 25 points detection for the    | 4   | 32  | None        |                  |                |          |   |   |   |
|              |                   |                            |   |   | to detect blade  |    | BBD sensor           | first piece of wafer by lot(4) |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   | broken/chipping  |    | sensitivity per TCM. |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | Quarterly PM to      |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | maintain BBD.        |                                |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            | 8 |   | Mishandling      | 2  | Operator follow WI   | 25 points detection for the    | 4   | 64  | None        |                  |                |          |   |   | _ |
|              |                   |                            |   |   | operation during |    |                      | first piece of wafer by lot(4) |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   | wafer inspection |    |                      | Sample PBI (4)                 |     |     |             |                  |                |          |   |   | ı |
|              | die chipping      | electrical                 | 8 |   | uneven wheel     | 2. | yearly PM.           | 25 points detection for the    | 4   | 64  | None        |                  |                | $\vdash$ | _ |   | — |
|              |                   | failure.(8)                |   |   | mount            | ľ  | dressing if          | first piece of wafer by lot    | ľ   | 0 1 |             |                  |                |          |   |   | ı |
|              |                   | Reliability                |   |   |                  |    | unevenness found     | and auto check every 1~30      |     |     |             |                  |                |          |   |   | ı |
|              |                   | failure(8)                 |   |   |                  |    | during blade         | lines (4)                      |     |     |             |                  |                |          |   |   | ı |
|              |                   |                            |   |   |                  |    | exchange             |                                |     |     |             |                  |                |          |   |   |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|              |                   |              |   |   |                               |    |                                       | -                             |   |    |             |                  | Action R        |   |   |   |   |
|--------------|-------------------|--------------|---|---|-------------------------------|----|---------------------------------------|-------------------------------|---|----|-------------|------------------|-----------------|---|---|---|---|
| Process      | Potential Failure | Potential    | S | C | Potential                     | О  | C                                     | Current Design/ Process       | D | R  | Recommended | Responsibility & | Actions Taken & | S | O |   |   |
| Function/    | Mode              | Effect(s) of | Е | 1 | Cause(s)/                     | C  | Process Controls                      | Controls Detection            | Е | P  | Action(s)   | Target           | Effective Date  |   |   | E |   |
| Requirements |                   | Failure      | V | a | Mechanism(s)                  | C  | Prevention                            |                               | T | N  |             | Completion Date  |                 | V | C | T | N |
|              |                   |              |   | s | of Failue                     |    |                                       |                               |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   | s |                               |    |                                       |                               |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              | 8 |   | improper                      | 1  | set checking item in                  | 25 points detection for the   | 4 | 32 | None        |                  |                 |   |   |   | Г |
|              |                   |              |   |   | installation of saw           |    | yearly PM plan.                       | first piece of wafer by lot   |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              |   |   | blade due to                  |    | check blade shaft                     | and auto check every 1~30     |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              |   |   | contamination on              |    | before installation                   | lines (4)                     |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              |   |   | shaft.                        |    | and dressing if                       |                               |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   |                               |    | contamination is                      |                               |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              | 8 |   | spindle speed out             | 1  | control spindle                       | 25 points detection for the   | 4 | 32 | None        |                  |                 |   |   |   | Г |
|              |                   |              |   |   | of control.                   |    | speed within +/- 5%                   | first piece of wafer by lot   |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   |                               |    | rpm during yearly                     | and auto check every 1~30     |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   |                               |    | PM. Check spindle                     | lines (4)                     |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   |                               |    | speed per TCM.                        |                               |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              | 8 |   | improper blade                | 1  | check blade setup                     | 25 points detection for the   | 4 | 32 | None        |                  |                 |   |   |   | T |
|              |                   |              |   |   | setup sensitivity.            |    | sensitivity voltage at                | first piece of wafer by lot   |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   |                               |    | pcb during yearly                     | and auto check every 1~30     |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              | 0 |   | T .                           |    | PM                                    | lines (4)                     | 4 | 22 | 27          |                  |                 |   |   |   |   |
|              |                   |              | 8 |   | Incorrect saw                 | 1  | Check blade label before installation | Visual check before saw(4)    | 4 | 32 | None        |                  |                 |   |   |   | İ |
|              |                   |              | 8 |   | blade type<br>BBD sensor fail | 2. | Check and clean                       | 25 points detection for the   | 4 | 64 | None        |                  |                 |   |   |   | Н |
|              |                   |              |   |   | to detect blade               | Ĩ  | BBD sensor                            | first piece of wafer by lot   |   |    | Tione       |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   | broken/chipping               |    | sensitivity per TCM.                  | and auto check every 1~30     |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   | 11 6                          |    | Quarterly PM to                       | lines (4)                     |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              |   |   |                               |    | maintain BBD.                         | , ,                           |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              | 8 |   | Adjust parameters             | 2  | Check per TCM.                        | 25 points detection for the   | 1 | 64 | None        |                  |                 |   |   |   | H |
|              |                   |              | 0 |   | in saw recipe and             | 2  | Lock saw recipe.                      | first piece of wafer of every | 4 | 04 | None        |                  |                 |   |   |   | İ |
|              |                   |              |   |   | machine                       |    | Lock saw recipe.                      | lot and auto check every      |   |    |             |                  |                 |   |   |   | İ |
|              |                   |              |   |   | improperly.                   |    |                                       | 1~30 lines(4)                 |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   |                               |    |                                       | . ,                           |   |    |             |                  |                 |   | _ |   | L |
|              |                   |              | 8 |   | ZZ Reil elleek                | 2  | Lock saw recipe.                      | 25 points detection for the   | 4 | 64 | None        |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   | caused partical               |    |                                       | first piece of wafer of every |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              |   |   | attach to Z2 blade.           |    |                                       | lot and auto check every      |   |    |             |                  |                 |   |   |   | ĺ |
|              |                   |              | 1 | I |                               |    |                                       | 1~30 lines(4)                 | I | l  |             |                  |                 |   |   |   | 1 |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|              |                   |                |   |   |                    |   |                     |                               |          |          |             |                  | Action F        |   |   |   |               |
|--------------|-------------------|----------------|---|---|--------------------|---|---------------------|-------------------------------|----------|----------|-------------|------------------|-----------------|---|---|---|---------------|
| Process      | Potential Failure | Potential      | S | С | Potential          | O | Current Design/     | Current Design/ Process       | D        | R        | Recommended | Responsibility & | Actions Taken & | S | O | D | R             |
| Function/    | Mode              | Effect(s) of   | Е | 1 | Cause(s)/          | C | Process Controls    | Controls Detection            | Е        | P        | Action(s)   | Target           | Effective Date  | Ε | C | Е | P             |
| Requirements |                   | Failure        | V | a | Mechanism(s)       | С | Prevention          |                               | Т        | N        |             | Completion Date  |                 | V | C | Т | N             |
| •            |                   |                |   | s | of Failue          |   |                     |                               |          |          |             | •                |                 |   |   |   |               |
|              |                   |                |   | s |                    |   |                     |                               |          |          |             |                  |                 |   |   |   |               |
|              |                   |                | 8 |   | Un-optimized saw   | 2 | SEM inspection to   | 25 points detection for the   | 4        | 64       | None        |                  |                 |   |   | Н | $\overline{}$ |
|              |                   |                |   |   | blade for solid    |   | check the saw blade | first piece of wafer of every |          |          |             |                  |                 |   |   |   | 1             |
|              |                   |                |   |   | metal design in    |   | status during new   | lot and auto check every      |          |          |             |                  |                 |   |   |   | 1             |
|              |                   |                |   |   | saw street         |   | saw blade           | 1~30 lines(4)                 |          |          |             |                  |                 |   |   |   | 1             |
|              |                   |                |   |   |                    |   | qualification.      |                               |          |          |             |                  |                 |   |   |   |               |
|              | mis-cutting       | electrical     | 8 |   | improper hairline  | 1 | Check hairline      | Visual sample check during    | 4        | 32       | None        |                  |                 |   |   | Н | $\vdash$      |
|              | mis-cutting       | failure.(8)    | 0 |   | alignment after    | 1 | alignment on        | saw(5)                        | 4        | 32       | None        |                  |                 |   |   |   |               |
|              |                   | Tallule.(6)    |   |   | blade change.      |   | dummy mylar after   | Machine auto check after      |          |          |             |                  |                 |   |   |   |               |
|              |                   |                |   |   | olade change.      |   | saw blade change.   | piece start(4)                |          |          |             |                  |                 |   |   |   | 1             |
|              |                   |                |   |   |                    |   | saw blade change.   | Machine auto check every      |          |          |             |                  |                 |   |   |   |               |
|              |                   |                |   |   |                    |   |                     | 1~30 lines(4)                 |          |          |             |                  |                 |   |   |   |               |
|              |                   |                | 8 |   | Theta Axis DDM     | 2 | Change cable during | Visual sample check during    | 5        | 80       | None        |                  |                 |   |   |   |               |
|              |                   |                |   |   | encoder cable fail |   | yearly PM           | saw(5)                        |          |          |             |                  |                 |   |   |   | 1             |
|              | Incomplete Cut    | Yield loss (6) | 6 |   | Improper dicing    | 1 | Set up per TCM.     | Visual sample check during    | 4        | 24       | None        |                  |                 |   |   | Н |               |
|              |                   | (0)            | ľ |   | parameter or       |   | The second          | saw(5)                        |          | -        |             |                  |                 |   |   |   | 1             |
|              |                   |                |   |   | cutting mode       |   |                     | Machine auto check after      |          |          |             |                  |                 |   |   |   |               |
|              |                   |                |   |   |                    |   |                     | piece start(4)                |          |          |             |                  |                 |   |   |   |               |
|              |                   |                |   |   |                    |   |                     | Machine auto check every      |          |          |             |                  |                 |   |   |   |               |
|              |                   |                |   |   |                    |   |                     | 1~30 lines(4)                 | <u> </u> |          |             |                  |                 |   |   | Ш | <u> </u>      |
|              |                   |                | 6 |   | Uneven chuck       | 1 | Check chuck table   | Visual sample check during    | 4        | 24       | None        |                  |                 |   |   |   |               |
|              |                   |                |   |   | table.             |   | surface condition   | saw(5)                        |          |          |             |                  |                 |   |   |   |               |
|              |                   |                |   |   |                    |   | during yearly PM.   | Machine auto check after      |          |          |             |                  |                 |   |   |   | 1             |
|              |                   |                |   |   |                    |   | Clean the chuck     | piece start(4)                |          |          |             |                  |                 |   |   |   | 1             |
|              |                   |                |   |   |                    |   | table per setup     | Machine auto check every      |          |          |             |                  |                 |   |   |   |               |
|              |                   |                | 6 |   | Improper blade     | 1 | Check NCS           | Sample check during saw(5)    | 4        | 24       | None        |                  |                 |   |   |   |               |
|              |                   |                |   |   | setup sensitivity  |   | sensitivity when    | Machine auto check after      |          |          |             |                  |                 |   |   |   | l             |
|              |                   |                |   |   |                    |   | machine setup.      | piece start(4)                |          |          |             |                  |                 |   |   |   | l             |
|              |                   |                |   |   |                    |   | Control set up      | Machine auto check every      |          |          |             |                  |                 |   |   |   | l             |
|              |                   |                |   |   |                    |   | interval below      | 1~30 lines(4)                 |          |          |             |                  |                 |   |   |   | l             |
|              |                   |                |   |   |                    |   | 1x/120 feet per     |                               |          |          |             |                  |                 |   |   |   | l             |
|              |                   |                |   |   |                    |   | catur chacklist     |                               |          | <u> </u> |             |                  |                 |   |   | ш | 4             |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|                             |                   |                                                                                           |        |             |                                                                                    |        |                                                                                                                       |                                                                                                                                              |        |        |             |                           | Action F        |        |   |   |        |
|-----------------------------|-------------------|-------------------------------------------------------------------------------------------|--------|-------------|------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|---------------------------|-----------------|--------|---|---|--------|
| Process                     | Potential Failure | Potential                                                                                 | S      | С           | Potential                                                                          | О      | Current Design/                                                                                                       | Current Design/ Process                                                                                                                      | D      | R      | Recommended | Responsibility &          | Actions Taken & | S      | О | D | R      |
| Function/<br>Requirements   | Mode              | Effect(s) of<br>Failure                                                                   | E<br>V | l<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue                                             | C<br>C | Process Controls<br>Prevention                                                                                        | Controls Detection                                                                                                                           | E<br>T | P<br>N | Action(s)   | Target<br>Completion Date | Effective Date  | E<br>V |   |   | P<br>N |
|                             |                   | Scrap on D/B for<br>Mylar torn<br>out/pick up<br>failure(6)                               | 6      | 5           | Improper dicing parameter or cutting mode                                          | 1      | Set up per TCM.                                                                                                       | Visual sample check during saw(5) Machine auto check after piece start(4) Machine auto check every                                           | 4      | 24     | None        |                           |                 |        |   |   |        |
|                             |                   |                                                                                           | 6      |             | Improper blade<br>setup sensitivity                                                | 1      | Check NCS sensitivity when machine setup. Control set up interval below 1x/120 feet per                               | Visual sample check during saw(5) Machine auto check after piece start(4) Machine auto check every 1~30 lines(4)                             | 4      |        | None        |                           |                 |        |   |   |        |
|                             |                   | Assembly yield loss (6)                                                                   | 6      |             | Incompleted UV                                                                     | 1      | Check TCM regularly                                                                                                   | DB process (2)                                                                                                                               | 2      | 12     | None        |                           |                 |        |   |   |        |
|                             | ·                 | electrical<br>failure.(8)<br>Wire bond<br>alignment error(4)<br>Reliability<br>failure(8) | 8      |             | Incomplete UV                                                                      | 2      | Check TCM regularly                                                                                                   | Visual sample check during DB(5) Post bond inpsection & auto alarm during DB process(2)                                                      | 2      | 32     | None        |                           |                 |        |   |   |        |
| 3. Die bond &<br>Epoxy cure | die               | Electrical<br>failure.(8)<br>Reliability<br>failure.(8)                                   | 8      |             | wrong ejector pin<br>number, pattern,<br>coplanarity,<br>position & tip<br>radius. | 2      | Select ejector pin<br>number&pattern per<br>B/D, calibrate<br>ejector pin position<br>at center of die<br>when device | Check the eject pin mark on<br>backside of dummy die (4)                                                                                     | 4      | 64     | None        |                           |                 |        |   |   |        |
|                             |                   |                                                                                           | 8      |             | improper ejector<br>pin height.                                                    | 2      | Adjust eject pin<br>height in the range<br>0.5~1.2mm per<br>TCM.                                                      | Check the eject pin mark on<br>backside of dummy die(4)<br>PM system auto monitor<br>eject pin height and auto<br>alarm if out of control(3) | 3      | 48     | None        |                           |                 |        |   |   |        |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XL | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|                           |                   |                          |        |             |                                                  |        |                                                                                                                                                                    |                                                                                                            |        |    |             |                        | Action F       | Resu   | lts |   |        |
|---------------------------|-------------------|--------------------------|--------|-------------|--------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|----|-------------|------------------------|----------------|--------|-----|---|--------|
| Process                   | Potential Failure | Potential                | S      | С           | Potential                                        | 0      | Current Design/                                                                                                                                                    | Current Design/ Process                                                                                    | D      | R  | Recommended | Responsibility &       |                |        |     | D | R      |
| Function/<br>Requirements | Mode Mode         | Effect(s) of<br>Failure  | E<br>V | l<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue           | C<br>C | Process Controls                                                                                                                                                   | Controls Detection                                                                                         | E<br>T |    | Action(s)   | Target Completion Date | Effective Date | E<br>V | C   | Е | P<br>N |
|                           |                   |                          | 8      |             | poor epoxy<br>coverage                           | 3      | Check epoxy<br>coverage per TCM<br>during DB                                                                                                                       | Visual sample check during DB(5) OBC/ODC auto alarm(2)                                                     | 2      | 48 | None        |                        |                |        |     |   |        |
|                           |                   |                          | 8      |             | Incorrect pick up parameters                     | 1      | Set up per TCM                                                                                                                                                     | Check the pin mark on backside of dummy die(4)                                                             | 4      | 32 | None        |                        |                |        |     |   |        |
|                           | epoxy on die      | electrical<br>failure(8) | 8      |             | die drop.                                        | 2      | check vacuum<br>efficiency when<br>device change                                                                                                                   | Auto alarm by die drop<br>sensor(2)<br>Visual sample check during<br>DB(5)<br>Trial run on the first strip |        | 32 | None        |                        |                |        |     |   |        |
|                           |                   |                          | 8      |             | rubber tip was<br>contaminated                   | 2      | divide epoxy pump<br>adjustment work<br>and rubber tip<br>installation work to<br>2 different person.<br>Operator has no<br>chance to touch the<br>epoxy directly. | Visual sample check during DB(5)                                                                           | 5      | 80 | None        |                        |                |        |     |   |        |
|                           |                   |                          | 8      |             | rubber tip was<br>contaminated by<br>clean paper | 2      | Operator must use<br>new cleaning paper<br>to scrub the rubber<br>tip.                                                                                             | Visual sample check during DB(5)                                                                           | 5      | 80 | None        |                        |                |        |     |   |        |
|                           |                   |                          | 8      |             |                                                  | 3      | set dispense<br>parameter per<br>positrol log<br>check epoxy<br>expiration date                                                                                    | DB(5) Trial run on the first strip after set up(4) OBC/ODC auto alarm(2)                                   | 2      | 48 | None        |                        |                |        |     |   |        |
|                           |                   |                          | 8      |             | Wrong rubber tip<br>size                         | 2      | Check rubber tip<br>size per bonding<br>diagram<br>Change rubber tip<br>per device change                                                                          | Visual sample check during DB(5) Trial run on the first strip after set up(4)                              | 4      | 64 | None        |                        |                |        |     |   |        |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 8                                    | 3MCT00002A/      | /BY     |
|-----------------------------------------------------------------|------------------------------------------------------------|------------------|---------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: I                      | Freescale, TJN-F | TM      |
| Prepared By: Amanda Wang                                        | FMEA Date:                                                 | 05-Oct-94        | (Orig.) |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XL | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13        | (Rev.)  |
|                                                                 | <del></del>                                                |                  | _       |

|                           |                   |                                                                                           |        |             |                                                           |        |                                                                                 |                                                                         |        |    |             |                        | Action F       | esui | lts | _      | _      |
|---------------------------|-------------------|-------------------------------------------------------------------------------------------|--------|-------------|-----------------------------------------------------------|--------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------|----|-------------|------------------------|----------------|------|-----|--------|--------|
| Process                   | Potential Failure | Potential                                                                                 | S      | С           | Potential                                                 | О      | Current Design/                                                                 | Current Design/ Process                                                 | D      | R  | Recommended | Responsibility &       |                |      |     | D      | R      |
| Function/<br>Requirements | Mode              | Effect(s) of<br>Failure                                                                   | E<br>V | l<br>a<br>s | Cause(s)/ Mechanism(s) of Failue                          | C<br>C | Process Controls                                                                | Controls Detection                                                      | E<br>T |    | Action(s)   | Target Completion Date | Effective Date |      | C   | E<br>T | P<br>N |
|                           |                   | reliability failure.(8) electrical failure.(8) wire bond non-                             | 8      | 5           | improper<br>dispensering<br>position.                     | 2      | calibrate<br>dispensering height<br>& position per TCM                          | Visual sample check during DB(5)                                        | 5      | 80 | None        |                        |                |      |     |        |        |
|                           |                   | 511/4 / 11                                                                                | 8      |             | air trapped in syringe.                                   | 2      | follow right epoxy thawing procedure.                                           | Visual sample check during DB(5)                                        | 5      | 80 | None        |                        |                |      |     |        |        |
|                           |                   |                                                                                           | 8      |             | gradient "index"                                          | 2      | Quarterly PM                                                                    | Visual sample check during DB(5)                                        | 5      | 80 | None        |                        |                |      |     |        |        |
|                           |                   |                                                                                           | 8      |             | Incorrect bonding parameter.                              | 1      | Check per TCM checklist.                                                        | Visual sample check during DB(5)                                        | 5      | 40 | None        |                        |                |      |     |        |        |
|                           | Bent lead         | electrical<br>failure.(8)                                                                 | 8      |             | "index" jamming                                           | 2      | sensor to prevent iamming.                                                      | Visual sample check during DB(5)                                        | 5      | 80 | None        |                        |                |      |     |        |        |
|                           | Die scratch       | electrical<br>failure.(8)<br>Reliability<br>problem(8)                                    | 8      |             | Stained rubber tip.                                       | 2      | Change rubber tip per SOP.                                                      | Visual sample check during DB(5)                                        | 5      | 80 | None        |                        |                |      |     |        |        |
|                           |                   |                                                                                           | 8      |             | Mishandling<br>operation during<br>sampling<br>inspection | 2      | Operator follow<br>SOP and WI                                                   | Visual sample check during DB(5)                                        | 5      | 80 | None        |                        |                |      |     |        |        |
|                           |                   | electrical<br>failure.(8)<br>Wire bond<br>alignment error(4)<br>Reliability<br>problem(8) | 8      |             | bondhead rail<br>worn out.                                | 2      | checking during<br>quarterly PM<br>replace with new<br>one during yearly<br>PM. | Visual sample check during DB(5). Post bond inpsection & auto alarm (2) | 2      | 32 | None        |                        |                |      |     |        |        |
|                           |                   |                                                                                           | 8      |             | "y shuttle" worn<br>out.                                  | 2      | yearly PM & replace<br>with new one if<br>necessary                             | Visual sample check during DB(5)                                        | 5      | 80 | None        |                        |                |      |     |        |        |

| Item: SOIC16/28/32/54ld                                     | Control Number/Issue:                                      | 83MCT00002A/    | /BY     |  |
|-------------------------------------------------------------|------------------------------------------------------------|-----------------|---------|--|
| Type: Design _x_ Process                                    | Company, Group, Site/Business Unit:                        | Freescale,TJN-F | FM      |  |
| Prepared By: Amanda Wang                                    | FMEA Date:                                                 | 05-Oct-94       | (Orig.) |  |
| Core Team: Amanda Wang,H.J. Liu,Ivory Guo,JUN YING ZHENG,XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13       | (Rev.)  |  |
|                                                             |                                                            |                 |         |  |

|              |                   |              |   |   |                    |   |                                    |                             |   |     |                  |                  | Action F        |          |          |   |   |
|--------------|-------------------|--------------|---|---|--------------------|---|------------------------------------|-----------------------------|---|-----|------------------|------------------|-----------------|----------|----------|---|---|
| Process      | Potential Failure |              | S |   | Potential          | О |                                    | Current Design/ Process     | D |     | Recommended      | Responsibility & | Actions Taken & |          | O        |   |   |
| Function/    | Mode              | Effect(s) of | Е | 1 | Cause(s)/          | C | Process Controls                   | Controls Detection          | Е | P   | Action(s)        | Target           | Effective Date  |          |          | E |   |
| Requirements |                   | Failure      | V | a | Mechanism(s)       | C | Prevention                         |                             | T | N   |                  | Completion Date  |                 | V        | C        | T | N |
|              |                   |              |   | s | of Failue          |   |                                    |                             |   |     |                  |                  |                 |          |          |   | ĺ |
|              |                   |              |   | s |                    |   |                                    |                             |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              | 8 |   | improper rubber    | 3 | Select rubber tip per              | Visual sample check during  | 2 | 48  | None             |                  |                 |          |          |   |   |
|              |                   |              |   |   | tip size.          |   | B/D when device                    | DB(5)                       |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              |   |   |                    |   | change.                            | Post bond inpsection & auto |   |     |                  |                  |                 |          |          |   |   |
|              |                   |              |   |   |                    |   |                                    | alarm (2)                   |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              | 8 |   | Improper PRS       | 1 |                                    | Visual sample check during  | 5 | 40  | None             |                  |                 |          |          |   | Г |
|              |                   |              |   |   | teaching.          |   |                                    | DB(5)                       |   |     |                  |                  |                 |          |          |   |   |
|              |                   |              | 8 |   | Improper eject pin | 1 | Calibrate eject when               | Visual sample check during  | 5 | 40  | None             |                  |                 |          |          |   | İ |
|              |                   |              |   |   | set up             |   | quarterly PM.                      | DB(5)                       |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              | 8 |   | Epoxy dispensing   | 1 | Setup using ink die                | Visual sample check during  | 5 | 40  | None             |                  |                 |          |          |   | Н |
|              |                   |              |   |   | off center         |   | every device change                |                             |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              |   |   |                    |   | & die bonder                       |                             |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              |   |   |                    |   | parameter change                   |                             |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              | 8 |   | Rubber tip worn    | 3 | Shiftly change the                 | Visual sample check during  | 5 | 120 | To qualify new   | JUN YING         |                 |          |          |   | H |
|              |                   |              |   |   | out.               |   | rubber tip.                        | DB (5)                      |   |     |                  | ZHENG B09174     |                 |          |          |   | İ |
|              |                   |              |   |   |                    |   |                                    |                             |   |     | higher hardness. | 05/13/2014       |                 |          |          |   | ĺ |
|              |                   |              |   |   |                    |   |                                    |                             |   |     | Sev(8) Occ(2)    |                  |                 |          |          |   | ĺ |
|              |                   |              |   |   |                    |   |                                    |                             |   |     | Det(5)           |                  |                 |          |          |   | İ |
|              | Low die shear     | Reliablity   | 8 |   | inadequate curing  | 2 | Select the proper                  | Die shear test (4)          | 4 | 64  | None             |                  |                 |          |          |   | Ī |
|              |                   | failure(8)   |   |   | temp/time.         |   | cure profile per                   |                             |   |     |                  |                  |                 |          |          |   | ĺ |
|              |                   |              |   |   |                    |   | TCM.                               |                             |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              |   |   |                    |   | replace the thermal                |                             |   |     |                  |                  |                 |          |          |   | ĺ |
|              |                   |              |   |   |                    |   | couple every year calibrate tunnel |                             |   |     |                  |                  |                 |          |          |   | İ |
|              |                   |              |   |   |                    |   | tomp quartarly                     |                             |   |     |                  |                  |                 |          |          |   |   |
|              |                   |              | 8 |   | expired epoxy      | 2 | record & check                     | Die shear test (4)          | 2 | 32  | None             |                  |                 |          |          |   |   |
|              |                   |              |   |   |                    |   | epoxy expiration                   | MMS system alarm (1)        |   |     |                  |                  |                 |          |          |   | ĺ |
|              | L/F discoloration | Reliability  | 8 | 1 | Improper N2 flow   | 2 | date per TCM.<br>Check the N2 flow | Visual sample check during  | 5 | 80  | None             |                  |                 | $\vdash$ | $\dashv$ |   | ┢ |
|              | L/1 discoloration | failure.(8)  | 0 |   | rate.              |   | rate per TCM.                      | DB(5)                       | , | 30  | None             |                  |                 |          |          |   | ĺ |
|              |                   | Non-stick on |   |   |                    |   | Set up and mark                    | 22(0)                       |   |     |                  |                  |                 |          |          |   | ĺ |
|              |                   | lead.(4)     |   |   |                    |   | acceptable flow rate               |                             |   |     |                  |                  |                 |          |          |   | ĺ |
|              |                   |              |   |   |                    |   | on flow meter                      |                             |   |     |                  |                  |                 |          |          |   |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 8                                    | 83MCT00002A/    | /BY     |
|-----------------------------------------------------------------|------------------------------------------------------------|-----------------|---------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: I                      | Freescale,TJN-F | FM      |
| Prepared By: Amanda Wang                                        | FMEA Date:                                                 | 05-Oct-94       | (Orig.) |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XL | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13       | (Rev.)  |
|                                                                 |                                                            |                 | _       |

|              |                    |              |    |   |                          |   |                             |                                  |    |    |             |                  | Action F        | Resu     | lts |          |          |
|--------------|--------------------|--------------|----|---|--------------------------|---|-----------------------------|----------------------------------|----|----|-------------|------------------|-----------------|----------|-----|----------|----------|
| Process      | Potential Failure  | Potential    | S  | С | Potential                | О | Current Design/             | Current Design/ Process          | D  | R  | Recommended | Responsibility & | Actions Taken & |          |     | D        |          |
| Function/    | Mode               | Effect(s) of | Е  | 1 | Cause(s)/                | C | Process Controls            | Controls Detection               | Е  | P  | Action(s)   | Target           | Effective Date  | Е        | C   | Е        |          |
| Requirements |                    | Failure      | V  | a | Mechanism(s)             | С | Prevention                  |                                  | Т  | N  |             | Completion Date  |                 | V        | C   | T        | ]        |
| •            |                    |              |    | s | of Failue                |   |                             |                                  |    |    |             | _                |                 |          |     |          | ı        |
|              |                    |              |    | s |                          |   |                             |                                  |    |    |             |                  |                 |          |     |          | ı        |
|              |                    |              | 8  |   | Improper tunnel          | 2 | Auto alarm when             | Visual sample check during       | 2. | 32 | None        |                  |                 | H        |     | $\dashv$ | $\vdash$ |
|              |                    |              |    |   | temp.                    |   | the temperature is          | DB(5) machine auto alarm         |    |    |             |                  |                 |          |     |          | i        |
|              |                    |              |    |   | r .                      |   | too high.                   | (2)                              |    |    |             |                  |                 |          |     |          | l        |
|              |                    |              |    |   |                          |   | Č                           | , ,                              |    |    |             |                  |                 |          |     |          | _        |
|              | Bondline           | Reliability  | 8  |   | improper bond            | 1 | Autoteach bond              | Visual sample check during       | 5  | 40 | None        |                  |                 |          |     |          | i        |
|              | thickness issue    | failure(8)   |    |   | height                   | _ | height                      | DB(5)                            | _  | 10 |             |                  |                 |          | _   |          | <u> </u> |
|              |                    |              | 8  |   | Tilted pick-up<br>holder | 1 | Quarterly PM                | Visual sample check during DB(5) | 5  | 40 | None        |                  |                 |          |     |          | l        |
|              |                    |              | 8  |   | Blocked dispenser        | 2 | Pump change per 4           |                                  | 5  | 80 | None        |                  |                 |          | _   | $\dashv$ |          |
|              |                    |              | 0  |   | pump                     | _ | days                        | Sampling measure BET(3)          | 9  | 00 | None        |                  |                 |          |     |          | ł        |
|              |                    |              | 8  |   | Improper rubbler         | 1 | Standard operation          | Sampling measure BLT(5)          | 4  | 32 | None        |                  |                 |          |     | $\neg$   |          |
|              |                    |              |    |   | tip installation         |   | procedure in WI             | Trial run on the first strip     |    |    |             |                  |                 |          |     |          | ı        |
|              |                    |              |    |   |                          |   |                             | after set up(4)                  |    |    |             |                  |                 |          |     |          | <u> </u> |
|              | Excessive die tilt | W/B bond     | 8  |   | Bond head tilt           | 1 | Quarterly PM                | Sampling measure BLT (5)         | 5  | 40 | None        |                  |                 |          |     |          | l        |
|              |                    | performance  |    |   |                          |   |                             |                                  |    |    |             |                  |                 |          |     |          | i        |
|              |                    | issue(4)     |    |   |                          |   |                             |                                  |    |    |             |                  |                 |          |     |          | i        |
|              |                    | Reliability  |    |   |                          |   |                             |                                  |    |    |             |                  |                 |          |     |          | i        |
|              |                    | failure(X)   | 8  |   | Wrong dispensing         | 1 | Dedicated                   | Measure the die tilt with        | 4  | 32 | None        |                  |                 |          |     | $\dashv$ |          |
|              |                    |              |    |   | status / setup           |   | technician for              | dummy die before                 |    |    |             |                  |                 |          |     |          | i        |
|              |                    |              |    |   | <u>I</u>                 |   | convertion/setup            | production. (4)                  |    |    |             |                  |                 |          |     |          |          |
|              |                    |              | 8  |   | Impurity in epoxy        | 2 |                             | Measure the die tilt with        | 4  | 64 | None        |                  |                 |          |     |          | ı        |
|              |                    |              |    |   |                          |   |                             | dummy die before                 |    |    |             |                  |                 |          |     |          | i        |
|              |                    |              |    |   | ****                     |   | CI 1 11 d                   | production. (4)                  | _  | 40 | N.T.        |                  |                 |          | _   |          |          |
|              |                    |              | 8  |   | Wrong rubber tip         | 1 | Check rubber tip            | Sampling measure BLT(5)          | 5  | 40 | None        |                  |                 |          |     |          | ı        |
|              |                    |              |    |   |                          |   | size per bonding<br>diagram |                                  |    |    |             |                  |                 |          |     |          | ı        |
|              |                    |              | 8  |   | Bond Force/Scrub         | 1 | Set up per TCM              | Sampling measure BLT (5)         | 4  | 32 | None        |                  |                 |          | -   | $\dashv$ |          |
|              |                    |              |    |   | settings too low         | 1 | Set up per Tem              | Sampling measure BE1 (3)         |    | 32 | rvone       |                  |                 |          |     |          | l        |
|              |                    |              | ļ. |   | _                        |   |                             |                                  | L. |    |             |                  |                 | $\sqcup$ |     |          | ⊢        |
|              | Wrong orientation  |              | 4  |   | Edder sensor             | 2 |                             | Visual sample check during       | 4  | 32 | None        |                  |                 |          |     |          | i        |
|              |                    | failure(4)   |    |   | failure                  |   |                             | DB(5)                            |    |    |             |                  |                 |          |     |          | ı        |
|              | 1                  |              |    |   | I                        |   | <u> </u>                    | Daily check the sensor(4)        |    | 1  | <u>I</u>    | <u> </u>         |                 |          |     |          |          |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 8                                    | 3MCT00002A/      | BY      |
|-----------------------------------------------------------------|------------------------------------------------------------|------------------|---------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: F                      | Freescale, TJN-F | M       |
| Prepared By: Amanda Wang                                        | FMEA Date:                                                 | 05-Oct-94        | (Orig.) |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XL | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13        | (Rev.)  |
|                                                                 |                                                            |                  | _       |

|              |                   |                  |   |   |                        |   |                       |                                  |          |    |             |                  | Action F        |   | lts | _ |                                              |
|--------------|-------------------|------------------|---|---|------------------------|---|-----------------------|----------------------------------|----------|----|-------------|------------------|-----------------|---|-----|---|----------------------------------------------|
| Process      | Potential Failure | Potential        | S | C | Potential              | О | Current Design/       | Current Design/ Process          | D        |    | Recommended | Responsibility & | Actions Taken & | S |     |   |                                              |
| Function/    | Mode              | Effect(s) of     | E | 1 | Cause(s)/              | C | Process Controls      | Controls Detection               | Е        |    | Action(s)   | Target           | Effective Date  | Е |     | Е |                                              |
| Requirements |                   | Failure          | V | a | Mechanism(s)           | C | Prevention            |                                  | T        | N  |             | Completion Date  |                 | V | C   | T | N                                            |
|              |                   |                  |   | S | of Failue              |   |                       |                                  |          |    |             |                  |                 |   |     |   |                                              |
|              |                   |                  |   | S |                        |   |                       |                                  |          |    |             |                  |                 |   |     |   | i l                                          |
|              | contamination on  | W/B non-stick(5) | 8 |   | excessive epoxy        | 2 | set dispense          | Visual sample check during       | 2        | 32 | None        |                  |                 |   |     |   |                                              |
|              | lead              | Electrical       |   |   |                        |   | parameter per         | DB(5)                            |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   | failure(8)       |   |   |                        |   | positrol log.         | OBC/ODC auto alarm(2)            |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   | reliability      |   |   |                        |   | checking epoxy        |                                  |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   | failure(8)       |   |   |                        |   | expiration date per   |                                  |          |    |             |                  |                 |   |     |   | i l                                          |
|              |                   |                  | 8 |   | inconsistent           | 2 | checking epoxy        | Visual sample check during       | 5        | 80 | None        |                  |                 |   |     |   |                                              |
|              |                   |                  |   |   | epoxy dispensing.      |   | expiration date per   | DB(5)                            |          |    |             |                  |                 |   |     |   |                                              |
|              |                   |                  |   |   |                        |   | TCM.                  |                                  |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   |                  |   |   |                        |   | dispensing vacuum     |                                  |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   |                  |   |   |                        |   | checking per TCM      |                                  |          |    |             |                  |                 |   |     |   | i l                                          |
|              | Too much resin    | W/B nonstick(4)  | 4 |   | L/F quality issue      | 3 | L/F suppliers         | Visual sample check during       | 5        | 60 | None        |                  |                 |   |     | П |                                              |
|              | bleed             |                  |   |   |                        |   | *                     | DB(5)                            |          |    |             |                  |                 |   |     |   |                                              |
|              |                   |                  | 4 |   | 11.                    | _ | bleed test by lot     | *** 1 1 1 1 1 1                  | ~        | 40 | <b>N</b> 7  |                  |                 |   |     | Ш | $\vdash$                                     |
|              |                   |                  | 4 |   | epoxy quality<br>issue | 2 |                       | Visual sample check during DB(5) | 5        | 40 | None        |                  |                 |   |     |   |                                              |
|              | epoxy under/over  | Reliability      | 8 |   | Curing oven issue      | 1 | Auto locking when     | Die shear monitor(4);            | 2        | 16 | None        |                  |                 |   |     | П |                                              |
|              | cure              | failure(8)       |   |   |                        |   |                       | Curing profile monitor(3);       |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   |                  |   |   |                        |   | alarm when curing     | Over heat auto alarm(2);         |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   |                  |   |   |                        |   | finished              |                                  |          |    |             |                  |                 |   |     |   | i l                                          |
|              | epoxy void        | Reliability      | 8 |   | Mylar tape             | 1 | D870 UV-mylar         | Visual sample check during       | 5        | 40 | None        |                  |                 |   |     | П | l                                            |
|              |                   | failure(8)       |   |   | residua                |   | using integrated UV   | DB(5)                            |          |    |             |                  |                 |   |     |   | i                                            |
|              |                   |                  |   |   |                        |   | illumination in Saw   |                                  |          |    |             |                  |                 |   |     |   |                                              |
|              |                   |                  | 8 |   | Wrong dispenser        | 2 | machine<br>Auto teach | Visual sample check during       | 5        | 80 | None        |                  |                 |   |     | Н | $\vdash$                                     |
|              |                   |                  | ٥ |   | Z-height               | _ | dispenser Z-height    | DB(5)                            | ٥        | 80 | none        |                  |                 |   |     |   | l I                                          |
|              |                   |                  |   |   | Z noight               | L | dispenser 2 neight    |                                  |          |    |             |                  |                 |   |     |   | <u>.                                    </u> |
|              | wrong epoxy       | Reliability      | 8 |   | Operator select        | 3 |                       |                                  | 2        | 48 | None        |                  |                 |   |     |   |                                              |
|              |                   | failure(8)       |   |   | wrong epoxy type       |   |                       | and epoxy change(4)              |          |    |             |                  |                 |   |     |   | l l                                          |
|              |                   |                  |   |   |                        |   |                       | Check epoxy in SFC               |          |    |             |                  |                 |   |     |   | ı l                                          |
|              | l                 |                  |   |   |                        |   |                       | system(2)                        | <u> </u> | ]  |             |                  |                 |   |     | ш |                                              |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83                                   | 3MCT00002A/    | ВҮ      |  |
|-----------------------------------------------------------------|------------------------------------------------------------|----------------|---------|--|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Fr                     | reescale,TJN-F | M       |  |
| Prepared By: Amanda Wang                                        | FMEA Date:                                                 | 05-Oct-94      | (Orig.) |  |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13      | (Rev.)  |  |
|                                                                 |                                                            |                | _       |  |

|              |                   | _            |   |   |                        |   |                                             |                                       |   |    |             |                  | Action F        |   |   |   |          |
|--------------|-------------------|--------------|---|---|------------------------|---|---------------------------------------------|---------------------------------------|---|----|-------------|------------------|-----------------|---|---|---|----------|
| Process      | Potential Failure | Potential    | S | C | Potential              | О | Current Design/                             | Current Design/ Process               |   |    | Recommended | Responsibility & | Actions Taken & | S |   |   |          |
| Function/    | Mode              | Effect(s) of | E | 1 | Cause(s)/              | C | Process Controls                            | Controls Detection                    | Е | P  | Action(s)   | Target           | Effective Date  |   | C | Е |          |
| Requirements |                   | Failure      | V | a | Mechanism(s)           | C | Prevention                                  |                                       | T | N  |             | Completion Date  |                 | V | C | T | N        |
|              |                   |              |   | s | of Failue              |   |                                             |                                       |   |    |             |                  |                 |   |   |   | 1        |
|              |                   |              |   | s |                        |   |                                             |                                       |   |    |             |                  |                 |   |   |   | 1        |
|              | mixed lots        | Electrical   | 8 |   | wafer or material      | 3 | Genesis system can                          | Visual sample check during            | 2 | 48 | None        |                  |                 |   |   |   | Π        |
|              |                   | failure(8)   |   |   | mismatch with          |   | only move account                           | DB(5)                                 |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   | ASO                    |   | when the materials                          | System auto alarm for BOM             |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   |                        |   | being used is match                         | mismatch(2)                           |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   |                        |   | with the BOM.                               |                                       |   |    |             |                  |                 |   |   |   | l        |
|              | L/F deformation   | electrical   | 8 |   | "index" jamming        | 2 | equipped with detect                        | Visual sample check during            | 5 | 80 | None        |                  |                 |   |   |   | Г        |
|              |                   | failure.(8)  |   |   |                        |   | sensor to prevent                           | DB(5)                                 |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   |                        |   | iamming.                                    |                                       |   |    |             |                  |                 |   |   |   | L        |
|              |                   |              | 8 |   | L/F deformation        | 2 | Control dispenser                           | Visual sample check during            | 5 | 80 | None        |                  |                 |   |   |   | l        |
|              |                   |              |   |   | by dispenser<br>needle |   | needle height to L/F<br>no less than 0.15mm | DB(5)                                 |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |   | needie                 |   | Quarterly adjust and                        |                                       |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   |                        |   | calibrate L/F clamp                         |                                       |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   |                        |   | Canorate L/1 Clamp                          |                                       |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   |                        |   |                                             |                                       |   |    |             |                  |                 |   |   |   | $\vdash$ |
|              |                   |              | 8 |   | Improper position      | 1 | Check L/F picking                           | Visual sample check during            | 5 | 40 | None        |                  |                 |   |   |   | 1        |
|              |                   |              |   |   | of L/F input           |   | up motion when setup machine and            | DB(5)                                 |   |    |             |                  |                 |   |   |   | 1        |
|              |                   |              |   |   | gripper                |   | device change                               |                                       |   |    |             |                  |                 |   |   |   | 1        |
|              |                   |              | 8 |   | L/F droped             | 1 | THE VICE COMMISSION                         | Visual sample check during            | 5 | 40 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |   |                        |   |                                             | DB(5).                                |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 |   | Load L/F into          | 1 | Load L/F into                               |                                       | 5 | 40 | None        |                  |                 |   |   |   | l        |
|              |                   |              |   |   | cassette directly      |   | cassette with bundle                        | DB(5).                                |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              |   |   | no bundle protect.     |   | protect                                     |                                       |   |    |             |                  |                 |   |   |   | l        |
|              | Epoxy expired     | Reliability  | 8 |   | Operator miss          | 1 |                                             | Material system auto alarm            | 2 | 16 | None        |                  |                 |   |   |   |          |
|              |                   | failure(8)   |   |   | handling               |   |                                             | for overdue epoxy(2)                  |   |    |             |                  |                 |   |   |   | l        |
|              |                   |              | _ |   |                        |   |                                             |                                       | _ |    |             |                  |                 |   |   |   | <u> </u> |
|              | 1 ,               | Electrical   | 8 |   | Excessive epoxy        | 2 | Set up per TCM                              | Visual sample check during            | 2 | 32 | None        |                  |                 |   |   |   | l        |
|              |                   | failure(8)   |   |   |                        |   |                                             | DB(5)                                 |   |    |             |                  |                 |   |   |   | l        |
|              |                   | Reliability  |   |   |                        |   |                                             | Trial run on the first strip          |   |    |             |                  |                 |   |   |   | l        |
|              |                   | failure(8)   |   |   |                        |   |                                             | after set up(4) OBC/ODC auto alarm(2) |   |    |             |                  |                 |   |   |   | l        |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
| <u> </u>                                                        | <del></del>                                                                 |

|                      |                                |                                                   |        |             |                                                                           |        |                                                                                                                            |                                                                                      |        |    |                          |                         | Action F                       |   |        |   |
|----------------------|--------------------------------|---------------------------------------------------|--------|-------------|---------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------|----|--------------------------|-------------------------|--------------------------------|---|--------|---|
| Process<br>Function/ | Potential Failure<br>Mode      | Potential<br>Effect(s) of                         | S<br>E | C<br>1      | Potential<br>Cause(s)/                                                    | O<br>C | Current Design/<br>Process Controls                                                                                        | Current Design/ Process Controls Detection                                           | D<br>E |    | Recommended<br>Action(s) | Responsibility & Target | Actions Taken & Effective Date |   | D<br>E |   |
| Requirements         | Mode                           | Failure                                           | V      | a<br>s<br>s | Mechanism(s) of Failue                                                    | C      | Prevention Prevention                                                                                                      | Controls Detection                                                                   | T      |    | Action(s)                | Completion Date         | Effective Date                 | V | T      | N |
|                      |                                |                                                   | 8      |             | Epoxy off center dispensing                                               | 1      | Set up per TCM                                                                                                             | Machine auto alarm(2) Visual monitor during bonding(4)                               |        |    | None                     |                         |                                |   |        |   |
|                      | leadframe<br>backside          | Resin bleed<br>happened<br>in mold<br>process (5) | 5      |             | Incorrect dispensing pressure & vacuum setting                            | 1      | Set up TCM<br>package                                                                                                      | Visual sample check during DB (5)                                                    | 5      | 25 | None                     |                         |                                |   |        |   |
|                      | Wrong L/F                      | Wire bond<br>failure(4)                           | 4      |             | Mishandling on<br>L/F selection                                           | 1      | Check per bonding diagram and assembly shop order. Use index sensor to identify LF. Check the bar code on the LF packaging | Die bonder auto alarm(2)<br>Visual sample check during<br>DB(5)                      | 2      | 8  | None                     |                         |                                |   |        |   |
|                      | Wrong die picked<br>(EWM only) | Final Test Yield<br>loss (6)                      | 6      |             | Load wrong wafer<br>map                                                   | 1      | Read barcode (sticked automatically by machine before dicing saw) information automatically on                             | skeleton. (5)<br>100% Electrical Test (5)<br>Visual check on sticked<br>barcode. (4) |        | 24 | None                     |                         |                                |   |        |   |
|                      |                                |                                                   | 6      |             | Wrong barcode<br>printed due to<br>scribe ID area is<br>less recognizable | 1      |                                                                                                                            | Visual inspection on sticked<br>barcode (4)                                          | 4      | 24 | None                     |                         |                                |   |        |   |
|                      |                                |                                                   | 6      |             | Wrong reference die.                                                      | 1      | Verify reference die location with wafer map.                                                                              | skeleton. (5)<br>Electrical Test (5)                                                 |        | 30 | None                     |                         |                                |   |        |   |
|                      | Wrong bin picked<br>(EWM only) | Final Test Yield loss (6)                         | 6      |             | Wrong bin selection                                                       | 1      | Check good die quantity before lot start                                                                                   | Visual inspection on wafer<br>skeleton. (5)<br>Electrical Test (5)                   | 5      | 30 | None                     |                         |                                |   |        |   |

|                                                                 | *                                                          |                  |                |
|-----------------------------------------------------------------|------------------------------------------------------------|------------------|----------------|
| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 8                                    | 3MCT00002A/      | BY             |
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: F                      | Freescale, TJN-F | M              |
| Prepared By: Amanda Wang                                        | FMEA Date:                                                 | 05-Oct-94        | (Orig.)        |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13        | (Rev.)         |
| <u> </u>                                                        |                                                            |                  |                |
|                                                                 |                                                            |                  |                |
|                                                                 |                                                            |                  | Action Results |
|                                                                 |                                                            |                  |                |

|                                         |                           |                                                                                     |             |                                                     |             |                                                                                                                             |                                                                                                           |             |    |                          |                                               | Action I       |   |             |   |
|-----------------------------------------|---------------------------|-------------------------------------------------------------------------------------|-------------|-----------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|----|--------------------------|-----------------------------------------------|----------------|---|-------------|---|
| Process<br>Function/<br>Requirements    | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure                                                | S<br>E<br>V | Potential<br>Cause(s)/<br>Mechanism(s)<br>of Failue | O<br>C<br>C | Process Controls                                                                                                            | Current Design/ Process Controls Detection                                                                | D<br>E<br>T |    | Recommended<br>Action(s) | Responsibility &<br>Target<br>Completion Date | Effective Date | Е | D<br>E<br>T |   |
|                                         | 1                         | Final Test Yield loss (6)                                                           | 6           | Wafer Alignment<br>Problem                          | 1           | Die bond machine<br>will stop<br>immediately once<br>met alignment fail.                                                    | Machine auto alarm(2)<br>Visual sample check during<br>DB on wafer skeleton(5)<br>Electrical Test (5)     | 2           | 12 | None                     |                                               |                |   |             |   |
| 3.2 Pre-wire<br>bonding plasma<br>clean | Incomplete cleanliness    | Nonstick on<br>W/B(5)<br>Delamination<br>after mold(6)<br>Reliability<br>failure(8) | 8           | malfunction                                         | 2           | Quarterly PM                                                                                                                | Machine auto alarm (2) Measure contact angle on die and Leadframe(5)                                      |             | 32 | None                     |                                               |                |   |             |   |
|                                         |                           |                                                                                     | 8           | no/insufficient<br>gas/vaccum                       | 2           | Quarterly PM                                                                                                                | Machine auto alarm (2)<br>Measure contact angle on die<br>and Leadframe(5)                                |             | 32 | None                     |                                               |                |   |             | ı |
| 4. Wire bond (Au wire)                  | golf ball, smash          | Reliability<br>failure(8)<br>Electrical<br>failure(8)                               | 8           | Improper EFO<br>strike<br>pole position             | 2           | Quarterly PM                                                                                                                |                                                                                                           | 5           | 80 | None                     |                                               |                |   |             |   |
|                                         |                           |                                                                                     | 8           | USG transfer<br>malfunction                         | 2           | Calibrate impedance<br>when changing<br>capillary.<br>Qualified technician<br>can change the<br>capillary.                  | Visual sample check (5) Sample PBI (5) AutoPBI(5) Machine auto alarm after capillary calibration fails(2) | 2           | 32 | None                     |                                               |                |   |             |   |
|                                         |                           |                                                                                     | 8           | Improper wire bond parameters                       | 2           | Lock key paramters<br>by PM and only<br>technician or above<br>can change the<br>parameters.<br>Check parameters in<br>TCM. | Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5)                                                   | 5           | 80 | None                     |                                               |                |   |             |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 8                                    | 3MCT00002A/      | BY      |
|-----------------------------------------------------------------|------------------------------------------------------------|------------------|---------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: F                      | Freescale, TJN-F | M       |
| Prepared By: Amanda Wang                                        | FMEA Date:                                                 | 05-Oct-94        | (Orig.) |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XL | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13        | (Rev.)  |
|                                                                 |                                                            |                  | _       |

|              |                   |                    |   |   |                   |          |                                    |                                         |   |    |             |                  | Action F        | Resu | lts      |          |          |
|--------------|-------------------|--------------------|---|---|-------------------|----------|------------------------------------|-----------------------------------------|---|----|-------------|------------------|-----------------|------|----------|----------|----------|
| Process      | Potential Failure | Potential          | S | С | Potential         | О        | Current Design/                    | Current Design/ Process                 | D | R  | Recommended | Responsibility & | Actions Taken & | S    | О        | D        | R        |
| Function/    | Mode              | Effect(s) of       | Е | 1 | Cause(s)/         | C        | Process Controls                   | Controls Detection                      | Е |    | Action(s)   | Target           | Effective Date  |      |          | Е        |          |
| Requirements |                   | Failure            | V | a | Mechanism(s)      | C        | Prevention                         |                                         | T | N  |             | Completion Date  |                 | V    | C        | T        | N        |
|              |                   |                    |   | s | of Failue         |          |                                    |                                         |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   | s |                   |          |                                    |                                         |   |    |             |                  |                 |      |          |          |          |
|              |                   |                    | 8 |   | Missing of bond   | 1        | Machine auto                       | · · · · · · · · · · · · · · · · · · ·   | 5 | 40 | None        |                  |                 |      |          | 1        |          |
|              |                   |                    |   |   | height teach      |          | reteach                            | Sample PBI (5)                          |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    | 8 |   | Improper bond     | 2        | Quarterly PM                       | AutoPBI(5) Visual sample check (5)      | 5 | 80 | None        |                  |                 |      | _        | —        | -        |
|              |                   |                    |   |   | force calibration | _        | Quarterly 1 W                      | Sample PBI (5)                          | , | 00 | rone        |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          |                                    | AutoPBI(5)                              |   |    |             |                  |                 |      |          | l        |          |
|              | _                 | Electrical failure | 8 |   | Head Block and    | 2        | Technician check                   | · · · · · · · · · · · · · · · · · · ·   | 4 | 64 | None        |                  |                 |      |          | 1        |          |
|              |                   | (8)                |   |   | window clamping   |          | heat block under                   | Sample PBI (5)                          |   |    |             |                  |                 |      |          | i '      |          |
|              |                   | Reliability        |   |   | malfunction       |          | microscope                         | Wire pull SPC monitor(4)                |   |    |             |                  |                 |      |          | i '      |          |
|              |                   | issue(8)           |   |   |                   |          | quarterly and qualified technician |                                         |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          | can change heat                    |                                         |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          | block.                             |                                         |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          | check under                        |                                         |   |    |             |                  |                 |      |          | l '      |          |
|              |                   |                    | 8 |   | Capillary out of  | 1        | Set up capillary life              | Visual sample check (5)                 | 2 | 16 | None        |                  |                 |      |          | $\Box$   |          |
|              |                   |                    |   |   | life              |          | limit in wire                      | Sample PBI (5)                          |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          | bonding machine                    | Wire pull SPC monitor(4)                |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          |                                    | Machine auto alarm when                 |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          |                                    | capillary life exceeds                  |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    | 8 |   | Wire clamp issue  | 2        | Quarterly PM                       | Visual sample check (5)                 | 4 | 64 | None        |                  |                 |      |          | _        |          |
|              |                   |                    |   |   |                   |          |                                    | Sample PBI (5)                          |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    | 0 |   |                   |          |                                    | Wire pull SPC monitor(4)                |   |    |             |                  |                 |      |          | <u>—</u> | <u> </u> |
|              |                   |                    | 8 |   | Improper bonding  | 2        | Lock the recipe per device         | Visual sample check (5)                 | 4 | 64 | None        |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   | parameters        |          | Check loop height                  | Sample PBI (5) Wire pull SPC monitor(4) |   |    |             |                  |                 |      |          | l '      |          |
|              |                   |                    |   |   |                   |          | after set up                       | whe pun 31 C monitor(4)                 |   |    |             |                  |                 |      |          | i '      |          |
|              |                   |                    |   |   |                   |          |                                    |                                         |   |    |             |                  |                 |      |          | <u> </u> | <u> </u> |
|              |                   |                    | 8 |   | Gold wire quality | 1        | IQC imcoming                       | r                                       | 4 | 32 | None        |                  |                 |      |          | l '      | 1        |
|              |                   |                    |   |   | issue             |          | check                              | Sample PBI (5) Wire pull SPC monitor(4) |   |    |             |                  |                 |      |          | 1        | 1        |
|              |                   |                    | 8 |   | Index malfunction | 2        | Quarterly PM                       |                                         | 4 | 64 | None        |                  |                 |      | $\dashv$ | 一        |          |
|              |                   |                    | ľ |   |                   | <u> </u> |                                    | Sample PBI (5)                          | ľ |    |             |                  |                 |      |          | 1        | 1        |
|              |                   |                    |   |   |                   |          |                                    | Wire pull SPC monitor(4)                |   |    |             |                  |                 |      |          | 1        |          |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|              |                   |               |    |   |                   |    |                      |                                         |          |    |             |                  | Action F        | Resu | lts |   |          |
|--------------|-------------------|---------------|----|---|-------------------|----|----------------------|-----------------------------------------|----------|----|-------------|------------------|-----------------|------|-----|---|----------|
| Process      | Potential Failure | Potential     | S  | С | Potential         | О  | Current Design/      | Current Design/ Process                 | D        | R  | Recommended | Responsibility & | Actions Taken & | S    | O   | D | R        |
| Function/    | Mode              | Effect(s) of  | Е  | 1 | Cause(s)/         | С  | Process Controls     | Controls Detection                      | Е        | P  | Action(s)   | Target           | Effective Date  | Е    | C   | Е | P        |
| Requirements |                   | Failure       | V  | a | Mechanism(s)      | C  | Prevention           |                                         | Т        | N  |             | Completion Date  |                 | V    | C   | T | N        |
| •            |                   |               |    | s | of Failue         |    |                      |                                         |          |    |             | Î                |                 |      |     |   | i        |
|              |                   |               |    | s |                   |    |                      |                                         |          |    |             |                  |                 |      |     |   | i        |
|              |                   |               | 8  |   | Gold wire path    | 2  | Quarterly PM         | Visual sample check (5)                 | 4        | 64 | None        |                  |                 |      |     |   | i        |
|              |                   |               |    |   | issue             |    |                      | Sample PBI (5)                          |          |    |             |                  |                 |      |     |   | i        |
|              |                   |               |    |   |                   |    |                      | Wire pull SPC monitor(4)                |          |    |             |                  |                 |      |     |   | <u> </u> |
|              |                   |               | 8  |   | Lead vibration    | 1  | Leadframe incoming   | 1 · · · · · · · · · · · · · · · · · · · | 4        | 32 | None        |                  |                 |      |     |   | i        |
|              |                   |               |    |   |                   |    | check                | Sample PBI (5)                          |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   |                   |    |                      | Wire pull SPC monitor(4)                |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   |                   |    |                      | Function line test of                   |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               | 8  |   | Mishandling       | 2. | Standardize the      | Leadframe(5)<br>Visual sample check (5) | 4        | 64 | None        |                  |                 |      | _   |   |          |
|              |                   |               |    |   | operation( load   | _  | inspection method    | Sample PBI (5)                          | ľ        | 0. | rone        |                  |                 |      |     |   | l        |
|              |                   |               |    |   | magazine, unit    |    | Operators follow     | Wire pull SPC monitor(4)                |          |    |             |                  |                 |      |     |   | l        |
|              |                   |               |    |   | inspection,wire   |    | SOP and WI           | · · · · · · · · · · · · · · · · · · ·   |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   | change etc)       |    |                      |                                         |          |    |             |                  |                 |      |     |   | <u> </u> |
|              |                   |               | 8  |   | Foreign matter on | 1  | Technician check     | Visual sample check (5)                 | 4        | 32 | None        |                  |                 |      |     |   | i        |
|              |                   |               |    |   | heat block        |    | heat block under     | Sample PBI (5)                          |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   |                   |    | microscope           | Wire pull SPC monitor(4)                |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   |                   |    | quarterly and        |                                         |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   |                   |    | qualified technician |                                         |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   |                   |    | can change heat      |                                         |          |    |             |                  |                 |      |     |   |          |
|              | Pad bond & post   | Intermittent  | 8  |   | PRS failure       | 2  | PM calibrated PRS    | Non-stick auto alarm (2)                | 2        | 32 | None        |                  |                 |      |     |   | Ī        |
|              | bond placement    | electrical    |    |   |                   |    | when quarterly PM.   | Visual sample check (5)                 |          |    |             |                  |                 |      |     |   | l        |
|              |                   | fail/short(8) |    |   |                   |    |                      | Sample PBI (5)                          |          |    |             |                  |                 |      |     |   | l        |
|              |                   | Reliability   |    |   |                   |    |                      | AutoPBI(5)                              |          |    |             |                  |                 |      |     |   | ı        |
|              |                   | failure(8)    |    |   |                   |    |                      |                                         |          |    |             |                  |                 |      |     |   | i        |
|              |                   |               | 8  |   | x-y table problem | 1  | PM maintain X-Y      | Non-stick auto alarm (2)                | 2        | 16 | None        |                  |                 |      |     |   |          |
|              |                   |               |    |   |                   |    | table in yearly PM   | Visual sample check (5)                 |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   |                   |    |                      | Sample PBI (5)                          |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               | 1_ |   |                   | _  |                      | AutoPBI(5)                              | <u> </u> |    |             |                  |                 | Щ    | _   |   | Ь—       |
|              |                   |               | 8  |   | improper offset   | 2  | teach offset when    | (-)                                     | 2        | 32 | None        |                  |                 |      |     |   | i        |
|              |                   |               |    |   | between actual    |    | capillary change     | Visual sample check (5)                 |          |    |             |                  |                 |      |     |   | ı        |
|              |                   |               |    |   | tool position &   |    |                      | Sample PBI (5)                          |          |    |             |                  |                 |      |     |   | i        |
|              |                   |               |    |   | camera            |    |                      | AutoPBI(5)                              |          |    |             |                  |                 |      |     |   | i '      |
|              |                   |               |    |   |                   |    |                      |                                         |          |    |             |                  |                 |      |     |   | i        |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|                                      |                                                                                |                                      |             |                  |                                                                          |             |                                                                                                                                                       |                                                                                     |             |    |                          |                                               | Action I       |   |             |   |
|--------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|-------------|------------------|--------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------|----|--------------------------|-----------------------------------------------|----------------|---|-------------|---|
| Process<br>Function/<br>Requirements | Potential Failure<br>Mode                                                      | Potential<br>Effect(s) of<br>Failure | S<br>E<br>V | C<br>1<br>a<br>s | Potential<br>Cause(s)/<br>Mechanism(s)<br>of Failue                      | O<br>C<br>C | Current Design/<br>Process Controls<br>Prevention                                                                                                     | Current Design/ Process Controls Detection                                          | D<br>E<br>T | P  | Recommended<br>Action(s) | Responsibility &<br>Target<br>Completion Date | Effective Date | Е | D<br>E<br>T | 1 |
|                                      |                                                                                |                                      | 8           |                  | Improper manual alignment                                                | 2           | Use special target<br>point to do<br>alignment when<br>setup.<br>Training operators<br>how to using auto<br>alignment instead of<br>manual alignment. | Non-stick auto alarm (2)<br>Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5) | 2           | 32 | None                     |                                               |                |   |             |   |
|                                      |                                                                                |                                      | 8           |                  | Lens air cooling system issue                                            | 2           |                                                                                                                                                       | Non-stick auto alarm (2)<br>Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5) | 2           | 32 | None                     |                                               |                |   |             |   |
|                                      | Wire deformation(<br>tight,sagging,<br>leaning,<br>smashed,excess<br>loop etc) | Electrical<br>failure(8)             | 8           |                  | Window clamping<br>and heat block<br>issue                               | 2           | Technician check<br>heat block under<br>microscope<br>quarterly and<br>qualified technician<br>can change heat                                        | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)               | 4           | 64 | None                     |                                               |                |   |             |   |
|                                      |                                                                                |                                      | 8           |                  | Wire clamp issue(<br>abrasion,<br>contamination,<br>loose, tighten etc.) |             | Quarterly PM                                                                                                                                          | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)               | 4           | 64 | None                     |                                               |                |   |             |   |
|                                      |                                                                                |                                      | 8           |                  | Improper looping parameters                                              |             | Lock loop<br>parameters                                                                                                                               | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)               | 4           | 64 | None                     |                                               |                |   |             |   |
|                                      |                                                                                |                                      | 8           |                  | Capillary issue(<br>wrong type, life<br>etc)                             | 1           | Check capillary type<br>in TCM and B/D.<br>Capillary life is<br>locked in recipe.                                                                     | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)               | 4           | 32 | None                     |                                               |                |   |             |   |

| Item:                | SOIC16/28/32/5            | 4ld                       |        |        |                        |             |                                     |                         | C    | ontr   | ol Number/Issue:  | 83MCT00002A/E           | 3Y                                |        |        |   |   |
|----------------------|---------------------------|---------------------------|--------|--------|------------------------|-------------|-------------------------------------|-------------------------|------|--------|-------------------|-------------------------|-----------------------------------|--------|--------|---|---|
| Type:                | Design                    | _x_ Process               |        |        |                        |             |                                     | Company,C               | Grou | ıp,Si  | te/Business Unit: | Freescale, TJN-FN       | Л                                 |        |        |   |   |
| Prepared By:         | Amanda Wang               |                           |        |        |                        |             |                                     |                         |      |        | FMEA Date:        | 05-Oct-94               | (Orig.)                           |        |        |   |   |
| Core Team:           | Amanda Wang,F             | I.J. Liu,Ivory Gu         | o,JU   | N YI   | NG ZHENG,XIA           | OF          | IUI KANG,SHUAI                      | N YAO,Cyndi Hu,Grayson  | Che  | en,L   | ANPING BAI,JIN    | 14-Nov-13               | (Rev.)                            |        |        |   |   |
|                      |                           |                           |        |        |                        |             |                                     | •                       |      |        |                   |                         | •                                 |        |        |   |   |
|                      |                           |                           |        |        |                        |             |                                     |                         |      |        |                   |                         |                                   |        |        |   |   |
|                      |                           |                           |        |        |                        |             |                                     |                         |      |        |                   |                         |                                   |        |        |   |   |
|                      |                           |                           |        |        |                        |             |                                     |                         |      |        |                   |                         | Action I                          | Resi   | ults   |   |   |
| Process              | Potential Failure         | Potential                 | S      | С      | Potential              | 0           | Current Design/                     | Current Design/ Process | D    | R      | Recommended       | Responsibility &        |                                   |        | _      | D | R |
| Process<br>Function/ | Potential Failure<br>Mode | Potential<br>Effect(s) of | S<br>E | C<br>1 | Potential<br>Cause(s)/ | O<br>C      | Current Design/<br>Process Controls | Ŭ .                     |      | R<br>P |                   | Responsibility & Target |                                   | S      | О      |   |   |
|                      |                           |                           |        | 1      |                        | O<br>C<br>C | Process Controls                    | Ŭ .                     |      |        |                   |                         | Actions Taken &<br>Effective Date | S<br>E | O<br>C | Е |   |

Operators follow

SOP and WI

Yearly PM

Die bon placement

and orientation

and technician or

above can change

the parameters; check parameters in

Machine auto

Only process

engineers have authority to edit the recipe; wirebond recipe name rule align with bonding diagram no and rev;recipe modification approval system

control

TCM

reteach

Mishandling

operation( load

magazine, unit

inspection,wire

indexer/elevator

Improper die bond 2

Machine

problem.

placement

bonding

parameters

Missing of bond

Die quality issue

Wrong recipe

height teach

Improper pad

Cratering

Miss bond

Electrical

failure(8)

Reliability

failure(8)

Electrical

failure(8)

Visual sample check (5)

Wire pull SPC monitor(4)

Visual sample check (5)

Wire pull SPC monitor(4)

Visual sample check (5)

Non-stick auto alarm (2)

Visual sample check (5)

Machine auto alarm(2)

Visual sample check (5)

Sample PBI (5)

Sample PBI (5)

Sample PBI (5)

Sample PBI (5) Wire pull SPC monitor(4)

Lock key parameters Non-stick auto alarm (2)

64

64

64

2 32

16

32

40

None

None

None

None

None

None

None

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|              |                   |              |          |   |                   |   | -                                    |                                                     |   |    |           |                  | Action F       |   | _ |   |    |
|--------------|-------------------|--------------|----------|---|-------------------|---|--------------------------------------|-----------------------------------------------------|---|----|-----------|------------------|----------------|---|---|---|----|
| Process      | Potential Failure |              | S        |   | Potential         | О | ~                                    | Current Design/ Process                             |   |    |           | Responsibility & |                |   |   |   |    |
| Function/    | Mode              | Effect(s) of | Е        | 1 | Cause(s)/         | C | Process Controls                     | Controls Detection                                  | Е |    | Action(s) | Target           | Effective Date |   | C |   |    |
| Requirements |                   | Failure      | V        | a | Mechanism(s)      | C | Prevention                           |                                                     | T | N  |           | Completion Date  |                | V | C | T | N  |
|              |                   |              |          | S | of Failue         |   |                                      |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          | S |                   |   |                                      |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              | 8        |   | Mixed devices     | 1 | Check the assembly                   | · (- )                                              | 2 | 16 | None      |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | shop order before                    | Sample PBI (5)                                      |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | lot start.and record                 | PRS Auto alarm(2)                                   |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | the magazine number                  |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | number                               |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   |                                      |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              | 8        |   | Wrong wire bond   | 2 | Lock the " always"                   | Visual sample check (5)                             | 2 | 32 | None      |                  |                |   |   |   |    |
|              |                   |              |          |   | start sequence    |   | start from seleted                   | Sample PBI (5)                                      |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | wire function                        | PRS Auto alarm(2)                                   |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   |                                      |                                                     |   |    |           |                  |                |   |   |   |    |
|              | Deform Lead       |              | 8        |   | Index jamming     | 3 | Equipped with                        | Machine jam alarm(2)                                | 2 | 48 | None      |                  |                |   |   |   |    |
|              |                   | bleed(4)     |          |   |                   |   | detect                               | Non stick auto alarm (2)                            |   |    |           |                  |                |   |   |   |    |
|              |                   | Electrical   |          |   |                   |   | sensor to prevent                    | Visual sample check (5)                             |   |    |           |                  |                |   |   |   |    |
|              |                   | failure(8)   |          |   |                   |   | jamming.<br>PM check index           | Sample PBI (5)                                      |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | quarterly                            |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              | 8        |   | Window clamping   | 2 | Technician check                     | Machine jam alarm(2)                                | 2 | 32 | None      |                  |                |   |   |   |    |
|              |                   |              |          |   | and heat block    |   | heat block under                     | Non stick auto alarm (2)                            |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   | issue             |   | microscope                           | Visual sample check (5)                             |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | quarterly and                        | Sample PBI (5)                                      |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | qualified technician can change heat |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   | block.                               |                                                     |   |    |           |                  |                |   |   |   |    |
|              |                   |              | <u> </u> |   |                   |   |                                      |                                                     | _ |    |           |                  |                |   |   |   |    |
|              |                   |              | 8        |   | Leadframe quality | 1 | _                                    | Machine jam alarm(2)                                | 2 | 16 | None      |                  |                |   |   |   |    |
|              |                   |              |          |   | issue             |   | check;                               | Non stick auto alarm (2)<br>Visual sample check (5) |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   |                                      | Sample PBI (5)                                      |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   |                                      | Function line test of                               |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   |                                      | Leadfram(5)                                         |   |    |           |                  |                |   |   |   |    |
|              |                   |              |          |   |                   |   |                                      | . ,                                                 |   |    |           |                  |                |   |   |   | Ц_ |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00                                     | 002A/BY      |
|------------------------------------------------------------------|-------------------------------------------------------------------|--------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale,                    | ГJN-FM       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct                                                 | i-94 (Orig.) |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XIA | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov | v-13 (Rev.)  |
|                                                                  |                                                                   |              |
|                                                                  |                                                                   |              |

|                                      |                           |                                                       |             |                  |                                                                                                     |             |                                                                                                               |                                                                                                                     |             |    |                          |                                               | Action I                          | Resi        | lts | _ |   |
|--------------------------------------|---------------------------|-------------------------------------------------------|-------------|------------------|-----------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------|----|--------------------------|-----------------------------------------------|-----------------------------------|-------------|-----|---|---|
| Process<br>Function/<br>Requirements | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure                  | S<br>E<br>V | C<br>1<br>a<br>s | Potential<br>Cause(s)/<br>Mechanism(s)<br>of Failue                                                 | O<br>C<br>C | Current Design/<br>Process Controls<br>Prevention                                                             | Current Design/ Process Controls Detection                                                                          | D<br>E<br>T |    | Recommended<br>Action(s) | Responsibility &<br>Target<br>Completion Date | Actions Taken &<br>Effective Date | S<br>E<br>V | C   | Е | P |
|                                      |                           | Electrical<br>failure(8)<br>Reliability<br>failure(8) | 8           | *                | Insufficient heat<br>transfer/downhold<br>er clamping                                               | 1           | Check heat block quarterly                                                                                    | Wire pull SPC monitor(4)                                                                                            | 4           | 32 | None                     |                                               |                                   |             |     |   |   |
|                                      |                           |                                                       | 8           | *                | Wafer/Die issue (<br>Pad metal<br>problems:big<br>probe mark; pad<br>scratch,contamina<br>tion etc) | 2           | DI water cleaning<br>during saw for<br>wafer                                                                  | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)<br>Wafer incoming check(4)                                    | 4           | 64 | None                     |                                               |                                   |             |     |   |   |
|                                      |                           |                                                       | 8           | *                | USG transfer<br>malfunction                                                                         | 1           | when changing capillary.                                                                                      | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)<br>Machine auto alarm after<br>capillary calibration fails(2) | 2           | 16 | None                     |                                               |                                   |             |     |   |   |
|                                      |                           |                                                       | 8           | *                | Capillary issue(<br>wrong type, life<br>etc)                                                        | 1           | Check capillary type<br>in TCM and B/D.<br>Capillary life is<br>locked in recipe.                             | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)                                                               | 4           | 32 | None                     |                                               |                                   |             |     |   |   |
|                                      |                           |                                                       | 8           | *                | Improper wire<br>bond parameters                                                                    | 2           | Lock key parameters<br>and technician or<br>above can change<br>the parameters;<br>check parameters in<br>TCM | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)                                                               | 4           | 64 | None                     |                                               |                                   |             |     |   |   |
|                                      |                           |                                                       | 8           | **               | Floating<br>leadframe(Flag)on<br>heat block.                                                        | 3           | Setup check. Qualified technician do the conversion and teach bond.                                           | Ball shear SPC monitor(4) Wire pull SPC monitor(4) Sample PBI (5) Machine auto alarm when vacuum out of control(2)  | 2           | 48 | None                     |                                               |                                   |             |     |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                       |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                      |  |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                               |  |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XIA | OHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |  |
|                                                                  |                                                                            |  |

|              |                    | -            |   |     |                               |    |                      |                                |   |    |             |                  | Action F        |   |   |          |     |
|--------------|--------------------|--------------|---|-----|-------------------------------|----|----------------------|--------------------------------|---|----|-------------|------------------|-----------------|---|---|----------|-----|
| Process      | Potential Failure  | Potential    | S |     | Potential                     | О  | Current Design/      | Current Design/ Process        |   |    | Recommended | Responsibility & | Actions Taken & |   |   | D        |     |
| Function/    | Mode               | Effect(s) of | Е | 1   | Cause(s)/                     | C  | Process Controls     | Controls Detection             | Е | P  | Action(s)   | Target           | Effective Date  |   | C | Е        |     |
| Requirements |                    | Failure      | V | a   | Mechanism(s)                  | C  | Prevention           |                                | T | N  |             | Completion Date  |                 | V | C | T        | N   |
|              |                    |              |   | S   | of Failue                     |    |                      |                                |   |    |             |                  |                 |   |   | ıl       | 11  |
|              |                    |              |   | S   |                               |    |                      |                                |   |    |             |                  |                 |   |   | ıl       | ii. |
|              | Weak bond on       | Electrical   | 8 | *   | Head Block and                | 2  | Technician check     | Visual sample check (5)        | 4 | 64 | None        |                  |                 |   |   | П        |     |
|              | lead(( Stitch bond | failure(8)   |   |     | window clamping               |    | heat block under     | Sample PBI (5)                 |   |    |             |                  |                 |   |   | ıl       | ii  |
|              | deformation,       | Reliability  |   |     | malfunction                   |    | microscope           | Wire peel test (4)             |   |    |             |                  |                 |   |   | ıl       | ii  |
|              | peeling, crack     | failure(8)   |   |     |                               |    | quarterly and        |                                |   |    |             |                  |                 |   |   | ıl       | i   |
|              | etc)               |              |   |     |                               |    | qualified technician |                                |   |    |             |                  |                 |   |   | ıl       | 1   |
|              |                    |              |   |     |                               |    | can change heat      |                                |   |    |             |                  |                 |   |   | ıl       | ii  |
|              |                    |              | 8 | *   | USG transfer                  | 1  | Calibrate impedance  | Visual sample check (5)        | 2 | 16 | None        |                  |                 |   |   | П        |     |
|              |                    |              |   |     | malfunction                   |    | when changing        | Sample PBI (5)                 |   |    |             |                  |                 |   |   | ıl       | i   |
|              |                    |              |   |     |                               |    | capillary.           | Wire peel test (4)             |   |    |             |                  |                 |   |   | ıl       | i   |
|              |                    |              |   |     |                               |    | Qualified technician | Machine auto alarm after       |   |    |             |                  |                 |   |   | ıl       | i   |
|              |                    |              |   |     |                               |    | can change the       | capillary calibration fails(2) |   |    |             |                  |                 |   |   | ıl       | i   |
|              |                    |              |   |     |                               |    | capillary.           |                                |   |    |             |                  |                 |   |   | ıl       | i   |
|              |                    |              |   |     |                               |    |                      |                                |   |    |             |                  |                 |   |   | il       | iı  |
|              |                    |              | 8 | *   | Capillary issue(              | 1  | Check capillary type | Visual sample check (5)        | 4 | 32 | None        |                  |                 |   |   | 一        |     |
|              |                    |              |   |     | wrong type, life              |    | in TCM and B/D.      | Sample PBI (5)                 |   |    |             |                  |                 |   |   | ıl       | 1   |
|              |                    |              |   |     | etc)                          |    | Capillary life is    | Wire peel test (4)             |   |    |             |                  |                 |   |   | ıl       | i   |
|              |                    |              |   |     |                               |    | locked in recipe.    |                                |   |    |             |                  |                 |   |   | il       | iı  |
|              |                    |              | 8 | sk: | Imamanan yezina               | 2. | Lock key parameters  | Visual sample check (5)        | 4 | 64 | None        |                  |                 |   | - | $\dashv$ | —   |
|              |                    |              | ٥ |     | Improper wire bond parameters |    | and technician or    | Sample PBI (5)                 | 4 | 04 | none        |                  |                 |   |   | ıJ       | 11  |
|              |                    |              |   |     | bond parameters               |    | above can change     | Wire peel test (4)             |   |    |             |                  |                 |   |   | ıJ       | i   |
|              |                    |              |   |     |                               |    | the parameters;      | The peer test (4)              |   |    |             |                  |                 |   |   | ıJ       | i   |
|              |                    |              |   |     |                               |    | check paramters in   |                                |   |    |             |                  |                 |   |   | ıJ       | i   |
|              |                    |              |   |     |                               |    | TCM                  |                                |   |    |             |                  |                 |   |   | ıJ       | i   |
|              |                    |              | 1 | l   |                               |    |                      |                                |   |    |             |                  |                 |   |   |          |     |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
| <u> </u>                                                        | <del></del>                                                                 |

|              |                   |              |   |      |                             |   |                                    |                           |   |    |             |                  | Action F        |   |   |   |          |
|--------------|-------------------|--------------|---|------|-----------------------------|---|------------------------------------|---------------------------|---|----|-------------|------------------|-----------------|---|---|---|----------|
| Process      | Potential Failure | Potential    | S |      | Potential                   | О | U                                  | Current Design/ Process   |   |    | Recommended | Responsibility & | Actions Taken & |   |   |   |          |
| Function/    | Mode              | Effect(s) of | Е | 1    | Cause(s)/                   | C | Process Controls                   | Controls Detection        | Е |    | Action(s)   | Target           | Effective Date  |   |   | Е |          |
| Requirements |                   | Failure      | V | a    | Mechanism(s)                | C | Prevention                         |                           | T | N  |             | Completion Date  |                 | V | C | T | N        |
|              |                   |              |   | s    | of Failue                   |   |                                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   | s    |                             |   |                                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Leadframe defect            | 2 | Preserve leadframe                 | Visual sample check (5)   | 4 | 64 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | before wire bond            |   | in cabinet well with               | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | (contamination,             |   | N2 gas protection.                 | Wire peel test (4)        |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | oxidization, lead           |   | Hand free method                   |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | damage, foreign             |   | during sample                      |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | matter, etc. )              |   | checking                           |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | Function line test                 |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | and pick out the defect lead frame |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | Machine cover                      |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | above work holder                  |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | Use pre-wire                       |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | bonding plasma                     |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | clean                              |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Insufficient heat           | 1 | Check heat block                   | Visual sample check (5)   | 4 | 32 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | transfer/downhold           |   | quarterly                          | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   | ļ. — | er clamping                 |   |                                    | Wire peel test (4)        |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 |      | Improper second             | 1 | Locked second bond                 | Visual sample check (5)   | 4 | 32 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | bond position               |   | position in recipe                 | Wire peel test(4)         |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Mishandling                 | 2 | Operators follow                   | Visual sample check (5)   | 4 | 64 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | operation( load             |   | SOP and WI                         | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | magazine, unit              |   |                                    | Wire peel test(4)         |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | inspection,wire             |   |                                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | sk   | change etc) Excessive epoxy | 2 | Set dispense                       | Visual sample check (5)   | 2 | 48 | None        |                  |                 |   |   |   | <u> </u> |
|              |                   |              | 0 |      | Excessive epoxy             | 3 | parameter per                      | Setup check before W/B(4) |   | 40 | none        |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | positrol log                       | OBC/ODC auto alarm(2)     |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | check epoxy                        | OBC/OBC auto ararm(2)     |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | expiration date                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Foreign matter              | 2 | Monthly cleaning                   | Visual sample check (5)   | 4 | 64 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | wire bonder index                  | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | <u>l</u>                    |   | İ                                  | Wire peel test(4)         |   |    |             |                  |                 |   |   |   |          |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                       |
|------------------------------------------------------------------|----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                      |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                               |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | OHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  | <del></del>                                                                |

|                      | _                                                       | _                                                     |        |             |                                                                            |        |                                                      |                                                                                                             |   |     |                                                                                                                                                |                                    | Action I                       |   |   |   |   |
|----------------------|---------------------------------------------------------|-------------------------------------------------------|--------|-------------|----------------------------------------------------------------------------|--------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|---|---|---|---|
| Process<br>Function/ | Potential Failure<br>Mode                               | Potential<br>Effect(s) of                             | S<br>E | C<br>1      | Potential<br>Cause(s)/                                                     | O<br>C | Current Design/<br>Process Controls                  | Current Design/ Process Controls Detection                                                                  | Е | P   | Recommended<br>Action(s)                                                                                                                       | Responsibility & Target            | Actions Taken & Effective Date | Е |   | Е | F |
| Requirements         |                                                         | Failure                                               | V      | a<br>s<br>s | Mechanism(s)<br>of Failue                                                  | С      | Prevention                                           |                                                                                                             | Т | N   |                                                                                                                                                | Completion Date                    |                                | V | C | Т | N |
|                      | Foreign<br>matter(wire tail,<br>epoxy, particle<br>ect) | Electrical<br>failure(8)<br>Reliability<br>failure(8) | 8      |             | Wafer incoming issue                                                       | 2      | DI water cleaning<br>during saw                      | Visual sample check (5)<br>Sample PBI (5)                                                                   | 5 | 80  | None                                                                                                                                           |                                    |                                |   |   |   |   |
|                      |                                                         |                                                       | 8      |             | Wire clamper<br>issue(<br>tight,contaminatio<br>n,worn out etc)            | 2      | Wire clamp PM<br>quarterly                           | Visual sample check (5)<br>Sample PBI (5)                                                                   | 5 | 80  | None                                                                                                                                           |                                    |                                |   |   |   |   |
|                      |                                                         |                                                       | 8      |             | Mishandling of<br>wire( removing<br>bond off wires,<br>wire theading etc)  | 3      | Standard operation<br>following WI                   | Visual sample check (5)<br>Sample PBI (5)                                                                   | 5 | 120 | Qualify OCP (Out<br>Chamfer Polish)<br>Capillary on<br>COSSLITE_TSM<br>C to improve the<br>2nd bond<br>performance.<br>Sev(8) Occ(2)<br>Det(5) | SHUAN YAO<br>B07524/05-11-<br>2014 |                                |   |   |   |   |
|                      |                                                         |                                                       | 8      |             | Epoxy on lead or die                                                       | 2      | Die bond fillet<br>height and resin<br>bleed control | Visual sample check (5)<br>Sample PBI (5)                                                                   | 5 | 80  | None                                                                                                                                           |                                    |                                |   |   |   |   |
|                      |                                                         |                                                       | 8      |             | Particles in air                                                           | 2      | Operation following<br>FE cleaning room<br>SOP       | Visual sample check (5)<br>Sample PBI (5)                                                                   | 5 | 80  | None                                                                                                                                           |                                    |                                |   |   |   |   |
|                      | Non stick on pad                                        | Electrical failure (8)                                | 8      |             | Insufficient heat<br>transfer/downhold<br>er clamping                      |        | Check heat block<br>quarterly                        | Non stick auto alarm(2) Ball shear SPC monitor(4) Wire pull SPC monitor(4)                                  | 2 | 16  | None                                                                                                                                           |                                    |                                |   |   |   |   |
|                      |                                                         |                                                       | 8      |             | Wafer/die issue ( Pad metal problems:big probe mark; pad scratch,contamina | 2      | DI water cleaning<br>during saw for<br>wafer         | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)<br>Wafer incoming check(4)<br>Non stick auto alarm(2) | 2 | 32  | None                                                                                                                                           |                                    |                                |   |   |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|                           |                   |                        |        |        |                                                  |        |                                                                                                                |                                                                                                                                                |        |        |             |                           | Action F       | <br>   |        |          |
|---------------------------|-------------------|------------------------|--------|--------|--------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|---------------------------|----------------|--------|--------|----------|
| Process                   | Potential Failure | Potential              | S      |        | Potential                                        | О      | Current Design/                                                                                                | Current Design/ Process                                                                                                                        | D      |        | Recommended | Responsibility &          |                |        | D      |          |
| Function/<br>Requirements | Mode              | Effect(s) of Failure   | E<br>V | l<br>a | Cause(s)/<br>Mechanism(s)                        | C<br>C | Process Controls Prevention                                                                                    | Controls Detection                                                                                                                             | E<br>T | P<br>N | Action(s)   | Target<br>Completion Date | Effective Date | C<br>C | E<br>T |          |
|                           |                   |                        |        | s<br>s | of Failue                                        |        |                                                                                                                |                                                                                                                                                |        |        |             |                           |                |        |        |          |
|                           |                   |                        | 8      |        | USG transfer<br>malfunction                      | 1      | when changing capillary.                                                                                       | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)<br>Machine auto alarm after<br>capillary calibration fails(2)<br>Non stick auto alarm(2) | 2      | 16     | None        |                           |                |        |        |          |
|                           |                   |                        | 8      |        | Capillary issue(<br>wrong type, life<br>etc)     | 1      | Check capillary type<br>in TCM and B/D.<br>Capillary life is<br>locked in recipe.                              | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)<br>Non stick auto alarm(2)                                                               | 2      | 16     | None        |                           |                |        |        |          |
|                           |                   |                        | 8      |        | Improper wire bond parameters                    | 2      | Lock key parameters<br>and technician or<br>above can change<br>the parameters;<br>check paramter in<br>TCM    | Ball shear SPC monitor(4)<br>Wire pull SPC monitor(4)<br>Non stick auto alarm(2)                                                               | 2      | 32     | None        |                           |                |        |        |          |
|                           |                   |                        | 8      |        | Floating<br>leadframe(Flag)<br>on heat block.    | 2      | Qualified technician do the conversion and teach bond.                                                         | Ball shear SPC monitor(4) Wire pull SPC monitor(4) Machine auto alarm when vacuum out of control(2) Non stick auto alarm(2)                    | 2      | 32     | None        |                           |                |        |        |          |
|                           | Non stick on lead | Electrical failure (8) | 8      |        | Head Block and<br>window clamping<br>malfunction | 2      | Technician check<br>heat block under<br>microscope<br>quarterly and<br>qualified technician<br>can change heat | Visual sample check (5) Sample PBI (5) Wire peel test (4) Non stick auto alarm(2)                                                              | 2      | 32     | None        |                           |                |        |        | <u>-</u> |

| Item: SOIC16/28/32/54ld  |                   |                  |      |              |                                                                              |   | Control Number/Issue: 83MCT00002A/BY                  |                                |   |    |             |                  |                 |   |   |   |     |  |
|--------------------------|-------------------|------------------|------|--------------|------------------------------------------------------------------------------|---|-------------------------------------------------------|--------------------------------|---|----|-------------|------------------|-----------------|---|---|---|-----|--|
| Type: Designx_ Process   |                   |                  |      |              |                                                                              |   | Company, Group, Site/Business Unit: Freescale, TJN-FM |                                |   |    |             |                  |                 |   |   |   |     |  |
| Prepared By: Amanda Wang |                   |                  |      |              |                                                                              |   | FMEA Date: 05-Oct-94 (Orig.)                          |                                |   |    |             |                  |                 |   |   |   |     |  |
| Core Team:               | Amanda Wang,H     | .J. Liu,Ivory Gu | IN Y | ING ZHENG,XI | IAOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |   |                                                       |                                |   |    |             |                  |                 |   |   |   |     |  |
|                          |                   | •                |      |              |                                                                              |   |                                                       | •                              |   |    |             |                  |                 |   |   |   |     |  |
|                          |                   |                  |      |              |                                                                              |   |                                                       |                                |   |    |             |                  |                 |   |   |   |     |  |
|                          |                   |                  |      |              |                                                                              |   |                                                       |                                |   |    |             |                  | Action Results  |   |   |   |     |  |
| Process                  | Potential Failure | Potential        | S    | С            | Potential                                                                    | О | Current Design/                                       | Current Design/ Process        | D | R  | Recommended | Responsibility & | Actions Taken & | S | О | D | R   |  |
| Function/                | Mode              | Effect(s) of     | Е    | 1            | Cause(s)/                                                                    | C | Process Controls                                      | Controls Detection             | Е | P  | Action(s)   | Target           | Effective Date  | Е | C | E | P   |  |
| Requirements             |                   | Failure          | V    | a            | Mechanism(s)                                                                 | C | Prevention                                            |                                | T | N  |             | Completion Date  |                 | V | C | T | N   |  |
|                          |                   |                  |      | s            | of Failue                                                                    |   |                                                       |                                |   |    |             |                  |                 |   |   |   | 1   |  |
|                          |                   |                  |      | s            |                                                                              |   |                                                       |                                |   |    |             |                  |                 |   |   |   | i   |  |
|                          |                   |                  | 8    |              | USG transfer                                                                 | 1 | Calibrate impedance                                   | Visual sample check (5)        | 2 | 16 | None        |                  |                 |   |   |   |     |  |
|                          |                   |                  |      |              | malfunction                                                                  |   | when changing                                         | Sample PBI (5)                 |   |    |             |                  |                 |   |   |   | i   |  |
|                          |                   |                  |      |              |                                                                              |   | 1 *                                                   | Wire peel test (4)             |   |    |             |                  |                 |   |   |   | i   |  |
|                          |                   |                  |      |              |                                                                              |   | ~                                                     | Machine auto alarm after       |   |    |             |                  |                 |   |   |   | i   |  |
|                          |                   |                  |      |              |                                                                              |   |                                                       | capillary calibration fails(2) |   |    |             |                  |                 |   |   |   | i   |  |
|                          |                   |                  |      |              |                                                                              |   | capillary.                                            | Non stick auto alarm(2)        |   |    |             |                  |                 |   |   |   | i   |  |
|                          |                   |                  |      |              |                                                                              |   |                                                       |                                |   |    |             |                  |                 |   |   |   |     |  |
|                          |                   | _                | 8    |              | Capillary issue(                                                             | 1 | Check capillary type                                  | Visual sample check (5)        | 2 | 16 | None        |                  |                 |   |   |   |     |  |
|                          |                   |                  |      |              | wrong type, life                                                             |   | in conversion                                         | Sample PBI (5)                 |   |    |             |                  |                 |   |   |   | ii. |  |

Wire peel test (4)

Sample PBI (5)

Wire peel test (4)

Non stick auto alarm(2)

Visual sample check (5)

Non stick auto alarm(2)

2 32

None

checklist and B/D.

Lock key parameters

and technician or

above can change the parameters;

check paramter in

TCM

Capillary life is

locked in recine

etc)

Improper wire

bond parameters

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |  |  |  |  |  |  |  |  |  |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |  |  |  |  |  |  |  |  |  |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |  |  |  |  |  |  |  |  |  |
|                                                                 | <del></del>                                                                 |  |  |  |  |  |  |  |  |  |

|              |                      |                   |   |   |                   |   |                      |                                            |   |     |             |                  |                 | Action Results |   |   |   |  |  |
|--------------|----------------------|-------------------|---|---|-------------------|---|----------------------|--------------------------------------------|---|-----|-------------|------------------|-----------------|----------------|---|---|---|--|--|
| Process      | Potential Failure    |                   | S | C | Potential         | О | C                    | Current Design/ Process                    |   |     | Recommended | Responsibility & | Actions Taken & |                |   | D |   |  |  |
| Function/    | Mode                 | Effect(s) of      | Е | 1 | Cause(s)/         | C | Process Controls     | Controls Detection                         | Е | P   | Action(s)   | Target           | Effective Date  | Е              |   | E | P |  |  |
| Requirements |                      | Failure           | V | a | Mechanism(s)      | C | Prevention           |                                            | T | N   |             | Completion Date  |                 | V              | C | T | N |  |  |
|              |                      |                   |   | S | of Failue         |   |                      |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   | s |                   |   |                      |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   | 8 |   | Leadframe defect  | 2 | Preserve leadframe   | Visual sample check (5)                    | 2 | 32  | None        |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | before wire bond  |   | in cabinet well with | Sample PBI (5)                             |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | (contamination,   |   | N2 gas protection.   | Wire peel test (4)                         |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | oxidization, lead |   | Hand free method     | Non stick auto alarm(2)                    |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | damage,etc.)      |   | during sample        |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | checking             |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | Function line test   |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | and pick out the     |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | defect lead frame    |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | Machine cover        |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | above work holder    |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | Use pre-wire         |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | bonding plasma       |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | clean.( only for bga |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | ,lga sony, leaded    |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | T CC 1 1 1        |   | pkgs)                | 77' 1 1 1 (5)                              | 2 | 1.6 | 3.7         |                  |                 |                |   |   |   |  |  |
|              |                      |                   | 8 |   | Insufficient heat | I | Check heat block     | · · · · · · · · · · · · · · · · · · ·      | 2 | 16  | None        |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | transfer/downhold |   | quarterly            | Sample PBI (5)                             |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | er clamping       |   |                      | Wire peel test (4) Non stick auto alarm(2) |   |     |             |                  |                 |                |   |   |   |  |  |
|              | Excessive "Tail"     | Eletrcial failure | 8 |   | Improper wire     | 2 | Lock key parameters  |                                            | 5 | 80  | None        |                  |                 |                |   |   |   |  |  |
|              |                      | (8)               |   |   | bond parameters   |   | and technician or    | Sample PBI (5)                             |   |     | - 1 - 1 - 1 |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   | I                 |   | above can change     | 1 ( )                                      |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | the parameters;      |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | check paramter in    |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      |                   |   |   |                   |   | TCM                  |                                            |   |     |             |                  |                 |                |   |   |   |  |  |
|              | Wrong wire type      | Reliability       | 8 |   | Mishandling on    | 1 | Follow assembly      | SFC auto alarm when                        | 2 | 16  | None        |                  |                 |                |   |   |   |  |  |
|              | Wrong wire type used | failure(8)        | ٥ |   | wrong wire type   | 1 | shop order and SFC   | material part number not                   |   | 10  | none        |                  |                 |                |   |   |   |  |  |
|              | useu                 | Electrical        |   |   | wrong whe type    |   | system control       | match with system record(2)                |   |     |             |                  |                 |                |   |   |   |  |  |
|              |                      | failure(8)        |   |   |                   |   | system control       | materi with system record(2)               |   |     |             |                  |                 |                |   |   |   |  |  |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                       |
|------------------------------------------------------------------|----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                      |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                               |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | OHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  | <del></del>                                                                |

|                                      |                           |                                                       |             | <br>                                                           |             |                                                                                                                                          |                                                                                                           |             |    |                          |                                               | Action I       |   |   |   |
|--------------------------------------|---------------------------|-------------------------------------------------------|-------------|----------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|----|--------------------------|-----------------------------------------------|----------------|---|---|---|
| Process<br>Function/<br>Requirements | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure                  | S<br>E<br>V | Potential<br>Cause(s)/<br>Mechanism(s)<br>of Failue            | O<br>C<br>C | Process Controls                                                                                                                         | Current Design/ Process Controls Detection                                                                | D<br>E<br>T | P  | Recommended<br>Action(s) | Responsibility &<br>Target<br>Completion Date | Effective Date | Е | Е | P |
|                                      | Ball neck crack           | Electrical<br>failure(8)<br>Reliability<br>failure(8) | 8           | Incorrect<br>parameters on<br>first bond and<br>loop formation | 2           | Lock loop<br>parameters;<br>Lock key parameters<br>and technician or<br>above can change<br>the parameters;<br>Check paramters in<br>TCM | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)                                     | 4           | 64 | None                     |                                               |                |   |   |   |
| 4. Wire bond (Cu wire)               | golf ball, smash          | Reliability<br>failure(8)<br>Electrical<br>failure(8) | 8           | Improper EFO<br>strike<br>pole position<br>condition           | 2           | Quarterly PM                                                                                                                             | Visual sample check (5)<br>Sample PBI (5)                                                                 | 5           | 80 | None                     |                                               |                |   |   |   |
|                                      |                           |                                                       | 8           |                                                                | 2           | Calibrate impedance<br>when changing<br>capillary.<br>Qualified technician<br>can change the<br>capillary.                               | Visual sample check (5) Sample PBI (5) AutoPBI(5) Machine auto alarm after capillary calibration fails(2) | 2           | 32 | None                     |                                               |                |   |   |   |
|                                      |                           |                                                       | 8           | Improper wire<br>bond parameters                               | 2           | Lock key paramters<br>by PM and only<br>technician or above<br>can change the<br>parameters.<br>Check parameters in<br>TCM.              | Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5)                                                   | 5           | 80 | None                     |                                               |                |   |   |   |
|                                      |                           |                                                       | 8           | Missing of bond<br>height teach                                | 1           | Machine auto reteach                                                                                                                     | Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5)                                                   |             | 40 | None                     |                                               |                |   |   |   |
|                                      |                           |                                                       | 8           | Improper bond force calibration                                | 2           | Quarterly PM                                                                                                                             | Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5)                                                   | 5           | 80 | None                     |                                               |                |   |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|              |                   |                                                      |   |   |                                                  |   |                                                                                                                                         |                                                                                                                                         |   |    |             |                  | Action I        |   |   |   |   |
|--------------|-------------------|------------------------------------------------------|---|---|--------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---|----|-------------|------------------|-----------------|---|---|---|---|
| Process      | Potential Failure | Potential                                            | S | C | Potential                                        | О | Current Design/                                                                                                                         | Current Design/ Process                                                                                                                 |   |    | Recommended | Responsibility & | Actions Taken & |   |   |   | R |
| Function/    | Mode              | Effect(s) of                                         | Е | 1 | Cause(s)/                                        | C | Process Controls                                                                                                                        | Controls Detection                                                                                                                      | Е |    | Action(s)   | Target           | Effective Date  | Е |   | Е | P |
| Requirements |                   | Failure                                              | V | a | Mechanism(s)                                     | C | Prevention                                                                                                                              |                                                                                                                                         | T | N  |             | Completion Date  |                 | V | C | Т | N |
|              |                   |                                                      |   | s | of Failue                                        |   |                                                                                                                                         |                                                                                                                                         |   |    |             |                  |                 |   |   |   |   |
|              |                   |                                                      |   | s |                                                  |   |                                                                                                                                         |                                                                                                                                         |   |    |             |                  |                 |   |   |   |   |
|              |                   |                                                      | 8 |   | Cu wire oxidation                                | 4 | Cu wire shelf life<br>and work life<br>control;<br>Forming gas flow<br>monitor(auto)                                                    | Visual sample check (5) Sample PBI (5) AutoPBI(5) Machine auto alarm when forming gas flow out of control(2) Material system auto alarm | 2 | 64 | None        |                  |                 |   |   |   |   |
|              | W. I              | Fi 4: 16 1                                           | 0 |   | H IN I                                           | 2 |                                                                                                                                         | when Cu wire expired shelf<br>life or work life(2)                                                                                      | 4 |    | N.          |                  |                 |   |   |   |   |
|              | _                 | Electrical failure<br>(8)<br>Reliability<br>issue(8) | 8 |   | Head Block and<br>window clamping<br>malfunction | 2 | Technician check<br>heat block under<br>microscope<br>quarterly and<br>qualified technician<br>can change heat<br>block.<br>check under | Sample PBI (5)<br>Wire pull SPC monitor(4)                                                                                              | 4 | 64 | None        |                  |                 |   |   |   |   |
|              |                   |                                                      | 8 |   | Capillary out of<br>life                         | 1 | Set up capillary life<br>limit in wire<br>bonding machine                                                                               | Visual sample check (5) Sample PBI (5) Wire pull SPC monitor(4) Machine auto alarm when capillary life exceeds                          |   |    | None        |                  |                 |   |   |   |   |
|              |                   |                                                      | 8 |   | Wire clamp issue                                 | 2 | Quarterly PM                                                                                                                            | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)                                                                   | 4 |    | None        |                  |                 |   |   |   |   |
|              |                   |                                                      | 8 |   | Improper bonding parameters                      | 2 | Lock the recipe per<br>device<br>Check loop height<br>after set up                                                                      | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)                                                                   | 4 | 64 | None        |                  |                 |   |   |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository].

Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                       |
|-----------------------------------------------------------------|----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                      |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                               |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | OHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                |

|              |                   |               |   |   |                   |   |                      |                                                |   |     |             |                  | Action F        | Resu | lts |          |                                                  |
|--------------|-------------------|---------------|---|---|-------------------|---|----------------------|------------------------------------------------|---|-----|-------------|------------------|-----------------|------|-----|----------|--------------------------------------------------|
| Process      | Potential Failure | Potential     | S | С | Potential         | О | Current Design/      | Current Design/ Process                        | D | R   | Recommended | Responsibility & | Actions Taken & | S    | О   | D        | R                                                |
| Function/    | Mode              | Effect(s) of  | Е | 1 | Cause(s)/         | С | Process Controls     | Controls Detection                             | Е | P   | Action(s)   | Target           | Effective Date  | Е    | C   | Е        | P                                                |
| Requirements |                   | Failure       | V | a | Mechanism(s)      | С | Prevention           |                                                | Т | N   |             | Completion Date  |                 | V    | C   | Т        | N                                                |
| •            |                   |               |   | s | of Failue         |   |                      |                                                |   |     |             | •                |                 |      |     |          | l                                                |
|              |                   |               |   | s |                   |   |                      |                                                |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               | 8 |   | Copper wire       | 1 | IQC imcoming         | Visual sample check (5)                        | 4 | 32  | None        |                  |                 |      |     | П        |                                                  |
|              |                   |               |   |   | quality issue     |   | check                | Sample PBI (5)                                 |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   | Ť                 |   |                      | Wire pull SPC monitor(4)                       |   |     |             |                  |                 |      |     |          |                                                  |
|              |                   |               | 8 |   | Index malfunction | 2 | Quarterly PM         | Visual sample check (5)                        | 4 | 64  | None        |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   |                   |   |                      | Sample PBI (5)                                 |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               | _ |   |                   |   |                      | Wire pull SPC monitor(4)                       |   |     |             |                  |                 |      |     | Ш        | —                                                |
|              |                   |               | 8 |   | - 11              | 2 | Quarterly PM         | · · · · · · · · · · · · · · · · · · ·          | 4 | 64  | None        |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   | issue             |   |                      | Sample PBI (5)                                 |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               | 8 |   | Lead vibration    | 1 | Leadframe incoming   | Wire pull SPC monitor(4)                       | 4 | 32  | None        |                  |                 |      |     | Н        | <del>                                     </del> |
|              |                   |               | 8 |   | Lead vibration    | 1 | Į.                   | ·(- /                                          | 4 | 32  | None        |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   |                   |   | check                | Sample PBI (5)                                 |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   |                   |   |                      | Wire pull SPC monitor(4) Function line test of |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   |                   |   |                      | Leadframe(5)                                   |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               | 8 |   | Mishandling       | 2 | Standardize the      | Visual sample check (5)                        | 4 | 64  | None        |                  |                 |      |     | П        |                                                  |
|              |                   |               |   |   | operation( load   |   | inspection method    | Sample PBI (5)                                 |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   | magazine, unit    |   | Operators follow     | Wire pull SPC monitor(4)                       |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   | inspection,wire   |   | SOP and WI           | , ,                                            |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   | change etc)       |   |                      |                                                |   |     |             |                  |                 |      |     | Ш        |                                                  |
|              |                   |               | 8 |   | Foreign matter on | 1 | Technician check     | Visual sample check (5)                        | 4 | 32  | None        |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   | heat block        |   | heat block under     | Sample PBI (5)                                 |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   |                   |   | microscope           | Wire pull SPC monitor(4)                       |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   |                   |   | quarterly and        |                                                |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   |               |   |   |                   |   | qualified technician |                                                |   |     |             |                  |                 |      |     | , 1      | l                                                |
|              |                   |               |   |   |                   |   | can change heat      |                                                |   |     |             |                  |                 |      |     |          | l                                                |
|              | Pad bond & post   | Intermittent  | 8 |   | PRS failure       | 2 | PM calibrated PRS    | Non-stick auto alarm (2)                       | 2 | 32  | None        |                  |                 |      |     | $\sqcap$ | $\Box$                                           |
|              |                   | electrical    |   |   |                   |   | when quarterly PM.   | Visual sample check (5)                        |   |     |             |                  |                 |      |     | , 1      | l                                                |
|              |                   | fail/short(8) |   |   |                   |   |                      | Sample PBI (5)                                 |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   | Reliability   |   |   |                   |   |                      | AutoPBI(5)                                     |   |     |             |                  |                 |      |     |          | l                                                |
|              |                   | failure(8)    |   |   |                   |   |                      | ` '                                            |   |     |             |                  |                 |      |     | , 1      | 1                                                |
|              |                   |               | 8 |   | x-y table problem | 1 | PM maintain X-Y      | Non-stick auto alarm (2)                       | 2 | 16  | None        |                  |                 |      | -   | $\dashv$ | $\vdash$                                         |
|              |                   |               | ľ |   | J more problem    | ľ | table in yearly PM   | Visual sample check (5)                        | ١ | 1.5 | 1.5110      |                  |                 |      |     | , 1      | l                                                |
|              |                   |               |   |   |                   |   | more in journ in     | Sample PBI (5)                                 |   |     |             |                  |                 |      |     | , 1      | l                                                |
|              |                   |               |   |   |                   |   |                      | AutoPBI(5)                                     |   |     |             |                  |                 |      |     | , 1      | l                                                |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|                           |                                                                                |                          |        |             |                                                                          |        |                                                                                                                                  |                                                                                     |        |        |           |                           | Action I       |        |        |  |
|---------------------------|--------------------------------------------------------------------------------|--------------------------|--------|-------------|--------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------|--------|-----------|---------------------------|----------------|--------|--------|--|
| Process                   | Potential Failure                                                              |                          | S      |             | Potential                                                                | О      |                                                                                                                                  | Current Design/ Process                                                             |        |        |           | Responsibility &          |                |        |        |  |
| Function/<br>Requirements | Mode                                                                           | Effect(s) of Failure     | E<br>V | l<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue                                   | C<br>C | Process Controls Prevention                                                                                                      | Controls Detection                                                                  | E<br>T | P<br>N | Action(s) | Target<br>Completion Date | Effective Date | E<br>V | C<br>C |  |
|                           |                                                                                |                          |        | s           |                                                                          |        |                                                                                                                                  |                                                                                     |        |        |           |                           |                |        |        |  |
|                           |                                                                                |                          | 8      |             | improper offset<br>between actual<br>tool position &<br>camera           | 2      | teach offset when<br>capillary change                                                                                            | Non-stick auto alarm (2)<br>Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5) | 2      | 32     | None      |                           |                |        |        |  |
|                           |                                                                                |                          | 8      |             | Improper manual alignment                                                | 2      | Use special target point to do alignment when setup. Training operators how to using auto alignment instead of manual alignment. | Non-stick auto alarm (2)<br>Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5) | 2      | 32     | None      |                           |                |        |        |  |
|                           |                                                                                |                          | 8      |             | Lens air cooling system issue                                            | 2      |                                                                                                                                  | Non-stick auto alarm (2)<br>Visual sample check (5)<br>Sample PBI (5)<br>AutoPBI(5) | 2      | 32     | None      |                           |                |        |        |  |
|                           | Wire deformation(<br>tight,sagging,<br>leaning,<br>smashed,excess<br>loop etc) | Electrical<br>failure(8) | 8      |             | Window clamping<br>and heat block<br>issue                               |        | Technician check<br>heat block under<br>microscope<br>quarterly and<br>qualified technician<br>can change heat                   | Visual sample check (5) Sample PBI (5) Wire pull SPC monitor(4)                     |        |        | None      |                           |                |        |        |  |
|                           |                                                                                |                          | 8      |             | Wire clamp issue(<br>abrasion,<br>contamination,<br>loose, tighten etc.) | 2      | Quarterly PM                                                                                                                     | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)               | 4      | 64     | None      |                           |                |        |        |  |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 |                                                                             |

|                           |                   |                                                       |        |             |                                                                                     |        |                                                                                                               |                                                                       |        |        |             |                           | Action F        | Resu   | lts    |        |        |
|---------------------------|-------------------|-------------------------------------------------------|--------|-------------|-------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|--------|-------------|---------------------------|-----------------|--------|--------|--------|--------|
| Process                   | Potential Failure | Potential                                             | S      | С           | Potential                                                                           | О      | Current Design/                                                                                               | Current Design/ Process                                               | D      | R      | Recommended | Responsibility &          | Actions Taken & | S      | О      | D      | R      |
| Function/<br>Requirements | Mode              | Effect(s) of Failure                                  | E<br>V | l<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue                                              | C<br>C | Process Controls Prevention                                                                                   | Controls Detection                                                    | E<br>T | P<br>N | Action(s)   | Target<br>Completion Date | Effective Date  | E<br>V | C<br>C | E<br>T | P<br>N |
|                           |                   |                                                       |        | S           |                                                                                     |        |                                                                                                               |                                                                       |        |        |             |                           |                 |        |        | Ш      |        |
|                           |                   |                                                       | 8      |             | Improper looping parameters                                                         | 2      | Lock loop<br>parameters                                                                                       | Visual sample check (5) Sample PBI (5) Wire pull SPC monitor(4)       | 4      | 64     | None        |                           |                 |        |        |        |        |
|                           |                   |                                                       | 8      |             | Capillary issue(<br>wrong type, life<br>etc)                                        | 1      | in TCM and B/D.                                                                                               | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4) | 4      | 32     | None        |                           |                 |        |        |        |        |
|                           |                   |                                                       | 8      |             | Mishandling<br>operation( load<br>magazine, unit<br>inspection, wire<br>change etc) | 2      |                                                                                                               | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4) | 4      | 64     | None        |                           |                 |        |        |        |        |
|                           |                   |                                                       | 8      |             |                                                                                     | 2      | Yearly PM                                                                                                     | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4) | 4      | 64     | None        |                           |                 |        |        |        |        |
|                           |                   |                                                       | 8      |             | Improper die bond placement                                                         | 2      | Die bon placement<br>and orientation<br>control                                                               | Visual sample check (5) Sample PBI (5) Wire pull SPC monitor(4)       | 4      | 64     | None        |                           |                 |        |        |        |        |
|                           |                   | Electrical<br>failure(8)<br>Reliability<br>failure(8) | 8      |             | Improper pad<br>bonding<br>parameters                                               | 2      | Lock key parameters<br>and technician or<br>above can change<br>the parameters;<br>check parameters in<br>TCM | Non-stick auto alarm (2)                                              | 2      | 32     | None        |                           |                 |        |        |        |        |
|                           |                   |                                                       | 8      |             | Missing of bond<br>height teach                                                     | 1      | Machine auto reteach                                                                                          | Non-stick auto alarm (2)                                              | 2      | 16     | None        |                           |                 |        |        |        |        |
|                           |                   |                                                       | 8      |             | Die quality issue                                                                   | 2      |                                                                                                               | Visual sample check (5)<br>Machine auto alarm(2)                      | 2      | 32     | None        |                           |                 |        |        |        |        |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                       |
|-----------------------------------------------------------------|----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                      |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                               |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | OHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                |

|                           | _                 |                                                          |        |        |                                        |        |                                                                                                                                                                                          |                                                                                               |        |        |           |                           | Action I        |        |        |  |
|---------------------------|-------------------|----------------------------------------------------------|--------|--------|----------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|--------|-----------|---------------------------|-----------------|--------|--------|--|
| Process                   | Potential Failure |                                                          | S      |        | Potential                              | О      |                                                                                                                                                                                          | Current Design/ Process                                                                       |        |        |           |                           | Actions Taken & |        |        |  |
| Function/<br>Requirements | Mode              | Effect(s) of Failure                                     | E<br>V | a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue | C<br>C | Process Controls Prevention                                                                                                                                                              | Controls Detection                                                                            | E<br>T | P<br>N | Action(s) | Target<br>Completion Date | Effective Date  | E<br>V | C<br>C |  |
|                           | Miss bond         | Electrical<br>failure(8)                                 | 8      | S      | Wrong recipe                           | 1      | Only process<br>engineers have<br>authority to edit the<br>recipe; wirebond<br>recipe name rule<br>align with bonding<br>diagram no and<br>rev;recipe<br>modification<br>approval system | Visual sample check (5)<br>Sample PBI (5)                                                     |        | 40     | None      |                           |                 |        |        |  |
|                           |                   |                                                          | 8      |        | Mixed devices                          | 1      | Check the assembly<br>shop order before<br>lot start.and record<br>the magazine<br>number                                                                                                | Visual sample check (5)<br>Sample PBI (5)<br>PRS Auto alarm(2)                                | 2      | 16     | None      |                           |                 |        |        |  |
|                           |                   |                                                          | 8      |        | Wrong wire bond<br>start sequence      | 2      | Lock the " always"<br>start from seleted<br>wire function                                                                                                                                | Visual sample check (5)<br>Sample PBI (5)<br>PRS Auto alarm(2)                                | 2      | 32     | None      |                           |                 |        |        |  |
|                           |                   | Mold flash/resin<br>bleed(4)<br>Electrical<br>failure(8) | 8      |        | Index jamming                          | 3      | Equipped with detect sensor to prevent jamming. PM check index                                                                                                                           | Machine jam alarm(2)<br>Non stick auto alarm (2)<br>Visual sample check (5)<br>Sample PBI (5) | 2      | 48     | None      |                           |                 |        |        |  |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
| <u> </u>                                                        | <del></del>                                                                 |

|              |                   |              |   |     |                   |   | -                    |                                |    |    |             |                  | Action F       |   |   |   |          |
|--------------|-------------------|--------------|---|-----|-------------------|---|----------------------|--------------------------------|----|----|-------------|------------------|----------------|---|---|---|----------|
| Process      | Potential Failure |              | S |     | Potential         | О | C                    | Current Design/ Process        | D  |    | Recommended | Responsibility & |                | S |   |   |          |
| Function/    | Mode              | Effect(s) of | Е | 1   | Cause(s)/         | C | Process Controls     | Controls Detection             | Е  |    | Action(s)   | Target           | Effective Date | E |   | Е |          |
| Requirements |                   | Failure      | V | a   | Mechanism(s)      | C | Prevention           |                                | T  | N  |             | Completion Date  |                | V | C | T | N        |
|              |                   |              |   | S   | of Failue         |   |                      |                                |    |    |             |                  |                |   |   |   | 1        |
|              |                   |              |   | S   |                   |   |                      |                                |    |    |             |                  |                |   |   |   | 1        |
|              |                   |              | 8 |     | Window clamping   | 2 | Technician check     | Machine jam alarm(2)           | 2  | 32 | None        |                  |                |   |   |   |          |
|              |                   |              |   |     | and heat block    |   | heat block under     | Non stick auto alarm (2)       |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     | issue             |   | microscope           | Visual sample check (5)        |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   | quarterly and        | Sample PBI (5)                 |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   | qualified technician |                                |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   | can change heat      |                                |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   | block.               |                                |    |    |             |                  |                |   |   |   |          |
|              |                   |              | 8 |     | Leadframe quality | 1 |                      | Machine jam alarm(2)           | 2  | 16 | None        |                  |                |   |   |   |          |
|              |                   |              |   |     | issue             |   | check;               | Non stick auto alarm (2)       |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   |                      | Visual sample check (5)        |    |    |             |                  |                |   |   |   | 1        |
|              |                   |              |   |     |                   |   |                      | Sample PBI (5)                 |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   |                      | Function line test of          |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   |                      | Leadfram(5)                    |    |    |             |                  |                |   |   |   | l        |
|              | Weak bond on pad  |              | 8 |     | Insufficient heat | 1 | Check heat block     | Buil blieur br C mointor(1)    | 4  | 32 | None        |                  |                |   |   |   |          |
|              |                   | failure(8)   |   |     | transfer/downhold |   | quarterly            | Wire pull SPC monitor(4)       |    |    |             |                  |                |   |   |   | l        |
|              |                   | Reliability  |   |     | er clamping       |   |                      |                                |    |    |             |                  |                |   |   |   | l        |
|              |                   | failure(8)   | 8 | *   | Wafer/Die issue ( | 2 | DI water cleaning    | Ball shear SPC monitor(4)      | 1  | 64 | None        |                  |                |   |   |   | $\vdash$ |
|              |                   |              | 0 |     | Pad metal         | _ | during saw for       | Wire pull SPC monitor(4)       |    | 04 | None        |                  |                |   |   |   | l        |
|              |                   |              |   |     | problems:big      |   | wafer                | Wafer incoming check(4)        |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     | probe mark; pad   |   | Walci                | water meening eneek(1)         |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     | scratch,contamina |   |                      |                                |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     | tion etc)         |   |                      |                                |    |    |             |                  |                |   |   |   |          |
|              |                   |              | 8 | sk: | USG transfer      | 1 | Calibrata immadanaa  | Ball shear SPC monitor(4)      | 2. | 16 | None        |                  |                |   |   |   | $\vdash$ |
|              |                   |              | ٥ |     | malfunction       | 1 | when changing        | Wire pull SPC monitor(4)       | 2  | 10 | None        |                  |                |   |   |   | l        |
|              |                   |              |   |     | manunction        |   | capillary.           | Machine auto alarm after       |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   |                      | capillary calibration fails(2) |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   | can change the       | capitally canoration rans(2)   |    |    |             |                  |                |   |   |   | l        |
|              |                   |              |   |     |                   |   | capillary.           |                                |    |    |             |                  |                |   |   |   | 1        |
|              |                   |              | 1 |     |                   |   |                      |                                |    |    |             |                  |                |   |   |   | l        |

| Item:        | SOIC16/28/32/54   | 41d               |      |      |                   |     |                      |                           | (   | Contr | ol Number/Issue:  | 83MCT00002A/E     | BY              |   |   |   |          |
|--------------|-------------------|-------------------|------|------|-------------------|-----|----------------------|---------------------------|-----|-------|-------------------|-------------------|-----------------|---|---|---|----------|
| Type:        | Design            | _x_ Process       |      |      |                   |     |                      | Company,                  | Gro | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |   |   |   |          |
|              | Amanda Wang       |                   |      |      |                   |     |                      |                           |     |       | FMEA Date:        |                   | (Orig.)         |   |   |   |          |
| Core Team:   | Amanda Wang,H     | I.J. Liu,Ivory Gu | o,JU | JN Y | ING ZHENG,XI      | 4OF | HUI KANG,SHUAN       | N YAO,Cyndi Hu,Grayson    | Ch  | en,L  | ANPING BAI,JIN    | 14-Nov-13         | (Rev.)          |   |   |   |          |
|              |                   |                   |      |      |                   |     |                      |                           |     |       |                   |                   |                 |   |   |   |          |
|              |                   |                   |      |      |                   |     |                      |                           |     |       |                   |                   |                 |   |   |   |          |
|              |                   |                   |      |      |                   |     |                      |                           |     |       |                   |                   | Action I        |   |   |   |          |
| Process      | Potential Failure | Potential         | S    | C    | Potential         | О   | Current Design/      | Current Design/ Process   | D   | R     | Recommended       | Responsibility &  | Actions Taken & | S | О | D | R        |
| Function/    | Mode              | Effect(s) of      | Е    | 1    | Cause(s)/         | C   | Process Controls     | Controls Detection        | Е   | P     | Action(s)         | Target            | Effective Date  | Е | C | Ε | P        |
| Requirements |                   | Failure           | V    | a    | Mechanism(s)      | C   | Prevention           |                           | T   | N     |                   | Completion Date   |                 | V | C | T | N        |
| _            |                   |                   |      | s    | of Failue         |     |                      |                           |     |       |                   |                   |                 |   |   |   | ı        |
|              |                   |                   |      | s    |                   |     |                      |                           |     |       |                   |                   |                 |   |   |   | i        |
|              |                   |                   | 8    | *    | Capillary issue(  | 1   | Check capillary type | Ball shear SPC monitor(4) | 4   | 32    | None              |                   |                 |   |   |   |          |
|              |                   |                   |      |      | wrong type, life  |     | in TCM and B/D.      | Wire pull SPC monitor(4)  |     |       |                   |                   |                 |   |   |   | i        |
|              |                   |                   |      |      | etc)              |     | Capillary life is    |                           |     |       |                   |                   |                 |   |   |   | i        |
|              |                   |                   |      |      |                   |     | locked in recipe.    |                           |     |       |                   |                   |                 |   |   |   | i        |
|              |                   |                   | 8    | *    | Improper wire     | 2   | Lock key parameters  | Ball shear SPC monitor(4) | 4   | 64    | None              |                   |                 |   |   |   |          |
|              |                   |                   |      |      | bond parameters   | _   |                      | Wire pull SPC monitor(4)  | _   | 04    | rone              |                   |                 |   |   |   | i        |
|              |                   |                   |      |      | cona parameters   |     | above can change     | , no pan or e monter(1)   |     |       |                   |                   |                 |   |   |   | i        |
|              |                   |                   |      |      |                   |     | the parameters;      |                           |     |       |                   |                   |                 |   |   |   | i        |
|              |                   |                   |      |      |                   |     | check parameters in  |                           |     |       |                   |                   |                 |   |   |   | ı        |
|              |                   |                   |      |      |                   |     | TCM                  |                           |     |       |                   |                   |                 |   |   |   | l        |
|              |                   |                   | Q    | *    | Floating          | 3   | Setup check.         | Ball shear SPC monitor(4) | 2   | 48    | None              |                   |                 |   |   |   |          |
|              |                   |                   | 0    |      | leadframe(Flag)on | ,   |                      | Wire pull SPC monitor(4)  | _   | 70    | None              |                   |                 |   |   |   | ı        |
|              |                   |                   |      |      | heat block.       |     |                      | Sample PBI (5)            |     |       |                   |                   |                 |   |   |   | ı        |
|              |                   |                   |      |      | neur oroem        |     | and teach bond.      | Machine auto alarm when   |     |       |                   |                   |                 |   |   |   | ı        |
|              |                   |                   |      |      |                   |     |                      | vacuum out of control(2)  |     |       |                   |                   |                 |   |   |   | <u> </u> |
|              |                   |                   | 8    |      | Cu wire oxidation | 4   |                      | Ball shear SPC monitor(4) | 2   | 64    | None              |                   |                 |   |   |   | i        |
|              |                   |                   | 1    |      |                   |     | and work life        | Wire pull SPC monitor (4) |     |       |                   |                   |                 |   |   |   | i '      |
|              |                   |                   |      |      |                   |     | control;             | Machine auto alarm when   |     |       |                   |                   |                 |   |   |   | 1 '      |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

forming gas flow out of

Material system auto alarm when Cu wire expired shelf life or work life(2)

control(2)

Forming gas flow

monitor(auto)

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|              |                    |              |   |   |                       |   |                                       | Action Results                              |   |    |             |                  |                |   |   |                |   |
|--------------|--------------------|--------------|---|---|-----------------------|---|---------------------------------------|---------------------------------------------|---|----|-------------|------------------|----------------|---|---|----------------|---|
| Process      | Potential Failure  |              | S |   | Potential             | О |                                       | Current Design/ Process                     |   |    | Recommended | Responsibility & |                |   |   |                |   |
| Function/    | Mode               | Effect(s) of | Е | 1 | Cause(s)/             | C | Process Controls                      | Controls Detection                          | Е | P  | Action(s)   | Target           | Effective Date | Е | C | Е              | I |
| Requirements |                    | Failure      | V | a | Mechanism(s)          | C | Prevention                            |                                             | T | N  |             | Completion Date  |                | V | C | T              | N |
|              |                    |              |   | S | of Failue             |   |                                       |                                             |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   | S |                       |   |                                       |                                             |   |    |             |                  |                |   |   |                |   |
|              | Weak bond on       | Electrical   | 8 | * | Head Block and        | 2 | Technician check                      | Visual sample check (5)                     | 4 | 64 | None        |                  |                |   |   |                |   |
|              | lead(( Stitch bond | ` '          |   |   | window clamping       |   | heat block under                      | Sample PBI (5)                              |   |    |             |                  |                |   |   |                |   |
|              | deformation,       | Reliability  |   |   | malfunction           |   | microscope                            | Wire peel test (4)                          |   |    |             |                  |                |   |   |                |   |
|              | peeling, crack     | failure(8)   |   |   |                       |   | quarterly and                         |                                             |   |    |             |                  |                |   |   | ı              |   |
|              | etc)               |              |   |   |                       |   | qualified technician can change heat  |                                             |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   |                       |   | block                                 |                                             |   |    |             |                  |                |   |   | l              |   |
|              |                    |              | 8 | * | USG transfer          | 1 | Calibrate impedance                   | Visual sample check (5)                     | 2 | 16 | None        |                  |                |   |   | ı              |   |
|              |                    |              |   |   | malfunction           |   | when changing                         | Sample PBI (5)                              |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   |                       |   | capillary.  Qualified technician      | Wire peel test (4) Machine auto alarm after |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   |                       |   | can change the                        | capillary calibration fails(2)              |   |    |             |                  |                |   |   |                |   |
|              |                    |              |   |   |                       |   | capillary.                            | capillary canoration rans(2)                |   |    |             |                  |                |   |   |                |   |
|              |                    |              |   |   |                       |   | cupinary.                             |                                             |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   | G 111 1 /             |   | Cl. 1 '11 .                           | TT' 1 1 1 (5)                               |   | 22 | 3.7         |                  |                |   | _ | $\blacksquare$ |   |
|              |                    |              | 8 | * | Capillary issue(      | 1 | Check capillary type in TCM and B/D.  | Visual sample check (5)<br>Sample PBI (5)   | 4 | 32 | None        |                  |                |   |   | ı              |   |
|              |                    |              |   |   | wrong type, life etc) |   | Capillary life is                     | Wire peel test (4)                          |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   | cic)                  |   | locked in recipe.                     | whe peer test (4)                           |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   |                       |   | 1                                     |                                             |   |    |             |                  |                |   |   |                |   |
|              |                    |              | 8 | * | Improper wire         | 2 | Lock key parameters                   |                                             | 4 | 64 | None        |                  |                |   |   |                |   |
|              |                    |              |   |   | bond parameters       |   | and technician or                     | Sample PBI (5)                              |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   |                       |   | above can change                      | Wire peel test (4)                          |   |    |             |                  |                |   |   |                |   |
|              |                    |              |   |   |                       |   | the parameters;<br>check paramters in |                                             |   |    |             |                  |                |   |   |                |   |
|              |                    |              |   |   |                       |   | TCM                                   |                                             |   |    |             |                  |                |   |   | ı              |   |
|              |                    |              |   |   |                       |   | I CIVI                                |                                             |   |    |             |                  |                |   |   | , 1            |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
| <u> </u>                                                        | <del></del>                                                                 |

|              |                   |              |   |      |                             |   |                                    |                           |   |    |             |                  | Action F        |   |   |   |          |
|--------------|-------------------|--------------|---|------|-----------------------------|---|------------------------------------|---------------------------|---|----|-------------|------------------|-----------------|---|---|---|----------|
| Process      | Potential Failure | Potential    | S |      | Potential                   | О | C                                  | Current Design/ Process   |   |    | Recommended | Responsibility & | Actions Taken & |   |   |   |          |
| Function/    | Mode              | Effect(s) of | Е | 1    | Cause(s)/                   | C | Process Controls                   | Controls Detection        | Е |    | Action(s)   | Target           | Effective Date  |   |   | Е |          |
| Requirements |                   | Failure      | V | a    | Mechanism(s)                | C | Prevention                         |                           | T | N  |             | Completion Date  |                 | V | C | T | N        |
|              |                   |              |   | s    | of Failue                   |   |                                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   | s    |                             |   |                                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Leadframe defect            | 2 | Preserve leadframe                 | Visual sample check (5)   | 4 | 64 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | before wire bond            |   | in cabinet well with               | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | (contamination,             |   | N2 gas protection.                 | Wire peel test (4)        |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | oxidization, lead           |   | Hand free method                   |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | damage, foreign             |   | during sample                      |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | matter, etc. )              |   | checking                           |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | Function line test                 |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | and pick out the defect lead frame |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | Machine cover                      |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | above work holder                  |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | Use pre-wire                       |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | bonding plasma                     |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | clean                              |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Insufficient heat           | 1 | Check heat block                   | Visual sample check (5)   | 4 | 32 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | transfer/downhold           |   | quarterly                          | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   | ļ. — | er clamping                 |   |                                    | Wire peel test (4)        |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 |      | Improper second             | 1 | Locked second bond                 | Visual sample check (5)   | 4 | 32 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | bond position               |   | position in recipe                 | Wire peel test(4)         |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Mishandling                 | 2 | Operators follow                   | Visual sample check (5)   | 4 | 64 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      | operation( load             |   | SOP and WI                         | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | magazine, unit              |   |                                    | Wire peel test(4)         |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | inspection,wire             |   |                                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | sk   | change etc) Excessive epoxy | 2 | Set dispense                       | Visual sample check (5)   | 2 | 48 | None        |                  |                 |   |   |   | <u> </u> |
|              |                   |              | 0 |      | Excessive epoxy             | 3 | parameter per                      | Setup check before W/B(4) |   | 40 | none        |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | positrol log                       | OBC/ODC auto alarm(2)     |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | check epoxy                        | OBC/OBC auto ararm(2)     |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | expiration date                    |                           |   |    |             |                  |                 |   |   |   |          |
|              |                   |              | 8 | *    | Foreign matter              | 2 | Monthly cleaning                   | Visual sample check (5)   | 4 | 64 | None        |                  |                 |   |   |   |          |
|              |                   |              |   |      |                             |   | wire bonder index                  | Sample PBI (5)            |   |    |             |                  |                 |   |   |   |          |
|              |                   |              |   |      | <u>l</u>                    |   | İ                                  | Wire peel test(4)         |   |    |             |                  |                 |   |   |   |          |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 |                                                                             |

|              | _                 |              |   |   |                                |   |                    |                                                       |   |    |           |                  | Action F       |   |   |   |   |
|--------------|-------------------|--------------|---|---|--------------------------------|---|--------------------|-------------------------------------------------------|---|----|-----------|------------------|----------------|---|---|---|---|
| Process      | Potential Failure |              | S |   | Potential                      | О | ~                  | Current Design/ Process                               |   |    |           | Responsibility & |                |   |   |   |   |
| Function/    | Mode              | Effect(s) of | Е | 1 | Cause(s)/                      | C | Process Controls   | Controls Detection                                    | Е |    | Action(s) | Target           | Effective Date |   | C |   |   |
| Requirements |                   | Failure      | V | a | Mechanism(s)                   | C | Prevention         |                                                       | T | N  |           | Completion Date  |                | V | C | T | N |
|              |                   |              |   | S | of Failue                      |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   | s |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              | 8 |   | Cu wire oxidation              | 4 | Cu wire shelf life | Ball shear SPC monitor(4)                             | 2 | 64 | None      |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   | and work life      | Wire pull SPC monitor (4)                             |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   | control;           | Machine auto alarm when                               |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   | Forming gas flow   | forming gas flow out of                               |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   | monitor(auto)      | control(2)                                            |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    | Material system auto alarm when Cu wire expired shelf |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    | life or work life(2)                                  |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    | ine of work ine(2)                                    |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   | Electrical   | 8 |   | Wafer incoming                 | 2 | DI water cleaning  | Visual sample check (5)                               | 5 | 80 | None      |                  |                |   |   |   |   |
|              |                   | failure(8)   |   |   | issue                          |   | during saw         | Sample PBI (5)                                        |   |    |           |                  |                |   |   |   |   |
|              | 1 7 1             | Reliability  |   |   |                                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              | ect)              | failure(8)   | 8 |   | Wire clamper                   | 2 | Wire clamp PM      | Visual sample check (5)                               | 5 | 80 | None      |                  |                |   |   |   |   |
|              |                   |              | 0 |   | issue(                         | _ | quarterly          | Sample PBI (5)                                        | 5 | 80 | TVOIC     |                  |                |   |   |   |   |
|              |                   |              |   |   | tight,contaminatio             |   | quarterry          | Sumple I BI (5)                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   | n,worn out etc)                |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   | ,                              |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              | 8 |   | Mishandling of                 | 2 | Standard operation | Visual sample check (5)                               | 5 | 80 | None      |                  |                |   |   |   |   |
|              |                   |              |   |   | wire( removing bond off wires, |   | following WI       | Sample PBI (5)                                        |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   | wire theading etc)             |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   | wire theading etc)             |   |                    |                                                       |   |    |           |                  |                |   |   |   |   |
|              |                   |              | 8 |   | Epoxy on lead or               | 2 | Die bond fillet    | Visual sample check (5)                               | 5 | 80 | None      |                  |                |   |   |   |   |
|              |                   |              |   |   | die                            |   | height and resin   | Sample PBI (5)                                        |   |    |           |                  |                |   |   |   |   |
|              |                   |              |   |   |                                |   | bleed control      |                                                       |   |    |           |                  |                |   |   |   |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |  |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |  |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XL | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |  |
|                                                                 |                                                                             |  |

|              | -                 |                    |   |   |                                      |   |                                     |                                |   |    |           |                  | Action F       |   |              |   |   |
|--------------|-------------------|--------------------|---|---|--------------------------------------|---|-------------------------------------|--------------------------------|---|----|-----------|------------------|----------------|---|--------------|---|---|
| Process      | Potential Failure |                    | S |   | Potential                            | О | C                                   | Current Design/ Process        |   |    |           | Responsibility & |                |   |              |   |   |
| Function/    | Mode              | Effect(s) of       | Е | 1 | Cause(s)/                            | C | Process Controls                    | Controls Detection             | Е |    | Action(s) | Target           | Effective Date |   | $\mathbf{C}$ | Е |   |
| Requirements |                   | Failure            | V | a | Mechanism(s)                         | C | Prevention                          |                                | T | N  |           | Completion Date  |                | V | $\mathbf{C}$ | T | N |
|              |                   |                    |   | S | of Failue                            |   |                                     |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   | S |                                      |   |                                     |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    | 8 |   | Particles in air                     | 2 | Operation following                 | Visual sample check (5)        | 5 | 80 | None      |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | FE cleaning room                    | Sample PBI (5)                 |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | SOP                                 |                                |   |    |           |                  |                |   |              |   |   |
|              | Non stick on pad  | Electrical failure | 8 |   | Insufficient heat                    | 1 | Check heat block                    | Non stick auto alarm(2)        | 2 | 16 | None      |                  |                |   |              |   |   |
|              | 1                 | (8)                |   |   | transfer/downhold                    |   | quarterly                           | Ball shear SPC monitor(4)      |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   | er clamping                          |   | · ·                                 | Wire pull SPC monitor(4)       |   |    |           |                  |                |   |              |   |   |
|              |                   |                    | 8 |   | Wafer/die issue (                    | 2 | DI water cleaning                   | Ball shear SPC monitor(4)      | 2 | 32 | None      |                  |                |   |              |   |   |
|              |                   |                    |   |   | Pad metal                            |   | during saw for                      | Wire pull SPC monitor(4)       |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   | problems:big                         |   | wafer                               | Wafer incoming check(4)        |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   | probe mark; pad<br>scratch,contamina |   |                                     | Non stick auto alarm(2)        |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   | tion etc)                            |   |                                     |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    | 8 |   | USG transfer                         | 1 | Calibrate impedance                 | Ball shear SPC monitor(4)      | 2 | 16 | None      |                  |                |   |              |   |   |
|              |                   |                    |   |   | malfunction                          |   | when changing                       | Wire pull SPC monitor(4)       |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | capillary.                          | Machine auto alarm after       |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | Qualified technician                | capillary calibration fails(2) |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | can change the                      | Non stick auto alarm(2)        |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | capillary.                          |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   |                                     |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    | 8 |   | Capillary issue(                     | 1 |                                     | Ball shear SPC monitor(4)      | 2 | 16 | None      |                  |                |   |              |   |   |
|              |                   |                    |   |   | wrong type, life                     |   | in TCM and B/D.                     | Wire pull SPC monitor(4)       |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   | etc)                                 |   | Capillary life is locked in recipe. | Non stick auto alarm(2)        |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | locked in recipe.                   |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    | 8 |   | Improper wire                        | 2 |                                     | Ball shear SPC monitor(4)      | 2 | 32 | None      |                  | _              |   |              |   |   |
|              |                   |                    |   |   | bond parameters                      |   | and technician or                   | Wire pull SPC monitor(4)       |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | above can change                    | Non stick auto alarm(2)        |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | the parameters;                     |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | check paramter in                   |                                |   |    |           |                  |                |   |              |   |   |
|              |                   |                    |   |   |                                      |   | TCM                                 |                                |   |    |           |                  |                |   |              |   |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|              |                   |                    |          |   |                   |   |                                      |                                                   |   |    |             |                  | Action F        |   |   |   |   |
|--------------|-------------------|--------------------|----------|---|-------------------|---|--------------------------------------|---------------------------------------------------|---|----|-------------|------------------|-----------------|---|---|---|---|
| Process      | Potential Failure |                    | S        | C | Potential         | О | C                                    | Current Design/ Process                           |   |    | Recommended | Responsibility & | Actions Taken & |   |   |   |   |
| Function/    | Mode              | Effect(s) of       | Е        | 1 | Cause(s)/         | C | Process Controls                     | Controls Detection                                | Е |    | Action(s)   | Target           | Effective Date  | Е |   | Е | P |
| Requirements |                   | Failure            | V        | a | Mechanism(s)      | C | Prevention                           |                                                   | T | N  |             | Completion Date  |                 | V | C | T | N |
|              |                   |                    |          | s | of Failue         |   |                                      |                                                   |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          | S |                   |   |                                      |                                                   |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    | 8        |   | Floating          | 2 | Setup check.                         | Buil blieur bi C mointer(1)                       | 2 | 32 | None        |                  |                 |   |   |   |   |
|              |                   |                    |          |   | leadframe(Flag)   |   |                                      | Wire pull SPC monitor(4)                          |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   | on heat block.    |   | do the conversion                    | Machine auto alarm when                           |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | and teach bond.                      | vacuum out of control(2)  Non stick auto alarm(2) |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    | 8        |   | Cu wire oxidation | 4 | Cu wire shelf life                   |                                                   | 2 | 64 | None        |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | and work life                        | Wire pull SPC monitor(4)                          |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | control;                             | Machine auto alarm when                           |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | Forming gas flow                     | forming gas flow out of                           |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | monitor(auto)                        | control(2)<br>Material system auto alarm          |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   |                                      | when Cu wire expired shelf                        |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   |                                      | life or work life(2)                              |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   |                                      | Non stick auto alarm(2)                           |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   |                                      |                                                   |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   |                                      |                                                   |   |    |             |                  |                 |   |   |   |   |
|              | Non stick on lead | Electrical failure | 8        |   | Head Block and    | 2 | Technician check                     | Visual sample check (5)                           | 2 | 32 | None        |                  |                 |   |   |   |   |
|              |                   | (8)                |          |   | window clamping   |   | heat block under                     | Sample PBI (5)                                    |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   | malfunction       |   | microscope                           | Wire peel test (4)                                |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | quarterly and                        | Non stick auto alarm(2)                           |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | qualified technician can change heat |                                                   |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | block                                |                                                   |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    | 8        |   | USG transfer      | 1 | Calibrate impedance                  | 1 · · · · · · · · · · · · · · · · · · ·           | 2 | 16 | None        |                  |                 |   |   |   |   |
|              |                   |                    |          |   | malfunction       |   | when changing                        | Sample PBI (5)                                    |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | capillary.<br>Qualified technician   | Wire peel test (4) Machine auto alarm after       |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | can change the                       | capillary calibration fails(2)                    |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   | capillary.                           | Non stick auto alarm(2)                           |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |          |   |                   |   |                                      | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.            |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    | <u> </u> |   |                   |   |                                      |                                                   |   |    |             |                  |                 |   |   |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

| Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 | Action F       |   |   |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------|---|---|---------------------------------------|---|---------------------|-------------------------|---|----|---------------|-----------------|----------------|---|---|---|---|
| Requirements   Failure   V   a   Mechanism(s)   C   Prevention   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Failue   S   Of Fail   | Process      | Potential Failure |         |   | C |                                       |   | ~                   |                         |   |    |               |                 |                |   |   |   |   |
| s of Failue s Capillary issue( wrong type, life etc)  8 Improper wire bond parameters  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect ad frame damage,etc.)  1 Check capillary type (isoual sample check (5) sample PBI (5) wire peet lest (4) (and the parameters) (isoual sample check (5) sample PBI (5) wire parameters)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect ad frame damage,etc.)  8 Leadframe defect ad frame wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (isoual sample check (5) wire peet lest (4) (is |              | Mode              |         |   | 1 | Cause(s)/                             |   |                     | Controls Detection      |   |    | Action(s)     |                 | Effective Date |   |   | E | P |
| 8 Capillary issue( wrong type, life etc)  8 Improper wire bond parameters  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Requirements |                   | Failure | V | a | Mechanism(s)                          | C | Prevention          |                         | T | N  |               | Completion Date |                | V | C | T | N |
| 8 Capillary issue( wrong type, life etc)  8 Improper wire bond parameters  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  9 Lecking ample check (5) and technician or above can change the parameters yellow (contamination, oxidization, lead damage,etc.)  1 Preserve leadframe and pick out the defect lead frame Machine cover and pick out the defect loss and pick out the defect loss and pick out the defect loss and lead, only for bga, lags snow, leaded dam, only for bga, lags snow, leaded dam, only for bga, lags snow, leaded dam, only for bga, lags snow, leaded dam, only for bga, lags snow, leaded dam, only for bga, lags snow, leaded dam, only for bga, lags snow, leaded dam, only for bga, lags snow, leaded dawn, and the converse of the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5) and the check (5 |              |                   |         |   | S | of Failue                             |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| wrong type, life etc)  in conversion checklist and B/D.  Capillary life is locked in recine bond parameters  in check by parameters and technician or above can change the parameters; check parameter in TCM  Item of the parameter in to the fore wire bond (contamination, oxidization, lead damage.etc.)  Item of the parameter in to the fore wire bond (contamination, oxidization, lead damage.etc.)  Item of the parameter in to the fore wire bond (contamination, oxidization, lead damage.etc.)  Item of the parameter in to the fore wire bond (contamination, oxidization, lead damage.etc.)  Item of the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in to the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the parameter in the p |              |                   |         |   | S |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| etc)  checklist and B/D. Capillary life is  Improper wire bond parameters bond parameters and technician or above can change the parameters; check parameter in TCM   8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  9 Preserve leadframe Wisual sample check (5) Sample PBI (5) Wire peel test (4) Non stick auto alarm(2)  Wire peel test (4) Non stick auto alarm(2)  None  8 None  8 None  8 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9 None  9  |              |                   |         | 8 |   |                                       | 1 |                     | Visual sample check (5) | 2 | 16 | None          |                 |                |   |   |   |   |
| Sample   Part   Capillary life is   Non stick auto alarm(2)   Capillary life is   Non stick auto alarm(2)   Capillary life is   Non stick auto alarm(2)   Capillary life is   Non stick auto alarm(2)   Capillary life is   Non stick auto alarm(2)   Capillary life is   Non stick auto alarm(2)   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   Capillary life   C   |              |                   |         |   |   | wrong type, life                      |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| South   Cocked in recipe   Clock   Cock   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cocked   Cock   |              |                   |         |   |   | etc)                                  |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| Improper wire bond parameters   2   Lock key parameters and technician or above ean change the parameters; check parameter in TCM   Non stick auto alarm(2)   Sample PBI (5)   Wire peel test (4)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   Non stick auto alarm(2)   No   |              |                   |         |   |   |                                       |   |                     | Non stick auto alarm(2) |   |    |               |                 |                |   |   |   |   |
| bond parameters above can change the parameters; check paramter in TCM Wire peel test (4) Wire peel test (4) Non stick auto alarm(2) Sample PBI (5) Non stick auto alarm(2) Sample PBI (5) None to store wire bond (contamination, oxidization, lead damage.etc.) Sample PBI (5) Wire peel test (4) Non stick auto alarm(2) Sample PBI (5) None to store wire bond during sample checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean, (only for bga, Jga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   |         | 8 |   | Improper wire                         | 2 | Lock key parameters | Visual sample check (5) | 2 | 32 | None          |                 |                |   |   |   |   |
| the parameters; check paramter in TCM  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  1 Parameters; check paramter in TCM  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  1 Preserve leadframe in cabinet well with N2 gas protection.  1 Hand free method during sample checking  1 Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean, (only for bga, lga sony, leaded)  1 Dreserve leadframe Visual sample check (5) (5) (2) (32) (32) (32) (32) (33) (33) (34) (34) (34) (34) (34) (34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| check paramter in TCM  8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   |         |   |   | _                                     |   | above can change    | Wire peel test (4)      |   |    |               |                 |                |   |   |   |   |
| 8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  1 Preserve leadframe in cabinet well with N2 gas protection. Hand free method during sample checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.(only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |         |   |   |                                       |   |                     | Non stick auto alarm(2) |   |    |               |                 |                |   |   |   |   |
| 8 Leadframe defect before wire bond (contamination, oxidization, lead damage,etc.)  1 Preserve leadframe in cabinet well with N2 gas protection. Hand free method during sample checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean. (only for bga] Iga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| before wire bond (contamination, oxidization, lead damage,etc.)  In cabinet well with N2 gas protection. Wire peel test (4)  Hand free method during sample checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga]  Jaga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |         |   |   |                                       |   | TCM                 |                         |   |    |               |                 |                |   |   |   |   |
| (contamination, oxidization, lead damage,etc. )  N2 gas protection. Hand free method during sample checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.(only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   |         | 8 |   | Leadframe defect                      | 2 |                     |                         | 2 | 32 | None          |                 |                |   |   |   |   |
| oxidization, lead damage,etc.)  Hand free method during sample checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |         |   |   | before wire bond                      |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| damage,etc.)  during sample checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |         |   |   | ,                                     |   | - 1                 |                         |   |    |               |                 |                |   |   |   |   |
| checking Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   |         |   |   | · · · · · · · · · · · · · · · · · · · |   |                     | Non stick auto alarm(2) |   |    |               |                 |                |   |   |   |   |
| Function line test and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                   |         |   |   | damage,etc.)                          |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| and pick out the defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| defect lead frame Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| Machine cover above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| above work holder Use pre-wire bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| bonding plasma clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
| clean.( only for bga ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                   |         |   |   |                                       |   | Use pre-wire        |                         |   |    |               |                 |                |   |   |   |   |
| ,lga sony, leaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |         |   |   |                                       |   |                     |                         |   |    |               |                 |                |   |   |   | 1 |
| pkgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                   |         | 0 |   | T CC' 1 1 1                           |   |                     | 77' 1 1 1 1 (6)         | _ | 17 | <b>&gt;</b> 7 |                 |                |   |   |   |   |
| 8 Insufficient heat transfer/downhold transfer/downhold quarterly Visual sample check (5) 2 16 None Sample PBI (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   |         | 8 |   |                                       | 1 |                     |                         | 2 | 16 | None          |                 |                |   |   |   |   |
| transfer/downhold quarterly Sample PBI (5) er clamping Wire peel test (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                   |         |   |   |                                       |   | quarterry           |                         |   |    |               |                 |                |   |   |   |   |
| Non stick auto alarm(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                   |         |   |   | ci ciamping                           |   |                     |                         |   |    |               |                 |                |   |   |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|                              |                   |                                                          |        |             |                                                                |        |                                                                                                                                          |                                                                                                                                                                                  |        |        |             | _                      | Action F        |        |        |  |
|------------------------------|-------------------|----------------------------------------------------------|--------|-------------|----------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|------------------------|-----------------|--------|--------|--|
| Process                      | Potential Failure |                                                          | S      | С           | Potential                                                      | О      | C                                                                                                                                        | Current Design/ Process                                                                                                                                                          | D      |        | Recommended | Responsibility &       | Actions Taken & |        | O      |  |
| Function/<br>Requirements    | Mode              | Effect(s) of Failure                                     | E<br>V | 1<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue                         | C<br>C | Process Controls Prevention                                                                                                              | Controls Detection                                                                                                                                                               | E<br>T | P<br>N | Action(s)   | Target Completion Date | Effective Date  | E<br>V | C<br>C |  |
|                              |                   |                                                          | 8      | S           | Cu wire oxidation                                              | 4      | Cu wire shelf life<br>and work life<br>control;<br>Forming gas flow<br>monitor(auto)                                                     | Wire peel test (4) Machine auto alarm when forming gas flow out of control(2) Material system auto alarm when Cu wire expired shelf life or work life(2) Non stick auto alarm(2) | 2      | 64     | None        |                        |                 |        |        |  |
|                              |                   | Eletrcial failure<br>(8)                                 | 8      |             | Improper wire<br>bond parameters                               | 2      | Lock key parameters<br>and technician or<br>above can change<br>the parameters;<br>check parameter in<br>TCM                             | Visual sample check (5)<br>Sample PBI (5)                                                                                                                                        | 5      | 80     | None        |                        |                 |        |        |  |
|                              | used              | Reliability<br>failure(8)<br>Electrical<br>failure(8)    | 8      |             | Mishandling on wrong wire type                                 | 1      | Follow assembly<br>shop order and SFC<br>system control                                                                                  | SFC auto alarm when<br>material part number not<br>match with system record(2)                                                                                                   | 2      | 16     | None        |                        |                 |        |        |  |
|                              |                   | Electrical<br>failure(8)<br>Reliability<br>failure(8)    | 8      |             | Incorrect<br>parameters on<br>first bond and<br>loop formation | 2      | Lock loop<br>parameters;<br>Lock key parameters<br>and technician or<br>above can change<br>the parameters;<br>Check paramters in<br>TCM | Visual sample check (5)<br>Sample PBI (5)<br>Wire pull SPC monitor(4)                                                                                                            | 4      | 64     | None        |                        |                 |        |        |  |
| 5.1 Pre-mold<br>blasma clean | cleanliness       | Delamination<br>after mold(6)<br>Reliability<br>issue(8) | 8      |             | Plasma generator malfunction                                   | 2      | Quarterly PM                                                                                                                             | Machine auto alarm (2) Measure contact angle on die and Leadframe(5)                                                                                                             |        | 32     | None        |                        |                 |        |        |  |

|              |                   |                     |      |     |                             |     |                     | II (D EITEGIS                |     |       | 11111111111    |                   |                 |      |     |   |    | _ |
|--------------|-------------------|---------------------|------|-----|-----------------------------|-----|---------------------|------------------------------|-----|-------|----------------|-------------------|-----------------|------|-----|---|----|---|
|              | SOIC16/28/32/5    |                     |      |     |                             | _   |                     |                              |     |       |                | 83MCT00002A/E     |                 |      |     |   |    | - |
|              |                   | _x_ Process         |      |     |                             |     |                     | Company,                     | Gro | up,Si |                | Freescale, TJN-FN |                 |      |     |   |    | _ |
| Prepared By: | Amanda Wang       |                     |      |     |                             | _   |                     |                              |     |       | FMEA Date:     |                   | (Orig.)         |      |     |   |    |   |
| Core Team:   | Amanda Wang,F     | I.J. Liu,Ivory Gu   | o,JU | N Y | ING ZHENG,XI                | 4OF | HUI KANG,SHUA       | N YAO,Cyndi Hu,Grayson       | Ch  | en,L  | ANPING BAI,JIN | 14-Nov-13         | (Rev.)          |      |     |   |    |   |
|              |                   |                     |      |     |                             |     |                     | •                            |     |       |                |                   | •               |      |     |   |    |   |
|              |                   |                     |      |     |                             |     |                     |                              |     |       |                |                   |                 |      |     |   |    | İ |
|              |                   |                     |      |     |                             |     |                     |                              |     |       |                |                   | Action F        | Resu | lts |   |    | ۰ |
| Process      | Potential Failure | Potential           | S    | С   | Potential                   | О   | Current Design/     | Current Design/ Process      | D   | R     | Recommended    | Responsibility &  | Actions Taken & | S    | 0   | D | R  | • |
| Function/    | Mode              | Effect(s) of        | E    | 1   | Cause(s)/                   | C   | _                   | Controls Detection           | E   |       | Action(s)      | Target            | Effective Date  | Ē    |     |   |    |   |
| Requirements | Wiode             | Failure             | V    | a   | Mechanism(s)                | C   |                     | Controls Detection           | T   | N     | 7 Iction(s)    | Completion Date   | Effective Bute  | V    |     | T |    |   |
| Requirements |                   | ranuic              | *    |     | of Failue                   |     | 1 icvention         |                              | 1   | 11    |                | Completion Date   |                 | ٧    |     | 1 | 11 |   |
|              |                   |                     |      | S   | of Failue                   |     |                     |                              |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      | S   |                             |     |                     |                              |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     | 8    |     | No/Insufficient             | 2   | Quarterly PM        | Machine auto alarm (2)       | 2   | 32    | None           |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     | gas/Vaccum                  |     |                     | Measure contact angle on die |     |       |                |                   |                 |      |     |   |    |   |
| C M 11       | M 1 / CC          | D 1                 |      | -   | N. 11 1                     | 2   | II 10 1 DM          | and Leadframe(5)             | 4   | 48    | NT.            |                   |                 |      |     |   |    | _ |
| 6. Mold      | Mismatch / off-   | Package             | О    |     | Mold chase top              | 2   | Half-yearly PM      | First-piece check by         | 4   | 48    | None           |                   |                 |      |     |   |    |   |
|              | center            | chip/crack (6)      |      |     | and bottom cavity mismatch. |     |                     | microscope (4)               |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     | 6    |     | Location pin & set          | 2   | Half-yearly PM      | First-piece check by         | 4   | 48    | None           |                   |                 |      |     |   |    | - |
|              |                   |                     | U    |     | block worn out              | _   | Train-yearry 1 ivi  | microscope (4)               | _   | 70    | TVOIC          |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     | block worll out             |     |                     | пистозсорс (4)               |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     |                             |     |                     |                              |     |       |                |                   |                 |      |     |   |    |   |
|              | Wire damaged      | Electrical failure. | 8    |     | Loader catch                | 2   | Monthly PM          | First-piece check by X-ray   | 2   | 32    | None           |                   |                 |      |     |   |    | • |
|              |                   | (8)                 |      |     | hooker                      |     |                     | (4)                          |     |       |                |                   |                 |      |     |   |    |   |
|              |                   | Reliability defect  |      |     | misalignment                |     |                     | Sampling check by X-ray(5)   |     |       |                |                   |                 |      |     |   |    |   |
|              |                   | (8)                 |      |     |                             |     |                     | Machine auto alarm(2)        |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     |                             |     |                     |                              |     |       |                |                   |                 |      |     |   |    | _ |
|              |                   |                     | 8    |     | Incorrect input             | 2   | Monthly PM          | First-piece check by X-ray   | 2   | 32    | None           |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     | buffer pusher               |     |                     | (4)                          |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     | position                    |     |                     | Sampling check by X-ray(5)   |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     |                             |     |                     | Machine auto alarm(2)        |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     | 8    |     | Incorrect input             | 2   | Monthly PM          | First-piece check by X-ray   | 2   | 32    | None           |                   |                 |      |     |   |    |   |
|              |                   |                     | 0    |     | buffer pusher               | _   | Wionumy 1 Wi        | (4)                          | _   | 32    | None           |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     | position                    |     |                     | Sampling check by X-ray(5)   |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     | position                    |     |                     | Machine auto alarm(2)        |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     |                             |     |                     | Machine auto alami(2)        |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     | 8    |     | Magazine falls on           | 2   | Follow standard     | First-piece check by X-      | 4   | 64    | None           |                   |                 |      |     |   |    | ٠ |
|              |                   |                     |      |     | floor and wire is           |     | handling requirment | ray(4)                       |     |       |                |                   |                 |      |     |   |    |   |
|              |                   |                     |      |     | touched by                  | I   |                     | Sampling check by X-ray(5)   |     |       |                |                   |                 | l    |     |   |    |   |
|              |                   |                     |      |     | operator                    | I   |                     |                              |     |       |                |                   |                 | l    |     |   |    |   |
|              |                   |                     | Ш    |     |                             |     |                     |                              | _   |       |                |                   |                 |      | Щ   | Щ |    | - |
|              |                   |                     | 8    |     | Loader does not             | 2   | Monthly PM          | First-piece check by X-      | 2   | 32    | None           |                   |                 | l    |     |   |    |   |
|              |                   |                     |      |     | catch lead frame            |     |                     | ray(4)                       |     |       |                |                   |                 |      |     |   |    |   |
|              |                   | ]                   |      |     | well                        |     |                     | Sampling check by X-ray(5)   |     | l     |                |                   |                 |      |     |   |    |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

Machine auto alarm(2)

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
| <u> </u>                                                        | <del></del>                                                                 |

|              |                      |                  |   |   |                    |   |                          |                                      |   |     |             |                  | Action F       |   | lts |   |   |
|--------------|----------------------|------------------|---|---|--------------------|---|--------------------------|--------------------------------------|---|-----|-------------|------------------|----------------|---|-----|---|---|
| Process      | Potential Failure    | Potential        | S | C | Potential          | О |                          | Current Design/ Process              |   |     | Recommended | Responsibility & |                |   |     |   |   |
| Function/    | Mode                 | Effect(s) of     | Е | 1 | Cause(s)/          | C | Process Controls         | Controls Detection                   | Е | P   | Action(s)   | Target           | Effective Date |   | C   | Е |   |
| Requirements |                      | Failure          | V | a | Mechanism(s)       | C | Prevention               |                                      | T | N   |             | Completion Date  |                | V | C   | T | N |
|              |                      |                  |   | s | of Failue          |   |                          |                                      |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   | s |                    |   |                          |                                      |   |     |             |                  |                |   |     |   |   |
|              | Mold flash/ resin    | Electrical       | 8 |   | Foreign matter on  | 2 | Trial run dummy          | First-piece check by                 | 3 | 48  | None        |                  |                |   |     |   |   |
|              | bleed                | failure(8)       |   |   | mold cavity        |   | after mold cleaning      | microscope (4)                       |   |     |             |                  |                |   |     |   |   |
|              |                      | Solderability    |   |   |                    |   | and conditioning;        | Sampling check (5)                   |   |     |             |                  |                |   |     |   |   |
|              |                      | failure (8)      |   |   |                    |   | Clean vacuum box         | 100% final visual inspection         |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   | shiftly;                 | (3)                                  |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   | Change                   |                                      |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   | pot&plunger while        |                                      |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   | worn out                 |                                      |   |     |             |                  |                |   |     |   |   |
|              |                      |                  | 8 |   | Expose pad is      | 2 | Monthly PM;              | First-piece check by                 | 3 | 48  | None        |                  |                |   |     |   |   |
|              |                      |                  |   |   | deformed before    |   | Follow standard          | microscope(4)                        |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   | molding            |   | handling                 | Sampling check(5)                    |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   | requirement              | 100% final visual inspection         |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | (3)                                  |   |     |             |                  |                |   |     |   |   |
|              |                      |                  | 8 |   | Incorrect mold     | 2 | Set up parameter per     | r not proce encourery                | 2 | 32  | None        |                  |                |   |     |   |   |
|              |                      |                  |   |   | parameters setting |   | TCM                      | microscope(4)                        |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | Sampling check(5)                    |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | 100% final visual                    |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | inspection(3)  Machine auto alarm(2) |   |     |             |                  |                |   |     |   |   |
|              |                      |                  | 8 |   | Load strip in      | 2 | Monthly PM               |                                      | 2 | 32  | None        |                  |                |   |     |   |   |
|              |                      |                  |   |   | wrong position     |   |                          | microscope (4)                       |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | Sampling check (5)                   |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | 100% final visual inspection         |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | (3)                                  |   |     |             |                  |                |   |     |   |   |
|              | F 4 1                | 77' 1 ' (/A)     | 1 |   | т ,                | _ | G                        | Machine auto alarm (2)               | 2 | 1.6 | NI          |                  |                |   |     |   |   |
|              | External             | Visual reject(4) | 4 |   | incorrect process  | 2 | Set up parameter per TCM | That piece check by                  | 2 | 16  | None        |                  |                |   |     |   |   |
|              | void/Incomplete fill |                  |   |   | parameters setting |   | I CIVI                   | microscope (4)<br>Sampling check (5) |   |     |             |                  |                |   |     |   |   |
|              | 11111                |                  |   |   |                    |   |                          | 100% final visual                    |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | inspection(3)                        |   |     |             |                  |                |   |     |   |   |
|              |                      |                  |   |   |                    |   |                          | Machine auto alarm (2)               |   |     |             |                  |                |   |     |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|              |                   |              |   |   |                      |   | -                         |                         |   |    |             | _                | Action F        |   |   |          |   |
|--------------|-------------------|--------------|---|---|----------------------|---|---------------------------|-------------------------|---|----|-------------|------------------|-----------------|---|---|----------|---|
| Process      | Potential Failure | Potential    | S |   | Potential            | О | C                         | Current Design/ Process | D |    | Recommended | Responsibility & | Actions Taken & |   | О |          |   |
| Function/    | Mode              | Effect(s) of | E | 1 | Cause(s)/            | C | Process Controls          | Controls Detection      | Е | P  | Action(s)   | Target           | Effective Date  |   | C |          |   |
| Requirements |                   | Failure      | V | a | Mechanism(s)         | C | Prevention                |                         | T | N  |             | Completion Date  |                 | V | C | Т        | N |
|              |                   |              |   | s | of Failue            |   |                           |                         |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   | s |                      |   |                           |                         |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              | 4 |   | Air vent block       | 2 | Perform mold              | First-piece check by    | 3 | 24 | None        |                  |                 |   |   |          |   |
|              |                   |              |   |   |                      |   | cleaning and              | microscope(4)           |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | conditioning daily at     | Sampling check(5)       |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | least;                    | 100% final visual       |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | Trial run dummy           | inspection(3)           |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | after cleaning and        |                         |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              | 4 |   | Runner block         | 2 | Perform mold              | First-piece check by    | 3 | 24 | None        |                  |                 |   | _ | $\vdash$ | + |
|              |                   |              |   |   |                      |   | cleaning and              | microscope (4)          |   | -  | - 1 - 1 - 1 |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | conditioning              | Sampling check (5)      |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | regularly daily at        | 100% final visual       |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | least;                    | inspection(3)           |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | Trial run dummy           |                         |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | after cleaning and        |                         |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              | 4 |   | Plunger jam          | 2 | Monthly PM                | First-piece check by    | 2 | 16 | None        |                  |                 |   |   | $\vdash$ | t |
|              |                   |              |   |   | . 8. 3               |   | J                         | microscope (4)          |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   |                           | Sampling check (5)      |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   |                           | 100% final visual       |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   |                           | inspection(3)           |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              | 4 |   | M 11 '. '            | 2 | D C 11                    | Machine auto alarm (2)  | 4 | 32 | N.T.        |                  |                 |   |   | $\vdash$ | ╄ |
|              |                   |              | 4 |   | Mold cavity is dirty | 2 | Perform mold cleaning and | First-piece check by    | 4 | 32 | None        |                  |                 |   |   | l        |   |
|              |                   |              |   |   | dirty                |   | conditioning daily at     | microscope (4)          |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | least;                    | 100% final visual       |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | Trial run dummy           | inspection(3)           |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | after cleaning and        | mspection(3)            |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | conditioning              |                         |   |    |             |                  |                 |   |   | $\vdash$ | ┖ |
|              |                   |              | 4 |   | Gate insert block    | 2 | Perform mold              | First-piece check by    | 4 | 32 | None        |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | cleaning and              | microscope (4)          |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | conditioning daily at     |                         |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | least;                    | 100% final visual       |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | Trial run dummy           | inspection(3)           |   |    |             |                  |                 |   |   | l        |   |
|              |                   |              |   |   |                      |   | after cleaning and        |                         |   |    |             |                  |                 |   |   | l        |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|                           |                   |                      |        |             |                                           |        |                                                                                                                                                        |                                                                                                                       |        |        |             |                           | Action F        | Resu   | lts |   |        |
|---------------------------|-------------------|----------------------|--------|-------------|-------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|---------------------------|-----------------|--------|-----|---|--------|
| Process                   | Potential Failure | Potential            | S      | С           | Potential                                 | О      | Current Design/                                                                                                                                        | Current Design/ Process                                                                                               | D      | R      | Recommended | Responsibility &          | Actions Taken & | S      | O   | D | R      |
| Function/<br>Requirements | Mode              | Effect(s) of Failure | E<br>V | l<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue    | C<br>C | Process Controls<br>Prevention                                                                                                                         | Controls Detection                                                                                                    | E<br>T | P<br>N | Action(s)   | Target<br>Completion Date | Effective Date  | E<br>V |     |   | P<br>N |
|                           |                   |                      | 4      |             | Use expired or unthawy compound           | 2      | Genesis system<br>control                                                                                                                              | First-piece check by microscope (4) Sampling check (5) 100% final visual inspection(3) System alarm (2)               | 2      | 16     | None        |                           |                 |        |     |   |        |
|                           |                   |                      | 4      |             | Unsuitable Tablet<br>size                 | 2      | Tablet length sensor check                                                                                                                             |                                                                                                                       | 2      | 16     | None        |                           |                 |        |     |   |        |
|                           |                   |                      | 4      |             | Mold die<br>temperature out of<br>control | 2      | Real time PID control                                                                                                                                  | First-piece check by microscope (4) Sampling check (5) 100% final visual inspection(3) Machine auto plant (2)         | 2      | 16     | None        |                           |                 |        |     |   |        |
|                           |                   |                      | 4      |             | Inproper eject pin<br>dimension           | 3      | PM check the<br>matching(type,<br>dimension etc.)<br>before eject pin<br>chane. Clean the<br>eject pin holder and<br>mold chase basic<br>board monthly |                                                                                                                       | 3      | 36     | None        |                           |                 |        |     |   |        |
|                           |                   |                      | 4      |             | Use wrong type compound                   | 2      | Clean out the compound when compound is converted,then double check by operator/leader; Genesis system                                                 | First-piece check by<br>microscope (4)<br>Sampling check (5)<br>100% final visual<br>inspection(3)<br>System alarm(2) | 2      | 16     | None        |                           |                 |        |     |   |        |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XIA | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
| ·                                                                | <del></del>                                                                 |

|              |                   |                    |   |   |                             |   |                     |                                    |   |    |             |                  | Action F        |   |   |   |   |
|--------------|-------------------|--------------------|---|---|-----------------------------|---|---------------------|------------------------------------|---|----|-------------|------------------|-----------------|---|---|---|---|
| Process      | Potential Failure | Potential          | S | C | Potential                   | Ο | Current Design/     | Current Design/ Process            |   |    | Recommended | Responsibility & | Actions Taken & |   |   |   |   |
| Function/    | Mode              | Effect(s) of       | E | 1 | Cause(s)/                   | C | Process Controls    | Controls Detection                 | Е |    | Action(s)   | Target           | Effective Date  |   | C | E |   |
| Requirements |                   | Failure            | V | a | Mechanism(s)                | C | Prevention          |                                    | T | N  |             | Completion Date  |                 | V | C | T | N |
|              |                   |                    |   | S | of Failue                   |   |                     |                                    |   |    |             |                  |                 |   |   |   | l |
|              |                   |                    |   | S |                             |   |                     |                                    |   |    |             |                  |                 |   |   |   |   |
|              |                   | Electrical failure | 8 |   | Incorrect process           | 2 |                     | First-piece check by X-ray         | 2 | 32 | None        |                  |                 |   |   |   |   |
|              |                   | (8)                |   |   | parameter                   |   | TCM                 | (4)                                |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    |   |   |                             |   |                     | Sampling check by X-ray (5)        |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |   |   |                             |   |                     | Machine auto alarm (2)             |   |    |             |                  |                 |   |   |   | 1 |
|              |                   |                    | 8 |   | Use expired or              | 2 | Genesis system      | First-piece check by X-ray         | 4 | 64 | None        |                  |                 |   |   |   |   |
|              |                   |                    |   |   | unthawy                     |   | control             | (4)                                |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    |   |   | compound                    |   |                     | Sampling check by X-ray (5)        |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    | 8 |   | Use expired or              | 2 | Genesis system      | First-piece check by X-ray         | 4 | 64 | None        |                  |                 |   |   |   |   |
|              |                   |                    |   |   | unthawy                     |   | control             | (4)                                |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    |   |   | compound                    |   |                     | Sampling check by X-ray (5)        |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    | 8 |   | Magazine falls on           | 2 | Follow standard     | First-piece check by X-ray         | 4 | 64 | None        |                  |                 |   |   |   |   |
|              |                   |                    |   |   | floor and wire              |   | handling requirment |                                    |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    |   |   | touched by                  |   |                     | Sampling check by X-ray (5)        |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    | 8 |   | operator Magazine falls on  | 2 | Follow standard     | First-piece check by X-ray         | 4 | 64 | None        |                  |                 |   |   |   | - |
|              |                   |                    |   |   | floor and wire              |   | handling requirment |                                    |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |   |   | touched by                  |   |                     | Sampling check by X-ray (5)        |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    | 0 |   | operator<br>M. 11.1:        | 2 | D 14' DID           | F' 4 ' 1 11 V                      | 2 | 22 | NI          |                  |                 |   |   |   |   |
|              |                   |                    | 8 |   | Mold die temperature out of | 2 | Real time PID       | r not piece encen of 11 fag        | 2 | 32 | None        |                  |                 |   |   |   | ı |
|              |                   |                    |   |   | control                     |   | control             | (4)<br>Sampling check by X-ray (5) |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    |   |   | control                     |   |                     | Machine auto alarm(2)              |   |    |             |                  |                 |   |   |   | ı |
|              |                   |                    |   |   |                             |   |                     | . ,                                |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    | 8 |   | Mold die                    | 2 | Real time PID       | That piece eneck by 11 ray         | 2 | 32 | None        |                  |                 |   |   |   | ı |
|              |                   |                    |   |   | temperature out of          |   | control             | (4)                                |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |   |   | control                     |   |                     | Sampling check by X-ray (5)        |   |    |             |                  |                 |   |   |   |   |
|              |                   |                    |   |   |                             |   |                     | Machine auto alarm(2)              |   |    |             |                  |                 |   |   |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 8                                    | 3MCT00002A      | /BY          |
|------------------------------------------------------------------|------------------------------------------------------------|-----------------|--------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: I                      | Freescale,TJN-F | FM           |
| Prepared By: Amanda Wang                                         | FMEA Date:                                                 | 05-Oct-94       | (Orig.)      |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XIA | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13       | (Rev.)       |
|                                                                  | <del></del>                                                |                 | <del>_</del> |
|                                                                  |                                                            |                 |              |

|              |                   |                   |   |   |                    |   |                           |                                      |   |          |             |                  | Action F       |   | lts          |   |   |
|--------------|-------------------|-------------------|---|---|--------------------|---|---------------------------|--------------------------------------|---|----------|-------------|------------------|----------------|---|--------------|---|---|
| Process      | Potential Failure | Potential         | S | C | Potential          | О | Current Design/           | Current Design/ Process              |   |          | Recommended | Responsibility & |                |   |              |   |   |
| Function/    | Mode              | Effect(s) of      | Е | 1 | Cause(s)/          | C | Process Controls          | Controls Detection                   | Е | P        | Action(s)   | Target           | Effective Date |   | $\mathbf{C}$ |   |   |
| Requirements |                   | Failure           | V | a | Mechanism(s)       | C | Prevention                |                                      | T | N        |             | Completion Date  |                | V | $\mathbf{C}$ | Т | N |
|              |                   |                   |   | s | of Failue          |   |                           |                                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   | s |                    |   |                           |                                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   | 8 |   | Use wrong type     | 2 | Clean out the             | First-piece check by X-ray           | 2 | 32       | None        |                  |                |   |              |   |   |
|              |                   |                   |   |   | compound           |   | compound when             | (4)                                  |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | compound is               | Sampling check by X-ray (5)          |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | converted,then            | System alarm(2)                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | double check by           |                                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | operator/leader;          |                                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | Genesis system            |                                      |   |          |             |                  |                |   |              |   |   |
|              | Pitting           | Visual reject (4) | 4 |   | Mold die           | 2 | Real time PID             | First-piece check by                 | 2 | 16       | None        |                  |                |   |              |   |   |
|              |                   |                   |   |   | temperature out of |   | control                   | microscope (4)                       |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   | control            |   |                           | Sampling check (5)                   |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   |                           | 100% final visual                    |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   |                           | inspection(3)                        |   |          |             |                  |                |   |              |   |   |
|              |                   |                   | 4 |   | A :                | 2 | Df14                      | Machine auto alarm(2)                | 3 | 24       | None        |                  |                |   |              |   |   |
|              |                   |                   | 4 |   | Air vent block     | 2 | Perform mold cleaning and | First-piece check by                 | 3 | 24       | None        |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   |                           | microscope (4)<br>Sampling check (5) |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | least;                    | 100% final visual                    |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | trial run dummy           | inspection(3)                        |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | after cleaning and        | mspection(3)                         |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | conditioning              |                                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   | 4 |   | Air vent block     | 2 | Perform mold              | First-piece check by                 | 3 | 24       | None        |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | cleaning and              | microscope (4)                       |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   |                           |                                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | least;                    | 100% final visual                    |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | trial run dummy           | inspection(3)                        |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   | after cleaning and        |                                      |   |          |             |                  |                |   |              |   |   |
|              |                   |                   | 4 |   | Incorrect process  | 2 | Set up parameter per      | First-piece check by                 | 2 | 16       | None        |                  |                |   |              |   |   |
|              |                   |                   |   |   | parameters setting |   | TCM                       | microscope (4)                       |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   |                           | Sampling check (5)                   |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   |                           | 100% final visual                    |   |          |             |                  |                |   |              |   |   |
|              |                   |                   |   |   |                    |   |                           | inspection(3)                        |   |          |             |                  |                |   |              |   |   |
|              | 1                 | <u> </u>          | 1 |   |                    |   | l                         | Machine auto alarm (2)               |   | <u> </u> |             |                  |                |   |              |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|              |                   |                    |   |   |                      |    |                                |                                      |   |     |             |                  | Action F        |   |   |   |                                                  |
|--------------|-------------------|--------------------|---|---|----------------------|----|--------------------------------|--------------------------------------|---|-----|-------------|------------------|-----------------|---|---|---|--------------------------------------------------|
| Process      | Potential Failure | Potential          | S | C | Potential            | О  | Current Design/                | Current Design/ Process              |   |     | Recommended | Responsibility & | Actions Taken & |   |   |   |                                                  |
| Function/    | Mode              | Effect(s) of       | Е | 1 | Cause(s)/            | C  | Process Controls               | Controls Detection                   | Е |     | Action(s)   | Target           | Effective Date  | Е |   | Е |                                                  |
| Requirements |                   | Failure            | V | a | Mechanism(s)         | C  | Prevention                     |                                      | T | N   |             | Completion Date  | !               | V | C | T | N                                                |
|              |                   |                    |   | s | of Failue            |    |                                |                                      |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   | s |                      |    |                                |                                      |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    | 4 |   | Incorrect process    | 2  | Set up parameter per           | First-piece check by                 | 2 | 16  | None        |                  | l               |   |   |   |                                                  |
|              |                   |                    |   |   | parameter setting    |    | TCM                            | microscope (4)                       |   |     |             |                  | !               |   |   |   | i                                                |
|              |                   |                    |   |   |                      |    |                                | Sampling check (5)                   |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    |                                | 100% final visual                    |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    |                                | inspection(3) Machine auto alarm (2) |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    | 4 |   | Mold chase cavity    | 2  | Perform cleaning               |                                      | 3 | 24  | None        |                  |                 |   |   |   |                                                  |
|              |                   |                    |   |   | is dirty             |    | and conditioning               | microscope (4)                       |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | daily at least;                | Sampling check (5)                   |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | trial run dummy                | 100% final visual                    |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | after cleaning and             | inspection(3)                        |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    | 4 |   | Mold chase cavity    | 2  | Conditioning Perform cleaning  | First-piece check by                 | 3 | 24  | None        |                  |                 |   |   |   | <del>                                     </del> |
|              |                   |                    |   |   | is dirty             | _  | and conditioning               | microscope (4)                       | 5 | 2-7 | Tronc       |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | daily at least;                | Sampling check (5)                   |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | trial run dummy                | 100% final visual                    |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | after cleaning and             | inspection(3)                        |   |     |             |                  | !               |   |   |   | l                                                |
|              | Package           | Visual reject (4)  | 8 |   | Eject pin worn out   | 2  | Conditioning<br>Half-yearly PM | First-piece check by                 | 3 | 48  | None        |                  | <u> </u>        |   |   |   | -                                                |
|              | protrusion        | Solderability(8)   | 0 |   | Eject pili worli out | _  | riani-yeariy rivi              | microscope (4)                       | 3 | 40  | None        |                  | !               |   |   |   | i                                                |
|              | protrusion        | Solder ability (6) |   |   |                      |    |                                | Sampling check (5)                   |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    |                                | 100% final visual                    |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    |                                | inspection(3)                        |   |     |             |                  |                 |   |   |   |                                                  |
|              | 1 0 1             | Visual reject (4)  | 8 |   | Use wrong mold       | 1  | To verify the                  | First-piece check by                 | 2 | 16  | None        |                  | !               |   |   |   | l                                                |
|              |                   | Customer difficult |   |   | chase                |    | package dimension              | microscope (4)                       |   |     |             |                  | !               |   |   |   | l                                                |
|              | tool              | application(8)     |   |   |                      |    | before production              | Machine auto Alarm(2)                |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | start;<br>Loader with          |                                      |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | different sensors to           |                                      |   |     |             |                  | !               |   |   |   | l                                                |
|              |                   |                    |   |   |                      |    | identify different             |                                      |   |     |             |                  |                 |   |   |   | l                                                |
|              | Mold Package      | Reliability        | 8 |   | Improper degator     | 2. | Monthly PM                     | Sampling check by                    | 5 | 80  | None        |                  | <del> </del>    |   |   |   | $\vdash$                                         |
|              |                   | failure(8)         | ľ |   | position setting     | ľ  |                                | microscope(5)                        |   | 30  | 1.010       |                  |                 |   |   |   | l                                                |
|              |                   | Electrical         |   |   |                      |    |                                | 1 . (- /                             |   |     |             |                  |                 |   |   |   |                                                  |
|              |                   | failure(8)         |   |   |                      |    |                                |                                      |   |     |             |                  |                 |   |   |   | i                                                |

| Item:        | SOIC16/28/32/54   | 4ld                 |      |     |                               |     |                                    |                         | (  | Contr | ol Number/Issue: | 83MCT00002A/E     | BY             |   |   |   |   |
|--------------|-------------------|---------------------|------|-----|-------------------------------|-----|------------------------------------|-------------------------|----|-------|------------------|-------------------|----------------|---|---|---|---|
|              | Design            | _x_ Process         |      |     |                               |     |                                    | Company,                |    |       |                  | Freescale, TJN-FN |                |   |   |   |   |
|              | Amanda Wang       |                     |      |     |                               |     |                                    |                         |    |       | FMEA Date:       |                   | (Orig.)        |   |   |   |   |
| Core Team:   | Amanda Wang,F     | I.J. Liu,Ivory Gu   | o,JU | N Y | ING ZHENG,XI                  | AOI | HUI KANG,SHUAI                     | N YAO,Cyndi Hu,Grayson  | Ch | en,L  | ANPING BAI,JIN   | 14-Nov-13         | (Rev.)         |   |   |   |   |
|              |                   |                     |      |     |                               |     |                                    |                         |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      |     |                               |     |                                    |                         |    |       |                  |                   |                |   |   |   |   |
|              | T                 | T                   |      |     |                               |     | _                                  | T                       |    |       |                  |                   | Action I       |   |   |   |   |
|              | Potential Failure | Potential           | S    |     | Potential                     | О   | C                                  | Current Design/ Process | D  |       |                  |                   |                |   |   | D |   |
| Function/    | Mode              | Effect(s) of        | Е    | 1   | Cause(s)/                     | C   |                                    | Controls Detection      | Е  |       | Action(s)        | Target            | Effective Date | Е | C |   |   |
| Requirements |                   | Failure             | V    | a   | Mechanism(s)                  | C   | Prevention                         |                         | T  | N     |                  | Completion Date   |                | V | C | T | N |
|              |                   |                     |      | S   | of Failue                     |     |                                    |                         |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      | S   |                               |     |                                    |                         |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     | 8    |     | Mold cavity is too            | 2   | Perform mold                       | Sampling check by       | 5  | 80    | None             |                   |                |   |   |   |   |
|              |                   |                     |      |     | sticky                        |     | cleaning and conditioning daily at | microscope(5)           |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      |     |                               |     | least                              |                         |    |       |                  |                   |                |   |   |   | i |
|              | Delamination      | Reliability failure | 8    |     | Incorrect process             | 2   | Set up parameter per               | Regular CSAM inspection | 2  | 32    | None             |                   |                |   |   |   |   |
|              |                   | (8)                 |      |     | parameters setting            |     | TCM and check                      | (5)                     |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      |     |                               |     | oven temperature                   | Machine auto alarm (2)  |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     | 8    |     | Use expired or                | 2   | shiftly<br>Genesis system          | Regular CSAM            | 2. | 32    | None             |                   |                |   |   |   |   |
|              |                   |                     |      |     | unthawy                       | ľ   | control                            | inspection(5)           | Ĩ  | 32    | Trone            |                   |                |   |   |   |   |
|              |                   |                     |      |     | compound                      |     |                                    | System alarm(2)         |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     | 8    |     | Leadframe is over             | 2   | Take out L/F                       | Regular CSAM inspection | 5  | 80    | None             |                   |                |   |   |   | i |
|              |                   |                     |      |     | oxidated on mold              |     | promptly while                     | (5)                     |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      |     | die                           |     | equipement alarm                   |                         |    |       |                  |                   |                |   |   |   | i |
|              |                   |                     | 8    |     | Leadframe                     | 1   | N2 protection in                   | Regular CSAM            | 5  | 40    | None             |                   |                |   |   |   |   |
|              |                   |                     |      |     | contaminated                  |     | storage area                       | inspection(5)           |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     | 8    |     | Plasma clean                  | 2   | Genesis system                     | System alarm(2)         | 2  | 32    | None             |                   |                |   |   |   | i |
|              |                   |                     | 8    |     | expiration<br>Internal stress | 2   | control                            | Regular CSAM            | 5  | 80    | None             |                   |                |   |   |   |   |
|              |                   |                     | 0    |     | caused by                     | _   |                                    | inspection(5)           |    | 00    | Trone            |                   |                |   |   |   | i |
|              |                   |                     |      |     | Leadframe                     |     |                                    | 1                       |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      |     | warpage (Fused                |     |                                    |                         |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      |     | leadframe                     |     |                                    |                         |    |       |                  |                   |                |   |   |   |   |
|              |                   |                     |      |     | 17ASH70187A61                 |     |                                    |                         |    |       |                  |                   |                |   |   |   | i |
|              |                   |                     | 8    |     | Use wrong type                | 2   | Clean out the                      | Regular CSAM            | 2  | 32    | None             |                   |                |   |   |   |   |
|              |                   |                     |      |     | compound                      |     | compound when                      | inspection(5)           | 1  |       |                  |                   |                |   |   |   | 1 |
|              |                   |                     |      |     |                               |     | compound is                        | System alarm(2)         | 1  |       |                  |                   |                |   |   |   | 1 |
|              |                   |                     |      |     |                               |     | converted,then                     |                         | 1  |       |                  |                   |                |   |   |   | 1 |
|              |                   |                     |      |     |                               |     | double check by                    |                         |    |       |                  |                   |                |   |   |   | 1 |
|              |                   |                     | 1    | l   |                               |     | operator/leader;                   |                         | 1  |       |                  |                   |                |   |   |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

Genesis system

| POTENTIAL FA |                   |                   |      |      |                 |     | RE MODE A                   | AND EFFECTS             | Al  | NA.   | LYSIS (FM         | IEA)              | Page 4          | 9 o  | f 61 |   |   |
|--------------|-------------------|-------------------|------|------|-----------------|-----|-----------------------------|-------------------------|-----|-------|-------------------|-------------------|-----------------|------|------|---|---|
| Item:        | SOIC16/28/32/54   | 4ld               |      |      |                 |     |                             |                         | (   | Contr | ol Number/Issue:  | 83MCT00002A/B     | Y               |      |      |   |   |
| Type:        | Design            | _x_ Process       |      |      |                 |     |                             | Company,                | Gro | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |      |      |   |   |
| Prepared By: | Amanda Wang       |                   |      |      |                 |     |                             |                         |     |       | FMEA Date:        | 05-Oct-94         | (Orig.)         |      |      |   |   |
|              |                   | I.J. Liu,Ivory Gu | o,JU | IN Y | ING ZHENG,XL    | AOF | iui kang,shuai              | N YAO,Cyndi Hu,Grayson  | Ch  | en,L  | ANPING BAI,JIN    | 14-Nov-13         | (Rev.)          |      |      |   |   |
|              |                   |                   |      |      |                 |     |                             | •                       |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      |                 |     |                             |                         |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      |                 |     |                             |                         |     |       |                   |                   | Action F        | Resu | ılts |   |   |
| Process      | Potential Failure | Potential         | S    | С    | Potential       | О   | Current Design/             | Current Design/ Process | D   | R     | Recommended       | Responsibility &  | Actions Taken & | S    | O    | D | R |
| Function/    | Mode              | Effect(s) of      | Е    | 1    | Cause(s)/       | C   | Process Controls            | Controls Detection      | Е   | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е | P |
| Requirements |                   | Failure           | V    | a    | Mechanism(s)    | C   | Prevention                  |                         | Т   | N     |                   | Completion Date   |                 | V    | C    | T | N |
|              |                   |                   |      | s    | of Failue       |     |                             |                         |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      | s    |                 |     |                             |                         |     |       |                   |                   |                 |      |      |   |   |
|              | Foreign matter in | Visual reject(4)  | 4    |      | Compound        | 2   | Try run dummy               | Regular CSAM            | 5   | 40    | None              |                   |                 |      |      |   |   |
|              | package           |                   |      |      | residual around |     | after cleaning and          | inspection(5)           |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      | pot             |     | conditioning;               |                         |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      |                 |     | Clean vacuum box            |                         |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      |                 |     | shiftly;                    |                         |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      |                 |     | Change                      |                         |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      |                 |     | pot&plunger while           |                         |     |       |                   |                   |                 |      |      |   |   |
| ı            |                   |                   |      |      |                 |     | worn out Clean mold surface |                         |     |       |                   |                   |                 |      |      |   |   |
|              |                   |                   |      |      |                 |     | post each shot by           |                         |     |       |                   |                   |                 |      |      |   |   |
| İ            |                   |                   |      |      |                 | I   | auto cleaner                |                         |     |       |                   |                   |                 |      |      |   |   |

Sampling check(5)

Sampling check(5)

Sampling check(5)

Sampling check(5)

Sampling check(5)

First-piece check by X-ray

Sampling check by X-ray (5)

System auto alarm(2)

Machine auto alarm (2)

24

60

24

60

60

None

None

None

None

None

None

Setup parameter per

ГСМ

control

manually

Perform mold

cleaning and conditioning daily at

Perform mold

cleaning and

conditioning regularly daily at

Trial run dummy after cleaning and

least;

Monthly PM

Genesis system

Forbid break cull

Cull remain

Internal void

package

chip/crack(6)

Reliability failure 8

Insufficient cure

Improper degator

position setting
Use expired or

time

unthawy

sticky

compound Operator break

cull manually

Runner block

Mold cavity is too 2

|              |                   | POT               | re:   | NT   | IAL FAIL          | Ul  | RE MODE A             | AND EFFECTS                 | Αľ  | NA]   | LYSIS (FM         | IEA)              | Page 5          | <sub>'</sub> U 01 | 61 |   |   |
|--------------|-------------------|-------------------|-------|------|-------------------|-----|-----------------------|-----------------------------|-----|-------|-------------------|-------------------|-----------------|-------------------|----|---|---|
| Item:        | SOIC16/28/32/54   | 41d               |       |      |                   | _   |                       |                             | (   | Contr | ol Number/Issue:  | 83MCT00002A/B     | Y               |                   |    |   |   |
| Type:        | Design            | _x_ Process       |       |      |                   | _   |                       | Company,                    | Gro | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |                   |    |   |   |
| Prepared By: | Amanda Wang       |                   |       |      |                   | _   |                       |                             |     |       | FMEA Date:        | 05-Oct-94         | (Orig.)         |                   |    |   |   |
| Core Team:   | Amanda Wang,H     | I.J. Liu,Ivory Gu | ıo,JU | JN Y | ING ZHENG,XI      | AOI | HUI KANG,SHUAI        | N YAO,Cyndi Hu,Grayson      | Ch  | en,L  | ANPING BAI,JIN    | 14-Nov-13         | (Rev.)          |                   |    |   |   |
|              |                   |                   |       |      |                   |     |                       |                             |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   |       |      |                   |     |                       |                             |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   |       |      |                   |     |                       |                             |     |       |                   |                   | Action F        |                   |    |   |   |
| Process      | Potential Failure | Potential         | S     | C    | Potential         | О   | Current Design/       | Current Design/ Process     | D   | R     | Recommended       | Responsibility &  | Actions Taken & | S                 | O  | D | R |
| Function/    | Mode              | Effect(s) of      | Е     | 1    | Cause(s)/         | C   | Process Controls      | Controls Detection          | Е   | P     | Action(s)         | Target            | Effective Date  | Е                 | C  | E | P |
| Requirements |                   | Failure           | V     | a    | Mechanism(s)      | C   | Prevention            |                             | T   | N     |                   | Completion Date   |                 | V                 | C  | T | N |
|              |                   |                   |       | S    | of Failue         |     |                       |                             |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   |       | s    |                   |     |                       |                             |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   | 8     |      | Air vent block    | 2   | Perform mold          | First-piece check by X-ray  | 4   | 64    | None              |                   |                 |                   |    |   |   |
|              |                   |                   |       |      |                   |     | cleaning and          | (4)                         |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   |       |      |                   |     | conditioning daily at | Sampling check by X-ray (5) |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   |       |      |                   |     | least;                |                             |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   |       |      |                   |     | Trial run dummy       |                             |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   |       |      |                   |     | after cleaning and    |                             |     |       |                   |                   |                 |                   |    |   |   |
|              |                   |                   | 8     |      | Gate insert block | 2   | Perform mold          | First-piece check by X-ray  | 4   | 64    | None              |                   |                 |                   |    |   |   |

Sampling check by X-ray (5)

First-piece check by X-ray

Sampling check by X-ray (5) Machine auto alarm(2) First-piece check by X-ray

Sampling check by X-ray (5) First-piece check by X-ray

Sampling check by X-ray (5) System auto alarm(2)

First-piece check by X-ray

Sampling check by X-ray (5) Machine auto alarm(2)

32

32

32

None

None

None

cleaning and

conditioning regularly daily at

Trial run dummy after cleaning and Mothly PM

Set up parameter per

Genesis system

Real time PID

least;

TCM

control

control

Plunger jam

Incorrect process parameter setting

Use expired

unthawy

compound

Mold die

control

temperature out of

compound or

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|                                      |                           |                                                       |             |                       |                                                                    |             |                                                                                                              |                                                                                                                           |        |        |                          |                                         | Action I                       |   |             |   |
|--------------------------------------|---------------------------|-------------------------------------------------------|-------------|-----------------------|--------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------|-----------------------------------------|--------------------------------|---|-------------|---|
| Process<br>Function/<br>Requirements | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure                  | S<br>E<br>V | C<br>1<br>a<br>s<br>s | Potential Cause(s)/ Mechanism(s) of Failue  Unsuitable tablet size | O<br>C<br>C |                                                                                                              | Current Design/ Process Controls Detection  First-piece check by X-ray (4) Sampling check by X-ray (5)                    | E<br>T | P<br>N | Recommended<br>Action(s) | Responsibility & Target Completion Date | Actions Taken & Effective Date | C | D<br>E<br>T | P |
|                                      |                           |                                                       | 8           |                       | Use wrong type compound                                            | 2           | Clean out the compound when compound is converted,then double check by operator/leader; Genesis system       | Machine auto alarm(2)                                                                                                     | 2      | 32     | None                     |                                         |                                |   |             |   |
| 7. Marking                           |                           | Reject by visual<br>inspection or<br>vision system(4) | 4           |                       | L/F input sensor accidently disable.                               | 1           | Check L/F input<br>sensor status shiftly,<br>dummy L/F check<br>by Assy. lot.                                | sensor auto alarm(2)<br>Visual sample check after<br>marking(5)100% final visual<br>inspection(3)                         |        | 8      | None                     |                                         |                                |   |             |   |
|                                      |                           |                                                       | 4           |                       | Laser lamp<br>broken.                                              | 1           | Check the laser<br>power value shiftly,<br>dummy L/F check<br>by Assy. lot.                                  | Machine auto alarm(2)<br>Visual sample check after<br>marking(5)100% final visual<br>inspection(3)                        | 2      | 8      | None                     |                                         |                                |   |             |   |
|                                      |                           | Reject by visual<br>inspection or<br>vision system(4) | 4           |                       | wrong laser power                                                  | 2           | Check the laser<br>power value shiftly,<br>dummy L/F check<br>by Assy. lot.<br>Monthly change<br>laser lamp. | Visual sample check after<br>marking(5)<br>QA visual inspection 200<br>units/lot(4)<br>100% final visual<br>inspection(3) | 3      | 24     | None                     |                                         |                                |   |             |   |
|                                      |                           |                                                       | 4           |                       | low vacuum suck                                                    | 1           | Clean dust collector<br>shiftly, dummy L/F<br>check by Assy. lot.                                            | Visual sample check after marking(5) QA visual inspection 200 units/lot(4) 100% final visual inspection(3)                | 3      | 12     | None                     |                                         |                                |   |             |   |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |  |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |  |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XL | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |  |
|                                                                 |                                                                             |  |
|                                                                 |                                                                             |  |

|                   | -                 |                     |   |   |                   |   | _                                 |                             |   |    |             |                  | Action F        |   | lts |   |          |
|-------------------|-------------------|---------------------|---|---|-------------------|---|-----------------------------------|-----------------------------|---|----|-------------|------------------|-----------------|---|-----|---|----------|
| Process           | Potential Failure | Potential           | S | C | Potential         | О |                                   | Current Design/ Process     |   |    | Recommended | Responsibility & | Actions Taken & |   | -   |   |          |
| Function/         | Mode              | Effect(s) of        | Е | 1 | Cause(s)/         | C | Process Controls                  | Controls Detection          | Е | P  | Action(s)   | Target           | Effective Date  |   | C   | Е |          |
| Requirements      |                   | Failure             | V | a | Mechanism(s)      | C | Prevention                        |                             | T | N  |             | Completion Date  |                 | V | C   | T | N        |
|                   |                   |                     |   | s | of Failue         |   |                                   |                             |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   | s |                   |   |                                   |                             |   |    |             |                  |                 |   |     |   |          |
|                   | misalignment      | Reject by visual    | 4 |   | leadframe wrong   | 1 | Dummy L/F check                   | Machine auto alarm(2)       | 2 | 8  | None        |                  |                 |   |     |   |          |
|                   |                   | inspection or       |   |   | location          |   | by Assy. lot.                     | Visual sample check after   |   |    |             |                  |                 |   |     |   |          |
|                   |                   | vision system(4)    |   |   |                   |   | Check the                         | marking(5)100% final visual |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | orientation sensor                | inspection(3)               |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | shiftly.                          | QA visual inspection 200    |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     | 1 |   | Incorrect marking | 3 | Dummy marking                     | Visual sample check after   | 3 | 36 | None        |                  |                 |   |     |   | 1        |
|                   |                   |                     | 4 |   | parameters        | 3 | before production                 | marking(5)100% final visual | 3 | 30 | None        |                  |                 |   |     |   |          |
|                   |                   |                     |   |   | settings          |   | start                             | inspection(3)               |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   | settings          |   | Start                             | QA visual inspection 200    |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   |                                   | units/lot(4)                |   |    |             |                  |                 |   |     |   |          |
|                   | reverse mark      | Reject by visual    | 4 |   | L/F orientation   | 2 | Check the                         | Visual sample check after   | 3 | 24 | None        |                  |                 |   |     |   |          |
|                   |                   | inspection or       |   |   | fail              |   | orientation sensor                | marking(5)100% final visual |   |    |             |                  |                 |   |     |   |          |
|                   |                   | vision system(4)    |   |   |                   |   | shiftly.                          | inspection(3)               |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | dummy L/F check                   |                             |   |    |             |                  |                 |   |     |   |          |
|                   | crack             | reliability         | 8 |   | Lead fame jamed   | 1 | hy Assy lot<br>Check rail status. | sensor auto alarm(2)        | 2 | 16 | None        |                  |                 |   |     |   | 1        |
|                   | Clack             | failure.(8)         | 0 |   | on track.         | 1 | dummy L/F check                   | Visual sample check after   | _ | 10 | None        |                  |                 |   |     |   |          |
|                   |                   | ranuic.(6)          |   |   | on track.         |   | by Assy. lot.                     | marking(5)100% final visual |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | Regular PM.                       | inspection(3)               |   |    |             |                  |                 |   |     |   |          |
|                   | Wrong marking     | Reject by visual    | 4 |   | Auto marking      | 2 | Marking                           | Visual sample check after   | 3 | 24 | None        |                  |                 |   |     |   |          |
|                   |                   | inspection or       |   |   | information error |   | confirmation with                 | marking(5)                  |   |    |             |                  |                 |   |     |   |          |
|                   |                   | vision system(4)    |   |   |                   |   | dummy L/F by                      | QA visual inspection 200    |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | Assy. lot.                        | units/lot(4)                |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   |                                   | 100% final visual           |   |    |             |                  |                 |   |     |   |          |
| 3. Post mold cure | Overcure          | Reliability failure | 8 |   | Temperature       | 2 | Set up parameter per              | Visual check temperature    | 2 | 32 | None        |                  |                 |   |     |   | $\vdash$ |
|                   |                   | (8)                 |   |   | excursion         |   | TCM and check                     | meter(6)                    |   |    | - 1 - 1 - 1 |                  |                 |   |     |   |          |
|                   |                   | (-)                 |   |   |                   |   | oven temperature                  | Machine auto alarm (2)      |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | shiftly                           | , ,                         |   |    |             |                  |                 |   |     |   |          |
|                   | Undercure         | Reliability failure | 8 |   | Temperature       | 2 | Set up parameter per              | Visual check temperature    | 2 | 32 | None        |                  |                 |   |     |   |          |
|                   |                   | (8)                 |   |   | excursion         |   | TCM and check                     | meter(6)                    |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | oven temperature                  | Machine auto alarm (2)      |   |    |             |                  |                 |   |     |   |          |
|                   |                   |                     |   |   |                   |   | shiftly                           |                             |   |    |             |                  |                 |   |     |   | 丄        |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83M                                    | /ICT00002A/  | /BY     |
|------------------------------------------------------------------|--------------------------------------------------------------|--------------|---------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Free                     | escale,TJN-F | FM      |
| Prepared By: Amanda Wang                                         | FMEA Date: 0                                                 | 05-Oct-94    | (Orig.) |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XIA | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 1 | 14-Nov-13    | (Rev.)  |
|                                                                  |                                                              |              |         |
|                                                                  |                                                              |              |         |

|                    |                   |                           |   |   |                                       |   | _                           | -                           |   |    |             | _                | Action I       |          | lts |                |               |
|--------------------|-------------------|---------------------------|---|---|---------------------------------------|---|-----------------------------|-----------------------------|---|----|-------------|------------------|----------------|----------|-----|----------------|---------------|
| Process            | Potential Failure |                           | S |   | Potential                             | О | Current Design/             | e e                         |   |    | Recommended | Responsibility & |                |          |     | D              |               |
| Function/          | Mode              | Effect(s) of              | Е | 1 | Cause(s)/                             | C | Process Controls            | Controls Detection          | Е |    | Action(s)   | Target           | Effective Date |          |     | Е              |               |
| Requirements       |                   | Failure                   | V | a | Mechanism(s)                          | C | Prevention                  |                             | T | N  |             | Completion Date  |                | V        | C   | T              | N             |
|                    |                   |                           |   | s | of Failue                             |   |                             |                             |   |    |             |                  |                |          |     | ,              | l             |
|                    |                   |                           |   | s |                                       |   |                             |                             |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           | 8 |   | Insufficient cure                     | 2 | Check cure shiftly          | Visual check temperature    | 2 | 32 | None        |                  |                |          |     | П              | l             |
|                    |                   |                           |   |   | time                                  |   | per TCM;                    | meter(6)                    |   |    |             |                  |                |          |     | ,              | ł             |
|                    |                   |                           | 1 |   |                                       |   | Mothly PM                   | Machine auto alarm (2)      | _ |    |             |                  |                |          |     | ,—/            | <u> </u>      |
|                    | Non Cure          | Reliability failure       | 8 |   | Missing PMC                           | 1 | Genesis system              | System alarm(2)             | 2 | 16 | None        |                  |                |          |     | ,              | ł             |
| 9. plating (not    | bent lead         | (8)<br>Electrical Failure | 8 |   | load,unload jam                       | 2 | control<br>Check Adjustment | Visual sample check after   | 2 | 32 | None        |                  |                |          | _   | $\dashv$       | _             |
| applicable for PPI |                   | (8)                       | 0 |   | load,umoad jam                        | _ | load and unload             | plating(5)                  | _ | 32 | Tronc       |                  |                |          |     | ,              | i             |
| L/F)               | •                 | (0)                       |   |   |                                       |   | system monthly &            | Auto alarm(2)               |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   |                                       |   | half-year by PM             | ` ,                         |   |    |             |                  |                |          |     |                | <u></u>       |
|                    |                   |                           | 8 |   | Jam in process                        | 2 | Check/Adjustment            | Visual sample check after   | 2 | 32 | None        |                  |                |          |     |                | ı             |
|                    |                   |                           |   |   | cell                                  |   | belt, air knivies           | plating(5)                  |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   |                                       | _ | monthly by PM               | Auto alarm(2)               | _ | 22 |             |                  |                | $\vdash$ | _   | $\blacksquare$ | <u>—</u>      |
|                    |                   |                           | 8 |   | Jam in high                           | 2 | Check rinse nozzle          | Visual sample check after   | 2 | 32 | None        |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   | pressure water                        |   | monthly by PM;              | plating(5)<br>Auto alarm(2) |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   | rinse                                 |   | Check per positrol          | Auto aiarm(2)               |   |    |             |                  |                |          |     | ,              | ł             |
|                    | discoloration &   | Solderability             | 8 |   | Insufficient air                      | 1 | Check air knives            | Visual sample check after   | 5 | 40 | None        |                  |                |          |     | 一              |               |
|                    | stain             | Failure(8)                |   |   | knives flow                           |   | monthly by PM;              | plating(5)                  |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   |                                       |   | Clean air nozzle and        |                             |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   |                                       |   | mechanical structure        |                             |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   |                                       |   | monthly by PM.              |                             |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           | 8 |   | Insufficient water                    | 2 | Check rinse nozzle          | Visual sample check after   | 5 | 80 | None        |                  |                |          | -   | $\dashv$       | _             |
|                    |                   |                           | 0 |   | rinse                                 | _ | monthly by PM;              | plating(5)                  | 5 | 00 | Tronc       |                  |                |          |     | ,              | l             |
|                    |                   |                           |   |   | i i i i i i i i i i i i i i i i i i i |   | Check rinse per             | plumg(3)                    |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   |                                       |   | setup checklist             |                             |   |    |             |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   |                                       |   | shiftly                     |                             |   |    |             |                  |                |          |     |                |               |
|                    |                   |                           | 8 |   | THIS GITTIETE TO                      | 2 | Analyses and adjust         | I                           | 5 | 80 | None        |                  |                |          |     | ,              | i             |
|                    |                   |                           |   |   | additives                             |   | additive weekly.            | plating(5)                  |   |    |             |                  |                |          |     | ,              | i             |
|                    | rough plating     | Visual Defect(6)          | 8 |   | Particles, anode                      | 2 | Replace filter              | Visual sample check after   | 5 | 80 | None        |                  |                |          |     | $\dashv$       | $\overline{}$ |
|                    |                   | Solderability             | 1 |   | sludge, dirty                         |   | elements at most            | plating(5)                  |   |    |             |                  |                |          |     | ,              | ı             |
|                    |                   | Failure (8)               |   |   | <i>9.17</i> 1.7                       |   | 2weeks                      |                             |   |    |             |                  |                |          |     | ,              | ı             |
|                    |                   |                           | 1 |   |                                       |   | Filter plating              |                             |   |    |             |                  |                |          |     | ,              | ı             |
|                    |                   |                           |   |   |                                       |   | solution every              |                             |   |    |             |                  |                |          |     | ,              | ı             |
|                    |                   |                           |   |   |                                       |   | 3months                     |                             |   |    |             |                  |                |          |     |                |               |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 8                                    | 3MCT00002A      | /BY            |
|-----------------------------------------------------------------|------------------------------------------------------------|-----------------|----------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: F                      | Freescale,TJN-F | FM             |
| Prepared By: Amanda Wang                                        | FMEA Date:                                                 | 05-Oct-94       | (Orig.)        |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13       | (Rev.)         |
|                                                                 |                                                            |                 |                |
|                                                                 |                                                            |                 |                |
|                                                                 |                                                            |                 | Action Results |

| S (C) E : : | Cause(s)/<br>Mechanism(s)               | O<br>C<br>C                                                                                                                                                                                           | Current Design/<br>Process Controls<br>Prevention                                                                                                                                                                                                         | Current Design/ Process<br>Controls Detection                | D<br>E<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recommended<br>Action(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Responsibility & Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Actions Taken & Effective Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V           | Mechanism(s) of Failue                  |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           | Controls Detection                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Action(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Effective Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | т-                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | of Failue                               | С                                                                                                                                                                                                     | Prevention                                                                                                                                                                                                                                                |                                                              | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Litective Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Е                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 3                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completion Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | Excessive current                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Excessive carrent                       | 2                                                                                                                                                                                                     | Shiftly check                                                                                                                                                                                                                                             | Visual sample check after                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       | current per positrol                                                                                                                                                                                                                                      | plating(5)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2           | Low metal                               | 2                                                                                                                                                                                                     | log Analysed the metal                                                                                                                                                                                                                                    | Visual sample check after                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,           |                                         | _                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                         |                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TVOILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | solution                                |                                                                                                                                                                                                       | shiftly                                                                                                                                                                                                                                                   | practing(b)                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | Insufficient                            | 1                                                                                                                                                                                                     | Analyses and adjust                                                                                                                                                                                                                                       | Visual sample check after                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | additive                                |                                                                                                                                                                                                       | additives weekly                                                                                                                                                                                                                                          | plating(5)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | Improper acid                           | 2                                                                                                                                                                                                     | Analyses and adjust                                                                                                                                                                                                                                       | Visual sample check after                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 十                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         | ľ                                                                                                                                                                                                     | content of the acid                                                                                                                                                                                                                                       | _                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TVOILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | solution                                |                                                                                                                                                                                                       | shiftly                                                                                                                                                                                                                                                   |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           |                                         | 2                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           | -                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | pretreatment                            |                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                  | plating(5)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       | log silitiy                                                                                                                                                                                                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | Higher tin                              | 1                                                                                                                                                                                                     | Tighten the                                                                                                                                                                                                                                               | Chemical analysis shiftly(4).                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | electrolyte.                            |                                                                                                                                                                                                       | Pb-free electrolyte.                                                                                                                                                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | Organic                                 | 2                                                                                                                                                                                                     | Analyses carbon                                                                                                                                                                                                                                           | Visual sample check after                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | contamination                           |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           | plating(5)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       | conduct active                                                                                                                                                                                                                                            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | Insufficient                            | 2                                                                                                                                                                                                     | Check and analyses                                                                                                                                                                                                                                        | Visual sample check after                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 寸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 一                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | pretreatment                            |                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                         | -                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       | solution per positrol                                                                                                                                                                                                                                     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                         |                                                                                                                                                                                                       | log shiftly                                                                                                                                                                                                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 3 3       | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | content of solution Insufficient additive  Improper acid content of plating solution insufficient pretreatment  Higher tin concentration in Pb-free electrolyte.  Organic contamination  Insufficient | content of solution  Insufficient additive  Improper acid content of plating solution  insufficient pretreatment  Higher tin concentration in Pb-free electrolyte.  Organic contamination  Insufficient 2  Insufficient 2  Insufficient 2  Insufficient 2 | Low metal content of solution shiftly  Insufficient additive | Low metal content of solution shiftly  Insufficient additive  Improper acid content of plating solution  Improper acid content of plating solution  Insufficient additive  Improper acid content of plating solution  Insufficient pretreatment  Improper acid content of plating solution  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5) | Low metal content of solution shiftly  Insufficient additive  Improper acid content of plating solution  Improper acid content of plating solution  Insufficient and insufficient  Insufficient pretreatment  Improper acid content of plating solution  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient pretreatment  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  I | Low metal content of solution shiftly  Insufficient additive  Improper acid content of plating solution  Improper acid content of plating solution  Insufficient pretreatment  Improper acid content of plating solution  Insufficient pretreatment  Improper acid content of plating solution  Improper acid content of plating solution  Improper acid content of the acid shiftly  Improper acid content of plating solution  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shif | Low metal content of solution shiftly  Insufficient additive  Improper acid content of plating solution  Insufficient pretreatment  Improper acid content of plating solution  Insufficient pretreatment  Improper acid content of plating solution  Improper acid content of plating solution  Improper acid content of plating solution  Improper acid content of the acid shiftly  Check and analyses the pretreatment solution per positrol log shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Check and analyses the pretreatment solution per positrol log shiftly  Check and analyses the pretreatment of tin concentration for Pb-free electrolyte.  Chemical analysis shiftly(4).  Chemical analysis shiftly(4).  Chemical analysis shiftly(4).  Chemical analysis shiftly(4).  Chemical analysis shiftly(5)  None  None  None  None  None  None  Tighten the maintenance limit of tin concentration for Pb-free electrolyte.  Chemical analysis shiftly(5)  None  None  None  None  Visual sample check after plating(5)  None  Tighten the maintenance limit of tin concentration for Pb-free electrolyte.  Insufficient contamination  Insufficient pretreatment  Check and analyses the pretreatment solution per positrol  Visual sample check after plating(5)  Visual sample check after plating(5)  Visual sample check after plating(5) | Low metal content of solution solution solution Insufficient additive weekly additives weekly additives weekly content of plating solution solution additive weekly additives weekly additives weekly solution additive solution per positrol log shiftly  By a content of plating solution additive weekly additives weekly additives weekly additives weekly additives weekly additives weekly plating(5)  By a content of plating additives weekly additives weekly additives weekly additives weekly plating(5)  By a content of plating additives weekly additives weekly additives weekly additives weekly plating(5)  By a content of plating additives weekly additives weekly additives weekly additives weekly plating(5)  By a content of plating additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly additives weekly addi | Low metal content of solution solution shiftly  Insufficient additive additives weekly additives weekly additives weekly solution solution solution  Improper acid content of plating solution solution solution solution additives weekly additives weekly additives weekly additives weekly plating(5)  Improper acid content of plating solution solution solution solution solution as insufficient pretreatment  Improper acid content of the acid shiftly visual sample check after plating(5)  Improper acid content of the acid shiftly visual sample check after plating(5)  Improper acid content of the acid shiftly visual sample check after plating(5)  Improper acid content of the acid shiftly visual sample check after plating(5)  Improper acid content of the acid shiftly visual sample check after plating(5)  Improper acid content of plating solution of the acid shiftly visual sample check after plating(5)  Improper acid content of the acid shiftly visual sample check after plating(5)  Improper acid content of the acid shiftly visual sample check after plating(5)  None  None  None  None  Chemical analysis shiftly(4). 4 32 None  Chemical analysis shiftly(4). 4 32 None  Tighten the maintenance limit of tin concentration for pb-free electrolyte.  Organic contamination  Organic contamination  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  Insufficient plating(5)  I | Low metal content of content of solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution per positrol log shiftly  3 Higher tin concentration in Pb-free electrolyte.  3 Organic Contamination 2 Analyses carbon monthly and conduct active carbon reteatment solution per positrol solution per positrol solution solution solution solution solution solution solution solution solution solution solution solution solution per positrol solution solution per solution solution solution per solution solution solution solution solution solution solution per solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solutio | Low metal content of content of solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution additives weekly additives weekly solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution per positrol log shiftly  3 | Low metal content of content of solution solution solution solution solution solution solution solution solution additives weekly additives weekly plating(5)  Improper acid content of plating content of plating solution  Improper acid content of plating solution  Improper acid content of plating solution  Improper acid content of plating solution  Improper acid content of plating solution  Improper acid content of the acid shiftly  Check and analyses the pretreatment solution per positrol log shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Improper acid content of the acid shiftly  Implementation of the plating(5)  Improper acid content of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Improper acid content of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the acid shiftly  Implementation of the ac |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 8                                    | 3MCT00002A/E    | BY             |
|------------------------------------------------------------------|------------------------------------------------------------|-----------------|----------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: F                      | reescale,TJN-FN | M              |
| Prepared By: Amanda Wang                                         | FMEA Date:                                                 | 05-Oct-94       | (Orig.)        |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13       | (Rev.)         |
|                                                                  |                                                            |                 | •              |
|                                                                  |                                                            |                 |                |
|                                                                  |                                                            | •               | Action Results |
|                                                                  |                                                            |                 |                |

|                                |                           |                                      |             |             |                                                                  |             |                                                                                                   |                                                                                             |             |    |                          |                                         | Action F                       |             |   |             |             |
|--------------------------------|---------------------------|--------------------------------------|-------------|-------------|------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|----|--------------------------|-----------------------------------------|--------------------------------|-------------|---|-------------|-------------|
| Process Function/ Requirements | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure | S<br>E<br>V | C<br>1<br>a | Potential Cause(s)/ Mechanism(s)                                 | O<br>C<br>C | Current Design/<br>Process Controls<br>Prevention                                                 | Current Design/ Process<br>Controls Detection                                               | D<br>E<br>T |    | Recommended<br>Action(s) | Responsibility & Target Completion Date | Actions Taken & Effective Date | S<br>E<br>V | C | D<br>E<br>T | R<br>P<br>N |
|                                |                           |                                      |             | s<br>s      | of Failue                                                        |             |                                                                                                   |                                                                                             |             |    |                          |                                         |                                |             |   |             |             |
|                                |                           | Solderability<br>failure(8)          | 8           |             | Insufficient<br>Solution flowrate/<br>additive                   | 1           | Replace filter<br>elements two weeks<br>at most/Weekly<br>Analyses additives<br>weekly            | 1                                                                                           | 5           | 40 | None                     |                                         |                                |             |   |             | Ī           |
|                                |                           |                                      | 8           |             | Foreign matter<br>may resist the Tin<br>deposit on lead<br>frame | 2           | Clean water knife in<br>plating solution cell<br>weekly                                           | ·                                                                                           | 5           | 80 | None                     |                                         |                                |             |   |             |             |
|                                | peeling                   | Solderability<br>failure(8)          | 8           |             | pretreatment                                                     | 2           | Check and adjust<br>the pretreatment<br>solution per positrol<br>log shiftly                      | palting(5)                                                                                  | 5           |    | None                     |                                         |                                |             |   |             |             |
|                                | 1 1                       | Solderability<br>failure(8)          | 8           | *           | metal composition                                                | 2           | , ,                                                                                               | SPC control(4) Solderability sampling check(5)                                              |             |    | None                     |                                         |                                |             |   |             |             |
|                                |                           |                                      | 8           | *           | Temperature is too high                                          | 1           | Heaters & temperature system check monthly by PM; shiftly check bath temperature per positral log | SPC control(4) Solderability sampling check(5) Machine Auto alarm(2)                        | 2           |    | None                     |                                         |                                |             |   |             |             |
|                                |                           |                                      | 8           | *           | Improper current density                                         | 2           | shiftly check current<br>per positrol log                                                         | SPC control(4)<br>Solderability sampling<br>check(5)                                        | 4           | 64 | None                     |                                         |                                |             |   |             |             |
|                                | improper<br>thickness     | Solderability<br>failure(8)          | 8           | *           | Improper current<br>density                                      | 3           | shiftly check per<br>positrol log                                                                 | SPC control(4) Solderability sampling check(5) Auto alarm system to detect current range(2) | 2           | 48 | None                     |                                         |                                |             |   |             |             |
|                                |                           |                                      | 8           | *           | Insufficient anode balls                                         | 2           | shiftly check per set-<br>up check list                                                           | SPC control(4) Solderability sampling check(5)                                              | 4           | 64 | None                     |                                         |                                |             |   |             |             |

| Item: SOIC16/28/32/54ld                                         | Control Number/Issue: 83MCT00002A/BY                                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                        | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                        | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                 | <del></del>                                                                 |

|              |                   |                    |   |   |                    |   |                             | -                             |   |    |             | _                | Action R        |   |              |               |   |
|--------------|-------------------|--------------------|---|---|--------------------|---|-----------------------------|-------------------------------|---|----|-------------|------------------|-----------------|---|--------------|---------------|---|
| Process      | Potential Failure | Potential          | S | C | Potential          | О | Current Design/             | Current Design/ Process       | D | R  | Recommended | Responsibility & | Actions Taken & |   |              | D             |   |
| Function/    | Mode              | Effect(s) of       | Е | 1 | Cause(s)/          | C | Process Controls            | Controls Detection            | Е | P  | Action(s)   | Target           | Effective Date  | Ε | $\mathbf{C}$ | Е             |   |
| Requirements |                   | Failure            | V | a | Mechanism(s)       | C | Prevention                  |                               | T | N  |             | Completion Date  |                 | V | $\mathbf{C}$ | T             | N |
|              |                   |                    |   | S | of Failue          |   |                             |                               |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   | s |                    |   |                             |                               |   |    |             |                  |                 |   |              | i '           | ĺ |
|              |                   |                    | 8 | * | Improper belt      | 1 | shiftly check per           | SPC control(4)                | 4 | 32 | None        |                  |                 |   |              | Π             |   |
|              |                   |                    |   |   | speed              |   | positrol log                | Solderability sampling        |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   | -                  |   |                             | check(5)                      |   |    |             |                  |                 |   |              |               |   |
|              |                   |                    | 8 | * | Poor electrical    | 2 | Shiftly check               | SPC control(4)                | 2 | 32 | None        |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   | connection         |   |                             | Solderability sampling        |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   |                    |   | per set-up check list       | check(5)Auto alarm system     |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   |                    |   |                             | to detect poor electrical     |   |    |             |                  |                 |   |              | i '           | ĺ |
|              |                   |                    |   |   |                    |   |                             | connection issue(2)           |   |    |             |                  |                 |   |              | l '           | ĺ |
|              | Whiskers (Only    | Electrical failure | 8 |   | Insufficient       | 2 | Check and analyses          | Sampling check(5)             | 4 | 64 | None        |                  |                 |   |              | Π             | Г |
|              | for lead-free)    | (8)                |   |   | descale            |   |                             | Chemical analysis shiftly(4). |   |    |             |                  |                 |   |              | l '           | İ |
|              |                   |                    |   |   |                    |   | per positrol log            | •                             |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   |                    |   | shiftly;Post Plating        |                               |   |    |             |                  |                 |   |              | i '           | İ |
|              |                   |                    |   |   |                    |   | Bake                        |                               |   |    |             |                  |                 |   |              | l '           | İ |
|              |                   |                    | 8 |   | high carbon or     | 1 | Check and analyses          | Sampling check(5);Chemical    | 4 | 32 | None        |                  |                 |   |              |               |   |
|              |                   |                    | 0 |   | organic content    | 1 |                             | analysis shiftly(4).          | 4 | 32 | None        |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   | organic content    |   | per positrol log            | anarysis simuy(+).            |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   |                    |   | shiftly;                    |                               |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   |                    |   | Post Plating Bake           |                               |   |    |             |                  |                 |   |              | l '           | İ |
|              |                   |                    |   |   |                    |   |                             |                               |   |    |             |                  |                 |   |              |               |   |
|              |                   |                    | 8 |   | riigii ilictai     | 2 | Purify the plating          | Sampling check(5);Analyse     | 4 | 64 | None        |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   | impurity           |   | solution every 3            | the metal impurity in bath    |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   | content(Iron, lead |   | months; Monitor the         | monthly(4)                    |   |    |             |                  |                 |   |              | l '           | İ |
|              |                   |                    |   |   | copper, nickel)    |   | content of metal            |                               |   |    |             |                  |                 |   |              | l '           | İ |
|              |                   |                    | 8 |   | Incorrect current  | 2 | impurity<br>Check rectifier | Sampling check(5);Check       | 4 | 64 | None        |                  |                 | H |              | $\overline{}$ | H |
|              |                   |                    | ľ |   | density            | ľ | current shiftly.            | current shiftly(4)            | ľ |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    | 8 |   | Improper           | 1 | Check temperature           | Machine Auto alarm(2)         | 2 | 16 | None        |                  |                 |   |              |               |   |
|              |                   |                    |   |   | temperature in     |   | shiftly                     |                               |   |    |             |                  |                 |   |              | l '           | ĺ |
|              |                   |                    |   |   | plating            |   |                             |                               |   |    |             |                  |                 | Ш |              | <u> </u>      |   |
|              |                   |                    | 8 |   | Insufficient       | 2 | Check belt speed            | SPC control(4)                | 4 | 64 | None        |                  |                 |   |              | i '           | ĺ |
|              |                   |                    |   |   | deposite thickness |   | and current density         |                               |   |    |             |                  |                 |   |              | l '           | ĺ |
|              | 1                 |                    |   |   |                    |   | shiftly                     |                               |   |    |             |                  | <u> </u>        |   |              |               |   |

|                                                                  | THE MODE IN (B ELLECTS IN METERS (11)                      |                 |                |
|------------------------------------------------------------------|------------------------------------------------------------|-----------------|----------------|
| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 8                                    | 3MCT00002A/     | BY             |
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: F                      | reescale,TJN-FI | M              |
| Prepared By: Amanda Wang                                         | FMEA Date:                                                 | 05-Oct-94       | (Orig.)        |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XIA | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13       | (Rev.)         |
|                                                                  |                                                            |                 |                |
|                                                                  |                                                            |                 |                |
|                                                                  |                                                            |                 | Action Results |
|                                                                  |                                                            |                 |                |

|                              |                   |                     |   |   |                   |    |                                |                              |   |    |             |                  | Action F        | Resu | lts          |   |   |
|------------------------------|-------------------|---------------------|---|---|-------------------|----|--------------------------------|------------------------------|---|----|-------------|------------------|-----------------|------|--------------|---|---|
| Process                      | Potential Failure | Potential           | S | C | Potential         | O  | Current Design/                | Current Design/ Process      | D | R  | Recommended | Responsibility & | Actions Taken & | S    | O            | D | R |
| Function/                    | Mode              | Effect(s) of        | Е | 1 | Cause(s)/         | C  | Process Controls               | Controls Detection           | Е | P  | Action(s)   | Target           | Effective Date  | Е    | $\mathbf{C}$ | Е | P |
| Requirements                 |                   | Failure             | V | a | Mechanism(s)      | C  | Prevention                     |                              | T | N  |             | Completion Date  |                 | V    | $\mathbf{C}$ | T | N |
|                              |                   |                     |   | s | of Failue         |    |                                |                              |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   | s |                   |    |                                |                              |   |    |             |                  |                 |      |              |   |   |
| 10. plating gate             | overcure          | electrical          | 8 |   | wrong             | 1  | temperature                    | check oven temp.controller 9 | 2 | 16 | None        |                  |                 |      |              | П |   |
| (not applicable for PPF L/F) |                   | failure(8)          |   |   | temperature setup |    | autoalarm system               | points(4)                    |   |    |             |                  |                 |      |              |   |   |
| ,                            |                   |                     |   |   |                   |    | follow TCM table               | temperature autoalarm        |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    | Check oven                     | system(2)                    |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    | temp.controller 9              |                              |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    | points monitor 1x              |                              |   |    |             |                  |                 |      |              |   |   |
|                              | undercure         | electrical          | 8 |   | wrong             | 1  | temperature                    | check oven temp.controller 9 | 2 | 16 | None        |                  |                 |      |              | П |   |
|                              |                   | failure(8)          |   |   | temperature setup |    | autoalarm system               | points(4)                    |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    |                                |                              |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    | follow TCM table               | temperature autoalarm        |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    | Check oven                     | system(2)                    |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    | temp.controller 9              |                              |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    | points monitor 1x              |                              |   |    |             |                  |                 |      |              |   |   |
| 11. Trim&form                | chip/crack/microg | Reject by visual    | 8 |   | Dieset broken     | 2  | PM replace worn-               | Visual sample check after    | 5 | 80 | None        |                  |                 |      |              | П |   |
|                              | ap                | inspection or       |   |   |                   |    | out part regularly             | Trim&Form(5)                 |   |    |             |                  |                 |      |              |   |   |
|                              |                   | vision system(4)    |   |   |                   |    |                                |                              |   |    |             |                  |                 |      |              |   |   |
|                              |                   | reliability fail(8) | 8 |   | foreign matter    | 2. | Clean tooling per lot          | Visual sample check after    | 5 | 80 | None        |                  |                 |      |              | Н |   |
|                              |                   |                     | 0 |   | reside on bottom  | _  | Cican tooming per for          | Trim&Form(5)                 |   | 00 | rvone       |                  |                 |      |              |   |   |
|                              |                   |                     |   |   | supporting block  |    |                                | (-)                          |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    |                                |                              |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     |   |   |                   |    |                                |                              |   |    |             |                  |                 |      |              |   |   |
|                              |                   |                     | 8 |   | unit remain/drop  | 2  | Detect by sensor at            | sensor check automatically   | 2 | 32 | None        |                  |                 |      |              | Н |   |
|                              |                   |                     | ľ |   | in dieset         | ľ  | dieset                         | (2)                          | آ | 32 | i cone      |                  |                 |      |              |   |   |
|                              |                   |                     | 8 |   | L/F feed          | 3  | Detect by sensor               | sensor check automatically   | 2 | 48 | None        |                  |                 |      |              |   |   |
|                              |                   |                     |   |   | abnormally        |    |                                | (2)                          |   |    |             |                  |                 |      |              | Ш |   |
|                              | foreign matter    | Reject by visual    | 4 |   |                   | 2  | Clean the TF tool              | 100% final visual inspection | 3 | 24 | None        |                  |                 |      |              |   |   |
|                              |                   | inspection or       |   |   | die/punch         |    | per lot.                       | (3)                          |   |    |             |                  |                 |      |              |   |   |
|                              |                   | vision system(4)    |   |   |                   |    | Clean vacuum<br>system shiftly |                              |   |    |             |                  |                 |      |              |   |   |
|                              | Į.                | I.                  |   |   | 1                 |    | SVSICIII SIIIIIIV              | l .                          | 1 |    | 1           | l .              | l .             |      |              | ш |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 8                                    | 3MCT00002A      | /BY          |
|------------------------------------------------------------------|------------------------------------------------------------|-----------------|--------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: I                      | Freescale,TJN-F | FM           |
| Prepared By: Amanda Wang                                         | FMEA Date:                                                 | 05-Oct-94       | (Orig.)      |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XIA | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13       | (Rev.)       |
|                                                                  | <del></del>                                                |                 | <del>_</del> |
|                                                                  |                                                            |                 |              |

|              |                   |                        |          |   |                  |   |                                |                              |   |    |             |                  | Action F       | Resu | lts |   |   |
|--------------|-------------------|------------------------|----------|---|------------------|---|--------------------------------|------------------------------|---|----|-------------|------------------|----------------|------|-----|---|---|
| Process      | Potential Failure |                        | S        | C | Potential        | О | C                              | Current Design/ Process      |   |    | Recommended | Responsibility & |                |      |     |   | R |
| Function/    | Mode              | Effect(s) of           | Е        | 1 | Cause(s)/        | C | Process Controls               | Controls Detection           | Е |    | Action(s)   | Target           | Effective Date | Е    |     | Е | P |
| Requirements |                   | Failure                | V        | a | Mechanism(s)     | C | Prevention                     |                              | T | N  |             | Completion Date  |                | V    | C   | T | N |
|              |                   |                        |          | s | of Failue        |   |                                |                              |   |    |             |                  |                |      |     |   |   |
|              |                   |                        |          | s |                  |   |                                |                              |   |    |             |                  |                |      |     |   |   |
|              |                   |                        | 4        |   | scratch on       | 3 | Clean the TF tool              | 100% final visual inspection | 3 | 36 | None        |                  |                |      |     |   |   |
|              |                   |                        |          |   | lead/package     |   | per lot.                       | (3)                          |   |    |             |                  |                |      |     |   |   |
|              |                   |                        |          |   | body             |   | Clean vacuum<br>system shiftly |                              |   |    |             |                  |                |      |     |   |   |
|              | bent lead         | Reject by visual       | 8        |   | Lead Frame       | 2 | PM check                       | 100% final visual inspection | 3 | 48 | None        |                  |                |      |     |   |   |
|              | oun road          | inspection or          |          |   | jammed at        |   | singulation tool               | (3)                          |   | .0 | 10110       |                  |                |      |     |   |   |
|              |                   | vision system(4)       |          |   | unloader station |   | shiftly                        | ,                            |   |    |             |                  |                |      |     |   |   |
|              |                   | Electrical             |          |   |                  |   |                                |                              |   |    |             |                  |                |      |     |   |   |
|              |                   | failure(8)             | 8        |   | forming tooling  | 1 | PM check tool                  | 100% final visual inspection | 2 | 24 | None        |                  |                |      |     |   |   |
|              |                   |                        | 8        |   | parts broken     | 1 | shiftly before                 | (3)                          | 3 | 24 | None        |                  |                |      |     |   | 1 |
|              |                   |                        |          |   | parts broken     |   | production.                    | (3)                          |   |    |             |                  |                |      |     |   | 1 |
|              |                   |                        |          |   |                  |   | operator clean and             |                              |   |    |             |                  |                |      |     |   |   |
|              |                   |                        |          |   |                  |   | check forming                  |                              |   |    |             |                  |                |      |     |   |   |
|              |                   |                        |          |   |                  |   | bending part per lot           |                              |   |    |             |                  |                |      |     |   |   |
|              |                   |                        |          |   |                  |   | before production.             |                              |   |    |             |                  |                |      |     |   |   |
|              | metal bridge      | Reject by visual       | 8        |   | Die set broken   | 2 | Check/replace piece            | Visual sample check after    | 3 | 48 | None        |                  |                |      |     |   |   |
|              |                   | inspection or          |          |   |                  |   | part of T/F tooling            | Trim&Form(5).                |   |    |             |                  |                |      |     |   |   |
|              |                   | vision system(4)       |          |   |                  |   | on PM schedulely               | 100% final visual inspection |   |    |             |                  |                |      |     |   |   |
|              |                   | electrical             |          |   |                  |   |                                | (3)                          |   |    |             |                  |                |      |     |   |   |
|              | Excessive         | failure(8)<br>Customer | 8        |   | Die set broken.  | 2 | PM check shiftly               | Visual sample check after    | 4 | 64 | None        |                  |                |      |     |   |   |
|              |                   | application failure    | ľ        |   |                  |   |                                | Trim&Form(5);SPC             |   |    |             |                  |                |      |     |   |   |
|              | • •               | (8)                    |          |   |                  |   |                                | monitor(4)                   |   |    |             |                  |                |      |     |   |   |
|              |                   |                        | 8        |   | L/F damaged by   | 1 |                                | 100% strip check (3)         | 3 | 24 | None        |                  |                |      |     |   |   |
|              |                   |                        |          |   | former step      |   |                                | Visual sample check after    |   |    |             |                  |                |      |     |   |   |
|              |                   |                        |          |   |                  |   |                                | TrimForm(5)SPC monitor(4)    |   |    |             |                  |                |      |     |   |   |
|              |                   |                        | 8        |   | L/F jamed on     | 1 |                                | Sensor pin auto check (2).   | 2 | 16 | None        |                  |                |      |     |   |   |
|              |                   |                        |          |   | track            |   |                                | Visual sample check after    |   |    |             |                  |                |      |     |   |   |
|              |                   |                        |          |   |                  |   |                                | Trim&Form(5)SPC              |   |    |             |                  |                |      |     |   |   |
|              |                   |                        | <u> </u> |   |                  |   |                                | monitor(4)                   |   |    |             |                  |                |      |     |   |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|                           |                                                                                     |                                                                                     |        |             |                                                                             |        |                                                                                 |                                                                                                                   |        |        |           |                           | Action I       | <br>lts |        |  |
|---------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------|-------------|-----------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|---------------------------|----------------|---------|--------|--|
| Process                   | Potential Failure                                                                   |                                                                                     | S      | C           | Potential                                                                   | О      | Current Design/                                                                 | Current Design/ Process                                                                                           |        |        |           | Responsibility &          |                |         |        |  |
| Function/<br>Requirements | Mode                                                                                | Effect(s) of<br>Failure                                                             | E<br>V | l<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue                                      | C<br>C | Process Controls Prevention                                                     | Controls Detection                                                                                                | E<br>T | P<br>N | Action(s) | Target<br>Completion Date | Effective Date | C<br>C  | E<br>T |  |
|                           | physical<br>dimension ( stand<br>off, tip to tip<br>distance, lead<br>length/angle) | Customer<br>application<br>failure(8)                                               | 8      |             | Punch guide was<br>broken or worn<br>out                                    | 1      | Check punch guide<br>shiftly.<br>Replace worn-out<br>punch guide<br>regularly   | Visual sample check after<br>Trim&Form(5)                                                                         | 5      | 40     | None      |                           |                |         |        |  |
|                           |                                                                                     |                                                                                     | 8      |             | Cutting punch<br>was broken or<br>worn out                                  | 1      | shiftly. Replace worn-out cutting punch regularly                               | Visual sample check after<br>Trim&Form(5)                                                                         |        | 40     | None      |                           |                |         |        |  |
|                           |                                                                                     |                                                                                     | 8      |             | Cutting plate was<br>broken or worn<br>out                                  |        | Check cutting plate<br>shiftly<br>Replace worn-out<br>cutting plate             | Visual sample check after<br>Trim&Form(5)                                                                         | 5      | 40     | None      |                           |                |         |        |  |
|                           | Uncut Dambar                                                                        | Reject by visual<br>inspection or<br>vision system (4)<br>Electrical failure<br>(8) | 8      |             | Dambar<br>punch/insert<br>chipped                                           | 2      | PM check the punch<br>and dambar insert<br>shiftly                              | Auto alarm for dambar check(2) 100% final visual inspection (3)                                                   | 2      | 32     | None      |                           |                |         |        |  |
|                           | slug pull                                                                           | Reject by visual<br>inspection or<br>vision system (4)<br>electrial failure<br>(8)  | 8      |             | vacuum cleaning<br>system breaks<br>down/ do not<br>function<br>effectively | 2      | PM check and clean<br>vacuum system<br>monthly                                  | Automatically check by<br>machine (2)<br>100% final visual inspection<br>(3)                                      | 2      | 32     | None      |                           |                |         |        |  |
|                           | L/F damaged                                                                         | Reject by visual inspection or vision system(4)                                     | 4      |             | L/F was loaded in wrong orientation                                         | 1      |                                                                                 | auto alarm for sensor check(2)                                                                                    | 2      | 8      | None      |                           |                |         |        |  |
|                           | dambar burr                                                                         | Reject by visual<br>inspection or<br>vision system(4)<br>electrical failure         | 8      |             | Dambar punch<br>was<br>broken(chipping)<br>or worn out                      | 3      | Check dambar<br>punch shiftly.<br>Replace worn-out<br>dambar punch<br>regularly | Visual sample check after<br>Trim&Form(5)100% final<br>visual inspection (3)<br>Auto dambar check<br>function (2) | 2      | 48     | None      |                           |                |         |        |  |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 83MCT00002A/BY                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                       |
| Prepared By: Amanda Wang                                         | FMEA Date: 05-Oct-94 (Orig.)                                                |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN 14-Nov-13 (Rev.) |
|                                                                  |                                                                             |

|              | -                 |                    |   |   |                    |   | -                   |                                           |   |    |             |                  | Action F       | Resu | lts |          |   |
|--------------|-------------------|--------------------|---|---|--------------------|---|---------------------|-------------------------------------------|---|----|-------------|------------------|----------------|------|-----|----------|---|
| Process      | Potential Failure | Potential          | S |   | Potential          | О | Current Design/     | Current Design/ Process                   | D |    | Recommended | Responsibility & |                |      |     | D        | I |
| Function/    | Mode              | Effect(s) of       | Е | 1 | Cause(s)/          | C | Process Controls    | Controls Detection                        | Е | P  | Action(s)   | Target           | Effective Date | Е    | C   | E        | I |
| Requirements |                   | Failure            | V | a | Mechanism(s)       | C | Prevention          |                                           | T | N  |             | Completion Date  |                | V    | C   | T        | N |
| -            |                   |                    |   | s | of Failue          |   |                     |                                           |   |    |             | _                |                |      |     |          |   |
|              |                   |                    |   | s |                    |   |                     |                                           |   |    |             |                  |                |      |     |          |   |
|              |                   |                    | 8 |   | Dambar insert was  | 1 | Check dambar insert | Visual sample check after                 | 2 | 16 | None        |                  |                |      |     | $\neg$   | _ |
|              |                   |                    |   |   | broken and worn    |   | shiftly             | Trim&Form(5)100% final                    |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   | out                |   | Replace worn-out    | visual inspection (3)                     |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   |                    |   | dambar insert       | Auto dambar check                         |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   |                    |   | reoularly           | function (2)                              |   |    |             |                  |                |      |     |          |   |
|              |                   |                    | 8 |   | Higher tin         | 1 |                     | Visual sample check after                 | 2 | 16 | None        |                  |                |      |     |          |   |
|              |                   |                    |   |   | concentration in   |   |                     | Trim&Form(5)100% final                    |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   | Pb-free            |   |                     | visual inspection (3)                     |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   | electrolyte.       |   |                     | Auto dambar check                         |   |    |             |                  |                |      |     |          |   |
|              |                   |                    | 8 |   | Tin patch sticking | 3 | Check dambar        | function (2)<br>Visual sample check after | 2 | 48 | None        |                  |                |      |     | $\dashv$ | _ |
|              |                   |                    |   |   | on the punch       |   | punch shiftly.      | Trim&Form(5)100% final                    | Ĩ |    | Tione       |                  |                |      |     |          |   |
|              |                   |                    |   |   | on the puner       |   | Replace worn-out    | visual inspection (3)                     |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   |                    |   | dambar punch        | Auto dambar check function                |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   |                    |   | regularly           | (2)                                       |   |    |             |                  |                |      |     |          |   |
|              | Lead damaged      | Reject by visual   | 8 |   | realiser stag      | 2 | Sensor checking     | Auto detect scrap/slug bin                | 2 | 32 | None        |                  |                |      |     |          |   |
|              |                   | inspection or      |   |   | remain in dieset   |   |                     | (2)                                       |   |    |             |                  |                |      |     |          |   |
|              |                   | vision system(4)   |   |   | due to slug bin    |   |                     | 100% final visual inspection              |   |    |             |                  |                |      |     |          |   |
|              |                   | electrical failure |   |   | full               |   |                     | (3)                                       |   |    |             |                  |                |      |     |          |   |
|              |                   | (8)                |   |   |                    |   |                     |                                           |   |    |             |                  |                |      |     |          |   |
|              |                   | Customer           |   |   |                    |   |                     |                                           |   |    |             |                  |                |      |     |          |   |
|              |                   | application        |   |   |                    |   |                     |                                           |   |    |             |                  |                |      |     |          |   |
|              |                   | foilma(7)          | 8 |   | foreign matter     | 2 | operator clean      | 100% final visual inspection              | 3 | 48 | None        |                  |                |      |     | $\neg$   |   |
|              |                   |                    |   |   | dropping onto      |   | tooling per lot     | (3)                                       |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   | dieset             |   | 100% strip          |                                           |   |    |             |                  |                |      |     |          |   |
|              |                   |                    |   |   |                    |   | inspection          |                                           |   |    |             |                  |                |      |     |          |   |
|              |                   |                    | 8 |   | Dambar punch       | 2 | PM check shiftly    | Visual sample check after                 | 3 | 48 | None        |                  |                |      |     |          |   |
|              | incomplete cut    | inspection or      |   |   | Dambar insert      |   |                     | Trim&Form(5)100% final                    |   |    |             |                  |                |      |     |          |   |
|              |                   | vision system(4)   |   |   | chipped            |   |                     | visual inspection (3)                     |   |    |             |                  |                |      |     |          |   |
|              |                   | electrical failure |   |   |                    |   |                     |                                           |   |    |             |                  |                |      |     |          |   |
|              |                   | (8)                |   |   |                    |   |                     |                                           |   |    |             |                  |                |      |     |          |   |

| Item: SOIC16/28/32/54ld                                          | Control Number/Issue: 8                                    | 3MCT00002A     | BY      |  |
|------------------------------------------------------------------|------------------------------------------------------------|----------------|---------|--|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: F                      | reescale,TJN-F | M       |  |
| Prepared By: Amanda Wang                                         | FMEA Date:                                                 | 05-Oct-94      | (Orig.) |  |
| Core Team: Amanda Wang, H.J. Liu, Ivory Guo, JUN YING ZHENG, XI. | AOHUI KANG,SHUAN YAO,Cyndi Hu,Grayson Chen,LANPING BAI,JIN | 14-Nov-13      | (Rev.)  |  |
|                                                                  |                                                            |                |         |  |

|                           |                   |                                        |        |        |                                    |        |                                           |                                           |        |        |                              |                           | Action I       |        |        |        |
|---------------------------|-------------------|----------------------------------------|--------|--------|------------------------------------|--------|-------------------------------------------|-------------------------------------------|--------|--------|------------------------------|---------------------------|----------------|--------|--------|--------|
| Process                   | Potential Failure |                                        | S      | C      | Potential                          | О      | Current Design/                           | Current Design/ Process                   |        |        |                              | Responsibility &          |                |        |        |        |
| Function/<br>Requirements | Mode              | Effect(s) of Failure                   | E<br>V | l<br>a | Cause(s)/<br>Mechanism(s)          | C<br>C | Process Controls Prevention               | Controls Detection                        | E<br>T | P<br>N | Action(s)                    | Target<br>Completion Date | Effective Date | E<br>V | E<br>T | P<br>N |
| requirements              |                   | 1 andie                                | `      | S      | of Failue                          |        | 1 ievention                               |                                           | 1      | 11     |                              | Completion Date           |                | •      | 1      | 11     |
|                           |                   |                                        |        | s      |                                    |        |                                           |                                           |        |        |                              |                           |                |        |        |        |
|                           |                   |                                        | 8      |        | L/F inaccurate                     | 2      | 100% strip                                | Visual sample check after                 | 2      | 32     | None                         |                           |                |        |        |        |
|                           |                   |                                        |        |        | location                           |        | inspection to mark<br>out deformation L/F | Trim&Form(5) 100% final visual inspection |        |        |                              |                           |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        | before T/F. Safety                        | (3)                                       |        |        |                              |                           |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        | pin checked shiftly.                      | Safety pin alarm                          |        |        |                              |                           |                |        |        |        |
|                           |                   |                                        | 8      |        | foreign matter                     | 2      | Clean tooling per lot                     | Visual sample check after                 | 5      | 80     | None                         |                           |                |        |        |        |
|                           |                   |                                        |        |        | reside on bottom supporting block  |        |                                           | Trim&Form(5)                              |        |        |                              |                           |                |        |        |        |
|                           |                   |                                        |        |        | supporting block                   |        |                                           |                                           |        |        |                              |                           |                |        |        |        |
|                           | copper exposure   | solderability                          | 8      |        | forming parts                      | 1      | PM check shiftly                          | Visual sample check after                 | 3      | 24     | None                         |                           |                |        |        |        |
|                           |                   | failure (8)                            |        |        | broken                             |        | ,                                         | Trim&Form(5)                              |        |        |                              |                           |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        |                                           | 100% final visual inspection              |        |        |                              |                           |                |        |        |        |
|                           |                   |                                        |        |        | non-conductive                     | 3      | Sampling strip                            | 1                                         | 5      | 120    | Study the                    | Wei-Zhen Jin              |                |        |        |        |
|                           |                   |                                        |        |        | foreign matter<br>sticking on lead |        | inspection to mark out contaminaiton      | Trim&Form(5)                              |        |        | •                            | R04247<br>05/13/2014      |                |        |        |        |
|                           |                   |                                        |        |        | Sticking on read                   |        | L/F before T/F.                           |                                           |        |        | setup to improve             | 03/13/2011                |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        |                                           |                                           |        |        | the detection                |                           |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        |                                           |                                           |        |        | capability for exposed Cu on |                           |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        |                                           |                                           |        |        | lead issue. Sev(8)           |                           |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        |                                           |                                           |        |        | Occ(3) Det(2)                |                           |                |        |        |        |
|                           |                   |                                        |        |        |                                    |        |                                           |                                           |        |        |                              |                           |                |        |        |        |
|                           | Patchback         | Reject by visual                       | 8      |        | Excessive tin built                | 2      | Use DLC forming                           | Visual sample check after                 | 3      | 48     | None                         |                           |                |        |        |        |
|                           |                   | inspection or                          |        |        | up on forming                      |        |                                           | Trim&Form(5)                              |        |        |                              |                           |                |        |        |        |
|                           |                   | vision system(4)<br>Electrical failure |        |        | tool                               |        | design. ,brush the T/F tool every lot,    | 100% final visual inspection (3)          |        |        |                              |                           |                |        |        |        |
|                           |                   | (8)                                    |        |        |                                    |        | Clean T/F Tool                            |                                           |        |        |                              |                           |                |        |        |        |
|                           | scratch on        | Reject by visual                       | 4      |        | Lead Frame                         | 3      | 1v/shift<br>100% incoming                 | 100% finial inspection (3)                | 3      | 36     | None                         |                           |                |        |        |        |
|                           | lead/package body | inspection(4)                          |        |        | jammed at input station            |        | inspection before TF                      |                                           |        |        |                              |                           |                |        |        |        |

|              |                   |                      | 1 -  |      |                                        |     | 111022111                    | E EITE C                              | _   |       | (11111111111111111111111111111111111111 | (= 1:===)         |                 |   |   |     |   |
|--------------|-------------------|----------------------|------|------|----------------------------------------|-----|------------------------------|---------------------------------------|-----|-------|-----------------------------------------|-------------------|-----------------|---|---|-----|---|
|              | Burn In/Final Te  |                      |      |      |                                        | _   |                              |                                       |     |       |                                         | 83MCT00018A/A     |                 |   |   |     |   |
|              |                   | _x_ Process          |      |      |                                        |     |                              | Company,C                             | Gro | up,Si |                                         | Freescale, TJN-FN |                 |   |   |     |   |
| Prepared By: |                   |                      |      |      |                                        | _   |                              |                                       |     |       | FMEA Date:                              |                   | (Orig.)         |   |   |     |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | Dong | g Gao,Liang Yang                       | g,W | ei Chen,HONGZH               | II REN,LINGXUA                        | N.  | XU,S  | Sinbad Liu,Peng D                       | 06-Sep-13         | (Rev.)          |   |   |     |   |
|              |                   |                      |      |      |                                        |     |                              |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     |                              |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     |                              |                                       |     |       |                                         | _                 | Action F        |   |   |     |   |
| Process      | Potential Failure |                      | S    | C    | Potential                              |     | Current Design/              |                                       | D   | R     |                                         |                   | Actions Taken & |   | О |     | R |
| Function/    | Mode              | Effect(s) of         | Е    | 1    | Cause(s)/                              |     |                              | Process Controls                      |     | P     | Action(s)                               | Target            | Effective Date  | Е | C | Е   | P |
| Requirements |                   | Failure              | V    | a    | Mechanism(s)                           | C   | Prevention                   | Detection                             | T   | N     |                                         | Completion Date   |                 | V | C | T   | N |
|              |                   |                      |      | S    | of Failue                              |     |                              |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      | S    |                                        |     |                              |                                       |     |       |                                         |                   |                 |   |   |     |   |
| Burn in      | ESD/EOS           | -Electrical          | 8    |      | -Wrist strap                           | 1   | -Turnstile wrist             | -Q-check yield                        | 3   | 24    | None                                    |                   |                 |   |   |     |   |
|              |                   | failure(8)           |      |      | and/or shoes                           |     | strap check during           | control (3)                           |     |       |                                         |                   |                 |   |   |     |   |
|              |                   | -Reliability failure |      |      | function fail                          |     | every entry to test          |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   | (8)                  |      |      |                                        |     | floor                        |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      | 0    |      | ***                                    |     | 26 41                        | 0 1 1 11                              | 2   | 2.1   | N                                       |                   |                 |   |   |     |   |
|              |                   |                      | 8    |      | -Workstation and                       | 1   | -Monthly<br>check/half year  | -Q-check yield<br>control (3)         | 3   | 24    | None                                    |                   |                 |   |   |     |   |
|              |                   |                      |      |      | equipment are not<br>properly grounded |     | PM                           | control (3)                           |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      | property grounded                      |     | 1 141                        |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     |                              |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              | Product           | -Electrical          | 8    |      | -Operate more                          | 2   | -Handle only one             | -Quantity count (6)                   | 4   | 64    | None                                    |                   |                 |   |   |     |   |
|              | mixed/escaped     | failure(8)           |      |      | than one lot at                        |     | lot in one table /           | -Sampling check                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   | -Reliability failure |      |      | same time                              |     | Loader &                     | the marking (8)                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   | (8)                  |      |      |                                        |     | Unloader                     | -100% auto VM                         |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | -Perform marking             | inspection in                         |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | inspection before            | packaging process.                    |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | lot start                    | (4)                                   |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | -Material status             |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | identification               |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | before/after                 |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | process                      |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | -100% check                  |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | before next<br>chamber start |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     | chamber start                |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        |     |                              |                                       |     |       |                                         |                   |                 |   |   |     |   |
|              |                   |                      |      |      |                                        | Ļ.  |                              | 5 11 1 1 =                            | _   | 2.1   |                                         |                   |                 |   |   |     |   |
|              |                   |                      | 8    |      | -Wrong program                         | 1   | -Only the latest             | •                                     | 3   | 24    | None                                    |                   |                 |   |   |     |   |
|              | ĺ                 | 1                    | I    | 1    | used                                   | I   | Rev. program                 | <ul> <li>Q check detection</li> </ul> |     | 1     | 1                                       | 1                 | 1 ,             |   |   | 1 1 |   |

(3)

available

| Item:     Burn In/Final Test/Test Backend     Control Number/Issue:     83MCT00018A/AY       Type:     Design     _x_ Process     Company, Group, Site/Business Unit:     Freescale, TJN-FM       Prepared By:     Liang Yang     FMEA Date:     27-Jun-01     (Orig.)       Core Team:     Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Yang, Wei Chen, HONGZHI REN, LINGXUAN XU, Sinbad Liu, Peng E     06-Sep-13     (Rev.) |   | ults |     | _       |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-----|---------|---|
| Prepared By: Liang Yang FMEA Date: 27-Jun-01 (Orig.)                                                                                                                                                                                                                                                                                                                                                                                  |   | ults |     |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | ults |     |         |   |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Yang, Wei Chen, HONGZHI REN, LINGXUAN XU, Sinbad Liu, Peng D 06-Sep-13 (Rev.)                                                                                                                                                                                                                                                                                          |   | ults |     |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | ults |     |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | ults |     |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | ults |     |         |   |
| Action I                                                                                                                                                                                                                                                                                                                                                                                                                              | S |      |     |         |   |
| Process Potential Failure Potential S C Potential O Current Design/ Current Design/ D R Recommended Responsibility & Actions Taken &                                                                                                                                                                                                                                                                                                  |   |      | ) [ |         |   |
| Function/ Mode   Effect(s) of   E   1   Cause(s)/   C   Process Controls   Process Controls   E   P   Action(s)   Target   Effective Date                                                                                                                                                                                                                                                                                             | Е | C    |     | Ξ       |   |
| Requirements Failure V a Mechanism(s) C Prevention Detection T N Completion Date                                                                                                                                                                                                                                                                                                                                                      | V | C    | T   | Γ       | N |
| s of Failue                                                                                                                                                                                                                                                                                                                                                                                                                           |   |      |     |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |      |     |         |   |
| Miss Burnin -Customer 8 -Operator miss lot 1 -Follow TSO and -Buddy check (7) 4 32 None                                                                                                                                                                                                                                                                                                                                               |   |      |     |         |   |
| application in Burnin peocess SFC instruction - 100% auto                                                                                                                                                                                                                                                                                                                                                                             |   |      |     |         |   |
| failure(8) -Auto start BI electrical test in                                                                                                                                                                                                                                                                                                                                                                                          |   |      |     |         |   |
| -Reliability failure function to prevent packaging process                                                                                                                                                                                                                                                                                                                                                                            |   |      |     |         |   |
| (8) miss BI (4)                                                                                                                                                                                                                                                                                                                                                                                                                       |   |      | _   | 4       |   |
| 8 -Socket 2 -Check and changeQ check & BIN2 3 48 None                                                                                                                                                                                                                                                                                                                                                                                 |   |      |     |         |   |
| open/short socket during PM check detection (3) -Check before -Sampling check in                                                                                                                                                                                                                                                                                                                                                      |   |      |     |         |   |
| loading units loading process (8)                                                                                                                                                                                                                                                                                                                                                                                                     |   |      |     |         |   |
| loading times loading process (8)                                                                                                                                                                                                                                                                                                                                                                                                     |   |      |     |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |      |     |         |   |
| Bend lead & -Visual 8 -Nonstandard 2 Set up standard -100% VM 4 64 None                                                                                                                                                                                                                                                                                                                                                               |   |      | +   | 十       | _ |
| coplanarity mechanical failure manual handling inspection (6)                                                                                                                                                                                                                                                                                                                                                                         |   |      |     |         |   |
| (6) mode method -100% auto VM                                                                                                                                                                                                                                                                                                                                                                                                         |   |      |     |         |   |
| -Customer inspection in                                                                                                                                                                                                                                                                                                                                                                                                               |   |      |     |         |   |
| application packaging process                                                                                                                                                                                                                                                                                                                                                                                                         |   |      |     |         |   |
| failure(8) (4)                                                                                                                                                                                                                                                                                                                                                                                                                        |   |      |     | $\perp$ |   |
| 8 Bad socket 2 -Check and change -100% VM 4 64 None                                                                                                                                                                                                                                                                                                                                                                                   |   |      |     |         |   |
| socket during PM inspection (6)                                                                                                                                                                                                                                                                                                                                                                                                       |   |      |     |         |   |
| -Check before -100% auto VM                                                                                                                                                                                                                                                                                                                                                                                                           |   |      |     |         |   |
| loading units inspection in                                                                                                                                                                                                                                                                                                                                                                                                           |   |      |     |         |   |
| packaging process (4)                                                                                                                                                                                                                                                                                                                                                                                                                 |   |      |     |         |   |
| 8 -Loader & 2 -Half year PM -In-process 4 64 None                                                                                                                                                                                                                                                                                                                                                                                     |   | -    | +   | +       |   |
| unloader machine   2   -Haif year PM   -In-process   4   64   None                                                                                                                                                                                                                                                                                                                                                                    |   | ĺ    |     |         |   |
| misalignment handler by setup -100% auto VM                                                                                                                                                                                                                                                                                                                                                                                           |   |      |     |         |   |
| checklist inspection in                                                                                                                                                                                                                                                                                                                                                                                                               |   | ĺ    |     |         |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

packaging process

|                    |                   | POIL                 | A T  | IA.  | LFAILUN            | C   | MODE AN           | DEFFEC                         | 13   | $\mathbf{A}$ | VAL I SIS         | (FWILA)           |                 |      |      |   |   |
|--------------------|-------------------|----------------------|------|------|--------------------|-----|-------------------|--------------------------------|------|--------------|-------------------|-------------------|-----------------|------|------|---|---|
| Item:              | Burn In/Final Te  | st/Test Backend      |      |      |                    | _   |                   |                                | (    | Contr        | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |      |   |   |
| Type:              | Design            | _x_ Process          |      |      |                    | _   |                   | Company,                       | Gro  | up,Si        | te/Business Unit: | Freescale, TJN-FN | Л               |      |      |   |   |
| Prepared By:       | Liang Yang        |                      |      |      |                    |     |                   |                                |      |              | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |   |   |
| Core Team:         | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZH    | II REN,LINGXU <i>A</i>         | AN 2 | XU,S         | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |
|                    |                   |                      |      |      |                    |     |                   | •                              |      |              |                   |                   | •               |      |      |   |   |
|                    |                   |                      |      |      |                    |     |                   |                                |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     |                   |                                |      |              |                   |                   | Action I        | Resu | ılts |   |   |
| Process            | Potential Failure | Potential            | S    | С    | Potential          | О   | Current Design/   | Current Design/                | D    | R            | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D | R |
| Function/          | Mode              | Effect(s) of         | Е    | 1    | Cause(s)/          | C   | Process Controls  | Process Controls               | Е    | P            | Action(s)         | Target            | Effective Date  | Е    |      | Е |   |
| Requirements       |                   | Failure              | V    | a    | Mechanism(s)       | C   | Prevention        | Detection                      | T    | N            |                   | Completion Date   |                 | V    | C    | T | N |
|                    |                   |                      |      | s    | of Failue          |     |                   |                                |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      | s    |                    |     |                   |                                |      |              |                   |                   |                 |      |      |   |   |
|                    | Foreign matter on | - Electrical failure | 8    |      | -Particle from B/I | 1   | -Periodical clean | -100% VM                       | 6    | 48           | None              |                   |                 |      |      |   |   |
|                    | lead              | (8)                  |      |      | board              |     | B/I boards        | inspection(6)                  |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     | -Check B/I boards |                                |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     | by lot            |                                |      |              |                   |                   |                 |      |      |   |   |
|                    | Ball damage       | -Visual              | 8    |      | -Nonstandard       | 2   | Standard manual   | 100 /0 4440 1111               | 4    | 64           | None              |                   |                 |      |      |   |   |
|                    |                   | mechanical failure   |      |      | manual handling    |     | handling method   | inspection in                  |      |              |                   |                   |                 |      |      |   |   |
|                    |                   | (6)<br>-Customer     |      |      | mode               |     |                   | packaging process              |      |              |                   |                   |                 |      |      |   |   |
|                    |                   | application          |      |      |                    |     |                   | (4)<br>-In-process             |      |              |                   |                   |                 |      |      |   |   |
|                    |                   | failure(8)           |      |      |                    |     |                   | sampling check (8)             |      |              |                   |                   |                 |      |      |   |   |
|                    |                   | ranure(o)            |      |      |                    |     |                   | sampling check (6)             |      |              |                   |                   |                 |      |      |   |   |
| Material receiving | Product mixed     | -Yield Loss (7)      | 8    |      | Multiple lot       | 2   | Periodical        | - Manual verify                | 4    | 64           | Auto Print Box    | Liang Yang        |                 |      |      |   |   |
| (Receive & store   |                   | -Customer Line       |      |      | processed          |     | Training to MTL   | box label LOT#,                |      |              |                   | R57253/06-30-     |                 |      |      |   |   |
| material)          |                   | pull (8)             |      |      | simultaneously     |     | Operators         | device #, box                  |      |              | Barcode label     | 2014              |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     | 2. Mobile SFC     | quantity against               |      |              | Sev=8, Occ=1,     |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     | terminal to       | packing list & SFC             |      |              | Det=4, RPN=32     |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     | eliminate bulk    | - Accept on zero               |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     |                   | discrepancy (6)                |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     | order             | - 100% Marking check by Vision |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     |                   | system in                      |      |              |                   |                   |                 |      |      |   |   |
|                    |                   |                      |      |      |                    |     |                   | Packaging                      |      |              |                   |                   |                 |      |      |   |   |
|                    | I                 | 1                    |      | 1    | 1                  | 1   | I                 |                                |      |              | I                 | I                 |                 |      | 1    |   |   |

process(4)

|              |                   | POTEN           | T    | IA   | L FAILUR         | $\mathbf{E}$ | MODE AN            | ID EFFECT          | ΓS   | $\mathbf{A}$ | NALYSIS (         | (FMEA)            |                 | Pag  | e 4, | of 4 | 16 |                                              |
|--------------|-------------------|-----------------|------|------|------------------|--------------|--------------------|--------------------|------|--------------|-------------------|-------------------|-----------------|------|------|------|----|----------------------------------------------|
| Item:        | Burn In/Final Te  | st/Test Backend |      |      |                  |              |                    |                    | (    | Contr        | ol Number/Issue:  | 83MCT00018A/A     | Υ               |      |      |      |    |                                              |
| Type:        | Design            | _x_ Process     |      |      |                  |              |                    | Company,           | Gro  | up,Si        | te/Business Unit: | Freescale, TJN-FM | 1               |      |      |      |    |                                              |
| Prepared By: | Liang Yang        |                 |      |      |                  | _            |                    |                    |      |              | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |      |    |                                              |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zh | ang, | Dong | g Gao,Liang Yang | z,W          | ei Chen,HONGZH     | II REN,LINGXU      | AN 2 | XU,S         | inbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |      |      |      |    |                                              |
|              |                   |                 |      |      |                  |              |                    | •                  |      |              |                   |                   |                 |      |      |      |    |                                              |
|              |                   |                 |      |      |                  |              |                    |                    |      |              |                   |                   |                 |      |      |      |    |                                              |
|              |                   |                 |      |      |                  |              |                    |                    |      |              |                   |                   | Action I        | Resi | alts |      |    |                                              |
| Process      | Potential Failure | Potential       | S    | С    | Potential        | О            | Current Design/    | Current Design/    | D    | R            | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D    | R  | <u>.                                    </u> |
| Function/    | Mode              | Effect(s) of    | Е    | 1    | Cause(s)/        | C            | Process Controls   | Process Controls   | Е    | P            | Action(s)         | Target            | Effective Date  | Е    | C    | Е    | P  | )                                            |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)     | C            | Prevention         | Detection          | T    | N            |                   | Completion Date   |                 | V    | C    | T    | N  | 1                                            |
|              |                   |                 |      | s    | of Failue        |              |                    |                    |      |              |                   |                   |                 |      |      |      |    |                                              |
|              |                   |                 |      | s    |                  |              |                    |                    |      |              |                   |                   |                 |      |      |      |    |                                              |
|              | Count variance    | Qty shortage    | 3    |      | Miss Counting by | 2            | Mobile SFC         | - Manual verify    | 5    | 30           | None              |                   |                 |      |      |      |    | _                                            |
|              | (CV)              |                 |      |      | Assembly or BI   |              | terminal to        | box label LOT#,    |      |              |                   |                   |                 |      |      |      |    |                                              |
|              |                   |                 |      |      | Site             |              | eliminate bulk     | device #, box      |      |              |                   |                   | <u> </u>        |      |      |      |    |                                              |
|              |                   |                 |      |      | ļ                | 1            | processing of shop | quantity against   |      |              |                   |                   |                 |      |      |      |    |                                              |
|              |                   | 1               |      |      |                  | 1            | order              | packing list & SFC |      |              |                   |                   |                 | 1    |      |      |    |                                              |

- Accept on zero discrepancy (6) - 100% Count Qty by Test operator

- Manual verify

box label LOT#,

quantity against

- Accept on zero

discrepancy (6) - 100% Count Qty by Test operator

- Sampling

check (5)

Marking inspection

during incoming

packing list & SFC

device #, box

None

45

None

(5)

(5)

Miss Counting by 2 NA

Assembly or BI

Device mixed at

Assembly or BI

process

3 NA

Site

INCOMING

Mechanical only

Assembly & BI

CHECK

(Visual

applies to

rawstock)

Count variance

Raw stock issue

(CV)

Qty shortage

Marking

order

mismatch with

System/shop

|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   | ,                 |                 |      |      |   |   |
|------------------------------|-------------------|---------------------------------------|------|------|-----------------------------------------------|-----|---------------------------------------|------------------------|------|-------|-------------------|-------------------|-----------------|------|------|---|---|
| Item:                        | Burn In/Final Te  | st/Test Backend                       |      |      |                                               |     |                                       |                        | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | Υ               |      |      |   |   |
| Type:                        | Design            | _x_ Process                           |      |      |                                               |     |                                       | Company,               | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |      |      |   |   |
| Prepared By:                 | Liang Yang        |                                       |      |      |                                               |     |                                       |                        |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |   |   |
| Core Team:                   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha                      | ang, | Dong | Gao,Liang Yang                                | g,W | ei Chen,HONGZH                        | II REN,LINGXU <i>A</i> | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |
|                              |                   | · · · · · · · · · · · · · · · · · · · |      |      | <u>, , , , , , , , , , , , , , , , , , , </u> | ,   | · · · · · · · · · · · · · · · · · · · | •                      |      |       | , 6               | •                 | `               |      |      |   |   |
|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   |                   | Action R        | Rest | ılts |   |   |
| Process                      | Potential Failure | Potential                             | S    | С    | Potential                                     | О   | Current Design/                       | Current Design/        | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | 0    | D | R |
| Function/                    | Mode              | Effect(s) of                          | Е    | 1    | Cause(s)/                                     |     | Process Controls                      |                        |      |       | Action(s)         | Target            | Effective Date  | Е    |      | Е |   |
| Requirements                 |                   | Failure                               | V    | a    | Mechanism(s)                                  | C   |                                       | Detection              | Т    | N     |                   | Completion Date   |                 | V    | C    | T | N |
| 1                            |                   |                                       | ľ    | s    | of Failue                                     |     |                                       |                        | _    |       |                   |                   |                 | ·    |      |   |   |
|                              |                   |                                       |      | s    | or runde                                      |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
|                              | V/M Defect        | -Visual                               | 8    |      | V/M defect                                    | 2   | NA                                    | - Sampling V/M         | 4    | 64    | None              |                   |                 |      |      |   |   |
|                              | VIIII Beleet      | mechanical failure                    | 0    |      | introduced by                                 | _   | 11/1                                  | inspection during      | ľ    |       | Trone             |                   |                 |      |      |   |   |
|                              |                   | (6)                                   |      |      | Assembly or BI                                |     |                                       | incoming check (5)     |      |       |                   |                   |                 |      |      |   |   |
|                              |                   | -Customer                             |      |      | process                                       |     |                                       | - 100% Marking         |      |       |                   |                   |                 |      |      |   |   |
|                              |                   | application                           |      |      | 1                                             |     |                                       | check by Vision        |      |       |                   |                   |                 |      |      |   |   |
|                              |                   | failure(8)                            |      |      | ļ                                             |     |                                       | system in              |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      | ļ                                             |     |                                       | Packaging              |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      | ļ                                             |     |                                       | process(4)             |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| ELECTRICAL                   | Lot Combination   | Yield Loss (7)                        | 8    |      | Mixed with Other                              | 1   | Config lot combine                    | - ATE Test (3)         | 3    | 24    | None              |                   |                 |      |      |   |   |
| ΓEST as per test             | by mistake        | Customer line pull                    |      |      | device                                        |     | rule in SFC system                    |                        |      |       |                   |                   |                 |      |      |   |   |
| shop order                   | •                 | (8)                                   |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| 1. Machine                   |                   |                                       |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| oreparation                  |                   |                                       |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| 2. Start lot                 |                   |                                       |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| <ol><li>Electrical</li></ol> |                   |                                       |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| parameters tests             |                   |                                       |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| 4. End lot                   |                   |                                       |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
| (Hot/Cold/Room)              |                   |                                       |      |      | ļ                                             |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |
|                              |                   |                                       |      |      |                                               |     |                                       |                        |      |       |                   |                   |                 |      |      |   |   |

|              |                   | 10121                | ٠-   |      |                      |     | 1,1022111                         |                                     | _   |       | 11111111111       | (= 1, ==1,        |                 |   |   |   |   |
|--------------|-------------------|----------------------|------|------|----------------------|-----|-----------------------------------|-------------------------------------|-----|-------|-------------------|-------------------|-----------------|---|---|---|---|
| Item:        | Burn In/Final Te  | st/Test Backend      |      |      |                      |     |                                   |                                     | (   | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |   |   |   |   |
| Type:        | Design            | _x_ Process          |      |      |                      | -   |                                   | Company,C                           | Gro | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |   |   |   |   |
| Prepared By: | Liang Yang        |                      |      |      |                      |     |                                   |                                     |     |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | Dong | g Gao,Liang Yang     | g,W | ei Chen,HONGZH                    | II REN,LINGXUA                      | N.  | XU,S  | inbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | -                                   |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   |                                     |     |       |                   |                   | Action I        |   |   |   |   |
| Process      | Potential Failure | Potential            | S    | C    | Potential            | О   | Current Design/                   | Current Design/                     | D   | R     | Recommended       | Responsibility &  | Actions Taken & | S | О | D | R |
| Function/    | Mode              | Effect(s) of         | Ε    | 1    | Cause(s)/            | С   | Process Controls                  | Process Controls                    | Е   | P     | Action(s)         | Target            | Effective Date  | Е | С | Е | P |
| Requirements |                   | Failure              | V    | a    | Mechanism(s)         | С   | Prevention                        | Detection                           | T   | N     |                   | Completion Date   |                 | V | C | T | N |
|              |                   |                      |      | S    | of Failue            |     |                                   |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      | s    |                      |     |                                   |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      | 8    |      | mixed with other     | 1   | Config lot combine                | -lot information                    | 4   | 32    | None              |                   |                 |   |   |   |   |
|              |                   |                      |      |      | trace code           |     | rule in SFC system                |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | post combination                    |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | (6)                                 |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | -100% Count Qty<br>by Test operator |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | before test(5)                      |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | -100% auto VM                       |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | inspection in                       |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | Packaging process.                  |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   | (4)                                 |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   |                                     |     |       |                   |                   |                 |   |   |   |   |
|              | Expired BI        | Infant mortality,    | 8    |      | Lot staged for too   | 1   | Daily WIP review                  |                                     | 2   | 16    | None              |                   |                 |   |   |   |   |
|              | window            | fail electrical test |      |      | long after BI        |     | by mfg and                        | with expired BI                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   | during board         |      |      |                      |     | planner. Test                     | window (2)                          |     |       |                   |                   |                 |   |   |   |   |
|              |                   | assembly (8)         |      |      |                      |     | priority given to                 |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     | material with BI window. Expected |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     | BI expiry date can                |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     | be viewed in                      |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     | genesis through lot               |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     | enquiry screen                    |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   |                                     |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     |                                   |                                     |     |       |                   |                   |                 |   |   |   |   |
|              | Wrong machine     | Fail 1st article     | 3    |      | Use wrong tester     | 1   | Listed Tester                     | - Operator check                    | 1   | 3     | None              |                   |                 |   |   | П |   |
|              | setup             | check (3)            |      |      |                      |     | information on                    | tester vs. TSO                      |     |       |                   |                   |                 |   |   |   |   |
|              |                   | Unable to perform    |      |      |                      |     | TSO                               | during setup (5)                    |     |       |                   |                   |                 |   |   |   |   |
|              |                   | test (2)             |      |      |                      |     | Test program is                   | - Program auto                      |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      |      |      |                      |     | configed by tester                | verify during                       |     |       |                   |                   |                 |   |   |   |   |
|              |                   |                      | L    |      |                      | _   |                                   | download (1)                        | _   | 20    |                   |                   |                 |   |   | Ш |   |
|              |                   |                      | 3    |      | Use wrong<br>handler | 2   | Listed handler                    | - Operator check<br>Handler vs. TSO | 5   | 30    | None              |                   |                 |   |   |   |   |
|              |                   | 1                    | 1    | ı    | mandier              |     | mnormation on                     | manuer vs. 150                      |     | 1     |                   |                   |                 |   |   |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

during setup (5)

TSO

Freescale Rev D

| FUIENTIAL FAILUR                                                    | LE MODE AND EFFECTS ANALISIS (F                      | WILLA)           | C                       |
|---------------------------------------------------------------------|------------------------------------------------------|------------------|-------------------------|
| Item: Burn In/Final Test/Test Backend                               | Control Number/Issue: 83                             | 3MCT00018A/A     | AY                      |
| Type: Design _x_ Process                                            | Company, Group, Site/Business Unit: Fr               | reescale,TJN-FN  | Λ                       |
| Prepared By: Liang Yang                                             | FMEA Date:                                           | 27-Jun-01        | (Orig.)                 |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Yang | g,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng D | 06-Sep-13        | (Rev.)                  |
|                                                                     | _                                                    |                  |                         |
|                                                                     |                                                      |                  |                         |
|                                                                     |                                                      |                  | Action Results          |
| Process Potential Failure Potential S C Potential                   | O Current Design/ Current Design/ D R Recommended R  | Responsibility & | Actions Taken & S O D R |
|                                                                     |                                                      | m .              |                         |

|              |                   |                   |   |   | _                 |   |                     |                    |   |    | _                            |                  | Action I       |   | _ |          |          |
|--------------|-------------------|-------------------|---|---|-------------------|---|---------------------|--------------------|---|----|------------------------------|------------------|----------------|---|---|----------|----------|
| Process      | Potential Failure |                   | S |   | Potential         | О |                     | _                  |   | R  | Recommended                  | Responsibility & |                |   | O |          | R        |
| Function/    | Mode              | Effect(s) of      | Е | 1 | Cause(s)/         | C | Process Controls    | Process Controls   | Е |    | Action(s)                    | Target           | Effective Date | Е | C |          |          |
| Requirements |                   | Failure           | V | a | Mechanism(s)      | C | Prevention          | Detection          | T | N  |                              | Completion Date  |                | V | C | T        | N        |
|              |                   |                   |   | S | of Failue         |   |                     |                    |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   | s |                   |   |                     |                    |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   | 3 |   | Wrong loadboard   | 3 | Engineer create     | - Manual visual    | 5 | 45 | None                         |                  |                |   |   | П        |          |
|              |                   |                   |   |   | identification    |   |                     | verification on    |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   | •                   | loadboad ID        |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   | before releasing to | _                  |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   | production (applies |                    |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   | for NPI as well)    | M (5)              |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   |                     |                    |   |    |                              |                  |                |   |   | Ш        | <u> </u> |
|              |                   |                   | 3 |   | Wrong shoporder   | 3 | NA                  | `                  | 6 | 54 | Work with IT                 | Wei Chen         |                |   |   |          |          |
|              |                   |                   |   |   | loadboard ID      |   |                     | Audit (6)          |   |    |                              | R65950/06-30-    |                |   |   |          |          |
|              |                   |                   |   |   | setup             |   |                     |                    |   |    | LB information to            | 2014             |                |   |   |          |          |
|              |                   |                   |   |   |                   |   |                     |                    |   |    | SFC system.<br>Sev=3, Occ=2, |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   |                     |                    |   |    | Det=6, RPN=36                |                  |                |   |   |          |          |
|              |                   |                   | 3 |   | Tray loaded in    | 1 | Poka Yoke           | - Auto alarm for   | 2 | 6  | None                         |                  |                |   |   | $\vdash$ | ┢        |
|              |                   |                   |   |   | wrong orientation | 1 | mechanism on        | wrong orientation  | _ | O  | Trone                        |                  |                |   |   |          |          |
|              |                   |                   |   |   | wrong orientation |   |                     | (2)                |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   |                     | - ATE Test (3)     |   |    |                              |                  |                |   |   |          |          |
|              | Wrong test        | Yield Loss (7)    | 8 |   | Error during      | 2 | SC2 auto            | - QC in line gate  | 4 | 64 | None                         |                  |                |   |   | П        | T        |
|              | temperature       | Customer line pul | 1 |   | manual            |   | temperature         | (4)                |   |    |                              |                  |                |   |   |          |          |
|              |                   | (8)               |   |   | temperature       |   | loading             | - QA Document      |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   | selection         |   | (except MST)        | Audit (6)          |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   |                     | - QA shiftly audit |   |    |                              |                  |                |   |   |          |          |
|              |                   |                   |   |   |                   |   |                     | (8)                |   |    |                              |                  |                |   |   |          |          |

| Item:        | Burn In/Final Te  |                 | 11   | 1/1. | LIAILUN           |         | WIODE AN                              | (D EFFEC)                       |      |      |                     | 83MCT00018A/A     | Y               | _    |      |                 |   |
|--------------|-------------------|-----------------|------|------|-------------------|---------|---------------------------------------|---------------------------------|------|------|---------------------|-------------------|-----------------|------|------|-----------------|---|
|              | Design            | _x_ Process     |      |      |                   | •       |                                       | Company.                        |      |      |                     | Freescale, TJN-FN |                 |      |      |                 |   |
| Prepared By: | _                 |                 |      |      |                   |         |                                       |                                 |      | F ,  | FMEA Date:          |                   | (Orig.)         |      |      |                 |   |
|              |                   | ST2 Hu.Peter Zh | ang. | Dong | Gao.Liang Yang    | z.W     | ei Chen.HONGZH                        | II REN,LINGXU <i>A</i>          | AN : | XU.S |                     |                   | (Rev.)          |      |      |                 |   |
|              |                   | ,               | /ن   |      |                   | <i></i> | · · · · · · · · · · · · · · · · · · · | •                               |      |      | , ,                 |                   | .` ′            |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       |                                 |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       |                                 |      |      |                     |                   | Action F        | Resu | ılts |                 |   |
| Process      | Potential Failure | Potential       | S    | С    | Potential         | О       | Current Design/                       | Current Design/                 | D    | R    | Recommended         | Responsibility &  | Actions Taken & | S    | О    | D               | R |
| Function/    | Mode              | Effect(s) of    | Е    | 1    | Cause(s)/         | С       | Process Controls                      | Process Controls                | Е    | P    | Action(s)           | Target            | Effective Date  | Е    | С    | Е               | P |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)      | С       | Prevention                            | Detection                       | Т    | N    |                     | Completion Date   |                 | V    | С    | T               | N |
|              |                   |                 |      | s    | of Failue         |         |                                       |                                 |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      | S    |                   |         |                                       |                                 |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 | 8    |      | Wrong O/I         | 3       | Dedicate                              | - QA Document                   | 3    | 72   | Download            | Liang Yang        |                 |      |      |                 |   |
|              |                   |                 |      |      | configuration     |         | engineering                           | Audit (6)                       |      |      | Gen2Spec            | R57253/05-30-     |                 |      |      |                 |   |
|              |                   |                 |      |      | setup             |         | personel to                           | - Auto-trigger on               |      |      | parameters to auto- | 2014              |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         | perform O/I                           | missing                         |      |      | generate SC         |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         | configuration                         | configuration to                |      |      | configuration file  |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | respective PE                   |      |      | using SC Config     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | through scheduled auto database |      |      | file generation     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | check (3)                       |      |      | tool                |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | check (3)                       |      |      | Sev=8, Occ=2,       |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       |                                 |      |      | Det=3, RPN=48       |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       |                                 |      |      |                     |                   |                 |      |      |                 |   |
|              | Use wrong         | Customer Line   | 8    |      | TSO not updated   | 1       | Only effective                        | -Auto verify                    | 2    | 16   | None                |                   |                 |      |      |                 |   |
|              | program           | pull (8)        |      |      | timely to reflect |         | version of Test                       | program                         |      |      |                     |                   |                 |      |      |                 |   |
|              |                   | Yield Loss (7)  |      |      | program revision  |         | program is                            | information before              |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         | available in Server                   | test start (2)                  |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | - First 200 units               |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | yield check(5)                  |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | - QA Document                   |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         |                                       | Audit (6)                       |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 | Q    |      | Program selection | 2       | Listed test                           | - QA Document                   | 4    | 64   | None                |                   |                 |      |      | $\vdash \vdash$ |   |
|              |                   |                 | O    |      | error             | _       | program                               | Audit (6)                       | ľ    | 04   | TAOHE               |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         | information on                        | - Buddy check                   |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         | TSO;                                  | before test (7)                 |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         | 2. Listed handler                     | - QC in line gate               |      |      |                     |                   |                 |      |      |                 |   |
|              |                   |                 |      |      |                   |         | information on                        | (4)                             |      |      |                     |                   |                 |      |      |                 |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

TSO;

3. Auto-program loading except for A5 & MST

- QA shiftly audit

| Item: Burn In/Final Test/Test Backend                            | Control Number/Issue: 83                                    | 3MCT00018A/    | 'AY          |
|------------------------------------------------------------------|-------------------------------------------------------------|----------------|--------------|
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Fr                      | reescale,TJN-F | M            |
| Prepared By: Liang Yang                                          | FMEA Date:                                                  | 27-Jun-01      | (Orig.)      |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Y | ang, Wei Chen, HONGZHI REN, LINGXUAN XU, Sinbad Liu, Peng Γ | 06-Sep-13      | (Rev.)       |
|                                                                  |                                                             |                | <del>_</del> |

|                           |                   |                                             | _      |             | _                                             |        | _                                                                                                                             |                                                                                                                                                    |        |    | _         |                           | Action I       |        |        |        |        |
|---------------------------|-------------------|---------------------------------------------|--------|-------------|-----------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----------|---------------------------|----------------|--------|--------|--------|--------|
| Process                   | Potential Failure |                                             | S      |             | Potential                                     | О      |                                                                                                                               | Current Design/                                                                                                                                    |        |    |           | Responsibility &          |                |        |        |        |        |
| Function/<br>Requirements | Mode              | Effect(s) of Failure                        | E<br>V | l<br>a<br>s | Cause(s)/ Mechanism(s) of Failue              | C<br>C | Process Controls Prevention                                                                                                   | Process Controls Detection                                                                                                                         | E<br>T |    | Action(s) | Target<br>Completion Date | Effective Date | E<br>V | C<br>C | E<br>T | P<br>N |
|                           |                   |                                             |        | S           |                                               |        |                                                                                                                               |                                                                                                                                                    |        |    |           |                           |                |        |        |        |        |
|                           |                   |                                             | 8      |             | SPV Program<br>selection error                | 1      | 1. Enforce expiry<br>duration on<br>program reside in<br>SPV<br>2. Auto SPV<br>program loading<br>on SC2                      | - QC in line gate (4) - QA Document Audit (6) - QA shiftly audit (8)                                                                               |        |    | None      |                           |                |        |        |        |        |
|                           |                   |                                             | 8      |             | Wrong O/I<br>configuration<br>setup           | 2      | Dedicate engineering personel to perform O/I configuration Download Gen2Spec parameters to autogenerate SC configuration file | - QA Document<br>Audit (6)<br>- Auto-trigger on<br>missing<br>configuration to<br>respective PE<br>through scheduled<br>auto database<br>check (3) | 3      | 48 | None      |                           |                |        |        |        |        |
|                           |                   | Customer Line<br>pull (8)<br>Yield Loss (7) | 8      |             | -Wrist strap<br>and/or shoes<br>function fail | 1      |                                                                                                                               | -Yield limit and<br>SBL check (3)<br>-JVT test at last<br>insertion (3)                                                                            | 3      | 24 | None      |                           |                |        |        |        |        |
|                           |                   |                                             | 8      |             | No grounding<br>(work station /<br>rack)      | 1      | -Quarterly check                                                                                                              | -Yield limit and<br>SBL check (3)<br>-JVT test at last<br>insertion (3)                                                                            | 3      | 24 | None      |                           |                |        |        |        |        |

|              |                   | PUIL             | <b>1</b> T | IA   | LFAILUK            | L   | MODE AN                        | DEFFEC.                          |      |       |                   | ,                 |                 | - |   |   |   |
|--------------|-------------------|------------------|------------|------|--------------------|-----|--------------------------------|----------------------------------|------|-------|-------------------|-------------------|-----------------|---|---|---|---|
| Item:        | Burn In/Final Tes | st/Test Backend  |            |      |                    |     |                                |                                  | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΑY              |   |   |   |   |
| Type:        | Design            | _x_ Process      |            |      |                    | _   |                                | Company,                         | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |   |   |   |   |
| Prepared By: | Liang Yang        |                  |            |      |                    |     |                                |                                  |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zha | ang,       | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZH                 | II REN,LINGXU                    | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | •                                |      |       |                   |                   | •               |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                |                                  |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                |                                  |      |       |                   |                   | Action I        |   |   |   |   |
| Process      | Potential Failure | Potential        | S          | С    | Potential          | О   | Current Design/                | Current Design/                  | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S | 0 | D | R |
| Function/    | Mode              | Effect(s) of     | Е          | 1    | Cause(s)/          | C   | Process Controls               | Process Controls                 | Е    | P     | Action(s)         | Target            | Effective Date  | Е | C | Е | P |
| Requirements |                   | Failure          | V          | a    | Mechanism(s)       | C   | Prevention                     | Detection                        | T    | N     |                   | Completion Date   |                 | V | C | Т | N |
|              |                   |                  |            | s    | of Failue          |     |                                |                                  |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            | s    |                    |     |                                |                                  |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  | 8          |      | Inaccurate         | 1   | Use bracket to hold            | - QC in line gate                | 3    | 24    | None              |                   |                 |   |   |   |   |
|              |                   |                  |            |      | placement for      |     | ionizer at a specific          | ` '                              |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      | ionizer            |     | correct place                  | - High electrical                |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | fall out at next                 |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | insertion for<br>leakage or idd  |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | failure (3)                      |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | - JVT test at last               |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | insertion (3)                    |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  | 8          |      | Testers / Handlers | 2   | Check grounding                | - JVT test at last               | 3    | 48    | None              |                   |                 |   | - | - |   |
|              |                   |                  | Ü          |      | environment        | [~  | -                              | insertion (3)                    | 5    | 10    | Tione             |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     | properly installed             | (-)                              |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     | during half year               |                                  |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     | PM                             |                                  |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  | 8          |      | Spike voltage on   | 1   | Spike check during             | -Yield limit and                 | 3    | 24    | None              |                   |                 |   |   |   |   |
|              |                   |                  |            |      | the DC             |     | NPI release                    | SBL check (3)                    |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      | measurement        |     |                                | -JVT or equivalent               |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | test methodology                 |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  |            |      |                    |     |                                | (3)                              | _    | 40    |                   |                   |                 |   | ┝ | _ |   |
|              |                   |                  | 8          |      | Loadboard traces   | 2   | continuity check               | -Yield limit and                 | 3    | 48    | None              |                   |                 |   |   |   |   |
|              |                   |                  |            |      | shorted            |     | during Loadboard<br>buyoff and | SBL check (3) -JVT or equivalent |      |       |                   |                   |                 |   |   |   |   |
|              |                   |                  | 1          |      | ĺ                  |     | buyon and                      | -J v 1 or equivalent             |      |       |                   |                   |                 |   |   |   |   |

test methodology

(3)

Loadboard PM

| 1012112                                            |                                                                         | 1111111         |         |
|----------------------------------------------------|-------------------------------------------------------------------------|-----------------|---------|
| Item: Burn In/Final Test/Test Backend              | Control Number/Issue: 8                                                 | 83MCT00018A/    | /AY     |
| Type: Designx_ Process                             | Company, Group, Site/Business Unit: 1                                   | Freescale,TJN-F | FM      |
| Prepared By: Liang Yang                            | FMEA Date:                                                              | 27-Jun-01       | (Orig.) |
| Core Team: Peg Tang,ZJ-TEST2 Hu,Peter Zhang,Dong ( | Gao, Liang Yang, Wei Chen, HONGZHI REN, LINGXUAN XU, Sinbad Liu, Peng C | 06-Sep-13       | (Rev.)  |
|                                                    |                                                                         |                 |         |
|                                                    |                                                                         |                 |         |

|              |                   |                |          |       |                   |      |                                                                            |                        |      |       |                  |                  | Action I       |      |     |     |   |
|--------------|-------------------|----------------|----------|-------|-------------------|------|----------------------------------------------------------------------------|------------------------|------|-------|------------------|------------------|----------------|------|-----|-----|---|
| Process      | Potential Failure | Potential      | S        | C     | Potential         | О    | Current Design/                                                            | Current Design/        | D    |       | Recommended      | Responsibility & |                | S    | O   |     |   |
| Function/    | Mode              | Effect(s) of   | Е        | 1     | Cause(s)/         | C    | Process Controls                                                           | Process Controls       | Е    | P     | Action(s)        | Target           | Effective Date | Ε    |     |     |   |
| Requirements |                   | Failure        | V        | a     | Mechanism(s)      | C    | Prevention                                                                 | Detection              | T    | N     |                  | Completion Date  |                | V    | C   | T   |   |
|              |                   |                |          | S     | of Failue         |      |                                                                            |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          | S     |                   |      |                                                                            |                        |      |       |                  |                  |                |      |     |     |   |
|              | Product           | Customer Line  | 8        |       |                   | 4    | -Handle only one                                                           | -Quantity count (6)    | 2    | 64    | None             |                  |                |      |     |     | Ī |
|              | mixed/escaped     | pull (8)       |          |       | and tested units  |      | lot in one station                                                         | -Sampling check        |      |       |                  |                  |                |      |     |     | l |
|              |                   | Yield Loss (7) |          |       | / Mix of rawstock |      | -Perform marking                                                           | the marking (8)        |      |       |                  |                  |                |      |     |     | l |
|              |                   |                |          |       | and reject from   |      | inspection before                                                          | -QC in line gating     |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       | different lot     |      | lot start                                                                  | (4)                    |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | -Material status                                                           | -100% auto VM          |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | identification<br>before/after                                             | inspection in          |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | process                                                                    | packaging process. (4) |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | -Treat all                                                                 | -Test program auto     |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | uncomfirming                                                               | detect part            |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | units and PE used                                                          | difference (3)         |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | units as rejects                                                           | -Optimize ECID         |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | - Proper labeling                                                          | system to auto hold    |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | using lot                                                                  | material if the        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | identification                                                             | ECID doesn't           |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | barcode                                                                    | match between          |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | - Pending rack,                                                            | different insertion    |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | Input & output                                                             | (2)                    |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | rack with proper                                                           |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | labeling                                                                   |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | - Label all work                                                           |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | place for proper                                                           |                        |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | material                                                                   |                        |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | segregation -All tested good                                               |                        |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | partial/full tube are                                                      |                        |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | to be placed inside                                                        |                        |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | or next to the                                                             |                        |      |       |                  |                  |                |      |     |     | ı |
|              |                   |                |          |       |                   |      | tested good box                                                            |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | -Identified color                                                          |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | tray/tube to collect                                                       |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | rejects                                                                    |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   |                |          |       |                   |      | -Separate pending                                                          |                        |      |       |                  |                  |                |      |     |     |   |
|              |                   | ,              | DIL- · · |       |                   | 4    | rack away from                                                             | 0000000 4:1            | £    |       |                  | .,               |                |      |     |     | ١ |
|              |                   | ]              | Eleci    | ronic | versions are unc  | onti | rack away from<br>olled except when<br>input rack by<br>ontrolled except v | accessed directly      | Iro  | m [do | cument repositor | <b>y</b> ].      | D              |      | a D |     | Į |
|              |                   |                |          | Pri   | nted versions are | unc  | ontrolled except v                                                         | nen stamped "Co        | ntro | ned ( | copy" in red.    |                  | Free           | tsca | C K | ev. | f |
|              |                   |                | 1        | I     |                   |      | appearance and                                                             | ĺ                      | 1    | I     | 1                | I                | 1              |      |     |     |   |

|              |                   |                 | 1 -  | <b>T</b> 1 |                     |     | MODE III                    | DELLE                  |          |       |                   | ,                 |                 |      |      |   |   |
|--------------|-------------------|-----------------|------|------------|---------------------|-----|-----------------------------|------------------------|----------|-------|-------------------|-------------------|-----------------|------|------|---|---|
|              | Burn In/Final Tes |                 |      |            |                     |     |                             |                        |          |       |                   | 83MCT00018A/A     |                 |      |      |   |   |
|              |                   | _x_ Process     |      |            |                     |     |                             | Company,               | Gro      | up,Si |                   | Freescale, TJN-FM |                 |      |      |   |   |
| Prepared By: |                   |                 |      |            |                     |     |                             |                        |          |       | FMEA Date:        |                   | (Orig.)         |      |      |   |   |
| Core Team:   | Peg Tang, ZJ-TES  | ST2 Hu,Peter Zh | ang, | Dong       | g Gao,Liang Yang    | g,W | ei Chen,HONGZE              | II REN,LINGXU <i>A</i> | AN:      | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   | Action I        | Resu | ılts |   |   |
| Process      | Potential Failure | Potential       | S    | С          | Potential           | О   | Current Design/             | Current Design/        | D        | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D | R |
| Function/    | Mode              | Effect(s) of    | Е    |            | Cause(s)/           | С   | Process Controls            |                        |          | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е | P |
| Requirements |                   | Failure         | V    | a          | Mechanism(s)        | С   |                             | Detection              | Т        | N     |                   | Completion Date   |                 | V    | C    |   |   |
| •            |                   |                 |      | s          | of Failue           |     |                             |                        |          |       |                   | •                 |                 |      |      |   |   |
|              |                   |                 |      | s          |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 | 8    |            | Miss test insertion | 1   | Test flow configed          | - Genesis auto         | 1        | 8     | None              |                   |                 |      |      |   |   |
|              |                   |                 |      |            | or in line gate     |     | and auto controlled         |                        |          | O     | Trone             |                   |                 |      |      |   |   |
|              |                   |                 |      |            | S                   |     | by Genesis system           | •                      |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             | (1)                    |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 | 8    |            | -Wrong binning      | 1   | -Disable the bin            | -QA document           | 4        | 32    | None              |                   |                 |      |      |   |   |
|              |                   |                 |      |            | setting of handler  |     | setting button at           | audit (6)              |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | the operation               | -QC in line gate       |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | interface to prevent        | (4)                    |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | misclick.                   |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | -Use SC2 auto               |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | control bin setting         |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 | 8    |            | -Leftover unit in   | 2   | -Clear machine              |                        | 3        | 48    | None              |                   |                 |      |      |   |   |
|              |                   |                 |      |            | equipment           |     | before and after            | inspection for first   |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | test                        | 200 units (5)          |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | -Lot count before           | -Quantity count (6)    |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | start testing               | -Using SC2 auto        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | -Centralized reject         | count lot quantity     |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             | except MST, A5         |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | area after QA<br>validation | (3)                    |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | vanuation                   |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     | ļ   |                             |                        | <u> </u> | L_    |                   |                   |                 |      |      |   |   |
|              |                   |                 | 8    |            | -speed sort device  | 1   | -Using different            | C                      | 4        | 32    | None              |                   |                 |      |      |   |   |
|              |                   |                 |      |            | mixed               |     | color tray/tube to          | audit (6)              |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | replace different           | -QC in line gate       |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     | color clip for              | (4)                    |          |       |                   |                   |                 |      |      |   |   |
|              |                   |                 |      |            |                     |     |                             |                        |          |       |                   |                   |                 |      |      |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

identification

|              |                   | POIL            | 11.   | IA.  | LFAILUN                  | L        | MODE AN                               | DEFFEC.                            | 19   | $\mathbf{A}$ | VAL I SIS        | (FIMILA)          |                 |   |   |   |   |
|--------------|-------------------|-----------------|-------|------|--------------------------|----------|---------------------------------------|------------------------------------|------|--------------|------------------|-------------------|-----------------|---|---|---|---|
| Item:        | Burn In/Final Tes | st/Test Backend |       |      |                          | _        |                                       |                                    |      |              |                  | 83MCT00018A/A     |                 |   |   |   |   |
|              | •                 | _x_ Process     |       |      |                          |          |                                       | Company,                           | Gro  | up,Si        |                  | Freescale, TJN-FM | Л               |   |   |   |   |
| Prepared By: |                   |                 |       |      |                          | _        |                                       |                                    |      |              | FMEA Date:       |                   | (Orig.)         |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zh | ang,l | Dong | g Gao,Liang Yang         | g,W      | ei Chen,HONGZE                        | II REN,LINGXU                      | AN 2 | XU,S         | inbad Liu,Peng I | 06-Sep-13         | (Rev.)          |   |   |   |   |
|              |                   |                 |       |      |                          |          |                                       |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          |                                       |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          |                                       |                                    |      |              |                  |                   | Action F        |   |   |   |   |
| Process      | Potential Failure | Potential       | S     | C    | Potential                | О        | Current Design/                       | Current Design/                    | D    | R            | Recommended      | Responsibility &  | Actions Taken & | S |   |   |   |
| Function/    | Mode              | Effect(s) of    | Е     | 1    | Cause(s)/                | C        | Process Controls                      | Process Controls                   |      |              | Action(s)        | Target            | Effective Date  | Е | C | Е | P |
| Requirements |                   | Failure         | V     | a    | Mechanism(s)             | C        | Prevention                            | Detection                          | T    | N            |                  | Completion Date   |                 | V | C | T | N |
|              |                   |                 |       | S    | of Failue                |          |                                       |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       | S    |                          |          |                                       |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 | 8     |      | -Wrong customer          | 1        | -Add password                         | -QA document                       | 3    | 24           | None             |                   |                 |   |   |   |   |
|              |                   |                 |       |      | code key in for          |          | verification to                       | audit (6)                          |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      | factory                  |          | guaratee correct                      | -QC in line gate                   |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      | programming              |          | customer code                         | (4)                                |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      | product                  |          | input                                 | -100% EEV test                     |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | -Add customer                         | (3)                                |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | code check on gate test               |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 | 0     |      |                          | <u> </u> |                                       |                                    |      | 2.2          |                  |                   |                 |   |   |   |   |
|              |                   |                 | 8     |      | -Engineer/<br>Techincian | 1        | -Handle only one                      | -Quantity count (6)                | 4    | 32           | None             |                   |                 |   |   |   |   |
|              |                   |                 |       |      | mishandling              |          | lot in one station<br>-follow on line | -Sampling check<br>the marking (8) |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      | during on line           |          | debug instruction                     | -QC in line gate                   |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      | debug                    |          | -Material status                      | (4)                                |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      | desug                    |          | identification                        |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | before/after                          |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | process                               |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | -Treat PE used                        |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | units as rejects                      |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | -System auto clear                    |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | testsite when quit                    |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | engineer testing                      |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | mode and sort all                     |                                    |      |              |                  |                   |                 |   |   |   |   |
|              |                   |                 |       |      |                          |          | verification units into reject trav   |                                    |      |              |                  |                   |                 |   |   |   |   |
|              | I I               |                 | 1     |      | I                        | 1        | mile reject tray                      |                                    | 1    | 1            | I                |                   | 4               |   |   |   |   |

| Item: Burn In/Final Test/Test Backend                               | Control Number/Issue:                               | 83MCT00018A/    | AY      |
|---------------------------------------------------------------------|-----------------------------------------------------|-----------------|---------|
| Type: Design _x_ Process                                            | Company, Group, Site/Business Unit:                 | Freescale,TJN-F | M       |
| Prepared By: Liang Yang                                             | FMEA Date:                                          | 27-Jun-01       | (Orig.) |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Yang | ,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng Γ | 06-Sep-13       | (Rev.)  |
|                                                                     | <u> </u>                                            |                 |         |

|              |                   |              |   |   |                              |   |                     |                       |   |    |                    |                  | Action I        |   |   |   |           |
|--------------|-------------------|--------------|---|---|------------------------------|---|---------------------|-----------------------|---|----|--------------------|------------------|-----------------|---|---|---|-----------|
| Process      | Potential Failure | Potential    | S | C | Potential                    | О |                     | Current Design/       |   |    |                    | Responsibility & | Actions Taken & | S | О |   |           |
| Function/    | Mode              | Effect(s) of | Е | 1 | Cause(s)/                    | C |                     | Process Controls      | Е | P  | Action(s)          | Target           | Effective Date  | Е | C |   |           |
| Requirements |                   | Failure      | V | a | Mechanism(s)                 | C | Prevention          | Detection             | T | N  |                    | Completion Date  |                 | V | C | T | N         |
|              |                   |              |   | S | of Failue                    |   |                     |                       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   | s |                              |   |                     |                       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              | 8 |   | Leftover unit on             | 2 | -Check recycle tray | -100% auto VM         | 4 | 64 | None               |                  |                 |   |   |   |           |
|              |                   |              |   |   | recycle tray                 |   |                     | inspection in         |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   |                     | packaging process     |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   |                     | (4)                   |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   | operation of        | -Quantity count (6)   |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   | recycle tray        | -Sampling check       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   | checking            | the marking (8)       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   | -partial tray alert | -QC in line gate (4)  |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   |                     | (4)                   |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   |                     |                       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              | 8 |   | D - 44 D1                    | 1 | Castle handler      | 1. QC in line gate.   | 4 | 32 | None               |                  |                 |   |   |   | ₩         |
|              |                   |              | 8 |   | Battery Backup<br>Unit (BBU) | 1 | firmware upgraded   |                       | 4 | 32 | None               |                  |                 |   |   |   |           |
|              |                   |              |   |   | memory full                  |   |                     | 2. QA shiftly audit   |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   | causing Castle               |   |                     | (8)                   |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   | handler fail to              |   |                     | 3. Quantity count     |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   | pickup rawstock              |   | * *                 | (6)                   |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   | unit and indexed             |   |                     |                       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   | to main tray                 |   |                     |                       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   | buffer as an                 |   |                     |                       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   | empty tray                   |   |                     |                       |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              | 8 |   | Bin1 units from              | 5 | NA                  | - QC in line gate.    | 2 | 80 | Station Controller | Peng Lin         |                 |   |   |   |           |
|              |                   |              |   |   | previous insertion           |   |                     | (4)                   |   |    | auto stop test     | R65908/06-28-    |                 |   |   |   |           |
|              |                   |              |   |   | are not cleared              |   |                     | 2. QA shiftly audit   |   |    | program loading    | 2014             |                 |   |   |   |           |
|              |                   |              |   |   | from output bin1             |   |                     | (8)                   |   |    | if any units       |                  |                 |   |   |   |           |
|              |                   |              |   |   | stacker / rack               |   |                     | 3. ECID detection     |   |    | detected at output |                  |                 |   |   |   |           |
|              |                   |              | 1 |   |                              |   |                     | method for            |   |    | area               |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   |                     | applicable products   |   |    | SEV=8, OCC=2,      |                  |                 |   |   |   |           |
|              |                   |              | 1 |   |                              |   |                     | (2)                   |   |    | DET=2, RPN=32      |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   |                     | 4. Quantity count (6) |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              | 1 |   |                              |   |                     | (0)                   |   |    |                    |                  |                 |   |   |   |           |
|              |                   |              |   |   |                              |   |                     |                       |   |    |                    |                  |                 |   |   |   | <u> L</u> |

|              | Burn In/Final Te  |                     | `_   |      |                   |               | 1,1022111                        |                     |       | Contr |                    | 83MCT00018A/A     |                   |      |     |   |     |
|--------------|-------------------|---------------------|------|------|-------------------|---------------|----------------------------------|---------------------|-------|-------|--------------------|-------------------|-------------------|------|-----|---|-----|
|              |                   | _x_ Process         |      |      |                   |               |                                  | Company,C           | iroر  | up,Si |                    | Freescale, TJN-FN |                   |      |     |   |     |
| Prepared By: |                   | CT2 H., D., 7h.     |      | D    | - C I : V         | . 337         | -: Ch HONGZI                     | II REN,LINGXUA      | NT.   | VIIC  | FMEA Date:         |                   | (Orig.)<br>(Rev.) |      |     |   |     |
| Core Team:   | Peg Tang,ZJ-TE    | S12 Hu, Peter Zna   | ang, | Dong | g Gao, Liang Tang | 3, <b>v</b> v | ei Chell, HONGZE                 | II KEN,LINGAUA      | IIN . | AU,3  | ilibad Liu,Pelig L | 06-Sep-13         | (Kev.)            |      |     |   |     |
|              |                   |                     |      |      |                   |               |                                  |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               |                                  |                     |       |       |                    |                   | Action R          | Resu | lts |   |     |
| Process      | Potential Failure | Potential           | S    | С    | Potential         | О             | Current Design/                  | Current Design/     | D     | R     | Recommended        | Responsibility &  | Actions Taken &   |      |     | D | R   |
| Function/    | Mode              | Effect(s) of        | E    | 1    | Cause(s)/         |               |                                  | Process Controls    |       | P     | Action(s)          | Target            | Effective Date    | E    |     |   | P   |
| Requirements | 111000            | Failure             | V    | a    | Mechanism(s)      | C             |                                  | Detection           | T     | N     | 11011011(5)        | Completion Date   |                   | V    |     | T |     |
|              |                   |                     |      | s    | of Failue         |               |                                  |                     | _     |       |                    |                   |                   |      |     |   | - ' |
|              |                   |                     |      | s    |                   |               |                                  |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     | 8    |      | Reject mixed into | 2             | 1. Rawstock and                  | -QC in line gate.   | 3     | 48    | None               |                   |                   |      |     |   |     |
|              |                   |                     |      |      | good during       |               | tested material                  | (4)                 |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      | machine           |               | segregation by                   | - QA shiftly audit  |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      | downtime eg.      |               | operator during                  | (8)                 |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      | During            |               | machine down                     | - ECID detection    |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      | maintenance       |               | 2. Technician to                 | method for          |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               |                                  | applicable products |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | 1                                | (3)                 |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | during                           |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | maintenance. All units are to be |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | placed back into                 |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | rawstock material                |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | 3. Scrap jammed                  |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | units                            |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | Centralized                      |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | reject scrapping in              |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | QA area after QA                 |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | validation                       |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               |                                  |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               |                                  |                     |       |       |                    |                   |                   |      |     |   |     |
|              | Non qualified     | Customer            | 8    |      | Use production    | 2             | Any engineering                  | All engineering lot | 2     | 32    | None               |                   |                   |      | _   |   |     |
|              | engineering lot   | application failure | -    |      | lot class for     | _             | lot need to use                  | class require MDR   | _     | 32    | TVOILE             |                   |                   |      |     |   |     |
|              | shipped to        | (8)                 |      |      | engineerig        |               |                                  | prior shipment. (2) |       |       |                    |                   |                   |      |     |   |     |
|              | customer          | (-)                 |      |      | purpose causing   |               | class.                           | r (2)               |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      | lot shipped as    |               | Log in MDR for                   |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      | production lot to |               | engineering lot                  |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      | customer.         |               | class to ship as                 |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     |      |      |                   |               | normal production                |                     |       |       |                    |                   |                   |      |     |   |     |
|              |                   |                     | 1    |      |                   |               | lot class.                       |                     |       |       |                    |                   |                   |      |     |   |     |

|                                       |                   |                  | •        |      |                    |     |                                    | -                              |     |       |                   | ,                 |                 |      |          |   |   |
|---------------------------------------|-------------------|------------------|----------|------|--------------------|-----|------------------------------------|--------------------------------|-----|-------|-------------------|-------------------|-----------------|------|----------|---|---|
| Item: Burn In/Final Test/Test Backend |                   |                  |          |      |                    |     |                                    |                                |     |       |                   | 83MCT00018A/A     |                 |      |          |   |   |
| Type:                                 | Design            | _x_ Process      |          |      |                    |     |                                    | Company,                       | Gro | up,Si |                   | Freescale, TJN-FN | 1               |      |          |   |   |
| Prepared By:                          | Liang Yang        |                  |          |      |                    |     |                                    |                                |     |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |          |   |   |
| Core Team:                            | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zha | ang,     | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZF                     | II REN,LINGXU                  | AN: | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | -                              |     |       |                   |                   | •               |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    |                                |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    |                                |     |       |                   |                   | Action I        | Resi | ults     |   |   |
| Process                               | Potential Failure | Potential        | S        | С    | Potential          | О   | Current Design/                    | Current Design/                | D   | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О        | D | R |
| Function/                             | Mode              | Effect(s) of     | Е        | 1    | Cause(s)/          | С   | Process Controls                   | Process Controls               | Е   | P     | Action(s)         | Target            | Effective Date  | Е    | C        | Е | P |
| Requirements                          |                   | Failure          | V        | a    | Mechanism(s)       | С   | Prevention                         | Detection                      | Т   | N     |                   | Completion Date   |                 | V    | C        | T | N |
| •                                     |                   |                  |          | s    | of Failue          |     |                                    |                                |     |       |                   | •                 |                 |      |          |   |   |
|                                       |                   |                  |          | s    |                    |     |                                    |                                |     |       |                   |                   |                 |      |          |   |   |
|                                       | Low yield or SBL  | - Yield loss (7) | 7        |      | Tester out of      | 1   | - Tester calibration               | - Yield limit                  | 2   | 14    | None              |                   |                 |      |          |   |   |
|                                       | over limit        |                  |          |      | calibration        |     |                                    | control in Genesis             |     |       |                   |                   |                 |      |          |   |   |
|                                       | (DC, functional,  |                  |          |      |                    |     |                                    | (3)                            |     |       |                   |                   |                 |      |          |   |   |
|                                       | parametric,       |                  |          |      |                    |     |                                    | - SBL limit control            |     |       |                   |                   |                 |      |          |   |   |
|                                       | open/short,       |                  |          |      |                    |     |                                    | (3)                            |     |       |                   |                   |                 |      |          |   |   |
|                                       | electrical)       |                  |          |      |                    |     |                                    | -Auto calibration              |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | every program                  |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | loading (2) -Diagnostic during |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | PM (5)                         |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  | <u> </u> |      |                    | _   | 5: 11 1 1                          |                                |     | 20    | 2.7               |                   |                 |      |          |   |   |
|                                       |                   |                  | 7        |      | -Wrong binning     | 1   | -Disable the bin setting button at | -QA document<br>audit (6)      | 4   | 28    | None              |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      | setting of handler |     | the operation                      | -QC in line gate               |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     | interface to prevent               |                                |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     | misclick.                          | (4)                            |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     | -Use SC2 auto                      |                                |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     | control bin setting                |                                |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    |                                |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    |                                |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  | 7        |      | - Handler setup    | 1   | - Handler regular                  | - Yield limit                  | 3   | 21    | None              |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      | problem            |     | PM                                 | control in Genesis             |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     | - Set up check                     | (3)                            |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | - SBL limit control            |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | (3)                            |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | - First 200 units              |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  | <u> </u> |      |                    | _   |                                    | yield check (4)                |     |       |                   |                   |                 |      | <u> </u> |   |   |
|                                       |                   |                  | 7        |      | - Load Board       | 3   | - Load board                       | - Yield limit                  | 3   | 63    | None              |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      | problem            |     | regular PM                         | control in Genesis (3)         |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | - SBL limit control            |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | (3)                            |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | - First 200 units              |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    | yield check (4)                |     |       |                   |                   |                 |      |          |   |   |
|                                       |                   |                  |          |      |                    |     |                                    |                                |     |       |                   |                   |                 |      |          |   |   |

|              |                   | POTE            | NT   | IA   | L FAILUR         | Œ   | MODE AN          | D EFFEC             | ΓS   | Al    | NALYSIS (         | (FMEA)            | F               | Page | 17   | of · | 46  |   |
|--------------|-------------------|-----------------|------|------|------------------|-----|------------------|---------------------|------|-------|-------------------|-------------------|-----------------|------|------|------|-----|---|
| Item:        | Burn In/Final Tes | st/Test Backend |      |      |                  |     |                  |                     | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΑY              |      |      |      |     |   |
| Type:        | Design            | _x_ Process     |      |      |                  |     |                  | Company,            | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |      |      |      |     |   |
| Prepared By: | Liang Yang        |                 |      |      |                  |     |                  |                     |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |      |     |   |
| Core Team:   | Peg Tang,ZJ-TES   | T2 Hu,Peter Zh  | ang, | Dong | g Gao,Liang Yang | g,W | Vei Chen, HONGZH | II REN,LINGXU       | AN 2 | XU,S  | inbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |      |      |      |     |   |
|              |                   |                 |      |      |                  |     |                  | •                   |      |       |                   |                   |                 |      |      |      |     |   |
|              |                   |                 |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |      |      |     |   |
|              |                   |                 |      |      |                  |     |                  |                     |      |       |                   |                   | Action I        | Resi | ults |      |     |   |
| Process      | Potential Failure | Potential       | S    | C    | Potential        | О   | Current Design/  | Current Design/     | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D    | ) [ | R |
| Function/    | Mode              | Effect(s) of    | Е    | 1    | Cause(s)/        | C   | Process Controls | Process Controls    | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е    |     | P |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)     | C   | Prevention       | Detection           | T    | N     |                   | Completion Date   |                 | V    | C    | T    | ' I | N |
|              |                   |                 |      | s    | of Failue        |     |                  |                     |      |       |                   |                   |                 |      |      |      |     |   |
|              |                   |                 |      | s    | ļ                |     |                  |                     |      |       |                   |                   | 1               |      |      |      |     |   |
|              |                   |                 | 7    |      | - Tester board   | 1   | - Tester regular | - Yield limit       | 3    | 21    | None              |                   |                 |      |      |      |     |   |
|              |                   |                 |      |      | problem          |     | PM               | control in Genesis  |      |       |                   |                   |                 |      |      |      |     |   |
|              |                   |                 |      |      | ļ                |     |                  | (3)                 |      |       |                   |                   |                 |      |      |      |     |   |
|              |                   |                 |      |      | Į.               |     |                  | - SBL limit control |      |       |                   |                   |                 |      |      |      |     |   |
|              |                   |                 |      |      |                  |     |                  | (3)                 |      |       |                   |                   | 1               |      |      |      |     |   |
|              |                   |                 |      |      | 1                |     | 1                | - First 200 units   |      |       | Ī                 |                   | ı               |      | 1    |      | 1   | , |

Contact interface

regular

replacement

-Half year PM

-Shiftly check

checklist

Input quad

overpress

hardstop to preven

handler by setup

Poor contact at

(device under test)

DUT socket

-Device

hanlder

misplacement by

Unit overpress

during test

Bend lead &

coplanarity

-Visual

-Customer

application

failure(8)

(6)

mechanical failure

yield check (4)

control in Genesis

- SBL limit control

- First 200 units yield check (4)

sampling check (8)

-100% auto VM

packaging process

sampling check (8) -100% auto VM

inspection in

-In-process

inspection in packaging process

-In-process

63

32

None

None

None

- Yield limit

(3)

(3)

(4)

(4)

|              |                   | POIL             | <b>1</b> I. | IA   | LFAILUN           | C   | MODE AN                   | DEFFEC                          | 19   | $\mathbf{A}$ | ALL 1919          | (FIMILA)          |                 |      |     |   |   |
|--------------|-------------------|------------------|-------------|------|-------------------|-----|---------------------------|---------------------------------|------|--------------|-------------------|-------------------|-----------------|------|-----|---|---|
| Item:        | Burn In/Final Tes | st/Test Backend  |             |      |                   |     |                           |                                 | (    | Contr        | ol Number/Issue:  | 83MCT00018A/A     | Υ               |      |     |   |   |
| Type:        | Design            | _x_ Process      |             |      |                   | -   |                           | Company,                        | Gro  | up,Si        | te/Business Unit: | Freescale, TJN-FM | 1               |      |     |   |   |
| Prepared By: | Liang Yang        |                  |             |      |                   |     |                           |                                 |      |              | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |     |   |   |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zha | ang,        | Dong | g Gao,Liang Yang  | g,W | ei Chen,HONGZE            | II REN,LINGXU                   | AN 2 | XU,S         | inbad Liu,Peng I  | 06-Sep-13         | (Rev.)          |      |     |   |   |
|              |                   |                  |             |      |                   |     |                           | -                               |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     |                           |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     |                           |                                 |      |              |                   |                   | Action F        | Resu | lts |   |   |
| Process      | Potential Failure | Potential        | S           | С    | Potential         | О   | Current Design/           | Current Design/                 | D    | R            | Recommended       | Responsibility &  | Actions Taken & | S    | О   | D | R |
| Function/    | Mode              | Effect(s) of     | Е           | 1    | Cause(s)/         | С   | Process Controls          | Process Controls                | Е    | P            | Action(s)         | Target            | Effective Date  | Е    | C   | Е | P |
| Requirements |                   | Failure          | V           | a    | Mechanism(s)      | С   | Prevention                | Detection                       | T    | N            |                   | Completion Date   |                 | V    | C   | T | N |
| -            |                   |                  |             | s    | of Failue         |     |                           |                                 |      |              |                   | -                 |                 |      |     |   |   |
|              |                   |                  |             | s    |                   |     |                           |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  | 8           |      | Bad socket/pogo   | 2   | -Hard stopper             | -In-process                     | 4    | 64           | None              |                   |                 |      |     |   |   |
|              |                   |                  |             |      | pin               |     | configuration             | sampling check (8)              |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | - Load board              | -100% auto VM                   |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | regular PM                | inspection in                   |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | - Contact interface       | packaging process               |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | regular                   | (4)                             |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | replacement               |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  | 8           |      | ATU causing       | 2   | 1. Use                    | -In-process                     |      | 64           | None              |                   |                 |      |     |   |   |
|              |                   |                  |             |      | drop units        |     | CASM/CAIM to              | sampling check (8)              |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | cycle ATU and             | -100% auto VM                   |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | observe for<br>mechanical | inspection in packaging process |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | binding issue             | (4)                             |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | during handler PM         | (4)                             |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | 2. Designed tray          |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | catcher with              |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | loaded spring             |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | 3. Add mounting           |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | plate to tighten          |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     | door sensor               |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  |             |      |                   |     |                           |                                 |      |              |                   |                   |                 |      |     |   |   |
|              |                   |                  | 8           |      | Unit misplaced in | 2   | Handler buyoff            | -In-process                     | 4    | 64           | None              |                   |                 |      |     | 寸 | _ |
|              |                   |                  |             |      | tray at output    |     | ofter DM and              | compling check (8)              | 1    |              |                   |                   |                 |      |     |   |   |

conversion

sort xyz alignment

handler

-100% auto VM

packaging process

inspection in

|                           | Burn In/Final Tes | t/Test Backend       |        |        |                           |     | 111022111                          | (D EITE)                        |        | Contr  |                    | 83MCT00018A/A                         |                   |        |        |        |        |
|---------------------------|-------------------|----------------------|--------|--------|---------------------------|-----|------------------------------------|---------------------------------|--------|--------|--------------------|---------------------------------------|-------------------|--------|--------|--------|--------|
|                           |                   | _x_ Process          |        |        |                           |     |                                    | Company,                        | Gro    | up,Si  |                    | Freescale, TJN-FN                     |                   |        |        |        |        |
| Prepared By:              |                   | T2 Hu Peter Zh       | ano    | Done   | g Gao Liang Yang          | . W | ei Chen,HONGZF                     | II REN LINGXII                  | ۱N     | XUS    | FMEA Date:         |                                       | (Orig.)<br>(Rev.) |        |        |        |        |
| Core realin               | 108 14118,20 125  | 12 114,1 0001 231    |        | 2017   | 5 Gue, Estang Tung        | ,,  | <u> </u>                           |                                 |        | 110,0  | ameno Bru,r ving E |                                       | .(110 / 1)        |        |        |        |        |
|                           |                   |                      |        |        |                           |     |                                    |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           | T                 |                      |        |        |                           |     | 1                                  | T                               |        |        | 1                  | · · · · · · · · · · · · · · · · · · · | Action I          |        |        |        |        |
| Process                   | Potential Failure | Potential            | S      | C      | Potential                 |     | Current Design/                    |                                 |        | R      |                    | Responsibility &                      |                   |        | 0      |        |        |
| Function/<br>Requirements | Mode              | Effect(s) of Failure | E<br>V | 1      | Cause(s)/<br>Mechanism(s) | C   | Process Controls Prevention        | Detection                       | E<br>T | P<br>N | Action(s)          | Target<br>Completion Date             | Effective Date    | E<br>V | C<br>C | E<br>T | P<br>N |
| Requirements              |                   | ranute               | ľ      | a<br>s | of Failue                 | ١   | Fievention                         | Detection                       | 1      | 11     |                    | Completion Date                       |                   | v      | C      | 1      | 11     |
|                           |                   |                      |        | s      | or runde                  |     |                                    |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      | 8      |        | - Operator handles        | 2   | - Certify operators'               | -In-process                     | 4      | 64     | None               |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        | material                  |     |                                    | sampling check (8)              |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        | manually.                 |     | yearly exam to check               | -100% auto VM inspection in     |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | - Treat manual                     | packaging process               |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | operated material                  | (4)                             |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | as VM reject and                   |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | scrap.                             |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      | 8      |        | -Frost inside test        | 2   | -Warm up handler                   | -In-process                     | 4      | 64     | None               |                                       |                   |        |        |        |        |
|                           |                   |                      | 0      |        | chamber                   | _   | periodically                       | sampling check (8)              | 4      | 04     | None               |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | -Use air pressure to               |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | prevent frozen                     | inspection in                   |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | during cold                        | packaging process               |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | temperature test -System auto warm | (4)                             |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | up cold                            |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | temperature                        |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | handler                            |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | - SC2 Auto-defrost                 |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | function                           |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     |                                    |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      | 8      |        | -Hit by damaged           | 2   | -Add chamfer at                    | -In-process                     | 4      | 64     | None               |                                       |                   |        |        | H      |        |
|                           |                   |                      | 1      |        | track corner              |     | soak booster track                 | sampling check (8)              |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      | 1      |        |                           |     | and singulator                     | -100% auto VM                   |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      | 1      |        |                           |     | track -Perform Track               | inspection in packaging process |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | inspection when                    | (4)                             |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      | 1      |        |                           |     | replacement during                 |                                 |        |        |                    |                                       |                   |        |        |        |        |
|                           |                   |                      |        |        |                           |     | PM                                 |                                 |        |        |                    |                                       |                   |        |        |        |        |

|              |                   |                    | 111  | LIMILON |                  | MODEM               | D LITE                        |                                   |      |       | · /               |                   |                 |   |          |   |   |   |
|--------------|-------------------|--------------------|------|---------|------------------|---------------------|-------------------------------|-----------------------------------|------|-------|-------------------|-------------------|-----------------|---|----------|---|---|---|
|              | Burn In/Final Te  |                    |      |         |                  |                     |                               |                                   |      |       |                   | 83MCT00018A/A     |                 |   |          |   |   |   |
|              |                   | _x_ Process        |      |         |                  |                     |                               | Company,                          | Gro  | up,Si |                   | Freescale, TJN-FM |                 |   |          |   |   |   |
| Prepared By: |                   |                    |      |         |                  |                     |                               |                                   |      |       | FMEA Date:        |                   | (Orig.)         |   |          |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha   | ıng, | Dong    | g Gao,Liang Yang | ,W                  | ei Chen,HONGZH                | II REN,LINGXU <i>A</i>            | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |   |          |   |   |   |
| •            |                   |                    |      |         |                  |                     |                               | •                                 |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               |                                   |      |       |                   |                   |                 |   |          |   |   | ĺ |
|              |                   |                    |      |         |                  |                     |                               |                                   |      |       |                   |                   | Action I        |   |          |   |   |   |
| Process      | Potential Failure | Potential          | S    | С       | Potential        | О                   | Current Design/               | Current Design/                   | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S | 0        | D | R |   |
| Function/    | Mode              | Effect(s) of       | Е    | 1       | Cause(s)/        | С                   | Process Controls              | Process Controls                  | Е    | P     | Action(s)         | Target            | Effective Date  | Е | C        | Е | P |   |
| Requirements |                   | Failure            | V    | a       | Mechanism(s)     | С                   | Prevention                    | Detection                         | T    | N     |                   | Completion Date   |                 | V | С        | T | N |   |
| •            |                   |                    |      | s       | of Failue        |                     |                               |                                   |      |       |                   | •                 |                 |   |          |   |   |   |
|              |                   |                    |      | s       |                  |                     |                               |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              | Ball damage       | -Visual            | 8    |         | Bad socket/pogo  | 2                   | -Hard stopper                 | -In-process                       | 4    | 64    | None              |                   |                 |   |          |   |   | - |
|              |                   | mechanical failure | pin  |         | configuration    | sampling check (8)  | -                             |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   | (6)                |      |         | - Load board     | -100% auto VM       |                               |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   | -Customer          |      |         |                  | regular PM          | inspection in                 |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   | application        |      |         |                  | - Contact interface | packaging process             |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   | failure(8)         |      |         |                  | regular             | (4)                           |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     | replacement                   |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    | 8    |         | Unit jam at core | 2                   | 1. Periodic handler           | -In-process                       | 4    | 64    | None              |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         | section          |                     | PM to minimize                | sampling check (8)                |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     | jamming                       | -100% auto VM                     |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               | inspection in                     |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               | packaging process                 |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     | unit that jammed at           | (4)                               |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     | core section                  |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               |                                   |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               |                                   |      |       |                   |                   |                 |   |          |   |   | _ |
|              |                   |                    | 8    |         | -Device          | 2                   | -Half year PM                 | m process                         | 4    | 64    | None              |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         | misplacement by  |                     | -Shiftly check                | sampling check (8)                |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         | hanlder          |                     | handler by setup              | -100% auto VM                     |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     | checklist                     | inspection in                     |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               | packaging process (4)             |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               | (4)                               |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    | 0    |         | Linit axiomnas-  | _                   | Innut and                     | In manage                         | 4    | 32    | None              |                   |                 | - | <u> </u> |   |   | _ |
|              |                   |                    | 0    |         | Unit overpress   | 1                   | Input quad                    | -In-process<br>sampling check (8) | 4    | 32    | none              |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         | during test      |                     | hardstop to prevent overpress | -100% auto VM                     |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     | overpress                     | inspection in                     |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               | packaging process                 |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      |         |                  |                     |                               | (4)                               |      |       |                   |                   |                 |   |          |   |   |   |
|              |                   |                    |      | •       | 1                |                     |                               | N /                               |      |       | i l               |                   |                 |   |          |   |   |   |

| Item:        | Burn In/Final Tes |                 | 11.  | 17   | LIAILUN                                           |           | WIODE AI                       | DEFFEC                |     |      |             | 83MCT00018A/A     | v               | _    |      |   |          | _ |
|--------------|-------------------|-----------------|------|------|---------------------------------------------------|-----------|--------------------------------|-----------------------|-----|------|-------------|-------------------|-----------------|------|------|---|----------|---|
|              |                   | _x_ Process     |      |      |                                                   | -         |                                | Company (             |     |      |             | Freescale, TJN-FN |                 |      |      |   |          | _ |
| Prepared By: |                   |                 |      |      |                                                   |           |                                | company,              | 010 | ар,ы | FMEA Date:  |                   | (Orig.)         |      |      |   |          | _ |
|              |                   | T2 Hu.Peter Zha | ang. | Dong | Gao.Liang Yans                                    | .W        | ei Chen.HONGZE                 | HI REN,LINGXUA        | N/  | XU.S |             |                   | (Rev.)          |      |      |   |          |   |
|              |                   | .,              | - 6, |      | <del>, , , , , , , , , , , , , , , , , , , </del> | <i>37</i> | <u> </u>                       | -                     |     | - ,  | .,          |                   | . ( )           |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           |                                |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           |                                |                       |     |      |             |                   | Action I        | Resi | ılts |   |          | _ |
| Process      | Potential Failure | Potential       | S    | С    | Potential                                         | О         | Current Design/                | Current Design/       | D   | R    | Recommended | Responsibility &  | Actions Taken & | S    | О    | D | I        | R |
| Function/    | Mode              | Effect(s) of    | Е    | 1    | Cause(s)/                                         | C         | Process Controls               | Process Controls      | Е   | P    | Action(s)   | Target            | Effective Date  | Е    | C    | Е | ]        |   |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)                                      | C         | Prevention                     | Detection             | Т   | N    |             | Completion Date   |                 | V    | С    | Т | 1        | N |
| _            |                   |                 |      | s    | of Failue                                         |           |                                |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      | s    |                                                   |           |                                |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 | 8    |      | Unit misplaced in                                 | 2         | Handler buyoff                 | -In-process           |     | 64   | None        |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      | tray at output                                    |           | after PM and                   | sampling check (8)    |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      | handler                                           |           | conversion                     | -100% auto VM         |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | sort xyz alignment             | inspection in         |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | jig                            | packaging process (4) |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           |                                | (4)                   |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 | 8    |      | FM on substrate                                   | 1         | 1. Use hanging                 | -In-process           | 4   | 32   | None        |                   |                 |      |      |   | ┢        | _ |
|              |                   |                 |      |      | I IVI on substrate                                | 1         | nest with mold                 | sampling check (8)    |     | -    |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | guided &                       | -100% auto VM         |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | chamfered design.              | inspection in         |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | 2. Auto-defrost for            | packaging process     |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | J750                           | (4)                   |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | 3. Periodical                  |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | handler cleaning 4. Boat clean |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | during conversion              |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | during conversion              |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           |                                |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 | 8    |      | - Operator handles                                | 2         | - Certify operators'           | -In-process           | 4   | 64   | None        |                   |                 |      |      |   | $\vdash$ | _ |
|              |                   |                 |      |      | material                                          |           | operation skill and            | sampling check (8)    |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      | manually.                                         |           | yearly exam to                 | -100% auto VM         |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | check                          | inspection in         |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | - Treat manual                 | packaging process     |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | operated material              | (4)                   |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   |           | as VM reject and               |                       |     |      |             |                   |                 |      |      |   |          |   |
|              |                   |                 |      |      |                                                   | 1         | scrap.                         |                       |     |      |             |                   |                 |      |      |   |          |   |

|              |                   |                            | 11.  | IAI  | LFAILUK            | Ŀ   | MODE AN                 | DEFFEC                          |      |       |                   | ` /               |                |      |      |   |    |
|--------------|-------------------|----------------------------|------|------|--------------------|-----|-------------------------|---------------------------------|------|-------|-------------------|-------------------|----------------|------|------|---|----|
|              | Burn In/Final Te  |                            |      |      |                    |     |                         |                                 |      |       |                   | 83MCT00018A/A     |                |      |      |   |    |
|              |                   | _x_ Process                |      |      |                    |     |                         | Company,                        | Gro  | up,Si |                   | Freescale, TJN-FM |                |      |      |   |    |
| Prepared By: |                   |                            |      |      |                    |     |                         |                                 |      |       | FMEA Date:        |                   | (Orig.)        |      |      |   |    |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha           | ang, | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZE          | II REN,LINGXUA                  | AN 2 | XU,S  | Sinbad Liu,Peng L | 06-Sep-13         | (Rev.)         |      |      |   |    |
|              |                   |                            |      |      |                    |     |                         |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     |                         |                                 |      |       |                   |                   | Action F       | 2001 | ılta |   |    |
| Process      | Potential Failure | Potential                  | S    | С    | Potential          | Ω   | Current Design/         | Current Design/                 | D    | R     | Recommended       | Responsibility &  |                |      |      | D | p  |
| Function/    | Mode              | Effect(s) of               | E    |      | Cause(s)/          |     |                         | Process Controls                |      | P     | Action(s)         | Target            | Effective Date | E    | C    |   |    |
| Requirements | Wiode             | Failure                    | V    | a    | Mechanism(s)       | C   |                         | Detection                       | Т    | N     | 7 tetion(s)       | Completion Date   |                | V    | C    | T | N  |
| Requirements |                   | ranare                     |      | S    | of Failue          |     | Trevention              | Detection                       | •    | 11    |                   | Completion Date   |                | '    |      | 1 | 11 |
|              |                   |                            |      | s    | or runae           |     |                         |                                 |      |       |                   |                   |                |      |      |   |    |
|              | Crack/chip        | - Reliability              | 8    |      | -Wrong handler     | 1   | -Hard stopper           | -In-process                     | 2    | 16    | None              |                   |                |      |      |   |    |
|              | r                 | failure (8)                |      |      | adjustment         |     | configuration           | sampling check (8)              |      |       |                   |                   |                |      |      |   |    |
|              |                   | -Electrical failure        |      |      |                    |     |                         | -Hard stopper auto              |      |       |                   |                   |                |      |      |   |    |
|              |                   | (8)                        |      |      |                    |     |                         | alarm (2)                       |      |       |                   |                   |                |      |      |   |    |
|              |                   | -Visual mechanical failure |      |      |                    |     |                         |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   | (6)                        |      |      |                    |     |                         |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   | (0)                        | Q    |      | -Incorrect bushing | 1   | -Hard stopper           | -In-process                     | 2    | 16    | None              |                   |                |      |      |   |    |
|              |                   |                            | 0    |      | on L/B             | 1   | configuration           | sampling check (8)              | _    | 10    | None              |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     |                         | -Hard stopper auto              |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     |                         | alarm (2)                       |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     |                         |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            | 8    |      | - Operator handles | 2   | - Certify operators'    | 7 0 1                           | 4    | 64    | None              |                   |                |      |      |   |    |
|              |                   |                            |      |      | material manually  |     | operation skill and     |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      | in tray.           |     | yearly exam to<br>check | -100% auto VM                   |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     |                         | inspection in packaging process |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     |                         | (4)                             |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     | as VM reject and        |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     | scrap.                  |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     | - Put a empty tray      |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     | on the top before       |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     | move out material       |                                 |      |       |                   |                   |                |      |      |   |    |
|              |                   |                            |      |      |                    |     | from machine            |                                 |      |       |                   |                   |                |      |      |   |    |

|              |                           |                              | ` _  |      |                            |     | 111022111                      | E EITE C                                | _ ~  |       | 11121818          | (111111)          |                |   |   |   |   |
|--------------|---------------------------|------------------------------|------|------|----------------------------|-----|--------------------------------|-----------------------------------------|------|-------|-------------------|-------------------|----------------|---|---|---|---|
|              | Burn In/Final Te          |                              |      |      |                            |     |                                |                                         |      |       |                   | 83MCT00018A/A     |                |   |   |   |   |
|              |                           | _x_ Process                  |      |      |                            |     |                                | Company,                                | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM |                |   |   |   |   |
| Prepared By: |                           |                              |      |      |                            | _   |                                |                                         |      |       | FMEA Date:        |                   | (Orig.)        |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE            | ST2 Hu,Peter Zh              | ang, | Dong | g Gao,Liang Yang           | g,W | ei Chen,HONGZH                 | II REN,LINGXUA                          | AN : | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)         |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                |                                         |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                |                                         |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                | _                                       |      |       |                   |                   | Action R       |   | _ |   |   |
|              | Potential Failure         |                              | S    | С    | Potential                  |     | Current Design/                |                                         | D    | R     |                   |                   |                |   | О | D | R |
| Function/    | Mode                      | Effect(s) of                 | Е    | 1    | Cause(s)/                  |     | Process Controls               |                                         |      | P     | Action(s)         | Target            | Effective Date | Е | C |   | P |
| Requirements |                           | Failure                      | V    | a    | Mechanism(s)               | C   | Prevention                     | Detection                               | T    | N     |                   | Completion Date   |                | V | C | T | N |
|              |                           |                              |      | S    | of Failue                  |     |                                |                                         |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      | S    |                            |     |                                |                                         |      |       |                   |                   |                |   |   |   |   |
|              | Sliver &                  | Short circuit or             | 8    |      | High plating               | 2   | Socket cleaning                | - Yield limit                           | 3    | 48    | None              |                   |                |   |   |   |   |
|              | patchback (non            | leakage (8)                  |      |      | material build up          |     | and replace                    | control in Genesis                      |      |       |                   |                   |                |   |   |   |   |
|              | pogo socket only)         |                              |      |      | at test socket             |     | regularly                      | (3) - SBL limit control                 |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                | (3)                                     |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                | - First 200 units                       |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                | yield check (4)                         |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                | -V/M gate                               |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                | sampling check (8)                      |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                |                                         |      |       |                   |                   |                |   |   |   |   |
|              | Pogo Burr                 | Visual                       | 6    |      | Mechanical                 | 2   | Check for socket               | - V/M gate                              | 5    | 60    | None              |                   |                |   |   |   |   |
|              |                           | Mechanical                   |      |      | Contact offset on          |     | bushing conditions             | sampling check (8)                      |      |       |                   |                   |                |   |   |   |   |
|              |                           | Failure (6)                  |      |      | device lead due            |     | during PM.                     | - First 200 units                       |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      | wear and tear of           |     | Replace socket if              | V/M check (5)                           |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      | test socket pogo           |     | pogo holes found               |                                         |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      | holes                      |     | wear and tear                  |                                         |      |       |                   |                   |                |   |   |   |   |
|              | D 11 1                    | 0.11. 1.22                   | 0    |      |                            |     | D 1 1 DM                       | 37/34                                   | 5    | 10    | None              |                   |                |   |   |   |   |
|              | Damaged lead foot plating | Solderability<br>Failure (8) | 8    |      | test finger<br>deformation | 1   | -Board regular PM - Check Pogo | sampling check (8)                      | 3    | 40    | None              |                   |                |   |   |   |   |
|              | surface                   | ranuic (8)                   |      |      | derormation                |     | pin/socket                     | - First 200 units                       |      |       |                   |                   |                |   |   |   |   |
|              | Surruce                   |                              |      |      |                            |     | befor&after each               | V/M check (5)                           |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     | use                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                |                                         |      |       |                   |                   |                |   |   |   |   |
|              | Foreign Matter On         | Solderability                | 8    |      | Dirt accumulated           | 1   | 1. handler cleaning            | - V/M gate                              | 5    | 40    | None              |                   |                |   |   |   |   |
|              | Lead                      | Failure (8)                  |      |      | in handler boat            |     | during shift start             | sampling check (8)                      |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     | 2. boat clean                  | - First 200 units                       |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     | during conversion              | V/M check (5)                           |      |       |                   |                   |                |   |   |   |   |
|              |                           |                              |      |      |                            |     |                                |                                         |      |       |                   |                   |                |   |   |   |   |

| Prepared By: | Design Liang Yang Peg Tang,ZJ-TES  Potential Failure Mode | _x_ Process  ST2 Hu,Peter Zh  Potential  Effect(s) of | s<br>E |        | g Gao,Liang Yang Potential Cause(s)/ | О | Current Design/                                                                                                                                                                                                                                                                                                                                                                                                                    | II REN,LINGXUA                                                                                                                       | AN D | -  | FMEA Date:<br>Sinbad Liu,Peng I |                 | (Orig.)<br>(Rev.) |   |   | D<br>E |   |
|--------------|-----------------------------------------------------------|-------------------------------------------------------|--------|--------|--------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|----|---------------------------------|-----------------|-------------------|---|---|--------|---|
| Requirements | Wiode                                                     | Failure                                               | V      | a<br>s | Mechanism(s) of Failue               | C |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detection                                                                                                                            | T    | N  | retion(s)                       | Completion Date |                   | V | C | Т      | N |
|              |                                                           |                                                       | 8      | S      | Unit drop out of tray                | 2 | 1. Strap Bin1 tray with cover tray right after testing 2. Unstrap rawstock bundle just before loading to ATU 3. Use CASM/CAIM to cycle ATU and observe for mechanical binding issue during handler PM (ATU issue) 4. Designed tray catcher with loaded spring (ATU issue) 5. Standardize tray latch spring to 0.32mm diameter (ATU issue) 6. Add mounting plate to tighten door sensor (ATU issue) 7. Treat dropped unit as reject | - V/M gate<br>sampling check (8)<br>- First 200 units<br>V/M check (5)<br>-100% auto VM<br>inspection in<br>packaging process<br>(4) | 4    | 64 | None                            |                 |                   |   |   |        |   |

|              |                   |                 | 11   | 1/1. | LIAILUN            | עני | MODE AN            | DEFFEC.                            |      |       |                   | ` '               |                | _ |   |   |   |
|--------------|-------------------|-----------------|------|------|--------------------|-----|--------------------|------------------------------------|------|-------|-------------------|-------------------|----------------|---|---|---|---|
|              | Burn In/Final Te  |                 |      |      |                    |     |                    | ~                                  |      |       |                   | 83MCT00018A/A     |                |   |   |   |   |
| • •          | •                 | _x_ Process     |      |      |                    |     |                    | Company,                           | Gro  | up,Si |                   | Freescale, TJN-FN |                |   |   |   |   |
| Prepared By: |                   |                 |      |      |                    |     |                    |                                    |      |       | FMEA Date:        |                   | (Orig.)        |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zh | ang, | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZH     | II REN,LINGXU                      | AN : | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)         |   |   |   |   |
|              |                   |                 |      |      |                    |     |                    |                                    |      |       |                   |                   |                | _ |   |   |   |
|              |                   |                 |      |      |                    |     |                    |                                    |      |       |                   |                   | =              |   | _ |   |   |
|              | 1                 | 1               |      |      | T                  |     | T                  | T                                  | r    |       | 1                 |                   | Action R       |   |   |   |   |
| Process      | Potential Failure |                 | S    |      | Potential          |     | Current Design/    |                                    |      | R     |                   | Responsibility &  |                |   |   | D |   |
| Function/    | Mode              | Effect(s) of    | Е    | 1    | Cause(s)/          |     | Process Controls   |                                    |      | P     | Action(s)         | Target            | Effective Date | Е | C |   | P |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)       | C   | Prevention         | Detection                          | T    | N     |                   | Completion Date   |                | V | C | T | N |
|              |                   |                 |      | S    | of Failue          |     |                    |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      | S    |                    |     |                    |                                    |      |       |                   |                   |                | Ш |   |   |   |
|              |                   |                 | 8    |      | Usage of fibrous   | 1   | Banned cotton      | - QA shiftly audit                 | 5    | 40    | None              |                   |                |   |   |   |   |
|              |                   |                 |      |      | material at        |     |                    | (8)                                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | production floor   |     | and cloth from     | - V/M gate                         |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      |                    |     | production floor   | sampling check (8)                 |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      |                    |     |                    | - First 200 units<br>V/M check (5) |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      |                    |     |                    | V/WI CHECK (3)                     |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 | 0    | -    | FM stick on pogo   | 2   | Socket cleaning    | - Yield limit                      | 2.   | 48    | None              |                   |                | Н |   |   |   |
|              |                   |                 | ٥    |      | pin                | 3   | and replace if     | control in Genesis                 | 2    | 40    | None              |                   |                |   |   |   |   |
|              |                   |                 |      |      | Pili               |     | necessary          | (3)                                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      |                    |     | necessary          | - SBL limit control                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      |                    |     |                    | (3)                                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 | 8    |      | FM from            | 1   | Top tray cover for | -V/M gate                          | 4    | 32    | None              |                   |                | П |   | Ħ |   |
|              |                   |                 |      |      | incoming/environ   |     | trays during       | sampling check (8)                 |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | ment dropped to    |     | staging period to  | -100% auto VM                      |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | staging trays      |     | prevent FM         | inspection in                      |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | causing FM to      |     |                    | packaging process                  |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | attach to units    |     |                    | (4)                                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | when the trays are |     |                    |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | used.              |     |                    |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      |                    |     |                    |                                    |      |       |                   |                   |                | Ш |   |   |   |
|              | Foreign Matter On | •               | 8    |      | FM from            | 1   | 1 "                |                                    | 6    | 48    | None              |                   |                |   |   |   |   |
|              | Package Body      | Failure (8)     |      |      | incoming/environ   |     |                    | using 3x inspection                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      | ment dropped to    |     |                    | (6)                                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 | 1    |      | staging trays      |     | prevent FM         |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 | 1    |      | causing FM to      |     |                    |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                 |      |      |                    |     |                    |                                    |      |       |                   |                   |                |   |   |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

when the trays are

used.

| Item:        | Burn In/Final Te  | st/Test Backend     |      |      |                  |     |                   |                              | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |     |   |   |
|--------------|-------------------|---------------------|------|------|------------------|-----|-------------------|------------------------------|------|-------|-------------------|-------------------|-----------------|------|-----|---|---|
| Type:        | Design            | _x_ Process         |      |      |                  |     |                   | Company,                     | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |      |     |   |   |
| Prepared By: | Liang Yang        |                     |      |      |                  | _   |                   |                              |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |     |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha    | ing, | Dong | g Gao,Liang Yang | g,W | ei Chen,HONGZH    | II REN,LINGXU                | AN : | XU,S  | inbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | -                            |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   |                              |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   |                              |      |       |                   |                   | Action R        | lesu | lts |   |   |
| Process      | Potential Failure | Potential           | S    | C    | Potential        | О   | Current Design/   | Current Design/              | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | O   | D | R |
| Function/    | Mode              | Effect(s) of        | Е    | 1    | Cause(s)/        | C   | Process Controls  | Process Controls             | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C   |   | P |
| Requirements |                   | Failure             | V    | a    | Mechanism(s)     | C   | Prevention        | Detection                    | Т    | N     |                   | Completion Date   |                 | V    | C   | T | N |
|              |                   |                     |      | s    | of Failue        |     |                   |                              |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      | s    |                  |     |                   |                              |      |       |                   |                   |                 |      |     |   |   |
| Laser mark   | Missing mark      | -customer           | 8    |      | -Laser generator | 1   | -Machine auto     | -First piece part            | 2    | 16    | None              |                   |                 |      |     |   |   |
|              |                   | application failure |      |      | fail             |     | check laser power | verification after           |      |       |                   |                   |                 |      |     |   |   |
|              |                   | - 8                 |      |      |                  |     | before marking.   | marking(4)                   |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | -Machine auto                |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | alarm when power             |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | out of control(2)            |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | -QA Gate(8)                  |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   |                              |      |       |                   |                   |                 |      |     |   |   |
|              | Illegible mark    | Customer            | 8    |      | Inappropriate    | 2   | Machine auto      | -First piece part            | 2    | 32    | None              |                   |                 |      |     |   |   |
|              |                   | application failure |      |      | laser power      |     | check laser power | verification after           |      |       |                   |                   |                 |      |     |   |   |
|              |                   | - 8                 |      |      |                  |     | before marking.   | marking(4) - Machine marking |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | 100% auto scan in            |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | subsequent process           |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | (4)                          |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | -QA visual                   |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | inspection 200               |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | units/lot(8)                 |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | -Machine auto                |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | alarm when laser             |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | power                        |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   | abnormal.(2)                 |      |       |                   |                   |                 |      |     |   |   |
|              |                   |                     |      |      |                  |     |                   |                              |      |       |                   |                   |                 |      |     |   |   |

|              |                   |                     | <b>1</b> T | IA.  | LIAILUN          | 112 | MODE AN        | DEFFEC             |      |       |                   | ` /               |                 |   |   |        |   |
|--------------|-------------------|---------------------|------------|------|------------------|-----|----------------|--------------------|------|-------|-------------------|-------------------|-----------------|---|---|--------|---|
|              | Burn In/Final Te  |                     |            |      |                  |     |                |                    |      |       |                   | 83MCT00018A/A     |                 |   |   |        |   |
|              |                   | _x_ Process         |            |      |                  |     |                | Company,           | Gro  | up,Si |                   | Freescale, TJN-FN |                 |   |   |        |   |
| Prepared By: |                   |                     |            |      |                  |     |                |                    |      |       | FMEA Date:        |                   | (Orig.)         |   |   |        |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha    | ang,       | Dong | g Gao,Liang Yang | g,W | ei Chen,HONGZF | II REN,LINGXUA     | AN 2 | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |   |   |        |   |
|              |                   |                     |            |      |                  |     |                |                    |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                |                    |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                |                    |      |       |                   |                   | Action F        |   |   |        |   |
| Process      | Potential Failure | Potential           | S          |      | Potential        |     |                | Current Design/    |      |       | Recommended       | Responsibility &  | Actions Taken & | S |   |        |   |
| Function/    | Mode              | Effect(s) of        | Ε          | 1    | Cause(s)/        |     |                | Process Controls   | Е    | P     | Action(s)         | Target            | Effective Date  | Е | C | E<br>T | P |
| Requirements |                   | Failure             | V          | a    | Mechanism(s)     | C   | Prevention     | Detection          | T    | N     |                   | Completion Date   |                 | V | C | T      | N |
|              |                   |                     |            | S    | of Failue        |     |                |                    |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            | s    |                  |     |                |                    |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     | 8          |      | Laser generator  | 1   | NA             | -First piece part  | 2    | 16    | None              |                   |                 |   |   |        |   |
|              |                   |                     |            |      | worn out         |     |                | verification after |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | marking(4)         |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | - Machine marking  |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | 100% auto scan in  |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | subsequent process |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | (4)                |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | -QA visual         |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | inspection 200     |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | units/lot(8)       |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | -Machine auto      |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | alarm when laser   |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | power              |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | abnormal.(2)       |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                |                    |      |       |                   |                   |                 |   |   |        |   |
|              | Marking           | Customer            | 8          |      | Location pin     | 1   | NA             | -First piece part  | 4    | 32    | None              |                   |                 |   |   |        |   |
|              | misalignment      | application failure |            |      | damaged          |     |                | verification after |      |       |                   |                   |                 |   |   |        |   |
|              |                   | - 8                 |            |      |                  |     |                | marking(4)         |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | - Machine marking  |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | 100% auto scan in  |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | subsequent process |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | (4)                |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | -QA visual         |      |       |                   |                   |                 |   |   |        |   |
|              |                   |                     |            |      |                  |     |                | inspection 200     |      |       |                   |                   |                 |   |   |        |   |

units/lot(8)

| Item:          | Burn In/Final Te  |                           | 11   | 1/1. | LIAILUN             | <u>. 12</u> | MODE AIV            | DEFFEC                              |     |      |                   | 83MCT00018A/A     | Y               | _ |   |   |   |
|----------------|-------------------|---------------------------|------|------|---------------------|-------------|---------------------|-------------------------------------|-----|------|-------------------|-------------------|-----------------|---|---|---|---|
|                |                   | _x_ Process               |      |      |                     | •           |                     | Company, C                          |     |      |                   | Freescale, TJN-FN |                 |   |   |   |   |
| Prepared By:   |                   |                           |      |      |                     |             |                     | 1 37                                |     | Τ,   | FMEA Date:        |                   | (Orig.)         |   |   |   |   |
|                |                   | ST2 Hu,Peter Zha          | ing, | Don  | g Gao,Liang Yang    | ,W          | ei Chen,HONGZH      | II REN,LINGXUA                      | N Z | XU,S | Sinbad Liu,Peng D |                   | (Rev.)          |   |   |   |   |
|                |                   |                           |      |      |                     |             | ·                   |                                     |     |      |                   | •                 |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     |                                     |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     |                                     |     |      |                   |                   | Action R        |   |   |   |   |
| Process        | Potential Failure | Potential                 | S    | С    | Potential           |             | Current Design/     |                                     |     | R    | Recommended       | Responsibility &  | Actions Taken & | S |   | D | R |
| Function/      | Mode              | Effect(s) of              | Е    | 1    | Cause(s)/           |             |                     | Process Controls                    |     | P    | Action(s)         | Target            | Effective Date  | Е |   |   | P |
| Requirements   |                   | Failure                   | V    | a    | Mechanism(s)        | C           | Prevention          | Detection                           | T   | N    |                   | Completion Date   |                 | V | C | T | N |
|                |                   |                           |      | s    | of Failue           |             |                     |                                     |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      | S    |                     |             |                     |                                     |     |      |                   |                   |                 |   |   |   |   |
|                | Wrong marking     | Customer                  | 8    |      | Marking             | 1           | -Auto load          | -First piece part                   | 4   | 32   | None              |                   |                 |   |   |   |   |
|                |                   | application failure       |      |      | information input   |             | marking             | verification after                  |     |      |                   |                   | j               |   |   |   |   |
|                |                   | - 8                       |      |      | error during        |             | information         | marking(4)                          |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      | manual operation    |             |                     | - Machine marking 100% auto scan in |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     | subsequent process                  |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     | (4)                                 |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     | -QA visual                          |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     | inspection 200                      |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     | units/lot(8)                        |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             |                     |                                     |     |      |                   |                   |                 |   |   |   |   |
| 40x Inspection | Burr&sliver on    | -Visual                   | 8    |      | Shoulder            | 2           | NA                  | -10x V/M gate (8)                   | 2   | 32   | None              |                   |                 |   |   |   |   |
|                | shoulder/riser/   | mechanical failure        |      |      | damaged by BI       |             |                     | - 100% auto vision                  |     |      |                   |                   |                 |   |   |   |   |
|                | lead              | (6)                       |      |      | (failure identified |             |                     | inspection on                       |     |      |                   |                   | j               |   |   |   |   |
|                |                   | -Customer                 |      |      | by KLM)             |             |                     | device (2)                          |     |      |                   |                   |                 |   |   |   |   |
|                |                   | application<br>failure(8) |      |      |                     |             |                     |                                     |     |      |                   |                   |                 |   |   |   |   |
|                | Bend lead &       | -Visual                   | 8    |      | Unit out of pocket  | 2           | Strap the tray      | -V/M gate (8)                       | 2.  | 32   | None              |                   |                 | _ |   |   |   |
|                | coplanarity       | mechanical failure        |      |      | Unit out of pocket  | 2           | whenever moving     | - 100% auto vision                  | 2   | 32   | None              |                   |                 |   |   |   |   |
|                | copianarity       | (6)                       |      |      |                     |             | the material        | inspection on                       |     |      |                   |                   | j               |   |   |   |   |
|                |                   | -Customer                 |      |      |                     |             |                     | device (2)                          |     |      |                   |                   | j               |   |   |   |   |
|                |                   | application               |      |      |                     |             | check tray gap      | ` ,                                 |     |      |                   |                   |                 |   |   |   |   |
|                |                   | failure(8)                |      |      |                     |             | before and after    |                                     |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             | strapping to ensure |                                     |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             | no unit jump out    |                                     |     |      |                   |                   |                 |   |   |   |   |
|                |                   |                           |      |      |                     |             | the pocket          |                                     |     |      |                   |                   |                 |   |   |   |   |
|                |                   | I                         |      | ı    |                     |             | I                   |                                     |     | ı    | I                 |                   |                 |   |   |   |   |

| Type:<br>Prepared By: | Liang Yang        | _x_ Process                                               | ang, | Dong | g Gao,Liang Yang                   | g,W | ei Chen,HONGZF                                                                                                                     | Company,                                                                                                                                | Gro | Contr<br>up,Si | te/Business Unit:<br>FMEA Date: | 83MCT00018A/A<br>Freescale,TJN-FN<br>27-Jun-01 |                 |           |     |   |   |
|-----------------------|-------------------|-----------------------------------------------------------|------|------|------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|---------------------------------|------------------------------------------------|-----------------|-----------|-----|---|---|
|                       |                   |                                                           |      |      |                                    |     |                                                                                                                                    |                                                                                                                                         |     |                |                                 |                                                |                 |           |     |   |   |
|                       |                   |                                                           |      |      |                                    |     |                                                                                                                                    |                                                                                                                                         |     |                |                                 |                                                | Action R        | 0 0 0 1 1 | 140 |   |   |
| Process               | Potential Failure | Potential                                                 | S    | С    | Potential                          | Ω   | Current Design/                                                                                                                    | Current Design/                                                                                                                         | D   | R              | Recommended                     | Desponsibility &                               | Actions Taken & |           | O   | D | R |
| Function/             | Mode Mode         | Effect(s) of                                              | E    | 1    | Cause(s)/                          |     |                                                                                                                                    | Process Controls                                                                                                                        |     | P              | Action(s)                       | Target                                         | Effective Date  | E         | C   |   | P |
| Requirements          | Wiode             | Failure                                                   | V    | a    | Mechanism(s)                       | C   |                                                                                                                                    | Detection                                                                                                                               | T   | N              | 7 tetion(s)                     | Completion Date                                |                 | V         | C   |   | N |
| 1                     |                   |                                                           |      | s    | of Failue                          |     |                                                                                                                                    |                                                                                                                                         |     |                |                                 | r                                              |                 |           |     |   |   |
|                       |                   |                                                           |      | s    |                                    |     |                                                                                                                                    |                                                                                                                                         |     |                |                                 |                                                |                 |           |     |   |   |
|                       |                   |                                                           | 8    |      | Mishandling the unit               | 2   | 1. Strap the tray whenever moving the material 2. Operator to check tray gap before and after strapping to ensure no unit jump out | -V/M gate (8)<br>- 100% auto vision<br>inspection on<br>device (2)                                                                      | 2   | 32             | None                            |                                                |                 |           |     |   |   |
|                       | Wrong orientation |                                                           | 8    |      | Unit replaced in                   | 2   | the pocket  Pin1 reverification                                                                                                    | -V/M gate                                                                                                                               | 1   | 16             | None                            |                                                |                 |           |     |   |   |
|                       | Mixed product     | application failure (8)                                   |      |      | misorientated form                 | 2   | after unit replacement                                                                                                             | sampling check (8) -Vision system auto detect and alarm (2) -Auto-Pin 1 locate system by vision(1) -Pin1 bar setting for tray locate(1) | 2   | 22             | Nana                            |                                                |                 |           |     |   |   |
|                       | Mixed product     | -Electrical failure<br>(8)<br>-Reliability failure<br>(8) |      |      | Stray units at<br>inspection table | 12  |                                                                                                                                    | -V/M gate<br>sampling check (8)<br>-Count quantity<br>per shop order (6)<br>- Vision 100%<br>inspection (2)                             | 2   | 32             | None                            |                                                |                 |           |     |   |   |

|                |                    |                    | 1 T  | IA.  | LFAILUN             | ır  | MODE AN            | DEFFEC                       |      |       |                   | ,                 |                 | <i>U</i> - |   |     |   |
|----------------|--------------------|--------------------|------|------|---------------------|-----|--------------------|------------------------------|------|-------|-------------------|-------------------|-----------------|------------|---|-----|---|
|                | : Burn In/Final Te |                    |      |      |                     | -   |                    | _                            |      |       |                   | 83MCT00018A/A     |                 |            |   |     |   |
| • •            | : Design           | _x_ Process        |      |      |                     |     |                    | Company,                     | Gro  | up,Si |                   | Freescale, TJN-FN |                 |            |   |     |   |
|                | : Liang Yang       |                    |      |      |                     | -   |                    |                              |      |       | FMEA Date:        |                   | (Orig.)         |            |   |     |   |
| Core Team      | : Peg Tang,ZJ-TE   | ST2 Hu,Peter Zha   | ang, | Dong | g Gao,Liang Yang    | g,W | ei Chen,HONGZI     | II REN,LINGXU <i>A</i>       | AN . | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    |                              |      |       |                   |                   |                 |            |   |     | _ |
|                |                    |                    |      |      |                     |     |                    |                              |      |       |                   |                   | =               |            | _ |     |   |
|                | T                  | T =                | _    | -    | T =                 |     | T                  | T =                          |      |       | T =               |                   | Action R        |            |   |     | _ |
| Process        | Potential Failure  |                    | S    |      | Potential           |     | Current Design/    |                              |      | R     |                   |                   | Actions Taken & |            |   | D   |   |
| Function/      | Mode               | Effect(s) of       | Е    | 1    | Cause(s)/           |     | Process Controls   |                              |      | P     | Action(s)         | Target            | Effective Date  | Е          | C | E   | P |
| Requirements   |                    | Failure            | V    | a    | Mechanism(s)        | C   | Prevention         | Detection                    | T    | N     |                   | Completion Date   |                 | V          | C | T   | N |
|                |                    |                    |      | S    | of Failue           |     |                    |                              |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      | S    |                     |     |                    |                              |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    | 8    |      | Swap Shop order     | 2   | Process 1 lot at a | -System record the           | 2    | 32    | None              |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     | time               | marking teach                |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | history in test              |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | summary, operator 100% check |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | summary(4)                   |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | -System auto check           |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | and judge if                 |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | marking is correct           |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | or not after key in          |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | the actual marking           |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | (2)                          |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | 100% vision                  |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | inspection                   |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    |                              |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    |                              |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    | 8    |      | Swap bundle         | 2   | Process 1 lot at a | 1. Lot no                    | 2    | 32    | None              |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     | time               | verification on              |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | barcode label vs             |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | TSO (3)                      |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | 2. 100% vision               |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | scanning (2)                 |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | 3. QA VM Gate                |      |       |                   |                   |                 |            |   |     |   |
|                |                    |                    |      |      |                     |     |                    | (8)                          |      |       |                   |                   |                 |            |   |     |   |
| 10x Inspection | Burr&sliver on     | -Visual            | 8    |      | Shoulder            | 2   | NA                 | 6                            | 2    | 32    | None              |                   |                 |            |   |     |   |
|                | shoulder/riser/    | mechanical failure |      |      | damaged by BI       |     |                    | - 100% auto vision           |      |       |                   |                   |                 |            |   |     |   |
|                | lead               | (6)                | I    | 1    | (failure identified |     |                    | inspection on                |      | 1     | 1                 |                   | 1               |            |   | - 1 |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

device (2)

-Customer

application failure(8)

by KLM)

|              |                   | 10121              | <u> </u> |       |                    |     | 111022111                    | ELLEG                       | _ ~  |       | 11121010          | (2 1/123/2)       |                 |          |      |   |   |
|--------------|-------------------|--------------------|----------|-------|--------------------|-----|------------------------------|-----------------------------|------|-------|-------------------|-------------------|-----------------|----------|------|---|---|
| Item:        | Burn In/Final Te  | st/Test Backend    |          |       |                    |     |                              |                             | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |          |      |   |   |
| Type:        | Design            | _x_ Process        |          |       |                    |     |                              | Company,                    | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | 1               |          |      |   |   |
| Prepared By: | Liang Yang        |                    |          |       |                    |     |                              |                             |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |          |      |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zh    | ang,     | ,Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZH               | II REN,LINGXU <i>A</i>      | AN 2 | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              | •                           |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              |                             |      |       |                   |                   | Action F        | lesv     | ılts |   |   |
| Process      | Potential Failure | Potential          | S        | C     | Potential          | О   | Current Design/              | Current Design/             | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S        | О    | D | R |
| Function/    | Mode              | Effect(s) of       | Е        | 1     | Cause(s)/          | C   | Process Controls             | Process Controls            | Е    | P     | Action(s)         | Target            | Effective Date  | Е        | C    | Е | P |
| Requirements |                   | Failure            | V        | a     | Mechanism(s)       | C   | Prevention                   | Detection                   | T    | N     |                   | Completion Date   |                 | V        | C    | T | N |
|              |                   |                    |          | S     | of Failue          |     |                              |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          | s     |                    |     |                              |                             |      |       |                   |                   |                 |          |      |   |   |
|              | Bend lead &       | -Visual            | 8        |       | Unit out of pocket | 2   | 1. Strap the tray            | -V/M gate (8)               | 2    | 32    | None              |                   |                 | П        |      |   |   |
|              | coplanarity       | mechanical failure | ;        |       |                    |     | whenever moving              | - 100% auto vision          |      |       |                   |                   |                 |          |      |   |   |
|              |                   | (6)                |          |       |                    |     |                              | inspection on               |      |       |                   |                   |                 |          |      |   |   |
|              |                   | -Customer          |          |       |                    |     |                              | device (2)                  |      |       |                   |                   |                 |          |      |   |   |
|              |                   | application        |          |       |                    |     | check tray gap               |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   | failure(8)         |          |       |                    |     | before and after             |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     | strapping to ensure          |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     | no unit jump out the pocket  |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     | the pocket                   |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              |                             |      |       |                   |                   |                 | $\sqcup$ |      |   |   |
|              |                   |                    | 8        |       | Mishandling the    | 2   | 1. Strap the tray            | 17111 gate (6)              | 2    | 32    | None              |                   |                 |          |      |   |   |
|              |                   |                    |          |       | unit               |     | whenever moving the material | - 100% auto vision          |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              | inspection on<br>device (2) |      |       |                   |                   |                 | , 1      |      |   |   |
|              |                   |                    |          |       |                    |     | check tray gap               | device (2)                  |      |       |                   |                   |                 | , 1      |      |   |   |
|              |                   |                    |          |       |                    |     | before and after             |                             |      |       |                   |                   |                 | , 1      |      |   |   |
|              |                   |                    |          |       |                    |     | strapping to ensure          |                             |      |       |                   |                   |                 | , 1      |      |   |   |
|              |                   |                    |          |       |                    |     | no unit jump out             |                             |      |       |                   |                   |                 | , 1      |      |   |   |
|              |                   |                    |          |       |                    |     | the pocket                   |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              |                             |      |       |                   |                   |                 |          |      |   |   |
|              |                   |                    |          |       |                    |     |                              |                             |      |       |                   |                   |                 |          |      |   |   |

|              |                   | 10121                   | 1 - 2 |      |                                |     |                                | D EITE                            | _ ~  | 1 - 1 | WILD I DID        | (= 1,111)         |                 |      |      |   |   |
|--------------|-------------------|-------------------------|-------|------|--------------------------------|-----|--------------------------------|-----------------------------------|------|-------|-------------------|-------------------|-----------------|------|------|---|---|
| Item:        | Burn In/Final Te  | st/Test Backend         |       |      |                                |     |                                |                                   | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | Υ               |      |      |   |   |
| Type:        | Design            | _x_ Process             |       |      |                                |     |                                | Company,                          | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |      |      |   |   |
| Prepared By: | Liang Yang        |                         |       |      |                                |     |                                |                                   |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha        | ang,I | Dong | g Gao,Liang Yang               | g,W | ei Chen,HONGZF                 | II REN,LINGXU                     | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | •                                 |      |       |                   |                   | •               |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                |                                   |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                |                                   |      |       |                   |                   | Action F        | Resu | ılts |   |   |
| Process      | Potential Failure | Potential               | S     | С    | Potential                      | О   | Current Design/                | Current Design/                   | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | O    | D | R |
| Function/    | Mode              | Effect(s) of            | Е     | 1    | Cause(s)/                      | C   | Process Controls               | Process Controls                  | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    | E | P |
| Requirements |                   | Failure                 | V     | a    | Mechanism(s)                   | C   | Prevention                     | Detection                         | T    | N     |                   | Completion Date   |                 | V    | C    | T | N |
|              |                   |                         |       | S    | of Failue                      |     |                                |                                   |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       | S    |                                |     |                                |                                   |      |       |                   |                   |                 |      |      |   |   |
|              | Wrong orientation |                         | 8     |      | Unit replaced in misorientated | 2   | Pin1 reverification after unit | -V/M gate                         | 1    | 16    | None              |                   |                 | П    |      |   |   |
|              |                   | application failure (8) |       |      | form                           |     | replacement                    | sampling check (8) -Vision system |      |       |                   |                   |                 |      |      |   |   |
|              |                   | (6)                     |       |      | TOTH                           |     | replacement                    | auto detect and                   |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | alarm (2)                         |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | -Auto-Pin 1 locate                |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | system by                         |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | vision(1)                         |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | -Pin1 bar setting                 |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | for tray locate(1)                |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                |                                   |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                |                                   |      |       |                   |                   |                 |      |      |   |   |
|              | Mixed product     | -Electrical failure     | 8     |      | Stray units at                 | 2   | Clear work station             | -V/M gate                         | 2    | 32    | None              |                   |                 |      |      |   |   |
|              |                   | (8)                     |       |      | inspection table               |     |                                | sampling check (8)                |      |       |                   |                   |                 |      |      |   |   |
|              |                   | -Reliability failure    |       |      |                                |     | lot.                           | -Count quantity                   |      |       |                   |                   |                 | 1 1  |      |   |   |
|              |                   | (8)                     |       |      |                                |     |                                | per shop order (6)                |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | - Vision 100%                     |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                         |       |      |                                |     |                                | inspection (2)                    |      |       |                   |                   |                 |      |      |   |   |
|              | I                 | I                       | 1 1   |      | ĺ                              |     | I                              | I                                 | 1    |       | 1                 |                   | 1               | 1    |      |   |   |

|              | Item: Burn In/Final Test/Test Backend  Control Number/Issue: 83MCT00018A/AY |                      |      |      |                                      |                                                       |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|--------------|-----------------------------------------------------------------------------|----------------------|------|------|--------------------------------------|-------------------------------------------------------|--------------------|----------------------------------|------|------|------------------|-----------------|-----------------|---|----|----|---|--|--|
|              |                                                                             |                      |      |      | Control Number/Issue: 83MCT00018A/AY |                                                       |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|              | Design                                                                      | _x_ Process          |      |      |                                      | Company, Group, Site/Business Unit: Freescale, TJN-FM |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
| Prepared By: |                                                                             | ama ** =             |      | _    | ~                                    |                                                       |                    |                                  |      |      | FMEA Date:       |                 | (Orig.)         |   |    |    |   |  |  |
| Core Team:   | Peg Tang,ZJ-TE                                                              | ST2 Hu,Peter Zh      | ang, | Dong | g Gao,Liang Yang                     | g,W                                                   | ei Chen,HONGZF     | II REN,LINGXUA                   | AN . | XU,S | inbad Liu,Peng E | 06-Sep-13       | (Rev.)          |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    |                                  |      |      |                  |                 | A .: T          |   | 1. |    |   |  |  |
|              | B                                                                           | <b>.</b>             | I a  |      | T 5                                  | _                                                     | [ a . p /          | G . B /                          | _    | I 5  | ъ                | D 11 11 0       | Action R        |   |    | ъ. | ъ |  |  |
| Process      | Potential Failure                                                           |                      | S    | C    | Potential                            |                                                       | Current Design/    |                                  | D    | R    |                  |                 | Actions Taken & |   |    | D  | R |  |  |
| Function/    | Mode                                                                        | Effect(s) of         | Е    | 1    | Cause(s)/                            |                                                       |                    | Process Controls                 |      | P    | Action(s)        | Target          | Effective Date  | Е |    | Е  |   |  |  |
| Requirements |                                                                             | Failure              | V    | a    | Mechanism(s)                         | C                                                     | Prevention         | Detection                        | T    | N    |                  | Completion Date |                 | V | C  | T  | N |  |  |
|              |                                                                             |                      |      | S    | of Failue                            |                                                       |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      | S    |                                      |                                                       |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      | 8    |      | Swap Shop order                      | 2                                                     | Process 1 lot at a | -System record the               | 2    | 32   | None             |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       | time               | marking teach<br>history in test |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | summary, operator                |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | 100% check                       |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | summary(4)                       |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | -System auto check               |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | and judge if                     |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | marking is correct               |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | or not after key in              |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | the actual marking               |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | (2)                              |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | 100% vision                      |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | inspection                       |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    |                                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      | 8    |      | Swap bundle                          | 2                                                     | Process 1 lot at a | 1. Lot no                        | 2    | 32   | None             |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      | 1                                    |                                                       | time               | verification on                  |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | barcode label vs                 |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | TSO (3)                          |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | 2. 100% vision                   |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | scanning (2)                     |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | 3. QA VM Gate                    |      |      |                  |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       |                    | (8)                              |      |      |                  |                 |                 |   |    |    |   |  |  |
| Bake         | Mixed product                                                               | -Electrical failure  | 8    |      | -Operator handles                    | 3                                                     | -Ensure only one   | -Count the quantity              | 4    | 96   | Using bakeable   | HONGZHI REN     |                 |   |    |    |   |  |  |
|              |                                                                             | (8)                  |      |      | the wrong device                     |                                                       | lot in work table  | for tube                         |      |      | tube to avoid    | B06298/04-30-   |                 |   |    |    |   |  |  |
|              |                                                                             | -Reliability failure | :    |      | without check                        |                                                       | for tube package.  | package(6)                       |      |      | mistake during   | 2014            |                 |   |    |    |   |  |  |
|              |                                                                             | (8)                  |      |      | marking                              |                                                       | - Verify lot       | -100% auto vision                |      |      | tube to tube     |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       | number/ magazine   | inspection in                    |      |      | process          |                 |                 |   |    |    |   |  |  |
|              |                                                                             |                      |      |      |                                      |                                                       | number vs. shop    | subsequence                      |      |      | SEV=8, OCC=1,    |                 |                 |   |    |    |   |  |  |
|              |                                                                             | ĺ                    | 1    |      | ĺ                                    |                                                       | order              | process (4)                      |      | I    | DET=4, RPN=32    |                 |                 |   |    |    |   |  |  |

|                 |                   | TOTE                                  | <b>1</b> T | 17.  | LIAILUN             | THE WOODE AND EFFECTS ANALISIS (FINEA)                |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |
|-----------------|-------------------|---------------------------------------|------------|------|---------------------|-------------------------------------------------------|---------------------------------------|------------------------|------|------|------------------|------------------|-----------------|------|-----|---|---|--|
| Item:           | Burn In/Final Te  | st/Test Backend                       |            |      |                     | Control Number/Issue: 83MCT00018A/AY                  |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |
| Type:           | Design            | _x_ Process                           |            |      |                     | Company, Group, Site/Business Unit: Freescale, TJN-FM |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |
| Prepared By:    | Liang Yang        |                                       |            |      |                     |                                                       |                                       |                        |      |      | FMEA Date:       | 27-Jun-01        | (Orig.)         |      |     |   |   |  |
|                 |                   | ST2 Hu,Peter Zha                      | ang,       | Dong | g Gao,Liang Yang    | g,W                                                   | ei Chen,HONGZF                        | II REN,LINGXU <i>A</i> | AN 2 | XU,S | inbad Liu,Peng I |                  | (Rev.)          |      |     |   |   |  |
|                 |                   | · · · · · · · · · · · · · · · · · · · |            | ,    |                     |                                                       | · · · · · · · · · · · · · · · · · · · | •                      |      |      | , ,              | •                | r Š             |      |     |   |   |  |
|                 |                   |                                       |            |      |                     |                                                       |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      |                     |                                                       |                                       |                        |      |      |                  |                  | Action R        | Resu | lts |   |   |  |
| Process         | Potential Failure | Potential                             | S          | С    | Potential           | О                                                     | Current Design/                       | Current Design/        | D    | R    | Recommended      | Responsibility & | Actions Taken & | S    | 0   | D | R |  |
| Function/       | Mode              | Effect(s) of                          | Ε          | 1    | Cause(s)/           | С                                                     | Process Controls                      | Process Controls       | Е    | P    | Action(s)        | Target           | Effective Date  | Е    |     | Е | P |  |
| Requirements    |                   | Failure                               | V          | a    | Mechanism(s)        | С                                                     |                                       | Detection              | Т    | N    |                  | Completion Date  |                 | V    |     | Т |   |  |
| 1               |                   |                                       |            | s    | of Failue           |                                                       |                                       |                        |      |      |                  | •                |                 |      |     |   |   |  |
|                 |                   |                                       |            | s    |                     |                                                       |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |
|                 | Miss bake         | -Reliability failure                  | 8          | _    | -Operator forgets   | 2.                                                    | -Follow TSO and                       | -Genesis system        | 2    | 32   | None             |                  |                 |      |     |   |   |  |
|                 | 171100 Ount       | (8)                                   |            |      | to do bake step     | Ī                                                     | SFC instruction                       | control (2)            | _    | -    | 1,0110           |                  |                 |      |     |   |   |  |
|                 |                   | (-)                                   |            |      | and transfer the    |                                                       |                                       | -Buddy check (7)       |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      | material to the     |                                                       |                                       | •                      |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      | next step.          |                                                       |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      |                     |                                                       |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       | 8          |      | -Place pre-bake     | 2                                                     | -Different                            | -Genesis system        | 2    | 32   | None             |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      | units into post-    |                                                       | requirement lot                       | control (2)            |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      | bake units          |                                                       | stock in different                    | ` ´                    |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      |                     |                                                       | area                                  |                        |      |      |                  |                  |                 |      |     |   |   |  |
|                 | Time/Temperature  | -Customer                             | 8          |      | -Wrong time and     | 1                                                     | -Fix timer and                        | -Auto check            | 2    | 16   | None             |                  |                 |      |     |   |   |  |
|                 | incompetent       | application failure                   |            |      | temperature         |                                                       | temperature                           | system alarm(2)        |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   | (8)                                   |            |      |                     |                                                       | controller to auto-                   |                        |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      |                     |                                                       | monitor                               |                        |      |      |                  |                  |                 |      |     |   |   |  |
| Dry air storage | Moisture out of   | - Delamination                        | 8          |      | - Dry air           | 1                                                     | N/A                                   | - Flow meter check     | 6    | 48   | None             |                  |                 |      |     |   |   |  |
|                 | control           | issue (8)                             |            |      | barometric          |                                                       |                                       | per setup checklist    |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   | -Customer                             |            |      | pressure low        |                                                       |                                       | (6)                    |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   | application failure                   |            |      |                     |                                                       |                                       | - HIC monitor /        |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   | (8)                                   |            |      |                     |                                                       |                                       | open the Dry air       |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   |                                       |            |      |                     |                                                       |                                       | cabinet (6)            |      |      |                  |                  |                 |      |     |   |   |  |
|                 | Miss Dry air      | - Delamination                        | 8          |      | -Operator forgets   | 2                                                     | -Follow SFC                           | (, )                   | 2    | 32   | None             |                  |                 |      |     | Ī |   |  |
|                 | storage           | issue (8)                             |            |      | to put the lot into |                                                       | instruction.                          | -Genesis system        |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   | -Customer                             |            |      | the Dry air         |                                                       |                                       | control (2)            |      |      |                  |                  |                 |      |     |   |   |  |
|                 |                   | application failure                   |            |      | cabinet             |                                                       |                                       |                        |      |      |                  |                  |                 |      |     |   |   |  |

|               |                   |                    |      |      |                    |                                      |                              |                          |                   |      |                   | ,                |                 |                |   |   |   |  |  |  |  |
|---------------|-------------------|--------------------|------|------|--------------------|--------------------------------------|------------------------------|--------------------------|-------------------|------|-------------------|------------------|-----------------|----------------|---|---|---|--|--|--|--|
| Item:         | Burn In/Final Te  | st/Test Backend    |      |      |                    | Control Number/Issue: 83MCT00018A/AY |                              |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
| Type:         | Design            |                    |      |      | Company,           | Gro                                  | up,Si                        | te/Business Unit:        | Freescale, TJN-FN | 1    |                   |                  |                 |                |   |   |   |  |  |  |  |
| Prepared By:  | Liang Yang        |                    |      |      |                    |                                      |                              |                          |                   |      | FMEA Date:        | 27-Jun-01        | (Orig.)         |                |   |   |   |  |  |  |  |
| Core Team:    | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zha   | ang, | Dong | g Gao,Liang Yang   | ,W                                   | ei Chen,HONGZE               | II REN,LINGXU            | AN :              | XU,S | Sinbad Liu,Peng D | 06-Sep-13        | (Rev.)          |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | ·                            | •                        |                   |      |                   | •                |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      |                              |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      |                              |                          |                   |      |                   |                  |                 | Action Results |   |   |   |  |  |  |  |
| Process       | Potential Failure | Potential          | S    | С    | Potential          | О                                    | Current Design/              | Current Design/          | D                 | R    | Recommended       | Responsibility & | Actions Taken & | S              | О | D | R |  |  |  |  |
| Function/     | Mode              | Effect(s) of       | Е    | 1    | Cause(s)/          | C                                    | Process Controls             | Process Controls         | Е                 | P    | Action(s)         | Target           | Effective Date  | Е              | C | Е | P |  |  |  |  |
| Requirements  |                   | Failure            | V    | a    | Mechanism(s)       | С                                    | Prevention                   | Detection                | Т                 | N    |                   | Completion Date  |                 | V              |   | T | N |  |  |  |  |
| •             |                   |                    |      | s    | of Failue          |                                      |                              |                          |                   |      |                   | •                |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      | s    |                    |                                      |                              |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
| 3x inspection | Bend lead &       | -Visual            | 8    |      | Unit out of pocket | 2                                    | 1. Strap the tray            | -V/M gate (8)            | 2                 | 32   | None              |                  |                 |                | 1 |   |   |  |  |  |  |
| 1             | coplanarity       | mechanical failure |      |      | 1                  |                                      | whenever moving              | - 100% auto vision       |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   | (6)                |      |      |                    |                                      | the material                 | inspection on            |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   | -Customer          |      |      |                    |                                      | 1                            | device (2)               |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   | application        |      |      |                    |                                      | check tray gap               |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   | failure(8)         |      |      |                    |                                      | before and after             |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | strapping to ensure          |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | no unit jump out             |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | the pocket                   |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      |                              |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      |                              |                          |                   |      |                   |                  |                 |                | _ |   |   |  |  |  |  |
|               |                   |                    | 8    |      | Mishandling the    | 2                                    | 1. Strap the tray            | -V/M gate (8)            | 2                 | 32   | None              |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      | unit               |                                      | whenever moving the material | - 100% auto vision       |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      |                              | inspection on device (2) |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | check tray gap               | device (2)               |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | before and after             |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | strapping to ensure          |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | no unit jump out             |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      | the pocket                   |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               |                   |                    |      |      |                    |                                      |                              |                          |                   |      |                   |                  |                 |                |   |   |   |  |  |  |  |
|               | ĺ                 | I                  |      |      | 1                  |                                      | ĺ                            |                          |                   |      |                   |                  | , 1             |                |   |   |   |  |  |  |  |

|              |                   | 10121                | 1 -  |      |                  |                                                       |                     | D EITEU                      | _ ~  | 1 11 | WILE I DID        | (= 1,111)        |                 |   |   |   |   |  |  |
|--------------|-------------------|----------------------|------|------|------------------|-------------------------------------------------------|---------------------|------------------------------|------|------|-------------------|------------------|-----------------|---|---|---|---|--|--|
| Item:        | Burn In/Final Te  | st/Test Backend      |      |      |                  | Control Number/Issue: 83MCT00018A/AY                  |                     |                              |      |      |                   |                  |                 |   |   |   |   |  |  |
| Type:        | Design            | _x_ Process          |      |      |                  | Company, Group, Site/Business Unit: Freescale, TJN-FM |                     |                              |      |      |                   |                  |                 |   |   |   |   |  |  |
| Prepared By: |                   |                      |      |      |                  |                                                       |                     |                              |      |      | FMEA Date:        |                  | (Orig.)         |   |   |   |   |  |  |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | Dong | g Gao,Liang Yang | g,W                                                   | ei Chen,HONGZH      | II REN,LINGXU                | AN : | XU,S | Sinbad Liu,Peng D | 06-Sep-13        | (Rev.)          |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | •                            |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     |                              |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     |                              |      |      |                   |                  | Action Results  |   |   |   |   |  |  |
| Process      | Potential Failure | Potential            | S    | C    | Potential        | О                                                     | Current Design/     | Current Design/              | D    | R    | Recommended       | Responsibility & | Actions Taken & | S | O | D | R |  |  |
| Function/    | Mode              | Effect(s) of         | Е    | 1    | Cause(s)/        | C                                                     | Process Controls    | Process Controls             | Е    | P    | Action(s)         | Target           | Effective Date  | Е |   |   | P |  |  |
| Requirements |                   | Failure              | V    | a    | Mechanism(s)     | C                                                     | Prevention          | Detection                    | T    | N    |                   | Completion Date  |                 | V | C | T | N |  |  |
|              |                   |                      |      | s    | of Failue        |                                                       |                     |                              |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      | s    |                  |                                                       |                     |                              |      |      |                   |                  |                 |   |   |   |   |  |  |
|              | Wrong orientation | -Customer            | 8    |      | Unit replaced in | 2                                                     | Pin1 reverification | -V/M gate                    | 1    | 16   | None              |                  |                 | П |   |   |   |  |  |
|              |                   | application failure  |      |      | misorientated    |                                                       | after unit          | sampling check (8)           |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   | (8)                  |      |      | form             |                                                       | replacement         | -Vision system               |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | auto detect and              |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | alarm (2)                    |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | -Auto-Pin 1 locate system by |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | vision(1)                    |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | -Pin1 bar setting            |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | for tray locate(1)           |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | , , ,                        |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     |                              |      |      |                   |                  |                 |   |   |   |   |  |  |
|              | Mixed product     | -Electrical failure  | 8    |      | Stray units at   | 2                                                     | Clear work station  | -V/M gate                    | 2    | 32   | None              |                  |                 | П |   |   |   |  |  |
|              | •                 | (8)                  |      |      | inspection table |                                                       |                     | sampling check (8)           |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   | -Reliability failure |      |      |                  |                                                       | lot.                | -Count quantity              |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   | (8)                  |      |      |                  |                                                       |                     | per shop order (6)           |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | - Vision 100%                |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     | inspection (2)               |      |      |                   |                  |                 |   |   |   |   |  |  |
|              |                   |                      |      |      |                  |                                                       |                     |                              |      |      |                   |                  |                 |   |   |   |   |  |  |

|              |                   | POTE                                  | N.T. | IA.  | L FAILUK        | Œ   | MODE AN            | D EFFEC.                     | 13   | A     | NALYSIS (         | (FMEA)            | 1               | agc      | 51 ( | 01 + | U |
|--------------|-------------------|---------------------------------------|------|------|-----------------|-----|--------------------|------------------------------|------|-------|-------------------|-------------------|-----------------|----------|------|------|---|
| Item:        | Burn In/Final Tes | st/Test Backend                       |      |      |                 |     |                    |                              | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | Υ               |          |      |      |   |
| Type:        | Design            | _x_ Process                           |      |      |                 |     |                    | Company,                     | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |          |      |      |   |
| Prepared By: | Liang Yang        |                                       |      |      |                 |     |                    |                              |      | -     | FMEA Date:        | 27-Jun-01         | (Orig.)         |          |      |      |   |
|              |                   | ST2 Hu,Peter Zh                       | ang, | Dong | Gao,Liang Yang  | z.W | ei Chen,HONGZF     | II REN,LINGXU                | AN I | XU,S  | Sinbad Liu,Peng I |                   | (Rev.)          |          |      |      |   |
|              | <u> </u>          | · · · · · · · · · · · · · · · · · · · |      |      |                 |     | ·                  | •                            |      |       | , ,               |                   | · ` ´           |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    |                              |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    |                              |      |       |                   |                   | Action F        | Resi     | ılts |      |   |
| Process      | Potential Failure | Potential                             | S    | С    | Potential       | О   | Current Design/    | Current Design/              | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S        | О    | D    | R |
| Function/    | Mode              | Effect(s) of                          | E    | 1    | Cause(s)/       |     |                    | Process Controls             |      |       | Action(s)         | Target            | Effective Date  | Е        |      |      | P |
| Requirements | 1,1000            | Failure                               | V    | a    | Mechanism(s)    | C   |                    | Detection                    | T    | N     | 110tion(s)        | Completion Date   |                 | V        |      |      |   |
| 1            |                   |                                       |      | s    | of Failue       |     |                    |                              |      | - '   |                   |                   |                 |          |      | _    |   |
|              |                   |                                       |      | s    | or runae        |     |                    |                              |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       | 8    | 3    | Swap Shop order | 2   | Process 1 lot at a | -System record the           | 2    | 32    | None              |                   |                 | <b>—</b> |      |      |   |
|              |                   |                                       | O    |      | Swap Shop order | _   | time               | marking teach                | _    | 32    | None              |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     | time               | history in test              |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | summary, operator            |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | 100% check                   |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | summary(4)                   |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | -System auto check           |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | and judge if                 |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | marking is correct           |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | or not after key in          |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | the actual marking           |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | (2)                          |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | 100% vision                  |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | inspection                   |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    |                              |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    |                              |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       | 8    |      | Swap bundle     | 2   | Process 1 lot at a | 1. Lot no                    | 2    | 32    | None              |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     | time               | verification on              |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | barcode label vs             |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | TSO (3)                      |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | 2. 100% vision               |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       |      |      |                 |     |                    | scanning (2)                 |      |       |                   |                   |                 |          |      |      |   |
|              |                   |                                       | 1    | I    | 1               | ı   | 1                  | <ol><li>QA VM Gate</li></ol> |      | 1     | 1                 |                   | 1               | 1 '      |      |      |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

(8)

Lead scan

Bend lead &

coplanarity

-Visual

application

failure(8)

(6) -Customer

mechanical failure

-Bent tray

2 NA

-Operator 100%

- 100% auto vision

check tray (6)

inspection on

device (2)

32

None

|              |                     | TOTE                | 11   | 1/1.  | LIAILUN            | T'  | MODE AN          | DEFFEC.                        | IO   |       | IAL I BIB         |                   |                 |      |              |   |   |
|--------------|---------------------|---------------------|------|-------|--------------------|-----|------------------|--------------------------------|------|-------|-------------------|-------------------|-----------------|------|--------------|---|---|
| Item:        | Burn In/Final Te    | st/Test Backend     |      |       |                    |     |                  |                                | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | Υ               |      |              |   |   |
| Type:        | Design              | _x_ Process         |      |       |                    |     |                  | Company,                       | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |      |              |   |   |
| Prepared By: | Liang Yang          |                     |      |       |                    | _   |                  |                                |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |              |   |   |
| Core Team:   | Peg Tang,ZJ-TE      | ST2 Hu,Peter Zha    | ang, | ,Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZE   | II REN,LINGXU                  | AN : | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | •                              |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  |                                |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  |                                |      |       |                   |                   | Action F        | Resu | llts         |   |   |
| Process      | Potential Failure   | Potential           | S    | С     | Potential          | О   | Current Design/  | Current Design/                | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О            | D | R |
| Function/    | Mode                | Effect(s) of        | Е    | 1     | Cause(s)/          | C   | Process Controls | Process Controls               | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | $\mathbf{C}$ | Е | P |
| Requirements |                     | Failure             | V    | a     | Mechanism(s)       | C   | Prevention       | Detection                      | T    | N     |                   | Completion Date   |                 | V    | $\mathbf{C}$ | T | N |
|              |                     |                     |      | s     | of Failue          |     |                  |                                |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      | s     |                    |     |                  |                                |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     | 8    |       | - Unit misplace in | 2   | -Half yearly PM  | -V/M gate (8)                  | 2    | 32    | None              |                   |                 |      |              |   |   |
|              |                     |                     |      |       | tray caused by     |     |                  | - 100% auto vision             |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       | handler precision  |     |                  | inspection on                  |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | device (2)                     |      |       |                   |                   |                 |      |              |   |   |
|              | 2D matrix           | -Visual             | 6    |       | - Bypass 2D        | 2   | -High level      | -System real time              | 2    | 24    | None              |                   |                 |      |              |   |   |
|              | unreadable          | mechanical failure  |      |       | matrix inspection  |     | password control | monitor (2)                    |      |       |                   |                   |                 |      |              |   |   |
|              |                     | (6)                 |      |       | function           |     |                  |                                |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  |                                |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     | 6    |       | - Dongle is        | 2   | NA               | -Program auto                  | 2    | 24    | None              |                   |                 |      |              |   |   |
|              |                     |                     |      |       | unworkable         |     |                  | alarm and stop<br>handler when |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | dongle is                      |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | unworkable(2)                  |      |       |                   |                   |                 |      |              |   |   |
|              | Unit wrong          | -Customer           | 8    |       | -Improper vision   | 1   | -Regular setup   | -V/M gate                      | 1    | 8     | None              |                   |                 |      |              |   |   |
|              | _                   | application failure | ~    |       | set                | 1   | checklist check. | sampling check (8)             | 1    | o     | None              |                   |                 |      |              |   |   |
|              | orientation in tray | (8)                 |      |       | SCC                |     | checkingt check. | -Vision system                 |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | auto detect and                |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | alarm (2)                      |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | -Auto-Pin 1 locate             |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | system by                      |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | vision(1)                      |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | -Pin1 bar setting              |      |       |                   |                   |                 |      |              |   |   |
|              |                     |                     |      |       |                    |     |                  | for tray locate(1)             |      |       |                   |                   |                 |      |              |   |   |
|              | l                   | ľ                   | 1    | 1     | I                  |     | ĺ                |                                | 1    | I     | I                 |                   |                 |      |              |   |   |

|              |                   | TOTE                 | 11.  | 17   | LIAILUN           | 112 | MIODE AN         | DEFFEC                               |      |       |                   | ` ′               |                |   |   |   |   | _ |
|--------------|-------------------|----------------------|------|------|-------------------|-----|------------------|--------------------------------------|------|-------|-------------------|-------------------|----------------|---|---|---|---|---|
|              | Burn In/Final Te  |                      |      |      |                   |     |                  |                                      |      |       |                   | 83MCT00018A/A     |                |   |   |   |   | _ |
|              |                   | _x_ Process          |      |      |                   |     |                  | Company,                             | Gro  | up,Si |                   | Freescale, TJN-FM |                |   |   |   |   |   |
| Prepared By: |                   |                      |      |      |                   | _   |                  |                                      |      |       | FMEA Date:        |                   | (Orig.)        |   |   |   |   |   |
| Core Team:   | Peg Tang, ZJ-TES  | ST2 Hu,Peter Zha     | ang, | Dong | g Gao,Liang Yang  | g,W | ei Chen,HONGZF   | II REN,LINGXU <i>A</i>               | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)         |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  |                                      |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  |                                      |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     | _                |                                      |      |       | •                 |                   | Action I       |   |   |   |   | _ |
|              | Potential Failure |                      | S    | С    | Potential         |     | Current Design/  |                                      |      |       |                   | Responsibility &  |                |   |   | D | R |   |
| Function/    | Mode              | Effect(s) of         | Е    | 1    | Cause(s)/         |     | Process Controls |                                      |      |       | Action(s)         | Target            | Effective Date | Е | C | Е | P |   |
| Requirements |                   | Failure              | V    | a    | Mechanism(s)      | C   | Prevention       | Detection                            | T    | N     |                   | Completion Date   |                | V | C | T | N |   |
|              |                   |                      |      | S    | of Failue         |     |                  |                                      |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      | S    |                   |     |                  |                                      |      |       |                   |                   |                |   |   |   |   | _ |
|              |                   |                      | 8    |      | -Wrong teach on   | 1   |                  | -V/M gate first                      | 1    | 8     | None              |                   |                |   |   |   |   |   |
|              |                   |                      |      |      | material for pin1 |     | system by vision | piece check (4)                      |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | Buddy check(7)<br>-Auto-Pin 1 locate |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | system by                            |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | vision(1)                            |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | -Pin1 bar setting                    |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | for tray locate(1)                   |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  |                                      |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  |                                      |      |       |                   |                   |                |   |   |   |   |   |
|              | Mixed product     | -Electrical          | 8    |      | -Operator does    | 2   | -Equipment clean | -V/M gate                            | 2    | 32    | None              |                   |                |   |   |   |   |   |
|              | 1                 | failure(8)           |      |      | not clear the     |     | after lot end    | sampling check (8)                   |      |       |                   |                   |                |   |   |   |   |   |
|              |                   | -Reliability failure |      |      | machine when      |     |                  | -Count quantity                      |      |       |                   |                   |                |   |   |   |   |   |
|              |                   | (8)                  |      |      | finished lot      |     |                  | per shop order (6)                   |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | - Vision 100%                        |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | inspection (2)                       |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  |                                      |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  |                                      |      |       |                   |                   |                |   |   |   |   | _ |
|              |                   |                      | 8    |      | -Operator teach   | 3   | NA               | -System record the                   | 2    | 48    | None              |                   |                |   |   |   |   |   |
|              |                   |                      |      |      | wrong marking     |     |                  | marking teach                        |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | history in test<br>summary, operator |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | 100% check                           |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | summary(4)                           |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | -System auto check                   |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | and judge if                         |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | marking is correct                   |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | or not after key in                  |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | the actual marking                   |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      |      |                   |     |                  | (2)                                  |      |       |                   |                   |                |   |   |   |   |   |
|              |                   |                      |      | ı    | I                 | 1   | I                |                                      |      | 1     | 1                 |                   |                |   | ĺ | 1 |   |   |

|              |                   | PUIL            | 111   | IA   | LFAILUP       | T.  | MODE AN         | D EFFEC.        | 19   | Al    | 1AL 1 515 (       | (FIVILA)          |           |          |        |     |   |     |
|--------------|-------------------|-----------------|-------|------|---------------|-----|-----------------|-----------------|------|-------|-------------------|-------------------|-----------|----------|--------|-----|---|-----|
| Item:        | Burn In/Final Tes | st/Test Backend |       |      |               |     |                 |                 | (    | Contr | ol Number/Issue:  | 83MCT00018A/      | AY        |          |        |     |   |     |
| Type:        | Design            | _x_ Process     |       |      |               |     |                 | Company,        | Grou | up,Si | te/Business Unit: | Freescale, TJN-Fl | M         |          |        |     |   |     |
| Prepared By: | Liang Yang        |                 |       |      |               | _   |                 |                 |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)   |          |        |     |   |     |
| Core Team:   | Peg Tang,ZJ-TES   | T2 Hu,Peter Zl  | hang, | Dong | Gao,Liang Yan | g,W | ei Chen,HONGZH  | II REN,LINGXU   | AN 2 | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)    |          |        |     |   | ł   |
|              |                   |                 |       |      |               |     |                 | •               |      |       |                   |                   | _         |          |        |     |   |     |
|              |                   |                 |       |      |               |     |                 |                 |      |       |                   |                   |           |          |        |     |   |     |
|              |                   |                 |       |      |               |     |                 |                 |      |       |                   |                   |           | Action R | esults | s   |   |     |
| Process      | Potential Failure | Potential       | S     | C    | Potential     | О   | Current Design/ | Current Design/ | D    | R     | Recommended       | Responsibility &  | Actions 7 | Гaken &  | SC     | ) D | R | . 7 |

|              |                   |                                 |   |   |                            |   |                                    |                                   |   |    |             |                  | Action I       |   |   |   |   |
|--------------|-------------------|---------------------------------|---|---|----------------------------|---|------------------------------------|-----------------------------------|---|----|-------------|------------------|----------------|---|---|---|---|
| Process      | Potential Failure | Potential                       | S | C | Potential                  |   | Current Design/                    |                                   |   |    | Recommended | Responsibility & |                |   |   |   |   |
| Function/    | Mode              | Effect(s) of                    | Е | 1 | Cause(s)/                  |   |                                    | Process Controls                  |   |    | Action(s)   | Target           | Effective Date |   |   | Е |   |
| Requirements |                   | Failure                         | V | a | Mechanism(s)               | C | Prevention                         | Detection                         | T | N  |             | Completion Date  |                | V | C | T | N |
|              |                   |                                 |   | S | of Failue                  |   |                                    |                                   |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   | S |                            |   |                                    |                                   |   |    |             |                  |                |   |   |   |   |
|              | Crack/chip        |                                 | 8 |   | - Operator handles         |   | - Certify operators'               |                                   | 2 | 32 | None        |                  |                |   |   |   |   |
|              |                   | failure (8) -Electrical failure |   |   | material manually in tray. |   | operation skill and yearly exam to | (6)<br>- 100% auto vision         |   |    |             |                  |                |   |   |   |   |
|              |                   | (8)                             |   |   | ili tray.                  |   | check                              | inspection (2)                    |   |    |             |                  |                |   |   |   |   |
|              |                   | -Visual                         |   |   |                            |   | - Treat manual                     | mspection (2)                     |   |    |             |                  |                |   |   |   |   |
|              |                   | mechanical failure              |   |   |                            |   | operated material                  |                                   |   |    |             |                  |                |   |   |   |   |
|              |                   | (6)                             |   |   |                            |   | as VM reject and                   |                                   |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   |   |                            |   | scrap.                             |                                   |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   |   |                            |   |                                    |                                   |   |    |             |                  |                |   |   |   |   |
| Tape & Reel  |                   | -Device fail out or             | 8 | * | -Peel back force is        | 1 | -Follow setup                      | - SPC system                      | 4 | 32 | None        |                  |                |   |   |   |   |
|              | / tighten         | cover tape split at             |   |   | out of control             |   | checklist to set up<br>machine     | control (4)                       |   |    |             |                  |                |   |   |   |   |
|              |                   | customer (8)                    |   |   |                            |   | macnine                            | -QA audit peel<br>back force test |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   |   |                            |   |                                    | record (6)                        |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   |   |                            |   |                                    | -QA sealing line                  |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   |   |                            |   |                                    | check (8)                         |   |    |             |                  |                |   |   |   |   |
|              | 2D matrix         | -Visual                         | 6 |   | - Bypass 2D                | 2 | -High level                        | -System real time                 | 2 | 24 | None        |                  |                |   |   |   |   |
|              | unreadable        | mechanical failure              |   |   | matrix inspection          |   | password control                   | monitor (2)                       |   |    |             |                  |                |   |   |   |   |
|              |                   | (6)                             |   |   | function                   |   |                                    |                                   |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 | 6 |   | - Dongle is                | 2 | NA                                 | -Program auto                     | 2 | 24 | None        |                  |                |   |   |   |   |
|              |                   |                                 | O |   | - Dongie is<br>unworkable  |   | INA                                | alarm and stop                    |   | 24 | INOILE      |                  |                |   |   |   |   |
|              |                   |                                 |   |   | un workhole                |   |                                    | handler when                      |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   |   |                            |   |                                    | dongle is                         |   |    |             |                  |                |   |   |   |   |
|              |                   |                                 |   |   |                            |   |                                    | unworkable(2)                     |   |    |             |                  |                |   |   |   |   |

|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   | <u> </u>          |                 |      |      |   |   | _ |
|--------------|---------------------|--------------------|------|------|--------------------|----|--------------------|------------------------------|------|-------|-------------------|-------------------|-----------------|------|------|---|---|---|
| _            | Burn In/Final Te    |                    |      |      |                    | į. |                    |                              |      |       |                   | 83MCT00018A/A     |                 |      |      |   |   |   |
|              |                     | _x_ Process        |      |      |                    |    |                    | Company,                     | Gro  | up,Si |                   | Freescale, TJN-FN |                 |      |      |   |   |   |
| Prepared By: |                     |                    |      |      |                    |    |                    |                              |      |       | FMEA Date:        |                   | (Orig.)         |      |      |   |   |   |
| Core Team:   | Peg Tang, ZJ-TES    | ST2 Hu,Peter Zha   | ıng, | Dong | g Gao,Liang Yang   | ,W | ei Chen,HONGZF     | II REN,LINGXUA               | AN : | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   | Action I        | Resi | ılts |   |   |   |
| Process      | Potential Failure   | Potential          | S    | С    | Potential          | О  | Current Design/    | Current Design/              | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D | F | ₹ |
| Function/    | Mode                | Effect(s) of       | Е    | 1    | Cause(s)/          | C  | Process Controls   | Process Controls             | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | С    | Е | F | P |
| Requirements |                     | Failure            | V    | a    | Mechanism(s)       | C  | Prevention         | Detection                    | Т    | N     |                   | Completion Date   |                 | V    | С    | T | N | V |
|              |                     |                    |      | s    | of Failue          |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      | s    |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              | Unit wrong          | -Customer          | 8    |      | -Wrong teach on    | 1  | -Auto-Pin 1 locate | -V/M gate first              | 1    | 8     | None              |                   |                 |      |      |   |   | _ |
|              | orientation in tape |                    |      |      | material for pin1  |    | system by vision   | piece check (4)              |      |       |                   |                   |                 |      |      |   |   |   |
|              | reel                | (8)                |      |      | 1                  |    |                    | Buddy check(7)               |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | -Auto-Pin 1 locate           |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | system by                    |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | vision(1)                    |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | -Pin1 bar setting            |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | for tray locate(1)           |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    | 8    |      | -Improper vision   | 1  | -Regular setup     | -V/M gate                    | 1    | 8     | None              |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      | setting            |    | checklist check.   | sampling check (8)           |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | -Vision system               |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | auto detect and              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | alarm (2) -Auto-Pin 1 locate |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | system by                    |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | vision(1)                    |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | -Pin1 bar setting            |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | for tray locate(1)           |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              | Bend lead           | -Visual            | 8    |      | -Machine pick up   | 2  | - Cross beam       | -V/M gate                    | 2    | 32    | None              |                   |                 |      |      |   | H | _ |
|              |                     | mechanical failure |      |      | head is not in the |    |                    | sampling check (8)           |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     | (6)                |      |      | perfect position   |    | reel equipment.    | -Handler cross               |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     | -Customer          |      |      | along the X,Y,Z    |    |                    | sensor 100% check            |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     | application        |      |      | direction          |    |                    | unit position and            |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     | failure(8)         |      |      |                    |    |                    | auto alarm(2)                |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | -Check per setup             |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    | checklist (6)                |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      |                    |    |                    |                              |      |       |                   |                   |                 |      |      |   |   |   |
|              |                     |                    |      |      | I                  | ı  | I                  | 1                            |      | 1     | I                 |                   |                 |      |      |   | 1 |   |

|              |                               | POIL                | 1 T  | IA.  | LFAILUN                       | T.  | MODE AN               | D EFFEC.             | 19   | AI    | VAL I SIS         | (FWILA)           |                 |      |      |   |   |   |
|--------------|-------------------------------|---------------------|------|------|-------------------------------|-----|-----------------------|----------------------|------|-------|-------------------|-------------------|-----------------|------|------|---|---|---|
| Item:        | Burn In/Final Te              | st/Test Backend     |      |      |                               | _   |                       |                      | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |      |   |   |   |
| Type:        | Design                        | _x_ Process         |      |      |                               | =   |                       | Company,             | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |      |      |   |   |   |
| Prepared By: | Liang Yang                    |                     |      |      |                               |     |                       |                      |      |       | FMEA Date:        |                   | (Orig.)         |      |      |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE                | ST2 Hu,Peter Zha    | ang, | Dong | g Gao,Liang Yang              | g,W | ei Chen,HONGZF        | II REN,LINGXU        | AN I | XU,S  | inbad Liu,Peng I  | 06-Sep-13         | (Rev.)          |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       |                      |      |       |                   |                   | •               |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       |                      |      |       |                   |                   | Action I        | Resi | ılts |   |   |   |
| Process      | Potential Failure             | Potential           | S    | С    | Potential                     | О   | Current Design/       | Current Design/      | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    |      |   | F | R |
| Function/    | Mode                          | Effect(s) of        | Ε    | 1    | Cause(s)/                     | C   | Process Controls      | Process Controls     | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    |   | J | Ρ |
| Requirements |                               | Failure             | V    | a    | Mechanism(s)                  | C   | Prevention            | Detection            | T    | N     |                   | Completion Date   |                 | V    | C    | Т | 1 | N |
| _            |                               |                     |      | S    | of Failue                     |     |                       |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      | s    |                               |     |                       |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              | Empty pocket                  | -Quantity           | 8    |      | -Pocket2 sensor               | 2   | NA                    | -Machine auto        | 2    | 32    | None              |                   |                 |      |      |   | T | _ |
|              |                               | shortage for        |      |      | does not work                 |     |                       | alarm (2)            |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               | customer (8)        |      |      | properly                      |     |                       | -Reel counter setup  |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       | check (4)            |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       | '-PM daliy check     |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       | per setup check list |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       | (6)                  |      |       |                   |                   |                 |      |      |   |   |   |
|              | Tono vymana                   | -Electrical failure | 0    |      | On anoton format              | 1   | -Using black or       | -QA 100% check       | 6    | 48    | None              |                   |                 |      |      |   | ╄ | _ |
|              | Tape wrong revolution in reel | (8)                 | ٥    |      | -Operator forget to wind back | 1   |                       | tape revolution for  | O    | 40    | None              |                   |                 |      |      |   |   |   |
|              | revolution in reel            | (8)                 |      |      | orginal reel after            |     | reel.                 | every reel (6)       |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      | reel to reel                  |     | -Fix color reel to    | every reer (o)       |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      | process                       |     | prevent mixed         |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     | handling by           |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     | operator              |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     |                       |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     | 8    |      | -Use white reel on            | 1   | -Using black or       | -QA 100% check       | 6    | 48    | None              |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      | reel to reel                  |     | blue reel for reel to |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      | process                       |     | reel.                 | every reel (6)       |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     | -Fix color reel to    |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     |      |      |                               |     | prevent wrong reel    |                      |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               |                     | _    |      |                               |     | used.                 |                      |      |       |                   |                   |                 |      |      |   | Ļ | _ |
|              | Ball damage                   | -Visual             | 8    |      | -Machine pick up              | 2   | - Cross beam          | -Handler cross       | 2    | 32    | None              |                   |                 |      |      |   |   |   |
|              |                               | mechanical failure  |      |      | head is not in the            |     | _                     | sensor 100% check    |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               | (6)                 |      |      | perfect position              |     | reel equipment.       | unit position and    |      |       |                   |                   |                 |      |      |   |   |   |
|              |                               | -Customer           | I    | I    | along the X,Y,Z               | 1   | 1                     | auto alarm(2)        | I    |       |                   |                   |                 |      |      | I |   |   |

-Check per setup checklist (6)

-Customer application

failure(8)

direction

|              |                   |                      |      |      |                    |     |                  |                                    |      |       |                   | ` '               |                |   |   |   |   |
|--------------|-------------------|----------------------|------|------|--------------------|-----|------------------|------------------------------------|------|-------|-------------------|-------------------|----------------|---|---|---|---|
| Item:        | Burn In/Final Te  | st/Test Backend      |      |      |                    |     |                  |                                    |      |       |                   | 83MCT00018A/A     |                |   |   |   |   |
| • •          | •                 | _x_ Process          |      |      |                    |     |                  | Company,                           | Gro  | up,Si |                   | Freescale, TJN-FM |                |   |   |   |   |
| Prepared By: |                   |                      |      |      |                    | _   |                  |                                    |      |       | FMEA Date:        |                   | (Orig.)        |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | Dong | g Gao,Liang Yang   | z,W | ei Chen,HONGZI   | II REN,LINGXU                      | AN : | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)         |   |   |   |   |
|              |                   |                      |      |      |                    | _   |                  |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   | T                    |      |      | _                  |     | _                |                                    |      |       |                   |                   | Action I       |   |   |   |   |
| Process      | Potential Failure |                      | S    | С    | Potential          |     | Current Design/  |                                    |      |       |                   | Responsibility &  |                |   | О |   |   |
| Function/    | Mode              | Effect(s) of         | Е    | 1    | Cause(s)/          |     |                  | Process Controls                   |      |       | Action(s)         | Target            | Effective Date | Е | C | Е | P |
| Requirements |                   | Failure              | V    | a    | Mechanism(s)       | C   | Prevention       | Detection                          | Т    | N     |                   | Completion Date   |                | V | C | T | N |
|              |                   |                      |      | S    | of Failue          |     |                  |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      | S    |                    |     |                  |                                    |      |       |                   |                   |                |   |   |   |   |
|              | Cover tape        |                      | 8    |      | -Technician adjust | 2   | NA               | -Technician first                  | 4    | 64    | None              |                   |                |   |   |   |   |
|              | misalignment with |                      |      |      | the guider width   |     |                  | piece check under                  |      |       |                   |                   |                |   |   |   |   |
|              | carrier tape      | (8)                  |      |      | or carrier tape    |     |                  | 10X microscope                     |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      | location pins      |     |                  | after technician                   |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      | improperly.        |     |                  | adjust the guider width or carrier |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | tape location pins.                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | (4)                                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  |                                    |      |       |                   |                   |                |   |   |   |   |
|              | Mixed product     | -Electrical          | 8    |      | -Operator does     | 2   | -Equipment clean | -V/M gate                          | 2    | 32    | None              |                   |                |   |   |   |   |
|              |                   | failure(8)           |      |      | not clear the      |     | after lot end    | sampling check (8)                 |      |       |                   |                   |                |   |   |   |   |
|              |                   | -Reliability failure |      |      | machine when       |     |                  | -Count quantity                    |      |       |                   |                   |                |   |   |   |   |
|              |                   | (8)                  |      |      | finished lot       |     |                  | per shop order (6)                 |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | - Vision 100%                      |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | inspection (2)                     |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      | 0    |      | -Operator teach    | 3   | NA               | -System record the                 | 2    | 48    | None              |                   |                |   |   | Н |   |
|              |                   |                      | ٥    |      | wrong marking      | 3   | NA               | marking teach                      | 2    | 46    | None              |                   |                |   |   |   |   |
|              |                   |                      |      |      | wrong marking      |     |                  | history in test                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | summary, operator                  |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | 100% check                         |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | summary(4)                         |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | -System auto check                 |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | and judge if                       |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | marking is correct                 |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | or not after key in                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    | 1   |                  | the actual marking (2)             |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  | (2)                                |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  |                                    |      |       |                   |                   |                |   |   |   |   |
|              |                   |                      |      |      |                    |     |                  |                                    |      |       |                   |                   |                |   |   |   |   |

| Item:        | Burn In/Final Te  |                           | `-    |      |                                 |     | WIODE AI           |                                    |      |       |                   | 83MCT00018A/A     | ΛY              |      |      |   |    |   |
|--------------|-------------------|---------------------------|-------|------|---------------------------------|-----|--------------------|------------------------------------|------|-------|-------------------|-------------------|-----------------|------|------|---|----|---|
| Type:        | Design            | _x_ Process               |       |      |                                 | _   |                    | Company,                           | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |      |      |   |    |   |
| Prepared By: | Liang Yang        |                           |       |      |                                 |     |                    |                                    |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |   |    |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha          | ang,l | Dong | g Gao,Liang Yang                | g,W | ei Chen,HONGZF     | II REN,LINGXU <i>A</i>             | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | •                                  |      |       |                   |                   | •               |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    |                                    |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    |                                    |      |       |                   |                   | Action I        | Resi | ılts |   |    |   |
| Process      | Potential Failure | Potential                 | S     | C    | Potential                       | О   |                    | Current Design/                    |      | R     | Recommended       | Responsibility &  | Actions Taken & | S    |      |   |    |   |
| Function/    | Mode              | Effect(s) of              | Е     | 1    | Cause(s)/                       | C   | Process Controls   | Process Controls                   | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е | ,  | P |
| Requirements |                   | Failure                   | V     | a    | Mechanism(s)                    | C   | Prevention         | Detection                          | T    | N     |                   | Completion Date   |                 | V    | C    | Т | ١. | N |
|              |                   |                           |       | s    | of Failue                       |     |                    |                                    |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       | s    |                                 |     |                    |                                    |      |       |                   |                   |                 |      |      |   |    |   |
| TTT          | Lead defect in    | -Visual                   | 8     |      | -Tube and                       | 1   | -Re-design the     | -V/M Gate                          | 4    | 32    | None              |                   |                 |      |      |   |    |   |
|              | tube              | mechanical failure        |       |      | tracking                        |     | tracking to        | sampling check (8)                 |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   | (6)                       |       |      | alignment                       |     | optimize alignment | Frist piece check                  |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   | -Customer                 |       |      |                                 |     |                    | (4)                                |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   | application               |       |      |                                 |     |                    |                                    |      |       |                   |                   |                 |      |      |   |    |   |
|              | 20 1              | failure(8)                |       |      |                                 | _   |                    | 770.5                              |      | 22    |                   |                   |                 |      |      | 1 | +  |   |
|              | Mixed product     | -Electrical<br>failure(8) | 8     |      | -Operator does<br>not clear the | 2   | -Equipment clean   | -V/M gate                          | 2    | 32    | None              |                   |                 |      |      |   |    |   |
|              |                   | -Reliability failure      |       |      | machine when                    |     | after lot end      | sampling check (8) -Count quantity |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   | (8)                       |       |      | finished lot                    |     |                    | per shop order (6)                 |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   | (0)                       |       |      | imisiica iot                    |     |                    | - Vision 100%                      |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | inspection (2)                     |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    |                                    |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    |                                    |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           | 8     |      | -Operator teach                 | 3   | NA                 | -System record the                 | 2    | 48    | None              |                   |                 |      |      | Ī |    |   |
|              |                   |                           |       |      | wrong marking                   |     |                    | marking teach                      |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | history in test                    |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | summary, operator                  |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | 100% check                         |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | summary(4) -System auto check      |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | and judge if                       |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | marking is correct                 |      |       |                   |                   |                 |      |      | 1 |    |   |
|              |                   |                           |       |      |                                 |     |                    | or not after key in                |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    | the actual marking                 |      |       |                   |                   |                 |      |      | 1 |    |   |
|              |                   |                           |       |      |                                 |     |                    | (2)                                |      |       |                   |                   |                 |      |      |   |    |   |
|              |                   |                           |       |      |                                 |     |                    |                                    |      |       |                   |                   |                 |      |      | 1 | I  |   |

| Item:        | Burn In/Final Te    |                         | 11   | 1/1. | LIAILUN           |     | WIODE AI           | D EFFEC                                 |      |      |                  | 83MCT00018A/A     | Ϋ́              |   |   |   |   |
|--------------|---------------------|-------------------------|------|------|-------------------|-----|--------------------|-----------------------------------------|------|------|------------------|-------------------|-----------------|---|---|---|---|
|              | Design              | _x_ Process             |      |      |                   |     |                    | Company.                                |      |      |                  | Freescale, TJN-FN |                 |   |   |   |   |
| Prepared By: |                     |                         |      |      |                   |     |                    | - · · · · · · · · · · · · · · · · · · · |      | 1    | FMEA Date:       |                   | (Orig.)         |   |   |   |   |
|              |                     | ST2 Hu,Peter Zha        | ang, | Dong | g Gao,Liang Yan   | g,W | ei Chen,HONGZF     | HI REN,LINGXUA                          | AN I | XU,S | inbad Liu,Peng [ | 06-Sep-13         | (Rev.)          |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | _                                       |      |      | _                |                   | 1               |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    |                                         |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    |                                         |      |      |                  |                   | Action R        |   |   |   |   |
| Process      | Potential Failure   |                         | S    | C    | Potential         | О   | U                  | Current Design/                         |      |      |                  |                   | Actions Taken & |   | О |   | R |
| Function/    | Mode                | Effect(s) of            | Е    | 1    | Cause(s)/         |     |                    | Process Controls                        |      | P    | Action(s)        | Target            | Effective Date  | Е |   |   | P |
| Requirements |                     | Failure                 | V    | a    | Mechanism(s)      | C   | Prevention         | Detection                               | T    | N    |                  | Completion Date   |                 | V | C | T | N |
|              |                     |                         |      | S    | of Failue         |     |                    |                                         |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      | S    |                   |     |                    |                                         |      |      |                  |                   |                 |   |   |   |   |
|              | Unit wrong          | -Customer               | 8    |      | -Wrong teach on   | 1   | -Auto-Pin 1 locate | -V/M gate first                         | 1    | 8    | None             |                   |                 |   |   |   |   |
|              | orientation in tube | application failure (8) |      |      | material for pin1 |     | system by vision   | piece check (4)Buddy check(7)           |      |      |                  |                   |                 |   |   |   |   |
|              |                     | (0)                     |      |      |                   |     |                    | -Auto-Pin 1 locate                      |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | system by                               |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | vision(1)                               |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    |                                         |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         | 8    |      | -Improper vision  | 1   | -Regular setup     | -V/M gate                               | 1    | 8    | None             |                   |                 |   |   |   |   |
|              |                     |                         |      |      | setting           |     | checklist check.   | sampling check (8) -Vision system       |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | auto detect and                         |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | alarm (2)                               |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | -Auto-Pin 1 locate                      |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | system by                               |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | vision(1)                               |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    |                                         |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    |                                         |      |      |                  |                   |                 |   |   |   |   |
| DRY PACK     | Bag leakage         | -Reliability failure    | 8    |      | -Break MBB        | 1   | N/A                | -QA 100% check<br>packing quality for   |      | 48   | None             |                   |                 |   |   |   |   |
|              |                     | (8)                     |      |      |                   |     |                    | every box (6)                           |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | every box (o)                           |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         | 8    |      | -Poor dry pack    | 1   | N/A                | -QA 100% check                          | 6    | 48   | None             |                   |                 |   |   |   |   |
|              |                     |                         |      |      | bag quality       |     |                    | packing quality for                     |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | every box (6)                           |      |      |                  |                   |                 |   |   |   |   |
|              | No-dry pack         | -Reliability failure    | 8    |      | -Miss dry pack    | 1   | N/A                | -QA 100% check                          | 6    | 48   | None             |                   |                 |   |   |   |   |
|              |                     | (8)                     |      |      | process           |     |                    | packing quality for                     |      |      |                  |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                   |     |                    | every box(6)                            |      |      |                  |                   |                 |   |   |   |   |

| Item:        | Burn In/Final Te  | st/Test Backend                 |      |     |                                 |     |                   |                                    | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |      |   |          |
|--------------|-------------------|---------------------------------|------|-----|---------------------------------|-----|-------------------|------------------------------------|------|-------|-------------------|-------------------|-----------------|------|------|---|----------|
| Type:        | Design            | _x_ Process                     |      |     |                                 | )i  |                   | Company,                           |      |       |                   | Freescale, TJN-FN |                 |      |      |   |          |
| -            | Liang Yang        |                                 |      |     |                                 | i)  |                   |                                    |      |       | FMEA Date:        |                   | (Orig.)         |      |      |   |          |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha                | ang, | Don | g Gao,Liang Yang                | y,W | ei Chen,HONGZI    | II REN,LINGXU                      | AN . | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |      |      |   |          |
|              |                   |                                 |      |     |                                 |     |                   |                                    |      |       |                   |                   |                 |      |      |   |          |
|              |                   |                                 |      |     |                                 |     |                   |                                    |      |       |                   |                   | Action I        | Resu | ılts |   |          |
| Process      | Potential Failure | Potential                       | S    | С   | Potential                       | О   | Current Design/   | Current Design/                    | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D | R        |
| Function/    | Mode              | Effect(s) of                    | E    | l   | Cause(s)/                       | C   | Process Controls  | Process Controls                   | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    | E | P        |
| Requirements |                   | Failure                         | V    | a   | Mechanism(s)                    | C   | Prevention        | Detection                          | T    | N     |                   | Completion Date   |                 | V    | C    | T | N        |
|              |                   |                                 |      | S   | of Failue                       |     |                   |                                    |      |       |                   |                   |                 |      |      |   |          |
|              |                   |                                 |      | S   |                                 |     |                   |                                    |      |       |                   |                   |                 |      |      |   | <u> </u> |
|              | Mixed product     | -Electrical                     | 8    |     | -Operator handles               | 2   | -One time one lot | -Automated                         | 2    | 32    | None              |                   |                 |      |      |   |          |
|              |                   | failure(8) -Reliability failure |      |     | more than one lot at same time. |     |                   | verification barcode of box,       |      |       |                   |                   |                 |      |      |   |          |
|              |                   | (8)                             |      |     | at same time.                   |     |                   | dry bag by auto-                   |      |       |                   |                   |                 |      |      |   |          |
|              |                   |                                 |      |     |                                 |     |                   | verify machine (2)                 |      |       |                   |                   |                 |      |      |   |          |
|              |                   |                                 |      |     |                                 |     |                   | -QA check (8)                      |      |       |                   |                   |                 |      |      |   |          |
|              |                   |                                 |      |     |                                 |     |                   |                                    |      |       |                   |                   |                 |      |      |   |          |
|              | Duration time out | - Delamination                  | 8    |     | -The lot duration               | 2   | N/A               | - System auto                      | 2    | 32    | None              |                   |                 |      |      |   |          |
|              | of control        | issue (8) - Solderability       |      |     | time was out of control         |     |                   | detect duration<br>time before dry |      |       |                   |                   |                 |      |      |   |          |
|              |                   | issue (8)                       |      |     | Control                         |     |                   | packing (2)                        |      |       |                   |                   |                 |      |      |   |          |

| Item:        | Burn In/Final Te  |                                 | 11  | IA.  | LIAILUN                   |       | MODE AN                        | D EFFECT                           |    |     |             | 83MCT00018A/A     | ΑΥ              |      |      |     |     |
|--------------|-------------------|---------------------------------|-----|------|---------------------------|-------|--------------------------------|------------------------------------|----|-----|-------------|-------------------|-----------------|------|------|-----|-----|
|              |                   | _x_ Process                     |     |      |                           | -     |                                | Company.C                          |    |     |             | Freescale, TJN-FN |                 |      |      |     |     |
| Prepared By: | •                 |                                 |     |      |                           |       |                                | ,                                  |    | F , | FMEA Date:  |                   | (Orig.)         |      |      |     |     |
|              |                   | ST2 Hu Peter Zha                | anσ | Done | Gao Liang Yang            | W     | ei Chen HONGZE                 | II REN,LINGXUA                     | N. | XUS |             |                   | (Rev.)          |      |      |     |     |
|              | 88,               |                                 |     |      | 5 5 5                     | ə, ·· |                                |                                    |    | ,   |             |                   | .(====,)        |      |      |     |     |
|              |                   |                                 |     |      |                           |       |                                |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       |                                |                                    |    |     |             |                   | Action F        | Resu | ılts |     |     |
| Process      | Potential Failure | Potential                       | S   | С    | Potential                 | 0     | Current Design/                | Current Design/                    | D  | R   | Recommended | Responsibility &  | Actions Taken & |      |      | D   | R   |
| Function/    | Mode              | Effect(s) of                    | E   | 1    | Cause(s)/                 |       |                                | Process Controls                   |    |     | Action(s)   | Target            | Effective Date  | Ē    |      | E   |     |
| Requirements | 111000            | Failure                         | V   | a    | Mechanism(s)              | C     |                                | Detection                          | T  | N   | 1 Tetron(s) | Completion Date   |                 | V    | C    | T   | N   |
|              |                   |                                 | `   | S    | of Failue                 |       |                                |                                    | _  |     |             |                   |                 | ·    |      |     | - ' |
|              |                   |                                 |     | s    |                           |       |                                |                                    |    |     |             |                   |                 |      |      |     |     |
| Burn in      | ESD/EOS           | -Electrical                     | 8   | _    | -Wrist strap              | 1     | -Turnstile wrist               | -Q-check yield                     | 3  | 24  | None        |                   |                 |      |      |     |     |
|              | 202/205           | failure(8)                      |     |      | and/or shoes              | 1     | strap check during             | - •                                |    |     |             |                   |                 |      |      |     |     |
|              |                   | -Reliability failure            |     |      | function fail             |       | every entry to test            | . ,                                |    |     |             |                   |                 |      |      |     |     |
|              |                   | (8)                             |     |      |                           |       | floor                          |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       |                                |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 | 8   |      | -Workstation and          | 1     | -Monthly                       |                                    | 3  | 24  | None        |                   |                 |      |      |     |     |
|              |                   |                                 |     |      | equipment are not         |       | check/half year                | control (3)                        |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      | properly grounded         |       | PM                             |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       |                                |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   | <b>F</b> 1                      | 0   |      |                           |       |                                |                                    |    |     |             |                   |                 |      |      | Н   |     |
|              | Product           | -Electrical                     | 8   |      | -Operate more             | 2     | -Handle only one               | -Quantity count (6)                | 4  | 64  | None        |                   |                 |      |      |     |     |
|              | mixed/escaped     | failure(8) -Reliability failure |     |      | than one lot at same time |       | lot in one table /<br>Loader & | -Sampling check<br>the marking (8) |    |     |             |                   |                 |      |      |     |     |
|              |                   | (8)                             |     |      | same time                 |       | Unloader                       | -100% auto VM                      |    |     |             |                   |                 |      |      |     |     |
|              |                   | (6)                             |     |      |                           |       |                                | inspection in                      |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | 2                              | packaging process.                 |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | lot start                      | (4)                                |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | -Material status               | , ,                                |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | identification                 |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | before/after                   |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | process                        |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | -100% check                    |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       | before next                    |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 | I   |      |                           |       | chamber start                  |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       |                                |                                    |    |     |             |                   |                 |      |      |     |     |
|              |                   |                                 |     |      |                           |       |                                |                                    |    |     |             |                   |                 |      |      | Ш   |     |
|              |                   |                                 | 8   |      | -Wrong program            | 1     | -Only the latest               | -Buddy check (7)                   | 3  | 24  | None        |                   |                 |      |      | l I |     |

(3)

-Q check detection

Rev. program

available

used

| IOIENTIAL FAILU                                                  | RE MODE AND EFFECTS ANALISIS (                         |                 | C                  |
|------------------------------------------------------------------|--------------------------------------------------------|-----------------|--------------------|
| Item: Burn In/Final Test/Test Backend                            | Control Number/Issue: 8                                | A/AY            |                    |
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: 1                  | Freescale,TJN-I | FM                 |
| Prepared By: Liang Yang                                          | FMEA Date:                                             | 27-Jun-01       | (Orig.)            |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Y | ang,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng [ | 06-Sep-13       | (Rev.)             |
|                                                                  |                                                        |                 | _                  |
|                                                                  |                                                        |                 |                    |
|                                                                  |                                                        |                 | Action Results     |
|                                                                  |                                                        | D 11.11.        | 0 4 4 70 1 0 0 0 0 |

|              | 1                 | •                    |   |   | •                  |   |                                 | •                   |   |    | 1         | •                | Action I       |   |   |   |          |
|--------------|-------------------|----------------------|---|---|--------------------|---|---------------------------------|---------------------|---|----|-----------|------------------|----------------|---|---|---|----------|
|              | Potential Failure |                      | S |   | Potential          | О |                                 | _                   |   |    |           | Responsibility & |                |   |   |   | F        |
| Function/    | Mode              | Effect(s) of         | Е | 1 | Cause(s)/          |   | Process Controls                |                     |   |    | Action(s) | Target           | Effective Date | Е |   | E |          |
| Requirements |                   | Failure              | V | a | Mechanism(s)       | C | Prevention                      | Detection           | T | N  |           | Completion Date  |                | V | C | T | N        |
|              |                   |                      |   | S | of Failue          |   |                                 |                     |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   | S |                    |   |                                 |                     |   |    |           |                  |                |   |   |   |          |
|              | Miss Burnin       | -Customer            | 8 |   | -Operator miss lot | 1 | -Follow TSO and                 | -Buddy check (7)    | 4 | 32 | None      |                  |                |   |   |   |          |
|              |                   | application          |   |   | in Burnin peocess  |   | SFC instruction                 | - 100% auto         |   |    |           |                  |                |   |   |   |          |
|              |                   | failure(8)           |   |   |                    |   | -Auto start BI                  | electrical test in  |   |    |           |                  |                |   |   |   | İ        |
|              |                   | -Reliability failure |   |   |                    |   | function to prevent             |                     |   |    |           |                  |                |   |   |   | İ        |
|              |                   | (8)                  |   |   |                    |   |                                 | (4)                 |   |    |           |                  |                |   |   |   |          |
|              |                   |                      | 8 |   | -Socket            | 2 | _                               | Q check & BIN2      |   | 48 | None      |                  |                |   |   |   | İ        |
|              |                   |                      |   |   | open/short         |   |                                 | check detection (3) |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   |   |                    |   | -Check before                   | -Sampling check in  |   |    |           |                  |                |   |   |   | İ        |
|              |                   |                      |   |   |                    |   | loading units                   | loading process (8) |   |    |           |                  |                |   |   |   | İ        |
|              |                   |                      |   |   |                    |   |                                 |                     |   |    |           |                  |                |   |   |   | İ        |
|              | Bend lead &       | -Visual              | 8 |   | -Nonstandard       | _ | 0 1 . 1                         | -100% VM            | 4 | 64 | None      |                  |                |   |   |   | <b>!</b> |
|              |                   | mechanical failure   | - |   | manual handling    | 2 | Set up standard manual handling | inspection (6)      | 4 | 04 | None      |                  |                |   |   |   | ĺ        |
|              | copianarity       | (6)                  |   |   | mode               |   | method                          | -100% auto VM       |   |    |           |                  |                |   |   |   | İ        |
|              |                   | -Customer            |   |   | mode               |   | metriod                         | inspection in       |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   | application          |   |   |                    |   |                                 | packaging process   |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   | failure(8)           |   |   |                    |   |                                 | (4)                 |   |    |           |                  |                |   |   |   | İ        |
|              |                   |                      | 8 |   | -Bad socket        | 2 | -Check and change               | -100% VM            | 4 | 64 | None      |                  |                |   |   |   | Г        |
|              |                   |                      |   |   |                    |   | socket during PM                | inspection (6)      |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   |   |                    |   | -Check before                   | -100% auto VM       |   |    |           |                  |                |   |   |   | İ        |
|              |                   |                      |   |   |                    |   | loading units                   | inspection in       |   |    |           |                  |                |   |   |   | İ        |
|              |                   |                      |   |   |                    |   |                                 | packaging process   |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   |   |                    |   |                                 | (4)                 |   |    |           |                  |                |   |   |   |          |
|              |                   |                      | 8 |   | -Loader &          | 2 | -Half year PM                   | -In-process         |   | 64 | None      |                  |                |   |   |   |          |
|              |                   |                      |   |   | unloader machine   |   | -Shiftly check                  | sampling check (8)  |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   |   | misalignment       |   | handler by setup                | -100% auto VM       |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   |   |                    |   | checklist                       | inspection in       |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   |   |                    |   |                                 | packaging process   |   |    |           |                  |                |   |   |   | ĺ        |
|              |                   |                      |   |   |                    |   |                                 | (4)                 |   |    |           |                  |                |   |   |   | ĺ        |
|              | 1                 |                      |   |   |                    |   |                                 |                     |   |    |           |                  |                |   |   |   | 1        |

| IOIENTIAL PAILU                                                  | RE MODE AND EFFECTS ANALTSIS (FMEA)                                       |                       |
|------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------|
| Item: Burn In/Final Test/Test Backend                            | Control Number/Issue: 83MCT00018A/AY                                      |                       |
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                     |                       |
| Prepared By: Liang Yang                                          | FMEA Date: 27-Jun-01 (On                                                  | rig.)                 |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Y | ang, Wei Chen, HONGZHI REN, LINGXUAN XU, Sinbad Liu, Peng D 06-Sep-13 (Re | ev.)                  |
|                                                                  |                                                                           |                       |
|                                                                  |                                                                           |                       |
|                                                                  |                                                                           | Action Results        |
| Process Potential Failure Potential S C Potential                | O Current Design/ Current Design/ D R Recommended Responsibility & Ac     | tions Taken & S O D R |

|                                        |                       |                                |   |   |                        |   |                           |                        |   |            |                |                             | Action F        |                 |   |     |   |
|----------------------------------------|-----------------------|--------------------------------|---|---|------------------------|---|---------------------------|------------------------|---|------------|----------------|-----------------------------|-----------------|-----------------|---|-----|---|
| Process                                | Potential Failure     | Potential                      | S | C | Potential              | О | Current Design/           | Current Design/        | D | R          | Recommended    | Responsibility &            | Actions Taken & | S               | O | D   | R |
| Function/                              | Mode                  | Effect(s) of                   | Е | 1 | Cause(s)/              | C | Process Controls          | Process Controls       | Е |            | Action(s)      | Target                      | Effective Date  |                 |   | Е   |   |
| Requirements                           |                       | Failure                        | V | a | Mechanism(s)           | C | Prevention                | Detection              | T | N          |                | Completion Date             |                 | V               | C | T   | N |
|                                        |                       |                                |   | S | of Failue              |   |                           |                        |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       |                                |   | S |                        |   |                           |                        |   |            |                |                             |                 |                 |   |     | l |
|                                        | Foreign matter on     | - Electrical failure           | 8 |   | -Particle from B/I     | 1 | -Periodical clean         | -100% VM               | 6 | 48         | None           |                             |                 |                 |   |     | l |
|                                        | lead                  | (8)                            |   |   | board                  |   | B/I boards                | inspection(6)          |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       |                                |   |   |                        |   | -Check B/I boards         |                        |   |            |                |                             |                 |                 |   |     | l |
|                                        | Ball damage           | -Visual                        | 8 |   | -Nonstandard           | 2 | by lot<br>Standard manual | -100% auto VM          | 4 | C 1        | None           |                             |                 | $\vdash \vdash$ | _ | Н   |   |
|                                        | Dan damage            | mechanical failure             | - |   | manual handling        | 2 | handling method           | inspection in          | 4 | 04         | None           |                             |                 |                 |   |     | l |
|                                        |                       | (6)                            |   |   | mode                   |   | mananing metriod          | packaging process      |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       | -Customer                      |   |   |                        |   |                           | (4)                    |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       | application                    |   |   |                        |   |                           | -In-process            |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       | failure(8)                     |   |   |                        |   |                           | sampling check (8)     |   |            |                |                             |                 |                 |   |     | l |
| M-4i-1i-i                              | Due des et essère e d | -Yield Loss (7)                | 8 |   | M14:1 - 1 - 4          | 2 | Periodical                | - Manual verify        | 4 | <i>C</i> 1 | Auto Print Box | I : V                       |                 | $\vdash$        | _ | Ш   |   |
| Material receiving<br>(Receive & store | Product mixed         | -Yield Loss (7) -Customer Line | 8 |   | Multiple lot processed | 2 | Training to MTL           | box label LOT#,        | 4 |            | Oty and # on   | Liang Yang<br>R57253/06-30- |                 |                 |   |     | l |
| material)                              |                       | pull (8)                       |   |   | simultaneously         |   | Operators                 | device #, box          |   |            | Barcode label  | 2014                        |                 |                 |   |     | l |
| ,                                      |                       | F (*)                          |   |   |                        |   | 2. Mobile SFC             | quantity against       |   |            | Sev=8, Occ=1,  |                             |                 |                 |   |     | l |
|                                        |                       |                                |   |   |                        |   | terminal to               | packing list & SFC     |   |            | Det=4, RPN=32  |                             |                 |                 |   |     | l |
|                                        |                       |                                |   |   |                        |   | eliminate bulk            | - Accept on zero       |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       |                                |   |   |                        |   | processing of shop        | 1                      |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       |                                |   |   |                        |   | order                     | - 100% Marking         |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       |                                |   |   |                        |   |                           | check by Vision        |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       |                                |   |   |                        |   |                           | system in<br>Packaging |   |            |                |                             |                 |                 |   |     | ı |
|                                        |                       |                                |   |   |                        |   |                           | process(4)             |   |            |                |                             |                 |                 |   |     | ı |
|                                        |                       |                                |   |   |                        |   |                           |                        |   |            |                |                             |                 |                 |   |     | l |
|                                        |                       |                                | 1 |   | i e                    | 1 | 1                         | I                      |   | ı          | I              | ĺ                           | 1               | 1               |   | 1 1 |   |

| Item: Burn In/Final Test/   | /Test Backend                        | Control Number/Issue:                                | 83MCT00018A/     | AY      |
|-----------------------------|--------------------------------------|------------------------------------------------------|------------------|---------|
| Type: Designx               | x_ Process                           | Company, Group, Site/Business Unit:                  | Freescale, TJN-F | M       |
| Prepared By: Liang Yang     |                                      | FMEA Date:                                           | 27-Jun-01        | (Orig.) |
| Core Team: Peg Tang,ZJ-TEST | Γ2 Hu,Peter Zhang,Dong Gao,Liang Yan | g,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng D | 06-Sep-13        | (Rev.)  |
| <u> </u>                    |                                      |                                                      |                  | _       |

|                 | _                 |               |   |   |                  |    |                  |                                     |   |    | -           |                  | Action I        |   |   |   |               |
|-----------------|-------------------|---------------|---|---|------------------|----|------------------|-------------------------------------|---|----|-------------|------------------|-----------------|---|---|---|---------------|
| Process         | Potential Failure | Potential     | S | C | Potential        | О  |                  | Current Design/                     |   |    | Recommended | Responsibility & | Actions Taken & | S | О |   | R             |
| Function/       | Mode              | Effect(s) of  | Е | 1 | Cause(s)/        |    | Process Controls |                                     |   |    | Action(s)   | Target           | Effective Date  | Е |   | Е | P             |
| Requirements    |                   | Failure       | V | a | Mechanism(s)     | C  | Prevention       | Detection                           | T | N  |             | Completion Date  |                 | V | C | T | N             |
|                 |                   |               |   | s | of Failue        |    |                  |                                     |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   | s |                  |    |                  |                                     |   |    |             |                  |                 |   |   |   | <u></u>       |
|                 |                   | Qty shortage  | 3 |   | Miss Counting by | 2  | Mobile SFC       |                                     | 5 | 30 | None        |                  |                 |   |   |   | i             |
|                 | (CV)              |               |   |   | Assembly or BI   |    | terminal to      | box label LOT#,                     |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   | Site             |    | eliminate bulk   | device #, box                       |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | quantity against                    |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    | order            | packing list & SFC                  |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | - Accept on zero<br>discrepancy (6) |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | - 100% Count Qty                    |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | by Test operator                    |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | (5)                                 |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  |                                     |   |    |             |                  |                 |   |   |   | l             |
| NCOMING         | Count variance    | Qty shortage  | 3 |   | Miss Counting by | 2. | NA               | - Manual verify                     | 5 | 30 | None        |                  |                 |   |   |   | $\overline{}$ |
| CHECK           | (CV)              | Ç.,g.         |   |   | Assembly or BI   |    |                  | box label LOT#,                     |   |    |             |                  |                 |   |   |   | i             |
| Visual          | ,                 |               |   |   | Site             |    |                  | device #, box                       |   |    |             |                  |                 |   |   |   | i             |
| Mechanical only |                   |               |   |   |                  |    |                  | quantity against                    |   |    |             |                  |                 |   |   |   | i             |
| applies to      |                   |               |   |   |                  |    |                  | packing list & SFC                  |   |    |             |                  |                 |   |   |   | i             |
| Assembly & BI   |                   |               |   |   |                  |    |                  | - Accept on zero                    |   |    |             |                  |                 |   |   |   | i             |
| awstock)        |                   |               |   |   |                  |    |                  | discrepancy (6)                     |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | - 100% Count Qty                    |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | by Test operator                    |   |    |             |                  |                 |   |   |   | i             |
|                 |                   |               |   |   |                  |    |                  | (5)                                 |   |    |             |                  |                 |   |   |   | l             |
|                 | Raw stock issue   | Marking       | 3 |   | Device mixed at  | 3  | NA               | - Sampling                          | 5 | 45 | None        |                  |                 |   |   |   | _             |
|                 |                   | mismatch with |   |   | Assembly or BI   | ,  | 13/1             | Marking inspection                  | - | 13 | Tione       |                  |                 |   |   |   | ı             |
|                 |                   | System/shop   |   |   | process          |    |                  | during incoming                     |   |    |             |                  |                 |   |   |   | ı             |
|                 |                   | order         |   |   | r                |    |                  | check (5)                           |   |    |             |                  |                 |   |   |   | ı             |
|                 |                   |               |   |   |                  |    |                  | . /                                 |   |    |             |                  |                 |   |   |   | i             |

|                        |                   |                                       |       |      |                  |    |                    |                        |      |       |                    | ,                 |                 |      |     |   |   |
|------------------------|-------------------|---------------------------------------|-------|------|------------------|----|--------------------|------------------------|------|-------|--------------------|-------------------|-----------------|------|-----|---|---|
| Item:                  | Burn In/Final Te  | st/Test Backend                       |       |      |                  |    |                    |                        | (    | Contr | ol Number/Issue:   | 83MCT00018A/A     | ΛY              |      |     |   |   |
| Type:                  | Design            | _x_ Process                           |       |      |                  |    |                    | Company,               | Gro  | up,Si | te/Business Unit:  | Freescale, TJN-FM | 1               |      |     |   |   |
| Prepared By:           | Liang Yang        |                                       |       |      |                  |    |                    |                        |      |       | FMEA Date:         | 27-Jun-01         | (Orig.)         |      |     |   |   |
| Core Team:             | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha                      | ang,I | Dong | Gao,Liang Yang   | .W | ei Chen,HONGZH     | II REN,LINGXU <i>A</i> | AN I | XU,S  | Sinbad Liu, Peng D | 06-Sep-13         | (Rev.)          |      |     |   |   |
|                        |                   | · · · · · · · · · · · · · · · · · · · |       |      | , , ,            | ,  | ·                  | ·                      |      |       | , ,                | •                 | · `             |      |     |   |   |
|                        |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
|                        |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   | Action F        | Resu | lts |   |   |
| Process                | Potential Failure | Potential                             | S     | С    | Potential        | О  | Current Design/    | Current Design/        | D    | R     | Recommended        | Responsibility &  | Actions Taken & | S    | 0   | D | R |
| Function/              | Mode              | Effect(s) of                          | Е     | 1    | Cause(s)/        | С  | Process Controls   | Process Controls       | Е    | P     | Action(s)          | Target            | Effective Date  | Е    | C   | Е | P |
| Requirements           |                   | Failure                               | V     | a    | Mechanism(s)     | С  | Prevention         | Detection              | T    | N     |                    | Completion Date   |                 | V    | C   | T | N |
| •                      |                   |                                       |       | s    | of Failue        |    |                    |                        |      |       |                    | •                 |                 |      |     |   |   |
|                        |                   |                                       |       | s    |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
|                        | V/M Defect        | -Visual                               | 8     |      | V/M defect       | 2  | NA                 | - Sampling V/M         | 4    | 64    | None               |                   |                 |      |     | 1 |   |
|                        |                   | mechanical failure                    |       |      | introduced by    |    |                    | inspection during      |      |       |                    |                   |                 |      |     |   |   |
|                        |                   | (6)                                   |       |      | Assembly or BI   |    |                    | incoming check (5)     |      |       |                    |                   |                 |      |     |   |   |
|                        |                   | -Customer                             |       |      | process          |    |                    | - 100% Marking         |      |       |                    |                   |                 |      |     |   |   |
|                        |                   | application                           |       |      |                  |    |                    | check by Vision        |      |       |                    |                   |                 |      |     |   |   |
|                        |                   | failure(8)                            |       |      |                  |    |                    | system in              |      |       |                    |                   |                 |      |     |   |   |
|                        |                   |                                       |       |      |                  |    |                    | Packaging              |      |       |                    |                   |                 |      |     |   |   |
|                        |                   |                                       |       |      |                  |    |                    | process(4)             |      |       |                    |                   |                 |      |     |   |   |
|                        |                   |                                       | Ш     |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
|                        | Lot Combination   | Yield Loss (7)                        | 8     |      | Mixed with Other | 1  | Config lot combine | - ATE Test (3)         | 3    | 24    | None               |                   |                 |      |     |   |   |
|                        | by mistake        | Customer line pull                    |       |      | device           |    | rule in SFC system |                        |      |       |                    |                   |                 |      |     |   |   |
| shop order  1. Machine |                   | (8)                                   |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
| oreparation            |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
| 2. Start lot           |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
| 3. Electrical          |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
| parameters tests       |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
| 4. End lot             |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
| (Hot/Cold/Room)        |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
|                        |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
|                        |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
|                        |                   |                                       |       |      |                  |    |                    |                        |      |       |                    |                   |                 |      |     |   |   |
|                        |                   | ĺ                                     |       |      | ĺ                |    | 1                  |                        |      | I     | 1                  |                   |                 |      |     |   |   |

|              |                   | POTE                 | N.T. | IA   | LFAILUR            | (E  | MODE AN             | D EFFEC                      | 15   | Al    | NALYSIS           | (FMEA)            |                 | 1 ago |   | JI <del>T</del> ( | 5   |
|--------------|-------------------|----------------------|------|------|--------------------|-----|---------------------|------------------------------|------|-------|-------------------|-------------------|-----------------|-------|---|-------------------|-----|
| Item:        | Burn In/Final Te  | st/Test Backend      |      |      |                    |     |                     |                              | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |       |   |                   |     |
| Type:        | Design            | _x_ Process          |      |      |                    |     |                     | Company,                     | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |       |   |                   |     |
| Prepared By: | Liang Yang        |                      |      |      |                    |     |                     |                              |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |       |   |                   |     |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zh      | ang, | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZH      | II REN,LINGXU                | AN 2 | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |       |   |                   |     |
|              |                   |                      |      |      |                    |     |                     |                              |      |       |                   |                   | •               |       |   |                   |     |
|              |                   |                      |      |      |                    |     |                     |                              |      |       |                   |                   |                 |       |   |                   |     |
|              |                   |                      |      |      |                    |     |                     |                              |      |       |                   |                   | Action F        |       |   |                   |     |
| Process      | Potential Failure | Potential            | S    | C    | Potential          | О   | Current Design/     | Current Design/              | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S     | O | D                 | R   |
| Function/    | Mode              | Effect(s) of         | Е    | 1    | Cause(s)/          |     | Process Controls    | Process Controls             |      | P     | Action(s)         | Target            | Effective Date  | Е     | C | Е                 | P   |
| Requirements |                   | Failure              | V    | a    | Mechanism(s)       | C   | Prevention          | Detection                    | T    | N     |                   | Completion Date   |                 | V     | C | T                 | N   |
|              |                   |                      |      | s    | of Failue          |     |                     |                              |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      | s    |                    |     |                     |                              |      |       |                   |                   |                 |       |   |                   | ı   |
|              |                   |                      | 8    |      | mixed with other   | 1   | Config lot combine  | -lot informaiton             | 4    | 32    | None              |                   |                 |       |   |                   |     |
|              |                   |                      |      |      | trace code         |     | rule in SFC system  | and marking check            |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | post combination             |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | (6)                          |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | -100% Count Qty              |      |       |                   |                   |                 | 1     |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | by Test operator             |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | before test(5) -100% auto VM |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | inspection in                |      |       |                   |                   |                 | 1     |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | Packaging process.           |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     | (4)                          |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     |                              |      |       |                   |                   |                 |       |   |                   | 1   |
|              | Expired BI        | Infant mortality,    | 8    |      | Lot staged for too | 1   | Daily WIP review    | - Auto hold lot              | 2.   | 16    | None              |                   |                 | 一     |   |                   |     |
|              | window            | fail electrical test |      |      | long after BI      | ľ   | by mfg and          | with expired BI              | Ĩ    | 10    | TVOILE            |                   |                 | l l   |   |                   | ,   |
|              |                   | during board         |      |      |                    |     | planner. Test       | window (2)                   |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   | assembly (8)         |      |      |                    |     | priority given to   | ` '                          |      |       |                   |                   |                 | 1     |   |                   | ,   |
|              |                   |                      |      |      |                    |     | material with BI    |                              |      |       |                   |                   |                 | l l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     | window. Expected    |                              |      |       |                   |                   |                 | i l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     | BI expiry date can  |                              |      |       |                   |                   |                 | i l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     | be viewed in        |                              |      |       |                   |                   |                 | 1     |   |                   | ,   |
|              |                   |                      |      |      |                    |     | genesis through lot |                              |      |       |                   |                   |                 | i l   |   |                   | ,   |
|              |                   |                      |      |      |                    |     | enquiry screen      |                              |      |       |                   |                   |                 | Ιl    |   |                   | , , |
|              |                   |                      |      |      |                    |     |                     |                              |      |       |                   |                   |                 | l     |   |                   | ,   |
|              |                   |                      |      |      |                    |     |                     |                              |      |       |                   |                   |                 |       |   |                   |     |
|              | Wrong machina     | Foil 1st orticle     | 2    |      | Heaverong toster   | 11  | Listed Testan       | Operator about               | 1 1  | 2     | Mono              |                   |                 |       |   |                   |     |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

information on

Test program is

Listed handler

information on

configed by tester

TSO

TSO

Use wrong

handler

tester vs. TSO

during setup (5)

- Program auto

Handler vs. TSO

during setup (5)

30

None

verify during download (1) - Operator check

check (3)

test (2)

Unable to perform

setup

|                                                   | ,                                                                     |                  |         |
|---------------------------------------------------|-----------------------------------------------------------------------|------------------|---------|
| Item: Burn In/Final Test/Test Backend             | Control Number/Issue: 8                                               | 83MCT00018A/     | /AY     |
| Type: Design _x_ Process                          | Company, Group, Site/Business Unit: 1                                 | Freescale, TJN-F | FM      |
| Prepared By: Liang Yang                           | FMEA Date:                                                            | 27-Jun-01        | (Orig.) |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Do | ong Gao,Liang Yang,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng D | 06-Sep-13        | (Rev.)  |
|                                                   |                                                                       |                  | _       |

|              |                   |                    |   |   |                              |   |                     |                            |   |     |                              |                           | Action I        | Resu | lts          |          |   |
|--------------|-------------------|--------------------|---|---|------------------------------|---|---------------------|----------------------------|---|-----|------------------------------|---------------------------|-----------------|------|--------------|----------|---|
| Process      | Potential Failure | Potential          | S | С | Potential                    | О | Current Design/     | Current Design/            | D | R   | Recommended                  | Responsibility &          | Actions Taken & | S    | 0            | D        | F |
| Function/    | Mode              | Effect(s) of       | Е | 1 | Cause(s)/                    | C | Process Controls    | Process Controls           | Е | P   | Action(s)                    | Target                    | Effective Date  | Е    | $\mathbf{C}$ | Е        | F |
| Requirements |                   | Failure            | V | a | Mechanism(s)                 | C | Prevention          | Detection                  | T | N   |                              | Completion Date           |                 | V    | $\mathbf{C}$ | Т        | N |
|              |                   |                    |   | s | of Failue                    |   |                     |                            |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   | s |                              |   |                     |                            |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    | 3 |   | Wrong loadboard              | 3 | Engineer create     | - Manual visual            | 5 | 45  | None                         |                           |                 |      |              |          |   |
|              |                   |                    |   |   | identification               |   | loadboard ID and    | verification on            |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   |                     | loadboad ID                |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   | before releasing to | 0                          |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   | production (applies |                            |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   | for NPI as well)    | M (5)                      |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    | 2 |   | *** 1 1                      | 2 | 374                 | 0.1.0                      | _ | ~ 4 | XX 1 1.1 TD                  | W : CI                    |                 |      |              | $\vdash$ | ₩ |
|              |                   |                    | 3 |   | Wrong shoporder loadboard ID | 3 | NA                  | - QA Document<br>Audit (6) | 6 | 54  | Work with IT team to convert | Wei Chen<br>R65950/06-30- |                 |      |              | l        |   |
|              |                   |                    |   |   | setup                        |   |                     | Audit (0)                  |   |     | LB information to            |                           |                 |      |              | l        |   |
|              |                   |                    |   |   | setup                        |   |                     |                            |   |     | SFC system.                  | 2014                      |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   |                     |                            |   |     | Sev=3, Occ=2,                |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   |                     |                            |   |     | Det=6, RPN=36                |                           |                 |      |              | l        |   |
|              |                   |                    | 3 |   | Tray loaded in               | 1 | Poka Yoke           | - Auto alarm for           | 2 | 6   | None                         |                           |                 |      |              | $\vdash$ | T |
|              |                   |                    |   |   | wrong orientation            |   | mechanism on        | wrong orientation          |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   | Handler             | (2)                        |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   |                     | - ATE Test (3)             |   |     |                              |                           |                 |      |              | <u></u>  |   |
|              | Wrong test        | Yield Loss (7)     | 8 |   | Error during                 | 2 | SC2 auto            | - QC in line gate          | 4 | 64  | None                         |                           |                 |      |              |          |   |
|              | temperature       | Customer line pull | 1 |   | manual                       |   | *                   | (4)                        |   |     |                              |                           |                 |      |              | l        |   |
|              |                   | (8)                |   |   | temperature                  |   | loading             | - QA Document              |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   | selection                    |   | (except MST)        | Audit (6)                  |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   |   |                              |   |                     | - QA shiftly audit         |   |     |                              |                           |                 |      |              | l        |   |
|              |                   |                    |   | I |                              | l | 1                   | (8)                        |   |     |                              | ĺ                         |                 |      |              | ı        | 1 |

| 1 0 121 (1112 1112)                                              |                                                                         |
|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Item: Burn In/Final Test/Test Backend                            | Control Number/Issue: 83MCT00018A/AY                                    |
| Type: Design _x_ Process                                         | Company, Group, Site/Business Unit: Freescale, TJN-FM                   |
| Prepared By: Liang Yang                                          | FMEA Date: 27-Jun-01 (Orig.)                                            |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Y | ang,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng Γ 06-Sep-13 (Rev.) |
|                                                                  |                                                                         |
|                                                                  |                                                                         |

|                                      |                           |                                             |             |                  |                                                          |   |                                                                                                                                                         |                                                                                                                                                    |   |             |                          |                                               | Action I                          | Resi        | ılts |   |   |
|--------------------------------------|---------------------------|---------------------------------------------|-------------|------------------|----------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|--------------------------|-----------------------------------------------|-----------------------------------|-------------|------|---|---|
| Process<br>Function/<br>Requirements | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure        | S<br>E<br>V | C<br>1<br>a<br>s | Potential<br>Cause(s)/<br>Mechanism(s)<br>of Failue      |   |                                                                                                                                                         | Current Design/<br>Process Controls<br>Detection                                                                                                   |   | R<br>P<br>N | Recommended<br>Action(s) | Responsibility &<br>Target<br>Completion Date | Actions Taken &<br>Effective Date | S<br>E<br>V |      | Е | P |
|                                      |                           |                                             | 8           |                  | Wrong O/I<br>configuration<br>setup                      | 3 | Dedicate<br>engineering<br>personel to<br>perform O/I<br>configuration                                                                                  | - QA Document<br>Audit (6)<br>- Auto-trigger on<br>missing<br>configuration to<br>respective PE<br>through scheduled<br>auto database<br>check (3) | 3 |             |                          | Liang Yang<br>R57253/05-30-<br>2014           |                                   |             |      |   |   |
|                                      |                           | Customer Line<br>pull (8)<br>Yield Loss (7) | 8           |                  | TSO not updated<br>timely to reflect<br>program revision | 1 | Only effective<br>version of Test<br>program is<br>available in Server                                                                                  | -Auto verify<br>program<br>information before<br>test start (2)<br>- First 200 units<br>yield check(5)<br>- QA Document<br>Audit (6)               | 2 | 16          | None                     |                                               |                                   |             |      |   |   |
|                                      |                           |                                             | 8           |                  | Program selection error                                  | 2 | Listed test     program     information on     TSO;     Listed handler     information on     TSO;     Auto-program     loading except for     A5 & MST | - QA Document<br>Audit (6)<br>- Buddy check<br>before test (7)<br>- QC in line gate<br>(4)<br>- QA shiftly audit<br>(8)                            | 4 | 64          | None                     |                                               |                                   |             |      |   |   |

|                           |                   |                                             |        |             |                                               |        |                                                     | _                                                                                                                                                  |        |    |             |                           | Action I        |        |        |        |        |
|---------------------------|-------------------|---------------------------------------------|--------|-------------|-----------------------------------------------|--------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-------------|---------------------------|-----------------|--------|--------|--------|--------|
| Process                   | Potential Failure | Potential                                   | S      | C           | Potential                                     | О      |                                                     | Current Design/                                                                                                                                    |        |    | Recommended | Responsibility &          | Actions Taken & | S      | O      |        | R      |
| Function/<br>Requirements | Mode              | Effect(s) of Failure                        | E<br>V | l<br>a<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue        | C<br>C | Process Controls<br>Prevention                      | Process Controls<br>Detection                                                                                                                      | E<br>T |    | Action(s)   | Target<br>Completion Date | Effective Date  | E<br>V | C<br>C | E<br>T | P<br>N |
|                           |                   |                                             | 8      | S           | SPV Program<br>selection error                | 1      | program reside in<br>SPV<br>2. Auto SPV             | - QC in line gate<br>(4)<br>- QA Document<br>Audit (6)<br>- QA shiftly audit<br>(8)                                                                | 4      | 32 | None        |                           |                 |        |        |        |        |
|                           |                   |                                             | 8      |             | Wrong O/I<br>configuration<br>setup           | 2      | configuration Download Gen2Spec parameters to auto- | - QA Document<br>Audit (6)<br>- Auto-trigger on<br>missing<br>configuration to<br>respective PE<br>through scheduled<br>auto database<br>check (3) | 3      | 48 | None        |                           |                 |        |        |        |        |
|                           | ESD/EOS           | Customer Line<br>pull (8)<br>Yield Loss (7) | 8      |             | -Wrist strap<br>and/or shoes<br>function fail | 1      | , ,                                                 | -Yield limit and<br>SBL check (3)<br>-JVT test at last<br>insertion (3)                                                                            | 3      | 24 | None        |                           |                 |        |        |        |        |
|                           |                   |                                             | 8      |             | No grounding<br>(work station /<br>rack)      | 1      | -Quarterly check                                    | -Yield limit and<br>SBL check (3)<br>-JVT test at last<br>insertion (3)                                                                            | 3      | 24 | None        |                           |                 |        |        |        |        |

|              |                   | IOIL            | 11.  |      | LIAILUN               | T'      | MODE AN                                | DEFFEC.               | IO   | A     | ALIBID             |                   |                |      |     |          |    |
|--------------|-------------------|-----------------|------|------|-----------------------|---------|----------------------------------------|-----------------------|------|-------|--------------------|-------------------|----------------|------|-----|----------|----|
| Item:        | Burn In/Final Tes | st/Test Backend |      |      |                       |         |                                        |                       | (    | Contr | ol Number/Issue:   | 83MCT00018A/A     | ΛY             |      |     |          |    |
| Type:        | Design            | _x_ Process     |      |      |                       | •       |                                        | Company,              | Gro  | up,Si | te/Business Unit:  | Freescale, TJN-FM | 1              |      |     |          |    |
| Prepared By: |                   |                 |      |      |                       |         |                                        |                       |      | -     | FMEA Date:         | 27-Jun-01         | (Orig.)        |      |     |          |    |
|              |                   | ST2 Hu,Peter Zh | ang, | Dong | g Gao,Liang Yang      | ,W      | ei Chen,HONGZE                         | H REN,LINGXU          | AN I | XU,S  | Sinbad Liu, Peng I |                   | (Rev.)         |      |     |          |    |
|              |                   | ,               | ,    |      | , , ,                 | <i></i> | ,                                      | <u>.</u>              |      | ĺ     | , &                |                   | .` ′           |      |     |          |    |
|              |                   |                 |      |      |                       |         |                                        |                       |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         |                                        |                       |      |       |                    |                   | Action I       | Resu | lts |          |    |
| Process      | Potential Failure | Potential       | S    | С    | Potential             | 0       | Current Design/                        | Current Design/       | D    | R     | Recommended        | Responsibility &  |                |      |     | D        | R  |
| Function/    | Mode              | Effect(s) of    | Ē    | 1    | Cause(s)/             |         | Process Controls                       |                       |      |       | Action(s)          | Target            | Effective Date | E    |     |          | P  |
| Requirements | 141046            | Failure         | V    | a    | Mechanism(s)          | C       |                                        | Detection             | Т    | N     | riction(b)         | Completion Date   | Effective Bute | V    |     | T        |    |
| requirements |                   | Tulluic         | 1    | S    | of Failue             | ~       | Trevention                             | Detection             | 1    | 11    |                    | Completion Date   |                | •    |     | 1        | 11 |
|              |                   |                 |      |      | Of Failue             |         |                                        |                       |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 | 0    | S    | т .                   | 1       | TT 1 1 4 1 11                          | 00: 1:                | 2    | 2.4   | NT.                |                   |                |      |     |          |    |
|              |                   |                 | 8    |      | Inaccurate            | 1       | Use bracket to hold                    | -                     | 3    | 24    | None               |                   |                |      |     |          |    |
|              |                   |                 |      |      | placement for ionizer |         | ionizer at a specific<br>correct place | (4) - High electrical |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      | IOIIIZCI              |         | correct place                          | fall out at next      |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         |                                        | insertion for         |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         |                                        | leakage or idd        |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         |                                        | failure (3)           |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         |                                        | - JVT test at last    |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         |                                        | insertion (3)         |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 | 0    |      | Testers / Handlers    | 2       | Check grounding                        | - JVT test at last    | 3    | 48    | None               |                   |                |      |     |          |    |
|              |                   |                 | 0    |      | environment           | _       |                                        | insertion (3)         | 3    | 40    | None               |                   |                |      |     |          |    |
|              |                   |                 |      |      | environment           |         | properly installed                     | insertion (3)         |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         | during half year                       |                       |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       |         | PM                                     |                       |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 | Q    |      | Spike voltage on      | 1       | Spike check during                     | Viald limit and       | 3    | 24    | None               |                   |                |      | -   | $\dashv$ |    |
|              |                   |                 | 0    |      | the DC                | 1       | NPI release                            | SBL check (3)         | 3    | 24    | INOME              |                   |                |      |     |          |    |
|              |                   |                 |      |      | measurement           |         | INI I ICICASC                          | -JVT or equivalent    |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      | measurement           |         |                                        | test methodology      |      |       |                    |                   |                |      |     |          |    |
|              |                   |                 |      |      |                       | ı       | 1                                      | icsi memodology       | 1    |       |                    |                   |                |      |     |          |    |

(3)

(3)

continuity check

Loadboard PM

buyoff and

during Loadboard

Loadboard traces 2

shorted

-Yield limit and

-JVT or equivalent test methodology

SBL check (3)

48

None

| POIENTIAL FAII                                                | LUKE MODE AND EFFECTS ANALYSIS (                               | rvica)            |                |
|---------------------------------------------------------------|----------------------------------------------------------------|-------------------|----------------|
| Item: Burn In/Final Test/Test Backend                         | Control Number/Issue:                                          | 83MCT00018A/A     | AY             |
| Type: Design _x_ Process                                      | Company, Group, Site/Business Unit:                            | Freescale, TJN-FI | M              |
| Prepared By: Liang Yang                                       | FMEA Date:                                                     | 27-Jun-01         | (Orig.)        |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Lian | g Yang, Wei Chen, HONGZHI REN, LINGXUAN XU, Sinbad Liu, Peng D | 06-Sep-13         | (Rev.)         |
|                                                               |                                                                |                   |                |
|                                                               |                                                                |                   |                |
|                                                               |                                                                |                   | Action Results |

|             |                   |                |       |       |                   |      |                                                                            |                                  |      |        |                  |                  | Action I       |     |     |    |
|-------------|-------------------|----------------|-------|-------|-------------------|------|----------------------------------------------------------------------------|----------------------------------|------|--------|------------------|------------------|----------------|-----|-----|----|
| Process     | Potential Failure | Potential      | S     | С     | Potential         | О    |                                                                            |                                  |      |        | Recommended      | Responsibility & |                |     | О   |    |
| Function/   | Mode              | Effect(s) of   | Е     | 1     | Cause(s)/         | C    | Process Controls                                                           |                                  |      |        | Action(s)        | Target           | Effective Date | Е   |     | E  |
| equirements |                   | Failure        | V     | a     | Mechanism(s)      | C    | Prevention                                                                 | Detection                        | T    | N      |                  | Completion Date  |                | V   | C   | T  |
|             |                   |                |       | s     | of Failue         |      |                                                                            |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       | s     |                   |      |                                                                            |                                  |      |        |                  |                  |                |     |     |    |
|             | Product           | Customer Line  | 8     |       | -Mix of rawstock  | 4    | -Handle only one                                                           | -Quantity count (6)              | 2    | 64     | None             |                  |                |     |     |    |
|             | mixed/escaped     | pull (8)       |       |       | and tested units  |      | lot in one station                                                         | -Sampling check                  |      |        |                  |                  |                |     |     |    |
|             |                   | Yield Loss (7) |       |       | / Mix of rawstock |      | -Perform marking                                                           | the marking (8)                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       | and reject from   |      | inspection before                                                          | -QC in line gating               |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       | different lot     |      | lot start                                                                  | (4)                              |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | -Material status identification                                            | -100% auto VM                    |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | before/after                                                               | inspection in packaging process. |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | process                                                                    | (4)                              |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | -Treat all                                                                 | -Test program auto               |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | uncomfirming                                                               | detect part                      |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | units and PE used                                                          | difference (3)                   |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | units as rejects                                                           | -Optimize ECID                   |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | - Proper labeling                                                          | system to auto hold              |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | using lot                                                                  | material if the                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | identification                                                             | ECID doesn't                     |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | barcode                                                                    | match between                    |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | - Pending rack,                                                            | different insertion              |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | Input & output                                                             | (2)                              |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | rack with proper                                                           |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | labeling - Label all work                                                  |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | place for proper                                                           |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | material                                                                   |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | segregation                                                                |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | -All tested good                                                           |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | partial/full tube are                                                      |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | to be placed inside                                                        |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | or next to the                                                             |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | tested good box                                                            |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | -Identified color                                                          |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | tray/tube to collect                                                       |                                  |      |        |                  |                  |                |     |     |    |
|             | 1                 |                |       |       |                   |      | rejects                                                                    |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                |       |       |                   |      | -Separate pending                                                          |                                  |      |        |                  |                  |                |     |     |    |
|             |                   |                | Elect | ronic | versions are unc  | onti | rack away from<br>plied except when                                        | accessed directly                | froi | n [do  | cument repositor | y].              |                |     |     |    |
|             |                   |                |       | Pri   | nted versions are | unc  | rack away from<br>olled except when<br>input rack by<br>ontrolled except v | hen stamped "Co                  | ntro | lled ( | Copy" in red.    | =                | Free           | sca | e R | ev |
|             |                   |                |       |       |                   |      | appearance and                                                             | 1                                | 1    | I      |                  |                  |                |     |     |    |

|              | Item: Burn In/Final Test/Test Backend  POTENTIAL FAILURE MODE AND EFFECTS ANALYSIS (FMEA)  Control Number/Issue: 83MCT00018A/A |                 |      |       |                     |     |                                      |                                  |      |       |                   |                   |                |   | 12 ( | 01 40 | , |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------|---------------------|-----|--------------------------------------|----------------------------------|------|-------|-------------------|-------------------|----------------|---|------|-------|---|
| Item:        | Burn In/Final Tes                                                                                                              | st/Test Backend |      |       |                     |     |                                      |                                  | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY             |   |      |       |   |
| Type:        | Design                                                                                                                         | _x_ Process     |      |       |                     | •   |                                      | Company,                         | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | 1              |   |      |       |   |
| Prepared By: | Liang Yang                                                                                                                     |                 |      |       |                     |     |                                      |                                  |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)        |   |      |       |   |
| Core Team:   | Peg Tang,ZJ-TES                                                                                                                | ST2 Hu,Peter Zh | ang, | ,Dong | g Gao,Liang Yang    | g,W | ei Chen,HONGZH                       | II REN,LINGXU                    | AN : | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)         |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      | •                                |      |       |                   |                   | •              |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      |                                  |      |       |                   |                   | Action I       |   |      |       |   |
|              | Potential Failure                                                                                                              | Potential       | S    |       | Potential           |     | Current Design/                      |                                  |      |       |                   | Responsibility &  |                |   |      |       |   |
| Function/    | Mode                                                                                                                           | Effect(s) of    | Е    | 1     | Cause(s)/           |     | Process Controls                     |                                  |      | P     | Action(s)         | Target            | Effective Date | E | C    | Е     | P |
| Requirements |                                                                                                                                | Failure         | V    | a     | Mechanism(s)        | C   | Prevention                           | Detection                        | T    | N     |                   | Completion Date   |                | V | C    | T     | N |
|              |                                                                                                                                |                 |      | s     | of Failue           |     |                                      |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      | S     |                     |     |                                      |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 | 8    |       | Miss test insertion | 1   | Test flow configed                   |                                  | 1    | 8     | None              |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       | or in line gate     |     | and auto controlled                  |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | by Genesis system                    | (1)                              |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      | (1)                              |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 | 8    |       | -Wrong binning      | 1   | -Disable the bin                     | -QA document                     | 4    | 32    | None              |                   |                |   |      | +     |   |
|              |                                                                                                                                |                 |      |       | setting of handler  |     | setting button at                    | audit (6)                        |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | the operation                        | -QC in line gate                 |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | interface to prevent                 | (4)                              |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | misclick.                            |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | -Use SC2 auto                        |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | control bin setting                  |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 | 0    | -     | -Leftover unit in   | 2   | -Clear machine                       | -Marking                         | 3    | 48    | None              |                   |                |   |      | +     |   |
|              |                                                                                                                                |                 | 0    |       | equipment           | 2   | before and after                     | inspection for first             | 3    | 40    | None              |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       | equipment           |     | test                                 | 200 units (5)                    |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | -Lot count before                    | -Quantity count (6)              |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | start testing                        | -Using SC2 auto                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      | count lot quantity               |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      | except MST, A5                   |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | _                                    | (3)                              |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     | validation                           |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     |     |                                      |                                  |      |       |                   |                   |                |   |      |       |   |
|              |                                                                                                                                |                 |      |       |                     | _   | 77 1 1100                            |                                  | _    | 22    |                   |                   |                |   | _    | _     |   |
|              |                                                                                                                                |                 | 8    | 1     | -speed sort device  | 1   | <ul> <li>-Using different</li> </ul> | <ul> <li>-QA document</li> </ul> | 4    | 32    | None              |                   |                |   |      |       |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

audit (6) -QC in line gate

(4)

color tray/tube to

replace different color clip for

material identification

mixed

|              |                   | POIE             | N I  | IA.  | LFAILUK                                                                 | L   | MODE AN                                                                                                                                         | DEFFEC                                                                               | 13   | Al    | NAL Y 515 (       | (FMLA)            | •               | uge  | 15   | 01 . | 0 |
|--------------|-------------------|------------------|------|------|-------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|-------|-------------------|-------------------|-----------------|------|------|------|---|
| Item:        | Burn In/Final Tes | st/Test Backend  |      |      |                                                                         |     |                                                                                                                                                 |                                                                                      | C    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |      |      |   |
| Type:        | Design            | _x_ Process      |      |      |                                                                         |     |                                                                                                                                                 | Company,C                                                                            | Grou | up,Si | te/Business Unit: | Freescale, TJN-FN | 1               |      |      |      |   |
| Prepared By: | Liang Yang        |                  |      |      |                                                                         |     |                                                                                                                                                 |                                                                                      |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |      |   |
| Core Team:   | Peg Tang, ZJ-TES  | ST2 Hu,Peter Zha | ang, | Dong | g Gao,Liang Yang                                                        | g,W | ei Chen,HONGZI                                                                                                                                  | II REN,LINGXUA                                                                       | N Z  | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |      |      |      |   |
|              |                   |                  |      |      |                                                                         |     |                                                                                                                                                 | _                                                                                    |      |       | _                 | -                 |                 |      |      |      |   |
|              |                   |                  |      |      |                                                                         |     |                                                                                                                                                 |                                                                                      |      |       |                   |                   |                 |      |      |      |   |
|              |                   |                  |      |      |                                                                         |     |                                                                                                                                                 |                                                                                      |      |       |                   |                   | Action I        | ₹esτ | ılts |      |   |
| Process      | Potential Failure | Potential        | S    | С    | Potential                                                               | О   | Current Design/                                                                                                                                 | Current Design/                                                                      | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D    | R |
| Function/    | Mode              | Effect(s) of     | Е    | 1    | Cause(s)/                                                               | C   | Process Controls                                                                                                                                | Process Controls                                                                     | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е    | P |
| Requirements |                   | Failure          | V    | a    | Mechanism(s)                                                            | C   | Prevention                                                                                                                                      | Detection                                                                            | T    | N     |                   | Completion Date   |                 | V    | С    | T    | N |
| •            |                   |                  |      | s    | of Failue                                                               |     |                                                                                                                                                 |                                                                                      |      |       |                   | Î                 |                 | ı '  |      |      |   |
|              |                   |                  |      | s    |                                                                         |     |                                                                                                                                                 |                                                                                      |      |       |                   |                   |                 | i '  |      |      |   |
|              |                   |                  | 8    |      | -Wrong customer<br>code key in for<br>factory<br>programming<br>product | 1   | -Add password<br>verification to<br>guaratee correct<br>customer code<br>input<br>-Add customer<br>code check on gate<br>test                   | audit (6) -QC in line gate (4) -100% EEV test (3)                                    |      |       | None              |                   |                 |      |      |      |   |
|              |                   |                  | 8    |      | -Engineer/<br>Techincian<br>mishandling<br>during on line<br>debug      | 1   | -Handle only one<br>lot in one station<br>-follow on line<br>debug instruction<br>-Material status<br>identification<br>before/after<br>process | -Quantity count (6)<br>-Sampling check<br>the marking (8)<br>-QC in line gate<br>(4) | 4    | 32    | None              |                   |                 |      |      |      |   |

-Treat PE used units as rejects -System auto clear testsite when quit engineer testing mode and sort all verification units into reject tray

| Item: Burn In/Final Test/Test Backend                          | Control Number/Issue: 83MCT00018A/AY                                  |
|----------------------------------------------------------------|-----------------------------------------------------------------------|
| Type: Design _x_ Process                                       | Company, Group, Site/Business Unit: Freescale, TJN-FM                 |
| Prepared By: Liang Yang                                        | FMEA Date: 27-Jun-01 (Orig.)                                          |
| Core Team: Peg Tang,ZJ-TEST2 Hu,Peter Zhang,Dong Gao,Liang Yan | g,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng [ 06-Sep-13 (Rev.) |

|                                      |                           |                                      |             |                       |                                                                                                                                            |             |                                                                                                                     |                                                                                                                               |        |             |                             |                                         | Action I                       | Resi        | ılts        |   |
|--------------------------------------|---------------------------|--------------------------------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|-------------|-----------------------------|-----------------------------------------|--------------------------------|-------------|-------------|---|
| Process<br>Function/<br>Requirements | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure | S<br>E<br>V | C<br>1<br>a<br>s<br>s | Potential Cause(s)/ Mechanism(s) of Failue  Leftover unit on                                                                               | O<br>C<br>C | Current Design/ Process Controls Prevention  -Check recycle tray                                                    | Process Controls Detection                                                                                                    | E<br>T | R<br>P<br>N | Recommended Action(s)  None | Responsibility & Target Completion Date | Actions Taken & Effective Date | S<br>E<br>V | O<br>C<br>C | P |
|                                      |                           |                                      |             |                       | recycle tray                                                                                                                               |             | before putting<br>them into machine<br>-Standard<br>operation of<br>recycle tray<br>checking<br>-partial tray alert | inspection in                                                                                                                 |        |             |                             |                                         |                                |             |             |   |
|                                      |                           |                                      | 8           |                       | Battery Backup Unit (BBU) memory full causing Castle handler fail to pickup rawstock unit and indexed to main tray buffer as an empty tray | 1           | Castle handler<br>firmware upgraded<br>to auto clear BBU<br>once 'handler<br>empty' status is<br>prompt.            | <ol> <li>QC in line gate.</li> <li>(4)</li> <li>QA shiftly audit</li> <li>(8)</li> <li>Quantity count</li> <li>(6)</li> </ol> |        | 32          | None                        |                                         |                                |             |             |   |
|                                      |                           |                                      | 8           |                       | Bin1 units from<br>previous insertion<br>are not cleared<br>from output bin1<br>stacker / rack                                             | 5           | NA                                                                                                                  | - QC in line gate. (4) 2. QA shiftly audit (8) 3. ECID detection method for applicable products (2) 4. Quantity count (6)     | 2      |             |                             | Peng Lin<br>R65908/06-28-<br>2014       |                                |             |             |   |

|              |                   | POTEN           | T    | [A]  | L FAILUR          | E   | MODE AN            | ID EFFECT              | ΓS   | Al    | NALYSIS (         | (FMEA)            | P               | age | 15 c | of 46 | 5 |
|--------------|-------------------|-----------------|------|------|-------------------|-----|--------------------|------------------------|------|-------|-------------------|-------------------|-----------------|-----|------|-------|---|
| Item:        | Burn In/Final Tes | st/Test Backend |      |      |                   |     |                    |                        | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |     |      |       |   |
| Type:        | Design            | _x_ Process     |      |      |                   |     |                    | Company,0              | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |     |      |       |   |
| Prepared By: | Liang Yang        |                 |      |      |                   | _   |                    |                        |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |     |      |       |   |
| Core Team:   | Peg Tang, ZJ-TES  | T2 Hu,Peter Zh  | ang, | Donş | g Gao,Liang Yang  | z,W | ei Chen,HONGZH     | II REN,LINGXU <i>A</i> | AN 2 | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |     |      |       |   |
|              |                   |                 |      |      |                   |     |                    | -                      |      |       |                   |                   | •               |     |      |       |   |
|              |                   |                 |      |      |                   |     |                    |                        |      |       |                   |                   |                 |     |      |       |   |
|              |                   |                 |      |      |                   |     |                    |                        |      |       |                   |                   | Action R        |     |      |       |   |
| Process      | Potential Failure | Potential       | S    | C    | Potential         | О   | Current Design/    | Current Design/        | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S   | О    | D     | R |
| Function/    | Mode              | Effect(s) of    | Е    | 1    | Cause(s)/         | C   | Process Controls   | Process Controls       | Е    | P     | Action(s)         | Target            | Effective Date  | Е   | C    | Е     | P |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)      | C   | Prevention         | Detection              | T    | N     |                   | Completion Date   |                 | V   | C    | T     | N |
|              |                   |                 |      | S    | of Failue         |     |                    |                        |      |       |                   |                   |                 | ıl  |      |       |   |
|              |                   |                 |      | S    |                   |     |                    |                        |      |       |                   |                   |                 | ı   |      |       |   |
|              |                   |                 | 8    |      | Reject mixed into | 2   | 1. Rawstock and    | -QC in line gate.      | 3    | 48    | None              |                   |                 |     |      |       |   |
|              |                   |                 |      | i    | good during       |     | tested material    | (4)                    |      |       |                   |                   |                 | ıl  |      |       |   |
|              |                   |                 |      | ı    | machine           |     | segregation by     | - QA shiftly audit     |      |       |                   |                   |                 | ıl  |      |       |   |
|              |                   |                 |      |      | downtime eg.      |     | 1                  | (8)                    |      |       |                   |                   |                 | ıl  |      |       |   |
|              |                   |                 |      | l    | During            |     | machine down       | - ECID detection       |      |       |                   |                   |                 | ı   |      |       |   |
|              |                   |                 |      | i    | maintenance       | İ   | 2. Technician to   | method for             |      |       |                   |                   |                 | ıl  |      |       |   |
|              |                   |                 |      | i    | ļ                 |     | •                  | applicable products    |      |       |                   |                   |                 | , I |      |       |   |
|              |                   |                 |      | ı    |                   | 1   | material for setup | (3)                    |      |       |                   |                   |                 |     |      |       |   |

during maintenance. All units are to be placed back into rawstock material 3. Scrap jammed

units
4. Centralized
reject scrapping in
QA area after QA
validation

Any engineering

lot need to use

engineering lot

Log in MDR for

engineering lot

class to ship as normal production lot class.

class.

Use production

purpose causing

production lot to

lot shipped as

lot class for

engineerig

customer.

Non qualified

engineering lot

shipped to

customer

Customer

(8)

application failure

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

All engineering lot 2

class require MDR

prior shipment. (2)

32

None

|              | POTENTIAL FAILURE MODE AND EFFECTS ANALYSIS (FMEA) |                  |      |      |                    |     |                      |                            |      |       |                   |                   |                |   | 16 | of 40 | ) |
|--------------|----------------------------------------------------|------------------|------|------|--------------------|-----|----------------------|----------------------------|------|-------|-------------------|-------------------|----------------|---|----|-------|---|
| Item:        | Burn In/Final Tes                                  | st/Test Backend  |      |      |                    |     |                      |                            | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY             |   |    |       |   |
| Type:        | Design                                             | _x_ Process      |      |      |                    |     |                      | Company,                   | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | 1              |   |    |       |   |
| Prepared By: |                                                    |                  |      |      |                    | _   |                      |                            |      |       | FMEA Date:        |                   | (Orig.)        |   |    |       |   |
| Core Team:   | Peg Tang,ZJ-TES                                    | ST2 Hu,Peter Zh  | ang, | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZI       | II REN,LINGXU              | AN 2 | XU,S  | inbad Liu,Peng I  | 06-Sep-13         | (Rev.)         |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      |                            |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      |                            |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      | _                  |     |                      |                            |      |       |                   |                   | Action F       |   | _  |       |   |
| Process      | Potential Failure                                  | Potential        | S    | C    | Potential          | О   | U                    | Current Design/            |      |       |                   | Responsibility &  |                |   |    |       | R |
| Function/    | Mode                                               | Effect(s) of     | Е    | 1    | Cause(s)/          | C   |                      | Process Controls           |      | P     | Action(s)         | Target            | Effective Date | Е | C  | Е     |   |
| Requirements |                                                    | Failure          | V    | a    | Mechanism(s)       | C   | Prevention           | Detection                  | T    | N     |                   | Completion Date   |                | V | C  | T     | N |
|              |                                                    |                  |      | S    | of Failue          |     |                      |                            |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      | S    |                    |     |                      |                            |      |       |                   |                   |                |   |    |       |   |
|              | Low yield or SBL                                   | - Yield loss (7) | 7    |      | Tester out of      | 1   | - Tester calibration |                            | 2    | 14    | None              |                   |                |   |    |       |   |
|              | over limit                                         |                  |      |      | calibration        |     | during regular PM    | control in Genesis         |      |       |                   |                   |                |   |    |       |   |
|              | (DC, functional, parametric,                       |                  |      |      |                    |     |                      | (3)<br>- SBL limit control |      |       |                   |                   |                |   |    |       |   |
|              | open/short,                                        |                  |      |      |                    |     |                      | (3)                        |      |       |                   |                   |                |   |    |       |   |
|              | electrical)                                        |                  |      |      |                    |     |                      | -Auto calibration          |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      | every program              |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      | loading (2)                |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      | -Diagnostic during         |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      | PM (5)                     |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  | 7    |      | -Wrong binning     | 1   | -Disable the bin     | -QA document               | 4    | 28    | None              |                   |                |   |    |       |   |
|              |                                                    |                  |      |      | setting of handler |     | setting button at    | audit (6)                  |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     | the operation        | -QC in line gate           |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     | interface to prevent | (4)                        |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     | misclick.            |                            |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     | -Use SC2 auto        |                            |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     | control bin setting  |                            |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      |                            |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  | 7    |      | - Handler setup    | 1   | - Handler regular    | - Yield limit              | 3    | 21    | None              |                   |                |   |    |       |   |
|              |                                                    |                  |      |      | problem            |     | PM                   | control in Genesis         |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     | - Set up check       | (3)                        |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      | - SBL limit control        |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      | (3)                        |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  |      |      |                    |     |                      | - First 200 units          |      |       |                   |                   |                |   |    |       |   |
|              |                                                    |                  | 1    |      |                    |     |                      | yield check (4)            | 1    |       |                   |                   |                |   |    |       |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

- Yield limit

(3)

control in Genesis

- SBL limit control

- First 200 units yield check (4)

None

- Load board

regular PM

Load Board

problem

|                           |                       |                                                                        | ·                |         |
|---------------------------|-----------------------|------------------------------------------------------------------------|------------------|---------|
| Item: Burn In/Final To    | est/Test Backend      | Control Number/Issue:                                                  | 83MCT00018A      | /AY     |
| Type: Design              | _x_ Process           | Company, Group, Site/Business Unit:                                    | Freescale, TJN-F | FM      |
| Prepared By: Liang Yang   |                       | FMEA Date:                                                             | 27-Jun-01        | (Orig.) |
| Core Team: Peg Tang,ZJ-TE | EST2 Hu,Peter Zhang,I | Dong Gao,Liang Yang,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng [ | 06-Sep-13        | (Rev.)  |
|                           |                       |                                                                        |                  |         |

|                           |                   |                                                                                |        |                  | -                                                      |   |                                                                  |                                                                                                                  |        |    |             |                        | Action I       |        |        |        |   |
|---------------------------|-------------------|--------------------------------------------------------------------------------|--------|------------------|--------------------------------------------------------|---|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------|----|-------------|------------------------|----------------|--------|--------|--------|---|
| Process                   | Potential Failure | Potential                                                                      | S      |                  | Potential                                              | О | _                                                                | Current Design/                                                                                                  |        |    | Recommended | Responsibility &       |                | S      |        |        |   |
| Function/<br>Requirements | Mode              | Effect(s) of Failure                                                           | E<br>V | 1<br>a<br>s<br>s | Cause(s)/<br>Mechanism(s)<br>of Failue                 | C | Process Controls Prevention                                      | Process Controls<br>Detection                                                                                    | E<br>T |    | Action(s)   | Target Completion Date | Effective Date | E<br>V | C<br>C | E<br>T | l |
|                           |                   |                                                                                | 7      |                  | - Tester board<br>problem                              | 1 | - Tester regular<br>PM                                           | - Yield limit<br>control in Genesis<br>(3)<br>- SBL limit control<br>(3)<br>- First 200 units<br>yield check (4) | 3      | 21 | None        |                        |                |        |        |        |   |
|                           |                   |                                                                                | 7      |                  | - Poor contact at<br>DUT socket<br>(device under test) | 3 | - Contact interface<br>regular<br>replacement                    | - Yield limit<br>control in Genesis<br>(3)<br>- SBL limit control<br>(3)<br>- First 200 units<br>yield check (4) | 3      | 63 | None        |                        |                |        |        |        |   |
|                           |                   | -Visual<br>mechanical failure<br>(6)<br>-Customer<br>application<br>failure(8) | 8      |                  | -Device<br>misplacement by<br>hanlder                  | 2 | -Half year PM<br>-Shiftly check<br>handler by setup<br>checklist | -In-process<br>sampling check (8)<br>-100% auto VM<br>inspection in<br>packaging process<br>(4)                  |        | 64 | None        |                        |                |        |        |        |   |
|                           |                   |                                                                                | 8      |                  | Unit overpress<br>during test                          | 1 | Input quad<br>hardstop to prevent<br>overpress                   | -In-process<br>sampling check (8)<br>-100% auto VM<br>inspection in<br>packaging process<br>(4)                  |        | 32 | None        |                        |                |        |        |        |   |

| TOTENTIAL FAILU                                                   | KE MODE AND EFFECTS ANALISIS (                         | rwitza)         |                |
|-------------------------------------------------------------------|--------------------------------------------------------|-----------------|----------------|
| Item: Burn In/Final Test/Test Backend                             | Control Number/Issue: 8                                | 3MCT00018A/     | 'AY            |
| Type: Design _x_ Process                                          | Company, Group, Site/Business Unit: I                  | Freescale,TJN-F | M              |
| Prepared By: Liang Yang                                           | FMEA Date:                                             | 27-Jun-01       | (Orig.)        |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Ya | nng,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng [ | 06-Sep-13       | (Rev.)         |
|                                                                   |                                                        |                 |                |
|                                                                   |                                                        |                 |                |
|                                                                   |                                                        | •               | Action Results |
|                                                                   |                                                        |                 |                |

|              |                   |              |   |   | ī                 |   | T                             | ī                     |   |     | 1         | ī               | Action I        |   | _ |          |   |
|--------------|-------------------|--------------|---|---|-------------------|---|-------------------------------|-----------------------|---|-----|-----------|-----------------|-----------------|---|---|----------|---|
|              | Potential Failure | Potential    | S |   | Potential         | О |                               | Current Design/       |   |     |           |                 | Actions Taken & |   | О |          | F |
| Function/    | Mode              | Effect(s) of | Е | 1 | Cause(s)/         |   | Process Controls              |                       |   |     | Action(s) | Target          | Effective Date  |   |   | Е        |   |
| Requirements |                   | Failure      | V | a | Mechanism(s)      | C | Prevention                    | Detection             | T | N   |           | Completion Date |                 | V | C | T        | Ì |
|              |                   |              |   | s | of Failue         |   |                               |                       |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   | S |                   |   |                               |                       |   |     |           |                 |                 |   |   |          | ı |
|              |                   |              | 8 |   | Bad socket/pogo   | 2 | -Hard stopper                 | -In-process           | 4 | 64  | None      |                 |                 |   |   |          | ı |
|              |                   |              |   |   | pin               |   | configuration                 | sampling check (8)    |   |     |           |                 |                 |   |   |          | ı |
|              |                   |              |   |   |                   |   | - Load board                  | -100% auto VM         |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   | -                             | inspection in         |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   |                               | packaging process (4) |   |     |           |                 |                 |   |   |          | ı |
|              |                   |              |   |   |                   |   | replacement                   | (4)                   |   |     |           |                 |                 |   |   |          | l |
|              |                   |              | 8 |   | ATU causing       | 2 | 1. Use                        | -In-process           | 4 | 64  | None      |                 |                 |   |   | $\dashv$ | Г |
|              |                   |              |   |   | drop units        | _ | CASM/CAIM to                  | sampling check (8)    | _ | 0-1 | Tione     |                 |                 |   |   |          | ı |
|              |                   |              |   |   |                   |   | cycle ATU and                 | -100% auto VM         |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   | observe for                   | inspection in         |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   |                               | packaging process     |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   | -                             | (4)                   |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   | during handler PM             |                       |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   | 2. Designed tray              |                       |   |     |           |                 |                 |   |   |          | ı |
|              |                   |              |   |   |                   |   | catcher with<br>loaded spring |                       |   |     |           |                 |                 |   |   |          | ı |
|              |                   |              |   |   |                   |   | 3. Add mounting               |                       |   |     |           |                 |                 |   |   |          | ı |
|              |                   |              |   |   |                   |   | plate to tighten              |                       |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   | door sensor                   |                       |   |     |           |                 |                 |   |   |          | ı |
|              |                   |              |   |   |                   |   |                               |                       |   |     |           |                 |                 |   |   |          | l |
|              |                   |              | 8 |   | Unit misplaced in | 2 | Handler buyoff                | -In-process           | 4 | 64  | None      |                 |                 | H |   | $\dashv$ | Γ |
|              |                   |              | ľ |   | tray at output    |   | after PM and                  | sampling check (8)    |   |     |           |                 |                 |   |   | , ,      | ı |
|              |                   |              |   |   | handler           |   | conversion                    | -100% auto VM         |   |     |           |                 |                 |   |   |          | l |
|              |                   |              |   |   |                   |   | sort xyz alignment            | inspection in         |   |     |           |                 |                 |   |   | , ,      | ı |
|              |                   |              |   |   |                   |   | jig                           | packaging process     |   |     |           |                 |                 |   |   | , ,      | ı |
|              |                   |              |   |   |                   |   |                               | (4)                   |   |     |           |                 |                 |   |   | , ,      | ı |
|              |                   |              |   |   |                   |   |                               |                       |   |     |           |                 |                 |   |   |          | ı |

|              |                   | POIL            | <b>1</b> | IAJ      | LTAILUN            | .L  | MODE AN                   | (DEFFEC.           | 19   | $\mathbf{A}$ | VAL I DID         | (FIVILA)          |                 |       |     |   |   |   |
|--------------|-------------------|-----------------|----------|----------|--------------------|-----|---------------------------|--------------------|------|--------------|-------------------|-------------------|-----------------|-------|-----|---|---|---|
| Item:        | Burn In/Final Tes | st/Test Backend |          |          |                    |     |                           |                    | (    | Contr        | ol Number/Issue:  | 83MCT00018A/A     | ·Υ              |       |     |   |   |   |
| Type:        | Design            | _x_ Process     |          |          |                    |     |                           | Company,           | Groi | up,Si        | te/Business Unit: | Freescale, TJN-FM | Л               |       |     |   |   |   |
| Prepared By: | Liang Yang        |                 |          |          |                    |     |                           |                    |      |              | FMEA Date:        | 27-Jun-01         | (Orig.)         |       |     |   |   |   |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zh | ang,     | ,Dong    | g Gao,Liang Yang   | z,W | ei Chen,HONGZH            | II REN,LINGXU/     | AN I | XU,S         | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |       |     |   |   |   |
|              |                   |                 |          |          | -                  |     |                           | •                  |      |              | _                 |                   | 1               |       |     |   |   |   |
|              |                   |                 |          |          |                    |     |                           |                    |      |              |                   |                   |                 |       |     |   |   |   |
|              |                   |                 |          |          |                    |     |                           |                    |      |              |                   |                   | Action I        | ₹esul | lts |   |   | 1 |
| Process      | Potential Failure | Potential       | S        | С        | Potential          | О   | Current Design/           | Current Design/    | D    | R            | Recommended       | Responsibility &  | Actions Taken & | S     | О   | D | R | 1 |
| Function/    | Mode              | Effect(s) of    | Е        | 1        | Cause(s)/          | C   | Process Controls          | Process Controls   | Е    | P            | Action(s)         | Target            | Effective Date  | Е     | C   | Е | P | ļ |
| Requirements |                   | Failure         | V        | a        | Mechanism(s)       | C   | Prevention                | Detection          | T    | N            |                   | Completion Date   | 1               | V     | C   | T | N | ļ |
|              |                   |                 |          | S        | of Failue          |     |                           |                    |      |              |                   | _                 |                 | 1 1   |     |   |   |   |
|              |                   |                 |          | s        |                    |     |                           |                    |      |              |                   |                   |                 |       |     |   |   | Į |
|              |                   |                 | 8        |          | - Operator handles | 2   | - Certify operators'      | -In-process        | 4    | 64           | None              |                   |                 | П     | 寸   | 一 |   | 1 |
|              |                   |                 |          |          | material           |     |                           | sampling check (8) |      |              |                   |                   |                 |       |     |   |   | 1 |
|              |                   |                 |          |          | manually.          |     | yearly exam to            | -100% auto VM      |      |              |                   |                   |                 |       |     |   |   | 1 |
|              |                   |                 |          |          |                    |     | check                     | inspection in      | '    |              |                   |                   |                 | 1     |     |   |   |   |
|              |                   |                 |          |          |                    |     |                           | packaging process  |      |              |                   |                   |                 | 1     |     |   |   |   |
|              |                   |                 |          |          |                    |     | 1                         | (4)                |      |              |                   |                   |                 |       |     |   |   |   |
|              |                   |                 |          |          |                    |     | as VM reject and          |                    |      |              |                   |                   |                 |       |     |   |   |   |
|              |                   |                 |          |          |                    |     | scrap.                    |                    | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 | 丄        | <b>↓</b> |                    | L   |                           |                    |      | <u>↓</u>     |                   |                   |                 | Ш     | _   |   |   |   |
|              |                   |                 | 8        |          | -Frost inside test | 2   | 1                         | -In-process        |      | 64           | None              |                   |                 | 1     |     |   |   |   |
|              |                   |                 |          |          | chamber            |     | periodically              | sampling check (8) | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 |          |          |                    |     | -Use air pressure to      |                    | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 |          |          |                    |     | *                         | inspection in      | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 |          |          |                    |     | _                         | packaging process  | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 |          |          |                    |     | 1                         | (4)                | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 |          |          |                    |     | -System auto warm up cold |                    | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 |          |          |                    |     | temperature               |                    | '    |              |                   |                   |                 | 1     |     |   |   | ļ |
|              |                   |                 |          |          | !                  | 1   | 1 11                      |                    | '    |              |                   |                   |                 | 1     |     |   |   | Į |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

-In-process

sampling check (8)

-100% auto VM

inspection in packaging process

None

SC2 Auto-defrost

-Add chamfer at

-Perform Track inspection when replacement during

soak booster track and singulator

function

track

PM

-Hit by damaged

track corner

|              |                   | TOTE               | 1 1  | 111. | DIME             | <u> </u> | MODETAL             | D EITEC.                        |      | 1 1   | WILL DID          | (I IVILIII)       |                 |      |      |        |   |
|--------------|-------------------|--------------------|------|------|------------------|----------|---------------------|---------------------------------|------|-------|-------------------|-------------------|-----------------|------|------|--------|---|
| Item:        | Burn In/Final Te  | est/Test Backend   |      |      |                  |          |                     |                                 | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |      |        |   |
| Type:        | Design            | _x_ Process        |      |      |                  |          |                     | Company,                        | Gro  | up,Si |                   | Freescale, TJN-FN |                 |      |      |        |   |
| Prepared By: |                   |                    |      |      |                  | _        |                     |                                 |      |       | FMEA Date:        |                   | (Orig.)         |      |      |        |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha   | ang, | Dong | g Gao,Liang Yang | g,W      | ei Chen, HONGZH     | II REN,LINGXU                   | AN 2 | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     | •                               |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     |                                 |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     |                                 |      |       |                   |                   | Action F        | Resu | ılts |        |   |
| Process      | Potential Failure | Potential          | S    | С    | Potential        | О        | Current Design/     | Current Design/                 | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D      | R |
| Function/    | Mode              | Effect(s) of       | Е    | 1    | Cause(s)/        | С        | Process Controls    |                                 | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | С    | Е      | P |
| Requirements |                   | Failure            | V    | a    | Mechanism(s)     | С        |                     | Detection                       | Т    | N     |                   | Completion Date   |                 | V    | С    |        |   |
| •            |                   |                    |      | s    | of Failue        |          |                     |                                 |      |       |                   | •                 |                 |      |      |        |   |
|              |                   |                    |      | s    |                  |          |                     |                                 |      |       |                   |                   |                 |      |      |        |   |
|              | Ball damage       | -Visual            | 8    |      | Bad socket/pogo  | 2        | -Hard stopper       | -In-process                     | 4    | 64    | None              |                   |                 |      |      | $\Box$ |   |
|              | g.                | mechanical failure |      |      | pin              |          | configuration       | sampling check (8)              |      |       |                   |                   |                 |      |      |        |   |
|              |                   | (6)                |      |      |                  |          | - Load board        | -100% auto VM                   |      |       |                   |                   |                 |      |      |        |   |
|              |                   | -Customer          |      |      |                  |          | regular PM          | inspection in                   |      |       |                   |                   |                 |      |      |        |   |
|              |                   | application        |      |      |                  |          | - Contact interface | packaging process               |      |       |                   |                   |                 |      |      |        |   |
|              |                   | failure(8)         |      |      |                  |          | regular             | (4)                             |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          | replacement         |                                 |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    | 8    |      | Unit jam at core | 2        | 1. Periodic handler | -In-process                     | 4    | 64    | None              |                   |                 |      |      |        |   |
|              |                   |                    |      |      | section          |          | PM to minimize      | sampling check (8)              |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          | jamming             | -100% auto VM                   |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     | inspection in                   |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     | packaging process               |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          | unit that jammed at | (4)                             |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          | core section        |                                 |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     |                                 |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    | _    |      |                  |          |                     | _                               |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    | 8    |      | -Device          | 2        | -Half year PM       | -In-process                     | 4    | 64    | None              |                   |                 |      |      |        |   |
|              |                   |                    |      |      | misplacement by  |          | -Shiftly check      | sampling check (8)              |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      | hanlder          |          | handler by setup    | -100% auto VM                   |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          | checklist           | inspection in packaging process |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     | (4)                             |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     | (4)                             |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    | 8    |      | Unit overpress   | 1        | Input quad          | -In-process                     | 4    | 32    | None              |                   |                 |      |      | H      |   |
|              |                   |                    | 0    |      | during test      | 1        |                     | sampling check (8)              | ľ    | 22    | 110110            |                   |                 |      |      |        |   |
|              |                   |                    |      |      | daring test      |          | overpress           | -100% auto VM                   | l    |       | 1                 |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          | o . crpress         | inspection in                   |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     | packaging process               |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     | (4)                             |      |       |                   |                   |                 |      |      |        |   |
|              |                   |                    |      |      |                  |          |                     |                                 |      |       |                   |                   |                 |      |      |        |   |

| 101EMINE IME                                                       | THE MODE IN THE ETT LETS MINIETS (                    | 11111111         |                |
|--------------------------------------------------------------------|-------------------------------------------------------|------------------|----------------|
| Item: Burn In/Final Test/Test Backend                              | Control Number/Issue: 8                               | 3MCT00018A/      | AY             |
| Type: Design _x_ Process                                           | Company, Group, Site/Business Unit: I                 | Freescale,TJN-Fl | M              |
| Prepared By: Liang Yang                                            | FMEA Date:                                            | 27-Jun-01        | (Orig.)        |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Yar | ng,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng D | 06-Sep-13        | (Rev.)         |
|                                                                    |                                                       |                  |                |
|                                                                    |                                                       |                  |                |
|                                                                    |                                                       |                  | Action Results |
|                                                                    |                                                       |                  |                |

|                                      |                           |                                      |             |                                                     |   |                                                                           |                                                                                                 |    |                          |                                               | Action F | kesu        | Its |             |   |
|--------------------------------------|---------------------------|--------------------------------------|-------------|-----------------------------------------------------|---|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----|--------------------------|-----------------------------------------------|----------|-------------|-----|-------------|---|
| Process<br>Function/<br>Requirements | Potential Failure<br>Mode | Potential<br>Effect(s) of<br>Failure | S<br>E<br>V | Potential<br>Cause(s)/<br>Mechanism(s)<br>of Failue |   | Current Design/<br>Process Controls<br>Prevention                         |                                                                                                 | P  | Recommended<br>Action(s) | Responsibility &<br>Target<br>Completion Date |          | S<br>E<br>V |     | D<br>E<br>T | P |
|                                      |                           |                                      | 8           | Unit misplaced in<br>tray at output<br>handler      | 2 | Handler buyoff<br>after PM and<br>conversion<br>sort xyz alignment<br>jig | -In-process<br>sampling check (8)<br>-100% auto VM<br>inspection in<br>packaging process<br>(4) | 64 | None                     |                                               |          |             |     |             |   |
|                                      |                           |                                      | 8           | FM on substrate                                     | 1 | 2. Auto-defrost for                                                       | sampling check (8)<br>-100% auto VM<br>inspection in                                            | 32 | None                     |                                               |          |             |     |             |   |
|                                      |                           |                                      | 8           | - Operator handles<br>material<br>manually.         | 2 | yearly exam to check - Treat manual                                       | -In-process<br>sampling check (8)<br>-100% auto VM<br>inspection in<br>packaging process<br>(4) | 64 | None                     |                                               |          |             |     |             |   |

|              |                   | POIL                       | 11   | IA   | LFAILUK                   | L   | MODE AN                     | D EFFEC.                          | 19   | AI     | ALL 1919 (        | (FIVILA)          |                 |      |     |   |   |
|--------------|-------------------|----------------------------|------|------|---------------------------|-----|-----------------------------|-----------------------------------|------|--------|-------------------|-------------------|-----------------|------|-----|---|---|
| Item:        | Burn In/Final Te  | st/Test Backend            |      |      |                           |     |                             |                                   | C    | Contro | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |     |   |   |
| Type:        | Design            | _x_ Process                |      |      |                           | _   |                             | Company,                          | Grou | up,Si  | te/Business Unit: | Freescale, TJN-FM | 1               |      |     |   |   |
| Prepared By: | Liang Yang        |                            |      |      |                           |     |                             |                                   |      |        | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |     |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha           | ang, | Dong | g Gao,Liang Yang          | g,W | ei Chen,HONGZF              | II REN,LINGXU                     | AN 2 | XU,S   | inbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |      |     |   |   |
| •            |                   |                            |      |      |                           |     |                             | -                                 |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     |                             |                                   |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     |                             |                                   |      |        |                   |                   | Action I        | Resu | lts |   |   |
| Process      | Potential Failure | Potential                  | S    | C    | Potential                 | О   | Current Design/             | Current Design/                   | D    | R      | Recommended       | Responsibility &  | Actions Taken & | S    | О   | D | R |
| Function/    | Mode              | Effect(s) of               | Е    | 1    | Cause(s)/                 |     |                             | Process Controls                  | E    | P      | Action(s)         | Target            | Effective Date  | Е    |     |   | P |
| Requirements |                   | Failure                    | V    | a    | Mechanism(s)              | C   | Prevention                  | Detection                         | T    | N      |                   | Completion Date   |                 | V    | C   | T | N |
|              |                   |                            |      | s    | of Failue                 |     |                             |                                   |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      | s    |                           |     |                             |                                   |      |        |                   |                   |                 |      |     |   |   |
|              | Crack/chip        | - Reliability              | 8    |      | -Wrong handler            | 1   | -Hard stopper               | -In-process                       | 2    | 16     | None              |                   |                 |      |     |   |   |
|              |                   | failure (8)                |      |      | adjustment                |     | configuration               | sampling check (8)                |      |        |                   |                   |                 |      |     |   |   |
|              |                   | -Electrical failure        |      |      |                           |     |                             | -Hard stopper auto                |      |        |                   |                   |                 |      |     |   |   |
|              |                   | (8)                        |      |      |                           |     |                             | alarm (2)                         |      |        |                   |                   |                 |      |     |   |   |
|              |                   | -Visual mechanical failure |      |      |                           |     |                             |                                   |      |        |                   |                   |                 |      |     |   |   |
|              |                   | (6)                        |      |      |                           |     |                             |                                   |      |        |                   |                   |                 |      |     |   |   |
|              |                   | (0)                        | 0    |      | T (1 1)                   | 1   | TT 1 .                      | T                                 |      | 1.6    | N                 |                   |                 |      |     |   |   |
|              |                   |                            | 8    |      | -Incorrect bushing on L/B | 1   | -Hard stopper configuration | -In-process<br>sampling check (8) | 2    | 16     | None              |                   |                 |      |     |   |   |
|              |                   |                            |      |      | Oli L/B                   |     | Configuration               | -Hard stopper auto                |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     |                             | alarm (2)                         |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     |                             | (=)                               |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            | 8    |      | - Operator handles        | 2   | - Certify operators'        | - Tray gap check                  | 4    | 64     | None              |                   |                 |      |     |   |   |
|              |                   |                            |      |      | material manually         |     | operation skill and         | (6)                               |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      | in tray.                  |     | yearly exam to              | -100% auto VM                     |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     | check                       | inspection in                     |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     | - Treat manual              | packaging process                 |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     | operated material           | (4)                               |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     | as VM reject and            |                                   |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     | scrap Put a empty tray      |                                   |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     | on the top before           |                                   |      |        |                   |                   |                 |      |     |   |   |
|              |                   |                            |      |      |                           |     | move out material           |                                   |      |        |                   |                   |                 |      |     |   |   |

from machine

| TOTENTIAL PARENCE MODE                                                             | THE EFFECTS MINIBIDIS (FINERY)                       |                |
|------------------------------------------------------------------------------------|------------------------------------------------------|----------------|
| Item: Burn In/Final Test/Test Backend                                              | Control Number/Issue: 83MCT00018A                    | /AY            |
| Type: Design _x_ Process                                                           | Company, Group, Site/Business Unit: Freescale, TJN-1 | FM             |
| Prepared By: Liang Yang                                                            | FMEA Date: 27-Jun-01                                 | (Orig.)        |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Yang, Wei Chen, HON | NGZHI REN,LINGXUAN XU,Sinbad Liu,Peng Γ 06-Sep-13    | (Rev.)         |
|                                                                                    |                                                      |                |
|                                                                                    |                                                      |                |
|                                                                                    |                                                      | Action Results |

|              | 1                 | ī                |   |   | ī                          | _ | 1                              |                                                     |   |    | 1           | 1                | Action I       |   |   |          | _ |
|--------------|-------------------|------------------|---|---|----------------------------|---|--------------------------------|-----------------------------------------------------|---|----|-------------|------------------|----------------|---|---|----------|---|
| Process      | Potential Failure |                  | S |   | Potential                  | О | _                              | Current Design/                                     |   |    | Recommended | Responsibility & |                | S | О |          |   |
| Function/    | Mode              | Effect(s) of     | Е | 1 | Cause(s)/                  |   | Process Controls               |                                                     |   |    | Action(s)   | Target           | Effective Date | E |   | E        |   |
| Requirements |                   | Failure          | V | a | Mechanism(s)               | C | Prevention                     | Detection                                           | T | N  |             | Completion Date  |                | V | C | T        |   |
|              |                   |                  |   | S | of Failue                  |   |                                |                                                     |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   | S |                            |   |                                |                                                     |   |    |             |                  |                |   |   |          |   |
|              | Sliver &          | Short circuit or | 8 |   | High plating               | 2 | Socket cleaning                | - Yield limit                                       | 3 | 48 | None        |                  |                |   |   | П        | ĺ |
|              |                   | leakage (8)      |   |   | material build up          |   | and replace                    | control in Genesis                                  |   |    |             |                  |                |   |   |          | l |
|              | pogo socket only) |                  |   |   | at test socket             |   | regularly                      | (3)                                                 |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   |                                | - SBL limit control                                 |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   |                                | (3)<br>- First 200 units                            |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   |                                | yield check (4)                                     |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   |                                | -V/M gate                                           |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   |                                | sampling check (8)                                  |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   |                                |                                                     |   |    |             |                  |                |   |   | ļ        | l |
|              | Pogo Burr         | Visual           | 6 |   | Mechanical                 | 2 | Check for socket               | - V/M gate                                          | 5 | 60 | None        |                  |                |   |   | $\dashv$ | r |
|              |                   | Mechanical       |   |   | Contact offset on          |   |                                | sampling check (8)                                  |   |    |             |                  |                |   |   |          | l |
|              |                   | Failure (6)      |   |   | device lead due            |   | during PM.                     | - First 200 units                                   |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   | wear and tear of           |   | Replace socket if              | V/M check (5)                                       |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   | test socket pogo           |   | pogo holes found               |                                                     |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   | holes                      |   | wear and tear                  |                                                     |   |    |             |                  |                |   |   | ļ        | l |
|              | D 11 1            | 0.11. 122.       | 0 |   |                            |   | D 1 1 DM                       | 77/2.6                                              | - | 40 | ) ·         |                  |                |   |   | $\dashv$ | L |
|              | U                 | Solderability    | 8 |   | test finger<br>deformation | 1 | -Board regular PM - Check Pogo | <ul> <li>V/M gate<br/>sampling check (8)</li> </ul> |   | 40 | None        |                  |                |   |   |          | l |
|              | surface           | Failure (8)      |   |   | deformation                |   | pin/socket                     | - First 200 units                                   |   |    |             |                  |                |   |   |          | l |
|              | surface           |                  |   |   |                            |   | befor&after each               | V/M check (5)                                       |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   | use                            | vivi check (5)                                      |   |    |             |                  |                |   |   |          | l |
|              |                   |                  |   |   |                            |   |                                |                                                     |   |    |             |                  |                |   |   | ļ        | l |
|              | Foreign Matter On | Solderability    | 8 |   | Dirt accumulated           | 1 | 1. handler cleaning            | - V/M gate                                          | 5 | 40 | None        |                  |                |   | 一 | 寸        | Γ |
|              |                   | Failure (8)      | 1 |   | in handler boat            |   | during shift start             | sampling check (8)                                  |   |    |             |                  |                |   |   | ļ        | l |
|              |                   |                  | 1 |   |                            |   | 2. boat clean                  | - First 200 units                                   |   |    |             |                  |                |   |   | ļ        | l |
|              |                   |                  | 1 |   |                            |   | during conversion              | V/M check (5)                                       |   |    |             |                  |                |   |   |          | l |
|              |                   |                  | 1 |   |                            |   |                                |                                                     |   |    |             |                  |                |   |   | ļ        | l |
|              |                   |                  |   |   |                            |   |                                |                                                     |   |    |             |                  |                |   |   |          | ĺ |

| Item:        | Burn In/Final Tes | st/Test Backend |      |      |                       |     | (                               | Contr              | ol Number/Issue: | 83MCT00018A/A | Υ                 |                   |                 |   |   | - |   |   |
|--------------|-------------------|-----------------|------|------|-----------------------|-----|---------------------------------|--------------------|------------------|---------------|-------------------|-------------------|-----------------|---|---|---|---|---|
|              |                   | _x_ Process     |      |      |                       | •   |                                 | Company,           |                  |               |                   | Freescale, TJN-FN |                 |   |   |   |   | - |
| Prepared By: |                   | _               |      |      |                       |     |                                 | 1 3,               |                  |               | FMEA Date:        |                   | (Orig.)         |   |   |   |   | _ |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zh | ang, | Dong | g Gao,Liang Yang      | g,W | ei Chen,HONGZI                  | II REN,LINGXU      | ٨N               | XU,S          | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |   |   |   |   |   |
|              |                   |                 |      |      |                       |     |                                 |                    |                  |               |                   |                   |                 |   |   |   |   | _ |
|              |                   |                 |      |      |                       |     |                                 |                    |                  |               |                   |                   |                 |   |   |   |   |   |
|              | I I               |                 | -    | _    | T =                   | T _ | T                               | T =                | -                |               | T                 | I=                | Action F        |   |   | - | _ | _ |
| Process      | Potential Failure | Potential       | S    | C    | Potential             |     | Current Design/                 |                    |                  |               |                   |                   | Actions Taken & |   |   | D |   |   |
| Function/    | Mode              | Effect(s) of    | Е    | 1    | Cause(s)/             |     | Process Controls                |                    |                  |               | Action(s)         | Target            | Effective Date  | Е | C | Е | P |   |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)          | С   | Prevention                      | Detection          | T                | N             |                   | Completion Date   |                 | V | C | 1 | N |   |
|              |                   |                 |      | S    | of Failue             |     |                                 |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 | 8    | S    | II.:4 J4 -£           | 2.  | 1. Ct Di. 1 t                   | - V/M gate         | 4                | 64            | N                 |                   |                 |   |   |   | ⊢ | _ |
|              |                   |                 | 8    |      | Unit drop out of tray | 2   | Strap Bin1 tray with cover tray | sampling check (8) | 4                | 04            | None              |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      | liay                  |     | right after testing             | - First 200 units  |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | 2. Unstrap                      | V/M check (5)      |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | rawstock bundle                 | -100% auto VM      |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | just before loading             |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | to ATU                          | packaging process  |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | 3. Use CASM/CAIM to             | (4)                |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | cycle ATU and                   |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | observe for                     |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | mechanical                      |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | binding issue                   |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | during handler PM               |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | (ATU issue)                     |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | 4. Designed tray                |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | catcher with                    |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | loaded spring                   |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | (ATU issue) 5. Standardize tray |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | latch spring to                 |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | 0.32mm diameter                 |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | (ATU issue)                     |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | 6. Add mounting                 |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | plate to tighten                |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | door sensor (ATU                |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | issue)                          |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | 7. Treat dropped                |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     | unit as reject                  |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     |                                 |                    |                  |               |                   |                   |                 |   |   |   | ĺ |   |
|              |                   |                 |      |      |                       |     |                                 |                    |                  |               | 1                 |                   |                 |   | l |   | ĺ |   |

| Item: Burn In/Final Test/Test Backend         | Control Number/Issue: 8                                                        | 83MCT00018A/    | 'AY     |
|-----------------------------------------------|--------------------------------------------------------------------------------|-----------------|---------|
| Type: Designx_ Process                        | Company, Group, Site/Business Unit: I                                          | Freescale,TJN-F | M       |
| Prepared By: Liang Yang                       | FMEA Date:                                                                     | 27-Jun-01       | (Orig.) |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang | , Dong Gao, Liang Yang, Wei Chen, HONGZHI REN, LINGXUAN XU, Sinbad Liu, Peng C | 06-Sep-13       | (Rev.)  |
|                                               | <u> </u>                                                                       |                 | _       |

|                           |                                   |                              |        |        |                                                                                                                                    |        |                                                                       |                                                                                                    |        |    |           | Action Results            |                |        |        |        |  |
|---------------------------|-----------------------------------|------------------------------|--------|--------|------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|----|-----------|---------------------------|----------------|--------|--------|--------|--|
| Process                   | Potential Failure                 |                              | S      |        | Potential                                                                                                                          | О      | _                                                                     | Current Design/                                                                                    |        |    |           | Responsibility &          |                | S      |        |        |  |
| Function/<br>Requirements | Mode                              | Effect(s) of Failure         | E<br>V | l<br>a | Cause(s)/ Mechanism(s) of Failue                                                                                                   | C<br>C | Process Controls<br>Prevention                                        | Process Controls Detection                                                                         | E<br>T |    | Action(s) | Target<br>Completion Date | Effective Date | E<br>V | C<br>C | E<br>T |  |
|                           |                                   |                              | 8      | S<br>S | Usage of fibrous                                                                                                                   | 1      | Banned cotton                                                         | - QA shiftly audit                                                                                 | 5      | 40 | None      |                           |                |        |        |        |  |
|                           |                                   |                              | 0      |        | material at<br>production floor                                                                                                    | 1      | bud, fibrous glove<br>and cloth from<br>production floor              | (8) - V/M gate sampling check (8) - First 200 units V/M check (5)                                  |        |    |           |                           |                |        |        |        |  |
|                           |                                   |                              | 8      |        | FM stick on pogo<br>pin                                                                                                            | 3      | Socket cleaning<br>and replace if<br>necessary                        | <ul><li>Yield limit control in Genesis</li><li>(3)</li><li>SBL limit control</li><li>(3)</li></ul> |        | 48 | None      |                           |                |        |        |        |  |
|                           |                                   |                              | 8      |        | FM from incoming/environ ment dropped to staging trays causing FM to attach to units when the trays are used.                      | 1      | Top tray cover for<br>trays during<br>staging period to<br>prevent FM | -V/M gate<br>sampling check (8)<br>-100% auto VM<br>inspection in<br>packaging process<br>(4)      |        | 32 | None      |                           |                |        |        |        |  |
|                           | Foreign Matter On<br>Package Body | Solderability<br>Failure (8) | 8      |        | FM from<br>incoming/environ<br>ment dropped to<br>staging trays<br>causing FM to<br>attach to units<br>when the trays are<br>used. | 1      | Top tray cover for<br>trays during<br>staging period to<br>prevent FM | Detection at TBE using 3x inspection (6)                                                           |        | 48 | None      |                           |                |        |        |        |  |

|                                                                     |                   |                                       | •                                    |   |                  |                |                                                       |                                     |      |      |                    | ,                |                 |   |   |   |   |
|---------------------------------------------------------------------|-------------------|---------------------------------------|--------------------------------------|---|------------------|----------------|-------------------------------------------------------|-------------------------------------|------|------|--------------------|------------------|-----------------|---|---|---|---|
| Item:                                                               | Burn In/Final Te  |                                       | Control Number/Issue: 83MCT00018A/AY |   |                  |                |                                                       |                                     |      |      |                    |                  |                 |   |   |   |   |
| Type: Design _x_ Process                                            |                   |                                       |                                      |   |                  |                | Company, Group, Site/Business Unit: Freescale, TJN-FM |                                     |      |      |                    |                  |                 |   |   |   |   |
| Prepared By: Liang Yang                                             |                   |                                       |                                      |   |                  |                |                                                       |                                     |      |      | FMEA Date:         |                  | (Orig.)         |   |   |   |   |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zhang, Dong Gao, Liang Yang |                   |                                       |                                      |   |                  |                | ei Chen, HONGZE                                       | II REN,LINGXU <i>A</i>              | AN : | XU,S | Sinbad Liu, Peng D | 06-Sep-13        | (Rev.)          |   |   |   |   |
|                                                                     |                   | · · · · · · · · · · · · · · · · · · · |                                      |   | , ,              | ,              | · · · · · · · · · · · · · · · · · · ·                 | •                                   |      |      | , ,                | •                |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       |                                     |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  | Action Results |                                                       |                                     |      |      |                    |                  |                 |   |   |   |   |
| Process                                                             | Potential Failure | Potential                             | S                                    | С | Potential        | О              | Current Design/                                       | Current Design/                     | D    | R    | Recommended        | Responsibility & | Actions Taken & | S | O | D | R |
| Function/                                                           | Mode              | Effect(s) of                          | Е                                    | 1 | Cause(s)/        | С              | Process Controls                                      | Process Controls                    | Е    | P    | Action(s)          | Target           | Effective Date  | Е | C | Е | P |
| Requirements                                                        |                   | Failure                               | V                                    | a | Mechanism(s)     | С              | Prevention                                            | Detection                           | Т    | N    |                    | Completion Date  |                 | V | C | T | N |
| •                                                                   |                   |                                       |                                      | s | of Failue        |                |                                                       |                                     |      |      |                    | •                |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      | s |                  |                |                                                       |                                     |      |      |                    |                  |                 |   |   |   |   |
| Laser mark                                                          | Missing mark      | -customer                             | 8                                    |   | -Laser generator | 1              | -Machine auto                                         | -First piece part                   | 2    | 16   | None               |                  |                 |   |   |   |   |
|                                                                     |                   | application failure                   |                                      |   | fail             |                | check laser power                                     | verification after                  |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   | - 8                                   |                                      |   |                  |                | before marking.                                       | marking(4)                          |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | -Machine auto                       |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | alarm when power                    |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | out of control(2)                   |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | -QA Gate(8)                         |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       |                                     |      |      |                    |                  |                 |   |   |   |   |
|                                                                     | Illegible mark    | Customer                              | 8                                    |   | Inappropriate    | 2              | Machine auto                                          | -First piece part                   | 2    | 32   | None               |                  |                 |   |   |   |   |
|                                                                     |                   | application failure                   |                                      |   | laser power      |                | check laser power                                     | verification after                  |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   | - 8                                   |                                      |   |                  |                | before marking.                                       | marking(4)                          |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | - Machine marking 100% auto scan in |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | subsequent process                  |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | (4)                                 |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | -QA visual                          |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | inspection 200                      |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | units/lot(8)                        |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | -Machine auto                       |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | alarm when laser                    |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | power                               |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       | abnormal.(2)                        |      |      |                    |                  |                 |   |   |   |   |
|                                                                     |                   |                                       |                                      |   |                  |                |                                                       |                                     |      |      |                    |                  |                 |   |   |   |   |

|              |                   | POTEN               | N.T. | IA   | L FAILUK         | $\mathbb{E}$ | MODE AN         | D EFFEC.           | 15   | Al    | NALYSIS           | (FMEA)            | 1               | agc  | 21  | л т | U |
|--------------|-------------------|---------------------|------|------|------------------|--------------|-----------------|--------------------|------|-------|-------------------|-------------------|-----------------|------|-----|-----|---|
| Item:        | Burn In/Final Te  | st/Test Backend     |      |      |                  |              |                 |                    | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |     |     |   |
| Type:        | Design            | _x_ Process         |      |      |                  |              |                 | Company,           | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | 1               |      |     |     |   |
| Prepared By: | Liang Yang        |                     |      |      |                  |              |                 |                    |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |     |     |   |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zha    | ang, | Dong | g Gao,Liang Yang | g,W          | ei Chen,HONGZH  | HI REN,LINGXU      | AN 2 | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |      |     |     |   |
|              |                   | ,                   |      |      | , , ,            | ,            | •               | •                  |      |       | , ,               |                   | .` ′            |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 |                    |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 |                    |      |       |                   |                   | Action I        | Rest | lts |     |   |
| Process      | Potential Failure | Potential           | S    | С    | Potential        | О            | Current Design/ | Current Design/    | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О   | D   | R |
| Function/    | Mode              | Effect(s) of        | Е    | 1    | Cause(s)/        | С            |                 | Process Controls   |      |       | Action(s)         | Target            | Effective Date  | Е    |     | Е   |   |
| Requirements |                   | Failure             | V    | a    | Mechanism(s)     | C            |                 | Detection          | Т    | N     |                   | Completion Date   |                 | V    |     |     | N |
| 1            |                   |                     |      | s    | of Failue        |              |                 |                    |      |       |                   | <b>1</b>          |                 |      |     |     |   |
|              |                   |                     |      | S    |                  |              |                 |                    |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     | 8    |      | Laser generator  | 1            | NA              | -First piece part  | 2    | 16    | None              |                   |                 |      |     |     |   |
|              |                   |                     |      |      | worn out         | 1            | 1421            | verification after | _    | 10    | Tronc             |                   |                 |      |     |     |   |
|              |                   |                     |      |      | worn out         |              |                 | marking(4)         |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | - Machine marking  |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | 100% auto scan in  |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | subsequent process |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | (4)                |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | -QA visual         |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | inspection 200     |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | units/lot(8)       |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | -Machine auto      |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | alarm when laser   |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | power              |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | abnormal.(2)       |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 |                    |      |       |                   |                   |                 |      |     |     |   |
|              | Marking           | Customer            | 8    |      | Location pin     | 1            | NA              | -First piece part  | 4    | 32    | None              |                   |                 |      |     |     |   |
|              | misalignment      | application failure |      |      | damaged          |              |                 | verification after |      |       |                   |                   |                 |      |     |     |   |
|              |                   | - 8                 |      |      |                  |              |                 | marking(4)         |      |       |                   |                   |                 |      |     |     |   |
|              |                   |                     |      |      |                  |              |                 | - Machine marking  |      |       |                   |                   |                 |      |     |     |   |

100% auto scan in subsequent process

-QA visual inspection 200 units/lot(8)

| Itami         | Burn In/Final Te        |                            | 11.   |      | LIAILUN             | <b>.</b> L' | WIODE AIV                          | DEFFEC                               |      |              |                   | 83MCT00018A/A     | V               | _    |     |   |   |
|---------------|-------------------------|----------------------------|-------|------|---------------------|-------------|------------------------------------|--------------------------------------|------|--------------|-------------------|-------------------|-----------------|------|-----|---|---|
|               |                         | _x_ Process                |       |      |                     |             |                                    | Company                              |      |              |                   | Freescale, TJN-FM |                 | —    |     |   |   |
| Prepared By:  |                         | _x_110cess                 |       |      |                     |             |                                    | Company,                             | JIU  | up,si        | FMEA Date:        |                   | (Orig.)         |      |     |   |   |
|               |                         | ST2 Hu Peter Zha           | no    | Dong | Gao Liang Yang      | w           | ei Chen,HONGZH                     | II REN LINGXIIA                      | N.   | XIIS         |                   |                   | (Rev.)          |      |     |   |   |
| Core Team.    | 1 cg rang,25-12.        | 312 Hu,I Cici Zili         | 1115, | Dong | g Gao, Liang Tang   | 5, **       | er enem, rrorvoza                  | H KEN,EHOKO7                         | 1112 | <b>AU</b> ,0 | mioad Liu,i eng L | 00-5ср-13         | (Rev.)          |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    |                                      |      |              |                   |                   |                 |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    |                                      |      |              |                   |                   | Action R        | ₹esτ | lts |   |   |
| Process       | Potential Failure       | Potential                  | S     | С    | Potential           | О           | Current Design/                    | Current Design/                      | D    | R            | Recommended       | Responsibility &  | Actions Taken & | S    | О   | D | R |
| Function/     | Mode                    | Effect(s) of               | Е     | 1    | Cause(s)/           |             | Process Controls                   |                                      |      | Р            | Action(s)         | Target            | Effective Date  | Е    | C   | Е | P |
| Requirements  |                         | Failure                    | V     | a    | Mechanism(s)        | С           | Prevention                         | Detection                            | T    | N            |                   | Completion Date   | ı               | V    |     | T | N |
| •             |                         |                            |       | s    | of Failue           |             |                                    |                                      |      |              |                   | •                 | ı               |      |     |   |   |
|               |                         |                            |       | s    |                     |             |                                    |                                      |      |              |                   |                   |                 |      |     |   |   |
|               | Wrong marking           | Customer                   | 8     |      | Marking             | 1           | -Auto load                         | -First piece part                    | 4    | 32           | None              |                   |                 | П    |     |   |   |
|               |                         | application failure        |       |      | information input   |             | marking                            | verification after                   |      |              |                   |                   | ı               |      |     |   |   |
|               |                         | - 8                        |       |      | error during        |             | information                        | marking(4)                           |      |              |                   |                   | į               |      |     |   |   |
|               |                         |                            |       |      | manual operation    |             |                                    | - Machine marking                    |      |              |                   |                   | ı               |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    | 100% auto scan in subsequent process |      |              |                   |                   | ı               |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    | (4)                                  |      |              |                   |                   | ı               |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    | -QA visual                           |      |              |                   |                   | ı               |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    | inspection 200                       |      |              |                   |                   | ı               |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    | units/lot(8)                         |      |              |                   |                   | ı               |      |     |   |   |
|               |                         |                            |       |      |                     |             |                                    |                                      |      |              |                   |                   |                 |      |     |   |   |
| 0x Inspection | Burr&sliver on          | -Visual                    | 8     |      | Shoulder            | 2           | NA                                 | -10x V/M gate (8)                    | 2    | 32           | None              |                   |                 | П    |     |   |   |
|               | shoulder/riser/         | mechanical failure         |       |      | damaged by BI       |             |                                    | - 100% auto vision                   |      |              |                   |                   | ı               |      |     |   |   |
|               | lead                    | (6)                        |       |      | (failure identified |             |                                    | inspection on                        |      |              |                   |                   | ı               |      |     |   |   |
|               |                         | -Customer                  |       |      | by KLM)             |             |                                    | device (2)                           |      |              |                   |                   | ı               |      |     |   |   |
|               |                         | application                |       |      |                     |             |                                    |                                      |      |              |                   |                   | ı               |      |     |   |   |
|               | D 11 10                 | failure(8)                 | 0     |      | TT '2 4 C 1 4       | 2           | 1 0                                | <b>N/M</b> (0)                       | 2    | 22           | NT.               |                   |                 | Щ    |     |   |   |
|               | Bend lead & coplanarity | -Visual mechanical failure | 8     |      | Unit out of pocket  | 2           | Strap the tray     whenever moving | -V/M gate (8)<br>- 100% auto vision  | 2    | 32           | None              |                   |                 |      |     |   |   |
|               | сорганатту              | (6)                        |       |      |                     |             | the material                       | inspection on                        |      |              |                   |                   | ı               |      |     |   |   |
|               |                         | -Customer                  |       |      |                     |             |                                    | device (2)                           |      |              |                   |                   | ı               |      |     |   |   |
|               |                         | application                |       |      |                     |             | check tray gap                     | ,                                    |      |              |                   |                   | ı               |      |     |   |   |
|               |                         | failure(8)                 |       |      |                     |             | before and after                   |                                      |      |              |                   |                   |                 | , 1  |     |   |   |
|               |                         |                            |       |      |                     |             | strapping to ensure                |                                      |      |              |                   |                   |                 |      |     |   |   |
|               |                         |                            |       |      |                     |             | no unit jump out                   |                                      |      |              |                   |                   |                 | , 1  |     |   |   |
|               |                         |                            |       |      |                     |             | the pocket                         |                                      |      |              |                   |                   |                 | , 1  |     |   |   |
|               |                         |                            |       |      |                     |             |                                    |                                      |      |              |                   |                   |                 |      |     |   |   |

|              |                   |                      | 1 1  | <b>A</b> 7 <b>B</b> 3 |                  |          | MODETH              | DELLE                  |      |          |                   | ,                 |                 |      |      |   |   |
|--------------|-------------------|----------------------|------|-----------------------|------------------|----------|---------------------|------------------------|------|----------|-------------------|-------------------|-----------------|------|------|---|---|
| -            | Burn In/Final Te  | st/Test Backend      |      |                       |                  |          |                     |                        |      |          |                   | 83MCT00018A/A     |                 |      |      |   |   |
| Type:        | Design            | _x_ Process          |      |                       |                  |          |                     | Company,               | Gro  | up,Si    | te/Business Unit: | Freescale, TJN-FM | 1               |      |      |   |   |
| Prepared By: | Liang Yang        |                      |      |                       |                  |          |                     |                        |      |          | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |   |   |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zha     | ang, | Dong                  | g Gao,Liang Yang | g,W      | ei Chen,HONGZF      | II REN,LINGXU <i>A</i> | AN I | XU,S     | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |
| •            |                   |                      |      |                       |                  |          |                     | •                      |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     |                        |      |          |                   |                   | Action I        | Resu | ılts |   |   |
| Process      | Potential Failure | Potential            | S    | С                     | Potential        | О        | Current Design/     | Current Design/        | D    | R        | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D | R |
| Function/    | Mode              | Effect(s) of         | Е    | 1                     | Cause(s)/        | С        | Process Controls    | Process Controls       | Е    | P        | Action(s)         | Target            | Effective Date  | Е    | C    | Е | P |
| Requirements |                   | Failure              | V    | a                     | Mechanism(s)     | С        |                     | Detection              | Т    | N        | , ,               | Completion Date   |                 | V    |      | Т |   |
| 1            |                   |                      |      | s                     | of Failue        |          |                     |                        |      |          |                   | 1                 |                 |      |      |   |   |
|              |                   |                      |      | s                     |                  |          |                     |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      | 8    |                       | Mishandling the  | 2        | 1. Strap the tray   | -V/M gate (8)          | 2    | 32       | None              |                   |                 |      |      |   |   |
|              |                   |                      |      |                       | unit             | <u> </u> | whenever moving     | - 100% auto vision     | _    | -        | Tione             |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          | the material        | inspection on          |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          | 2.Operator to       | device (2)             |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          | check tray gap      |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          | before and after    |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          | strapping to ensure |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          | no unit jump out    |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          | the pocket          |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     |                        |      |          |                   |                   |                 |      |      |   |   |
|              | Wrong orientation | -Customer            | 8    |                       | Unit replaced in | 2        | Pin1 reverification |                        | 1    | 16       | None              |                   |                 |      |      |   |   |
|              |                   | application failure  |      |                       | misorientated    |          | after unit          | sampling check (8)     |      |          |                   |                   |                 |      |      |   |   |
|              |                   | (8)                  |      |                       | form             |          | replacement         | -Vision system         |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | auto detect and        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | alarm (2)              |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | -Auto-Pin 1 locate     |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | system by              |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | vision(1)              |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | -Pin1 bar setting      |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | for tray locate(1)     |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     |                        |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     |                        |      | <u> </u> |                   |                   |                 |      |      |   |   |
|              | Mixed product     | -Electrical failure  | 8    |                       | Stray units at   | 2        |                     | ., 8                   | 2    | 32       | None              |                   |                 |      |      |   |   |
|              |                   | (8)                  |      |                       | inspection table |          | _                   | sampling check (8)     |      |          |                   |                   |                 |      |      |   |   |
|              |                   | -Reliability failure |      |                       |                  |          | lot.                | -Count quantity        |      |          |                   |                   |                 |      |      |   |   |
|              |                   | (8)                  |      |                       |                  |          |                     | per shop order (6)     |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | - Vision 100%          |      |          |                   |                   |                 |      |      |   |   |
|              |                   |                      |      |                       |                  |          |                     | inspection (2)         |      |          |                   |                   |                 | l    |      |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

|              |                   | TOTE            | 11   |       | LIAILUN          | 112 | MODE AN            | DEFFEC.             | 10   |       | NAL I DID         | (I'IVIII/A)       |                 |       |     |           |   |
|--------------|-------------------|-----------------|------|-------|------------------|-----|--------------------|---------------------|------|-------|-------------------|-------------------|-----------------|-------|-----|-----------|---|
| Item:        | Burn In/Final Tes | st/Test Backend |      |       |                  |     |                    |                     | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |       |     |           |   |
| Type:        | Design            | _x_ Process     |      |       |                  | -   |                    | Company,            | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM | Л               |       |     |           |   |
| Prepared By: | Liang Yang        |                 |      |       |                  |     |                    |                     |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |       |     |           |   |
| Core Team:   | Peg Tang,ZJ-TES   | ST2 Hu,Peter Zh | ang, | ,Donş | g Gao,Liang Yang | g,W | ei Chen,HONGZH     | II REN,LINGXU/      | AN I | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | ,                   |      |       |                   |                   | 1               |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    |                     |      |       |                   |                   |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    |                     |      |       |                   |                   | Action F        | Resul | lts |           |   |
| Process      | Potential Failure | Potential       | S    | С     | Potential        | О   | Current Design/    | Current Design/     | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S     | О   | D         | R |
| Function/    | Mode              | Effect(s) of    | Е    | l     | Cause(s)/        | C   | Process Controls   | Process Controls    | Е    | P     | Action(s)         | Target            | Effective Date  | Е     | C   | Е         | P |
| Requirements |                   | Failure         | V    | a     | Mechanism(s)     | C   | Prevention         | Detection           | T    | N     |                   | Completion Date   |                 | V     | C   | T         | N |
|              |                   |                 |      | s     | of Failue        |     |                    |                     |      |       |                   | -                 |                 |       |     |           |   |
|              |                   |                 |      | s     |                  |     |                    | 1                   |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 | 8    |       | Swap Shop order  | 2   | Process 1 lot at a | -System record the  | 2    | 32    | None              |                   |                 | H     | 寸   | $\exists$ |   |
|              |                   |                 |      |       |                  |     | time               | marking teach       |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | history in test     |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | summary, operator   |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | 100% check          |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | summary(4)          |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | -System auto check  |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | and judge if        |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | marking is correct  |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | or not after key in |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | the actual marking  |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | (2)<br>100% vision  |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    |                     |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    | inspection          |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    |                     |      |       |                   | ļ                 |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     |                    |                     |      |       |                   |                   |                 | Ш     |     |           |   |
|              |                   |                 | 8    |       | Swap bundle      | 2   | Process 1 lot at a | 1. Lot no           | 2    | 32    | None              |                   |                 |       |     |           |   |
|              |                   |                 |      |       |                  |     | time               | verification on     |      |       |                   | ļ '               | 1 '             | i I   |     |           |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

barcode label vs TSO (3) 2. 100% vision scanning (2) 3. QA VM Gate

-10x V/M gate (8)

- 100% auto vision

inspection on

device (2)

32

None

(8)

10x Inspection

Burr&sliver on

shoulder/riser/

lead

-Visual

-Customer

application failure(8)

(6)

mechanical failure

Shoulder

by KLM)

damaged by BI

(failure identified

2 NA

|              |                         | TOTE                                                                           | 11   |      | LIAILUN              | 112 | MODE AN                                                                                                                                       | DEFFEC.                                                            | IO   | AI    | ALL 1 DID         |                   |                 |   |   |   |   |
|--------------|-------------------------|--------------------------------------------------------------------------------|------|------|----------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|-------|-------------------|-------------------|-----------------|---|---|---|---|
| Item:        | Burn In/Final Te        | st/Test Backend                                                                |      |      |                      | _   |                                                                                                                                               |                                                                    | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |   |   |   |   |
| Type:        | Design                  | _x_ Process                                                                    |      |      |                      |     |                                                                                                                                               | Company,                                                           | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | 1               |   |   |   |   |
| Prepared By: | Liang Yang              |                                                                                |      |      |                      |     |                                                                                                                                               |                                                                    |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE          | ST2 Hu,Peter Zha                                                               | ang, | Dong | g Gao,Liang Yang     | g,W | ei Chen,HONGZH                                                                                                                                | II REN,LINGXU                                                      | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |   |   |   |   |
|              |                         |                                                                                |      |      |                      |     |                                                                                                                                               |                                                                    |      |       |                   |                   |                 |   |   |   |   |
|              |                         |                                                                                |      |      |                      |     |                                                                                                                                               |                                                                    |      |       |                   |                   |                 |   |   |   |   |
|              |                         |                                                                                |      |      |                      |     |                                                                                                                                               |                                                                    |      |       |                   |                   | Action F        |   |   |   |   |
| Process      | Potential Failure       | Potential                                                                      | S    | C    | Potential            |     | Current Design/                                                                                                                               | _                                                                  |      |       | Recommended       | Responsibility &  | Actions Taken & | S |   |   |   |
| Function/    | Mode                    | Effect(s) of                                                                   | Е    | 1    | Cause(s)/            | C   | Process Controls                                                                                                                              | Process Controls                                                   | Е    | P     | Action(s)         | Target            | Effective Date  | Е |   | Е | P |
| Requirements |                         | Failure                                                                        | V    | a    | Mechanism(s)         | C   | Prevention                                                                                                                                    | Detection                                                          | T    | N     |                   | Completion Date   |                 | V | C | T | N |
|              |                         |                                                                                |      | s    | of Failue            |     |                                                                                                                                               |                                                                    |      |       |                   |                   |                 | ı |   |   |   |
|              |                         |                                                                                |      | s    |                      |     |                                                                                                                                               |                                                                    |      |       |                   |                   |                 | ı |   |   |   |
|              | Bend lead & coplanarity | -Visual<br>mechanical failure<br>(6)<br>-Customer<br>application<br>failure(8) | 8    |      | Unit out of pocket   | 2   | 2.Operator to<br>check tray gap<br>before and after<br>strapping to ensure<br>no unit jump out<br>the pocket                                  | -V/M gate (8) - 100% auto vision inspection on device (2)          |      | 32    | None              |                   |                 |   |   |   |   |
|              |                         |                                                                                | 8    |      | Mishandling the unit | 2   | 1. Strap the tray whenever moving the material 2. Operator to check tray gap before and after strapping to ensure no unit jump out the pocket | -V/M gate (8)<br>- 100% auto vision<br>inspection on<br>device (2) | 2    | 32    | None              |                   |                 |   |   |   |   |

|              |                   | 1 0 121              | 1 -  |      |                  |     | 111022111           | ID BITEU           | _~   |       | 11121010           | (111111)          |                 |      |     |   |   |
|--------------|-------------------|----------------------|------|------|------------------|-----|---------------------|--------------------|------|-------|--------------------|-------------------|-----------------|------|-----|---|---|
| Item:        | Burn In/Final Te  | st/Test Backend      |      |      |                  |     |                     |                    | (    | Contr | ol Number/Issue:   | 83MCT00018A/A     | ·Υ              |      |     |   |   |
| Type:        | Design            | _x_ Process          |      |      |                  |     |                     | Company,           | Gro  | up,Si | ite/Business Unit: | Freescale, TJN-FM | 1               |      |     |   |   |
| Prepared By: | Liang Yang        |                      |      |      |                  |     |                     |                    |      |       | FMEA Date:         | 27-Jun-01         | (Orig.)         |      |     |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | Dong | g Gao,Liang Yang | g,W | ei Chen,HONGZF      | HI REN,LINGXU      | AN I | XU,S  | Sinbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     |                    |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     |                    |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     |                    |      |       |                    |                   | Action R        | Resu | lts |   |   |
| Process      | Potential Failure | Potential            | S    | С    | Potential        | О   | Current Design/     | Current Design/    | D    | R     | Recommended        | Responsibility &  | Actions Taken & | S    | О   | D | R |
| Function/    | Mode              | Effect(s) of         | Е    | 1    | Cause(s)/        |     | Process Controls    | _                  |      |       | Action(s)          | Target            |                 | Е    | C   | Е | P |
| Requirements |                   | Failure              | V    | a    | Mechanism(s)     | С   |                     | Detection          | Т    | N     |                    | Completion Date   |                 | v    | С   | T |   |
| 1            |                   |                      |      | s    | of Failue        |     |                     |                    |      |       |                    | <b>r</b>          |                 |      |     |   |   |
|              |                   |                      |      | s    |                  |     |                     |                    |      |       |                    |                   |                 |      |     |   |   |
|              | Wrong orientation | -Customer            | 8    |      | Unit replaced in | 2   | Pin1 reverification | -V/M gate          | 1    | 16    | None               |                   |                 | Н    |     |   |   |
|              | Wrong orientation | application failure  | -    |      | misorientated    | _   | after unit          | sampling check (8) | 1    | 10    | rone               |                   |                 |      |     |   |   |
|              |                   | (8)                  |      |      | form             |     | replacement         | -Vision system     |      |       |                    |                   |                 |      |     |   |   |
|              |                   | (-)                  |      |      |                  |     |                     | auto detect and    |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     | alarm (2)          |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     | -Auto-Pin 1 locate |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     | system by          |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     | vision(1)          |      |       |                    |                   |                 | 1 1  |     |   |   |
|              |                   |                      |      |      |                  |     |                     | -Pin1 bar setting  |      |       |                    |                   |                 | 1 1  |     |   |   |
|              |                   |                      |      |      |                  |     |                     | for tray locate(1) |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     |                    |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     |                    |      |       |                    |                   |                 |      |     |   |   |
|              | Mixed product     | -Electrical failure  | 8    |      | Stray units at   | 2   | Clear work station  | -V/M gate          | 2    | 32    | None               |                   |                 | П    |     |   |   |
|              |                   | (8)                  |      |      | inspection table |     |                     | sampling check (8) |      |       |                    |                   |                 |      |     |   |   |
|              |                   | -Reliability failure |      |      |                  |     | lot.                | -Count quantity    |      |       |                    |                   |                 |      |     |   |   |
|              |                   | (8)                  |      |      |                  |     |                     | per shop order (6) |      |       |                    |                   |                 | 1    |     |   |   |
|              |                   |                      |      |      |                  |     |                     | - Vision 100%      |      |       |                    |                   |                 |      |     |   |   |
|              |                   |                      |      |      |                  |     |                     | inspection (2)     |      |       |                    |                   |                 | 1    |     |   |   |

|              |                   |                          | <u> </u> | IA.  | L FAILUK                  | L        | MODE AN                     | DEFFEC                                 |      |       |                                | ` /               | 1               | 50     |        | 01 1   |    |
|--------------|-------------------|--------------------------|----------|------|---------------------------|----------|-----------------------------|----------------------------------------|------|-------|--------------------------------|-------------------|-----------------|--------|--------|--------|----|
|              | Burn In/Final Te  |                          |          |      |                           |          |                             |                                        |      |       |                                | 83MCT00018A/A     |                 |        |        |        |    |
|              | _                 | _x_ Process              |          |      |                           |          |                             | Company,                               | Grou | up,Si |                                | Freescale, TJN-FN |                 |        |        |        |    |
|              | Liang Yang        |                          |          |      |                           |          |                             |                                        |      |       | FMEA Date:                     |                   | (Orig.)         |        |        |        |    |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha         | ang,     | Dong | g Gao,Liang Yang          | g,W      | ei Chen,HONGZF              | II REN,LINGXUA                         | AN 2 | XU,S  | Sinbad Liu,Peng D              | 06-Sep-13         | (Rev.)          |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             |                                        |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             |                                        |      |       |                                |                   | A .: T          |        | 1.     |        |    |
| D.           | D ( ( 1E 1        | D 4 41 1                 | С        |      | D ( ( 1                   |          | [C + D + 7                  | C (D : /                               | Ъ    | ъ     | In 1.1                         | D 11.11. 0        | Action R        |        |        | ъ      | D  |
| Process      | Potential Failure |                          | S        |      | Potential                 |          |                             | Current Design/                        |      |       |                                |                   | Actions Taken & |        |        |        |    |
| Function/    | Mode              | Effect(s) of             | E        | 1    | Cause(s)/                 | C        |                             | Process Controls                       |      | P     | Action(s)                      | Target            | Effective Date  | E<br>V | C<br>C | E<br>T | P  |
| Requirements |                   | Failure                  | V        | a    | Mechanism(s)<br>of Failue | ١        | Prevention                  | Detection                              | T    | N     |                                | Completion Date   |                 | v      | C      | 1      | IN |
|              |                   |                          |          | S    | of Failue                 |          |                             |                                        |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          | 8        | S    | C C11                     | 2        | D 1 1-4 -4 -                | C4                                     | 2    | 22    | None                           |                   |                 |        | _      |        |    |
|              |                   |                          | ٥        |      | Swap Shop order           | 2        | Process 1 lot at a time     | -System record the marking teach       | 2    | 32    | None                           |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          | time                        | history in test                        |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | summary, operator                      |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | 100% check                             |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | summary(4)                             |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | -System auto check                     |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | and judge if                           |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | marking is correct                     |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | or not after key in the actual marking |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | (2)                                    |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | 100% vision                            |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | inspection                             |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             |                                        |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             |                                        |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          | 8        |      | Swap bundle               | 2.       | Process 1 lot at a          | 1. Lot no                              | 2.   | 32    | None                           |                   |                 |        |        |        |    |
|              |                   |                          |          |      | 5 wap canale              | <u> </u> | time                        | verification on                        | _    | -     |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | barcode label vs                       |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | TSO (3)                                |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | 2. 100% vision                         |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | scanning (2)                           |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | 3. QA VM Gate                          |      |       |                                |                   |                 |        |        |        |    |
|              |                   |                          |          |      |                           |          |                             | (8)                                    |      |       |                                |                   |                 |        |        |        |    |
| Bake         | Mixed product     | -Electrical failure      | 8        |      | -Operator handles         | 3        | -Ensure only one            | -Count the quantity                    | 4    | 96    | Using bakeable                 | HONGZHI REN       |                 |        |        |        |    |
|              |                   | (8)                      |          |      | the wrong device          |          | lot in work table           | for tube                               |      |       | tube to avoid                  | B06298/04-30-     |                 |        |        |        |    |
|              |                   | -Reliability failure (8) | 1        |      | without check<br>marking  |          | for tube package Verify lot | package(6) -100% auto vision           |      |       | mistake during<br>tube to tube | 2014              |                 |        |        |        |    |
|              |                   | (0)                      | 1        | 1    | marking                   |          | - verify for                | -100% auto vision                      |      | I     | tube to tube                   | l l               | 4               |        |        | 1 1    |    |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

inspection in

subsequence

process (4)

process

SEV=8, OCC=1,

DET=4, RPN=32

number/ magazine

number vs. shop

order

|                 |                   | POIL                 | <u> 1                                   </u> | IA.  | LFAILUN                               | T.  | MODE AN             | DEFFEC                              | 19   | AI    | NALISIS           | (FWIEA)           |                |   |          |          |   |
|-----------------|-------------------|----------------------|----------------------------------------------|------|---------------------------------------|-----|---------------------|-------------------------------------|------|-------|-------------------|-------------------|----------------|---|----------|----------|---|
| Item:           | Burn In/Final Te  | st/Test Backend      |                                              |      |                                       |     |                     |                                     | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY             |   |          |          |   |
| Type:           | Design            | _x_ Process          |                                              |      |                                       |     |                     | Company,                            | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л              |   |          |          |   |
| Prepared By:    | Liang Yang        |                      |                                              |      |                                       | _   |                     |                                     |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)        |   |          |          |   |
| Core Team:      | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zh      | ang,                                         | Dong | g Gao,Liang Yang                      | g,W | ei Chen,HONGZF      | II REN,LINGXU                       | AN 2 | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)         |   |          |          |   |
|                 |                   |                      |                                              |      |                                       |     |                     |                                     |      |       |                   |                   |                |   |          |          |   |
|                 |                   |                      |                                              |      |                                       |     |                     |                                     |      |       |                   |                   |                |   |          |          |   |
|                 |                   |                      |                                              |      |                                       |     |                     |                                     |      |       |                   |                   | Action F       |   |          |          |   |
| Process         | Potential Failure | Potential            | S                                            | C    | Potential                             | О   | U                   | Current Design/                     |      |       | Recommended       | Responsibility &  |                | S |          |          |   |
| Function/       | Mode              | Effect(s) of         | Е                                            | 1    | Cause(s)/                             | C   | Process Controls    | Process Controls                    | Е    | P     | Action(s)         | Target            | Effective Date | Е | C        |          | P |
| Requirements    |                   | Failure              | V                                            | a    | Mechanism(s)                          | C   | Prevention          | Detection                           | T    | N     |                   | Completion Date   |                | V | C        | T        | N |
|                 |                   |                      |                                              | s    | of Failue                             |     |                     |                                     |      |       |                   |                   | ,              |   |          |          |   |
|                 |                   |                      |                                              | s    |                                       |     |                     |                                     |      |       |                   |                   | ,              |   |          |          |   |
|                 | Miss bake         | -Reliability failure | 8                                            |      | -Operator forgets                     | 2   | -Follow TSO and     | -Genesis system                     | 2    | 32    | None              |                   |                |   |          |          |   |
|                 |                   | (8)                  |                                              |      | to do bake step                       |     | SFC instruction     | control (2)                         |      |       |                   |                   | ,              |   |          |          |   |
|                 |                   |                      |                                              |      | and transfer the                      |     |                     | -Buddy check (7)                    |      |       |                   |                   |                |   |          |          |   |
|                 |                   |                      |                                              |      | material to the                       |     |                     |                                     |      |       |                   |                   | ,              |   |          |          |   |
|                 |                   |                      |                                              |      | next step.                            |     |                     |                                     |      |       |                   |                   | ,              |   |          |          |   |
|                 |                   |                      | 0                                            |      | Dlaga mua halra                       | 2   | -Different          | Canasia avatam                      | 2    | 32    | None              |                   |                |   |          |          |   |
|                 |                   |                      | 8                                            |      | -Place pre-bake<br>units into post-   | 2   | requirement lot     | -Genesis system control (2)         | 2    | 32    | None              |                   | ,              |   |          |          |   |
|                 |                   |                      |                                              |      | bake units                            |     | stock in different  | Control (2)                         |      |       |                   |                   |                |   |          |          |   |
|                 |                   |                      |                                              |      | oute units                            |     | area                |                                     |      |       |                   |                   |                |   |          |          |   |
|                 | Time/Temperature  | -Customer            | 8                                            |      | -Wrong time and                       | 1   | -Fix timer and      | -Auto check                         | 2    | 16    | None              |                   |                |   |          |          |   |
|                 | incompetent       | application failure  |                                              |      | temperature                           |     | temperature         | system alarm(2)                     |      |       |                   |                   |                |   |          |          |   |
|                 |                   | (8)                  |                                              |      |                                       |     | controller to auto- |                                     |      |       |                   |                   |                |   |          |          |   |
|                 |                   |                      |                                              |      |                                       |     | monitor             |                                     |      |       |                   |                   |                |   |          |          |   |
| Dry air storage | Moisture out of   | - Delamination       | 8                                            |      | - Dry air                             | 1   | N/A                 | - Flow meter check                  | 6    | 48    | None              |                   |                |   |          |          |   |
|                 | control           | issue (8)            |                                              |      | barometric                            |     |                     | per setup checklist                 |      |       |                   |                   |                |   |          |          |   |
|                 |                   | -Customer            |                                              |      | pressure low                          |     |                     | (6)                                 |      |       |                   |                   |                |   |          |          |   |
|                 |                   | application failure  |                                              |      |                                       |     |                     | - HIC monitor /                     |      |       |                   |                   |                |   |          |          |   |
|                 |                   | (8)                  |                                              |      |                                       |     |                     | open the Dry air cabinet (6)        |      |       |                   |                   |                |   |          |          |   |
|                 | Miss Dry air      | - Delamination       | 8                                            |      | Omanatan fans -t-                     | 2   | -Follow SFC         | ` ′                                 | 2.   | 32    | None              |                   |                |   | $\vdash$ | $\vdash$ |   |
|                 | storage           | issue (8)            | ð                                            |      | -Operator forgets to put the lot into | 2   | instruction.        | -Buddy check (7)<br>-Genesis system | 2    | 32    | none              |                   |                |   |          |          |   |
|                 | Storage           | -Customer            |                                              |      | the Dry air                           |     | mou uction.         | control (2)                         |      |       |                   |                   |                |   |          |          |   |
|                 |                   |                      |                                              |      |                                       |     |                     |                                     |      |       |                   |                   |                |   |          |          |   |

application failure

cabinet

|               |                         | TOIL                                                                           | 1 1  | <b>1</b> / <b>1</b> / | DIME                 | <u> </u> | MODE                                                                                                                                          | D LITEC.                                                           |      | 1 1 1 | WILL DID          | (I IVIII)         |                 |     |    |   |   |
|---------------|-------------------------|--------------------------------------------------------------------------------|------|-----------------------|----------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|-------|-------------------|-------------------|-----------------|-----|----|---|---|
| Item:         | Burn In/Final Te        | st/Test Backend                                                                |      |                       |                      | _        |                                                                                                                                               |                                                                    | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |     |    |   |   |
| Type:         | Design                  | _x_ Process                                                                    |      |                       |                      |          |                                                                                                                                               | Company,                                                           | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |     |    |   |   |
| Prepared By:  |                         |                                                                                |      |                       |                      | _        |                                                                                                                                               |                                                                    |      |       | FMEA Date:        |                   | (Orig.)         |     |    |   |   |
| Core Team:    | Peg Tang,ZJ-TE          | ST2 Hu,Peter Zha                                                               | ang, | Dong                  | g Gao,Liang Yang     | g,W      | ei Chen,HONGZI                                                                                                                                | II REN,LINGXU                                                      | AN 2 | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |     |    |   |   |
|               |                         |                                                                                |      |                       |                      |          |                                                                                                                                               | -                                                                  |      |       |                   |                   |                 |     |    |   |   |
|               |                         |                                                                                |      |                       |                      |          |                                                                                                                                               |                                                                    |      |       |                   |                   |                 |     |    |   |   |
|               |                         |                                                                                |      |                       |                      |          |                                                                                                                                               |                                                                    |      |       |                   |                   | Action F        |     |    |   |   |
| Process       | Potential Failure       | Potential                                                                      | S    | C                     | Potential            | О        | Current Design/                                                                                                                               | Current Design/                                                    | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S   | О  | D | R |
| Function/     | Mode                    | Effect(s) of                                                                   | Е    | 1                     | Cause(s)/            | C        | Process Controls                                                                                                                              | Process Controls                                                   | Е    | P     | Action(s)         | Target            | Effective Date  | Е   |    |   | P |
| Requirements  |                         | Failure                                                                        | V    | a                     | Mechanism(s)         | C        | Prevention                                                                                                                                    | Detection                                                          | T    | N     |                   | Completion Date   |                 | V   | C  | T | N |
|               |                         |                                                                                |      | S                     | of Failue            |          |                                                                                                                                               |                                                                    |      |       |                   |                   |                 | ı ' | ı  |   |   |
|               |                         |                                                                                |      | S                     |                      |          |                                                                                                                                               |                                                                    |      |       |                   |                   |                 | i ' | il |   |   |
| 3x inspection | Bend lead & coplanarity | -Visual<br>mechanical failure<br>(6)<br>-Customer<br>application<br>failure(8) | 8    |                       | Unit out of pocket   | 2        | 1. Strap the tray whenever moving the material 2. Operator to check tray gap before and after strapping to ensure no unit jump out the pocket |                                                                    |      |       | None              |                   |                 |     |    |   |   |
|               |                         |                                                                                | 8    |                       | Mishandling the unit | 2        | 1. Strap the tray whenever moving the material 2. Operator to check tray gap before and after strapping to ensure no unit jump out the pocket | -V/M gate (8)<br>- 100% auto vision<br>inspection on<br>device (2) | 2    | 32    | None              |                   |                 |     |    |   |   |

|              |                   |                                                           | ' - ' |      |                                     |    | 112022121                                        | D EITEU                                                                                                                                                                      | _ ~  |       | 111211010         | (= = : = = - )    |                 |      |      |   |   |
|--------------|-------------------|-----------------------------------------------------------|-------|------|-------------------------------------|----|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------------------|-------------------|-----------------|------|------|---|---|
| Item:        | Burn In/Final Te  | st/Test Backend                                           |       |      |                                     |    |                                                  |                                                                                                                                                                              | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | Υ               |      |      |   |   |
| Type:        | Design            | _x_ Process                                               |       |      |                                     |    |                                                  | Company,                                                                                                                                                                     | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |      |      |   |   |
| Prepared By: | Liang Yang        |                                                           |       |      |                                     |    |                                                  |                                                                                                                                                                              |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |   |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha                                          | ang,l | Dong | g Gao,Liang Yang                    | ,W | ei Chen,HONGZF                                   | HI REN,LINGXU                                                                                                                                                                | AN I | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |
|              |                   |                                                           |       |      |                                     |    |                                                  | •                                                                                                                                                                            |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                                                           |       |      |                                     |    |                                                  |                                                                                                                                                                              |      |       |                   |                   |                 |      |      |   |   |
|              |                   |                                                           |       |      |                                     |    |                                                  |                                                                                                                                                                              |      |       |                   |                   | Action R        | Resu | ılts |   |   |
| Process      | Potential Failure | Potential                                                 | S     | С    | Potential                           | О  | Current Design/                                  | Current Design/                                                                                                                                                              | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | 0    | D | R |
| Function/    | Mode              | Effect(s) of                                              | Е     | 1    | Cause(s)/                           | C  | Process Controls                                 | Process Controls                                                                                                                                                             | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | С    |   | P |
| Requirements |                   | Failure                                                   | V     | a    | Mechanism(s)                        | C  | Prevention                                       | Detection                                                                                                                                                                    | T    | N     |                   | Completion Date   |                 | V    | С    | T | N |
|              |                   |                                                           |       | s    | of Failue                           |    |                                                  |                                                                                                                                                                              |      |       |                   |                   |                 |      | l    |   |   |
|              |                   |                                                           |       | S    |                                     |    |                                                  |                                                                                                                                                                              |      |       |                   |                   |                 |      | l    |   |   |
|              | Wrong orientation | -Customer<br>application failure<br>(8)                   | 8     |      | Unit replaced in misorientated form | 2  | Pin1 reverification<br>after unit<br>replacement | -V/M gate<br>sampling check (8)<br>-Vision system<br>auto detect and<br>alarm (2)<br>-Auto-Pin 1 locate<br>system by<br>vision(1)<br>-Pin1 bar setting<br>for tray locate(1) | 1    | 16    | None              |                   |                 |      |      |   |   |
|              | Mixed product     | -Electrical failure<br>(8)<br>-Reliability failure<br>(8) |       |      | Stray units at inspection table     | 2  |                                                  | -V/M gate<br>sampling check (8)<br>-Count quantity<br>per shop order (6)<br>- Vision 100%<br>inspection (2)                                                                  | 2    | 32    | None              |                   |                 |      |      |   |   |

|                                             |                                                                            | /               |         |
|---------------------------------------------|----------------------------------------------------------------------------|-----------------|---------|
| Item: Burn In/Final Test/Test Backend       | Control Number/Issue:                                                      | 83MCT00018A/    | AY      |
| Type: Design _x_ Process                    | Company, Group, Site/Business Unit:                                        | Freescale,TJN-F | M       |
| Prepared By: Liang Yang                     | FMEA Date:                                                                 | 27-Jun-01       | (Orig.) |
| Core Team: Peg Tang, ZJ-TEST2 Hu, Peter Zha | ang,Dong Gao,Liang Yang,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng D | 06-Sep-13       | (Rev.)  |
|                                             |                                                                            |                 |         |

|              |                   |                        |          |   |                 |          |                    |                                   |   |    |             |                  | Action I        |   | lts |   |   |
|--------------|-------------------|------------------------|----------|---|-----------------|----------|--------------------|-----------------------------------|---|----|-------------|------------------|-----------------|---|-----|---|---|
| Process      | Potential Failure | Potential              | S        |   | Potential       | О        |                    | Current Design/                   |   |    | Recommended | Responsibility & | Actions Taken & | S |     | D | R |
| Function/    | Mode              | Effect(s) of           | Е        | 1 | Cause(s)/       | C        | Process Controls   |                                   |   |    | Action(s)   | Target           | Effective Date  | Е |     | Е | P |
| Requirements |                   | Failure                | V        | a | Mechanism(s)    | C        | Prevention         | Detection                         | T | N  |             | Completion Date  |                 | V | C   | T | N |
|              |                   |                        |          | s | of Failue       |          |                    |                                   |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          | s |                 |          |                    |                                   |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        | 8        |   | Swap Shop order | 2        | Process 1 lot at a | -System record the                | 2 | 32 | None        |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          | time               | marking teach                     |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | history in test                   |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | summary, operator                 |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | 100% check                        |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | summary(4) -System auto check     |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | and judge if                      |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | marking is correct                |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | or not after key in               |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | the actual marking                |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | (2)                               |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | 100% vision                       |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | inspection                        |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    |                                   |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    |                                   |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        | 8        |   | Swap bundle     | 2        | Process 1 lot at a | 1. Lot no                         | 2 | 32 | None        |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          | time               | verification on                   |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | barcode label vs                  |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | TSO (3)                           |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | 2. 100% vision                    |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | scanning (2)                      |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   |                 |          |                    | 3. QA VM Gate                     |   |    |             |                  |                 |   |     |   |   |
|              |                   |                        |          |   | _               |          |                    | (8)                               |   |    |             |                  |                 |   | _   | _ |   |
| Lead scan    | Bend lead &       | -Visual                | 8        |   | -Bent tray      | 2        | NA                 | - I                               | 2 | 32 | None        |                  |                 |   |     |   |   |
|              |                   | mechanical failure (6) | 1        |   |                 |          |                    | check tray (6) - 100% auto vision |   |    |             |                  |                 |   |     |   |   |
|              |                   | (6)<br>-Customer       |          |   |                 |          |                    | inspection on                     |   |    |             |                  |                 |   |     |   |   |
|              |                   | application            |          |   |                 |          |                    | device (2)                        |   |    |             |                  |                 |   |     |   |   |
|              |                   | failure(8)             |          |   |                 |          |                    | de vice (2)                       |   |    |             |                  |                 |   |     |   |   |
|              |                   | 11010(0)               | <u> </u> |   |                 | <u> </u> |                    |                                   | l |    |             |                  |                 |   |     |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

|                                                                                                                                                                                                                                     |                                                  | POIL             | N I     | IA.  | LFAILUK            | L   | MODE AN          | DEFFEC.            | 19   | Al    | NAL Y 515 (       | (FMLA)            | •               | uge  | 50 0 | ,, ,, |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|---------|------|--------------------|-----|------------------|--------------------|------|-------|-------------------|-------------------|-----------------|------|------|-------|---|
| Item:                                                                                                                                                                                                                               | Burn In/Final Te                                 | st/Test Backend  |         |      |                    |     |                  |                    | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |      |       |   |
| Type:                                                                                                                                                                                                                               | Design                                           | _x_ Process      |         |      |                    | -   |                  | Company,           | Grou | up,Si | te/Business Unit: | Freescale, TJN-FN | Л               |      |      |       |   |
| Prepared By:                                                                                                                                                                                                                        | Liang Yang                                       |                  |         |      |                    |     |                  |                    |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |       |   |
| Core Team:                                                                                                                                                                                                                          | Peg Tang,ZJ-TE                                   | ST2 Hu,Peter Zha | ang,    | Dong | g Gao,Liang Yang   | g,W | ei Chen,HONGZF   | II REN,LINGXU      | AN 2 | XU,S  | inbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  | -                  |      |       |                   |                   | -               |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   | Action I        | Resu | lts  |       |   |
| Process                                                                                                                                                                                                                             | Potential Failure                                | Potential        | S       | С    | Potential          | О   | Current Design/  | Current Design/    | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D     | R |
| Function/                                                                                                                                                                                                                           | Mode                                             | Effect(s) of     | Е       | 1    | Cause(s)/          | С   | Process Controls | Process Controls   | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е     | P |
| Requirements                                                                                                                                                                                                                        |                                                  | Failure          | V       | a    | Mechanism(s)       | С   | Prevention       | Detection          | T    | N     |                   |                   |                 | V    | C    | T     | N |
| •                                                                                                                                                                                                                                   |                                                  |                  |         | s    | of Failue          |     |                  |                    |      |       |                   | •                 |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         | s    |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  | 8       |      | - Unit misplace in | 2   | -Half yearly PM  | -V/M gate (8)      | 2    | 32    | None              |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      | tray caused by     |     |                  | - 100% auto vision |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      | handler precision  |     |                  | inspection on      |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  | device (2)         |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     | 2D matrix                                        | -Visual          | 6       |      | - Bypass 2D        | 2   | -High level      | -System real time  | 2    | 24    | None              |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     | password control | monitor (2)        |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  | (6)              |         |      | function           |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      | _    |       |   |
| Prepared By: Liang Yang Core Team: Peg Tang,ZJ-TEST2 Hu,Peter Zhang,Dong Gao,Liang Yang,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng E  Process Function/ Mode Pfailure Potential Failure Potential Failure V a Requirements  8 |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     | Remark   Burn In/Final Test/Test Backend   Type: |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  | Process |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  | _                  |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     | Unit wrong                                       | -Customer        | 8       |      | -Improper vision   | 1   | -Regular setup   |                    | 1    | 8     | None              |                   |                 |      | -    | -     |   |
|                                                                                                                                                                                                                                     | _                                                |                  | O       |      |                    |     |                  |                    | 1    |       | rone              |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  | -Auto-Pin 1 locate |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     |                  |                    |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  | l       |      |                    |     |                  | _                  |      |       |                   |                   |                 |      |      |       |   |
|                                                                                                                                                                                                                                     |                                                  |                  |         |      |                    |     | ĺ                | for tray locate(1) |      |       |                   |                   |                 |      |      |       |   |

|              |                   |                      | 1 T  | IA    | LFAILUN                       | Ŀ   | MODE AN          | DEFFEC.                          |     |       |                    | ,                 |                 | -6-      |          |          |          |
|--------------|-------------------|----------------------|------|-------|-------------------------------|-----|------------------|----------------------------------|-----|-------|--------------------|-------------------|-----------------|----------|----------|----------|----------|
| Item:        | Burn In/Final Te  | st/Test Backend      |      |       |                               | _   |                  |                                  | (   | Contr | ol Number/Issue:   | 83MCT00018A/A     | ·Υ              |          |          |          |          |
| - 1          |                   | _x_ Process          |      |       |                               |     |                  | Company,                         | Gro | up,Si | ite/Business Unit: | Freescale, TJN-FM |                 |          |          |          |          |
| Prepared By: |                   |                      |      |       |                               | _   |                  |                                  |     |       | FMEA Date:         |                   | (Orig.)         |          |          |          |          |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | ,Donş | g Gao,Liang Yang              | 5,W | ei Chen,HONGZH   | II REN,LINGXU                    | AN  | XU,S  | Sinbad Liu,Peng I  | 06-Sep-13         | (Rev.)          |          |          |          |          |
|              |                   |                      |      |       |                               |     |                  |                                  |     |       |                    |                   |                 |          |          |          |          |
|              |                   |                      |      |       |                               |     |                  |                                  |     |       |                    |                   |                 |          |          |          |          |
|              |                   |                      |      |       |                               |     |                  |                                  |     |       |                    |                   | Action R        |          |          |          |          |
| Process      | Potential Failure | Potential            | S    |       | Potential                     | О   | C                |                                  |     |       | Recommended        |                   | Actions Taken & |          |          |          |          |
| Function/    | Mode              | Effect(s) of         | Е    | l     | Cause(s)/                     |     | Process Controls |                                  | Е   |       | Action(s)          | Target            |                 |          |          | Е        | P        |
| Requirements |                   | Failure              | V    | a     | Mechanism(s)                  | C   | Prevention       | Detection                        | T   | N     |                    | Completion Date   |                 | V        | C        | T        | N        |
|              |                   | 1                    |      | S     | of Failue                     | ĺ   |                  |                                  |     |       |                    |                   |                 |          |          |          |          |
|              |                   |                      |      | S     |                               | L   |                  |                                  |     |       |                    |                   |                 |          |          |          | <u> </u> |
|              |                   |                      | 8    |       | -Wrong teach on               | 1   |                  | -V/M gate first                  | 1   | 8     | None               |                   |                 |          |          |          | 1        |
|              |                   | 1                    |      |       | material for pin1             | ĺ   | system by vision | piece check (4)                  |     |       |                    |                   |                 |          |          |          |          |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  | Buddy check(7)                   |     |       |                    |                   |                 |          |          |          |          |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  | -Auto-Pin 1 locate               |     |       |                    |                   |                 |          |          |          | l        |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  | system by<br>vision(1)           |     |       |                    |                   |                 |          |          |          |          |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  | -Pin1 bar setting                |     |       |                    |                   |                 |          |          |          |          |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  | for tray locate(1)               |     |       |                    |                   |                 |          |          |          | I        |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  |                                  |     |       |                    |                   |                 |          |          |          |          |
|              |                   |                      |      |       |                               | ĺ   |                  |                                  |     |       |                    |                   |                 |          | ŀ        |          | l        |
|              | Mixed product     | -Electrical          | 8    |       | -Operator does                | 2   | -Equipment clean | -V/M gate                        | 2   | 32    | None               |                   |                 | $\dashv$ | $\dashv$ | П        |          |
|              |                   | failure(8)           |      |       | not clear the                 | ĺ   | after lot end    | sampling check (8)               |     |       |                    |                   |                 |          |          |          |          |
|              |                   | -Reliability failure |      |       | machine when                  | ĺ   |                  | -Count quantity                  |     |       |                    |                   |                 |          |          |          | l        |
|              |                   | (8)                  |      |       | finished lot                  | ĺ   |                  | per shop order (6)               |     |       |                    |                   |                 |          |          |          |          |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  | - Vision 100%                    |     |       |                    |                   |                 |          |          |          |          |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  | inspection (2)                   |     |       |                    |                   |                 |          |          |          | l        |
|              |                   | 1                    |      |       | ļ                             | ĺ   |                  |                                  |     |       |                    |                   |                 |          |          |          |          |
|              |                   |                      | 0    | —     |                               | _   | 27.4             | 9 . 1.1                          | _   | 40    | 27                 |                   |                 | _        |          | $\vdash$ |          |
|              |                   | 1                    | 8    |       | -Operator teach wrong marking | 3   | NA               | -System record the marking teach | 2   | 48    | None               |                   |                 |          |          |          |          |
|              |                   | 1                    |      |       | wrong marking                 | ĺ   |                  | history in test                  |     |       |                    |                   |                 |          |          |          |          |
|              |                   |                      |      |       |                               | ĺ   |                  | summary, operator                |     |       |                    |                   |                 | ļ        | ŀ        |          |          |
|              |                   |                      |      |       |                               | ĺ   |                  | 100% check                       |     |       |                    |                   |                 | ļ        | ŀ        |          |          |
|              |                   | 1                    |      |       |                               | ĺ   |                  | summary(4)                       |     |       |                    |                   |                 |          |          |          |          |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

(2)

-System auto check and judge if marking is correct or not after key in the actual marking

|                                                     | -                                                                |                  |         |
|-----------------------------------------------------|------------------------------------------------------------------|------------------|---------|
| Item: Burn In/Final Test/Test Backend               | Control Number/Issue:                                            | 83MCT00018A/     | 'AY     |
| Type: Design _x_ Process                            | Company, Group, Site/Business Unit: 1                            | Freescale, TJN-F | M       |
| Prepared By: Liang Yang                             | FMEA Date:                                                       | 27-Jun-01        | (Orig.) |
| Core Team: Peg Tang,ZJ-TEST2 Hu,Peter Zhang,Dong Ga | no,Liang Yang,Wei Chen,HONGZHI REN,LINGXUAN XU,Sinbad Liu,Peng Γ | 06-Sep-13        | (Rev.)  |
|                                                     |                                                                  |                  |         |

|                                | -                              |                                                                                                    |             |             |                                                     |   |                                                                                                                        |                                                                                                                 |   |    | -         |                                         | Action I       |             |             |   |   |
|--------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---|----|-----------|-----------------------------------------|----------------|-------------|-------------|---|---|
| Process Function/ Requirements | Potential Failure<br>Mode      | Potential<br>Effect(s) of<br>Failure                                                               | S<br>E<br>V | C<br>l<br>a | Potential Cause(s)/ Mechanism(s)                    |   |                                                                                                                        | Current Design/<br>Process Controls<br>Detection                                                                |   |    | Action(s) | Responsibility & Target Completion Date | Effective Date | S<br>E<br>V | O<br>C<br>C | Е | P |
| ·                              |                                |                                                                                                    |             | s<br>s      | of Failue                                           |   |                                                                                                                        |                                                                                                                 |   |    |           | ·                                       |                |             |             |   |   |
|                                | Crack/chip                     | - Reliability<br>failure (8)<br>-Electrical failure<br>(8)<br>-Visual<br>mechanical failure<br>(6) | 8           |             | - Operator handles<br>material manually<br>in tray. | 2 | - Certify operators' operation skill and yearly exam to check - Treat manual operated material as VM reject and scrap. |                                                                                                                 | 2 | 32 | None      |                                         |                |             |             |   |   |
| Tape & Reel                    | Cover tape loosen<br>/ tighten | -Device fail out or<br>cover tape split at<br>customer (8)                                         | 8           | *           | -Peel back force is<br>out of control               | 1 | -Follow setup<br>checklist to set up<br>machine                                                                        | - SPC system<br>control (4)<br>-QA audit peel<br>back force test<br>record (6)<br>-QA sealing line<br>check (8) | 4 | 32 | None      |                                         |                |             |             |   |   |
|                                | 2D matrix<br>unreadable        | -Visual<br>mechanical failure<br>(6)                                                               | 6           |             | - Bypass 2D<br>matrix inspection<br>function        | 2 | -High level<br>password control                                                                                        | -System real time<br>monitor (2)                                                                                | 2 | 24 | None      |                                         |                |             |             |   |   |
|                                |                                |                                                                                                    | 6           |             | - Dongle is<br>unworkable                           | 2 | NA                                                                                                                     | -Program auto<br>alarm and stop<br>handler when<br>dongle is<br>unworkable(2)                                   | 2 | 24 | None      |                                         |                |             |             |   |   |

|              |                     |                    | 1 1  | <b>11 N</b> . | Limbon             |     | MODETH              | D LITEC            |     |       |                   | · /               |                 |      |      |   |   |
|--------------|---------------------|--------------------|------|---------------|--------------------|-----|---------------------|--------------------|-----|-------|-------------------|-------------------|-----------------|------|------|---|---|
|              | Burn In/Final Te    |                    |      |               |                    |     |                     |                    |     |       |                   | 83MCT00018A/A     |                 |      |      |   |   |
|              | •                   | _x_ Process        |      |               |                    |     |                     | Company,           | Gro | up,Si |                   | Freescale, TJN-FN |                 |      |      |   |   |
| Prepared By: |                     |                    |      |               |                    |     |                     |                    |     |       | FMEA Date:        |                   | (Orig.)         |      |      |   |   |
| Core Team:   | Peg Tang,ZJ-TE      | ST2 Hu,Peter Zha   | ang, | Dong          | g Gao,Liang Yang   | g,W | ei Chen,HONGZF      | II REN,LINGXUA     | N/  | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   | Action F        | Resu | ılts |   |   |
| Process      | Potential Failure   | Potential          | S    | С             | Potential          | О   | Current Design/     | Current Design/    | D   | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О    | D | R |
| Function/    | Mode                | Effect(s) of       | Е    | 1             | Cause(s)/          | C   | Process Controls    | Process Controls   | Е   | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е | P |
| Requirements |                     | Failure            | V    | a             | Mechanism(s)       | С   |                     | Detection          | Т   | N     |                   | Completion Date   |                 | V    | С    |   | N |
| •            |                     |                    |      | s             | of Failue          |     |                     |                    |     |       |                   | 1                 |                 |      |      |   |   |
|              |                     |                    |      | s             |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |
|              | Unit wrong          | -Customer          | 8    |               | -Wrong teach on    | 1   | -Auto-Pin 1 locate  | -V/M gate first    | 1   | 8     | None              |                   |                 |      |      |   |   |
|              | orientation in tape |                    | Ü    |               | material for pin1  |     | system by vision    | piece check (4)    | 1   | O     | Trone             |                   |                 |      |      |   |   |
|              | reel                | (8)                |      |               | material for pini  |     | by steril by vision | Buddy check(7)     |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | -Auto-Pin 1 locate |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | system by          |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | vision(1)          |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | -Pin1 bar setting  |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | for tray locate(1) |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    | 8    |               | -Improper vision   | 1   | -Regular setup      | -V/M gate          | 1   | 8     | None              |                   |                 |      |      |   |   |
|              |                     |                    |      |               | setting            |     | checklist check.    | sampling check (8) |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | -Vision system     |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | auto detect and    |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | alarm (2)          |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | -Auto-Pin 1 locate |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | system by          |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | vision(1)          |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | -Pin1 bar setting  |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | for tray locate(1) |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |
|              | Bend lead           | -Visual            | 8    |               | -Machine pick up   | 2   | - Cross beam        | ., 8               | 2   | 32    | None              |                   |                 |      |      |   |   |
|              |                     | mechanical failure |      |               | head is not in the |     |                     | sampling check (8) |     |       |                   |                   |                 |      |      |   |   |
|              |                     | (6)                |      |               | perfect position   |     | reel equipment.     | -Handler cross     |     |       |                   |                   |                 |      |      |   |   |
|              |                     | -Customer          |      |               | along the X,Y,Z    |     |                     | sensor 100% check  |     |       |                   |                   |                 |      |      |   |   |
|              |                     | application        |      |               | direction          |     |                     | unit position and  |     |       |                   |                   |                 |      |      |   |   |
|              |                     | failure(8)         |      |               |                    |     |                     | auto alarm(2)      |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | -Check per setup   |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     | checklist (6)      |     |       |                   |                   |                 |      |      |   |   |
|              |                     |                    |      |               |                    |     |                     |                    |     |       |                   |                   |                 |      |      |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

|              |                   | POIE            | N I  | IA.  | LFAILUK          | Ŀ   | MODE AN          | DEFFEC                 | 12   | Al    | NAL Y 515 (       | (FMLA)            | •               | uge  |      | 01 10 |   |
|--------------|-------------------|-----------------|------|------|------------------|-----|------------------|------------------------|------|-------|-------------------|-------------------|-----------------|------|------|-------|---|
| Item:        | Burn In/Final Tes | st/Test Backend |      |      |                  |     |                  |                        | C    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |      |       |   |
| Type:        | Design            | _x_ Process     |      |      |                  |     |                  | Company,               | Grou | up,Si | te/Business Unit: | Freescale, TJN-FN | 1               |      |      |       |   |
| Prepared By: | Liang Yang        |                 |      |      |                  | _   |                  |                        |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |      |       |   |
| Core Team:   | Peg Tang,ZJ-TES   | T2 Hu,Peter Zha | ang, | Dong | g Gao,Liang Yang | y,W | ei Chen,HONGZH   | II REN,LINGXU <i>A</i> | AN 2 | XU,S  | inbad Liu,Peng D  | 06-Sep-13         | (Rev.)          |      |      |       |   |
|              |                   |                 |      |      |                  |     |                  | •                      |      |       |                   |                   | •               |      |      |       |   |
|              |                   |                 |      |      |                  |     |                  |                        |      |       |                   |                   |                 |      |      |       |   |
|              |                   |                 |      |      |                  |     |                  |                        |      |       |                   |                   | Action F        | lesi | ılts |       |   |
| Process      | Potential Failure | Potential       | S    | C    | Potential        | О   | Current Design/  | Current Design/        | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | 0    | D     | R |
| Function/    | Mode              | Effect(s) of    | E    | 1    | Cause(s)/        | C   | Process Controls | Process Controls       | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C    | Е     | P |
| Requirements |                   | Failure         | V    | a    | Mechanism(s)     | C   | Prevention       | Detection              | T    | N     |                   | Completion Date   |                 | V    | C    | T     | N |

| Itam.        | Burn In/Final Te  |                      | 1 4 | <b>A</b> / <b>A</b> / | Dimile                        |       | NODE             | D LITEC                          |     |       |                   | 83MCT00018A/A     | v              |      |      |   |   | _ |
|--------------|-------------------|----------------------|-----|-----------------------|-------------------------------|-------|------------------|----------------------------------|-----|-------|-------------------|-------------------|----------------|------|------|---|---|---|
|              |                   | _x_ Process          |     |                       |                               | -     |                  | Company                          |     |       |                   | Freescale, TJN-FM |                |      |      |   |   | - |
| Prepared By: |                   | _x_110cess           |     |                       |                               |       |                  | Company,                         | JIU | up,si | FMEA Date:        |                   | (Orig.)        |      |      |   |   | - |
|              |                   | ST2 Hu Peter 7hs     | anσ | Dong                  | Gao Liang Vand                | . W   | ei Chen HONGZE   | II REN,LINGXUA                   | M.  | XII S |                   |                   | (Rev.)         |      |      |   |   |   |
| core ream.   | 1 cg 1 ang,23-12  | 512 Hu,i etci Zili   | mg, | Dong                  | g Gao, Liang Tang             | 5, ** | er enen,morvoza  | II KEN,EINGKO                    | 111 | 20,0  | mioad Liu,i chg L | 00-5ср-13         | (Rev.)         |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  |                                  |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  |                                  |     |       |                   |                   | Action I       | Resu | ılts |   |   | - |
| Process      | Potential Failure | Potential            | S   | С                     | Potential                     | О     | Current Design/  | Current Design/                  | D   | R     | Recommended       | Responsibility &  |                |      |      | D | R | - |
| Function/    | Mode              | Effect(s) of         | E   | 1                     | Cause(s)/                     |       |                  | Process Controls                 |     |       | Action(s)         | Target            | Effective Date | Ē    | C    | E |   |   |
| Requirements |                   | Failure              | V   | a                     | Mechanism(s)                  | C     |                  | Detection                        | T   | N     | (*)               | Completion Date   |                | V    | C    | T | N |   |
| 1            |                   |                      |     | s                     | of Failue                     |       |                  |                                  | _   | - '   |                   |                   |                | ·    |      |   |   |   |
|              |                   |                      |     | s                     |                               |       |                  |                                  |     |       |                   |                   |                |      |      |   |   |   |
|              | Cover tape        | -Customer            | 8   | _                     | -Technician adjust            | 2.    | NA               | -Technician first                | 4   | 64    | None              |                   |                |      |      |   |   | - |
|              |                   | application failure  |     |                       | the guider width              | Ī     |                  | piece check under                | ľ   |       |                   |                   |                |      |      |   |   |   |
|              | carrier tape      | (8)                  |     |                       | or carrier tape               |       |                  | 10X microscope                   |     |       |                   |                   |                |      |      |   |   |   |
|              | •                 |                      |     |                       | location pins                 |       |                  | after technician                 |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       | improperly.                   |       |                  | adjust the guider                |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | width or carrier                 |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | tape location pins.              |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | (4)                              |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  |                                  |     |       |                   |                   |                |      |      |   |   |   |
|              | Mixed product     | -Electrical          | 8   |                       | -Operator does                | 2     | -Equipment clean | ., 8                             | 2   | 32    | None              |                   |                |      |      |   |   |   |
|              |                   | failure(8)           |     |                       | not clear the                 |       | after lot end    | sampling check (8)               |     |       |                   |                   |                |      |      |   |   |   |
|              |                   | -Reliability failure |     |                       | machine when                  |       |                  | -Count quantity                  |     |       |                   |                   |                |      |      |   |   |   |
|              |                   | (8)                  |     |                       | finished lot                  |       |                  | per shop order (6)               |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | - Vision 100%                    |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | inspection (2)                   |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  |                                  |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      | 0   |                       | 0 1 1                         | 2     | NT A             | 0 1 11                           | _   | 40    | NT.               |                   |                |      |      |   |   | _ |
|              |                   |                      | 8   |                       | -Operator teach wrong marking | 3     | NA               | -System record the marking teach | 2   | 48    | None              |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       | wrong marking                 |       |                  | history in test                  |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | summary, operator                |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | 100% check                       |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | summary(4)                       |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | -System auto check               |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | and judge if                     |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      | I   |                       |                               |       |                  | marking is correct               |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      |     |                       |                               |       |                  | or not after key in              |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      | I   |                       |                               |       |                  | the actual marking               |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      | I   |                       |                               |       |                  | (2)                              |     |       |                   |                   |                |      |      |   |   |   |
|              |                   |                      | l   |                       |                               |       |                  |                                  |     |       |                   |                   |                |      |      |   |   |   |

Electronic versions are uncontrolled except when accessed directly from [document repository]. Printed versions are uncontrolled except when stamped "Controlled Copy" in red.

|              | Mode Effect(s) of Failure V a Mechanism(s) of Failure S and I tube |                    |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|--------------|--------------------------------------------------------------------|--------------------|------|------|------------------|-----|------------------|---------------------|------|-------|-------------------|-------------------|-----------------|------|-----|---|---|
| Item:        | Burn In/Final Te                                                   | st/Test Backend    |      |      |                  |     |                  |                     | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY              |      |     |   |   |
| Type:        | Design                                                             | _x_ Process        |      |      |                  |     |                  | Company,            | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FM | 1               |      |     |   |   |
| Prepared By: | Liang Yang                                                         |                    |      |      |                  |     |                  |                     |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |      |     |   |   |
| Core Team:   | Peg Tang,ZJ-TE                                                     | ST2 Hu,Peter Zha   | ang, | Dong | g Gao,Liang Yang | g,W | ei Chen,HONGZH   | II REN,LINGXUA      | AN : | XU,S  | Sinbad Liu,Peng D | 06-Sep-13         | (Rev.)          |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | •                   |      |       |                   |                   | •               |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  |                     |      |       |                   |                   | Action R        | Resu | lts |   |   |
| Process      | Potential Failure                                                  | Potential          | S    | С    | Potential        | О   | Current Design/  | Current Design/     | D    | R     | Recommended       | Responsibility &  | Actions Taken & | S    | О   | D | R |
| Function/    | Mode                                                               | Effect(s) of       | Е    | 1    | Cause(s)/        | С   | Process Controls | Process Controls    | Е    | P     | Action(s)         | Target            | Effective Date  | Е    | C   | Е | P |
| Requirements |                                                                    | Failure            | V    | a    | Mechanism(s)     | С   | Prevention       | Detection           | Т    | N     |                   |                   |                 | V    | C   |   | N |
| •            |                                                                    |                    |      | s    |                  |     |                  |                     |      |       |                   | •                 |                 |      |     |   |   |
|              |                                                                    |                    |      | s    |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
| ГТТ          | Lead defect in                                                     | -Visual            | 8    |      | -Tube and        | 1   | -Re-design the   | -V/M Gate           | 4    | 32    | None              |                   |                 |      |     |   |   |
|              | tube                                                               | mechanical failure |      |      | tracking         |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    | (6)                |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    | -Customer          |      |      |                  |     |                  | (4)                 |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    | failure(8)         |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              | Mixed product                                                      |                    | 8    |      | •                | 2   | -Equipment clean |                     | 2    | 32    | None              |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     | after lot end    |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    | (8)                |      |      | finished lot     |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | inspection (2)      |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    | Q    |      | Operator teach   | 3   | NΑ               | System record the   | 2    | 18    | None              |                   |                 |      |     | H |   |
|              |                                                                    |                    | o    |      | wrong marking    | 3   | NA.              | marking teach       | _    | 40    | None              |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      | wrong marking    |     |                  | history in test     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | summary, operator   |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | 100% check          |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | summary(4)          |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | -System auto check  |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | and judge if        |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | marking is correct  |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | or not after key in |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | the actual marking  |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  | (2)                 |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    |                    |      |      |                  |     |                  |                     |      |       |                   |                   |                 |      |     |   |   |
|              |                                                                    | ĺ                  |      |      | ĺ                |     | l                |                     |      |       | 1                 |                   |                 |      |     |   |   |

| Item:        | Burn In/Final Te    | st/Test Backend         |      |      |                               |     |                    |                                       | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | Y               |   |   |   |   |
|--------------|---------------------|-------------------------|------|------|-------------------------------|-----|--------------------|---------------------------------------|------|-------|-------------------|-------------------|-----------------|---|---|---|---|
| Type:        | Design              | _x_ Process             |      |      |                               |     |                    | Company,                              | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | 1               |   |   |   |   |
| Prepared By: | Liang Yang          |                         |      |      |                               | _   |                    |                                       |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)         |   |   |   |   |
| Core Team:   | Peg Tang,ZJ-TE      | ST2 Hu,Peter Zha        | ang, | Dong | g Gao,Liang Yang              | g,W | ei Chen,HONGZF     | II REN,LINGXU                         | AN : | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)          |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    |                                       |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    |                                       |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      | _                             |     | _                  |                                       |      |       | _                 |                   | Action R        |   |   |   |   |
|              | Potential Failure   |                         | S    |      | Potential                     |     | Current Design/    |                                       |      |       |                   |                   | Actions Taken & |   |   | D |   |
| Function/    | Mode                | Effect(s) of            | Е    | 1    | Cause(s)/                     |     | Process Controls   |                                       |      | P     | Action(s)         | Target            | Effective Date  | Е | C | Е | P |
| Requirements |                     | Failure                 | V    | a    | Mechanism(s)                  | C   | Prevention         | Detection                             | T    | N     |                   | Completion Date   |                 | V | C | T | N |
|              |                     |                         |      | S    | of Failue                     |     |                    |                                       |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      | S    |                               |     |                    |                                       |      |       |                   |                   |                 |   |   |   |   |
|              | Unit wrong          | -Customer               | 8    |      | -Wrong teach on               | 1   | -Auto-Pin 1 locate | -V/M gate first                       | 1    | 8     | None              |                   |                 |   |   |   |   |
|              | orientation in tube | application failure (8) |      |      | material for pin1             |     | system by vision   | piece check (4)Buddy check(7)         |      |       |                   |                   |                 |   |   |   |   |
|              |                     | (0)                     |      |      |                               |     |                    | -Auto-Pin 1 locate                    |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | system by                             |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | vision(1)                             |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    |                                       |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         | 8    |      | -Improper vision              | 1   | -Regular setup     | -V/M gate                             | 1    | 8     | None              |                   |                 |   |   |   |   |
|              |                     |                         |      |      | setting                       |     | checklist check.   | sampling check (8)                    |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | -Vision system                        |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | auto detect and<br>alarm (2)          |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | -Auto-Pin 1 locate                    |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | system by                             |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | vision(1)                             |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    |                                       |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    |                                       |      |       |                   |                   |                 |   |   |   |   |
| DRY PACK     | Bag leakage         | -Reliability failure    | 8    |      | -Break MBB                    | 1   | N/A                |                                       | 6    | 48    | None              |                   |                 |   |   |   |   |
|              |                     | (8)                     |      |      |                               |     |                    | packing quality for                   |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | every box (6)                         |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         | 0    |      | D 1 1                         |     | NT/A               | O A 1000/ 1 1                         | _    | 40    | NT.               |                   |                 |   |   |   |   |
|              |                     |                         | 8    |      | -Poor dry pack<br>bag quality | 1   | N/A                | -QA 100% check<br>packing quality for | 6    | 48    | None              |                   |                 |   |   |   |   |
|              |                     |                         |      |      | dag quanty                    |     |                    | every box (6)                         |      |       |                   |                   |                 |   |   |   |   |
|              |                     |                         |      |      |                               |     |                    | 2 : 2 - 3   0 0 11 (0)                |      |       |                   |                   |                 |   |   |   |   |
|              | No-dry pack         | -Reliability failure    | 8    |      | -Miss dry pack                | 1   | N/A                | -QA 100% check                        | 6    | 48    | None              |                   |                 |   |   | 1 |   |

(8)

process

packing quality for

every box(6)

| Item:        | Burn In/Final Te  | st/Test Backend      |      |     |                   |    |                   |                    | (    | Contr | ol Number/Issue:  | 83MCT00018A/A     | ΛY             |   |   |               |   |
|--------------|-------------------|----------------------|------|-----|-------------------|----|-------------------|--------------------|------|-------|-------------------|-------------------|----------------|---|---|---------------|---|
| Type:        | Design            | _x_ Process          |      |     |                   | )  |                   | Company,           | Gro  | up,Si | te/Business Unit: | Freescale, TJN-FN | Л              |   |   |               |   |
| Prepared By: | Liang Yang        |                      |      |     |                   |    |                   |                    |      |       | FMEA Date:        | 27-Jun-01         | (Orig.)        |   |   |               |   |
| Core Team:   | Peg Tang,ZJ-TE    | ST2 Hu,Peter Zha     | ang, | Don | g Gao,Liang Yang  | ,W | ei Chen,HONGZF    | II REN,LINGXU      | AN I | XU,S  | Sinbad Liu,Peng I | 06-Sep-13         | (Rev.)         |   |   |               |   |
|              |                   |                      |      |     |                   |    |                   |                    |      |       |                   |                   |                |   |   |               |   |
|              |                   |                      |      |     |                   |    |                   |                    |      |       |                   |                   |                |   |   |               |   |
|              |                   |                      |      |     | •                 |    | _                 |                    |      |       |                   | T                 | Action I       | _ | _ |               |   |
| Process      | Potential Failure | Potential            | S    | C   | Potential         | О  |                   | _                  |      |       | Recommended       | Responsibility &  |                |   |   |               |   |
| Function/    | Mode              | Effect(s) of         | Е    | 1   | Cause(s)/         | C  | Process Controls  | Process Controls   | Е    | P     | Action(s)         | Target            | Effective Date | Е |   |               |   |
| Requirements |                   | Failure              | V    | a   | Mechanism(s)      | C  | Prevention        | Detection          | T    | N     |                   | Completion Date   |                | V | C | T             | N |
|              |                   |                      |      | s   | of Failue         |    |                   |                    |      |       |                   |                   |                |   |   |               |   |
|              |                   |                      |      | s   |                   |    |                   |                    |      |       |                   |                   |                |   |   |               |   |
|              | Mixed product     | -Electrical          | 8    |     | -Operator handles | 2  | -One time one lot | -Automated         | 2    | 32    | None              |                   |                |   |   |               |   |
|              |                   | failure(8)           |      |     | more than one lot |    |                   | verification       |      |       |                   |                   |                |   |   |               |   |
|              |                   | -Reliability failure |      |     | at same time.     |    |                   | barcode of box,    |      |       |                   |                   |                |   |   |               |   |
|              |                   | (8)                  |      |     |                   |    |                   | dry bag by auto-   |      |       |                   |                   |                |   |   |               |   |
|              |                   |                      |      |     |                   |    |                   | verify machine (2) |      |       |                   |                   |                |   |   |               |   |
|              |                   |                      |      |     |                   |    |                   | -QA check (8)      |      |       |                   |                   |                |   |   |               |   |
|              | Duration time out | - Delamination       | 8    |     | -The lot duration | 2  | N/A               | - System auto      | 2    | 32    | None              |                   |                |   |   | $\rightarrow$ |   |
|              |                   | issue (8)            | Ü    |     | time was out of   | 1  | 1 1/2 1           | detect duration    | ľ    | 22    | 110110            |                   |                |   |   |               |   |
|              |                   | - Solderability      |      |     | control           |    |                   | time before dry    |      |       |                   |                   |                |   |   |               |   |
|              |                   | issue (8)            |      |     |                   |    |                   | packing (2)        |      |       |                   |                   |                |   |   |               |   |

## **Control Plan**

## **TSMC PPAP Documents**

- TSMC PPAP documents (FMEAs, Control Plans, Cpks, and GR&R) are considered proprietary information by TSMC, classified as "TSMC INTERNAL USE ONLY" and cannot be distributed with Freescale PPAPs in accordance with an agreement with TSMC.
- The PPAP documents are pulled by Freescale External Manufacturing Quality and checked for compliance with TS16949 requirements.
- For special requests, Freescale may be able to review these documents on a limited basis with customers at the local Freescale sales office.
- If there are any questions, please contact:

Sally Cadena Massey, Freescale MSG NPI Reliability, 512-895-7310 sally.cadena.massey@freescale.com

Jeff Martsching, Freescale External Manufacturing, 512-996-4282 Jeff.Martsching@freescale.com



#### **Assembly Process Control Plan-SOIC**

|          | Plan Number/Iss       | sue                                             |                                 | Prototype<br>Pre-launch (XC) | Key Contact/Phone |               |                                                                  |                           | Date(Orig.)                        |                                                                                                       |                                                                                                    | Date (Rev.)                   |
|----------|-----------------------|-------------------------------------------------|---------------------------------|------------------------------|-------------------|---------------|------------------------------------------------------------------|---------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|
|          | 00015A002/O           |                                                 | L                               | Production                   |                   | Amanda Wang   | g/6368                                                           |                           | 30-Nov-13                          |                                                                                                       |                                                                                                    | 30-Nov-13                     |
| Part Nur | nber                  |                                                 |                                 | Core Team                    |                   |               | aohui, Yao Shuan, Chen Grayson, Wang<br>, Derk Song, Ma Qianfeng | Jinsheng, Tao Xin,        | Customer Engineering               | g Approval (If Heq'd)                                                                                 |                                                                                                    |                               |
|          |                       | 6/28/32 /54 LD Assembly                         | Cu wire                         | Supplier/Plant               | FSL-TJN-FM        |               | Supplier Code                                                    |                           | Customer Quality App               | proval/Date (If Req'd)                                                                                |                                                                                                    |                               |
| FLOW     | CHART LEG             | GEND                                            | PROD=Production (               | Operation INSP=Ins           | pection MEAS=Me   | easurement    | QA=QA Monitor GATE=QA                                            | Gate XFER=M               | laterial Transfer MAT=Material Ins | pection                                                                                               |                                                                                                    |                               |
|          |                       |                                                 |                                 |                              | cteristics        |               |                                                                  |                           | Sample                             | p                                                                                                     |                                                                                                    |                               |
| Chart    | Process/<br>Operation | Process Name/                                   | Machine, Device, Jig, Tools for |                              |                   | Special Char. | Product/Process Specification/                                   | Evaluation<br>Measurement |                                    |                                                                                                       |                                                                                                    |                               |
| Symbol   |                       | Operation Description                           | Mfg.                            | Product                      | Process           | Class         | Tolerance                                                        | Technique                 | Size                               | Freq.                                                                                                 | Control Method                                                                                     | Reaction Plan                 |
| PROD     | 3.2                   | pre-wire bond plasma clean                      | plasma machine                  |                              | parameter         |               | 12MCT20031B007                                                   | visual                    | NA .                               | 1. 1x/machine/shift     2. 1x/after machine repair                                                    | 12MCT20070A<br>12MCT10020A<br>12MCT20120A004<br>12MCT20110A001<br>12MCT20031B007                   | 12MCT20070A<br>12MCT20031B003 |
| MEAS     |                       | pre-wire bond plasma clean<br>monitor           | goniometer                      | contact angle                |                   |               | <10deg for die surface                                           | measurement               | 2 points/strip, 3 strips/x         | 1x/machine/shift                                                                                      |                                                                                                    |                               |
|          |                       |                                                 |                                 |                              |                   |               | <50deg for leadframe surface                                     | measurement               | 1point/strip, 3 strips/x           | 1x/machine/shift                                                                                      |                                                                                                    |                               |
| PROD     | 4                     | Cu wire bond 1 / To bond wires from pad to post | wire bonder                     |                              | parameter         |               | 12MCT20031S020                                                   | visual                    | NA                                 | 1.1x/device change;<br>2.1x/parameter change;<br>3.1x/after machine repair.                           | 12MCT20070A<br>12MCT10020A<br>12MCT20070A006<br>12MCT20070A006<br>12MCT200315020<br>12MCT10110A001 | 12MCT20070A<br>12MCT20031K004 |
|          |                       |                                                 | Cu wire                         |                              | Cu wire work life |               | 144hrs                                                           | auto control system       | N/A                                | 100% material system auto control                                                                     |                                                                                                    |                               |
|          |                       |                                                 | capillary                       | •                            | capillary life    |               | 12MCT20031S020                                                   | visual                    | N/A                                | machine auto control                                                                                  | •                                                                                                  |                               |
| INSP     |                       | wire bond monitor 1                             | microscope (>=30x)              | visual & mechanical defects  |                   |               | 12M54564J                                                        | visual                    | 3 pitches/strip; 2 strips/magazine | 1x/magazine                                                                                           | 12MCT20070A<br>12MCT10020A<br>12MCT10110A001                                                       | 12MCT20070A<br>12MCT20031K004 |
| MEAS     |                       | wire pull monitor 1                             | wire pull tester                | wire pull strength           |                   | *             | 12MCT20070A                                                      | measurement               | 6 wires/x                          | 1. 1x/machine/shift;     2. 1x/device change;     3. 1x/parameter change;     4. 1x/capillary change. | 12MCT20070A<br>12MCT10020A<br>12MCT10030A<br>12MCT20080C                                           | 12MCT20070A<br>12MCT20031K004 |
|          |                       | ball shear monitor 1                            | ball shear tester               | ball shear strength          |                   | *             | 12MCT20070A                                                      | measurement               | 6 wires/x                          | 1. 1x/machine/shift;     2. 1x/device change;     3. 1x/parameter change;     4. 1x/capillary change. | 12MCT20070A<br>12MCT10020A<br>12MCT10030A<br>12MCT20080C                                           | 12MCT20070A<br>12MCT20031K004 |
|          |                       | ball size monitor                               | microscope(>=200x)              | ball size                    |                   |               | 12MCT20070A                                                      | measurement               | 4 balls/x                          | 1. 1x/device change;     1x/parameter change;     1x/capillary change.                                | 12MCT20070A<br>12MCT10020A<br>12MCT20070A006<br>12MCT10110A001                                     | 12MCT20070A<br>12MCT20031K004 |
|          |                       | ball height monitor                             | microscope(>=200x)              | ball height                  |                   |               | 12MCT20070A                                                      | measurement               | 4 balls/x                          | 1. 1x/device change;     1x/parameter change;     1x/capillary change.                                | 12MCT20070A<br>12MCT10020A<br>12MCT20070A006<br>12MCT10110A001                                     | 12MCT20070A<br>12MCT20031K004 |

|              |                     |                                                                                                                  |                                                    | la                                             |                                   |              |                                   |                                              | la                     | B : (B )             |                                                                                |                                                                                                                                                   |
|--------------|---------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------|--------------|-----------------------------------|----------------------------------------------|------------------------|----------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Plai | n Number/Iss        | sue                                                                                                              |                                                    | Prototype<br>Pre-launch (XC)                   | Key Contact/Phone                 |              |                                   |                                              | Date(Orig.)            | Date (Rev.)          |                                                                                |                                                                                                                                                   |
| 70MCT000     |                     |                                                                                                                  | X                                                  | Production                                     | Tang Peg (85686866)/h             | Hu Z.J(85686 | 770)                              |                                              | 5/10/1997              | 11/25/2013           |                                                                                |                                                                                                                                                   |
| Part Numbe   | r                   |                                                                                                                  |                                                    | Core Team                                      |                                   |              |                                   | Customer Engineerin                          | ng Approval (If Req'd) |                      |                                                                                |                                                                                                                                                   |
| GENERAL      | TEST                |                                                                                                                  |                                                    | Duan Peng, Chen Wei,<br>Yin Wally, Xu Lingxuar | Diao William, Liu X.J., 0<br>1.   | Sao Dong, Y  | ang Liang, Wang K.Q.,             |                                              |                        |                      |                                                                                |                                                                                                                                                   |
| Name/Desc    | ription             |                                                                                                                  |                                                    | Supplier/Plant                                 |                                   | Supplier Co  | de                                | Customer Quality App                         | proval/Date (If Req'd) |                      |                                                                                |                                                                                                                                                   |
| GENERAL      | TEST FLOV           | V                                                                                                                |                                                    | FSL-TJN-FM                                     |                                   |              |                                   |                                              |                        |                      |                                                                                |                                                                                                                                                   |
|              |                     |                                                                                                                  | <b>PROD</b> =Pr                                    | oduction Operation INSF                        | P=Inspection MEAS=Me              |              | OWCHART LEGEND  OA=OA Monitor GAT | E=QA Gate XFER=N                             | Material Transfer MAT= | Material Inspection  |                                                                                |                                                                                                                                                   |
| Flow Chart   | Process             |                                                                                                                  | Machine Device, Jip, Tools                         |                                                | teristics                         | Special      | Product/Process                   | Evaluation                                   |                        | ample                | Control                                                                        |                                                                                                                                                   |
| Symbol       | Operation<br>Number | Process Name/Operation                                                                                           | for Mfg                                            | Product                                        | Process                           | Char. Class  | /Specification<br>/Tolerance      | Measurement<br>Technique                     | Size                   | Freq.                | Method                                                                         | Reaction Plan                                                                                                                                     |
| MAT          | 1                   | MATERIAL RECEIVING                                                                                               | Assembly Shop Order<br>Packing list,<br>SFC System |                                                | Documentation                     |              | 12MCT50044C                       | Visual                                       | 100%                   | Every lot            | Verify box label LOT#,<br>device #, box quantity<br>against packing list & SFC | Hold lot for disposition<br>12MCT50040A                                                                                                           |
| PROD         |                     | INCOMING CHECK                                                                                                   | Assembly Shop Order<br>Test Shop Order             |                                                | Quantity                          |              | 12MCT50044C                       | Visual                                       | 100%                   | Every lot            | Count physical quantity againest assembly shop order                           | Hald les for discoursion                                                                                                                          |
| 11102        | 2                   | (Visual Mechanical only applies to assembly & BI rawstock)                                                       | SFC System                                         |                                                | Documentation                     |              | 12.001300440                      | Visual                                       | 100%                   | Every lot            | Verify box label LOT#,<br>device #, lot status in SFC<br>system                | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A020<br>12MCT50040A021                                                                       |
| INSP         |                     |                                                                                                                  | vision machine (optional)                          |                                                | Visual Mechanical                 |              | 12MRM09116A                       | Visual or<br>vision machine<br>(optional)    | Per 12ACT20080A        | Every lot            | Visual verification for visual defect                                          | -                                                                                                                                                 |
| PROD         |                     |                                                                                                                  | Test Shop Order                                    |                                                | Machine Type                      |              | 12MCT50040A                       | Visual                                       | 100%                   | Every conversion     | Manual visual verification machine according to test shop order                | Hold for disposition<br>12MCT50040A                                                                                                               |
| PROD         |                     |                                                                                                                  | Test Shop Order                                    |                                                | Temperature                       |              | Test Shop Order                   | Continuous Test<br>Temperature<br>monitoring | 100%                   | Every test insertion | Handler temperature auto-<br>guardbanding using<br>temperature controller      | Handler stop until temperature is within guardband                                                                                                |
| PROD         |                     |                                                                                                                  | Test Shop Order<br>SFC system                      |                                                | Yield<br>(Start lot)              |              | 12MCT50040A<br>12MCT10240A        | Electrical Test                              | Per 12ACT20080A        | Every lot            | Calculate the yield after sampling test done and compare with shut down yield  | Stop the machine and call PE/TPE/PM. 12MCT50040A 12MCT5040A 12MCT5040A010 12MCT50040A010 12MCT50040A015 12MCT50040A015                            |
| INSP         |                     | ELECTRICAL TEST as per test shop order                                                                           | vision machine (optional)                          |                                                | Visual Mechanical<br>(Start lot)  |              | 12MRM09116A                       | Visual or<br>vision machine<br>(optional)    | Per 12ACT20080A        | Every lot            | Visual verification for visual defect                                          | Stop the machine and call<br>supervisor.<br>12MCT50040A<br>12MCT50040A01<br>12MCT50040A010<br>12MCT50040A012<br>12MCT50040A015                    |
| PROD         | 3                   | Machine preparation     Start lot     Start lot     Electrical parameters tests     Hend lot     (Hot/Cold/Room) | ATE                                                | Electrical Parameter                           |                                   |              | 12MCT50040A                       | Electrical Test<br>Program                   | 100%                   | Every lot            | Electrical Yield limit per SFC<br>System                                       | Stop the machine and call PE/TPE/PM. 12/MCT50040A 12/MCT50040A014 12/MCT50040A010 12/MCT50040A012 12/MCT50040A012 12/MCT50040A015 12/MCT50040A018 |
| INSP         |                     |                                                                                                                  | Vision machine (optional)                          |                                                | Visual Mechanical<br>(In process) |              | 12MRM09116A                       | Visual or<br>vision machine<br>(optional)    | Per 12ACT20080A        | Every lot            | Visual verification for visual defect                                          | Stop the machine and call<br>supervisor.<br>12MCT50040A<br>12MCT50040A004<br>12MCT50040A010<br>12MCT50040A012<br>12MCT50040A015                   |
|              |                     |                                                                                                                  |                                                    |                                                | Yield<br>(End lot)                |              | 12MCT50040A<br>12MCT10240A        | Electrical Test                              | 100%                   | Every lot            | Electrical Yield limit per SFC<br>System                                       | Hold lot for disposition<br>12MCT10240A                                                                                                           |

| Control Pla | n Number/Iss | sue                                                                                                                                                                   |                                      | Prototype                                   | Key Contact/Phone     |              |                            |                                       | Date(Orig.)            | Date (Rev.)   |                                                                                          |                                                                                                                                |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|-----------------------|--------------|----------------------------|---------------------------------------|------------------------|---------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|             |              |                                                                                                                                                                       |                                      | Pre-launch (XC)                             | .,                    |              |                            |                                       | (= 3)                  | ( - ,         |                                                                                          |                                                                                                                                |
| 70MCT000    |              |                                                                                                                                                                       | X                                    | Production                                  | Tang Peg (85686866)/h | łu Z.J(85686 | 770)                       |                                       | 5/10/1997              | 11/25/2013    |                                                                                          |                                                                                                                                |
| Part Number | r            |                                                                                                                                                                       |                                      | Core Team                                   |                       |              |                            | Customer Engineerin                   | g Approval (If Req'd)  |               |                                                                                          |                                                                                                                                |
| GENERAL     | TEST         |                                                                                                                                                                       |                                      | Duan Peng, Chen Wei, Yin Wally, Xu Lingxuan |                       | ao Dong, Ya  | ang Liang, Wang K.Q.,      |                                       |                        |               |                                                                                          |                                                                                                                                |
| Name/Desc   |              |                                                                                                                                                                       |                                      | Supplier/Plant                              |                       | Supplier Cod | le                         | Customer Quality App                  | oroval/Date (If Req'd) |               |                                                                                          |                                                                                                                                |
| GENERAL     | TEST FLOV    | ı                                                                                                                                                                     |                                      | FSL-TJN-FM                                  |                       |              |                            |                                       |                        |               |                                                                                          |                                                                                                                                |
|             |              |                                                                                                                                                                       |                                      |                                             |                       |              | WCHART LEGEND              |                                       |                        |               |                                                                                          |                                                                                                                                |
|             | Process      |                                                                                                                                                                       | <b>PROD</b> =Pr                      | oduction Operation INSP                     |                       | asurement (  | Product/Process            | E=QA Gate XFER=N<br>Evaluation        | Material Transfer MAT= |               | 1                                                                                        |                                                                                                                                |
| Flow Chart  | Operation    | Process Name/Operation                                                                                                                                                | Machine Device, Jip, Tools           | Charac                                      | eristics              | Special      | /Specification             | Measurement                           | S                      | ample         | Control                                                                                  | Reaction Plan                                                                                                                  |
| Symbol      | Number       |                                                                                                                                                                       | for Mfg                              | Product                                     | Process               | Char. Class  | /Tolerance                 | Technique                             | Size                   | Freq.         | Method                                                                                   |                                                                                                                                |
| PROD        |              |                                                                                                                                                                       | Test Shop Order<br>SFC system        |                                             | Quantity              |              | 12MCT50040P                | Visual                                | 100%                   | Every lot     | Count physical quantity and record on test shop order & SFC                              | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A005<br>12MCT50040A019                                                    |
|             |              |                                                                                                                                                                       |                                      |                                             | Documentation         |              | 121001300401               | Visual                                | 100%                   | Every lot     | Check test result againest physical quantity, confirm the lot status in SFC system       | Hold lot for disposition<br>12MCT50040A                                                                                        |
|             |              | ELECTRICAL TEST (QC In-<br>line) as per shop order<br>(Hot/Room/Cold):<br>Applicable for specific<br>products as specified in the<br>Test Shop Order or SFC<br>system |                                      | Electrical Parameter                        |                       |              | 12MCT50040A<br>12ACT20080A | Electrical Test<br>Program            | Per 12ACT20080A        | Per Skip Plan | Accept on zero failure                                                                   | Hold lot for disposition<br>12ACT20080A<br>12MCT50040A<br>12MCT50040A010<br>12MCT50040A012<br>12MCT50040A013<br>12MCT50040A015 |
| GATE        | 4            |                                                                                                                                                                       | ATE<br>Test Shop Order<br>SFC system |                                             | Quantity              |              |                            | Visual                                | 100%                   | Every lot     | Count physical quantity and record on test shop order & SFC                              | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A005<br>12MCT50040A019                                                    |
|             |              |                                                                                                                                                                       |                                      |                                             | Documentation         |              | 12MCT50040P                | Visual                                | 100%                   | Every lot     | Check test result againest physical quantity, tranfer the lot to next step in SFC system | Hold lot for disposition<br>12MCT50040A                                                                                        |
| PROD        |              | QUALITY CONTROL                                                                                                                                                       |                                      |                                             | Quantity              |              | 12MCT10123G                | Visual                                | 100%                   | Every lot     | Count physical quantity againset test shop order                                         | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A005<br>12MCT50040A019                                                    |
| FHOD        | 5            | Stage: 1. Verification for test result 2. Visual inspection on final good unit                                                                                        |                                      |                                             | Documentation         |              | Destritorist               | Visual                                | 100%                   | Every lot     | Check test result againest<br>test shop order, verify lot<br>status in SFC system        | Hold lot for disposition<br>12MCT50040A                                                                                        |
| INSP        |              |                                                                                                                                                                       | Microscope(optional)                 |                                             | Visual Mechanical     |              | 12MRM09116A                | Visual or<br>Microscope(optional<br>) | Per 12ACT20080A        | Every lot     | Visual verification for visual defect                                                    | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A004                                                                      |

NOTE 1. ATE:Auto Testing Equipment

Visual: Unaided eye or 3x magnifier (optional)

| Part Number:      | GENERAL TEST      | Control Plan Number/Issue: | 70MCT00019A/AW | _       |
|-------------------|-------------------|----------------------------|----------------|---------|
| Name/Description: | GENERAL TEST FLOW | Control plan Date:         | 5/10/1997      | (Orig.) |
| Supplier/Plant:   | FSL-TJN-FM        | Control plan Date.         | 11/25/2013     | (Rev.)  |
|                   |                   |                            |                |         |

| <b>Revision Date</b> | Description of Revison & Writer                                                                                                           | Spec Coord                      | Effectivity Date |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|
| 0                    | VERSION O                                                                                                                                 | J.W ZHANG                       | 5/10/1997        |
| A                    | CHANGE ERROR WORD                                                                                                                         | J.H ZHANG                       | 12/14/1997       |
| В                    | CHANGE CORE TEAM MEMBER                                                                                                                   | J.H ZHANG                       | 3/3/1998         |
| С                    | CHANG FORMAT                                                                                                                              | J.H ZHANG                       | 5/10/1998        |
| D                    | CHANG DOCUMENT TITLE                                                                                                                      | J.H ZHANG                       | 6/6/1998         |
| Е                    | spelling mistake                                                                                                                          | J.H ZHANG                       | 10/10/1998       |
| F                    | Modify "Key contact/phone and Core team"                                                                                                  | J.H ZHANG                       | 12/20/1998       |
| G                    | Change Format                                                                                                                             | J.H ZHANG                       | 5/15/1999        |
| Н                    | Change format, change flow chart symbol to term per 12MRM96619A request                                                                   | M.H LI                          | 9/1/1999         |
| J                    | Change sample size and QA gate method                                                                                                     | Robert Wang                     | 9/19/1999        |
| K                    | Change Format                                                                                                                             | Robert Wang                     | 4/10/2000        |
| L                    | Change 24ape1n                                                                                                                            | Allan Li                        | 6/9/2000         |
| M                    | Change MCEL to BAT3                                                                                                                       | Lucy Bai                        | 2/26/2001        |
| N                    | change "per spec" to specific SPEC name chang QA gate to GATE                                                                             | J.W Zhang                       | 7/26/2001        |
| P                    | Modify "Key contact/phone and Core team", Then change CA to ZH                                                                            | J.W Zhang                       | 11/30/2001       |
| R                    | change file name to " SOIC and PDIP Test Flow " Modify "Key contact/phone and Core team"                                                  | H.L Sun                         | 9/20/2002        |
| S                    | Change test account from zh630 to ZH630/ZH660, adding packing in QA step, delete zh850                                                    | YuPeng Zhang/linda bo           | 5/22/2003        |
| T                    | Adding "packing" in FOI gate                                                                                                              | YuPeng Zhang/linda bo           | 6/6/2003         |
| U                    | Changed the Part number, changed flow from INSP. To MAT, and QA to Gate, Deleted all 48A from control method                              | YuPeng Zhang/Wang Peng/Berts Li | 4/5/2004         |
| V                    | Modify the format;replace PROD with XFER in ZH650.adding "visual" in incoming check                                                       | Zhang Yupeng /Wang Peng         | 4/26/2004        |
| W                    | Change sample size to 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) from 200 Units/Lot(Lot size<10k) or 315 Units(lot size>10k) | Zhang Yupeng /Wang Peng         | 5/13/2004        |
| X                    | Change Core Team member from David zhang to Yang Liang                                                                                    | Yang Liang                      | 9/13/2004        |

| Y   | Change Process Description from TTT or Tape&Reel to Test Backend                            | Yang Liang              | 4/14/2005  |
|-----|---------------------------------------------------------------------------------------------|-------------------------|------------|
| Z   | Change 'TTT or Tape&Reel' to 'Test Backend'                                                 | Yang Liang              | 4/19/2005  |
| AA  | Change Process No from ZH670 to ZH670/ZH720                                                 | Yang Liang              | 5/16/2005  |
| AB  | Added "V/M Sample Check" process in electrical test.                                        | Wang Peng               | 9/9/2005   |
| AC  | Updated "Core Team Member".                                                                 | Wang Peng               | 10/25/2006 |
|     | 1. Updated "Core Team Member" and revised some characteristics from process                 |                         |            |
| AD  | column to product column;                                                                   |                         |            |
| AD  | 2. change 'VM sample check' to 'Machine Setup VM check' to clarify the VM check             |                         |            |
|     | purpose on Electrical test process.                                                         | Wang Peng/Yang Liang    | 9/28/2007  |
|     | Change sample size to 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k)               |                         |            |
| AE  | from 200 Units/Lot(Lot size<10k) or 315 Units(lot size>10k)                                 | Zhang Yupeng/ Wang Peng | 5/13/2004  |
|     | 1. Add '12MCT50040A' in control method and Reaction Plan column of INSP.                    |                         |            |
|     | step                                                                                        |                         |            |
|     | 2. Change Core Team name from                                                               |                         |            |
| AF  | 'Zhang Yupeng' to 'Yang Liang'                                                              | Yang Liang              | 9/21/2004  |
|     | 1.Add "PQFN" in "Title,Part Number & Name/Description"                                      |                         |            |
|     | 2.Add"Albert Zheng(6192)" in" Key Contact/Phone".                                           |                         |            |
|     | 3.Change "SPS" to "Freescale"                                                               |                         |            |
|     | 4.Add "Yield" in "char.process of Electrical Test"                                          |                         |            |
|     | 5.Delete "Electrical Test" in "char. Product" column.                                       |                         |            |
|     | 6.Take place "200 units/Lot" with "200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k)" |                         |            |
|     | 7.Add "Electrical Parameter" in" char. Process" column                                      |                         |            |
| AG  | 8.Add note of "F/T" and "ATE"                                                               | Wang Peng               | 11/30/2004 |
| AH  | Added "V/M Sample Check" process in electrical test.                                        | Wang Peng               | 11/23/2005 |
| AJ  | Updated "Core Team Member" and "Supplier/Plant Name"                                        | Wang Peng/Yang Liang    | 11/10/2006 |
| 713 | opaned Core ream Member and Supplient fant (value                                           | wang reng, rang Liang   | 11/10/2000 |
|     | Updated "Core Team Member" and revised some characteristics from process                    |                         |            |
|     | column to product column; change 'VM sample check' to                                       |                         |            |
|     | 'Machine Setup VM check' to clarify the VM check purpose on Electrical test                 |                         |            |
| AK  | process.                                                                                    | Wang Peng/Yang Liang    | 9/28/2007  |
| AL  | Delete the process description of B/I, Lot process & T/R from test process.                 | Wang Peng               | 4/15/2008  |
|     | 1. Core Team Review                                                                         |                         |            |
|     | 2. Update "Core Team Member"                                                                |                         |            |
|     | 3. Change title from "ZH630/ZH660 Test Flow" to "GENERAL TEST FLOW"                         |                         |            |

| 1  | 1                                                                                                                                                                                                                  | 1                   | 1            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
|    | 4. Change part number from "ZH630/ZH660 Test Bank" to "GENERAL TEST" 5. Change description from "ZH630/ZH660 Test Bank Test Flow" to "GENERAL TEST FLOW"                                                           |                     |              |
|    | 6. Change incoming check sample size from "200 Units/Lot (Lot Size <10K);315 Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot (Size>10K)"                                                   |                     |              |
|    | 7. Change start lot check sample size from "200 Units/Lot (Lot Size <10K);315 Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot (Size>10K)"                                                  |                     |              |
|    | 8. Change machine setup & V/M check sample size from "200 Units/Lot (Lot Size <10K);315 Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot (Size>10K)"                                        |                     |              |
|    | 9. Change ILG sample size from "Per Skip Plan" to "Per 12ACT20080A" 10. Change VM gate sample size from "200 Units/Lot (Lot Size <10K);315 Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot |                     |              |
| AM | (Size>10K)"                                                                                                                                                                                                        | Chen Wei/Yang Liang | 5/5/2009     |
|    |                                                                                                                                                                                                                    |                     |              |
| AN | 12months review                                                                                                                                                                                                    | Yang Liang/Chen Wei | 5/4/2010     |
|    |                                                                                                                                                                                                                    |                     |              |
| AP | 12months review,no content change.                                                                                                                                                                                 | Yang Liang/Chen Wei | 4/18/2011    |
|    | 1. Add "ZHPT0" to process operation number                                                                                                                                                                         |                     |              |
|    | 2. Change the reference of sample size to "Per 12ACT20080A"                                                                                                                                                        |                     |              |
|    | 3. Update the document numbers of "Specification", "Control Method" and "Control                                                                                                                                   |                     |              |
|    | plan" acoording to Doc_Rebuild project                                                                                                                                                                             |                     |              |
|    | 4. Change step name from "VM Gate (Per shop order)" to "VM Inspection", change the step symbol from "GATE" to "INSP"                                                                                               |                     |              |
|    | 5. For "VM Insepction" step, change the "Machine, Tools" and "Evaluation                                                                                                                                           |                     |              |
|    | Measurement Technique" to "Visual"                                                                                                                                                                                 |                     |              |
| AR | 6. Add NOTE 3                                                                                                                                                                                                      | Yang Liang/Chen Wei | 10/17/2011   |
|    |                                                                                                                                                                                                                    | 0 0                 |              |
|    | 1. Remove Han Z.L from core team member;                                                                                                                                                                           |                     |              |
|    | 2. Replace "A" with "Visual Mechanical Defect";                                                                                                                                                                    |                     |              |
|    | 3. Replace process specification of electrical test/gate process from "48A Spec" to                                                                                                                                |                     |              |
|    | "Test Program" / "Gate Program"                                                                                                                                                                                    |                     |              |
|    | 4. Replace "Test Program" & "Gate Program" Measurement to "Electrical Test";                                                                                                                                       |                     | 1.0.10.10.11 |
| AS | 5. Replace gate process tool from "ILG" to "ATE"                                                                                                                                                                   | Chen Wei/Yang Liang | 12/9/2011    |

| AT | Update core team member     Split out "CENTRAL MATERIAL STAGING" step from "INCOMING CHECK" step, add detailed items into "INCOMING CHECK" step     Add detailed control method and reaction plan     Change freq. from "1x/lot" to "Every lot" | Chen Wei                                | 9/21/2012 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|
| AU | Core team review: 1. Change the process name from "CENTRAL MATERIAL STAGING" to "MATERIAL RECEIVING" 2. Move "machine preparation" from "INCOMING CHECK" to "ELECTRICAL TEST" 3. Update the wording of Characteristics                          | Chen Wei/Yang Liang                     | 11/9/2012 |
| AV | Update Core team member     Update reaction plan  2013 annual control plan review, no content change.                                                                                                                                           | Chen Wei/Yang Liang Chen Wei/Yang Liang | 9/6/2013  |

| 0            | . N                 |                                                                                                                  |                                                    | D                                              | IV. O. IV. IVDI                   |              |                                   |                                              | D. (0 (a)              | Data (Data)          |                                                                                |                                                                                                                                                   |
|--------------|---------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------|--------------|-----------------------------------|----------------------------------------------|------------------------|----------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Plai | n Number/Iss        | sue                                                                                                              |                                                    | Prototype<br>Pre-launch (XC)                   | Key Contact/Phone                 |              |                                   |                                              | Date(Orig.)            | Date (Rev.)          |                                                                                |                                                                                                                                                   |
| 70MCT000     |                     |                                                                                                                  | X                                                  | Production                                     | Tang Peg (85686866)/I             | łu Z.J(85686 | 770)                              |                                              | 5/10/1997              | 11/25/2013           |                                                                                |                                                                                                                                                   |
| Part Numbe   | r                   |                                                                                                                  |                                                    | Core Team                                      |                                   |              |                                   | Customer Engineerin                          | g Approval (If Req'd)  |                      |                                                                                |                                                                                                                                                   |
| GENERAL      | TEST                |                                                                                                                  |                                                    | Duan Peng, Chen Wei,<br>Yin Wally, Xu Lingxuan | Diao William, Liu X.J., 0<br>ı.   | iao Dong, Y  | ang Liang, Wang K.Q.,             |                                              |                        |                      |                                                                                |                                                                                                                                                   |
| Name/Desc    | ription             |                                                                                                                  |                                                    | Supplier/Plant                                 |                                   | Supplier Co  | de                                | Customer Quality App                         | proval/Date (If Req'd) |                      |                                                                                |                                                                                                                                                   |
| GENERAL      | TEST FLOV           | V                                                                                                                |                                                    | FSL-TJN-FM                                     |                                   |              |                                   |                                              |                        |                      |                                                                                |                                                                                                                                                   |
|              |                     |                                                                                                                  | <b>PROD</b> =Pr                                    | oduction Operation INSF                        | P=Inspection MEAS=Me              |              | OWCHART LEGEND  OA=OA Monitor GAT | E=QA Gate XFER=N                             | Material Transfer MAT= | Material Inspection  |                                                                                |                                                                                                                                                   |
| Flow Chart   | Process             |                                                                                                                  | Machine Device, Jip, Tools                         |                                                | teristics                         | Special      | Product/Process                   | Evaluation                                   |                        | ample                | Control                                                                        |                                                                                                                                                   |
| Symbol       | Operation<br>Number | Process Name/Operation                                                                                           | for Mfg                                            | Product                                        | Process                           | Char. Class  | /Specification<br>/Tolerance      | Measurement<br>Technique                     | Size                   | Freq.                | Method                                                                         | Reaction Plan                                                                                                                                     |
| МАТ          | 1                   | MATERIAL RECEIVING                                                                                               | Assembly Shop Order<br>Packing list,<br>SFC System |                                                | Documentation                     |              | 12MCT50044C                       | Visual                                       | 100%                   | Every lot            | Verify box label LOT#,<br>device #, box quantity<br>against packing list & SFC | Hold lot for disposition<br>12MCT50040A                                                                                                           |
| PROD         |                     | INCOMING CHECK                                                                                                   | Assembly Shop Order<br>Test Shop Order             |                                                | Quantity                          |              | 12MCT50044C                       | Visual                                       | 100%                   | Every lot            | Count physical quantity againest assembly shop order                           | I lad las fau diagonision                                                                                                                         |
| 11105        | 2                   | (Visual Mechanical only<br>applies to assembly & BI<br>rawstock)                                                 | sual Mechanical only<br>slies to assembly & BI     |                                                | Documentation                     |              | 121401300440                      | Visual                                       | 100%                   | Every lot            | Verify box label LOT#,<br>device #, lot status in SFC<br>system                | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A020<br>12MCT50040A021                                                                       |
| INSP         |                     |                                                                                                                  | vision machine (optional)                          |                                                | Visual Mechanical                 |              | 12MRM09116A                       | Visual or<br>vision machine<br>(optional)    | Per 12ACT20080A        | Every lot            | Visual verification for visual defect                                          | -                                                                                                                                                 |
| PROD         |                     |                                                                                                                  | Test Shop Order                                    |                                                | Machine Type                      |              | 12MCT50040A                       | Visual                                       | 100%                   | Every conversion     | Manual visual verification machine according to test shop order                | Hold for disposition<br>12MCT50040A                                                                                                               |
| PROD         |                     |                                                                                                                  | Test Shop Order                                    |                                                | Temperature                       |              | Test Shop Order                   | Continuous Test<br>Temperature<br>monitoring | 100%                   | Every test insertion | Handler temperature auto-<br>guardbanding using<br>temperature controller      | Handler stop until temperature is within guardband                                                                                                |
| PROD         |                     |                                                                                                                  | Test Shop Order<br>SFC system                      |                                                | Yield<br>(Start lot)              |              | 12MCT50040A<br>12MCT10240A        | Electrical Test                              | Per 12ACT20080A        | Every lot            | Calculate the yield after sampling test done and compare with shut down yield  | Stop the machine and call PE/TPE/PM. 12MCT50040A 12MCT50240A 12MCT5040A010 12MCT50040A010 12MCT50040A015 12MCT50040A015                           |
| INSP         |                     | ELECTRICAL TEST as per test shop order                                                                           | vision machine (optional)                          |                                                | Visual Mechanical<br>(Start lot)  |              | 12MRM09116A                       | Visual or<br>vision machine<br>(optional)    | Per 12ACT20080A        | Every lot            | Visual verification for visual defect                                          | Stop the machine and call<br>supervisor.<br>12MCT50040A<br>12MCT50040A01<br>12MCT50040A010<br>12MCT50040A012<br>12MCT50040A015                    |
| PROD         | 3                   | Machine preparation     Start lot     Start lot     Electrical parameters tests     Hend lot     (Hot/Cold/Room) | ATE                                                | Electrical Parameter                           |                                   |              | 12MCT50040A                       | Electrical Test<br>Program                   | 100%                   | Every lot            | Electrical Yield limit per SFC<br>System                                       | Stop the machine and call PE/TPE/PM. 12/MCT50040A 12/MCT50040A014 12/MCT50040A010 12/MCT50040A012 12/MCT50040A012 12/MCT50040A015 12/MCT50040A018 |
| INSP         |                     |                                                                                                                  | Vision machine (optional)                          |                                                | Visual Mechanical<br>(In process) |              | 12MRM09116A                       | Visual or<br>vision machine<br>(optional)    | Per 12ACT20080A        | Every lot            | Visual verification for visual defect                                          | Stop the machine and call<br>supervisor.<br>12MCT50040A<br>12MCT50040A01<br>12MCT50040A010<br>12MCT50040A012<br>12MCT50040A015                    |
|              |                     |                                                                                                                  |                                                    |                                                | Yield<br>(End lot)                |              | 12MCT50040A<br>12MCT10240A        | Electrical Test                              | 100%                   | Every lot            | Electrical Yield limit per SFC<br>System                                       | Hold lot for disposition<br>12MCT10240A                                                                                                           |

| Control Pla | n Number/Iss        | sue                                                                                                                                                                   |                                | Prototype                | Key Contact/Phone       |              |                                  |                                       | Date(Orig.)                         | Date (Rev.)         |                                                                                          |                                                                                                                                |
|-------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|-------------------------|--------------|----------------------------------|---------------------------------------|-------------------------------------|---------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|             |                     |                                                                                                                                                                       |                                | Pre-launch (XC)          |                         |              |                                  |                                       |                                     |                     |                                                                                          |                                                                                                                                |
| Part Number |                     |                                                                                                                                                                       | Х                              | Production<br>Core Team  | Tang Peg (85686866)/I   | Hu Z.J(85686 | 770)                             | Customer Engineerin                   | 5/10/1997<br>ng Approval (If Reg'd) | 11/25/2013          |                                                                                          |                                                                                                                                |
| T dit Hambe |                     |                                                                                                                                                                       |                                | Duan Peng, Chen Wei,     | Diao William. Liu X.J 0 | Sao Dong. Y  | ang Liang, Wang K.Q.,            | Captomor Engineerii                   | ig / pp.ora. (ii rioqa)             |                     |                                                                                          |                                                                                                                                |
| GENERAL     |                     |                                                                                                                                                                       |                                | Yin Wally, Xu Lingxuan   |                         |              |                                  |                                       |                                     |                     |                                                                                          |                                                                                                                                |
| Name/Desc   | ription             |                                                                                                                                                                       |                                | Supplier/Plant           |                         | Supplier Cod | de                               | Customer Quality Ap                   | proval/Date (If Req'd)              |                     |                                                                                          |                                                                                                                                |
| GENERAL     | TEST FLOV           | V                                                                                                                                                                     |                                | FSL-TJN-FM               |                         |              |                                  | <u> </u>                              |                                     |                     |                                                                                          |                                                                                                                                |
|             |                     |                                                                                                                                                                       | PROD=Pr                        | roduction Operation INSF | P=Inspection MFAS=Me    |              | WCHART LEGEND  OA=OA Monitor GAT | F=OA Gate XFFR=I                      | Material Transfer MAT=              | Material Inspection |                                                                                          |                                                                                                                                |
| Flow Chart  | Process             |                                                                                                                                                                       | Machine Device, Jip, Tools     |                          | teristics               | Special      | Product/Process                  | Evaluation                            |                                     | Sample              | Control                                                                                  |                                                                                                                                |
| Symbol      | Operation<br>Number | Process Name/Operation                                                                                                                                                | for Mfg                        | Product                  | Process                 | Char. Class  | /Specification<br>/Tolerance     | Measurement<br>Technique              | Size                                | Freq.               | Method                                                                                   | Reaction Plan                                                                                                                  |
| PROD        |                     |                                                                                                                                                                       | Test Shop Order<br>SFC system  |                          | Quantity                |              | 12MCT50040P                      | Visual                                | 100%                                | Every lot           | Count physical quantity and record on test shop order & SFC                              | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A005<br>12MCT50040A019                                                    |
|             |                     |                                                                                                                                                                       |                                |                          | Documentation           |              | 121001300401                     | Visual                                | 100%                                | Every lot           | Check test result againest physical quantity, confirm the lot status in SFC system       | Hold lot for disposition<br>12MCT50040A                                                                                        |
|             |                     | ELECTRICAL TEST (QC In-<br>line) as per shop order<br>(Hot/Room/Cold):<br>Applicable for specific<br>products as specified in the<br>Test Shop Order or SFC<br>system |                                | Electrical Parameter     |                         |              | 12MCT50040A<br>12ACT20080A       | Electrical Test<br>Program            | Per 12ACT20080A                     | Per Skip Plan       | Accept on zero failure                                                                   | Hold lot for disposition<br>12ACT20080A<br>12MCT50040A<br>12MCT50040A010<br>12MCT50040A012<br>12MCT50040A013<br>12MCT50040A015 |
| GATE        | 4                   |                                                                                                                                                                       | ATE Test Shop Order SFC system |                          | Quantity                |              |                                  | Visual                                | 100%                                | Every lot           | Count physical quantity and record on test shop order & SFC                              | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A005<br>12MCT50040A019                                                    |
|             |                     |                                                                                                                                                                       |                                |                          | Documentation           |              | 12MCT50040P                      | Visual                                | 100%                                | Every lot           | Check test result againest physical quantity, tranfer the lot to next step in SFC system | Hold lot for disposition<br>12MCT50040A                                                                                        |
| PROD        |                     | QUALITY CONTROL                                                                                                                                                       |                                |                          | Quantity                |              | 12MCT10123G                      | Visual                                | 100%                                | Every lot           | Count physical quantity againset test shop order                                         | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A005<br>12MCT50040A019                                                    |
| 11105       | 5                   | Stage: 1. Verification for test result 2. Visual inspection on final good unit                                                                                        |                                |                          | Documentation           |              | .E.WOTTOTESC                     | Visual                                | 100%                                | Every lot           | Check test result againest<br>test shop order, verify lot<br>status in SFC system        | Hold lot for disposition<br>12MCT50040A                                                                                        |
| INSP        |                     |                                                                                                                                                                       | Microscope(optional)           |                          | Visual Mechanical       |              | 12MRM09116A                      | Visual or<br>Microscope(optional<br>) | Per 12ACT20080A                     | Every lot           | Visual verification for visual defect                                                    | Hold lot for disposition<br>12MCT50040A<br>12MCT50040A004                                                                      |

NOTE 1. ATE:Auto Testing Equipment

2. Visual: Unaided eye or 3x magnifier (optional)

| Part Number:      | GENERAL TEST      | Control Plan Number/Issue: | 70MCT00019A/AW | _       |
|-------------------|-------------------|----------------------------|----------------|---------|
| Name/Description: | GENERAL TEST FLOW | Control plan Date:         | 5/10/1997      | (Orig.) |
| Supplier/Plant:   | FSL-TJN-FM        | Control plan Date.         | 11/25/2013     | (Rev.)  |
|                   |                   |                            |                |         |

| <b>Revision Date</b> | Description of Revison & Writer                                                                                                           | Spec Coord                      | Effectivity Date |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|
| О                    | VERSION O                                                                                                                                 | J.W ZHANG                       | 5/10/1997        |
| A                    | CHANGE ERROR WORD                                                                                                                         | J.H ZHANG                       | 12/14/1997       |
| В                    | CHANGE CORE TEAM MEMBER                                                                                                                   | J.H ZHANG                       | 3/3/1998         |
| С                    | CHANG FORMAT                                                                                                                              | J.H ZHANG                       | 5/10/1998        |
| D                    | CHANG DOCUMENT TITLE                                                                                                                      | J.H ZHANG                       | 6/6/1998         |
| Е                    | spelling mistake                                                                                                                          | J.H ZHANG                       | 10/10/1998       |
| F                    | Modify "Key contact/phone and Core team"                                                                                                  | J.H ZHANG                       | 12/20/1998       |
| G                    | Change Format                                                                                                                             | J.H ZHANG                       | 5/15/1999        |
| Н                    | Change format, change flow chart symbol to term per 12MRM96619A request                                                                   | M.H LI                          | 9/1/1999         |
| J                    | Change sample size and QA gate method                                                                                                     | Robert Wang                     | 9/19/1999        |
| K                    | Change Format                                                                                                                             | Robert Wang                     | 4/10/2000        |
| L                    | Change 24ape1n                                                                                                                            | Allan Li                        | 6/9/2000         |
| M                    | Change MCEL to BAT3                                                                                                                       | Lucy Bai                        | 2/26/2001        |
| N                    | change "per spec" to specific SPEC name chang QA gate to GATE                                                                             | J.W Zhang                       | 7/26/2001        |
| P                    | Modify "Key contact/phone and Core team", Then change CA to ZH                                                                            | J.W Zhang                       | 11/30/2001       |
| R                    | change file name to " SOIC and PDIP Test Flow " Modify "Key contact/phone and Core team"                                                  | H.L Sun                         | 9/20/2002        |
| S                    | Change test account from zh630 to ZH630/ZH660, adding packing in QA step, delete zh850                                                    | YuPeng Zhang/linda bo           | 5/22/2003        |
| T                    | Adding "packing" in FOI gate                                                                                                              | YuPeng Zhang/linda bo           | 6/6/2003         |
| U                    | Changed the Part number, changed flow from INSP. To MAT, and QA to Gate, Deleted all 48A from control method                              | YuPeng Zhang/Wang Peng/Berts Li | 4/5/2004         |
| V                    | Modify the format;replace PROD with XFER in ZH650.adding "visual" in incoming check                                                       | Zhang Yupeng /Wang Peng         | 4/26/2004        |
| W                    | Change sample size to 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) from 200 Units/Lot(Lot size<10k) or 315 Units(lot size>10k) | Zhang Yupeng /Wang Peng         | 5/13/2004        |
| X                    | Change Core Team member from David zhang to Yang Liang                                                                                    | Yang Liang                      | 9/13/2004        |

| Change Process Description from TTT or Tape&Reel to Test Backend                            | Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/14/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change 'TTT or Tape&Reel' to 'Test Backend'                                                 | Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/19/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Change Process No from ZH670 to ZH670/ZH720                                                 | Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/16/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Added "V/M Sample Check" process in electrical test.                                        | Wang Peng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9/9/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Updated "Core Team Member" .                                                                | Wang Peng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/25/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1. Updated "Core Team Member" and revised some characteristics from process                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| column to product column;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             | Wang Peng/Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9/28/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             | Zhang Yupeng/ Wang Peng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/13/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1. Add '12MCT50040A' in control method and Reaction Plan column of INSP.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| step                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             | Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/21/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.Add "Yield" in "char.process of Electrical Test"                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.Delete "Electrical Test" in "char. Product" column.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.Take place "200 units/Lot" with "200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k)" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.Add "Electrical Parameter" in" char. Process" column                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.Add note of "F/T" and "ATE"                                                               | Wang Peng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/30/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Added "V/M Sample Check" process in electrical test.                                        | Wang Peng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/23/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Updated "Core Team Member" and "Supplier/Plant Name"                                        | Wang Peng/Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11/10/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                             | wang rung rung bang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,10,2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Updated "Core Team Member" and revised some characteristics from process                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             | Wang Peng/Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9/28/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/15/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                             | wang i ciig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/13/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Update Core ream Member                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Change title from "ZH630/ZH660 Test Flow" to "GENERAL TEST FLOW"                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             | Change Process No from ZH670 to ZH670/ZH720  Added "V/M Sample Check" process in electrical test.  Updated "Core Team Member".  1. Updated "Core Team Member" and revised some characteristics from process column to product column;  2. change "VM sample check' to 'Machine Setup VM check' to clarify the VM check purpose on Electrical test process.  Change sample size to 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) from 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) from 200 Units/Lot(Lot size<10k) or 315 Units(lot size>10k)  1. Add '12MCT50040A' in control method and Reaction Plan column of INSP. step  2. Change Core Team name from 'Zhang Yupeng' to 'Yang Liang'  1. Add "PQFN" in "Title, Part Number & Name/Description"  2. Add"Albert Zheng(6192)" in" Key Contact/Phone".  3. Change "SPS" to "Freescale"  4. Add "Yield" in "char.process of Electrical Test"  5. Delete "Electrical Test" in "char. Product" column.  6. Take place "200 units/Lot" with "200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k)"  7. Add "Electrical Parameter" in" char. Process" column  8. Add note of "F/T" and "ATE"  Added "V/M Sample Check" process in electrical test.  Updated "Core Team Member" and "Supplier/Plant Name"  Updated "Core Team Member" and revised some characteristics from process column to product column; change 'VM sample check' to 'Machine Setup VM check' to clarify the VM check purpose on Electrical test process.  Delete the process description of B/I, Lot process & T/R from test process.  1. Core Team Review  2. Update "Core Team Member" | Change TTT or Tape&Reel' to Test Backend' Change Process No from ZH670 to ZH670/ZH720 Yang Liang Added "VM Sample Check" process in electrical test.  Updated "Core Team Member"  1. Updated "Core Team Member" and revised some characteristics from process column to product column; 2. change "VM sample check" to 'Machine Setup VM check' to clarify the VM check purpose on Electrical test process.  Change sample size to 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) from 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) from 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) Throm 200 Units/Lot(Lot size<10k) Throm 200 Units/Lot(Lot size<10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size<10k) or 315 Units(lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot size>=10k) Throm 200 Units/Lot(Lot siz |

|    |                                                                                                                                                                             | 1                   | 1          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|
|    | 4. Change part number from "ZH630/ZH660 Test Bank" to "GENERAL TEST"                                                                                                        |                     |            |
|    | 5. Change description from "ZH630/ZH660 Test Bank Test Flow" to "GENERAL                                                                                                    |                     |            |
|    | TEST FLOW"                                                                                                                                                                  |                     |            |
|    | 6. Change incoming check sample size from "200 Units/Lot (Lot Size <10K);315 Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot (Size>10K)"            |                     |            |
|    |                                                                                                                                                                             |                     |            |
|    | 7. Change start lot check sample size from "200 Units/Lot (Lot Size <10K);315 Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot (Size>10K)"           |                     |            |
|    | 8. Change machine setup & V/M check sample size from "200 Units/Lot (Lot Size <10K);315 Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot (Size>10K)" |                     |            |
|    | 9. Change ILG sample size from "Per Skip Plan" to "Per 12ACT20080A"                                                                                                         |                     |            |
|    | 10. Change VM gate sample size from "200 Units/Lot (Lot Size <10K);315                                                                                                      |                     |            |
|    | Units/Lot (Size>=10K)" to "200 Units/Lot (Lot Size =<10K);315 Units/Lot                                                                                                     |                     |            |
| AM | (Size>10K)"                                                                                                                                                                 | Chen Wei/Yang Liang | 5/5/2009   |
| AN | 12months review                                                                                                                                                             | Yang Liang/Chen Wei | 5/4/2010   |
| AP | 12months review,no content change.                                                                                                                                          | Yang Liang/Chen Wei | 4/18/2011  |
|    | 1. Add "ZHPT0" to process operation number                                                                                                                                  |                     |            |
|    | 2. Change the reference of sample size to "Per 12ACT20080A"                                                                                                                 |                     |            |
|    | 3. Update the document numbers of "Specification", "Control Method" and "Control                                                                                            |                     |            |
|    | plan" acoording to Doc_Rebuild project                                                                                                                                      |                     |            |
|    | 4. Change step name from "VM Gate (Per shop order)" to "VM Inspection", change                                                                                              |                     |            |
|    | the step symbol from "GATE" to "INSP"                                                                                                                                       |                     |            |
|    | 5. For "VM Insepction" step, change the "Machine, Tools" and "Evaluation                                                                                                    |                     |            |
|    | Measurement Technique" to "Visual"                                                                                                                                          |                     |            |
| AR | 6. Add NOTE 3                                                                                                                                                               | Yang Liang/Chen Wei | 10/17/2011 |
|    | 1. Remove Han Z.L from core team member;                                                                                                                                    |                     |            |
|    | 2. Replace "A" with "Visual Mechanical Defect";                                                                                                                             |                     |            |
|    | 3. Replace process specification of electrical test/gate process from "48A Spec" to                                                                                         |                     |            |
|    | "Test Program" / "Gate Program"                                                                                                                                             |                     |            |
|    | 4. Replace "Test Program" & "Gate Program" Measurement to "Electrical Test";                                                                                                |                     |            |
| AS | 5. Replace gate process tool from "ILG" to "ATE"                                                                                                                            | Chen Wei/Yang Liang | 12/9/2011  |

| Update core team member     Split out "CENTRAL MATERIAL STAGING" step from "INCOMING CHECK" step, add detailed items into "INCOMING CHECK" step     Add detailed control method and reaction plan     Change freq. from "1x/lot" to "Every lot" | Chen Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9/21/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core team review: 1. Change the process name from "CENTRAL MATERIAL STAGING" to "MATERIAL RECEIVING" 2. Move "machine preparation" from "INCOMING CHECK" to "ELECTRICAL TEST" 3. Update the wording of Characteristics                          | Chen Wei/Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/9/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Update Core team member     Update reaction plan                                                                                                                                                                                                | Chen Wei/Yang Liang                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/6/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                 | 2. Split out "CENTRAL MATERIAL STAGING" step from "INCOMING CHECK" step, add detailed items into "INCOMING CHECK" step 3. Add detailed control method and reaction plan 4. Change freq. from "1x/lot" to "Every lot"  Core team review: 1. Change the process name from "CENTRAL MATERIAL STAGING" to "MATERIAL RECEIVING" 2. Move "machine preparation" from "INCOMING CHECK" to "ELECTRICAL TEST" 3. Update the wording of Characteristics  1. Update Core team member | 2. Split out "CENTRAL MATERIAL STAGING" step from "INCOMING CHECK" step, add detailed items into "INCOMING CHECK" step  3. Add detailed control method and reaction plan  4. Change freq. from "1x/lot" to "Every lot"  Core team review:  1. Change the process name from "CENTRAL MATERIAL STAGING" to "MATERIAL RECEIVING"  2. Move "machine preparation" from "INCOMING CHECK" to "ELECTRICAL TEST"  3. Update the wording of Characteristics  Chen Wei/Yang Liang  1. Update Core team member  2. Update reaction plan  Chen Wei/Yang Liang |

# Measurement System Studies (Gage R&R)

# **TSMC PPAP Documents**

- TSMC PPAP documents (FMEAs, Control Plans, Cpks, and GR&R) are considered proprietary information by TSMC, classified as "TSMC INTERNAL USE ONLY" and cannot be distributed with Freescale PPAPs in accordance with an agreement with TSMC.
- The PPAP documents are pulled by Freescale External Manufacturing Quality and checked for compliance with TS16949 requirements.
- For special requests, Freescale may be able to review these documents on a limited basis with customers at the local Freescale sales office.
- If there are any questions, please contact:

Sally Cadena Massey, Freescale MSG NPI Reliability, 512-895-7310 sally.cadena.massey@freescale.com

Jeff Martsching, Freescale External Manufacturing, 512-996-4282 <u>Jeff.Martsching@freescale.com</u>





# **Gage Study Summary Report**

| <b>Customer Part Number:</b>        |                                          |            |                   |
|-------------------------------------|------------------------------------------|------------|-------------------|
| Company/Manufacturing Site ID:      | Freescale / TJN                          |            |                   |
| Designate only one of the following | g and enter the appropriate information: |            |                   |
| Wafer Fab Process Technolog         | gy:                                      |            |                   |
| <b>Assembly Process Package Fa</b>  | mily: SOIC32LD                           |            |                   |
| Physical Dimensions Package         | <b>Drawing #:</b> 98ASA00259D_O          |            |                   |
|                                     | 98ARH99137A_B                            |            |                   |
| ☐ Test                              |                                          |            |                   |
|                                     |                                          |            |                   |
| Special/Important                   | Measurement                              | %R&R       | <b>Date Study</b> |
| Characteristic                      | Gage/Tool/Equipment                      | <u>1</u> / | Performed         |
| Wire Pull                           | Wire pull tester – Dage4000 BBT-01       | 0.30%      | May 11,2013       |
| Ball Shear                          | Ball Shear tester – Dage4000 BBT-01      | 0.12%      | May 11,2013       |
| Plating Thickness                   | SFT3200 32300018                         | 3.50%      | Mar 05,2013       |
| Tip-to-Tip                          | Projector - Nikon V-12BDC MPJ-03         | 0.21%      | May 09, 2013      |
| Coplanarity                         | Microscope- Nikon- MM-40 MMP-02          | 8.34%      | May 09, 2013      |
|                                     |                                          |            |                   |
|                                     |                                          |            |                   |
|                                     |                                          |            |                   |
|                                     |                                          |            |                   |
|                                     |                                          |            |                   |

1/1 If R&R > 10%, attach containment action, corrective action, or justification (as appropriate)

FORMPPAP007DOC Freescale Rev K

# **Dimensional Results**



#### PHYSICAL DIMENSION MEASUREMENT RESULT

| rackage Type.        | SOIC SZIU EF  |              |   |               |           |  |
|----------------------|---------------|--------------|---|---------------|-----------|--|
| Assembly Site:       | Freescale TJN | _            |   | _             |           |  |
| Freescale 98A:       | 98ASA00259D   | 98A Rev:     | 0 | 98A Rev Date: | 29-Jul-10 |  |
| ate of Teet Populter | 16-Doc-13     | <del>-</del> |   |               |           |  |

| Freescale 98A:          | 98ASA00259D        |                |                  | -              | 98A Rev:            | 0                     |                        | 98A Rev Date:  | 29-Jul-10      | -              |                |
|-------------------------|--------------------|----------------|------------------|----------------|---------------------|-----------------------|------------------------|----------------|----------------|----------------|----------------|
|                         |                    |                |                  | -              | 96A HeV:            |                       |                        | 96A Rev Date:  | 29-Jul-10      |                |                |
| Date of Test Results:   | 16-Dec-13          |                |                  | -              |                     |                       |                        |                |                |                |                |
|                         |                    |                |                  | Pa             | ackage Dimensions p | er Freescale 98A (exa | ımple lenath, width, e | tc.)           |                |                |                |
| Dimension I             | Description        | Package width  | Package length   | Package height | Tip to Tip          | Full height           | Lead width             | Lead lenth     | Exposed Pad, X | Exposed Pad, Y | Coplanarity    |
|                         | Min Per Freescale  | ·              |                  |                |                     |                       |                        |                |                |                |                |
| Spec Limits             | 98A                | 7.40           | 10.90            | 2.12           | 10.00               | 2.22                  | 0.22                   | 0.50           | 4.00           | 4.00           | 0.00           |
|                         | Max Per Freescale  |                |                  |                |                     |                       |                        |                |                |                |                |
| Spec Limits             | 98A                | 7.60           | 11.10            | 2.45           | 10.60               | 2.45                  | 0.38                   | 0.90           | 5.20           | 5.20           | 0.10           |
|                         |                    |                |                  |                |                     |                       |                        |                |                |                |                |
| Enter the measure       | ed value for each  |                |                  |                |                     |                       |                        |                |                |                |                |
| dimension per unit fr   | om 3 assembly lots |                |                  |                |                     |                       |                        |                |                |                |                |
| Assembly Lot #          | Unit #             |                |                  |                |                     |                       |                        |                |                |                |                |
|                         | 1                  | 7.536          | 11.017           | 2.276          | 10.298              | 2.337                 | 0.328                  | 0.668          | 4.484          | 4.487          | 0.016          |
|                         | 2                  | 7.530          | 11.030           | 2.292          | 10.295              | 2.392                 | 0.324                  | 0.638          | 4.462          | 4.495          | 0.023          |
|                         | 3                  | 7.547          | 11.026           | 2.303          | 10.294              | 2.350                 | 0.326                  | 0.667          | 4.488          | 4.448          | 0.014          |
|                         | 4                  | 7.544          | 11.013           | 2.298          | 10.305              | 2.336                 | 0.326                  | 0.650          | 4.492          | 4.508          | 0.011          |
|                         | 5                  | 7.542          | 11.006           | 2.292          | 10.300              | 2.334                 | 0.332                  | 0.647          | 4.480          | 4.485<br>4.493 | 0.020          |
|                         | 6                  | 7.549<br>7.540 | 11.012<br>11.018 | 2.300<br>2.286 | 10.307<br>10.294    | 2.355<br>2.354        | 0.328<br>0.325         | 0.664<br>0.663 | 4.482<br>4.478 | 4.493<br>4.488 | 0.020<br>0.018 |
|                         | 8                  | 7.539          | 11.018           | 2.299          | 10.294              | 2.354                 | 0.325                  | 0.662          | 4.475          | 4.488          | 0.009          |
|                         | 9                  | 7.540          | 11.000           | 2.300          | 10.300              | 2.364                 | 0.329                  | 0.665          | 4.481          | 4.485          | 0.009          |
|                         | 10                 | 7.536          | 11.016           | 2.303          | 10.303              | 2.350                 | 0.326                  | 0.649          | 4.490          | 4.500          | 0.017          |
|                         |                    |                |                  |                |                     |                       |                        |                |                |                |                |
| Assembly Lot #          | Unit #             |                |                  |                |                     |                       |                        |                |                |                |                |
|                         | 1                  | 7.544          | 11.011           | 2.295          | 10.294              | 2.339                 | 0.328                  | 0.668          | 4.484          | 4.487          | 0.016          |
|                         | 2                  | 7.540          | 11.009           | 2.293          | 10.298              | 2.354                 | 0.324                  | 0.638          | 4.462          | 4.495          | 0.023          |
|                         | 3                  | 7.539          | 11.020           | 2.301          | 10.302              | 2.337                 | 0.326                  | 0.667          | 4.488          | 4.448          | 0.014          |
|                         | 4                  | 7.539          | 11.018           | 2.291          | 10.295              | 2.350                 | 0.326                  | 0.650          | 4.492          | 4.508          | 0.011          |
|                         | 5                  | 7.542          | 11.009           | 2.296          | 10.298              | 2.336                 | 0.332                  | 0.647          | 4.480          | 4.485          | 0.020          |
|                         | 6                  | 7.540          | 11.012           | 2.288          | 10.300              | 2.351                 | 0.328                  | 0.664          | 4.482          | 4.493          | 0.020          |
|                         | 7 8                | 7.539<br>7.549 | 11.018<br>11.016 | 2.292<br>2.303 | 10.300<br>10.296    | 2.358<br>2.339        | 0.325<br>0.331         | 0.663<br>0.662 | 4.478<br>4.475 | 4.488<br>4.473 | 0.018<br>0.009 |
|                         | 9                  | 7.544          | 11.010           | 2.294          | 10.294              | 2.362                 | 0.329                  | 0.665          | 4.481          | 4.485          | 0.009          |
|                         | 10                 | 7.543          | 11.015           | 2.300          | 10.298              | 2.358                 | 0.326                  | 0.649          | 4.490          | 4.500          | 0.017          |
|                         |                    | 7.010          | 11.010           | 2.000          | 10.200              | 2.000                 | 0.020                  | 0.010          | 1.100          | 1.000          | 0.017          |
| Lot #                   | Unit #             |                |                  |                |                     |                       |                        |                |                |                |                |
|                         | 1                  | 7.539          | 11.021           | 2.299          | 10.303              | 2.356                 | 0.328                  | 0.668          | 4.484          | 4.487          | 0.016          |
|                         | 2                  | 7.539          | 11.019           | 2.298          | 10.301              | 2.344                 | 0.324                  | 0.638          | 4.462          | 4.495          | 0.023          |
|                         | 3                  | 7.545          | 11.013           | 2.288          | 10.300              | 2.359                 | 0.326                  | 0.667          | 4.488          | 4.448          | 0.014          |
|                         | 4                  | 7.536          | 11.015           | 2.304          | 10.296              | 2.353                 | 0.326                  | 0.650          | 4.492          | 4.508          | 0.011          |
|                         | 5                  | 7.543          | 11.009           | 2.300          | 10.294              | 2.339                 | 0.332                  | 0.647          | 4.480          | 4.485          | 0.020          |
|                         | <u>6</u><br>7      | 7.546<br>7.540 | 11.012<br>11.018 | 2.282<br>2.293 | 10.302<br>10.292    | 2.332<br>2.361        | 0.328<br>0.325         | 0.664<br>0.663 | 4.482<br>4.478 | 4.493<br>4.488 | 0.020<br>0.018 |
|                         | 8                  | 7.540          | 11.018           | 2.293          | 10.292              | 2.351                 | 0.325                  | 0.662          | 4.475          | 4.488          | 0.009          |
|                         | 9                  | 7.542          | 11.011           | 2.296          | 10.298              | 2.380                 | 0.329                  | 0.665          | 4.481          | 4.485          | 0.011          |
|                         | 10                 | 7.545          | 11.016           | 2.301          | 10.300              | 2.356                 | 0.326                  | 0.649          | 4.490          | 4.500          | 0.017          |
|                         |                    |                |                  |                |                     |                       |                        |                |                |                | *****          |
| Calculate the following | for each dimension |                |                  |                |                     |                       |                        |                |                | 1              |                |
|                         | MIN                | 7.530          | 11.006           | 2.276          | 10.292              | 2.332                 | 0.324                  | 0.638          | 4.462          | 4.448          | 0.009          |
|                         | MAX                | 7.549          | 11.030           | 2.304          | 10.307              | 2.392                 | 0.332                  | 0.668          | 4.492          | 4.508          | 0.023          |
|                         | AVERAGE            | 7.541          | 11.015           | 2.295          | 10.298              | 2.352                 | 0.328                  | 0.657          | 4.481          | 4.486          | 0.016          |
|                         | STDEV              | 0.004          | 0.005            | 0.007          | 0.004               | 0.013                 | 0.003                  | 0.010          | 0.008          | 0.016          | 0.004          |
|                         | WITHIN LIMIT       | TRUE           | TRUE             | TRUE           | TRUE                | TRUE                  | TRUE                   | TRUE           | TRUE           | TRUE           | TRUE           |
|                         | Ср                 | 8.16           | 6.25             | 8.33           | 27.45               | 2.86                  | 10.66                  | 6.66           | 24.07          | 12.62          | 3.81           |
|                         | Cpk                | 4.80           | 5.33             | 7.81           | 27.30               | 2.44                  | 7.00                   | 5.24           | 19.30          | 10.22          | 6.41           |

27.30 2.44 1/ If Ppk < 1.67 or Cpk < 1.67 attach justification

FORMPPAP028XLS Freescale Rev G

# Material, Performance Test Results

|                            |                                                |                                                                                                                                                                                                                                          | AUTOM                                              | IOTIVE PRO                                              | אוומכ   | CT AF                                   | C-Q100G Qua                                              | lification              | Test P   | lan              |                                            |                              |                                                                                                                                               |
|----------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------|-----------------------------------------|----------------------------------------------------------|-------------------------|----------|------------------|--------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Ohiectivo                                      | Qualification of TSMC Fab SOIC32 4.6                                                                                                                                                                                                     |                                                    |                                                         |         | J . AL                                  | _                                                        |                         | 10011    |                  |                                            |                              |                                                                                                                                               |
|                            | ual Vehicle PN:                                | MC33972ATEK/R2 MSDISWA(EP)                                                                                                                                                                                                               | Customer Name(s)<br>PN(s)                          | : General Market                                        |         |                                         | Test Program ID:<br>Test Program Rev:                    | VARIOUS                 |          |                  | Revision #:                                | QUAL PLAN<br>19Aug13         |                                                                                                                                               |
|                            |                                                |                                                                                                                                                                                                                                          |                                                    |                                                         |         |                                         | Rel. Circuits Doc. #:                                    |                         |          |                  | Date:                                      |                              |                                                                                                                                               |
| Packa                      | Technology:<br>ge Description:                 | SM5AP<br>SOIC 32 300ML 4.6EP                                                                                                                                                                                                             | Mask set#<br>Revision #                            |                                                         |         |                                         | CAB #:<br>FSL Qual Quartz<br>Tracking #:                 | 13342133M               |          |                  | Rel. Engr. Approval<br>Signature:<br>Date: | 19Aug13                      |                                                                                                                                               |
|                            | Assembly site: Final Test site:                | FSL-TJN-FM                                                                                                                                                                                                                               | Product Engr<br>Packaging Engr<br>Reliability Engr | : Wang Brenda<br>: Hosoda Daisuke<br>: Tian Meng        |         |                                         | Target Dates<br>Test Start:<br>Test Finish:              | NA                      |          |                  | CAB Approval                               | Yanil Cruz<br>August 22 2013 |                                                                                                                                               |
| D                          | Rel Test site:<br>ie Size (in mm)<br>W x L x T | 3.857x2.831                                                                                                                                                                                                                              | Part Operating<br>Temp. Range<br>AEC Grade         |                                                         |         |                                         | PPAP target date:<br>Freescale Contact:<br>Phone Number: | Bai Yun<br>+86-85684236 |          |                  | Customer Approval<br>Signature:<br>Date:   |                              |                                                                                                                                               |
|                            |                                                |                                                                                                                                                                                                                                          | ALO GIAGE                                          |                                                         | E-STR   | ESS REC                                 | UIREMENTS/OPTI                                           | ONS                     |          |                  | Date.                                      |                              |                                                                                                                                               |
| Stress                     | JEDEC22                                        | Test Conditions                                                                                                                                                                                                                          | End Point                                          | Minimum                                                 | # of    | Total                                   |                                                          |                         | Results  |                  |                                            |                              | Comments                                                                                                                                      |
|                            | Reference                                      |                                                                                                                                                                                                                                          | Requirements                                       | Sample Size per<br>lot                                  | Lots    | Units including spares                  | Lot A<br>nominal                                         | Lot B<br>nominal        |          | Lot C<br>nominal | Lot D<br>HH                                | Lot E<br>LL                  | (Generic Data: Note 2)                                                                                                                        |
| PC                         | A113<br>J-STD-020                              | Preconditioning (PC)<br>MSL 3 at 260 °C, +5/-0 °C<br>CSAM: Note 3                                                                                                                                                                        | TEST at RH (add C if<br>PC before HTOL);<br>CSAM   | All surface mount<br>THB/HAST, AC/U<br>PC+PTC, or as re | HST, TO | prior to                                |                                                          |                         |          |                  |                                            |                              | PC is performed and results reported as part of the individual stress tests.                                                                  |
|                            | ļ.                                             |                                                                                                                                                                                                                                          |                                                    |                                                         |         |                                         |                                                          |                         | <u> </u> |                  |                                            |                              |                                                                                                                                               |
|                            |                                                |                                                                                                                                                                                                                                          |                                                    | GROUP A A                                               | CELE    | DATED                                   | NVIRONMENTAL S                                           | TDEGG TEG               | re       |                  |                                            |                              |                                                                                                                                               |
| HAST                       | A110                                           | Highly Accelerated Stress Test (HAST):                                                                                                                                                                                                   | TEST @ RH;                                         | 77                                                      | 5       | 400                                     | .ivvinonivieni AL S                                      | INESS IES               | 13       |                  |                                            |                              | When biased humidity is                                                                                                                       |
|                            |                                                | PC before HAST if required.<br>HAST = 110 °C/85%RH for 264hrs,528hrs FIO<br>Bias: per HAST schematic<br>Timed RO of 48hrs. MAX                                                                                                           | CSAM                                               |                                                         |         |                                         |                                                          |                         |          |                  |                                            |                              | required either HAST or THE can be performed. HAST is the preferred biased humidity test.                                                     |
| UHST                       | A118                                           | Unbiased HAST (UHST):<br>PC before UHST if required.<br>UHST = 110 °C/85%RH for 264hrs,528hrs FIO<br>Timed RO of 48hrs. MAX                                                                                                              | TEST @ R;<br>CSAM                                  | 77                                                      | 5       | 400                                     |                                                          |                         |          |                  |                                            |                              | When unbaised humidity<br>testing is required, UHST is<br>the preferred unbiased<br>humidity test. The AC optic<br>is NOT recommended.        |
| тс                         | A104<br>AEC Q100-<br>Appendix 3                | Temperature Cycle (TC): PC before TC if required. TC = -50 ℃ to 150 ℃ for 1000 cycles,2000cycles FIO WBP after qual readpoint on 5 devices from each lot; 2 bonds per corner and one mid-bond per side on each device. Record which pins | TEST @ H<br>WBP =/> 3 grams<br>CSAM                | 77                                                      | 5       | 400                                     |                                                          |                         |          |                  |                                            |                              | If WP is to be performed at interim readpoints, add additional samples so that the minimum sample size is maintained for the final readpoint. |
| HTSL                       | A103                                           | were used.  High Temperature Storage Life (HTSL):  HTSL = 150 ℃ for 1008 hrs,2016hrs FIO  Timed RO = 96hrs. MAX                                                                                                                          | TEST @ RH                                          | 45                                                      | 3       | 144                                     |                                                          |                         |          |                  |                                            |                              |                                                                                                                                               |
|                            |                                                | Timed 110 – 90113. WAX                                                                                                                                                                                                                   |                                                    | TEST GROUP I                                            | B - ACC | CELERAT                                 | ED LIFETIME SIMU                                         | JLATION TES             | STS      |                  |                                            |                              |                                                                                                                                               |
| HTOL                       | A108                                           | High Temperature Operating Life (HTOL):<br>HTOL = 100 ℃ for 1008 hrs,2016hrs FIO<br>Bias:5V and 28V<br>Timed RO of 96hrs. MAX                                                                                                            | TEST @ RHC;                                        | 77                                                      | 3       | 240                                     |                                                          |                         |          |                  |                                            |                              | Perform HTOL on two lots<br>and reuse third lot from<br>Cosslite TSMC                                                                         |
| ELFR                       | AEC Q100-<br>008                               | Early Life Failure Rate ELFR):<br>ELFR = 100 ℃ for 48 hrs;<br>Timed RO of 48 hrs MAX                                                                                                                                                     | TEST @ RH                                          | 800                                                     | 3       | 2409                                    |                                                          |                         |          |                  |                                            |                              | Perform ELFR on two lots<br>and reuse third lot from<br>Cosslite TSMC                                                                         |
|                            |                                                |                                                                                                                                                                                                                                          |                                                    | TEST GROU                                               | PC-P    | ACKAGE                                  | ASSEMBLY INTE                                            | GRITY TESTS             | }        |                  |                                            |                              |                                                                                                                                               |
| ull Assy. CZ<br>+ Cu WB Cz | FSL Internal<br>Requirement                    | Full assembly process CZ Data collection per FSL CZ template (for Cu WB) for 3 tech cert lots with nominal Cu WB process.  Perform Wire Bond CZ specifically for Copper Wire for 1 HH and 1 LLTech Cert lots.                            |                                                    |                                                         | 5       | - i - i - i - i - i - i - i - i - i - i |                                                          |                         |          |                  |                                            |                              |                                                                                                                                               |
| WBS                        | AEC Q100-<br>001                               | Wire Bond shear (WBS)                                                                                                                                                                                                                    | Cpk = or > 1.67                                    | 30 bonds<br>from minimum 5<br>units                     | 3       | 15                                      |                                                          |                         |          |                  |                                            |                              | Performed by Assembly Site during qual lot builds - PE to include this requirement in th qual lot build ERF.                                  |

| WBP  | MilStd883-<br>2011                         | Wire Bond Pull (WBP):<br>Cond. C or D                                                                                                                                                         | Cpk = or > 1.67               | 30 bonds<br>from minimum 5<br>units |     | 15<br><b>ΣΙΕ ΕΔΒΙ</b> | RICATION RELIAB  | II ITY TESTS |  | Performed by Assembly Site<br>during qual lot builds - PE to<br>include this requirement in the<br>qual lot build ERF                                            |
|------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|-----|-----------------------|------------------|--------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                            |                                                                                                                                                                                               |                               |                                     |     |                       | RICAL VERIFICATI |              |  |                                                                                                                                                                  |
| TEST | 48A                                        | Pre- and Post Functional / Parametrics (TEST): Test software shall meet requirements of AEC-Q100-007. Testing performed to the limits of device specification in temperature and limit value. | 0 Fails                       | All                                 | All | All                   |                  |              |  | TEST results is shown for each individual stress test in the qual results report generated upon qual completion. FSL SQA release required for qual test program. |
| ED   | AEC-Q100-<br>009,<br>Freescale<br>48A spec | Electrical Distribution (ED)                                                                                                                                                                  | TEST @ RHC<br>Cpk = or > 1.67 | 30                                  | 3   | 90                    |                  |              |  | dour test brogram.                                                                                                                                               |

General Notes: Generic Data Reference List: Notes:This Data will be used to qualify the following devices:

|         | al Vahiela PNI | MC33972ATEK/R2            | Customer Name(s):    | General Market   |         |           | Test Program ID:      | VARIOUS       |         | Report Type:        | QUALRESULT |                             |
|---------|----------------|---------------------------|----------------------|------------------|---------|-----------|-----------------------|---------------|---------|---------------------|------------|-----------------------------|
|         |                | MSDISWA(EP)               | PN(s):               |                  |         |           | Test Program Rev:     |               |         |                     | 28Oct2013  |                             |
| Quai V  | cincic riame   | MISDISWA(EF)              | 114(3).              |                  |         |           | restriogrammer.       | •             |         | Date:               | 200012010  |                             |
|         |                |                           |                      |                  |         |           | Rel. Circuits Doc. #: |               |         | Duio                |            |                             |
|         | Technology:    | SM5AP                     | Mask set#:           | N39B             |         |           | CAB #:                | : 13342133M   |         | Rel. Engr. Approval | Tian Meng  |                             |
| Package | e Description: | SOIC 32 300ML 4.6EP       | Revision #:          |                  |         |           |                       | 222708 G630AY |         |                     | 28Oct2013  |                             |
|         |                |                           |                      |                  |         |           | Tracking #:           |               |         | Date:               |            |                             |
|         |                | TSMC-Fab                  |                      | Wang Brenda      |         |           | Target Dates          |               |         | CAB Approval        |            |                             |
|         |                | FSL-TJN-FM                |                      | Hosoda Daisuke   | •       |           | Test Start:           |               |         |                     | 07NOV2013  |                             |
|         |                | FSL-TJN-FM                | Reliability Engr:    | Tian Meng        |         |           | Test Finish:          |               |         | Date:               |            |                             |
|         | Rel Test site: |                           |                      |                  |         |           | PPAP target date:     |               |         |                     |            |                             |
| Die     | Size (in mm)   |                           | Part Operating       |                  |         |           | Freescale Contact:    |               |         | Customer Approval   |            |                             |
|         | WxLxT          |                           | Temp. Range:         |                  |         |           | Phone Number:         | +86-85684236  |         | Signature:          |            |                             |
|         |                |                           | AEC Grade:           |                  |         |           |                       |               |         | Date:               |            |                             |
|         |                |                           |                      | PR               | E-STR   | RESS REQ  | UIREMENTS/OPTI        | IONS          |         |                     |            |                             |
| Stress  | JEDEC22        | Test Conditions           | End Point            | Minimum          | # of    | Total     |                       |               | esults  |                     |            | Comments                    |
|         | Reference      |                           | Requirements         | Sample Size per  | Lots    | Units     | Lot A                 | Lot B         | Lot C   | Lot D               | Lot E      | (Generic Data: Note 2)      |
|         |                |                           |                      | lot              |         | including | nominal               | nominal       | nominal | HH                  | LL         |                             |
|         |                |                           |                      |                  |         | spares    |                       |               |         |                     |            |                             |
| PC      | A113           | Preconditioning (PC)      | TEST at RH (add C if |                  |         |           |                       |               |         |                     |            | PC is performed and results |
|         |                | MSL 3 at 260 °C, +5/-0 °C | PC before HTOL);     | THB/HAST, AC/L   |         |           |                       |               |         |                     |            | reported as part of the     |
|         |                | CSAM: Note 3              | CSAM                 | PC+PTC, or as re | equired | per       |                       |               |         |                     |            | individual stress tests.    |

|                             |                                            |                                                                                                                                                                                                                                                     |                                     | GROUP A - AC                        | CELE  | RATED F | NVIRONMENTAL                              | STRESS TESTS                                                     |                                                                  |                                                       |                                                       |                                                                                                                                                                  |
|-----------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------|---------|-------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HAST                        | A110                                       | Highly Accelerated Stress Test (HAST):                                                                                                                                                                                                              | TEST @ RH;                          | 77                                  | 5     | 400     |                                           |                                                                  | Reuse Cosslite Data                                              | Reuse Cosslite Data                                   | Reuse Cosslite Data                                   | When biased humidity is                                                                                                                                          |
|                             | ,                                          | PC before HAST if required.<br>HAST = 110 °C/85%RH for 264hrs,528hrs FIO<br>Bias: per HAST schematic<br>Timed RO of 48hrs. MAX                                                                                                                      | CSAM                                |                                     | Ü     | .00     | 264hrs: 0/80<br>528hrs: 0/80              | 264hrs: 0/80<br>528hrs: 0/80                                     | 264hrs: 0/80<br>528hrs: 0/80                                     | 264hrs: 0/80<br>528hrs: 0/80                          | 264hrs: 0/80<br>528hrs: 0/80                          | required either HAST or THB can be performed. HAST is the preferred biased humidity test.                                                                        |
| UHST                        |                                            | Unblased HAST (UHST): PC before UHST if required. UHST = 110 °C/85%-RH for 264hrs,528hrs FIO Timed RO of 48hrs. MAX                                                                                                                                 | TEST @ R;<br>CSAM                   | 77                                  | 5     | 400     | 264hrs: 0/80<br>528hrs: 0/80              | 96hrs: 0/80<br>192hrs: 0/80                                      | Reuse Cosslite Data<br>96hrs: 0/80<br>192hrs: 0/80               | 264hrs: 0/80<br>528hrs: 0/80                          | 264hrs: 0/80<br>528hrs: 0/80                          | When unbaised humidity<br>testing is required, UHST is<br>the preferred unbiased<br>humidity test. The AC<br>option is NOT<br>recommended.                       |
| тс                          | A104<br>AEC Q100-<br>Appendix 3            | Temperature Cycle (TC): PC before TC if required. TC = -50°C to 150°C for 1000 cycles,2000cycles FIO WBP after qual readpoint on 5 devices from each lot; 2 bonds per corner and one mid-bond per side on each device. Record which pins were used. | TEST @ H<br>WBP =/> 3 grams<br>CSAM | 77                                  | 5     | 400     | 1000cyc: 0/80<br>2000cyc: 0/80<br>WP pass | Reuse Cosslite Data<br>1000cyc: 0/80<br>2000cyc: 0/80<br>WP pass | Reuse Cosslite Data<br>1000cyc: 0/80<br>2000cyc: 0/80<br>WP pass | 1000cyc: 0/80<br>2000cyc: 0/80<br>WP pass             | 1000cyc: 0/80<br>2000cyc: 0/80<br>WP pass             | If WP is to be performed at<br>interim readpoints, add<br>additional samples so that the<br>minimum sample size is<br>maintained for the final<br>readpoint.     |
| HTSL                        | A103                                       | High Temperature Storage Life (HTSL):  HTSL = 150 ℃ for 1008 hrs,2016hrs FIO  Timed RO = 96hrs. MAX                                                                                                                                                 | TEST @ RH                           | 45                                  | 3     | 144     | 1008hrs: 0/48<br>2016hrs: 0/48            |                                                                  |                                                                  | Reuse Cosslite Data<br>1008hrs: 0/48<br>2016hrs: 0/48 | Reuse Cosslite Data<br>1008hrs: 0/48<br>2016hrs: 0/48 |                                                                                                                                                                  |
|                             |                                            |                                                                                                                                                                                                                                                     |                                     | TEST GROUP B                        | - AC  | CELEBAT | ED LIFETIME SIM                           | III ATION TESTS                                                  |                                                                  |                                                       |                                                       |                                                                                                                                                                  |
| HTOL                        | A108                                       | High Temperature Operating Life (HTOL):<br>HTOL = 100 °C for 1008 hrs,2016hrs FIO<br>Bias:5V and 28V<br>Timed RO of 96hrs. MAX                                                                                                                      | TEST @ RHC;                         | 77                                  | 3     | 240     | 1008hrs: 0/80<br>2016hrs: 0/80            | Reuse Cosslite data<br>1008hrs: 0/80<br>2016hrs: 0/80            |                                                                  |                                                       | 1008hrs: 0/80<br>2016hrs: 0/80                        | Perform HTOL on two lots<br>and reuse third lot from<br>Cosslite TSMC                                                                                            |
| ELFR                        | AEC Q100-<br>008                           | Early Life Failure Rate ELFR):<br>ELFR = 100 °C for 48 hrs;<br>Timed RO of 48 hrs MAX                                                                                                                                                               | TEST @ RH                           | 800                                 | 3     | 2409    | 0/803                                     | 0/803                                                            | Reuse Cosslite data<br>0/803                                     |                                                       |                                                       | Perform ELFR on two lots<br>and reuse third lot from<br>Cosslite TSMC                                                                                            |
|                             |                                            |                                                                                                                                                                                                                                                     |                                     | TEST GROUP                          | - C - | PACKAGE | ASSEMBLY INTE                             | GRITY TESTS                                                      |                                                                  |                                                       |                                                       |                                                                                                                                                                  |
| Full Assy. CZ<br>+ Cu WB Cz |                                            | Full assembly process CZ Data collection per<br>FSL CZ template (for Cu WB) for 3 tech cert<br>lots with nominal Cu WB process.<br>Perform Wire Bond CZ specifically for Copper<br>Wire for 1 HH and 1 LLTech Cert lots.                            |                                     |                                     | 5     |         | Pass                                      | Pass                                                             | Pass                                                             | Pass                                                  | Pass                                                  |                                                                                                                                                                  |
| WBS                         | AEC Q100-<br>001                           | Wire Bond shear (WBS)                                                                                                                                                                                                                               | Cpk = or > 1.67                     | 30 bonds<br>from minimum 5<br>units | 3     | 25      | Pass                                      |                                                                  |                                                                  | Pass                                                  | Pass                                                  | Performed by Assembly Site during qual lot builds - PE to include this requirement in the qual lot build ERF.                                                    |
| WBP                         | MilStd883-<br>2011                         | Wire Bond Pull (WBP):<br>Cond. C or D                                                                                                                                                                                                               | Cpk = or > 1.67                     | 30 bonds<br>from minimum 5<br>units | 3     | 25      | Pass                                      |                                                                  |                                                                  | Pass                                                  | Pass                                                  | Performed by Assembly Site<br>during qual lot builds - PE to<br>include this requirement in the<br>qual lot build ERF                                            |
|                             |                                            |                                                                                                                                                                                                                                                     |                                     |                                     |       |         | RICATION RELIAB                           |                                                                  |                                                                  |                                                       |                                                       |                                                                                                                                                                  |
| TEAT                        |                                            | Due and Deat Franchis 112                                                                                                                                                                                                                           | 05."                                |                                     |       |         | RICAL VERIFICAT                           | ION TESTS                                                        |                                                                  |                                                       |                                                       | TEOT                                                                                                                                                             |
| TEST                        | Freescale<br>48A                           | Pre- and Post Functional / Parametrics<br>(TEST):<br>Test software shall meet requirements of AEC-<br>Q100-007.<br>Testing performed to the limits of device<br>specification in temperature and limit value.                                       | 0 Fails                             | All                                 | All   | All     |                                           |                                                                  |                                                                  |                                                       |                                                       | TEST results is shown for each individual stress test in the qual results report generated upon qual completion. FSL SQA release required for qual test program. |
| ED                          | AEC-Q100-<br>009,<br>Freescale<br>48A spec | Electrical Distribution (ED)                                                                                                                                                                                                                        | TEST @ RHC<br>Cpk = or > 1.67       | 30                                  | 3     | 90      | Pass                                      | Pass                                                             | Pass                                                             |                                                       |                                                       |                                                                                                                                                                  |



#### PRODUCT AND PROCESS CHANGE NOTIFICATION

Generic Copy

ISSUE DATE: 12-Dec-2013 NOTIFICATION: 15977

TITLE: SOIC32 300ML 4.6EP/Non-EP TSMC SMOS5 Copper Wire Qualification

**EFFECTIVE DATE:** 12-Mar-2014

#### **DEVICE(S)**

MPN

MC33972ATEK

MC33972ATEKR2

MC33972ATEWR2

MC33972TEW

MC33972TEWR2

MC33975ATEK

MC33975ATEKR2

MC33975TEK

MC33975TEK

MC33975TEK

MC33975TEK

MC34972ATEKR2

MC34972ATEKR2

MC34972ATEKR2

MC34972ATEWR2

MC34975ATEK MC34975ATEKR2

#### **AFFECTED CHANGE CATEGORIES**

BILL OF MATERIAL CHANGE (SAME ASSEMBLY SITE)

#### **DESCRIPTION OF CHANGE**

Freescale Semiconductor announces the addition of Copper Wire as a wirebond material and Sumitomo EME-G630AY Molding Compound as mold material for SMOS5 SOIC32 300ML 4.6EP and Non-EP package devices displayed in this notification. These products were previously assembled with Gold (Au) wire and Hitachi CEL9220HF13 mold compound at Freescale TJN assembly site, Tianjin, China. These products are now qualified for assembly with Copper (Cu) wire and EME-G630AY mold compound at Freescale TJN assembly site, Tianjin, China.

Sample Parts Available: KC33972ATEK/R2 KC33972ATEW/R2 KC33975TEK/R2 KC33975ATEK/R2

#### **REASON FOR CHANGE**

The transfer from Gold to Copper wire and CEL9220HF13 to EME-G630AY mold compound are required to mitigate against raw material cost increases and for supply assurance.

#### ANTICIPATED IMPACT OF PRODUCT CHANGE(FORM, FIT, FUNCTION, OR RELIABILITY)

Freescale Confidential Proprietary

No change to form, fit or function. Reliability is equivalent or improved.

Freescale will consider specific conditions of acceptance of this change submitted within 30 days of receipt of this notice on a case by case basis. To request further data or inquire about the notification, please enter a Service Request. For sample inquiries - please go to http://freescale.com/

**QUAL DATA AVAILABILITY DATE:** 29-Nov-2013

**QUALIFICATION STATUS:** COMPLETED

**QUALIFICATION PLAN:** 

See attached qualification results.

#### **RELIABILITY DATA SUMMARY:**

See attached qualification results.

#### **ELECTRICAL CHARACTERISTIC SUMMARY:**

No change to datasheet. No change to Electrical Distributions.

#### **CHANGED PART IDENTIFICATION:**

There is no change to orderable part number. The Tracecode marking on the device includes assembly site and datecode. Freescale will have traceability by assembly site and datecode.

#### **NOTIFICATION CONTACT:**

Name: XIA WANG

Email Address: B03926@freescale.com Phone Number: 8622-8568-4243

**NPI CONTACT:** 

Name: MENG TIAN

Email Address: B32718@freescale.com Phone Number: +86-22-8568-4236

#### **SAMPLE AVAILABILITY DATE:** 17-Dec-2013

#### ATTACHMENT(S):

External attachment(s) for this notification can be viewed at: 15977\_Analog\_Cu\_Wire\_SOIC\_Mold\_Compound\_Change\_GPCN.pdf 15977\_MSDISW\_Copper\_Wire\_G630AY\_Electrical\_Distribution\_GPCN.pdf 15977\_SOIC\_MSDI\_Family\_Copper\_Wire\_with\_G630AY\_MC\_Qual\_Results\_GPCN.pdf

|       |                            |          |          |      |      |        | Lo      | ot1          |       |        | Lo      | t2     |       |        | Lo      | ot3    |       |
|-------|----------------------------|----------|----------|------|------|--------|---------|--------------|-------|--------|---------|--------|-------|--------|---------|--------|-------|
| Test# | Test Name                  | Lo Limit | Hi Limit | Unit | Temp | Mean   | Std Dev | Ср           | Cpk   | Mean   | Std Dev | Ср     | Cpk   | Mean   | Std Dev | Ср     | Cpk   |
| 2     | IPWR on @ 8v               | 0        | 4        | mA   | HT   | 2.82   | 0.02    | 36.96        | 21.86 | 2.82   | 0.02    | 36.36  | 21.44 | 2.82   | 0.02    | 38.92  | 22.95 |
| 2     | IPWR on @ 8v               | 0        | 4        | mA   | RT   | 2.86   | 0.02    | 37.81        | 21.52 | 2.86   | 0.02    | 35.78  | 20.37 | 2.86   | 0.02    | 28.98  | 16.45 |
| 2     | IPWR on @ 8v               | 0        | 4        | mA   | CT   | 2.85   | 0.02    | 26.79        | 15.39 | 2.85   | 0.02    | 27.27  | 15.74 | 2.85   | 0.03    | 22.78  | 13.08 |
| 3     | IPWR on @ 16v              | 0        | 4        | mA   | HT   | 3.18   | 0.02    | 31.73        | 12.93 | 3.19   | 0.02    | 31.92  | 12.88 | 3.19   | 0.02    | 50.30  | 13.56 |
| 3     | IPWR on @ 16v              | 0        | 4        | mA   | RT   | 3.23   | 0.02    | 34.19        | 13.18 | 3.23   | 0.02    | 31.96  | 12.25 | 3.24   | 0.03    | 25.52  | 9.76  |
| 3     | IPWR on @ 16v              | 0        | 4        | mA   | CT   | 3.18   | 0.03    | 24.57        | 10.11 | 3.18   | 0.03    | 25.96  | 10.70 | 3.18   | 0.03    | 20.30  | 8.31  |
| 4     | IPWR ss                    | 40       | 100      | uA   | HT   | 80.15  | 0.74    | 13.43        | 8.88  | 81.22  | 0.78    | 12.89  | 8.07  | 80.43  | 0.56    | 17.78  | 11.60 |
| 4     | IPWR ss                    | 40       | 100      | uA   | RT   | 79.74  | 0.54    | 18.68        | 12.62 | 80.49  | 0.76    | 13.09  | 8.51  | 80.03  | 0.47    | 21.14  | 14.07 |
| 4     | IPWR ss                    | 40       | 100      | uA   | CT   | 75.27  | 0.78    | 12.87        | 10.61 | 75.93  | 0.72    | 13.93  | 11.17 | 75.45  | 0.58    | 17.26  | 14.12 |
| 5     | IDD ss                     | -20      | 20       | uA   | HT   | 12.09  | 0.21    | 15.65        | 12.38 | 12.25  | 0.20    | 16.70  | 12.94 | 12.14  | 0.24    | 13.81  | 10.86 |
| 5     | IDD ss                     | -20      | 20       | uA   | RT   | 12.45  | 0.28    | 11.78        | 8.90  | 12.58  | 0.26    | 12.62  | 9.37  | 12.46  | 0.30    | 11.28  | 8.50  |
| 5     | IDD ss                     | -20      | 20       | uA   | CT   | 11.29  | 0.29    | 11.33        | 9.87  | 11.40  | 0.30    | 11.13  | 9.57  | 11.34  | 0.35    | 9.41   | 8.15  |
| 8     | IDD @ 5vdd                 | -500     | 500      | uA   | HT   | 37.29  | 0.72    | 116.17       | 17.33 | 37.37  | 0.58    | 144.83 | 21.65 | 37.16  | 0.70    | 118.80 | 17.66 |
| 8     | IDD @ 5vdd                 | -500     | 500      | uA   | RT   | 55.36  | 1.03    | 80.76        | 17.88 | 55.39  | 0.91    | 92.00  | 20.38 | 55.17  | 1.04    | 80.35  | 17.73 |
| 8     | IDD @ 5vdd                 | -500     | 500      | uA   | CT   | 76.83  | 1.67    | 49.86        | 15.32 | 76.54  | 1.34    | 62.33  | 19.08 | 76.32  | 1.66    | 50.08  | 15.29 |
| 9     | SP0 iwetting batt = 28v    | 12       | 18       | mA   | HT   | 16.32  | 0.16    | 6.26         | 3.50  | 16.32  | 0.16    | 6.20   | 3.46  | 16.36  | 0.14    | 3.65   | 3.30  |
| 9     | SP0 iwetting batt = 28v    | 12       | 18       | mA   | RT   | 16.22  | 0.16    | 6.38         | 3.78  | 16.20  | 0.16    | 6.31   | 3.78  | 16.24  | 0.17    | 5.97   | 3.49  |
| 9     | SP0 iwetting batt = 28v    | 12       | 18       | mA   | CT   | 15.98  | 0.18    | 5.49         | 3.70  | 15.94  | 0.19    | 3.56   | 3.46  | 16.01  | 0.21    | 4.76   | 3.16  |
| 10    | SP1 iwetting batt 268v     | 12       | 18       | mA   | HT   | 16.34  | 0.15    | 6.54         | 3.62  | 16.33  | 0.15    | 6.63   | 3.70  | 16.38  | 0.13    | 3.76   | 3.46  |
| 10    | SP1 iwetting batt 268v     | 12       | 18       | mA   | RT   | 16.28  | 0.16    | 6.31         | 3.62  | 16.25  | 0.14    | 4.20   | 4.19  | 16.29  | 0.15    | 6.73   | 3.82  |
| 10    | SP1 iwetting batt 268v     | 12       | 18       | mA   | CT   | 16.08  | 0.19    | 5.19         | 3.32  | 16.03  | 0.16    | 4.07   | 4.01  | 16.11  | 0.20    | 3.37   | 3.19  |
| 11    | SP2 iwetting batt 28v      | 12       | 18       | mA   | HT   | 16.36  | 0.15    | 6.61         | 3.62  | 16.37  | 0.17    | 6.02   | 3.27  | 16.40  | 0.14    | 3.67   | 3.42  |
| 11    | SP2 iwetting batt 28v      | 12       | 18       | mA   | RT   | 16.31  | 0.14    | 6.94         | 3.92  | 16.30  | 0.16    | 3.66   | 3.56  | 16.33  | 0.16    | 6.24   | 3.48  |
| 11    | SP2 iwetting batt 28v      | 12       | 18       | mA   | CT   | 16.13  | 0.18    | 5.50         | 3.43  | 16.09  | 0.18    | 3.67   | 3.51  | 16.14  | 0.20    | 3.26   | 3.02  |
| 12    | SP3 iwetting batt 28v      | 12       | 18       | mA   | HT   | 16.30  | 0.15    | 6.62         | 3.75  | 16.30  | 0.16    | 6.28   | 3.57  | 16.34  | 0.12    | 4.26   | 3.81  |
| 12    | SP3 iwetting batt 28v      | 12       | 18       | mA   | RT   | 16.25  | 0.15    | 6.51         | 3.79  | 16.23  | 0.13    | 4.45   | 4.40  | 16.27  | 0.13    | 7.59   | 4.37  |
| 12    | SP3 iwetting batt 28v      | 12       | 18       | mA   | CT   | 16.07  | 0.18    | 5.52         | 3.55  | 16.01  | 0.17    | 3.92   | 3.91  | 16.09  | 0.19    | 3.58   | 3.41  |
| 13    | SP4 iwetting batt = 28v    | 12       | 18       | mA   | HT   | 16.29  | 0.16    | 6.42         | 3.66  | 16.27  | 0.15    | 6.73   | 3.87  | 16.33  | 0.12    | 4.03   | 3.56  |
| 13    | SP4 iwetting batt = 28v    | 12       | 18       | mA   | RT   | 16.21  | 0.15    | 6.53         | 3.91  | 16.15  | 0.13    | 4.35   | 4.10  | 16.21  | 0.15    | 6.83   | 4.08  |
| 13    | SP4 iwetting batt = 28v    | 12       | 18       | mA   | CT   | 15.98  | 0.18    | 5.67         | 3.82  | 15.90  | 0.16    | 4.29   | 4.06  | 15.99  | 0.20    | 3.36   | 3.34  |
| 14    | SP5 iwetting batt = 28v    | 12       | 18       | mA   | HT   | 16.30  | 0.16    | 6.11         | 3.47  | 16.32  | 0.15    | 6.63   | 3.71  | 16.35  | 0.13    | 3.76   | 3.39  |
| 14    | SP5 iwetting batt = 28v    | 12       | 18       | mA   | RT   | 16.24  | 0.16    | 6.19         | 3.63  | 16.24  | 0.14    | 4.12   | 4.09  | 16.28  | 0.15    | 6.46   | 3.71  |
| 14    | SP5 iwetting batt = 28v    | 12       | 18       | mA   | CT   | 16.04  | 0.20    | 5.07         | 3.31  | 16.02  | 0.17    | 4.00   | 3.96  | 16.08  | 0.21    | 3.22   | 3.09  |
| 15    | SP6 iwetting batt = 28v    | 12       | 18       | mA   | HT   | 16.33  | 0.15    | 6.88         | 3.83  | 16.34  | 0.16    | 6.45   | 3.58  | 16.38  | 0.14    | 3.49   | 3.20  |
| 15    | SP6 iwetting batt = 28v    | 12       | 18       | mA   | RT   | 16.28  | 0.13    | 7.46         | 4.27  | 16.26  | 0.14    | 4.12   | 4.11  | 16.30  | 0.16    | 6.28   | 3.55  |
| 15    | SP6 iwetting batt = 28v    | 12       | 18       | mA   | CT   | 16.11  | 0.16    | 6.16         | 3.89  | 16.04  | 0.18    | 3.67   | 3.59  | 16.12  | 0.21    | 3.23   | 3.03  |
| 16    | SP7 iwetting batt = 28v    | 12       | 18       | mA   | HT   | 16.27  | 0.14    | 7.20         | 4.15  | 16.28  | 0.15    | 6.46   | 3.70  | 16.31  | 0.14    | 3.62   | 3.16  |
| 16    | SP7 iwetting batt = 28v    | 12       | 18       | mA   | RT   | 16.21  | 0.13    | 7.44         | 4.45  | 16.19  | 0.16    | 3.72   | 3.58  | 16.22  | 0.16    | 6.33   | 3.75  |
| 16    | SP7 iwetting batt = 28v    | 12       | 18       | mA   | CT   | 16.01  | 0.16    | 6.19         | 4.10  | 15.97  | 0.19    | 3.51   | 3.45  | 16.03  | 0.21    | 3.24   | 3.19  |
| 17    | SP0 iwetting gnd vbatt=28v | -18      | -12      | mA   | HT   | -16.06 | 0.12    | 8.07         | 5.22  | -16.09 | 0.17    | 6.02   | 3.83  | -16.11 | 0.12    | 5.42   | 5.24  |
| 17    | SP0 iwetting gnd vbatt=28v | -18      | -12      | mA   | RT   | -16.13 | 0.12    | 8.11         | 5.05  | -16.12 | 0.17    | 3.85   | 3.70  | -16.18 | 0.14    | 4.60   | 4.28  |
| 17    | SP0 iwetting gnd vbatt=28v | -18      | -12      | mA   | CT   | -15.86 | 0.16    | 6.11         | 4.35  | -15.83 | 0.18    | 5.44   | 3.93  | -15.91 | 0.17    | 5.98   | 4.17  |
| 18    | SP1 iwetting gnd vbatt=28v | -18      | -12      | mA   | HT   | -16.02 | 0.13    | 7.49         | 4.95  | -16.04 | 0.15    | 4.38   | 4.34  | -16.08 | 0.13    | 5.19   | 5.12  |
| 18    | SP1 iwetting gnd vbatt=28v | -18      | -12      | mA   | RT   | -16.10 | 0.14    | 7.29         | 4.61  | -16.07 | 0.14    | 4.64   | 4.59  | -16.13 | 0.13    | 4.91   | 4.69  |
| 18    | SP1 iwetting gnd vbatt=28v | -18      | -12      | mA   | CT   | -15.82 | 0.17    | 5.78         | 4.19  | -15.77 | 0.16    | 6.10   | 4.53  | -15.85 | 0.16    | 6.28   | 4.50  |
| 19    | SP2 iwetting gnd vbatt=28v | -18      | -12      | mA   | HT   | -16.02 | 0.14    | 7.08         | 4.66  | -16.05 | 0.16    | 4.18   | 4.18  | -16.07 | 0.12    | 5.57   | 5.52  |
| 19    | SP2 iwetting gnd vbatt=28v | -18      | -12      | mA   | RT   | -16.10 | 0.14    | 7.26         | 4.60  | -16.09 | 0.15    | 4.27   | 4.19  | -16.11 | 0.13    | 4.86   | 4.71  |
| 19    | SP2 iwetting gnd vbatt=28v | -18      | -12      | mA   | CT   | -15.81 | 0.17    | 5.93         | 4.33  | -15.76 | 0.17    | 6.02   | 4.49  | -15.81 | 0.17    | 6.04   | 4.42  |
| 20    | SP3 iwetting gnd vbatt=28v | -18      | -12      | mA   | HT   | -15.99 | 0.15    | 6.88         | 4.60  | -16.02 | 0.17    | 3.93   | 3.86  | -16.06 | 0.14    | 4.75   | 4.73  |
| 20    | SP3 iwetting gnd vbatt=28v | -18      | -12      | mA   | RT   | -16.05 | 0.14    | 7.02         | 4.56  | -16.03 | 0.15    | 4.25   | 4.21  | -16.09 | 0.15    | 4.19   | 4.10  |
| 20    | SP3 iwetting gnd vbatt=28v | -18      | -12      | mA   | CT   | -15.77 | 0.18    | 5.61         | 4.18  | -15.71 | 0.18    | 5.64   | 4.30  | -15.79 | 0.18    | 5.50   | 4.05  |
| 21    | SP4 iwetting gnd vbatt=28v | -18      | -12      | mA   | HT   | -15.97 | 0.12    | 8.17         | 5.52  | -16.05 | 0.15    | 4.27   | 4.26  | -16.03 | 0.14    | 4.72   | 4.68  |
| 21    | SP4 iwetting gnd vbatt=28v | -18      | -12      | mA   | RT   | -16.04 | 0.12    | 8.43         | 5.51  | -16.10 | 0.16    | 4.07   | 3.97  | -16.10 | 0.16    | 4.03   | 3.94  |
| 21    | SP4 iwetting gnd vbatt=28v | -18      | -12      | mA   | CT   | -15.76 | 0.15    | 6.53         | 4.89  | -15.78 | 0.18    | 5.45   | 4.03  | -15.79 | 0.19    | 5.35   | 3.95  |
| 22    | SP5 iwetting gnd vbatt=28v | -18      | -12      | mA   | HT   | -15.96 | 0.13    | 7.95         | 5.39  | -16.01 | 0.17    | 3.80   | 3.72  | -16.01 | 0.11    | 5.81   | 5.70  |
| 22    | SP5 iwetting gnd vbatt=28v | -18      | -12      | mA   | RT   | -16.04 | 0.13    | 7.45         | 4.88  | -16.04 | 0.15    | 4.20   | 4.19  | -16.06 | 0.14    | 4.77   | 4.73  |
| 22    | SP5 iwetting gnd vbatt=28v | -18      | -12      | mA   | CT   | -15.77 | 0.16    | 6.12         | 4.55  | -15.74 | 0.17    | 5.96   | 4.49  | -15.78 | 0.16    | 6.34   | 4.69  |
| 23    | SP6 iwetting gnd vbatt=28v | -18      | -12      | mA   | HT   | -15.99 | 0.14    | 7.04         | 4.73  | -16.04 | 0.16    | 4.13   | 4.11  | -16.04 | 0.11    | 5.70   | 5.67  |
| 23    | SP6 iwetting gnd vbatt=28v | -18      | -12      | mA   | RT   | -16.07 | 0.13    | 7.65         | 4.92  | -16.09 | 0.15    | 4.35   | 4.27  | -16.08 | 0.12    | 5.28   | 5.18  |
| 23    | SP6 iwetting gnd vbatt=28v | -18      | -12      | mA   | CT   | -15.79 | 0.16    | 6.40         | 4.71  | -15.79 | 0.18    | 5.47   | 4.04  | -15.81 | 0.16    | 6.23   | 4.54  |
|       |                            |          |          | i e  |      | _      |         | idential Dra |       |        | i e     |        |       |        |         |        |       |

|       |                                |          |          |      | İ    |        | 10      | t1    |      |        | Lo      | †2   |      | 1      | 10      | t3   |      |
|-------|--------------------------------|----------|----------|------|------|--------|---------|-------|------|--------|---------|------|------|--------|---------|------|------|
| Test# | Test Name                      | Lo Limit | Hi Limit | Unit | Temp | Mean   | Std Dev | Ср    | Cpk  | Mean   | Std Dev | Ср   | Cpk  | Mean   | Std Dev | Ср   | Cpk  |
| 24    | SP7 iwetting gnd vbatt=28v     | -18      | -12      | mA   | HT   | -16.01 | 0.15    | 6.86  | 4.56 | -16.05 | 0.16    | 4.10 | 4.09 | -16.06 | 0.12    | 5.60 | 5.58 |
| 24    | SP7 iwetting gnd vbatt=28v     | -18      | -12      | mA   | RT   | -16.09 | 0.15    | 6.60  | 4.19 | -16.03 | 0.16    | 4.18 | 4.05 | -16.13 | 0.12    | 5.04 | 4.84 |
| 24    | SP7 iwetting gnd vbatt=28v     | -18      | -12      | mA   | CT   | -15.82 | 0.13    | 5.86  | 4.19 | -15.83 | 0.10    | 5.75 | 4.03 | -15.86 | 0.13    | 7.19 | 5.12 |
| 25    | SG0 wetting grid vbatt=28v     | -18      | -12      | mA   | HT   | -16.08 | 0.17    | 7.03  | 4.49 | -16.10 | 0.17    | 4.25 | 4.17 | -16.13 | 0.14    | 5.55 | 5.33 |
| 25    | SG0 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.13 | 0.14    | 7.03  | 4.49 | -16.12 | 0.13    | 4.50 | 4.33 | -16.15 | 0.12    | 4.91 | 4.63 |
| 25    | SG0 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.83 | 0.14    | 5.77  | 4.18 | -10.12 | 0.14    | 6.24 | 4.58 | -15.86 | 0.13    | 6.43 | 4.58 |
| 26    | SG1 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -16.02 | 0.17    | 7.14  | 4.71 | -16.03 | 0.10    | 3.84 | 3.80 | -16.08 | 0.10    | 5.20 | 5.12 |
| 26    | SG1 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.06 | 0.14    | 7.13  | 4.61 | -16.03 | 0.17    | 4.15 | 4.10 | -16.10 | 0.13    | 4.57 | 4.45 |
| 26    | SG1 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.76 | 0.17    | 5.91  | 4.42 | -15.70 | 0.18    | 5.55 | 4.26 | -15.78 | 0.17    | 5.87 | 4.34 |
| 27    | SG2 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -16.01 | 0.17    | 7.60  | 5.05 | -16.05 | 0.10    | 3.83 | 3.82 | -16.07 | 0.17    | 4.93 | 4.88 |
| 27    | SG2 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.04 | 0.13    | 7.48  | 4.88 | -16.06 | 0.17    | 3.83 | 3.82 | -16.11 | 0.15    | 4.41 | 4.28 |
| 27    | SG2 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.75 | 0.17    | 5.99  | 4.49 | -15.73 | 0.17    | 5.37 | 4.07 | -15.79 | 0.17    | 6.02 | 4.44 |
| 28    | SG3 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -16.06 | 0.13    | 7.62  | 4.92 | -16.09 | 0.16    | 4.15 | 4.07 | -16.12 | 0.12    | 5.25 | 5.05 |
| 28    | SG3 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.11 | 0.12    | 8.03  | 5.05 | -16.11 | 0.15    | 4.44 | 4.30 | -16.17 | 0.14    | 4.66 | 4.37 |
| 28    | SG3 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.81 | 0.16    | 6.45  | 4.70 | -15.79 | 0.17    | 5.94 | 4.37 | -15.86 | 0.17    | 6.06 | 4.31 |
| 29    | SG4 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -15.99 | 0.13    | 7.90  | 5.28 | -16.04 | 0.16    | 4.09 | 4.07 | -16.05 | 0.17    | 4.88 | 4.87 |
| 29    | SG4 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.06 | 0.13    | 7.82  | 5.06 | -16.09 | 0.16    | 4.10 | 4.02 | -16.12 | 0.16    | 4.17 | 4.02 |
| 29    | SG4 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.78 | 0.15    | 6.62  | 4.90 | -15.79 | 0.18    | 5.58 | 4.12 | -15.82 | 0.10    | 5.37 | 3.90 |
| 30    | SG5 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -15.99 | 0.13    | 7.70  | 5.17 | -16.04 | 0.16    | 4.07 | 4.04 | -16.05 | 0.13    | 5.55 | 5.54 |
| 30    | SG5 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.05 | 0.13    | 7.82  | 5.08 | -16.08 | 0.16    | 4.11 | 4.05 | -16.09 | 0.12    | 5.28 | 5.17 |
| 30    | SG5 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.77 | 0.16    | 6.09  | 4.52 | -15.77 | 0.18    | 5.65 | 4.19 | -15.79 | 0.15    | 6.78 | 5.00 |
| 31    | SG6 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -16.04 | 0.14    | 7.37  | 4.82 | -16.10 | 0.17    | 3.75 | 3.65 | -16.11 | 0.12    | 5.25 | 5.10 |
| 31    | SG6 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.13 | 0.13    | 7.49  | 4.67 | -16.18 | 0.17    | 3.84 | 3.59 | -16.20 | 0.13    | 5.09 | 4.71 |
| 31    | SG6 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.87 | 0.16    | 6.34  | 4.50 | -15.88 | 0.18    | 5.67 | 4.01 | -15.91 | 0.15    | 6.50 | 4.53 |
| 32    | SG7 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -15.97 | 0.13    | 7.99  | 5.42 | -16.01 | 0.15    | 4.39 | 4.31 | -16.02 | 0.11    | 5.79 | 5.71 |
| 32    | SG7 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.04 | 0.12    | 8.20  | 5.36 | -16.06 | 0.14    | 4.55 | 4.53 | -16.09 | 0.13    | 4.84 | 4.73 |
| 32    | SG7 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.77 | 0.15    | 6.79  | 5.04 | -15.77 | 0.17    | 5.98 | 4.44 | -15.82 | 0.17    | 6.03 | 4.38 |
| 33    | SG8 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -15.93 | 0.13    | 7.60  | 5.24 | -15.95 | 0.15    | 4.22 | 4.00 | -15.99 | 0.13    | 4.92 | 4.78 |
| 33    | SG8 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.01 | 0.13    | 7.93  | 5.25 | -15.99 | 0.14    | 4.55 | 4.41 | -16.05 | 0.16    | 4.10 | 4.10 |
| 33    | SG8 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.72 | 0.17    | 6.03  | 4.58 | -15.69 | 0.16    | 6.31 | 4.86 | -15.75 | 0.19    | 5.20 | 3.90 |
| 34    | SG9 wetting current vbatt=28v  | -18      | -12      | mA   | HT   | -15.96 | 0.14    | 21.91 | 4.97 | -16.00 | 0.14    | 4.50 | 4.39 | -16.02 | 0.13    | 5.06 | 4.97 |
| 34    | SG9 wetting current vbatt=28v  | -18      | -12      | mA   | RT   | -16.03 | 0.12    | 8.31  | 5.45 | -16.05 | 0.14    | 4.66 | 4.65 | -16.08 | 0.14    | 4.74 | 4.67 |
| 34    | SG9 wetting current vbatt=28v  | -18      | -12      | mA   | CT   | -15.74 | 0.14    | 6.92  | 5.20 | -15.75 | 0.16    | 6.31 | 4.73 | -15.78 | 0.16    | 6.41 | 4.74 |
| 35    | SG10 wetting current vbatt=28v | -18      | -12      | mA   | HT   | -15.95 | 0.13    | 7.65  | 5.24 | -16.00 | 0.15    | 4.37 | 4.25 | -16.03 | 0.12    | 5.46 | 5.41 |
| 35    | SG10 wetting current vbatt=28v | -18      | -12      | mA   | RT   | -16.01 | 0.13    | 7.59  | 5.03 | -16.04 | 0.14    | 4.63 | 4.60 | -16.11 | 0.13    | 5.00 | 4.85 |
| 35    | SG10 wetting current vbatt=28v | -18      | -12      | mA   | CT   | -15.73 | 0.16    | 6.13  | 4.64 | -15.73 | 0.17    | 5.90 | 4.46 | -15.81 | 0.16    | 6.22 | 4.54 |
| 36    | SG11 wetting current vbatt=28v | -18      | -12      | mA   | HT   | -15.95 | 0.13    | 7.42  | 5.07 | -16.01 | 0.14    | 4.57 | 4.49 | -16.02 | 0.13    | 4.96 | 4.90 |
| 36    | SG11 wetting current vbatt=28v | -18      | -12      | mA   | RT   | -16.02 | 0.13    | 7.52  | 4.96 | -16.06 | 0.14    | 4.80 | 4.76 | -16.10 | 0.14    | 4.70 | 4.57 |
| 36    | SG11 wetting current vbatt=28v | -18      | -12      | mA   | CT   | -15.73 | 0.16    | 6.42  | 4.85 | -15.77 | 0.16    | 6.35 | 4.72 | -15.81 | 0.16    | 6.35 | 4.63 |
| 37    | SG12 wetting current vbatt=28v | -18      | -12      | mA   | HT   | -15.96 | 0.13    | 7.50  | 5.10 | -16.01 | 0.15    | 4.28 | 4.20 | -16.03 | 0.12    | 5.29 | 5.22 |
| 37    | SG12 wetting current vbatt=28v | -18      | -12      | mA   | RT   | -16.03 | 0.13    | 7.44  | 4.89 | -16.05 | 0.15    | 4.40 | 4.39 | -16.08 | 0.13    | 4.94 | 4.86 |
| 37    | SG12 wetting current vbatt=28v | -18      | -12      | mA   | CT   | -15.75 | 0.16    | 6.11  | 4.58 | -15.76 | 0.16    | 6.23 | 4.65 | -15.80 | 0.15    | 6.53 | 4.79 |
| 38    | SG13 wetting current vbatt=28v | -18      | -12      | mA   | HT   | -15.95 | 0.14    | 7.34  | 5.02 | -16.01 | 0.15    | 4.39 | 4.30 | -16.01 | 0.12    | 5.21 | 5.10 |
| 38    | SG13 wetting current vbatt=28v | -18      | -12      | mA   | RT   | -16.05 | 0.14    | 7.25  | 4.72 | -16.09 | 0.15    | 4.42 | 4.33 | -16.10 | 0.13    | 5.20 | 5.06 |
| 38    | SG13 wetting current vbatt=28v | -18      | -12      | mA   | CT   | -15.79 | 0.16    | 6.19  | 4.57 | -15.80 | 0.17    | 6.03 | 4.43 | -15.82 | 0.15    | 6.89 | 5.01 |
| 39    | SP0 isustain batt 28v          | 1.8      | 2.2      | mA   | HT   | 2.12   | 0.02    | 3.17  | 1.33 | 2.12   | 0.02    | 3.37 | 1.43 | 2.12   | 0.02    | 3.94 | 1.67 |
| 39    | SP0 isustain batt 28v          | 1.8      | 2.2      | mA   | RT   | 2.11   | 0.02    | 3.26  | 1.45 | 2.11   | 0.02    | 3.65 | 1.71 | 2.11   | 0.02    | 3.33 | 1.54 |
| 39    | SP0 isustain batt 28v          | 1.8      | 2.2      | mA   | CT   | 2.09   | 0.02    | 2.71  | 1.54 | 2.08   | 0.02    | 3.10 | 1.89 | 2.09   | 0.03    | 2.46 | 1.44 |
| 40    | SP1 isustain batt 28v          | 1.8      | 2.2      | mA   | HT   | 2.12   | 0.02    | 3.15  | 1.31 | 2.12   | 0.02    | 3.20 | 1.30 | 2.12   | 0.02    | 3.42 | 1.35 |
| 40    | SP1 isustain batt 28v          | 1.8      | 2.2      | mA   | RT   | 2.12   | 0.02    | 3.11  | 1.22 | 2.12   | 0.02    | 3.08 | 1.31 | 2.12   | 0.02    | 2.97 | 1.21 |
| 40    | SP1 isustain batt 28v          | 1.8      | 2.2      | mA   | CT   | 2.10   | 0.03    | 2.62  | 1.28 | 2.09   | 0.03    | 2.54 | 1.39 | 2.10   | 0.03    | 2.18 | 1.10 |
| 41    | SP2 isustain batt 28v          | 1.8      | 2.2      | mA   | HT   | 2.12   | 0.02    | 3.52  | 1.48 | 2.12   | 0.02    | 2.99 | 1.17 | 2.12   | 0.02    | 3.72 | 1.46 |
| 41    | SP2 isustain batt 28v          | 1.8      | 2.2      | mA   | RT   | 2.12   | 0.02    | 3.98  | 1.53 | 2.12   | 0.02    | 2.90 | 1.15 | 2.12   | 0.02    | 3.19 | 1.24 |
| 41    | SP2 isustain batt 28v          | 1.8      | 2.2      | mA   | CT   | 2.11   | 0.02    | 3.30  | 1.56 | 2.10   | 0.03    | 2.49 | 1.24 | 2.11   | 0.03    | 2.31 | 1.10 |
| 42    | SP3 isustain batt 28v          | 1.8      | 2.2      | mA   | HT   | 2.11   | 0.02    | 3.08  | 1.38 | 2.12   | 0.02    | 3.42 | 1.44 | 2.12   | 0.02    | 3.77 | 1.63 |
| 42    | SP3 isustain batt 28v          | 1.8      | 2.2      | mA   | RT   | 2.12   | 0.02    | 3.17  | 1.32 | 2.12   | 0.02    | 3.54 | 1.50 | 2.12   | 0.02    | 3.20 | 1.38 |
| 42    | SP3 isustain batt 28v          | 1.8      | 2.2      | mA   | CT   | 2.10   | 0.03    | 2.62  | 1.31 | 2.10   | 0.02    | 2.85 | 1.51 | 2.10   | 0.03    | 2.34 | 1.20 |
| 43    | SP4 isustain batt 28v          | 1.8      | 2.2      | mA   | HT   | 2.11   | 0.02    | 3.08  | 1.40 | 2.11   | 0.02    | 3.35 | 1.49 | 2.12   | 0.02    | 3.72 | 1.60 |
| 43    | SP4 isustain batt 28v          | 1.8      | 2.2      | mA   | RT   | 2.11   | 0.02    | 3.25  | 1.43 | 2.11   | 0.02    | 3.42 | 1.65 | 2.11   | 0.02    | 3.06 | 1.40 |
| 43    | SP4 isustain batt 28v          | 1.8      | 2.2      | mA   | CT   | 2.09   | 0.02    | 3.01  | 1.67 | 2.08   | 0.02    | 2.84 | 1.76 | 2.09   | 0.03    | 2.24 | 1.28 |
|       | 1                              |          |          |      |      | 00     |         |       |      | 00     |         |      | 🗸    |        |         |      |      |

|          |                                                        |              |              |          |          |                | Lo           | t1           |              | <u> </u>       | Lo           | t2           |              |                | Lo           | t3           |              |
|----------|--------------------------------------------------------|--------------|--------------|----------|----------|----------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|
| Test#    | Test Name                                              | Lo Limit     | Hi Limit     | Unit     | Temp     | Mean           | Std Dev      | Ср           | Cpk          | Mean           | Std Dev      | Ср           | Cpk          | Mean           | Std Dev      | Ср           | Cpk          |
| 44       | SP5 isustain batt 28v                                  | 1.8          | 2.2          | mA       | HT       | 2.11           | 0.02         | 3.14         | 1.41         | 2.12           | 0.02         | 3.40         | 1.44         | 2.12           | 0.02         | 3.69         | 1.57         |
| 44       | SP5 isustain batt 28v                                  | 1.8          | 2.2          | mA       | RT       | 2.12           | 0.02         | 3.29         | 1.36         | 2.12           | 0.02         | 3.22         | 1.40         | 2.12           | 0.02         | 3.24         | 1.38         |
| 44       | SP5 isustain batt 28v                                  | 1.8          | 2.2          | mA       | CT       | 2.10           | 0.03         | 2.60         | 1.31         | 2.09           | 0.02         | 2.64         | 1.43         | 2.10           | 0.03         | 2.29         | 1.17         |
| 45       | SP6 isustain batt 28v                                  | 1.8          | 2.2          | mA       | HT       | 2.12           | 0.02         | 3.25         | 1.38         | 2.12           | 0.02         | 3.43         | 1.38         | 2.12           | 0.02         | 3.64         | 1.46         |
| 45       | SP6 isustain batt 28v                                  | 1.8          | 2.2          | mA       | RT       | 2.12           | 0.02         | 3.25         | 1.28         | 2.12           | 0.02         | 3.49         | 1.41         | 2.12           | 0.02         | 3.02         | 1.20         |
| 45       | SP6 isustain batt 28v                                  | 1.8          | 2.2          | mA       | CT       | 2.10           | 0.02         | 2.76         | 1.31         | 2.10           | 0.02         | 2.88         | 1.46         | 2.11           | 0.03         | 2.26         | 1.09         |
| 46       | SP7 isustain batt 28v                                  | 1.8          | 2.2          | mA       | HT       | 2.11           | 0.02         | 3.14         | 1.51         | 2.11           | 0.02         | 3.58         | 1.58         | 2.11           | 0.02         | 3.58         | 1.63         |
| 46       | SP7 isustain batt 28v                                  | 1.8          | 2.2          | mA       | RT       | 2.11           | 0.02         | 3.35         | 1.56         | 2.11           | 0.02         | 3.47         | 1.61         | 2.11           | 0.02         | 3.10         | 1.45         |
| 46       | SP7 isustain batt 28v                                  | 1.8          | 2.2          | mA       | CT       | 2.09           | 0.02         | 2.73         | 1.51         | 2.09           | 0.02         | 2.78         | 1.60         | 2.09           | 0.03         | 2.34         | 1.31         |
| 47       | SP0 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | HT       | -2.01          | 0.02         | 4.31         | 4.15         | -2.01          | 0.02         | 3.49         | 3.37         | -2.01          | 0.01         | 3.90         | 3.69         |
| 47       | SP0 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.01         | 4.65         | 4.36         | -2.01          | 0.02         | 39.85        | 3.30         | -2.02          | 0.02         | 3.55         | 3.17         |
| 47       | SP0 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | CT       | -1.98          | 0.02         | 3.46         | 3.09         | -1.97          | 0.02         | 3.16         | 2.77         | -1.98          | 0.02         | 3.03         | 2.81         |
| 48       | SP1 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 4.16         | 4.08         | -2.00          | 0.02         | 3.42         | 3.27         | -2.01          | 0.01         | 4.12         | 3.81         |
| 48       | SP1 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 3.93         | 3.71         | -2.01          | 0.02         | 3.57         | 3.39         | -2.01          | 0.02         | 4.27         | 3.91         |
| 48       | SP1 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | CT       | -1.98          | 0.02         | 3.04         | 2.76         | -1.97          | 0.02         | 3.18         | 2.72         | -1.98          | 0.02         | 3.61         | 3.24         |
| 49       | SP2 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 3.77         | 3.72         | -2.00          | 0.02         | 3.60         | 3.47         | -2.00          | 0.01         | 4.09         | 3.72         |
| 49       | SP2 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 3.94         | 3.76         | -2.00          | 0.02         | 3.81         | 3.62         | -2.01          | 0.02         | 4.10         | 3.84         |
| 49       | SP2 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.29         | 2.92         | -1.97          | 0.02         | 3.46         | 2.93         | -1.97          | 0.02         | 3.42         | 2.99         |
| 50       | SP3 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 3.74         | 3.72         | -2.00          | 0.02         | 3.31         | 3.25         | -2.00          | 0.02         | 3.54         | 3.21         |
| 50       | SP3 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | RT       | -2.00          | 0.02         | 3.89         | 3.81         | -2.00          | 0.02         | 3.54         | 3.46         | -2.01          | 0.02         | 3.34         | 3.13         |
| 50       | SP3 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.19         | 2.75         | -1.96          | 0.02         | 3.03         | 2.48         | -1.97          | 0.02         | 2.86         | 2.49         |
| 51       | SP4 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 4.04         | 4.02         | -2.01          | 0.02         | 3.50         | 3.31         | -2.00          | 0.02         | 3.57         | 3.23         |
| 51       | SP4 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | RT       | -2.00          | 0.02         | 4.33         | 4.24         | -2.01          | 0.02         | 3.41         | 3.16         | -2.01          | 0.02         | 3.59         | 3.33         |
| 51       | SP4 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.45         | 2.99         | -1.97          | 0.02         | 3.10         | 2.72         | -1.97          | 0.02         | 3.01         | 2.64         |
| 52       | SP5 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 3.97         | 3.97         | -2.00          | 0.02         | 3.42         | 3.34         | -2.00          | 0.02         | 3.77         | 3.39         |
| 52       | SP5 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 3.89         | 3.75         | -2.00          | 0.02         | 3.98         | 3.83         | -2.01          | 0.02         | 3.51         | 3.29         |
| 52       | SP5 isustain gnd batt=28v SP6 isustain gnd batt=28v    | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.09         | 2.72         | -1.96          | 0.02         | 3.62         | 3.06         | -1.97          | 0.02         | 3.04         | 2.68         |
| 53<br>53 | - · · · · · · · · · · · · · · · · · · ·                | -2.2<br>-2.2 | -1.8<br>-1.8 | mA<br>mA | HT<br>RT | -2.00<br>-2.01 | 0.02<br>0.02 | 3.72<br>4.06 | 3.68<br>3.96 | -2.00<br>-2.00 | 0.02<br>0.02 | 3.31<br>3.35 | 3.20<br>3.20 | -2.00<br>-2.00 | 0.01<br>0.02 | 4.10<br>4.21 | 3.64<br>4.01 |
| 53       | SP6 isustain gnd batt=28v<br>SP6 isustain gnd batt=28v | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.43         | 2.99         | -1.97          | 0.02         | 2.87         | 2.48         | -1.97          | 0.02         | 3.24         | 2.84         |
| 54       | SP7 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 3.71         | 3.70         | -2.00          | 0.02         | 3.41         | 3.30         | -2.00          | 0.02         | 3.86         | 3.51         |
| 54       | SP7 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | RT       | -2.00          | 0.02         | 3.68         | 3.53         | -2.00          | 0.02         | 3.43         | 3.26         | -2.00          | 0.01         | 3.74         | 3.45         |
| 54       | SP7 isustain gnd batt=28v                              | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.09         | 2.77         | -1.97          | 0.02         | 3.02         | 2.63         | -1.98          | 0.02         | 3.24         | 2.94         |
| 55       | SG0 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.01          | 0.02         | 3.58         | 3.39         | -2.01          | 0.02         | 3.52         | 3.26         | -2.01          | 0.02         | 4.33         | 4.15         |
| 55       | SG0 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 3.83         | 3.56         | -2.01          | 0.02         | 3.75         | 3.46         | -2.02          | 0.02         | 4.14         | 3.68         |
| 55       | SG0 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.98          | 0.02         | 3.10         | 2.83         | -1.97          | 0.02         | 3.46         | 3.02         | -1.98          | 0.02         | 3.48         | 3.20         |
| 56       | SG1 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.01          | 0.02         | 3.63         | 3.51         | -2.01          | 0.02         | 3.24         | 3.05         | -2.01          | 0.01         | 4.14         | 3.90         |
| 56       | SG1 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 3.66         | 3.48         | -2.01          | 0.02         | 3.30         | 3.13         | -2.01          | 0.02         | 3.96         | 3.61         |
| 56       | SG1 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.30         | 2.93         | -1.96          | 0.02         | 2.93         | 2.46         | -1.97          | 0.02         | 3.23         | 2.86         |
| 57       | SG2 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.01          | 0.02         | 3.84         | 3.70         | -2.01          | 0.02         | 3.27         | 3.03         | -2.01          | 0.02         | 3.52         | 3.35         |
| 57       | SG2 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 4.10         | 3.87         | -2.01          | 0.02         | 3.33         | 3.07         | -2.02          | 0.02         | 3.66         | 3.28         |
| 57       | SG2 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.25         | 2.89         | -1.97          | 0.02         | 2.93         | 2.54         | -1.98          | 0.02         | 3.24         | 2.91         |
| 58       | SG3 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.01          | 0.02         | 3.91         | 3.78         | -2.01          | 0.02         | 3.42         | 3.17         | -2.01          | 0.01         | 4.37         | 4.17         |
| 58       | SG3 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 4.17         | 3.93         | -2.01          | 0.02         | 3.48         | 3.20         | -2.02          | 0.02         | 4.27         | 3.79         |
| 58       | SG3 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.50         | 3.13         | -1.97          | 0.02         | 3.05         | 2.68         | -1.98          | 0.02         | 3.44         | 3.15         |
| 59       | SG4 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.01          | 0.02         | 3.96         | 3.85         | -2.01          | 0.02         | 3.55         | 3.29         | -2.01          | 0.01         | 3.83         | 3.58         |
| 59       | SG4 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 4.03         | 3.79         | -2.01          | 0.02         | 3.64         | 3.29         | -2.01          | 0.02         | 3.78         | 3.40         |
| 59       | SG4 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.98          | 0.02         | 3.37         | 3.09         | -1.98          | 0.02         | 3.17         | 2.87         | -1.98          | 0.02         | 3.13         | 2.85         |
| 60       | SG5 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 4.04         | 4.00         | -2.00          | 0.02         | 3.32         | 3.20         | -2.00          | 0.01         | 3.93         | 3.56         |
| 60       | SG5 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.00          | 0.02         | 4.19         | 4.10         | -2.01          | 0.02         | 3.23         | 3.07         | -2.01          | 0.01         | 4.42         | 4.11         |
| 60       | SG5 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.40         | 2.96         | -1.97          | 0.02         | 2.89         | 2.48         | -1.97          | 0.02         | 3.71         | 3.26         |
| 61       | SG6 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 3.85         | 3.83         | -2.00          | 0.02         | 3.35         | 3.21         | -2.01          | 0.02         | 3.72         | 3.41         |
| 61       | SG6 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 4.08         | 3.94         | -2.01          | 0.02         | 3.59         | 3.38         | -2.01          | 0.02         | 4.01         | 3.69         |
|          | SG6 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.64         | 3.21         | -1.97          | 0.02         | 3.32         | 2.86         | -1.97          | 0.02         | 3.42         | 3.05         |
| 62       | SG7 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 3.95         | 3.89         | -2.00          | 0.02         | 3.54         | 3.37         | -2.01          | 0.01         | 4.03         | 3.72         |
|          | SG7 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.01          | 0.02         | 4.35         | 4.11         | -2.01          | 0.02         | 3.73         | 3.45         | -2.01          | 0.02         | 3.83         | 3.47         |
|          | SG7 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.98          | 0.02         | 3.43         | 3.13         | -1.97          | 0.02         | 3.21         | 2.85         | -1.98          | 0.02         | 3.07         | 2.81         |
|          | SG8 sustain current batt=28v                           | -2.2         | -1.8         | mA       | HT       | -2.00          | 0.02         | 3.88         | 3.79         | -2.00          | 0.02         | 3.47         | 3.46         | -2.00          | 0.02         | 3.58         | 3.15         |
|          | SG8 sustain current batt=28v                           | -2.2         | -1.8         | mA       | RT       | -2.00          | 0.02         | 4.25         | 4.17         | -2.00          | 0.02         | 3.87         | 3.79         | -2.00          | 0.02         | 3.36         | 3.19         |
| 63       | SG8 sustain current batt=28v                           | -2.2         | -1.8         | mA       | CT       | -1.97          | 0.02         | 3.18         | 2.73         | -1.96          | 0.02         | 3.54         | 2.93         | -1.97          | 0.02         | 2.75         | 2.39         |

|       |                                                |          |          |        |      |       | Lo          | t1     |        |       | Lo      | t2     |        |       | Lo      | t3     |        |
|-------|------------------------------------------------|----------|----------|--------|------|-------|-------------|--------|--------|-------|---------|--------|--------|-------|---------|--------|--------|
| Test# | Test Name                                      | Lo Limit | Hi Limit | Unit   | Temp | Mean  | Std Dev     | Ср     | Cpk    | Mean  | Std Dev | Ср     | Cpk    | Mean  | Std Dev | Ср     | Cpk    |
| 64    | SG9 sustain current batt=28v                   | -2.2     | -1.8     | mA     | HT   | -2.00 | 0.02        | 3.91   | 3.84   | -2.00 | 0.02    | 3.78   | 3.68   | -2.00 | 0.02    | 3.53   | 3.15   |
| 64    | SG9 sustain current batt=28v                   | -2.2     | -1.8     | mA     | RT   | -2.00 | 0.02        | 4.13   | 4.06   | -2.00 | 0.01    | 4.36   | 4.14   | -2.01 | 0.02    | 3.57   | 3.34   |
| 64    | SG9 sustain current batt=28v                   | -2.2     | -1.8     | mA     | CT   | -1.97 | 0.02        | 3.47   | 2.98   | -1.97 | 0.02    | 3.87   | 3.34   | -1.97 | 0.02    | 3.16   | 2.78   |
| 65    | SG10 sustain current batt=28v                  | -2.2     | -1.8     | mA     | HT   | -2.00 | 0.02        | 4.02   | 3.96   | -2.00 | 0.02    | 3.59   | 3.46   | -2.00 | 0.01    | 3.82   | 3.46   |
| 65    | SG10 sustain current batt=28v                  | -2.2     | -1.8     | mA     | RT   | -2.00 | 0.02        | 3.93   | 3.85   | -2.01 | 0.02    | 3.58   | 3.38   | -2.01 | 0.02    | 3.74   | 3.42   |
| 65    | SG10 sustain current batt=28v                  | -2.2     | -1.8     | mA     | CT   | -1.97 | 0.02        | 3.35   | 2.91   | -1.97 | 0.02    | 3.12   | 2.70   | -1.98 | 0.02    | 3.02   | 2.71   |
| 66    | SG11 sustain current batt=28v                  | -2.2     | -1.8     | mA     | HT   | -2.00 | 0.02        | 3.96   | 3.89   | -2.00 | 0.02    | 3.80   | 3.67   | -2.00 | 0.01    | 3.82   | 3.44   |
| 66    | SG11 sustain current batt=28v                  | -2.2     | -1.8     | mA     | RT   | -2.00 | 0.02        | 4.16   | 4.09   | -2.01 | 0.02    | 3.87   | 3.65   | -2.01 | 0.02    | 3.95   | 3.65   |
| 66    | SG11 sustain current batt=28v                  | -2.2     | -1.8     | mA     | CT   | -1.97 | 0.02        | 3.40   | 2.94   | -1.97 | 0.02    | 3.42   | 2.98   | -1.97 | 0.02    | 3.22   | 2.87   |
| 67    | SG12 sustain current batt=28v                  | -2.2     | -1.8     |        | HT   | -2.00 | 0.02        | 4.18   | 4.08   | -2.00 | 0.02    |        | 3.57   | -2.00 | 0.02    | 5.26   | 3.56   |
|       |                                                |          |          | mA     |      |       |             |        |        |       |         | 3.63   |        |       |         |        |        |
| 67    | SG12 sustain current batt=28v                  | -2.2     | -1.8     | mA     | RT   | -2.00 | 0.02        | 4.38   | 4.31   | -2.00 | 0.02    | 3.52   | 3.40   | -2.00 | 0.02    | 4.23   | 4.03   |
| 67    | SG12 sustain current batt=28v                  | -2.2     | -1.8     | mA     | CT   | -1.97 | 0.02        | 3.60   | 3.12   | -1.97 | 0.02    | 3.27   | 2.78   | -1.97 | 0.02    | 3.46   | 3.00   |
| 68    | SG13 sustain current batt=28v                  | -2.2     | -1.8     | mA     | HT   | -2.00 | 0.02        | 4.02   | 3.96   | -2.00 | 0.02    | 3.53   | 3.44   | -2.00 | 0.01    | 3.89   | 3.47   |
| 68    | SG13 sustain current batt=28v                  | -2.2     | -1.8     | mA     | RT   | -2.00 | 0.02        | 4.35   | 4.27   | -2.00 | 0.02    | 3.67   | 3.52   | -2.01 | 0.02    | 3.92   | 3.68   |
| 68    | SG13 sustain current batt=28v                  | -2.2     | -1.8     | mA     | CT   | -1.97 | 0.02        | 3.57   | 3.12   | -1.97 | 0.02    | 3.29   | 2.80   | -1.97 | 0.02    | 3.09   | 2.71   |
| 69    | IMATCH                                         | -4       | 4        | %      | HT   | 1.33  | 0.34        | 3.87   | 2.59   | 1.25  | 0.42    | 3.17   | 2.18   | 1.29  | 0.25    | 5.26   | 3.56   |
| 69    | IMATCH                                         | -4       | 4        | %      | RT   | 1.55  | 0.32        | 4.21   | 2.58   | 1.44  | 0.35    | 3.76   | 2.41   | 1.50  | 0.32    | 4.12   | 2.58   |
| 69    | IMATCH                                         | -4       | 4        | %      | CT   | 1.85  | 0.40        | 3.30   | 1.77   | 1.67  | 0.42    | 3.17   | 1.84   | 1.72  | 0.35    | 3.78   | 2.15   |
| 70    | SP0 ioffset analog                             | -2       | 2        | uA     | HT   | -0.44 | 0.01        | 88.68  | 69.08  | -0.44 | 0.01    | 103.60 | 80.99  | -0.44 | 0.01    | 82.06  | 63.93  |
| 70    | SP0 ioffset analog                             | -2       | 2        | uA     | RT   | -0.29 | 0.01        | 123.72 | 106.03 | -0.29 | 0.01    | 98.44  | 84.32  | -0.29 | 0.01    | 111.09 | 95.13  |
| 70    | SP0 ioffset analog                             | -2       | 2        | uA     | CT   | -0.25 | 0.01        | 113.05 | 99.18  | -0.24 | 0.01    | 115.11 | 101.13 | -0.25 | 0.01    | 107.11 | 93.99  |
| 71    | SP1 ioffset analog                             | -2       | 2        | uA     | HT   | -0.31 | 0.01        | 123.04 | 103.72 | -0.31 | 0.00    | 152.59 | 128.91 | -0.32 | 0.01    | 66.13  | 35.40  |
| 71    | SP1 ioffset analog                             | -2       | 2        | uA     | RT   | -0.21 | 0.01        | 130.71 | 117.15 | -0.21 | 0.00    | 183.92 | 165.05 | -0.21 | 0.01    | 72.79  | 65.25  |
| 71    | SP1 ioffset analog                             | -2       | 2        | uA     | CT   | -0.18 | 0.00        | 135.27 | 122.79 | -0.18 | 0.00    | 175.86 | 159.81 | -0.18 | 0.00    | 168.34 | 152.84 |
| 72    | SP2 ioffset analog                             | -2       | 2        | uA     | HT   | -0.31 | 0.00        | 134.72 | 113.84 | -0.31 | 0.01    | 118.55 | 100.43 | -0.31 | 0.01    | 71.87  | 38.14  |
| 72    | SP2 ioffset analog                             | -2       | 2        | uA     | RT   | -0.20 | 0.00        | 157.16 | 141.08 | -0.20 | 0.01    | 129.78 | 116.52 | -0.21 | 0.01    | 131.23 | 117.73 |
| 72    | SP2 ioffset analog                             | -2       | 2        | uA     | CT   | -0.18 | 0.00        | 146.38 | 132.85 | -0.18 | 0.00    | 149.73 | 136.03 | -0.18 | 0.00    | 139.21 | 126.35 |
| 73    | SP3 ioffset analog                             | -2       | 2        | uA     | HT   | -0.09 | 0.00        | 146.01 | 139.53 | -0.09 | 0.00    | 155.46 | 148.77 | -0.09 | 0.00    | 81.17  | 27.51  |
| 73    | SP3 ioffset analog                             | -2       | 2        | uA     | RT   | -0.05 | 0.00        | 537.09 | 523.85 | -0.05 | 0.00    | 522.48 | 509.94 | -0.05 | 0.00    | 600.37 | 585.62 |
| 73    | SP3 ioffset analog                             | -2       | 2        | uA     | CT   | -0.06 | 0.00        | 417.62 | 404.84 | -0.06 | 0.00    | 427.48 | 414.77 | -0.06 | 0.00    | 509.56 | 494.40 |
| 74    | SP4 ioffset analog                             | -2       | 2        | uA     | HT   | -0.42 | 0.01        | 110.14 | 86.98  | -0.42 | 0.01    | 103.10 | 81.59  | -0.42 | 0.01    | 49.52  | 31.18  |
| 74    | SP4 ioffset analog                             | -2       | 2        | uA     | RT   | -0.28 | 0.00        | 141.56 | 121.80 | -0.28 | 0.01    | 96.87  | 83.48  | -0.28 | 0.00    | 138.13 | 118.85 |
| 74    | SP4 ioffset analog                             | -2       | 2        | uA     | CT   | -0.24 | 0.01        | 129.03 | 113.65 | -0.24 | 0.01    | 121.31 | 106.91 | -0.24 | 0.01    | 117.10 | 103.11 |
| 75    | SP5 ioffset analog                             | -2       | 2        | uA     | HT   | -0.43 | 0.01        | 65.77  | 51.71  | -0.43 | 0.01    | 73.39  | 57.76  | -0.43 | 0.01    | 48.90  | 30.93  |
| 75    | SP5 ioffset analog                             | -2       | 2        | uA     | RT   | -0.49 | 0.01        | 95.46  | 81.73  | -0.29 | 0.01    | 93.91  | 80.50  | -0.29 | 0.01    | 79.77  | 68.37  |
| 75    | SP5 ioffset analog                             | -2       | 2        | uA     | CT   | -0.24 | 0.01        | 100.54 | 88.24  | -0.24 | 0.01    | 123.96 | 108.89 | -0.24 | 0.01    | 81.45  | 71.47  |
| 76    | SP6 ioffset analog                             | -2       | 2        | uA     | HT   | -0.42 | 0.01        | 64.91  | 51.21  | -0.42 | 0.01    | 69.50  | 54.90  | -0.42 | 0.01    | 39.99  | 25.20  |
| 76    | SP6 ioffset analog                             | -2       | 2        | uA     | RT   | -0.42 | 0.01        | 87.97  | 75.56  | -0.42 | 0.01    | 85.05  | 73.11  | -0.42 | 0.01    | 92.47  | 79.54  |
| 76    | SP6 ioffset analog                             | -2       | 2        | uA     | CT   | -0.24 | 0.01        | 115.48 | 101.62 | -0.24 | 0.01    | 102.84 | 90.56  | -0.24 | 0.01    | 102.22 | 90.00  |
| 77    | SP7 ioffset analog                             | -2       | 2        | uA     | HT   | -0.42 | 0.01        | 57.82  | 45.63  | -0.42 | 0.01    | 73.39  | 58.12  | -0.42 | 0.01    | 42.97  | 27.00  |
| 77    | SP7 ioffset analog                             | -2       | 2        | uA     | RT   | -0.42 | 0.01        | 104.54 | 89.84  | -0.42 | 0.01    | 91.01  | 78.27  | -0.42 | 0.01    | 112.12 | 96.32  |
| 77    | SP7 ioffset analog                             | -2       | 2        | uA     | CT   | -0.24 | 0.01        | 88.94  | 78.21  | -0.24 | 0.01    | 104.24 | 91.88  | -0.24 | 0.01    | 94.54  | 83.19  |
| 78    | ū                                              | -2       | 2        | uA     | HT   | -0.24 | 0.01        | 95.10  | 75.42  | -0.24 | 0.01    | 80.79  | 64.15  | -0.42 | 0.01    | 48.16  | 29.96  |
| 78    | SG0 ioffset analog                             |          |          |        | RT   |       |             |        |        | -0.41 |         |        | 123.37 |       |         |        |        |
|       | SG0 ioffset analog                             | -2       | 2        | uA<br> |      | -0.27 | 0.01        | 124.41 | 107.45 |       | 0.00    | 142.81 |        | -0.27 | 0.01    | 116.73 | 100.81 |
| 78    | SG0 ioffset analog                             | -2       | 2        | uA<br> | CT   | -0.23 | 0.01        | 98.12  | 86.74  | -0.23 | 0.01    | 129.97 | 114.81 | -0.23 | 0.01    | 107.64 | 95.06  |
| 79    | SG1 ioffset analog                             | -2       | 2        | uA     | HT   | -0.28 | 0.00        | 168.94 | 145.36 | -0.28 | 0.00    | 141.19 | 121.63 | -0.28 | 0.00    | 104.89 | 52.97  |
| 79    | SG1 ioffset analog                             | -2       | 2        | uA     | RT   | -0.18 | 0.00        | 180.63 | 164.08 | -0.18 | 0.00    | 189.65 | 172.59 | -0.18 | 0.00    | 205.34 | 186.59 |
| 79    | SG1 ioffset analog                             | -2       | 2        | uA     | CT   | -0.16 | 0.00        | 196.03 | 179.87 | -0.16 | 0.00    | 169.67 | 155.80 | -0.17 | 0.00    | 173.15 | 158.83 |
| 80    | SG2 ioffset analog                             | -2       | 2        | uA     | HT   | -0.42 | 0.01        | 79.06  | 62.40  | -0.42 | 0.01    | 72.78  | 57.52  | -0.43 | 0.01    | 38.84  | 24.51  |
| 80    | SG2 ioffset analog                             | -2       | 2        | uA     | RT   | -0.28 | 0.01        | 131.33 | 113.21 | -0.27 | 0.01    | 92.09  | 79.45  | -0.28 | 0.00    | 134.41 | 115.83 |
| 80    | SG2 ioffset analog                             | -2       | 2        | uA     | CT   | -0.23 | 0.01        | 108.20 | 95.57  | -0.23 | 0.01    | 87.97  | 77.70  | -0.23 | 0.01    | 116.10 | 102.50 |
| 81    | SG3 ioffset analog                             | -2       | 2        | uA     | HT   | -0.31 | 0.01        | 123.64 | 104.61 | -0.30 | 0.01    | 123.93 | 105.06 | -0.31 | 0.00    | 88.43  | 46.93  |
| 81    | SG3 ioffset analog                             | -2       | 2        | uA     | RT   | -0.20 | 0.00        | 146.94 | 132.13 | -0.20 | 0.00    | 152.90 | 137.65 | -0.20 | 0.01    | 133.04 | 119.60 |
| 81    | SG3 ioffset analog                             | -2       | 2        | uA     | CT   | -0.18 | 0.00        | 149.23 | 135.74 | -0.18 | 0.00    | 160.27 | 145.98 | -0.18 | 0.00    | 162.83 | 148.18 |
| 82    | SG4 ioffset analog                             | -2       | 2        | uA     | HT   | -0.42 | 0.01        | 105.67 | 83.56  | -0.42 | 0.01    | 77.30  | 61.17  | -0.42 | 0.01    | 68.71  | 43.12  |
| 82    | SG4 ioffset analog                             | -2       | 2        | uA     | RT   | -0.28 | 0.01        | 113.17 | 97.57  | -0.27 | 0.02    | 29.94  | 25.91  | -0.28 | 0.01    | 117.37 | 101.07 |
| 82    | SG4 ioffset analog                             | -2       | 2        | uA     | CT   | -0.23 | 0.01        | 116.50 | 102.86 | -0.23 | 0.01    | 82.62  | 73.00  | -0.24 | 0.01    | 118.29 | 104.30 |
| 83    | SG5 ioffset analog                             | -2       | 2        | uA     | HT   | -0.41 | 0.01        | 87.41  | 69.63  | -0.40 | 0.01    | 79.81  | 63.70  | -0.41 | 0.01    | 58.82  | 36.12  |
| 83    | SG5 ioffset analog                             | -2       | 2        | uA     | RT   | -0.27 | 0.01        | 129.13 | 111.92 | -0.26 | 0.01    | 117.60 | 102.07 | -0.26 | 0.01    | 103.85 | 90.16  |
| 83    | SG5 ioffset analog                             | -2       | 2        | uA     | CT   | -0.23 | 0.01        | 107.71 | 95.45  | -0.23 | 0.01    | 107.25 | 95.14  | -0.23 | 0.01    | 104.52 | 92.68  |
|       | <u>.                                      </u> |          |          | ı      |      |       | noolo Confi |        |        | •     |         |        |        |       |         |        |        |

|       |                             |          |          |        |      |       | 10      | t1     |        |       | I o     | t2             |        |       | Ic      | t3     |        |
|-------|-----------------------------|----------|----------|--------|------|-------|---------|--------|--------|-------|---------|----------------|--------|-------|---------|--------|--------|
| Test# | Test Name                   | Lo Limit | Hi Limit | Unit   | Temp | Mean  | Std Dev | Ср     | Cpk    | Mean  | Std Dev | Cp             | Cpk    | Mean  | Std Dev | Ср     | Cpk    |
| 84    | SG6 ioffset analog          | -2       | 2        | uA     | HT   | -0.41 | 0.01    | 70.33  | 55.96  | -0.41 | 0.01    | 85.94          | 68.37  | -0.41 | 0.01    | 38.43  | 23.81  |
| 84    | SG6 ioffset analog          | -2       | 2        | uA     | RT   | -0.41 | 0.01    | 114.62 | 99.38  | -0.41 | 0.01    | 83.49          | 72.34  | -0.41 | 0.01    | 89.95  | 77.81  |
| 84    | SG6 ioffset analog          | -2       | 2        | uA     | CT   | -0.27 | 0.01    | 124.88 | 110.55 | -0.27 | 0.01    | 96.68          | 85.54  | -0.27 | 0.01    | 92.87  | 82.03  |
| 85    | SG7 ioffset analog          | -2       | 2        | uA     | HT   | -0.23 | 0.01    | 63.30  | 50.36  | -0.23 | 0.01    |                | 55.49  | -0.23 | 0.01    | 39.39  | 24.36  |
|       |                             | -2       |          |        | RT   | -0.41 |         | 91.06  | 78.81  | -0.40 | 0.01    | 69.55<br>99.10 | 85.80  | -0.41 | 0.01    | 93.75  | 81.08  |
| 85    | SG7 ioffset analog          |          | 2        | uA<br> |      |       | 0.01    |        |        |       |         |                |        |       |         |        |        |
| 85    | SG7 ioffset analog          | -2       | 2        | uA     | CT   | -0.23 | 0.01    | 95.76  | 84.68  | -0.23 | 0.01    | 93.43          | 82.71  | -0.23 | 0.01    | 88.29  | 78.11  |
| 86    | SG8 ioffset analog          | -2       | 2        | uA     | HT   | -0.42 | 0.01    | 105.01 | 83.07  | -0.42 | 0.01    | 98.82          | 78.27  | -0.42 | 0.01    | 55.26  | 34.66  |
| 86    | SG8 ioffset analog          | -2       | 2        | uA     | RT   | -0.27 | 0.01    | 70.43  | 60.75  | -0.28 | 0.01    | 109.85         | 94.69  | -0.28 | 0.01    | 125.21 | 107.72 |
| 86    | SG8 ioffset analog          | -2       | 2        | uA     | CT   | -0.24 | 0.01    | 115.88 | 102.15 | -0.24 | 0.01    | 108.25         | 95.48  | -0.24 | 0.00    | 144.55 | 127.46 |
| 87    | SG9 ioffset analog          | -2       | 2        | uA     | HT   | -0.41 | 0.01    | 67.83  | 53.76  | -0.41 | 0.01    | 91.31          | 72.60  | -0.42 | 0.01    | 58.61  | 36.51  |
| 87    | SG9 ioffset analog          | -2       | 2        | uA     | RT   | -0.27 | 0.02    | 28.08  | 24.30  | -0.27 | 0.01    | 54.23          | 46.90  | -0.28 | 0.01    | 96.66  | 83.30  |
| 87    | SG9 ioffset analog          | -2       | 2        | uA     | CT   | -0.24 | 0.01    | 99.68  | 87.96  | -0.23 | 0.01    | 130.44         | 115.36 | -0.24 | 0.01    | 122.57 | 108.12 |
| 88    | SG10 ioffset analog         | -2       | 2        | uA     | HT   | -0.42 | 0.01    | 75.45  | 59.63  | -0.42 | 0.01    | 99.06          | 78.30  | -0.42 | 0.01    | 51.06  | 32.16  |
| 88    | SG10 ioffset analog         | -2       | 2        | uA     | RT   | -0.27 | 0.03    | 26.64  | 23.03  | -0.28 | 0.01    | 57.74          | 49.76  | -0.28 | 0.01    | 103.20 | 88.72  |
| 88    | SG10 ioffset analog         | -2       | 2        | uA     | CT   | -0.24 | 0.01    | 100.45 | 88.51  | -0.24 | 0.00    | 137.04         | 120.71 | -0.24 | 0.01    | 98.99  | 87.04  |
| 89    | SG11 ioffset analog         | -2       | 2        | uA     | HT   | -0.43 | 0.01    | 64.70  | 50.65  | -0.43 | 0.01    | 67.36          | 52.81  | -0.44 | 0.01    | 38.90  | 24.94  |
| 89    | SG11 ioffset analog         | -2       | 2        | uA     | RT   | -0.29 | 0.01    | 85.96  | 73.60  | -0.29 | 0.02    | 42.07          | 36.04  | -0.29 | 0.01    | 72.75  | 62.10  |
| 89    | SG11 ioffset analog         | -2       | 2        | uA     | CT   | -0.25 | 0.01    | 94.68  | 83.03  | -0.25 | 0.01    | 94.28          | 82.68  | -0.25 | 0.01    | 76.68  | 67.16  |
| 90    | SG12 ioffset analog         | -2       | 2        | uA     | HT   | -0.43 | 0.01    | 84.90  | 66.68  | -0.43 | 0.01    | 95.95          | 75.48  | -0.43 | 0.01    | 51.84  | 33.05  |
| 90    | SG12 ioffset analog         | -2       | 2        | uA     | RT   | -0.28 | 0.01    | 105.40 | 90.41  | -0.28 | 0.01    | 118.30         | 101.51 | -0.29 | 0.01    | 108.35 | 92.91  |
| 90    | SG12 ioffset analog         | -2       | 2        | uA     | CT   | -0.24 | 0.01    | 108.48 | 95.29  | -0.24 | 0.01    | 121.22         | 106.46 | -0.24 | 0.01    | 118.05 | 103.60 |
| 91    | SG13 ioffset analog         | -2       | 2        | uA     | HT   | -0.43 | 0.01    | 85.38  | 67.20  | -0.42 | 0.01    | 67.95          | 53.58  | -0.43 | 0.01    | 71.81  | 56.43  |
| 91    | SG13 ioffset analog         | -2       | 2        | uA     | RT   | -0.28 | 0.01    | 85.70  | 73.62  | -0.28 | 0.01    | 96.24          | 82.62  | -0.28 | 0.01    | 94.91  | 81.58  |
| 91    | SG13 ioffset analog         | -2       | 2        | uA     | CT   | -0.24 | 0.01    | 96.56  | 84.93  | -0.24 | 0.01    | 101.51         | 89.39  | -0.24 | 0.01    | 85.90  | 75.59  |
| 92    | Sp0 output offset voltage   | -10      | 10       | mV     | HT   | 2.41  | 0.27    | 12.52  | 9.51   | 2.46  | 0.34    | 9.85           | 7.43   | 2.42  | 0.38    | 8.68   | 6.58   |
| 92    | Sp0 output offset voltage   | -10      | 10       | mV     | RT   | 1.16  | 0.27    | 12.31  | 10.87  | 1.23  | 0.25    | 13.37          | 11.72  | 1.24  | 0.33    | 10.25  | 8.99   |
| 92    | Sp0 output offset voltage   | -10      | 10       | mV     | CT   | 0.59  | 0.31    | 10.78  | 10.15  | 0.53  | 0.31    | 10.62          | 10.05  | 0.66  | 0.36    | 9.19   | 8.59   |
| 93    | Sp1 output offset voltage   | -10      | 10       | mV     | HT   | 2.64  | 0.27    | 12.56  | 9.24   | 2.72  | 0.32    | 10.49          | 7.63   | 2.69  | 0.33    | 10.24  | 7.49   |
| 93    | Sp1 output offset voltage   | -10      | 10       | mV     | RT   | 1.39  | 0.24    | 11.98  | 8.19   | 1.45  | 0.23    | 14.35          | 12.28  | 1.45  | 0.33    | 10.17  | 8.70   |
| 93    | Sp1 output offset voltage   | -10      | 10       | mV     | CT   | 0.82  | 0.29    | 11.46  | 10.52  | 0.84  | 0.27    | 12.54          | 11.49  | 0.93  | 0.33    | 10.09  | 9.15   |
| 94    | Sp2 output offset voltage   | -10      | 10       | mV     | HT   | 2.04  | 0.28    | 12.09  | 9.62   | 2.08  | 0.30    | 11.07          | 8.76   | 2.09  | 0.35    | 9.44   | 7.46   |
| 94    | Sp2 output offset voltage   | -10      | 10       | mV     | RT   | 0.90  | 0.26    | 11.16  | 8.26   | 0.94  | 0.26    | 12.98          | 11.76  | 0.98  | 0.30    | 11.14  | 10.05  |
| 94    | Sp2 output offset voltage   | -10      | 10       | mV     | CT   | 0.33  | 0.37    | 9.01   | 8.71   | 0.34  | 0.34    | 9.76           | 9.43   | 0.39  | 0.39    | 8.52   | 8.18   |
| 95    | Sp3 output offset voltage   | -10      | 10       | mV     | HT   | 2.15  | 0.25    | 13.10  | 10.28  | 2.21  | 0.32    | 10.51          | 8.18   | 2.18  | 0.32    | 10.41  | 8.14   |
| 95    | Sp3 output offset voltage   | -10      | 10       | mV     | RT   | 0.93  | 0.23    | 12.32  | 9.07   | 0.95  | 0.21    | 15.85          | 14.34  | 0.96  | 0.32    | 10.34  | 9.35   |
| 95    | Sp3 output offset voltage   | -10      | 10       | mV     | CT   | 0.28  | 0.36    | 9.36   | 9.10   | 0.33  | 0.30    | 11.11          | 10.74  | 0.34  | 0.39    | 8.65   | 8.35   |
| 96    | Sp4 output offset voltage   | -10      | 10       | mV     | HT   | 1.70  | 0.32    | 10.43  | 8.65   | 1.79  | 0.35    | 9.65           | 7.92   | 1.75  | 0.37    | 8.93   | 7.36   |
| 96    | Sp4 output offset voltage   | -10      | 10       | mV     | RT   | 0.46  | 0.26    | 10.90  | 8.62   | 0.52  | 0.25    | 13.21          | 12.53  | 0.51  | 0.35    | 9.54   | 9.06   |
| 96    | Sp4 output offset voltage   | -10      | 10       | mV     | CT   | -0.21 | 0.37    | 9.08   | 8.89   | -0.19 | 0.37    | 9.13           | 8.96   | -0.14 | 0.42    | 8.00   | 7.89   |
| 97    | Sp5 output offset voltage   | -10      | 10       | mV     | HT   | 1.57  | 0.26    | 12.75  | 10.75  | 1.61  | 0.35    | 9.61           | 8.06   | 1.65  | 0.33    | 10.13  | 8.46   |
| 97    | Sp5 output offset voltage   | -10      | 10       | mV     | RT   | 0.28  | 0.25    | 11.53  | 9.35   | 0.32  | 0.28    | 11.83          | 11.46  | 0.34  | 0.34    | 9.85   | 9.51   |
| 97    | Sp5 output offset voltage   | -10      | 10       | mV     | CT   | -0.45 | 0.37    | 9.11   | 8.70   | -0.40 | 0.37    | 9.06           | 8.69   | -0.36 | 0.42    | 8.02   | 7.73   |
| 98    | Sp6 output offset voltage   | -10      | 10       | mV     | HT   | 1.83  | 0.26    | 13.07  | 10.67  | 1.91  | 0.31    | 10.66          | 8.63   | 1.84  | 0.33    | 10.18  | 8.31   |
| 98    | Sp6 output offset voltage   | -10      | 10       | mV     | RT   | 0.60  | 0.25    | 11.75  | 9.09   | 0.62  | 0.29    | 11.54          | 10.82  | 0.59  | 0.36    | 9.17   | 8.63   |
| 98    | Sp6 output offset voltage   | -10      | 10       | mV     | CT   | -0.13 | 0.37    | 8.97   | 8.85   | -0.05 | 0.34    | 9.88           | 9.83   | -0.05 | 0.43    | 7.80   | 7.76   |
| 99    | Sp7 output offset voltage   | -10      | 10       | mV     | HT   | 1.75  | 0.26    | 12.95  | 10.68  | 1.79  | 0.32    | 10.29          | 8.45   | 1.78  | 0.36    | 9.33   | 7.66   |
| 99    | Sp7 output offset voltage   | -10      | 10       | mV     | RT   | 0.62  | 0.30    | 9.60   | 7.42   | 0.65  | 0.27    | 12.51          | 11.70  | 0.64  | 0.32    | 10.32  | 9.67   |
| 99    | Sp7 output offset voltage   | -10      | 10       | mV     | CT   | 0.00  | 0.37    | 9.07   | 9.06   | -0.02 | 0.36    | 9.17           | 9.15   | 0.10  | 0.46    | 7.33   | 7.25   |
| 100   | Sg0 output offset voltage   | -10      | 10       | mV     | HT   | 0.03  | 0.11    | 29.51  | 29.44  | 0.03  | 0.12    | 27.67          | 27.58  | 0.03  | 0.13    | 25.50  | 25.43  |
| 100   | Sg0 output offset voltage   | -10      | 10       | mV     | RT   | -0.01 | 0.14    | 20.43  | 17.27  | -0.02 | 0.13    | 24.93          | 24.89  | -0.01 | 0.14    | 23.37  | 23.34  |
| 100   | Sg0 output offset voltage   | -10      | 10       | mV     | CT   | 0.04  | 0.17    | 19.67  | 19.59  | 0.02  | 0.12    | 28.11          | 28.06  | 0.01  | 0.13    | 25.15  | 25.13  |
| 101   | Sg1 output offset voltage   | -10      | 10       | mV     | HT   | 2.15  | 0.27    | 12.54  | 9.84   | 2.16  | 0.29    | 11.32          | 8.88   | 2.17  | 0.30    | 11.06  | 8.67   |
| 101   | Sg1 output offset voltage   | -10      | 10       | mV     | RT   | 0.90  | 0.24    | 12.09  | 8.95   | 0.95  | 0.24    | 14.13          | 12.78  | 0.94  | 0.31    | 10.60  | 9.61   |
| 101   | Sg1 output offset voltage   | -10      | 10       | mV     | CT   | 0.22  | 0.35    | 9.47   | 9.27   | 0.31  | 0.32    | 10.38          | 10.06  | 0.33  | 0.39    | 8.58   | 8.30   |
| 102   | Sg2 output offset voltage   | -10      | 10       | mV     | HT   | 2.60  | 0.28    | 12.11  | 8.96   | 2.64  | 0.31    | 10.90          | 8.02   | 2.62  | 0.33    | 10.05  | 7.41   |
| 102   | Sg2 output offset voltage   | -10      | 10       | mV     | RT   | 1.34  | 0.27    | 10.88  | 7.49   | 1.38  | 0.27    | 12.20          | 10.52  | 1.42  | 0.30    | 11.11  | 9.53   |
| 102   | Sg2 output offset voltage   | -10      | 10       | mV     | CT   | 0.72  | 0.29    | 11.34  | 10.53  | 0.75  | 0.35    | 9.59           | 8.88   | 0.79  | 0.41    | 8.16   | 7.51   |
| 103   | Sg3 output offset voltage   | -10      | 10       | mV     | HT   | 2.63  | 0.24    | 13.84  | 10.19  | 2.68  | 0.31    | 10.74          | 7.87   | 2.65  | 0.33    | 10.21  | 7.51   |
| 103   | Sg3 output offset voltage   | -10      | 10       | mV     | RT   | 1.47  | 0.23    | 12.51  | 8.42   | 1.48  | 0.22    | 14.86          | 12.66  | 1.48  | 0.30    | 11.30  | 9.63   |
| 103   | Sg3 output offset voltage   | -10      | 10       | mV     | CT   | 0.94  | 0.26    | 12.66  | 11.48  | 0.97  | 0.27    | 12.53          | 11.32  | 0.99  | 0.32    | 10.40  | 9.37   |
|       | 1030 output officer voltage | 10       | .0       | 1.11   | ٥,   | 0.07  | 0.20    | 12.00  | 11.70  | 0.01  | V.Z1    | 12.00          | 11.02  | 0.00  | 0.02    | 10.70  | 0.01   |

|            |                                                         |            |          |          |            |              | Lo           | t1            |               |              | Lo           | t2            |               |              | Lo           | t3           |              |
|------------|---------------------------------------------------------|------------|----------|----------|------------|--------------|--------------|---------------|---------------|--------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|
| Test#      | Test Name                                               | Lo Limit   | Hi Limit | Unit     | Temp       | Mean         | Std Dev      | Ср            | Cpk           | Mean         | Std Dev      | Ср            | Cpk           | Mean         | Std Dev      | Ср           | Cpk          |
| 104        | Sg4 output offset voltage                               | -10        | 10       | mV       | HT         | 2.40         | 0.30         | 11.02         | 8.37          | 2.48         | 0.34         | 9.76          | 7.34          | 2.44         | 0.37         | 9.06         | 6.85         |
| 104        | Sg4 output offset voltage                               | -10        | 10       | mV       | RT         | 1.20         | 0.31         | 9.27          | 6.54          | 1.25         | 0.27         | 12.31         | 10.77         | 1.25         | 0.35         | 9.55         | 8.36         |
| 104        | Sg4 output offset voltage                               | -10        | 10       | mV       | CT         | 0.64         | 0.30         | 11.09         | 10.38         | 0.69         | 0.30         | 10.94         | 10.18         | 0.69         | 0.38         | 8.73         | 8.13         |
| 105        | Sg5 output offset voltage                               | -10        | 10       | mV       | HT         | 0.04         | 0.16         | 21.41         | 21.33         | -0.03        | 0.16         | 21.40         | 21.34         | 0.02         | 0.12         | 27.77        | 27.73        |
| 105        | Sg5 output offset voltage                               | -10        | 10       | mV       | RT         | 0.02         | 0.13         | 21.71         | 18.28         | 0.02         | 0.13         | 25.60         | 25.55         | 0.01         | 0.11         | 29.74        | 29.70        |
| 105        | Sg5 output offset voltage                               | -10        | 10       | mV       | CT         | 0.05         | 0.14         | 23.88         | 23.77         | 0.06         | 0.15         | 21.80         | 21.66         | 0.04         | 0.16         | 21.47        | 21.38        |
| 106        | Sg6 output offset voltage                               | -10        | 10       | mV       | HT         | 0.02         | 0.14         | 24.66         | 24.63         | 0.05         | 0.13         | 25.37         | 25.25         | 0.02         | 0.13         | 25.52        | 25.48        |
| 106        | Sg6 output offset voltage                               | -10        | 10       | mV       | RT         | 0.02         | 0.13         | 21.70         | 18.26         | 0.00         | 0.13         | 25.84         | 25.84         | 0.07         | 0.14         | 23.27        | 23.10        |
| 106        | Sg6 output offset voltage                               | -10        | 10       | mV       | CT         | 0.03         | 0.14         | 23.89         | 23.82         | 0.04         | 0.17         | 19.18         | 19.09         | 0.05         | 0.15         | 22.94        | 22.84        |
| 107        | Sg7 output offset voltage                               | -10        | 10       | mV       | HT         | 1.71         | 0.27         | 12.38         | 10.26         | 1.79         | 0.33         | 9.98          | 8.20          | 1.75         | 0.35         | 9.59         | 7.91         |
| 107        | Sg7 output offset voltage                               | -10        | 10       | mV       | RT         | 0.49         | 0.22         | 13.13         | 10.34         | 0.53         | 0.26         | 13.00         | 12.32         | 0.53         | 0.31         | 10.87        | 10.29        |
| 107        | Sg7 output offset voltage                               | -10        | 10       | mV       | CT         | -0.23        | 0.33         | 10.03         | 9.80          | -0.19        | 0.34         | 9.76          | 9.57          | -0.20        | 0.46         | 7.30         | 7.16         |
| 108        | Sg8 output offset voltage                               | -10        | 10       | mV       | HT         | 1.79         | 0.29         | 11.31         | 9.29          | 1.80         | 0.32         | 10.28         | 8.43          | 1.78         | 0.33         | 9.95         | 8.19         |
| 108        | Sg8 output offset voltage                               | -10        | 10       | mV       | RT         | 0.55         | 0.28         | 10.36         | 8.09          | 0.57         | 0.26         | 12.80         | 12.07         | 0.56         | 0.31         | 10.80        | 10.19        |
| 108        | Sg8 output offset voltage                               | -10        | 10       | mV       | CT         | -0.19        | 0.37         | 8.91          | 8.75          | -0.08        | 0.39         | 8.56          | 8.49          | -0.07        | 0.40         | 8.37         | 8.31         |
| 109        | Sg9 output offset voltage                               | -10        | 10       | mV       | HT         | 1.80         | 0.32         | 10.52         | 8.63          | 1.83         | 0.32         | 10.31         | 8.42          | 1.84         | 0.36         | 9.26         | 7.56         |
| 109        | Sg9 output offset voltage                               | -10        | 10       | mV       | RT         | 0.60         | 0.29         | 10.00         | 7.75          | 0.61         | 0.28         | 11.99         | 11.25         | 0.60         | 0.31         | 10.67        | 10.03        |
| 109        | Sg9 output offset voltage                               | -10        | 10       | mV       | CT         | -0.18        | 0.38         | 8.82          | 8.66          | -0.18        | 0.38         | 8.68          | 8.52          | -0.11        | 0.45         | 7.33         | 7.25         |
| 110        | Sg10 output offset voltage                              | -10        | 10       | mV       | HT         | 1.84         | 0.31         | 10.86         | 8.87          | 1.81         | 0.33         | 10.08         | 8.26          | 1.85         | 0.33         | 10.05        | 8.19         |
| 110        | Sg10 output offset voltage                              | -10        | 10       | mV       | RT         | 0.52         | 0.24         | 11.98         | 9.39          | 0.55         | 0.26         | 12.65         | 11.96         | 0.52         | 0.32         | 10.55        | 10.00        |
| 110        | Sg10 output offset voltage                              | -10        | 10       | mV       | CT         | -0.22        | 0.37         | 8.91          | 8.71          | -0.17        | 0.38         | 8.85          | 8.70          | -0.18        | 0.43         | 7.69         | 7.56         |
| 111        | Sg11 output offset voltage                              | -10        | 10<br>10 | mV       | HT         | 1.83         | 0.31         | 10.87         | 8.88          | 1.86         | 0.30         | 11.11         | 9.04          | 1.88         | 0.35         | 9.41         | 7.65         |
| 111        | Sg11 output offset voltage                              | -10<br>-10 | 10       | mV       | RT         | 0.58         | 0.28         | 10.12         | 7.86          | 0.61         | 0.23         | 14.43         | 13.54         | 0.63         | 0.29         | 11.35        | 10.63        |
| 111        | Sg11 output offset voltage                              | -10<br>-10 | 10       | mV       | CT<br>HT   | -0.08        | 0.32         | 10.27         | 10.19<br>9.11 | -0.09        | 0.38         | 8.78          | 8.70          | -0.06        | 0.47<br>0.37 | 7.04<br>9.09 | 6.99         |
| 112<br>112 | Sg112 output offset voltage Sg112 output offset voltage | -10<br>-10 | 10       | mV<br>mV | RT         | 1.83<br>0.51 | 0.30<br>0.30 | 11.14<br>9.52 | 7.47          | 1.85<br>0.56 | 0.35<br>0.29 | 9.56<br>11.51 | 7.79<br>10.87 | 1.85<br>0.50 | 0.37         | 10.01        | 7.41<br>9.51 |
| 112        | Sg112 output offset voltage                             | -10<br>-10 | 10       | mV       | CT         | -0.23        | 0.35         | 9.52          | 9.21          | -0.18        | 0.29         | 9.91          | 9.73          | -0.08        | 0.33         | 7.71         | 7.64         |
| 113        | Sg13 output offset voltage                              | -10        | 10       | mV       | HT         | 1.75         | 0.33         | 12.33         | 10.17         | 1.80         | 0.34         | 10.77         | 8.83          | 1.77         | 0.43         | 9.11         | 7.49         |
| 113        | Sq13 output offset voltage                              | -10        | 10       | mV       | RT         | 0.60         | 0.27         | 11.72         | 9.08          | 0.63         | 0.31         | 11.97         | 11.22         | 0.65         | 0.37         | 10.21        | 9.55         |
| 113        | Sg13 output offset voltage                              | -10        | 10       | mV       | CT         | -0.11        | 0.25         | 9.21          | 9.11          | -0.10        | 0.39         | 8.53          | 8.45          | -0.10        | 0.33         | 8.02         | 7.94         |
| 114        | AMUX vol                                                | -30        | 30       | mV       | HT         | 8.20         | 0.30         | 65.57         | 47.64         | 8.18         | 0.13         | 39.87         | 21.74         | 8.16         | 0.42         | 26.61        | 14.47        |
| 114        | AMUX vol                                                | -30        | 30       | mV       | RT         | 6.78         | 0.10         | 48.65         | 21.98         | 6.84         | 0.10         | 50.08         | 22.83         | 6.60         | 0.10         | 48.28        | 21.24        |
| 114        | AMUX vol                                                | -30        | 30       | mV       | CT         | 5.75         | 0.12         | 43.09         | 16.52         | 5.53         | 0.13         | 38.63         | 14.25         | 5.89         | 0.12         | 42.90        | 16.85        |
| 115        | AMUX voh                                                | 4.9        | 5.1      | V        | HT         | 4.93         | 0.00         | 35.05         | 9.64          | 4.93         | 0.00         | 44.04         | 11.96         | 4.93         | 0.00         | 32.07        | 8.76         |
| 115        | AMUX voh                                                | 4.9        | 5.1      | V        | RT         | 4.95         | 0.00         | 96.77         | 44.98         | 4.95         | 0.00         | 96.52         | 44.62         | 4.95         | 0.00         | 108.04       | 50.11        |
| 115        | AMUX voh                                                | 4.9        | 5.1      | V        | CT         | 4.96         | 0.00         | 80.87         | 46.49         | 4.96         | 0.00         | 132.85        | 76.20         | 4.96         | 0.00         | 69.36        | 39.84        |
| 116        | Sp0 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 116        | Sp0 Vth                                                 | 1          |          |          | RT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 116        | Sp0 Vth                                                 | 1          |          |          | CT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 117        | Sp1 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 117        | Sp1 Vth                                                 | 1          |          |          | RT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 117        | Sp1 Vth                                                 | 1          |          |          | CT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 118        | Sp2 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 118        | Sp2 Vth                                                 | 1          |          |          | RT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 118        | Sp2 Vth                                                 | 1          |          |          | CT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 119        | Sp3 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 119        | Sp3 Vth                                                 | 1          |          |          | RT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 119        | Sp3 Vth                                                 | 1          |          |          | CT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
|            | Sp4 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              | 1            |
|            | Sp4 Vth                                                 | 1          |          |          | RT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
|            | Sp4 Vth                                                 |            |          |          | CT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              | <del> </del> |
|            | Sp5 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
|            | Sp5 Vth<br>Sp5 Vth                                      | 1          |          |          | RT<br>CT   | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00<br>1.00 | 0.00         |              | -            |
| 121<br>122 | Sp6 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              | -            |
| 122        | Sp6 Vth                                                 | 1          |          |          | RT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
| 122        | Sp6 Vth                                                 | 1          |          |          | CT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
|            | Sp7 Vth                                                 | 1          |          |          | HT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
|            | Sp7 Vth                                                 | 1          |          |          | RT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              |              |
|            | Sp7 Vth                                                 | 1          |          |          | CT         | 1.00         | 0.00         |               |               | 1.00         | 0.00         |               |               | 1.00         | 0.00         |              | <del> </del> |
| .20        | Op. 701                                                 | 1          |          |          | <b>0</b> 1 | 1.00         |              |               |               | 1.00         | 0.00         |               | <u> </u>      | 1.00         | 0.00         |              | ı            |

|       |                      |           |          |         |      |       | Lo          | t1      |         |       | Lo      | ot2     | 1       |       | Lo      | ot3     |         |
|-------|----------------------|-----------|----------|---------|------|-------|-------------|---------|---------|-------|---------|---------|---------|-------|---------|---------|---------|
| Test# | Test Name            | Lo Limit  | Hi Limit | Unit    | Temp | Mean  | Std Dev     | Ср      | Cpk     | Mean  | Std Dev | Ср      | Cpk     | Mean  | Std Dev | Ср      | Cpk     |
| 124   | Sg0 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         | op.t    | 1.00  | 0.00    | - 06    | op      | 1.00  | 0.00    | - Op    | - Op.:  |
| 124   | Sg0 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 124   | Sg0 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 125   | Sg1 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 125   | Sg1 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 125   | Sg1 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 126   | Sg2 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 126   | Sg2 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 126   | Sg2 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 127   |                      | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         | -       |
|       | Sg3 Vth              | 1         |          |         |      |       |             |         |         |       |         |         |         |       |         |         |         |
| 127   | Sg3 Vth              |           |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 127   | Sg3 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 128   | Sg4 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 128   | Sg4 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 128   | Sg4 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 129   | Sg5 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 129   | Sg5 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 129   | Sg5 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 130   | Sg6 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 130   | Sg6 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 130   | Sg6 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 131   | Sg7 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 131   | Sg7 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 131   | Sg7 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 132   | Sg8 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 132   | Sg8 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 132   | Sg8 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 133   | Sg9 Vth              | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 133   | Sg9 Vth              | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 133   | Sg9 Vth              | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 134   | Sg10 Vth             | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 134   | Sg10 Vth             | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 134   | Sg10 Vth             | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 135   | Sg11 Vth             | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 135   | Sg11 Vth             | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         | 1       |
| 135   | Sg11 Vth             | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 136   | Sg12 Vth             | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 136   | Sg12 Vth             | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 136   | Sg12 Vth             | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 137   | Sg13 Vth             | 1         |          |         | HT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         |         |
| 137   | •                    | 1         |          |         | RT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         | -       |
| 137   | Sg13 Vth<br>Sg13 Vth | 1         |          |         | CT   | 1.00  | 0.00        |         |         | 1.00  | 0.00    |         |         | 1.00  | 0.00    |         | +       |
| 169   | •                    | -10       | 10       | uA      | HT   | 0.00  | 0.00        | 3905.33 | 3903.57 | 0.00  | 0.00    | 4020.88 | 4019.16 | 0.00  | 0.00    | 799.16  | 762.85  |
|       | SCLK to VDDQ lkg     |           |          |         |      |       |             |         |         |       | 1       |         |         |       |         |         |         |
| 169   | SCLK to VDDQ lkg     | -10<br>10 | 10       | uA<br>^ | RT   | 0.00  | 0.00        | 3319.62 | 3319.11 | 0.00  | 0.00    | 3890.78 | 3890.18 | 0.00  | 0.00    | 3817.19 | 3816.69 |
| 169   | SCLK to VDDQ lkg     | -10       | 10       | uA<br>  | CT   | 0.00  | 0.00        | 5126.08 | 5125.22 | 0.00  | 0.00    | 4181.85 | 4181.20 | 0.00  | 0.00    | 4778.82 | 4778.13 |
| 170   | SI to VDDQ lkg       | -10       | 10       | uA      | HT   | 0.01  | 0.00        | 4617.66 | 4613.52 | 0.01  | 0.00    | 4399.03 | 4395.14 | 0.01  | 0.00    | 743.35  | 710.90  |
| 170   | SI to VDDQ lkg       | -10       | 10       | uA      | RT   | 0.00  | 0.00        | 2779.66 | 2778.73 | 0.00  | 0.00    | 2774.13 | 2773.29 | 0.00  | 0.00    | 3021.26 | 3020.33 |
| 170   | SI to VDDQ lkg       | -10       | 10       | uA      | CT   | 0.00  | 0.00        | 3562.81 | 3561.80 | 0.00  | 0.00    | 2800.15 | 2799.34 | 0.00  | 0.00    | 2884.98 | 2884.17 |
| 171   | SO to VDDQ lkg       | -10       | 10       | uA      | HT   | 0.01  | 0.00        | 4029.42 | 4025.56 | 0.01  | 0.00    | 4950.42 | 4945.67 | 0.01  | 0.00    | 840.84  | 804.47  |
| 171   | SO to VDDQ lkg       | -10       | 10       | uA      | RT   | 0.00  | 0.00        | 4113.93 |         | 0.00  | 0.00    | 3888.17 |         | 0.00  | 0.00    | 3655.81 | 3654.16 |
| 171   | SO to VDDQ lkg       | -10       | 10       | uA      | CT   | 0.00  | 0.00        | 3420.58 | 3419.29 | 0.00  | 0.00    | 2957.33 | 2956.19 | 0.00  | 0.00    | 3696.07 | 3694.45 |
| 172   | SCLK to GND lkg      | -10       | 10       | uA      | HT   | -0.01 | 0.00        | 4610.94 | 4607.81 | -0.01 | 0.00    | 4056.92 | 4054.19 | -0.01 | 0.00    | 844.09  | 801.26  |
| 172   | SCLK to GND lkg      | -10       | 10       | uA      | RT   | 0.00  | 0.00        | 3771.43 | 3771.12 | 0.00  | 0.00    | 3037.48 | 3037.30 | 0.00  | 0.00    | 2983.93 | 2983.66 |
| 172   | SCLK to GND lkg      | -10       | 10       | uA      | CT   | 0.00  | 0.00        | 3473.57 | 3473.32 | 0.00  | 0.00    | 3931.77 | 3931.58 | 0.00  | 0.00    | 3477.99 | 3477.70 |
| 173   | SI to GND lkg        | -10       | 10       | uA      | HT   | 0.00  | 0.00        | 4553.59 | 4551.41 | 0.00  | 0.00    | 4449.75 | 4447.75 | 0.00  | 0.00    | 1016.97 | 970.62  |
| 173   | SI to GND lkg        | -10       | 10       | uA      | RT   | 0.00  | 0.00        | 4036.84 | 4035.06 | 0.00  | 0.00    | 4318.07 | 4316.31 | 0.00  | 0.00    | 4343.79 | 4341.82 |
| 173   | SI to GND lkg        | -10       | 10       | uA      | CT   | 0.00  | 0.00        | 3832.37 | 3830.91 | 0.00  | 0.00    | 3901.58 | 3900.12 | 0.00  | 0.00    | 5010.25 | 5008.26 |
| 174   | SO to GND lkg        | -10       | 10       | uA      | HT   | 0.00  | 0.00        | 5584.12 | 5581.58 | 0.00  | 0.00    | 4359.68 | 4357.77 | 0.00  | 0.00    | 1027.52 | 980.49  |
| 174   | SO to GND lkg        | -10       | 10       | uA      | RT   | 0.00  | 0.00        | 4659.42 | 4657.42 | 0.00  | 0.00    | 4814.58 | 4812.50 | 0.00  | 0.00    | 3815.81 | 3814.11 |
| 174   | SO to GND lkg        | -10       | 10       | uA      | CT   | 0.00  | 0.00        | 3815.67 | 3814.29 | 0.00  | 0.00    | 4360.30 | 4358.62 | 0.00  | 0.00    | 3727.76 | 3726.24 |
|       | <u> </u>             |           |          |         |      |       | noolo Confi |         |         | •     |         |         |         |       |         |         |         |

| Test   Test   Parte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                           |          |           |      |      |        | Lo   | ot1    |       |        | Lo   | t2    |       |        | Lo   | t3     |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|----------|-----------|------|------|--------|------|--------|-------|--------|------|-------|-------|--------|------|--------|-------|
| 175   SSS   Input current vol-9-by   1-6   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test# | Test Name                 | Lo Limit | Hi I imit | Unit | Temn | Mean   |      |        | Cnk   | Mean   |      |       | Cnk   | Mean   |      |        | Cnk   |
| 175   CSB Ingal current cod-of-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 177   CSS   Ingel Current vertice    -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 176   CSB pullup current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 176   CSS pellus current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 177   SC   graft up current   100   30   LA   CT   51.47   1.92   6.99   3.74   2.95   5.00   3.95   2.74   2.99   0.00   1.97   7.39   4.61   7.75   7.39   4.61   7.75   7.39   4.61   7.75   7.39   4.61   7.75   7.39   4.61   7.75   7.39   4.61   7.75   7.39   7.75   7.39   7.75   7.39   7.75   7.39   7.75   7.39   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75   7.75 |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 177   S. Figh State output voltage   4.8   6   V   Fif   4.98   0.00   38-88   20-96   4.99   0.00   43-87   27-71   4.99   0.00   34-16   20-77   27-77   5.01   36-88   0.00   48-78   27-71   4.99   0.00   34-16   27-71   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78   37-78 |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 177   SO High State output outsings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 177   SO Tright State Configure   48   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 178   SO low state voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 178   178   178   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179   179  |       |                           |          |           | •    |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 178   So low talex youtgag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                           |          |           | mV   |      |        |      |        |       |        |      |       |       |        |      |        |       |
| NTB puls-gournerd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                           |          |           | mV   |      | 63.94  | 0.27 | 43.09  |       |        | 0.38 |       | 29.30 |        | 0.32 |        |       |
| NTS pulsp current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178   | SO low state voltage      | -400     | 400       | mV   | CT   | 59.38  | 0.36 | 184.29 | 54.71 | 58.36  | 0.50 | 28.59 | 28.01 | 59.67  | 0.43 | 154.02 | 45.96 |
| NTB pul-up current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179   | INTB pull-up current      | -100     | -15       | uA   | HT   | -25.01 | 0.57 | 24.71  | 5.82  | -24.90 | 0.53 | 10.96 | 5.61  | -24.79 | 0.62 | 9.63   | 5.27  |
| NTB pulse current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179   | INTB pull-up current      | -100     | -15       | uA   | RT   | -42.36 | 0.87 | 16.30  | 10.49 | -42.29 | 0.89 | 14.91 | 8.31  | -42.10 | 0.95 | 14.05  | 7.76  |
| HTG open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 179   | INTB pull-up current      | -100     | -15       | uA   |      |        |      |        | 8.02  | -63.84 | 1.32 | 10.11 | 9.14  |        |      |        | 7.90  |
| NTB copen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| NTB coen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| INTER violage@firms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| INTERVIDENCE   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Providence   The Pr |       | ·                         |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 181 NTB voltage@tima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 182   WAKEB pul-up current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | ů ů                       |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 192   WAKEB pullup current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 193 WAKEB pulsey current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 183   WAKEB voltage(open)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 183   WAKEB voltage(open)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 183   WAKEB voltage ma load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 0 1 1 /                   |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 184   WAKEB voltage final bad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 184   WAKEB voltage Ima load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | WAKEB voltage(open)       |          |           | V    |      | 4.60   | 0.01 | 12.09  |       | 4.61   | 0.02 | 9.47  | 8.77  | 4.60   | 0.01 | 14.35  | 13.35 |
| 144   WAKER voltage fmalload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184   | WAKEB voltage 1ma load    | -400     | 400       | mV   | HT   | 314.02 | 1.67 | 39.80  | 17.11 | 312.61 | 1.93 | 25.91 | 15.09 | 314.39 | 2.05 | 15.48  | 9.06  |
| 186   SPO wetting current pulse   15   20   ms   HT   18.88   0.03   25.19   11.27   18.87   0.04   22.67   10.25   18.88   0.04   20.32   9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 184   | WAKEB voltage 1ma load    | -400     | 400       | mV   | RT   | 279.13 | 1.57 | 15.37  | 9.72  | 277.15 | 1.70 | 39.19 | 24.07 | 278.76 | 1.75 | 38.20  | 23.16 |
| 186   SPO wetting current pulse   15   20 ms   RT   18.92   0.04   21.95   9.44   18.93   0.03   22.43   9.86   18.90   0.04   21.79   9.56   186   SPO wetting current pulse   15   20 ms   RT   18.92   0.04   21.95   9.44   18.93   0.03   22.43   10.62   18.93   0.05   12.89   7.95   187   SP1 wetting current pulse   15   20 ms   RT   17.24   0.03   25.31   22.88   17.25   0.04   21.80   19.62   17.25   0.04   19.54   17.86   187   SP1 wetting current pulse   15   20 ms   RT   17.24   0.03   25.31   22.88   17.24   0.03   16.87   17.25   0.04   19.54   17.85   187   SP1 wetting current pulse   15   20 ms   RT   17.24   0.04   20.43   18.34   17.26   0.04   21.28   19.21   17.25   0.04   16.47   6.87   188   SP2 wetting current pulse   15   20 ms   RT   17.26   0.04   21.02   15.93   17.27   0.03   16.82   7.21   17.25   0.04   16.47   6.87   188   SP2 wetting current pulse   15   20 ms   RT   17.26   0.04   21.02   15.93   17.27   0.03   16.82   7.21   17.25   0.04   22.57   20.51   18.85   SP2 wetting current pulse   15   20 ms   RT   17.26   0.04   21.02   15.93   17.27   0.03   16.82   7.21   17.28   0.04   22.57   20.51   18.95   18.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.95   19.9 | 184   | WAKEB voltage 1ma load    | -400     | 400       | mV   | CT   | 257.93 | 1.79 | 11.61  | 8.74  | 256.19 | 1.72 | 12.14 | 9.48  | 258.38 | 1.94 | 34.32  | 24.30 |
| 186   SPO wetting current pulse   15   20 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186   | SP0 wetting current pulse | 15       | 20        | ms   | HT   | 18.88  | 0.03 | 25.19  | 11.27 | 18.87  | 0.04 | 22.67 | 10.25 | 18.88  | 0.04 | 20.32  | 9.10  |
| 187   SPT wetting current pulse   15   20   ms   RT   17.23   0.03   27.19   24.29   17.25   0.04   21.80   19.62   17.25   0.04   19.54   17.58   187   SPT wetting current pulse   15   20   ms   RT   17.24   0.03   25.31   22.88   17.24   0.03   16.67   6.88   17.24   0.03   25.37   22.88   17.24   0.04   21.80   19.62   17.25   0.04   16.47   6.87   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.34   17.26   0.03   25.77   23.32   17.27   0.04   22.57   20.51   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.25   20.41   17.26   0.03   25.77   23.32   17.27   0.04   22.57   20.51   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.20   18.93   17.27   0.03   16.82   7.21   17.26   0.04   22.137   19.35   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.02   18.93   17.27   0.03   16.82   7.21   17.26   0.04   21.37   19.35   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.05   17.89   16.12   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.95   189   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   20.65   18.77   17.24   0.04   20.76   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   1 | 186   | SP0 wetting current pulse | 15       | 20        | ms   | RT   | 18.89  | 0.04 | 20.50  | 9.09  | 18.90  | 0.04 | 22.43 | 9.86  | 18.90  | 0.04 | 21.79  | 9.56  |
| 187   SPT wetting current pulse   15   20   ms   RT   17.23   0.03   27.19   24.29   17.25   0.04   21.80   19.62   17.25   0.04   19.54   17.58   187   SPT wetting current pulse   15   20   ms   RT   17.24   0.03   25.31   22.88   17.24   0.03   16.67   6.88   17.24   0.03   25.37   22.88   17.24   0.04   21.80   19.62   17.25   0.04   16.47   6.87   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.34   17.26   0.03   25.77   23.32   17.27   0.04   22.57   20.51   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.25   20.41   17.26   0.03   25.77   23.32   17.27   0.04   22.57   20.51   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.20   18.93   17.27   0.03   16.82   7.21   17.26   0.04   22.137   19.35   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   21.02   18.93   17.27   0.03   16.82   7.21   17.26   0.04   21.37   19.35   188   SPZ wetting current pulse   15   20   ms   RT   17.25   0.05   17.89   16.12   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.95   189   SPZ wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   20.65   18.77   17.24   0.04   20.76   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   18.95   1 | 186   | •                         |          |           |      | CT   | 18.92  | 0.04 | 21.95  | 9.44  | 18.93  | 0.03 |       | 10.62 | 18.93  | 0.05 | 12.89  | 7.95  |
| 187   SPI wetting current pulse   15   20   ms   RT   17.24   0.03   25.31   22.88   17.24   0.03   16.67   6.88   17.26   0.03   25.37   22.88   17.24   0.03   16.67   6.88   17.26   0.03   25.37   22.88   17.24   0.04   22.45   17.25   0.04   21.28   19.21   17.25   0.04   22.57   20.51   188   SP2 wetting current pulse   15   20   ms   HT   17.26   0.04   22.57   20.41   17.26   0.03   25.77   23.32   17.27   0.04   22.57   20.51   188   SP2 wetting current pulse   15   20   ms   RT   17.25   0.04   21.02   18.93   17.27   0.03   16.82   7.21   17.26   0.04   21.37   19.35   188   SP2 wetting current pulse   15   20   ms   RT   17.25   0.04   21.02   18.93   17.27   0.03   16.82   7.21   17.26   0.04   21.37   19.35   188   SP2 wetting current pulse   15   20   ms   HT   17.25   0.04   21.02   18.93   17.27   0.03   16.82   7.21   17.26   0.04   21.37   19.35   188   SP2 wetting current pulse   15   20   ms   HT   17.25   0.04   20.94   18.85   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.59   18.99   SP3 wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.59   18.99   SP3 wetting current pulse   15   20   ms   RT   17.24   0.04   21.47   19.24   17.25   0.04   20.18   18.19   17.25   0.04   15.76   6.64   19.93   19.90   SP4 wetting current pulse   15   20   ms   RT   18.87   0.04   20.34   18.85   0.04   20.34   19.22   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   19.05   18.87   0.04   19.05   19.05   18.87   0.04   19.05   19.05   18.87   0.04   19.05   18.87   0.04   19.05   18.88   0.05   18.50   19.05   19.05   19.05   18.87   0.04   20.01   19.22   19.05   19.05   19.05   19.05   19.05   19.05   18.87   0.04   20.01   19.22   19.05   19.05   19.05   19.05   19.05   19.05   19.05   18.87   0.04   20.05   19.05   18.87   0.04   20.05   18.89  |       | •                         |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 187   SP1 wetting current pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 188   SP2 wetting current pulse   15   20   ms   HT   17.26   0.04   22.57   20.41   17.26   0.03   25.77   23.32   17.27   0.04   22.57   20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 0 1                       |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 188   SP2 wetting current pulse   15   20   ms   RT   17.25   0.04   21.02   18.93   17.27   0.03   16.82   7.21   17.26   0.04   21.37   19.35     188   SP2 wetting current pulse   15   20   ms   CT   17.26   0.05   17.89   16.12   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.59     189   SP3 wetting current pulse   15   20   ms   RT   17.25   0.05   17.89   16.12   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.59     189   SP3 wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   14.79   6.17   17.24   0.04   19.33   17.35     189   SP3 wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   14.79   6.17   17.24   0.04   19.33   17.35     189   SP3 wetting current pulse   15   20   ms   CT   17.24   0.04   21.47   19.24   17.25   0.04   20.18   18.19   17.25   0.04   15.76   6.64     190   SP4 wetting current pulse   15   20   ms   RT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   8.83   18.85   0.04   20.01   9.22     190   SP4 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.20     191   SP5 wetting current pulse   15   20   ms   RT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   8.83   18.85   0.04   20.01   9.22     191   SP5 wetting current pulse   15   20   ms   RT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   8.83   18.85   0.04   20.01   9.22     191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   19.32   8.83   18.85   0.04   20.01   9.22     192   SP6 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   19.32   8.83   18.85   0.04   20.01   9.22     192   SP6 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   19.32   8.83   18.85   0.04   20.01   9.22     192   SP6 wetting current pulse   15   20   ms   RT   18.87   0.04   20.15   91.5   18.87   0.04   20.59   91.50   18.23   91.50   18.2 |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 188   SP2 wetting current pulse   15   20   ms   CT   17.26   0.03   28.29   25.62   17.27   0.03   25.98   23.55   17.27   0.04   15.51   6.66     189   SP3 wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.59     189   SP3 wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.59     189   SP3 wetting current pulse   15   20   ms   CT   17.24   0.04   21.47   19.24   17.25   0.04   20.18   18.19   17.25   0.04   15.76   6.64     190   SP4 wetting current pulse   15   20   ms   RT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   18.88   18.55   0.04   20.10   19.22     190   SP4 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26     190   SP4 wetting current pulse   15   20   ms   RT   18.86   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26     190   SP5 wetting current pulse   15   20   ms   RT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   18.88   0.05   18.50   8.26     191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   23.04   10.53   18.86   0.04   19.32   18.88   0.05   18.50   8.26     191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   10.53   18.86   0.04   19.32   18.88   0.05   18.50   0.04   19.92     191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   0.04   19.92     191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   23.80   10.38   18.90   0.04   12.96   8.22     192   SP6 wetting current pulse   15   20   ms   RT   18.87   0.04   23.31   10.14   18.90   0.05   12.89   8.12   18.89   0.04   12.96   8.22     192   SP6 wetting current pulse   15   20   ms   RT   18.87   0.04   20.15   9.15   18.87   0.04   23.80   10.38   18.89   0.04   23.80   10.38   18.89   0.04   23.80   |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 189   SP3 wetting current pulse   15   20   ms   HT   17.25   0.05   17.89   16.12   17.25   0.04   20.65   18.57   17.24   0.04   20.76   18.59   18.95   SP3 wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   14.79   6.17   17.24   0.04   19.33   17.35   18.95   SP3 wetting current pulse   15   20   ms   RT   17.24   0.04   21.47   19.24   17.25   0.04   20.18   18.19   17.25   0.04   15.76   6.64   190   SP4 wetting current pulse   15   20   ms   HT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   18.85   0.04   20.01   9.22   190   SP4 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26   190   SP4 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   19.32   18.88   0.05   18.50   8.26   191   SP5 wetting current pulse   15   20   ms   HT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   18.88   0.05   18.50   8.26   191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   23.04   10.53   18.86   0.04   19.32   18.88   0.05   18.50   8.26   191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26   191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26   191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   23.04   10.53   18.86   0.04   15.95   10.32   18.88   0.05   18.50   8.26   191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   23.04   10.53   18.86   0.04   15.95   10.32   18.88   0.05   18.50   8.26   191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   23.04   10.53   18.86   0.04   15.95   10.32   18.88   0.05   18.50   8.26   192   SP6 wetting current pulse   15   20   ms   RT   18.87   0.04   20.15   9.15   18.87   0.04   20.15   9.75   18.87   0.04   20.15   9.75   18.87   0.04   20.15   9.75   18. |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 189   SP3 wetting current pulse   15   20   ms   RT   17.25   0.04   20.94   18.85   17.25   0.04   14.79   6.17   17.24   0.04   19.33   17.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 189   SP3 wetting current pulse   15   20   ms   CT   17.24   0.04   21.47   19.24   17.25   0.04   20.18   18.19   17.25   0.04   15.76   6.64     190   SP4 wetting current pulse   15   20   ms   HT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   8.83   18.85   0.04   20.01   9.22     190   SP4 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26     190   SP4 wetting current pulse   15   20   ms   CT   18.90   0.05   18.23   8.05   18.91   0.04   23.80   10.38   18.90   0.04   12.96   8.22     191   SP5 wetting current pulse   15   20   ms   HT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   8.83   18.85   0.04   20.01   9.22     191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26     191   SP5 wetting current pulse   15   20   ms   CT   18.90   0.05   18.23   8.05   18.91   0.04   23.80   10.38   18.90   0.04   12.96   8.22     192   SP6 wetting current pulse   15   20   ms   CT   18.90   0.05   18.23   8.05   18.91   0.04   23.80   10.38   18.90   0.04   12.96   8.22     192   SP6 wetting current pulse   15   20   ms   RT   18.87   0.04   20.15   9.15   18.87   0.04   21.59   9.75   18.87   0.04   19.64   8.84     192   SP6 wetting current pulse   15   20   ms   RT   18.91   0.04   23.31   10.14   18.90   0.05   12.89   8.12   18.91   0.04   22.29   9.73     192   SP6 wetting current pulse   15   20   ms   CT   18.92   0.04   20.79   9.00   18.93   0.04   21.66   9.27   18.92   0.04   13.34   8.27     193   SP7 wetting current pulse   15   20   ms   CT   18.87   0.04   20.15   9.75   18.87   0.04   21.66   9.27   18.92   0.04   13.34   8.27     193   SP7 wetting current pulse   15   20   ms   CT   18.89   0.04   20.38   18.87   0.04   21.66   9.27   18.92   0.04   13.34   8.27     194   SGO wetting current pulse   15   20   ms   CT   18.89   0.04   23.30   10.58   18.89   0.04   23.35   9.88   18.89   0.04   15.26   9.89  |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 190   SP4 wetting current pulse   15   20   ms   HT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   8.83   18.85   0.04   20.01   9.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 190   SP4 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 190   SP4 wetting current pulse   15   20   ms   CT   18.90   0.05   18.23   8.05   18.91   0.04   23.80   10.38   18.90   0.04   12.96   8.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <u> </u>                  |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 191   SP5 wetting current pulse   15   20   ms   HT   18.86   0.04   23.04   10.53   18.86   0.04   19.32   8.83   18.85   0.04   20.01   9.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 191   SP5 wetting current pulse   15   20   ms   RT   18.87   0.04   19.60   8.84   18.87   0.04   15.95   10.32   18.88   0.05   18.50   8.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | •                         |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 191   SP5 wetting current pulse   15   20   ms   CT   18.90   0.05   18.23   8.05   18.91   0.04   23.80   10.38   18.90   0.04   12.96   8.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | •                         |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 192   SP6 wetting current pulse   15   20   ms   HT   18.87   0.04   20.15   9.15   18.87   0.04   21.59   9.75   18.87   0.04   19.64   8.84     192   SP6 wetting current pulse   15   20   ms   RT   18.91   0.04   23.31   10.14   18.90   0.05   12.89   8.12   18.91   0.04   22.29   9.73     192   SP6 wetting current pulse   15   20   ms   CT   18.92   0.04   20.79   9.00   18.93   0.04   21.66   9.27   18.92   0.04   13.34   8.27     193   SP7 wetting current pulse   15   20   ms   HT   18.84   0.03   25.37   11.74   18.84   0.03   24.96   11.53   18.85   0.04   21.83   10.05     193   SP7 wetting current pulse   15   20   ms   RT   18.87   0.04   21.43   9.72   18.87   0.04   15.26   9.89   18.87   0.04   19.35   8.77     193   SP7 wetting current pulse   15   20   ms   CT   18.89   0.04   23.80   10.58   18.89   0.04   22.35   9.88   18.89   0.04   15.23   9.75     194   SG0 wetting current pulse   15   20   ms   RT   18.82   0.04   21.42   10.08   18.82   0.04   23.15   10.71   18.83   0.04   23.60   11.19     194   SG0 wetting current pulse   15   20   ms   RT   18.85   0.04   23.47   10.82   18.84   0.04   23.15   10.71   18.83   0.04   23.60   11.19     195   SG1 wetting current pulse   15   20   ms   RT   17.24   0.04   20.18   18.11   17.24   0.04   20.38   18.27   17.25   0.04   20.87   18.85     195   SG1 wetting current pulse   15   20   ms   RT   17.25   0.04   20.76   18.70   17.25   0.04   15.79   6.58   17.26   0.04   20.87   18.85     196   SG1 wetting current pulse   15   20   ms   RT   17.24   0.04   20.76   18.70   17.25   0.04   20.38   18.27   17.25   0.04   20.87   18.85     195   SG1 wetting current pulse   15   20   ms   RT   17.25   0.04   20.76   18.70   17.25   0.04   20.87   18.85     196   SG1 wetting current pulse   15   20   ms   RT   17.25   0.04   20.76   18.70   17.25   0.04   20.38   18.27   17.25   0.04   20.87   18.85     196   SG1 wetting current pulse   15   20   ms   RT   17.25   0.04   20.76   18.70   17.25   0.04   20.38   18.27   17.25   0.04   20.87   18.85     197 |       | SP5 wetting current pulse |          |           | ms   |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 192   SP6 wetting current pulse   15   20   ms   RT   18.91   0.04   23.31   10.14   18.90   0.05   12.89   8.12   18.91   0.04   22.29   9.73   192   SP6 wetting current pulse   15   20   ms   CT   18.92   0.04   20.79   9.00   18.93   0.04   21.66   9.27   18.92   0.04   13.34   8.27   193   SP7 wetting current pulse   15   20   ms   RT   18.84   0.03   25.37   11.74   18.84   0.03   24.96   11.53   18.85   0.04   21.83   10.05   193   SP7 wetting current pulse   15   20   ms   RT   18.87   0.04   21.43   9.72   18.87   0.04   15.26   9.89   18.87   0.04   19.35   8.77   193   SP7 wetting current pulse   15   20   ms   CT   18.89   0.04   23.80   10.58   18.89   0.04   22.35   9.88   18.89   0.04   15.23   9.75   194   SG0 wetting current pulse   15   20   ms   RT   18.82   0.04   22.49   10.80   18.80   0.03   24.84   11.92   18.79   0.04   20.68   10.04   19.48   SG0 wetting current pulse   15   20   ms   RT   18.82   0.04   21.42   10.08   18.82   0.04   23.47   10.82   18.84   0.04   23.15   10.61   18.81   0.04   23.60   11.19   194   SG0 wetting current pulse   15   20   ms   CT   18.85   0.04   23.47   10.82   18.84   0.04   23.15   10.71   18.83   0.04   23.60   11.19   194   SG0 wetting current pulse   15   20   ms   CT   18.85   0.04   23.47   10.82   18.84   0.04   23.15   10.71   18.83   0.04   23.60   11.19   194   SG0 wetting current pulse   15   20   ms   CT   18.85   0.04   23.47   10.82   18.84   0.04   23.15   10.71   18.83   0.04   23.60   11.19   195   SG1 wetting current pulse   15   20   ms   RT   17.24   0.04   20.18   18.11   17.24   0.04   20.38   18.27   17.25   0.04   20.87   18.85   195   SG1 wetting current pulse   15   20   ms   RT   17.25   0.04   20.76   18.70   17.25   0.04   15.79   6.58   17.26   0.04   20.87   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18 | 191   | SP5 wetting current pulse |          |           | ms   | CT   | 18.90  | 0.05 | 18.23  | 8.05  | 18.91  | 0.04 | 23.80 | 10.38 | 18.90  | 0.04 | 12.96  | 8.22  |
| 192         SP6 wetting current pulse         15         20         ms         RT         18.91         0.04         23.31         10.14         18.90         0.05         12.89         8.12         18.91         0.04         22.29         9.73           192         SP6 wetting current pulse         15         20         ms         CT         18.92         0.04         20.79         9.00         18.93         0.04         21.66         9.27         18.92         0.04         13.34         8.27           193         SP7 wetting current pulse         15         20         ms         HT         18.84         0.03         25.37         11.74         18.84         0.03         24.96         11.53         18.85         0.04         21.83         10.05           193         SP7 wetting current pulse         15         20         ms         RT         18.87         0.04         21.43         9.72         18.87         0.04         15.26         9.89         18.87         0.04         19.35         8.77           193         SP7 wetting current pulse         15         20         ms         CT         18.89         0.04         23.80         10.58         18.89         0.04         22.35 </td <td>192</td> <td>SP6 wetting current pulse</td> <td>15</td> <td>20</td> <td>ms</td> <td>HT</td> <td>18.87</td> <td>0.04</td> <td>20.15</td> <td>9.15</td> <td>18.87</td> <td>0.04</td> <td>21.59</td> <td>9.75</td> <td>18.87</td> <td>0.04</td> <td>19.64</td> <td>8.84</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 192   | SP6 wetting current pulse | 15       | 20        | ms   | HT   | 18.87  | 0.04 | 20.15  | 9.15  | 18.87  | 0.04 | 21.59 | 9.75  | 18.87  | 0.04 | 19.64  | 8.84  |
| 192         SP6 wetting current pulse         15         20         ms         CT         18.92         0.04         20.79         9.00         18.93         0.04         21.66         9.27         18.92         0.04         13.34         8.27           193         SP7 wetting current pulse         15         20         ms         HT         18.84         0.03         25.37         11.74         18.84         0.03         24.96         11.53         18.85         0.04         21.83         10.05           193         SP7 wetting current pulse         15         20         ms         RT         18.87         0.04         21.43         9.72         18.87         0.04         15.26         9.89         18.87         0.04         19.35         8.77           193         SP7 wetting current pulse         15         20         ms         CT         18.89         0.04         23.80         10.58         18.89         0.04         15.26         9.89         18.87         0.04         19.35         8.77           194         SG0 wetting current pulse         15         20         ms         HT         18.89         0.04         23.80         10.58         18.89         0.04         22.35 </td <td>192</td> <td>000 111</td> <td>15</td> <td>20</td> <td>ms</td> <td>RT</td> <td>18.91</td> <td>0.04</td> <td>23.31</td> <td>10.14</td> <td>18.90</td> <td>0.05</td> <td>12.89</td> <td>8.12</td> <td>18.91</td> <td>0.04</td> <td>22.29</td> <td>9.73</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 192   | 000 111                   | 15       | 20        | ms   | RT   | 18.91  | 0.04 | 23.31  | 10.14 | 18.90  | 0.05 | 12.89 | 8.12  | 18.91  | 0.04 | 22.29  | 9.73  |
| 193         SP7 wetting current pulse         15         20         ms         HT         18.84         0.03         25.37         11.74         18.84         0.03         24.96         11.53         18.85         0.04         21.83         10.05           193         SP7 wetting current pulse         15         20         ms         RT         18.87         0.04         21.43         9.72         18.87         0.04         15.26         9.89         18.87         0.04         19.35         8.77           193         SP7 wetting current pulse         15         20         ms         CT         18.89         0.04         23.80         10.58         18.89         0.04         22.35         9.88         18.89         0.04         15.23         9.75           194         SG0 wetting current pulse         15         20         ms         HT         18.80         0.04         22.49         10.80         18.89         0.04         22.35         9.88         18.89         0.04         15.23         9.75           194         SG0 wetting current pulse         15         20         ms         RT         18.80         0.04         22.49         10.80         18.80         0.03         24.84<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 193         SP7 wetting current pulse         15         20         ms         RT         18.87         0.04         21.43         9.72         18.87         0.04         15.26         9.89         18.87         0.04         19.35         8.77           193         SP7 wetting current pulse         15         20         ms         CT         18.89         0.04         23.80         10.58         18.89         0.04         22.35         9.88         18.89         0.04         15.23         9.75           194         SG0 wetting current pulse         15         20         ms         HT         18.80         0.04         22.49         10.80         18.80         0.03         24.84         11.92         18.79         0.04         20.68         10.04           194         SG0 wetting current pulse         15         20         ms         RT         18.82         0.04         21.42         10.08         18.82         0.04         15.62         10.61         18.81         0.04         23.60         11.19           194         SG0 wetting current pulse         15         20         ms         CT         18.85         0.04         23.47         10.82         18.84         0.04         23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 193         SP7 wetting current pulse         15         20         ms         CT         18.89         0.04         23.80         10.58         18.89         0.04         22.35         9.88         18.89         0.04         15.23         9.75           194         SG0 wetting current pulse         15         20         ms         HT         18.80         0.04         22.49         10.80         18.80         0.03         24.84         11.92         18.79         0.04         20.68         10.04           194         SG0 wetting current pulse         15         20         ms         RT         18.82         0.04         21.42         10.08         18.82         0.04         15.62         10.61         18.81         0.04         23.60         11.19           194         SG0 wetting current pulse         15         20         ms         CT         18.85         0.04         23.47         10.82         18.84         0.04         23.15         10.71         18.83         0.04         13.50         9.05           195         SG1 wetting current pulse         15         20         ms         HT         17.24         0.04         20.18         18.11         17.24         0.04         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 194         SG0 wetting current pulse         15         20         ms         HT         18.80         0.04         22.49         10.80         18.80         0.03         24.84         11.92         18.79         0.04         20.68         10.04           194         SG0 wetting current pulse         15         20         ms         RT         18.82         0.04         21.42         10.08         18.82         0.04         15.62         10.61         18.81         0.04         23.60         11.19           194         SG0 wetting current pulse         15         20         ms         CT         18.85         0.04         23.47         10.82         18.84         0.04         23.15         10.71         18.83         0.04         13.50         9.05           195         SG1 wetting current pulse         15         20         ms         HT         17.24         0.04         20.18         18.11         17.24         0.04         20.38         18.27         17.25         0.04         23.09         20.82           195         SG1 wetting current pulse         15         20         ms         RT         17.25         0.04         20.76         18.70         17.25         0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | •                         |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 194         SG0 wetting current pulse         15         20         ms         RT         18.82         0.04         21.42         10.08         18.82         0.04         15.62         10.61         18.81         0.04         23.60         11.19           194         SG0 wetting current pulse         15         20         ms         CT         18.85         0.04         23.47         10.82         18.84         0.04         23.15         10.71         18.83         0.04         13.50         9.05           195         SG1 wetting current pulse         15         20         ms         HT         17.24         0.04         20.18         18.11         17.24         0.04         20.38         18.27         17.25         0.04         23.09         20.82           195         SG1 wetting current pulse         15         20         ms         RT         17.25         0.04         20.76         18.70         17.25         0.04         15.79         6.58         17.26         0.04         20.87         18.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 194         SG0 wetting current pulse         15         20         ms         CT         18.85         0.04         23.47         10.82         18.84         0.04         23.15         10.71         18.83         0.04         13.50         9.05           195         SG1 wetting current pulse         15         20         ms         HT         17.24         0.04         20.18         18.11         17.24         0.04         20.38         18.27         17.25         0.04         23.09         20.82           195         SG1 wetting current pulse         15         20         ms         RT         17.25         0.04         20.76         18.70         17.25         0.04         15.79         6.58         17.26         0.04         20.87         18.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | ů                         |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 195         SG1 wetting current pulse         15         20         ms         HT         17.24         0.04         20.18         18.11         17.24         0.04         20.38         18.27         17.25         0.04         23.09         20.82           195         SG1 wetting current pulse         15         20         ms         RT         17.25         0.04         20.76         18.70         17.25         0.04         15.79         6.58         17.26         0.04         20.87         18.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | ů i                       |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 195 SG1 wetting current pulse 15 20 ms RT 17.25 0.04 20.76 18.70 17.25 0.04 15.79 6.58 17.26 0.04 20.87 18.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ů i                       |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                           |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
| 195 SG1 wetting current pulse   15   20   ms   CT   17.26   0.03   25.79   23.30   17.25   0.04   20.11   18.07   17.26   0.04   15.97   6.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ů i                       |          |           |      |      |        |      |        |       |        |      |       |       |        |      |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 195   | SG1 wetting current pulse | 15       | 20        | ms   | CT   | 17.26  | 0.03 | 25.79  | 23.30 | 17.25  | 0.04 | 20.11 | 18.07 | 17.26  | 0.04 | 15.97  | 6.78  |

| Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test   Test      |       |                 |          |           |      |      |        | Lo   | t1   |      |        | Lo   | t2   |      |        | Lo   | t3   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|----------|-----------|------|------|--------|------|------|------|--------|------|------|------|--------|------|------|------|
| 1989   5552 welling screet place   15   23   ms   HT   18.97   0.03   24.38   19.08   19.07   0.04   15.06   2.58   18.97   0.03   24.17   9.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test# | Test Name       | Lo Limit | Hi I imit | Unit | Temn | Mean   |      |      | Cnk  | Mean   |      |      | Cnk  | Mean   |      |      | Cnk  |
| 196   Sc2 weiging current public with a company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company o   |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 196   Sick welfung current pubme   16   20 ms   CT   1962   20.04   21.89   19.05   20.04   20.01   20.07   19.05   20.05   10.17   16.27   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05      |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 197   Sci welling current pube   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 197   Side setting current pulse   15   20 ms   RT   17/23   0.04   16.98   16.58   17.22   0.04   14.48   9.58   17.24   0.04   12.03   16.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | ů i             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| Fig.   Set   Setting current policy   19   20   mg   CT   1724   0.04   2.050   18.45   17.24   0.04   2.101   18.87   17.24   0.04   14.83   6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 1985   Sed westing current pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 168   S64 westing current pulses   16   20 ms   FT   1897   0.03   26.08   10.55   18.97   0.04   15.87   9.41   18.98   0.04   0.05   24.09   0.84   18.98   0.04   10.95   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98   18.98     |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 1989   SGA westing current pulse   18   20 ms   CT   19.00   0.03   24.78   9.91   19.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   0.04   15.91   9.22   18.99   9.22   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23   9.23      |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 1989   SGS wetting current pulse   18   20   ms   HT   18.85   0.04   10.57   0.38   18.85   18.86   0.04   20.15   0.21   18.86   0.04   20.28   22.17   0.78   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.85   18.   |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 1989   SGS wetting current pube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 169   SG wetting current pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 200   S69 wetting current pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 200 SG6 wetting current pulse 15 20 ms RT 1678 0.04 19.05 9.33 16.77 0.04 15.84 10.86 16.77 0.04 18.86 9.32 20.50 SG6 wetting current pulse 15 20 ms LT 1678 0.04 22.76 11.57 0.04 15.87 0.04 12.86 10.04 18.86 10.04 21.85 10.04 22.86 11.57 0.04 22.46 11.07 16.85 10.04 22.85 11.05 0.04 12.85 10.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.04 12.85 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 11.05 0.05 0                                                                                                                                                                                                                                                                 |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 200   S68 welling current pulse   15   20 ms   CT   18.78   0.04   23.78   11.57   18.79   0.04   15.65   10.91   18.80   0.04   14.08   9.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | Ŭ ,             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 201   SGY wetting current pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Ŭ ,             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 201   SG7 wetting current pulse   15   20 ms   RT   18.82   0.04   22.35   10.48   18.82   0.03   18.04   12.24   18.80   0.04   22.26   10.86   201   201   202   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   203   |       | Ŭ ,             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 207   SG7 wetting current poles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Ŭ ,             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 202   SG8 wetting current pulse   15   20   ms   RT   18,78   0.04   22,18   10,92   18,78   0.04   19,80   9,83   18,78   0.04   20,30   9,83   202   SG8 wetting current pulse   15   20   ms   RT   18,81   0.04   21,36   10,15   18,81   0.04   18,81   10,04   18,81   20,04   20,30   9,83   202   SG8 wetting current pulse   15   20   ms   RT   18,85   0.03   24,75   11,42   18,84   0.03   17,21   11,49   18,84   0.04   15,86   10,57   10,20   18,82   0.04   22,83   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   22,81   19,70   18,93   0.04   19,23   18,93   0.04   19,23   18,93   0.04   19,23   18,93   0.04   19,23   18,93   0.04   19,23   18,93   0.04   19,23   18,93   0.04   19,23   18,93   0.04   19,23   18,93   0.04   19,23   18,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,93   19,9   |       | Ŭ ,             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 202   SG8 wetting current pulse   15   20 ms   CT   18.81   0.04   21.33   10.15   18.81   0.04   16.35   11.22   18.81   0.04   20.30   9.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | Ŭ ,             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| SGB wetting current pulse   15   20 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | ů i             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 203 SGV wetting current pulse   15   20 ms   RT   18.93   0.04   22.18   9.26   18.93   0.04   22.61   9.70   18.93   0.04   20.49   8.80   203   SGV wetting current pulse   15   20 ms   RT   18.95   0.04   23.34   9.48   18.98   0.04   12.92   18.93   0.04   12.92   18.07   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04   20.04      |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 203 SG9 wetting current pulse   15   20 ms   RT   18.95   0.04   25.36   10.66   18.95   0.04   13.40   8.05   16.95   0.04   19.29   8.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | ů i             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 203   SG9 wetting current pulse   15   20 ms   CT   18.88   0.04   23.34   9.48   18.88   0.03   16.96   9.98   18.98   0.04   14.87   8.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| SC10 wetting current pulse   15   20 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| SC10 wetting current pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| Solid welling current pulse   15   20 ms   CT   18.84   0.04   21.57   10.05   18.82   0.04   12.22   4.22   18.82   0.04   13.99   9.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 205   SG11 wetting current pulse   15   20   ms   HT   18.94   0.03   23.87   10.10   18.95   0.04   16.03   9.66   18.94   0.04   20.68   8.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 205 SG11 wetling current pulse 15 20 ms RT 18.97 0.04 20.49 8.41 18.98 0.04 15.52 9.13 18.97 0.03 26.70 11.00 205 SG12 wetling current pulse 15 20 ms RT 18.89 0.04 21.94 8.91 19.00 0.04 13.99 7.99 18.99 0.04 15.9 8.79 206 SG12 wetling current pulse 15 20 ms RT 18.88 0.04 22.46 10.32 18.84 0.04 22.16 10.25 18.85 0.04 19.93 91.8 206 SG12 wetling current pulse 15 20 ms RT 18.88 0.04 22.06 9.13 18.89 0.03 16.73 10.70 18.88 0.04 22.08 10.32 206 SG12 wetling current pulse 15 20 ms RT 18.89 0.04 21.08 9.14 18.89 0.04 14.61 93.0 18.81 0.03 16.66 10.43 207 SG13 wetling current pulse 15 20 ms RT 18.90 0.04 21.39 9.37 18.89 0.04 14.61 93.0 18.81 0.03 16.66 10.43 207 SG13 wetling current pulse 15 20 ms RT 18.90 0.04 21.39 19.37 18.89 0.04 14.61 93.0 18.81 0.03 16.66 10.43 207 SG13 wetling current pulse 15 20 ms RT 18.92 0.04 21.09 9.11 18.92 0.04 14.96 92.9 18.82 0.04 22.87 8.89 207 SG13 wetling current pulse 15 20 ms RT 18.92 0.04 21.09 9.11 18.92 0.04 14.96 92.9 18.62 0.04 22.87 8.89 18.94 0.04 14.04 8.57 18.55 0.04 16.43 93.4 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 18.94 |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 205   SG11 wetling current pulse   15   20   ms   HT   18.85   0.04   21.94   8.91   19.00   0.04   13.95   7.98   13.99   0.04   15.19   8.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Ŭ İ             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 206   SG12 wetting current pulse   15   20   ms   HT   18.85   0.04   22.46   10.32   18.84   0.04   22.16   10.25   18.85   0.04   19.39   9.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Ŭ İ             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 206   SG12 wetting current pulse   15   20 ms   RT   18.88   0.04   21.06   9.41   18.89   0.03   16.73   10.70   18.88   0.04   23.08   10.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | • •             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 206   SG12 wetting current pulse   15   20 ms   CT   18.90   0.04   21.39   9.37   18.89   0.04   14.61   9.30   18.91   0.03   16.66   10.42   207   SG13 wetting current pulse   15   20 ms   HT   18.89   0.04   22.18   10.25   18.90   0.04   22.87   8.99   18.92   0.04   22.87   8.99   207   SG13 wetting current pulse   15   20 ms   RT   18.92   0.04   21.09   9.11   18.92   0.04   14.96   9.29   18.92   0.04   22.87   9.89   207   SG13 wetting current pulse   15   20 ms   RT   18.92   0.04   21.09   9.11   18.92   0.04   14.96   9.29   18.92   0.04   22.87   9.89   226   18.91   0.04   22.87   9.89   226   18.91   0.04   22.87   9.89   226   18.91   0.04   22.87   9.89   226   18.91   0.04   22.87   9.89   226   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208   208      |       | • •             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 207   SG13 wetting current pulse   15   20   ms   RT   18.99   0.04   23.15   10.25   18.90   0.04   22.63   9.99   18.89   0.04   22.87   9.99   207   SG13 wetting current pulse   15   20   ms   RT   18.92   0.04   20.66   8.88   18.94   0.04   14.96   9.29   18.92   0.04   22.87   9.99   207   SG13 wetting current pulse   15   20   ms   RT   18.93   0.04   20.66   8.88   18.94   0.04   14.96   9.29   18.92   0.04   22.87   9.99   207   SG13 wetting current pulse   15   20   ms   RT   18.93   0.04   20.66   8.88   18.94   0.04   14.96   9.29   18.95   0.04   15.43   9.34   208   Interrupt delay time   -16   16   us   RT   5.30   2.31   2.31   1.54   4.79   2.58   2.33   1.97   5.66   2.68   1.99   1.28   12.80   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00    |       | • •             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 207   SG13 wetting current pulse   15   20   ms   RT   18.92   0.04   21.09   9.11   18.92   0.04   14.96   9.29   18.92   0.04   22.87   9.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | • •             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 207   SC13 wetting current pulse   15   20   ms   CT   18.93   0.04   20.66   8.88   18.94   0.04   14.04   8.57   18.95   0.04   15.43   9.34   2.28   2.28   1.51   5.66   2.68   1.99   1.28   2.28   2.24   1.51   5.66   2.68   1.99   1.28   2.28   2.24   1.51   5.66   2.68   1.99   1.28   2.28   2.24   1.51   5.66   2.68   1.99   1.28   2.28   2.24   1.51   5.66   2.68   1.99   1.28   2.28   2.24   2.14   1.44   2.08   Interrupt delay time   -16   16   us   CT   5.21   2.89   1.84   1.24   4.84   2.70   1.97   1.38   5.62   2.59   2.06   1.34   2.28   2.29   2.06   1.34   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29   2.29      |       | ů i             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 208   Interrupt delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Ŭ I             |          |           |      |      |        |      |      |      |        |      |      |      |        |      | _    |      |
| 208   Interrupt delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | ů i             |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 208   Interrupt delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 317   SP0 to mux 16ma   -18   -12   mA   HT   -16.02   0.12   8.04   5.30   -16.05   0.16   3.96   3.96   -16.08   0.12   5.35   5.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 317   SP0 to mux 16ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 317   SP0 to mux 16ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 318   SP1 to mux 16ma   -18   -12   mA   HT   -15.98   0.13   7.49   5.05   -15.99   0.15   4.46   4.33   -16.03   0.12   5.22   5.18     318   SP1 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.30   4.68   -16.05   0.14   4.66   4.66   -16.11   0.13   5.00   4.85     318   SP1 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.30   4.68   -16.05   0.14   4.66   4.66   -16.11   0.13   5.00   4.85     318   SP1 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.07   4.75   -16.01   0.15   4.20   4.11   -16.03   0.12   5.52   5.45     319   SP2 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.07   4.75   -16.01   0.15   4.20   4.11   -16.03   0.12   5.52   5.45     319   SP2 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.22   4.63   -16.06   0.15   4.20   4.11   -16.03   0.12   5.52   5.45     319   SP2 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.22   4.63   -16.06   0.15   4.32   4.30   -16.09   0.13   4.82   4.73     319   SP2 to mux 16ma   -18   -12   mA   CT   -15.79   0.17   5.90   4.35   -15.75   0.17   6.06   4.55   -15.79   0.16   6.13   4.51     320   SP3 to mux 16ma   -18   -12   mA   RT   -16.02   0.14   7.04   4.63   -16.01   0.15   4.27   4.17   -16.07   0.16   4.13   4.64     320   SP3 to mux 16ma   -18   -12   mA   RT   -16.02   0.14   7.04   4.63   -16.01   0.15   4.27   4.17   -16.07   0.15   4.20   4.16     321   SP4 to mux 16ma   -18   -12   mA   RT   -15.75   0.18   5.71   4.29   -15.69   0.18   5.64   4.33   -15.78   0.18   5.48   4.54     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.33   5.51   -16.07   0.16   4.01   3.97   -16.08   0.16   4.06   4.06     322   SP5 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.33   5.51   -16.07   0.16   4.01   3.97   -16.08   0.16   4.06   4.06     322   SP5 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.08   5.56   -16.00   0.15   4.21   4.14   -16.04   0.13   4.93   4.90     322   SP5 to mux 16ma   -18   -12   mA   RT   -16.01   0.14   7.39   4.89   -16.02   0.15   4.21   4.14   -16.04   |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 318   SP1 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.30   4.68   -16.05   0.14   4.66   4.66   -16.11   0.13   5.00   4.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 318   SP1 to mux 16ma   -18   -12   mA   CT   -15.81   0.17   5.81   4.25   -15.76   0.17   6.06   4.53   -15.83   0.16   6.36   4.60     319   SP2 to mux 16ma   -18   -12   mA   HT   -15.98   0.14   7.07   4.75   -16.01   0.15   4.20   4.11   -16.03   0.12   5.52   5.45     319   SP2 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.22   4.63   -16.06   0.15   4.32   4.30   -16.09   0.13   4.82   4.73     319   SP2 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.22   4.63   -16.06   0.15   4.32   4.30   -16.09   0.13   4.82   4.73     319   SP2 to mux 16ma   -18   -12   mA   RT   -15.95   0.17   5.90   4.35   -15.75   0.17   6.06   4.55   -15.79   0.16   6.13   4.51     320   SP3 to mux 16ma   -18   -12   mA   RT   -16.95   0.15   6.88   4.70   -15.97   0.17   3.92   3.77   -16.01   0.14   4.73   4.64     320   SP3 to mux 16ma   -18   -12   mA   RT   -16.02   0.14   7.04   4.63   -16.01   0.15   4.27   4.17   -16.07   0.15   4.20   4.16     320   SP3 to mux 16ma   -18   -12   mA   RT   -15.93   0.12   8.08   5.56   -16.00   0.15   4.29   4.19   -15.99   0.14   4.68   4.54     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.33   5.51   -16.07   0.16   4.01   3.97   -16.08   0.16   4.06   4.00     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.33   5.51   -16.07   0.16   4.01   3.97   -16.08   0.16   4.06   4.00     321   SP4 to mux 16ma   -18   -12   mA   RT   -15.93   0.12   8.08   5.56   -16.00   0.15   4.29   4.19   -15.99   0.14   4.68   4.54     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.08   5.56   -16.00   0.15   4.29   4.19   -15.99   0.14   4.68   4.54     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.08   5.58   -16.07   0.16   4.01   3.97   -16.08   0.16   4.06   4.00     322   SP5 to mux 16ma   -18   -12   mA   RT   -16.01   0.14   7.39   4.89   -16.02   0.15   4.21   4.14   -16.04   0.13   4.93   4.90     322   SP5 to mux 16ma   -18   -12   mA   RT   -16.01   0.14   7.39   4.89   -16.02   0.15   4.21   4.14   -16.04   |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 319   SP2 to mux 16ma   -18   -12   mA   HT   -15.98   0.14   7.07   4.75   -16.01   0.15   4.20   4.11   -16.03   0.12   5.52   5.45     319   SP2 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.22   4.63   -16.06   0.15   4.32   4.30   -16.09   0.13   4.82   4.73     319   SP2 to mux 16ma   -18   -12   mA   RT   -16.08   0.14   7.22   4.63   -16.06   0.15   4.32   4.30   -16.09   0.13   4.82   4.73     319   SP2 to mux 16ma   -18   -12   mA   RT   -15.79   0.17   5.90   4.35   -15.75   0.17   6.06   4.55   -15.79   0.16   6.13   4.51     320   SP3 to mux 16ma   -18   -12   mA   RT   -16.02   0.14   7.04   4.63   -16.01   0.15   4.27   4.17   -16.07   0.15   4.20   4.16     320   SP3 to mux 16ma   -18   -12   mA   RT   -16.02   0.14   7.04   4.63   -16.01   0.15   4.27   4.17   -16.07   0.15   4.20   4.16     320   SP3 to mux 16ma   -18   -12   mA   RT   -15.95   0.18   5.71   4.29   -15.69   0.18   5.64   4.33   -15.78   0.18   5.48   4.06     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.08   5.56   -16.00   0.15   4.29   4.19   -15.99   0.14   4.68   4.54     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.33   5.51   -16.07   0.16   4.01   3.97   -16.08   0.16   4.06   4.00     321   SP4 to mux 16ma   -18   -12   mA   RT   -16.02   0.12   8.08   5.58   -15.76   0.18   5.41   4.03   -15.77   0.19   5.37   3.99     322   SP5 to mux 16ma   -18   -12   mA   RT   -15.93   0.12   8.08   5.58   -15.97   0.17   3.90   3.73   -15.98   0.11   5.84   5.62     322   SP5 to mux 16ma   -18   -12   mA   RT   -16.01   0.14   7.39   4.89   -16.02   0.15   4.21   4.14   -16.04   0.13   4.93   4.90     322   SP5 to mux 16ma   -18   -12   mA   RT   -15.95   0.14   7.10   4.86   -16.00   0.16   4.13   4.03   -16.00   0.11   5.71   5.57     323   SP6 to mux 16ma   -18   -12   mA   RT   -15.95   0.14   7.10   4.86   -16.00   0.16   4.13   4.03   -16.00   0.11   5.71   5.57     323   SP6 to mux 16ma   -18   -12   mA   RT   -15.95   0.14   7.10   4.86   -16.00   0.16   4.13   4.03   -16.00   |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| SP2 to mux 16ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 319   SP2 to mux 16ma   -18   -12   mA   CT   -15.79   0.17   5.90   4.35   -15.75   0.17   6.06   4.55   -15.79   0.16   6.13   4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 320         SP3 to mux 16ma         -18         -12         mA         HT         -15.95         0.15         6.88         4.70         -15.97         0.17         3.92         3.77         -16.01         0.14         4.73         4.64           320         SP3 to mux 16ma         -18         -12         mA         RT         -16.02         0.14         7.04         4.63         -16.01         0.15         4.27         4.17         -16.07         0.15         4.20         4.16           320         SP3 to mux 16ma         -18         -12         mA         CT         -15.75         0.18         5.71         4.29         -15.69         0.18         5.64         4.33         -15.78         0.18         5.48         4.06           321         SP4 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.56         -16.00         0.15         4.29         4.19         -15.99         0.14         4.68         4.54           321         SP4 to mux 16ma         -18         -12         mA         RT         -16.02         0.12         8.33         5.51         -16.07         0.16         4.01         3.97         -16.08<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 320         SP3 to mux 16ma         -18         -12         mA         RT         -16.02         0.14         7.04         4.63         -16.01         0.15         4.27         4.17         -16.07         0.15         4.20         4.16           320         SP3 to mux 16ma         -18         -12         mA         CT         -15.75         0.18         5.71         4.29         -15.69         0.18         5.64         4.33         -15.78         0.18         5.48         4.06           321         SP4 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.56         -16.00         0.15         4.29         4.19         -15.99         0.14         4.68         4.54           321         SP4 to mux 16ma         -18         -12         mA         RT         -16.02         0.12         8.33         5.51         -16.07         0.16         4.01         3.97         -16.08         0.16         4.06         4.00           321         SP4 to mux 16ma         -18         -12         mA         CT         -15.74         0.16         6.45         4.85         -15.07         0.16         4.01         3.97         -16.08<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 320         SP3 to mux 16ma         -18         -12         mA         CT         -15.75         0.18         5.71         4.29         -15.69         0.18         5.64         4.33         -15.78         0.18         5.48         4.06           321         SP4 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.56         -16.00         0.15         4.29         4.19         -15.99         0.14         4.68         4.54           321         SP4 to mux 16ma         -18         -12         mA         RT         -16.02         0.12         8.33         5.51         -16.07         0.16         4.01         3.97         -16.08         0.16         4.06         4.00           321         SP4 to mux 16ma         -18         -12         mA         CT         -15.74         0.16         6.45         4.85         -15.76         0.18         5.41         4.03         -15.77         0.19         5.37         3.99           322         SP5 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.58         -15.97         0.17         3.90         3.73         -15.98<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | OD0 / 40        | 40       |           |      |      |        |      |      |      |        |      |      | 1    |        |      |      |      |
| 321         SP4 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.56         -16.00         0.15         4.29         4.19         -15.99         0.14         4.68         4.54           321         SP4 to mux 16ma         -18         -12         mA         RT         -16.02         0.12         8.33         5.51         -16.07         0.16         4.01         3.97         -16.08         0.16         4.06         4.00           321         SP4 to mux 16ma         -18         -12         mA         CT         -15.74         0.16         6.45         4.85         -15.76         0.18         5.41         4.03         -15.77         0.19         5.37         3.99           322         SP5 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.58         -15.97         0.17         3.90         3.73         -15.98         0.11         5.84         5.62           322         SP5 to mux 16ma         -18         -12         mA         RT         -16.01         0.14         7.39         4.89         -16.02         0.15         4.21         4.14         -16.04<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 321         SP4 to mux 16ma         -18         -12         mA         RT         -16.02         0.12         8.33         5.51         -16.07         0.16         4.01         3.97         -16.08         0.16         4.06         4.00           321         SP4 to mux 16ma         -18         -12         mA         CT         -15.74         0.16         6.45         4.85         -15.76         0.18         5.41         4.03         -15.77         0.19         5.37         3.99           322         SP5 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.58         -15.97         0.17         3.90         3.73         -15.98         0.11         5.84         5.62           322         SP5 to mux 16ma         -18         -12         mA         RT         -16.01         0.14         7.39         4.89         -16.02         0.15         4.21         4.14         -16.04         0.13         4.93         4.90           322         SP5 to mux 16ma         -18         -12         mA         CT         -15.75         0.16         6.19         4.64         -15.72         0.17         5.93         4.50         -15.60<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 321         SP4 to mux 16ma         -18         -12         mA         CT         -15.74         0.16         6.45         4.85         -15.76         0.18         5.41         4.03         -15.77         0.19         5.37         3.99           322         SP5 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.58         -15.97         0.17         3.90         3.73         -15.98         0.11         5.84         5.62           322         SP5 to mux 16ma         -18         -12         mA         RT         -16.01         0.14         7.39         4.89         -16.02         0.15         4.21         4.14         -16.04         0.13         4.90           322         SP5 to mux 16ma         -18         -12         mA         CT         -15.75         0.16         6.19         4.64         -15.72         0.17         5.93         4.50         -15.76         0.16         6.42         4.78           323         SP6 to mux 16ma         -18         -12         mA         HT         -15.95         0.14         7.10         4.86         -16.00         0.16         4.13         4.03         -16.00         0.11<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 322         SP5 to mux 16ma         -18         -12         mA         HT         -15.93         0.12         8.08         5.58         -15.97         0.17         3.90         3.73         -15.98         0.11         5.84         5.62           322         SP5 to mux 16ma         -18         -12         mA         RT         -16.01         0.14         7.39         4.89         -16.02         0.15         4.21         4.14         -16.04         0.13         4.93         4.90           322         SP5 to mux 16ma         -18         -12         mA         CT         -15.75         0.16         6.19         4.64         -15.72         0.17         5.93         4.50         -15.76         0.16         6.42         4.78           323         SP6 to mux 16ma         -18         -12         mA         HT         -15.95         0.14         7.10         4.86         -16.00         0.16         4.13         4.03         -16.00         0.11         5.71         5.57           323         SP6 to mux 16ma         -18         -12         mA         RT         -16.05         0.13         7.63         4.96         -16.07         0.15         4.33         4.30         -16.06<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 322         SP5 to mux 16ma         -18         -12         mA         RT         -16.01         0.14         7.39         4.89         -16.02         0.15         4.21         4.14         -16.04         0.13         4.93         4.90           322         SP5 to mux 16ma         -18         -12         mA         CT         -15.75         0.16         6.19         4.64         -15.72         0.17         5.93         4.50         -15.76         0.16         6.42         4.78           323         SP6 to mux 16ma         -18         -12         mA         HT         -15.95         0.14         7.10         4.86         -16.00         0.16         4.13         4.03         -16.00         0.11         5.71         5.57           323         SP6 to mux 16ma         -18         -12         mA         RT         -16.05         0.13         7.63         4.96         -16.07         0.15         4.33         4.30         -16.06         0.12         5.23         5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 322       SP5 to mux 16ma       -18       -12       mA       CT       -15.75       0.16       6.19       4.64       -15.72       0.17       5.93       4.50       -15.76       0.16       6.42       4.78         323       SP6 to mux 16ma       -18       -12       mA       HT       -15.95       0.14       7.10       4.86       -16.00       0.16       4.13       4.03       -16.00       0.11       5.71       5.57         323       SP6 to mux 16ma       -18       -12       mA       RT       -16.05       0.13       7.63       4.96       -16.07       0.15       4.33       4.30       -16.06       0.12       5.23       5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 323 SP6 to mux 16ma -18 -12 MA HT -15.95 0.14 7.10 4.86 -16.00 0.16 4.13 4.03 -16.00 0.11 5.71 5.57 323 SP6 to mux 16ma -18 -12 MA RT -16.05 0.13 7.63 4.96 -16.07 0.15 4.33 4.30 -16.06 0.12 5.23 5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 323 SP6 to mux 16ma -18 -12 mA RT -16.05 0.13 7.63 4.96 -16.07 0.15 4.33 4.30 -16.06 0.12 5.23 5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
| 323   SPO tO MUX 10MA   -18   -18   -12   MA   CI   -15.78   0.16   6.40   4.75   -15.77   0.18   5.47   4.07   -15.80   0.16   6.25   4.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                 |          |           |      |      |        |      |      |      |        |      |      |      |        |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 323   | SP6 to mux 16ma | -18      | -12       | mA   | CT   | -15.78 | 0.16 | 6.40 | 4.75 | -15.77 | 0.18 | 5.47 | 4.07 | -15.80 | 0.16 | 6.25 | 4.59 |

|              |                  |                 |          |          |            | 1      | In      | t1   |      |        | Lo      | t2   |             | 1      | Ic      | t3         |             |
|--------------|------------------|-----------------|----------|----------|------------|--------|---------|------|------|--------|---------|------|-------------|--------|---------|------------|-------------|
| Toot#        | Test Name        | Lolimit         | Hi Limit | Unit     | Tomp       | Mean   | Std Dev | Ср   | Cpk  | Mean   | Std Dev | Cp   | Cnk         | Mean   | Std Dev | ,          | Cnk         |
| Test#<br>324 |                  | Lo Limit<br>-18 | -12      |          | Temp<br>HT | -15.97 | 0.15    | 6.87 | 4.66 | -16.01 | 0.15    | 4.20 | Cpk<br>4.12 | -16.02 | 0.11    | Ср<br>5.66 | Cpk<br>5.57 |
|              | SP7 to mux 16ma  |                 |          | mA       |            |        |         | 6.54 |      |        |         |      |             |        |         |            |             |
| 324          | SP7 to mux 16ma  | -18             | -12      | mA       | RT         | -16.07 | 0.15    |      | 4.21 | -16.09 | 0.16    | 4.17 | 4.09        | -16.10 | 0.13    | 5.04       | 4.90        |
| 324          | SP7 to mux 16ma  | -18             | -12      | mA       | CT         | -15.81 | 0.17    | 5.86 | 4.28 | -15.81 | 0.17    | 5.72 | 4.17        | -15.85 | 0.14    | 7.11       | 5.11        |
| 325          | SG0 to mux 16ma  | -18             | -12      | mA       | HT         | -16.05 | 0.14    | 7.07 | 4.61 | -16.06 | 0.15    | 4.26 | 4.24        | -16.09 | 0.12    | 5.58       | 5.48        |
| 325          | SG0 to mux 16ma  | -18             | -12      | mA       | RT         | -16.10 | 0.14    | 7.36 | 4.65 | -16.10 | 0.14    | 4.58 | 4.47        | -16.14 | 0.13    | 4.90       | 4.68        |
| 325          | SG0 to mux 16ma  | -18             | -12      | mA       | CT         | -15.81 | 0.17    | 5.84 | 4.26 | -15.78 | 0.16    | 6.25 | 4.63        | -15.84 | 0.16    | 6.41       | 4.62        |
| 326          | SG1 to mux 16ma  | -18             | -12      | mA       | HT         | -15.98 | 0.14    | 7.14 | 4.80 | -15.99 | 0.17    | 3.84 | 3.72        | -16.04 | 0.12    | 5.21       | 5.18        |
| 326          | SG1 to mux 16ma  | -18             | -12      | mA       | RT         | -16.04 | 0.14    | 7.03 | 4.59 | -16.01 | 0.16    | 4.18 | 4.08        | -16.08 | 0.14    | 4.53       | 4.46        |
| 326          | SG1 to mux 16ma  | -18             | -12      | mA       | CT         | -15.74 | 0.17    | 5.90 | 4.44 | -15.68 | 0.18    | 5.57 | 4.30        | -15.77 | 0.17    | 5.83       | 4.34        |
| 327          | SG2 to mux 16ma  | -18             | -12      | mA       | HT         | -15.97 | 0.13    | 7.59 | 5.14 | -16.01 | 0.17    | 3.85 | 3.77        | -16.03 | 0.13    | 4.92       | 4.88        |
| 327          | SG2 to mux 16ma  | -18             | -12      | mA       | RT         | -16.02 | 0.13    | 7.48 | 4.93 | -16.04 | 0.17    | 3.84 | 3.81        | -16.09 | 0.15    | 4.39       | 4.31        |
| 327          | SG2 to mux 16ma  | -18             | -12      | mA       | CT         | -15.73 | 0.17    | 5.99 | 4.53 | -15.71 | 0.19    | 5.39 | 4.12        | -15.77 | 0.17    | 6.04       | 4.48        |
| 328          | SG3 to mux 16ma  | -18             | -12      | mA       | HT         | -16.02 | 0.13    | 7.80 | 5.15 | -16.04 | 0.16    | 4.19 | 4.17        | -16.08 | 0.12    | 5.22       | 5.14        |
| 328          | SG3 to mux 16ma  | -18             | -12      | mA       | RT         | -16.09 | 0.13    | 7.82 | 4.99 | -16.09 | 0.15    | 4.42 | 4.34        | -16.14 | 0.14    | 4.61       | 4.39        |
| 328          | SG3 to mux 16ma  | -18             | -12      | mA       | CT         | -15.80 | 0.15    | 6.45 | 4.74 | -15.77 | 0.17    | 5.90 | 4.38        | -15.85 | 0.17    | 6.03       | 4.33        |
| 329          | SG4 to mux 16ma  | -18             | -12      | mA       | HT         | -15.96 | 0.13    | 7.99 | 5.44 | -16.01 | 0.16    | 4.16 | 4.07        | -16.02 | 0.13    | 4.96       | 4.88        |
| 329          | SG4 to mux 16ma  | -18             | -12      | mA       | RT         | -16.04 | 0.13    | 7.84 | 5.11 | -16.07 | 0.16    | 4.16 | 4.11        | -16.10 | 0.15    | 4.21       | 4.10        |
| 329          | SG4 to mux 16ma  | -18             | -12      | mA       | CT         | -15.77 | 0.15    | 6.66 | 4.96 | -15.77 | 0.18    | 5.61 | 4.17        | -15.81 | 0.19    | 5.38       | 3.92        |
| 330          | SG5 to mux 16ma  | -18             | -12      | mA       | HT         | -15.95 | 0.13    | 7.86 | 5.38 | -16.00 | 0.16    | 4.07 | 3.96        | -16.01 | 0.12    | 5.41       | 5.29        |
| 330          | SG5 to mux 16ma  | -18             | -12      | mA       | RT         | -16.03 | 0.13    | 7.85 | 5.16 | -16.05 | 0.16    | 4.12 | 4.11        | -16.07 | 0.12    | 5.21       | 5.16        |
| 330          | SG5 to mux 16ma  | -18             | -12      | mA       | CT         | -15.75 | 0.17    | 6.02 | 4.51 | -15.75 | 0.18    | 5.62 | 4.21        | -15.77 | 0.12    | 6.75       | 5.01        |
| 331          | SG6 to mux 16ma  | -18             | -12      | mA       | HT         | -16.00 | 0.17    | 7.30 | 4.87 | -16.07 | 0.10    | 3.76 | 3.73        | -16.07 | 0.13    | 5.27       | 5.23        |
| 331          | SG6 to mux 16ma  | -18             | -12      | mA       | RT         | -16.11 | 0.14    | 7.52 | 4.75 | -16.15 | 0.17    | 3.84 | 3.63        | -16.17 | 0.12    | 5.10       | 4.77        |
|              |                  | -18             | -12      |          | CT         | -15.85 |         | 6.39 | 4.75 | -15.86 |         | 5.62 |             | -15.89 |         | 6.54       | 4.77        |
| 331          | SG6 to mux 16ma  |                 |          | mA       |            |        | 0.16    |      |      |        | 0.18    |      | 4.00        |        | 0.15    |            |             |
| 332          | SG7 to mux 16ma  | -18             | -12      | mA       | HT         | -15.92 | 0.13    | 7.96 | 5.51 | -15.97 | 0.15    | 4.41 | 4.24        | -15.99 | 0.11    | 5.85       | 5.66        |
| 332          | SG7 to mux 16ma  | -18             | -12      | mA       | RT         | -16.02 | 0.12    | 8.34 | 5.51 | -16.04 | 0.14    | 4.58 | 4.55        | -16.07 | 0.13    | 4.92       | 4.86        |
| 332          | SG7 to mux 16ma  | -18             | -12      | mA       | CT         | -15.75 | 0.15    | 6.77 | 5.07 | -15.75 | 0.17    | 5.98 | 4.48        | -15.80 | 0.17    | 6.05       | 4.43        |
| 333          | SG8 to mux 16ma  | -18             | -12      | mA       | HT         | -15.89 | 0.13    | 7.56 | 5.31 | -15.91 | 0.15    | 4.25 | 3.94        | -15.95 | 0.13    | 4.87       | 4.63        |
| 333          | SG8 to mux 16ma  | -18             | -12      | mA       | RT         | -15.99 | 0.12    | 8.01 | 5.37 | -15.97 | 0.14    | 4.57 | 4.37        | -16.02 | 0.16    | 4.08       | 4.02        |
| 333          | SG8 to mux 16ma  | -18             | -12      | mA       | CT         | -15.71 | 0.16    | 6.07 | 4.65 | -15.67 | 0.16    | 6.35 | 4.93        | -15.73 | 0.19    | 5.27       | 3.99        |
| 334          | SG9 to mux 16ma  | -18             | -12      | mA       | HT         | -15.92 | 0.14    | 7.34 | 5.09 | -15.96 | 0.14    | 4.52 | 4.32        | -15.98 | 0.13    | 5.09       | 4.90        |
| 334          | SG9 to mux 16ma  | -18             | -12      | mA       | RT         | -16.01 | 0.12    | 8.09 | 5.38 | -16.03 | 0.14    | 4.66 | 4.61        | -16.06 | 0.14    | 4.75       | 4.73        |
| 334          | SG9 to mux 16ma  | -18             | -12      | mA       | CT         | -15.73 | 0.15    | 6.88 | 5.21 | -15.73 | 0.16    | 6.23 | 4.72        | -15.76 | 0.15    | 6.46       | 4.82        |
| 335          | SG10 to mux 16ma | -18             | -12      | mA       | HT         | -15.91 | 0.13    | 7.73 | 5.39 | -15.95 | 0.15    | 4.41 | 4.19        | -16.00 | 0.12    | 5.44       | 5.29        |
| 335          | SG10 to mux 16ma | -18             | -12      | mA       | RT         | -15.99 | 0.13    | 7.55 | 5.06 | -16.02 | 0.14    | 4.59 | 4.51        | -16.08 | 0.13    | 4.93       | 4.85        |
| 335          | SG10 to mux 16ma | -18             | -12      | mA       | CT         | -15.71 | 0.16    | 6.14 | 4.69 | -15.71 | 0.17    | 5.96 | 4.54        | -15.79 | 0.16    | 6.28       | 4.63        |
| 336          | SG11 to mux 16ma | -18             | -12      | mA       | HT         | -15.91 | 0.13    | 7.42 | 5.17 | -15.97 | 0.14    | 4.65 | 4.45        | -15.98 | 0.13    | 4.95       | 4.78        |
| 336          | SG11 to mux 16ma | -18             | -12      | mA       | RT         | -16.00 | 0.13    | 7.46 | 4.97 | -16.04 | 0.14    | 4.76 | 4.73        | -16.08 | 0.14    | 4.71       | 4.65        |
| 336          | SG11 to mux 16ma | -18             | -12      | mA       | CT         | -15.72 | 0.16    | 6.43 | 4.89 | -15.75 | 0.16    | 6.40 | 4.79        | -15.79 | 0.16    | 6.38       | 4.69        |
| 337          | SG12 to mux 16ma | -18             | -12      | mA       | HT         | -15.92 | 0.13    | 7.59 | 5.26 | -15.97 | 0.15    | 4.37 | 4.19        | -15.99 | 0.12    | 5.32       | 5.14        |
| 337          | SG12 to mux 16ma | -18             | -12      | mA       | RT         | -16.01 | 0.13    | 7.41 | 4.92 | -16.03 | 0.15    | 4.41 | 4.37        | -16.06 | 0.13    | 4.88       | 4.86        |
| 337          | SG12 to mux 16ma | -18             | -12      | mA       | CT         | -15.73 | 0.16    | 6.12 | 4.62 | -15.75 | 0.16    | 6.29 | 4.73        | -15.78 | 0.15    | 6.62       | 4.89        |
| 338          | SG13 to mux 16ma | -18             | -12      | mA       | HT         | -15.91 | 0.14    | 7.38 | 5.14 | -15.97 | 0.15    | 4.42 | 4.24        | -15.97 | 0.12    | 5.22       | 5.00        |
| 338          | SG13 to mux 16ma | -18             | -12      | mA       | RT         | -16.02 | 0.14    | 7.39 | 4.87 | -16.07 | 0.15    | 4.45 | 4.41        | -16.08 | 0.12    | 5.20       | 5.13        |
| 338          | SG13 to mux 16ma | -18             | -12      | mA       | CT         | -15.77 | 0.14    | 6.21 | 4.62 | -15.78 | 0.16    | 6.12 | 4.53        | -15.80 | 0.12    | 6.86       | 5.03        |
| 347          | SP0 to mux 2ma   | -2.2            | -1.8     | mA       | HT         | -2.00  | 0.10    | 4.30 | 4.23 | -2.00  | 0.10    | 3.41 | 3.27        | -2.01  | 0.13    | 3.90       | 3.61        |
| 347          | SP0 to mux 2ma   | -2.2            | -1.8     | mA       | RT         | -2.00  | 0.02    | 3.96 | 3.69 | -2.00  | 0.02    | 3.11 | 2.83        | -2.01  | 0.01    | 3.55       | 3.24        |
| 347          | SP0 to mux 2ma   | -2.2            | -1.8     | mA       | CT         | -1.98  | 0.01    | 3.47 | 3.05 | -1.97  | 0.02    | 3.15 | 2.72        | -1.98  | 0.02    | 3.06       | 2.79        |
| 348          | SP1 to mux 2ma   | -2.2            | -1.8     |          | HT         | -1.98  | 0.02    | 3.54 | 3.05 | -1.97  | 0.02    | 3.43 | 3.32        | -1.98  | 0.02    | 4.13       | 3.76        |
|              | i -              |                 |          | mA<br>mA |            |        |         |      |      |        |         |      |             |        |         |            |             |
| 348          | SP1 to mux 2ma   | -2.2            | -1.8     | mA       | RT         | -2.01  | 0.02    | 3.34 | 3.11 | -2.00  | 0.02    | 3.13 | 2.81        | -2.01  | 0.02    | 4.30       | 3.98        |
| 348          | SP1 to mux 2ma   | -2.2            | -1.8     | mA       | CT         | -1.97  | 0.02    | 3.05 | 2.73 | -1.97  | 0.02    | 3.17 | 2.69        | -1.97  | 0.02    | 3.68       | 3.27        |
| 349          | SP2 to mux 2ma   | -2.2            | -1.8     | mA       | HT         | -2.00  | 0.02    | 3.21 | 2.87 | -2.00  | 0.02    | 3.61 | 3.49        | -2.00  | 0.01    | 4.09       | 3.71        |
| 349          | SP2 to mux 2ma   | -2.2            | -1.8     | mA       | RT         | -2.01  | 0.02    | 3.38 | 3.16 | -2.00  | 0.02    | 3.34 | 3.02        | -2.01  | 0.02    | 4.12       | 3.87        |
| 349          | SP2 to mux 2ma   | -2.2            | -1.8     | mA       | CT         | -1.97  | 0.02    | 3.32 | 2.95 | -1.97  | 0.02    | 3.48 | 2.96        | -1.97  | 0.02    | 3.48       | 3.04        |
| 350          | SP3 to mux 2ma   | -2.2            | -1.8     | mA       | HT         | -2.00  | 0.02    | 3.18 | 2.76 | -2.00  | 0.02    | 3.30 | 3.27        | -2.00  | 0.02    | 3.55       | 3.17        |
| 350          | SP3 to mux 2ma   | -2.2            | -1.8     | mA       | RT         | -2.00  | 0.02    | 3.32 | 2.97 | -2.00  | 0.02    | 3.12 | 2.72        | -2.01  | 0.02    | 3.36       | 3.18        |
| 350          | SP3 to mux 2ma   | -2.2            | -1.8     | mA       | CT         | -1.97  | 0.02    | 3.19 | 2.73 | -1.96  | 0.02    | 3.03 | 2.47        | -1.97  | 0.02    | 2.90       | 2.51        |
| 351          | SP4 to mux 2ma   | -2.2            | -1.8     | mA       | HT         | -2.00  | 0.02    | 3.43 | 2.93 | -2.00  | 0.02    | 3.51 | 3.40        | -2.00  | 0.02    | 3.59       | 3.16        |
| 351          | SP4 to mux 2ma   | -2.2            | -1.8     | mA       | RT         | -2.00  | 0.02    | 3.72 | 3.29 | -2.01  | 0.02    | 2.99 | 2.73        | -2.01  | 0.02    | 3.60       | 3.41        |
| 351          | SP4 to mux 2ma   | -2.2            | -1.8     | mA       | CT         | -1.97  | 0.02    | 3.47 | 2.96 | -1.97  | 0.02    | 3.12 | 2.68        | -1.97  | 0.02    | 3.06       | 2.63        |
|              | 1                |                 |          |          |            |        |         |      |      |        |         |      |             |        |         |            |             |

|            |                                  |              |              |          |      |                | Lo      | t1           |      |                | Lo      | t2           |              |                | Lo      | t3   |              |
|------------|----------------------------------|--------------|--------------|----------|------|----------------|---------|--------------|------|----------------|---------|--------------|--------------|----------------|---------|------|--------------|
| Test#      | Test Name                        | Lo Limit     | Hi Limit     | Unit     | Temp | Mean           | Std Dev | Ср           | Cpk  | Mean           | Std Dev | Ср           | Cpk          | Mean           | Std Dev | Ср   | Cpk          |
| 352        | SP5 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.37         | 2.90 | -2.00          | 0.02    | 3.41         | 3.39         | -2.00          | 0.02    | 3.77 | 3.31         |
| 352        | SP5 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.32         | 3.01 | -2.00          | 0.02    | 3.48         | 3.04         | -2.00          | 0.02    | 3.53 | 3.37         |
| 352        | SP5 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.09         | 2.68 | -1.96          | 0.02    | 3.59         | 2.99         | -1.97          | 0.02    | 3.08 | 2.66         |
| 353        | SP6 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -1.99          | 0.02    | 3.16         | 2.66 | -2.00          | 0.02    | 3.30         | 3.27         | -2.00          | 0.01    | 4.10 | 3.54         |
| 353        | SP6 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.46         | 3.07 | -2.00          | 0.02    | 2.95         | 2.61         | -2.00          | 0.02    | 4.26 | 4.14         |
| 353        | SP6 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.42         | 2.93 | -1.97          | 0.02    | 2.88         | 2.43         | -1.97          | 0.02    | 3.27 | 2.81         |
| 354        | SP7 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.15         | 2.70 | -2.00          | 0.02    | 3.41         | 3.37         | -2.00          | 0.01    | 3.85 | 3.42         |
| 354        | SP7 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.14         | 2.84 | -2.00          | 0.02    | 3.00         | 2.66         | -2.01          | 0.02    | 3.77 | 3.55         |
| 354        | SP7 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.11         | 2.74 | -1.97          | 0.02    | 3.01         | 2.57         | -1.97          | 0.02    | 3.28 | 2.92         |
| 355        | SG0 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.01          | 0.02    | 3.05         | 2.82 | -2.01          | 0.02    | 3.53         | 3.33         | -2.01          | 0.01    | 4.31 | 4.04         |
| 355        | SG0 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.01          | 0.02    | 3.26         | 3.08 | -2.01          | 0.02    | 3.30         | 3.04         | -2.01          | 0.02    | 4.14 | 3.76         |
| 355        | SG0 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.98          | 0.02    | 3.12         | 2.81 | -1.97          | 0.02    | 3.42         | 2.94         | -1.98          | 0.02    | 3.51 | 3.16         |
| 356        | SG1 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.08         | 2.79 | -2.00          | 0.02    | 3.24         | 3.09         | -2.01          | 0.01    | 4.13 | 3.83         |
| 356        | SG1 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.01          | 0.02    | 3.12         | 2.88 | -2.00          | 0.02    | 2.90         | 2.60         | -2.01          | 0.02    | 3.99 | 3.69         |
| 356        | SG1 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.33         | 2.92 | -1.96          | 0.02    | 2.94         | 2.44         | -1.97          | 0.02    | 3.27 | 2.86         |
| 357        | SG2 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.26         | 2.95 | -2.01          | 0.02    | 3.28         | 3.10         | -2.01          | 0.02    | 3.51 | 3.26         |
| 357        | SG2 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.01          | 0.02    | 3.52         | 3.26 | -2.01          | 0.02    | 2.92         | 2.69         | -2.01          | 0.02    | 3.65 | 3.34         |
| 357        | SG2 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.27         | 2.86 | -1.97          | 0.02    | 2.95         | 2.52         | -1.97          | 0.02    | 3.27 | 2.89         |
| 358        | SG3 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.34         | 3.02 | -2.01          | 0.02    | 3.42         | 3.21         | -2.01          | 0.02    | 4.38 | 4.10         |
| 358        | SG3 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.01          | 0.02    | 3.55         | 3.31 | -2.01          | 0.02    | 3.06         | 2.84         | -2.01          | 0.02    | 4.29 | 3.88         |
| 358        | SG3 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.50         | 3.08 | -1.97          | 0.02    | 3.05         | 2.64         | -1.98          | 0.02    | 3.48 | 3.15         |
| 359        | SG4 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.38         | 3.02 | -2.01          | 0.02    | 3.57         | 3.37         | -2.00          | 0.02    | 3.85 | 3.51         |
| 359        | SG4 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.46         | 3.22 | -2.01          | 0.02    | 3.18         | 2.99         | -2.00          | 0.01    | 3.79 | 3.49         |
| 359        | SG4 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.98          | 0.02    | 3.39         | 3.05 | -1.97          | 0.02    | 3.19         | 2.89         | -1.97          | 0.02    | 3.19 | 2.84         |
| 360        | SG5 to mux 2ma                   | -2.2         | -1.8         |          | HT   | -1.99          | 0.02    | 3.43         | 2.90 | -2.00          | 0.02    | 3.32         | 3.27         | -2.00          | 0.02    | 3.17 | 3.47         |
| 360        | SG5 to mux 2ma                   | -2.2         | -1.8         | mA<br>mA | RT   | -2.00          | 0.02    | 3.58         | 3.16 | -2.00          | 0.02    | 2.83         | 2.51         | -2.00          | 0.01    | 4.44 | 4.22         |
| 360        | SG5 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.44         | 2.93 | -1.96          | 0.02    | 2.88         | 2.42         | -1.97          | 0.01    | 3.74 | 3.22         |
| 361        | SG6 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.27         | 2.83 | -2.00          | 0.02    | 3.36         | 3.28         | -2.00          | 0.02    | 3.74 | 3.33         |
| 361        | SG6 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.50         | 3.15 | -2.00          | 0.02    | 3.13         | 2.81         | -2.00          | 0.02    | 4.00 | 3.75         |
| 361        | SG6 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.67         | 3.18 | -1.97          | 0.02    | 3.30         | 2.79         | -1.97          | 0.02    | 3.45 | 3.03         |
| 362        | SG7 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -2.00          | 0.02    | 3.36         | 2.95 | -2.00          | 0.02    | 3.55         | 3.44         | -2.00          | 0.02    | 4.01 | 3.62         |
| 362        | SG7 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.68         | 3.40 | -2.00          | 0.02    | 3.24         | 2.97         | -2.00          | 0.01    | 3.85 | 3.56         |
| 362        | SG7 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.48         | 3.40 | -1.97          | 0.02    | 3.24         | 2.79         | -1.98          | 0.02    | 3.00 | 2.79         |
| 363        | SG8 to mux 2ma                   | -2.2         | -1.8         | mA       | HT   | -1.99          | 0.02    | 3.40         | 2.75 | -1.97          | 0.02    | 3.48         | 3.42         | -2.00          | 0.02    | 3.58 | 3.07         |
| 363        | SG8 to mux 2ma                   | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.63         | 3.19 | -1.99          | 0.02    | 3.40         | 2.90         | -2.00          | 0.02    | 3.37 | 3.07         |
| 363        | SG8 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -1.96          | 0.02    | 3.03         | 2.70 | -1.99          | 0.02    | 3.53         | 2.87         | -1.97          | 0.02    | 2.77 | 2.36         |
|            |                                  | -2.2         | -1.8         |          | HT   | -1.99          | 0.02    | 3.32         | 2.70 | -2.00          | 0.02    | 3.78         | 3.75         | -2.00          | 0.02    | 3.54 | 3.08         |
| 364<br>364 | SG9 to mux 2ma<br>SG9 to mux 2ma | -2.2         | -1.8         | mA<br>mA | RT   | -2.00          | 0.02    | 3.53         | 3.10 | -2.00          | 0.02    | 3.83         | 3.40         | -2.00          | 0.02    | 3.54 | 3.43         |
| 364        | SG9 to mux 2ma                   | -2.2         | -1.8         | mA       | CT   | -2.00          | 0.02    | 3.53         | 2.99 | -2.00          | 0.01    | 3.83         | 3.40         | -2.00<br>-1.97 | 0.02    | 3.59 | 2.75         |
| 365        | SG10 to mux 2ma                  | -2.2         | -1.8<br>-1.8 | mA       | HT   | -1.96          | 0.02    | 3.42         | 2.88 | -1.97          | 0.02    | 3.60         | 3.28         | -1.97          | 0.02    | 3.19 | 3.37         |
| 365        | SG10 to mux 2ma                  | -2.2         | -1.8<br>-1.8 | mA<br>mA | RT   | -1.99          | 0.02    |              | 2.88 | -2.00          | 0.02    |              | 2.82         |                | 0.01    | 3.82 |              |
|            |                                  |              | _            |          | CT   | -2.00<br>-1.97 | 0.02    | 3.37<br>3.35 | 2.85 | -2.00<br>-1.97 | 0.02    | 3.15<br>3.10 |              | -2.01<br>-1.97 | 0.02    | 3.76 | 3.52<br>2.70 |
| 365<br>366 | SG10 to mux 2ma                  | -2.2<br>-2.2 | -1.8<br>-1.8 | mA       | HT   | -1.97          | 0.02    | 3.35         | 2.85 | -1.97          | 0.02    | 3.10         | 2.63<br>3.74 | -1.97          | 0.02    | 3.06 | 3.36         |
| 366        | SG11 to mux 2ma                  | -2.2<br>-2.2 | -1.8<br>-1.8 | mA       | RT   | -1.99          |         | 3.38         | 3.12 | -2.00          | 0.02    |              |              |                |         | 3.82 | 3.36         |
|            | SG11 to mux 2ma                  |              |              | mA       |      |                | 0.02    | 3.54         | 2.92 |                | 0.02    | 3.38         | 3.03         | -2.01          | 0.02    |      | 2.86         |
| 366        | SG11 to mux 2ma                  | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    |              |      | -1.97          |         | 3.44         | 2.94         | -1.97          |         | 3.26 |              |
| 367        | SG12 to mux 2ma                  | -2.2         | -1.8         | mA       | HT   | -1.99          | 0.02    | 3.56         | 2.96 | -1.99          | 0.02    | 3.65         | 3.63         | -1.99          | 0.01    | 4.04 | 3.43         |
| 367        | SG12 to mux 2ma                  | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.76         | 3.30 | -2.00          | 0.02    | 3.08         | 2.68         | -2.00          | 0.02    | 4.21 | 4.09         |
| 367        | SG12 to mux 2ma                  | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.64         | 3.09 | -1.96          | 0.02    | 3.28         | 2.74         | -1.97          | 0.02    | 3.49 | 2.96         |
| 368        | SG13 to mux 2ma                  | -2.2         | -1.8         | mA       | HT   | -1.99          | 0.02    | 3.41         | 2.87 | -2.00          | 0.02    | 3.53         | 3.51         | -2.00          | 0.01    | 3.89 | 3.38         |
| 368        | SG13 to mux 2ma                  | -2.2         | -1.8         | mA       | RT   | -2.00          | 0.02    | 3.72         | 3.27 | -2.00          | 0.02    | 3.23         | 2.83         | -2.00          | 0.02    | 3.97 | 3.80         |
| 368        | SG13 to mux 2ma                  | -2.2         | -1.8         | mA       | CT   | -1.97          | 0.02    | 3.59         | 3.07 | -1.96          | 0.02    | 3.28         | 2.75         | -1.97          | 0.02    | 3.14 | 2.70         |

# **Initial Process Study**

# **TSMC PPAP Documents**

- TSMC PPAP documents (FMEAs, Control Plans, Cpks, and GR&R) are considered proprietary information by TSMC, classified as "TSMC INTERNAL USE ONLY" and cannot be distributed with Freescale PPAPs in accordance with an agreement with TSMC.
- The PPAP documents are pulled by Freescale External Manufacturing Quality and checked for compliance with TS16949 requirements.
- For special requests, Freescale may be able to review these documents on a limited basis with customers at the local Freescale sales office.
- If there are any questions, please contact:

Sally Cadena Massey, Freescale MSG NPI Reliability, 512-895-7310 sally.cadena.massey@freescale.com

Jeff Martsching, Freescale External Manufacturing, 512-996-4282 Jeff.Martsching@freescale.com





# **Manufacturing Capability Report**

| Com         | pany/Manufacturing Site       | ID:                |                       | Frees          | cale / FSL | -TJN-FN | Л         |         |
|-------------|-------------------------------|--------------------|-----------------------|----------------|------------|---------|-----------|---------|
| Repo        | ort Date:                     |                    |                       | 17/De          | c /13      |         |           |         |
| Desig       | gnate with an "X" only on     | e of the following | g boxes and enter the | applicable inf | ormation:  |         |           |         |
| $\boxtimes$ | <b>Cpk Reporting Period:</b>  |                    |                       | Nov'2          | 013        |         |           |         |
|             | Preliminary Ppk - Lot N       | umber:             |                       |                |            |         |           |         |
| Desig       | gnate with an "X" only on     | e of the following | g boxes and enter the | applicable inf | ormation : |         |           |         |
|             | Wafer Fab Process Tech        | nology:            |                       |                |            |         |           |         |
|             | Assembly Process Packa        | ge Family:         |                       |                |            | SOIC 32 | 2ld EP    |         |
|             | <b>Assembly Process Packa</b> | ge Drawing #:      |                       |                |            |         | 0543D_D   |         |
|             |                               |                    |                       |                |            | 98ARH9  | 99137A_B  |         |
|             |                               |                    |                       |                |            |         |           |         |
| \$          | Special/Important             | Generic            | # Machines            | # Machines     | s # Ma     | chines  | Minimum   | Average |
|             | Characteristic                | Data               | Ppk/Cpk <1.33         | Ppk/Cpk        | Ppk        | /Cpk    | Ppk/Cpk   | Ppk/Cpk |
|             |                               |                    |                       | 1.33-1.66      | >/=        | 1.67    | <u>1/</u> |         |
|             | Ball shear                    |                    | 0                     | 0              | 4          | 13      | 1.71      | 2.11    |
|             | Wire pull                     |                    | 0                     | 0              | 4          | 13      | 1.83      | 3.31    |
|             | Thickness                     |                    | 0                     | 0              |            | 3       | 3.96      | 4.29    |
|             | Tip to Tip                    |                    | 0                     | 0              |            | 8       | 5.19      | 7.73    |
|             | Coplanarity                   |                    | 0                     | 0              |            | 8       | 6.84      | 8.77    |

FORMPPAP005DOC Freescale Rev M

<sup>1/</sup> If Ppk < 1.67 or Cpk < 1.67, attach containment action, corrective action, or justification (as appropriate).

# **Qualified Laboratory Documentation**



**G-07** 

#### **SCOPE OF THE LAB**

Rev F

Page **1** of **9** 

#### TABLE OF CONTENTS

| 1.0        | Purpose                                              | 2 |
|------------|------------------------------------------------------|---|
|            | Scope                                                |   |
|            | Referenced Documents                                 |   |
| 3.1        | Document Convention and Classification               |   |
| 3.2        | Acronyms, Definitions & Terms                        | 3 |
| 4.0        | Equipment Type and Control                           | 3 |
| 4.1        | Profile or Calibration                               |   |
| 4.2        | Preventative Maintenance                             | 3 |
| 4.3        | List of Equipment                                    | 3 |
| 5.0        | Training Lab Personnel                               | 5 |
| 6.0        | Product Entry and Running in the Lab                 | 6 |
| 6.1        | Types of Studies                                     |   |
| 6.2        | Setting Product Priority                             | 6 |
| 6.3        | Lot Tracking Database                                | 6 |
| 6.4        | Standard Chamber conditions are listed in Appendix A |   |
| 6.5        | Table of Specifications for the various stresses     |   |
| 7.0        | ESD and Humidity Control                             | 7 |
| 7.1        | ESD Control                                          |   |
| 7.2        | Humidity Control                                     | 7 |
| <b>0.8</b> | Records and Charts                                   | 7 |
| 9.0        | Appendix A - Lab Standard Conditions                 | 8 |
| 10.        | • •                                                  |   |
|            |                                                      |   |



**G-07** 

| SCOPE OF THE LAB | Rev F | Page <b>2</b> of <b>9</b> |
|------------------|-------|---------------------------|
|------------------|-------|---------------------------|

#### 1.0 Purpose

1.1 The purpose of this specification is to provide a brief summary of lab policy, capabilities, procedures, training and equipment.

## 2.0 Scope

2.1 This document applies to the Arizona Reliability Assessment Lab (ARAL). ARAL provides Reliability Assessment support for the Manufacturing and Business Units of Freescale. ARAL personnel work directly with Reliability Engineering, and Product Engineering to promote effective NPI activity as well as other needed Reliability support of the company's Strategic Agenda.

#### 3.0 Referenced Documents

| Document Number | Document Title |
|-----------------|----------------|
| L-02 Record     | Retention      |
| N/A ARAL        | LINKS          |
| G-02 Training   |                |
| G-03 ESD        | Procedures     |
| P-03 Profile    | Procedures     |

#### 3.1 Document Convention and Classification

- 3.1.1 Document numbers or Web addresses that are underlined in "blue" are links to related information.
  - A. Press CTRL and click to follow the links
- 3.1.2 This document is classified as "FREESCALE GENERAL BUSINESS INFORMATION". The information disclosed herein is the property of Freescale. Freescale reserves all proprietary, design, manufacturing, reproduction, use, and sales rights thereto, and to any article or process utilizing such information, except to the extent that rights are expressly granted to others.



**G-07** 

| SCOPE OF THE LAB | Rev F | Page <b>3</b> of <b>9</b> |
|------------------|-------|---------------------------|
|------------------|-------|---------------------------|

#### 3.2 Acronyms, Definitions & Terms

| Acronyms, Definitions & Terms | Description                        |
|-------------------------------|------------------------------------|
| ARAL                          | Arizona Reliability Assessment Lab |
| ESD Electrostatic             | Discharge                          |
| NPI                           | New Product Introduction           |
| FIFO                          | First In First Out                 |
| PM Preventa                   | tive Maintenance                   |
| IT Inform                     | ation Technology                   |

## 4.0 Equipment Type and Control

- 4.1 Profile or Calibration
  - 4.1.1 ARAL Profile procedures are outlined in spec P-03.
  - 4.1.2 Each piece of equipment has the conditions that can be run in the chamber, clearly marked on an attached label.
    - A. The date the chamber needs to be re-profiled is also listed on the profile label.
    - B. The chamber is only permitted to run conditions that it is profiled for when running qualification product.

#### 4.2 Preventative Maintenance

- 4.2.1 Maintenance records are kept on each major piece of equipment in the lab.
- 4.2.2 PMs are performed at routine intervals.
- 4.2.3 A label on each equipment gives the date of the last PM and also the next due date.

## 4.3 List of Equipment

| NAME |   | Type of EQUIPMENT | SERIAL NO.   | MODEL NO. | MANUFACTURER  |
|------|---|-------------------|--------------|-----------|---------------|
|      |   |                   | ESD Stresses |           |               |
| MK   | 1 | Zapmaster         | 309269       | MK2       | Thermo KeyTek |
| RCDM | 1 | Zapmaster         | 404277       | RCDM3     | Thermo KeyTek |
| KT   | 1 | Zapmaster         | 9002173      | 7/4       | Thermo KeyTek |
| KT   | 2 | Zapmaster         | 9309323      | 7/4       | Thermo KeyTek |



**G-07** 

# SCOPE OF THE LAB Rev F Page 4 of 9

| NAME  |    | Type of EQUIPMENT   | SERIAL NO.                   | MODEL NO.         | MANUFACTURER       |  |
|-------|----|---------------------|------------------------------|-------------------|--------------------|--|
|       |    | Typo of Equil MEITT | High Temp with Bias Stresses |                   | MANOLAGIONEN       |  |
| DV    | 2  | OP Life Oven        | 142035                       | PB216             | Despatch           |  |
| DV    | 3  | OP Life Oven        | 142051                       | PB216             | Despatch           |  |
| DV    | 4  | OP Life Oven CC3    | 06-506                       | HTC-152-2         | Delta-V            |  |
| DV    | 5  | OP Life Oven CC3    | 06-506                       | HTC-152-2         | Delta-V            |  |
| DV    | 31 | OP Life Oven        | 129156                       | PBC2-16           | Aehr Test          |  |
| W     | 1  | OP Life Oven        | 151908                       | Spec Dual Chamber | Wakefield          |  |
| W     | 2  | OP Life Oven        | 151908                       | Spec Dual Chamber | Wakefield          |  |
| W     | 3  | OP Life Oven        | 210083 / 151907              | Spec Dual Chamber | Wakefield          |  |
| W     | 4  | OP Life Oven        | 210083 / 151907              | Spec Dual Chamber | Wakefield          |  |
| W     | 9  | OP Life Oven        | 142501                       | Spec Dual-72      | Wakefield          |  |
| W     | 10 | OP Life Oven        | 142501                       | Spec Dual-72      | Wakefield          |  |
| W     | 13 | OP Life Oven CC3    | 149352                       | PBC1-80           | Wakefield          |  |
|       |    |                     | Humidity                     | Stresses          |                    |  |
| AC    | 1  | Autoclave           | 41345-1                      | ET364P            | Trio Tech          |  |
| AC    | 2  | Autoclave           | 41345                        | ET364P            | Trio Tech          |  |
| AC    | 3  | Autoclave           | 8807224                      | ET362S            | Express Test       |  |
| Н     | 1  | HAST                | 725390-1                     | 1000X             | Express Test       |  |
| Н     | 2  | HAST                | 41282                        | 6000X             | Trio Tech          |  |
| Н     | 3  | HAST                | 40013-1                      | 6000X             | Trio Tech          |  |
| THB   | 1  | Temp Hum            | 019396A                      | ESL-2CA           | ESPEC CORP.        |  |
| THB   | 2  | Temp Hum            | AC-204                       | AC-7602TDA-3      | Blue M             |  |
| THB   | 3  | Temp Hum            | AC-071                       | AC-7602A-2        | Blue M             |  |
| THB   | 4  | Temp Hum            | AC-422                       | AC-7502TDA-3      | Blue M             |  |
| THB   | 5  | Temp Hum            | AC-421                       | AC-7502TDA-3      | Blue M             |  |
| THB   | 6  | Temp Hum            | AC-420                       | AC-7502TDA-3      | Blue M             |  |
| THB   | 7  | Temp Hum            | 69405                        | PXA-2AP           | ESPEC CORP.        |  |
| THB   | 8  | Temp Hum            | 69406                        | PXA-2AP           | ESPEC CORP.        |  |
| THB   | 9  | Temp Hum            | 154459                       | EC607             | Despatch           |  |
| THB   | 10 | Temp Hum            | AC-114                       | AC-7602A-2        | Blue M             |  |
| THB   | 11 | Temp Hum            | AC-205                       | AC-7602TDA-3      | Blue M             |  |
| THB   | 13 | Temp Hum            | 2727                         | PXA-2AP           | ESPEC CORP.        |  |
| THB   | 14 | Temp Hum            | 019396B                      | ESL-2CA           | ESPEC CORP.        |  |
|       |    |                     |                              | resses            |                    |  |
| PPTCB | 1  | Temp Cycle          | 76 51 05                     | 9076-2-3-4-1      | Delta Design, Inc. |  |
| PPTCB | 2  | Temp Cycle          | 76 57 01                     | 9076-2-3-2        | Delta Design, Inc. |  |
| HTOLP | 1  | Temp Cycle          | 76 66 01                     | 9076              | Delta Design, Inc. |  |
| PTC   | 1  | Temp Cycle          | 171525                       | PTC-224           | Delta V            |  |
| PTC   | 2  | Temp Cycle          | 171525                       | PTC-224           | Delta V            |  |
| TC    | 1  | Temp Cycle          | 25755                        | HPS-16            | Thermatron Ind.    |  |
| TC    | 2  | Temp Cycle          | 24839                        | ATS-195-V-C02     | Thermatron Ind.    |  |
| TC    | 3  | Temp Cycle          | 27139                        | ATS-100-V-C-02    | Thermatron Ind.    |  |
| TC    | 4  | Temp Cycle          | 35919                        | ATSS-80-LN2       | Thermatron Ind.    |  |
| TC    | 5  | Temp Cycle          | 33971                        | ATS-320-V-LN2     | Thermatron Ind.    |  |
| TC    | 6  | Temp Cycle          | 33972                        | ATS-320-V-LN2     | Thermatron Ind.    |  |
| TS    | 2  | Thermal Shock       | 5363-1                       | 7205              | Ransco             |  |



G-07

| SCOPE OF THE LAB | Rev F | Page <b>5</b> of <b>9</b> |
|------------------|-------|---------------------------|
|------------------|-------|---------------------------|

| NAME Type of EQUIPMENT        |                                            | Type of EQUIPMENT | SERIAL NO. MODEL NO. |                 | MANUFACTURER               |  |
|-------------------------------|--------------------------------------------|-------------------|----------------------|-----------------|----------------------------|--|
| Temperature Storage Stresses  |                                            |                   |                      |                 |                            |  |
| В                             | 1                                          | High Temp Bake    | 150322               | LAD1423         | Despatch                   |  |
| В                             | 2                                          | High Temp Bake    | 150326               | LAD1423         | Despatch                   |  |
| В                             | 3                                          | High Temp Bake    | 150325               | LAD1423         | Despatch                   |  |
| В                             | 4                                          | High Temp Bake    | 148332               | LAC138A4        | Despatch                   |  |
| В                             | 5                                          | High Temp Bake    | 148510               | LAC138B4        | Despatch                   |  |
| LT                            | 1                                          | Low Temp          | 39-65-8              | 9039-1-3-5      | Delta Design, Inc.         |  |
| LT                            | LT 2 Low Temp                              |                   | 7081185              | C85-5           | So-Low                     |  |
| Other Miscellaneous Equipment |                                            |                   |                      |                 |                            |  |
| RF                            | RF 1 Reflow oven 9545 HVN 155 Conceptronic |                   |                      |                 |                            |  |
| RF                            | 2                                          | Reflow oven       | 0611-08              | PRO 1600        | Advanced Techniques (ATCO) |  |
| SA                            | 1                                          | Steam Age         | 890809-06            | 100-3-1111      | Mountain Gate              |  |
| SB                            | 1                                          | Sand Blaster      | 4005 / 9288 / IG07   | MB1000 / 75-CAB | Comco Inc                  |  |
| TA                            | 1                                          | Thermal Arm       | 9311-714             | T-2420SX7       | Thermonics                 |  |
| CSAM                          | 1                                          | CSAM              | 2294                 | D-9000          | Sonoscan                   |  |
| CSAM                          | 2                                          | CSAM              | 4024                 | GEN5            | Sonoscan                   |  |
| F                             | 2                                          | Tester            | 133                  | 3600            | Fet Test Inc.              |  |
| GL                            | 1                                          | Op Life Oven      | 152814               | LAC1-38A4       | Despatch                   |  |

# 5.0 Training Lab Personnel

- 5.1 The training procedure for the lab personnel is outlined in spec G-02
- 5.2 The training records can be accessed through ARAL LINKS located on "K drive", the lab network drive.
  - 5.2.1 K Drive Location: rqa\$ on 'az34-file02' (K:)
  - 5.2.2 Do the following to get access to the lab network drive:
    - A. Turn in an IT helpdesk ticket and request access to: rqa\$ on 'az34-file02' (K:).
    - B. The IT personnel will then send an email to the lab manager for authorization to grant access to the requesting person.
    - C. Access will be granted after the lab manager approves.
- 5.3 Training is considered complete after the following have been accomplished by the trainee:
  - 5.3.1 Read and understand any ARAL specification associated with the training.



**G-07** 

| SCOPE OF THE LAB Rev | v F Page 6 of 9 |
|----------------------|-----------------|
|----------------------|-----------------|

- 5.3.2 Be trained, in the procedure, by lab personnel that have previously completed training on the task.
- 5.3.3 Have three observations performing the procedures of the tasks, without assistance.
- 5.3.4 Have the training document signed by the trainee, trainer, and the lab manager.

# 6.0 Product Entry and Running in the Lab

- 6.1 Types of Studies
  - 6.1.1 Devices brought into the lab for Reliability stressing are brought in under one of three categories:
    - A. Qual or Qualification
      - 1. Product brought into the lab to support NPI for Freescale
    - B. Evaluation
      - 1. Product that is a Pre-Qualification for impending NPI support.
    - C. Lab Service
      - 1. All other devices ran in the lab for various engineering reasons.

#### 6.2 Setting Product Priority

- 6.2.1 Each Division, that ARAL supports, is given up to three "Hot" priority quals in the lab.
  - A. More than three can be given at Quality Management discretion.
  - B. Priorities are set by the quality managers.
- 6.2.2 All other product is handled on a FIFO basis as Capacity and Resources permit.

#### 6.3 Lot Tracking Database

- 6.3.1 All lots and product are tracked through the lab using the Quartz Database.
- 6.3.2 The quality organization has required the Quartz system be used for all of the Freescale reliability labs.



**G-07** 

| SCOPE OF THE LAB | Rev F | Page <b>7</b> of <b>9</b> |
|------------------|-------|---------------------------|
|------------------|-------|---------------------------|

- 6.3.3 Travelers for the product, running through the lab, are generated from the Quartz system.
- 6.4 Standard Chamber conditions are listed in Appendix A
- 6.5 Table of Specifications for the various stresses

| Specification<br>Number | Title                      | Specification<br>Number | Title              |
|-------------------------|----------------------------|-------------------------|--------------------|
| S-01                    | Autoclave                  | S-11                    | Temp Cycle         |
| S-02                    | Gate Leakage               | S-12                    | Temp Humidity Bias |
| S-03                    | HAST                       | S-13                    | Solderability      |
| S-04                    | High Temp Bake             | S-14                    | Thermal Shock      |
| S-05                    | High Temp Operational Life | S-15                    | Wire Pull          |
| S-06                    | IOL                        | S-16                    | PPTCB              |
| S-08                    | Power Temp Cycle           | S-17                    | Low Temp Storage   |
| S-10                    | Reflow                     | E-02                    | CDM                |

## 7.0 ESD and Humidity Control

#### 7.1 ESD Control

- 7.1.1 Spec G-03 outlines the complete ESD control practices performed in ARAL
- 7.1.2 ESD safe areas are posted with signs at the entry of any ESD safe zone and with yellow tape on the floor.
- 7.1.3 Lab technicians test their ESD straps daily to ensure they are ESD safe.
- 7.1.4 An ESD strap is used when handling devices from lots in process in the lab.

#### 7.2 Humidity Control

- 7.2.1 Humidity sensitive areas in the lab have temperature and humidity monitors.
- 7.2.2 If the Humidity goes out of tolerance, qualification work in the area is stopped until the humidity is brought back within tolerance

#### 8.0 Records and Charts

8.1 All Records and Charts generated by the lab are kept and disposed of in accordance with ARAL spec L-02



**G-07** 

| SCOPE OF THE LAB | Rev F | Page <b>8</b> of <b>9</b> |
|------------------|-------|---------------------------|
|------------------|-------|---------------------------|

# 9.0 Appendix A - Lab Standard Conditions

| ARAL                 | pponum z                                    | STRESSES     |                                                                                                                                  |
|----------------------|---------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| SPEC                 | STRESSES                                    | (Jedec Abv.) | STRESS CONDITIONS                                                                                                                |
|                      |                                             |              | D Related Stresses                                                                                                               |
| E-02                 | Charge Device Model                         | CDM (ESD)    | JEDEC 200V, 500V,1000V or AEC 125V, 250V, 500V, 750V, 1000V                                                                      |
| None                 | Human Body Model                            | HBM (ESD)    | 250V, 500V,1000V 2000V, 4000V, 8000V                                                                                             |
| None                 | Machine Model                               | MM (ESD)     | 50V, 100V, 200V, 400V                                                                                                            |
| None                 | Latch Up                                    | LU (ESD)     | N/A                                                                                                                              |
|                      |                                             | Hum          | idity Related Stresses                                                                                                           |
| S-01                 | Auctoclave                                  | AC           | 121°C/100% RH                                                                                                                    |
| S-03                 | Highly Accelerated Stress<br>Test           | HAST         | 135°C/85% RH                                                                                                                     |
| S-12                 | Temperature Humidity<br>Bias                | ТНВ          | 25°C/90% RH, 30°C/60% RH, 30°C/70% RH, 60°C/60% RH, 60°C/70% RH, 60°C/90% RH, 85°C/60% RH, 85°C/85% RH, 60°C/90% RH, 60°C/70% RH |
| S-12                 | Temperature Humidity<br>Storage             | THS          | 25°C/90% RH, 30°C/60% RH, 30°C/70% RH, 60°C/60% RH, 60°C/70% RH, 60°C/90% RH, 85°C/60% RH, 85°C/85% RH, 60°C/90% RH, 60°C/70% RH |
|                      |                                             | Temperat     | ture Cycle Related Stesses                                                                                                       |
| S-11                 | Temperature Cycle                           | TC           | -0°C/+100°C, -40°C/+125°C, -55°C/+125°C,                                                                                         |
| S-14                 | Thermal Shock (Liquid to Liquid)            | TS           | -0°C/+100°C, -40°C/+125°C, -55°C/+125°C,                                                                                         |
| S-16                 | Positive Pressure<br>Temperature Cycle Bias | PPTCB        | -40°C/+125°C                                                                                                                     |
| S-08                 | Power Temperature<br>Cycle                  | PTC          | -40°C/+125°C                                                                                                                     |
| S-06                 | DC Intermitant Operational Life             | DCIOL        | +40°C/+140°C, +100°C/+200°C                                                                                                      |
| S-06                 | RF Intermitant<br>Operational Life          | RFIOL        | +100°C/+200°C                                                                                                                    |
|                      |                                             | High Temp    | with Bias Related Stresses                                                                                                       |
| S-05                 | High Temperature<br>Operationl Life         | HTOL         | 80°C, 85°C, 90°C, 100°C, 105°C, 125°C, 150°C                                                                                     |
| S-05                 | Early Life Failure Rate                     | ELFR         | 80°C, 85°C, 90°C, 100°C, 105°C, 125°C, 150°C                                                                                     |
| S-05                 | Burn In                                     | ВІ           | 80°C, 85°C, 90°C, 100°C, 105°C, 125°C, 150°C                                                                                     |
| S-05                 | High Temperature<br>Reverse Bias            | HTRB         | 80°C, 85°C, 90°C, 100°C, 105°C, 125°C, 150°C                                                                                     |
| S-05                 | High Temperature Gate Bias                  | HTGB         | 80°C, 85°C, 90°C, 100°C, 105°C, 125°C, 150°C                                                                                     |
|                      |                                             | Mis          | scalaneous Stresses                                                                                                              |
| S-15                 | Wire Pull                                   | WP           | N/A                                                                                                                              |
| S-04, S-<br>12, S-10 | Preconditioning                             | PC           | N/A                                                                                                                              |
| S-02                 | Gate Leakage                                | GL           | +/-400V / 155°C                                                                                                                  |
|                      |                                             | Tempe        | rature Storage Stresses                                                                                                          |
| S-17                 | Low Temp Storage                            | LTS          | -10°C, -40°C, -55°C, -65°C                                                                                                       |
| S-04                 | High Temperature Bake                       | НТВ          | 125°C, 135°C, 150°C, 175°C, 200°C, 300°C                                                                                         |



**G-07** 

| SCOPE OF THE LAB Rev | F Page 9 of 9 |
|----------------------|---------------|
|----------------------|---------------|

#### 10.0 Revision

| Rev | Description of Revision                                                                                                                                                                                                                                                                | Originator       | Release Date |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| О   | New document                                                                                                                                                                                                                                                                           | Roland Kallstedt | 25 Apr 99    |
| A   | Change Tempe Rel Lab to Arizona Reliability Assessment Lab. Move Equipment List, Para. 4.0 to Appendix A. Add spec. 12MSA63581B to Appendix A. Add Small HAST, Thermal Column, Ransco Power Temp Cycle, and Aehr Test Chamber specs to Para. 3.1 & Appendix A. Delete 12MSB17434C, SAT | Bob Meiers       | 14 Dec 01    |
| В   | Rewrite of spec to conform to Rel Lab Scope Standardization effort.                                                                                                                                                                                                                    | K.P. Mui         | 19 July 02   |
| С   | Corrected spec number for Personal Safety System Procedure.                                                                                                                                                                                                                            | Susie Almanza    | 11 Dec 02    |
| D   | Added Quality Records in section 3.5 Records as per iddcm request 326345                                                                                                                                                                                                               | Susie Almanza    | 17 Dec 03    |
| Е   | Reviewed and removed all references to SPS, Motorola.                                                                                                                                                                                                                                  | J. Schaper       | 16 Mar 06    |
| F   | Total Rewrite of this specification                                                                                                                                                                                                                                                    | Dan Cluff        | 31 Mar 09    |



www.lrgausa.com

F (281) 398-7337

E management-usa@lrqa.com Houston, TX 77077

LROA. Inc.

T (281) 398-7370 Lloyd's Register Quality Assurance, Inc. 1401 Enclave Pkwy., Suite 200

The Freescale Semiconductor certificates scope statement was revised this year in order to comply with LRQA internal procedure and to continue to meet accreditation requirements while supporting Freescale desire for flexibility.

The LRQA general scope format: Location, Activity, Products or Services and Limitations. The main activities referenced in the assessment standard are preferred wherever possible, i.e. design, development, manufacture and installation, or the appropriate equivalent for the industry or sector.

Consequently, the first page of all certificates lists the main location for that specific certificate and the corporate activities (design and manufacture), products (semiconductors) with no service and no restrictions. Freescale Scope: Design and Manufacture of Semiconductors.

The additional pages of each certificate provide a listing of the general activities and where the location is that provide support. Freescale and LRQA agreed to provide general guidance only as the groups names have changed and not the functions.

The Manufacture statement supports all process activities such as - contract review, production, supplier management, purchasing, manufacturing, maintenance, facilities, product testing, corrective action, shipping, wafer fab, assembly, design validation change action boards, internal audits, management responsibility, warehouse, receiving, receiving inspection, ESD, reticle management, process engineering, process modeling, device engineering, production planning, order processing, goal management, training, human resources, legal and all other terminology that could be synonyms.

The Regional Sales statement supports all process activities such as at home salesman, marketing, customer surveys and contract negotiations (without legal authority).

The Design statement supports all process activities such as R&D, product design, process design, design models, test engineering, sample test floors, design verification, reliability testing, product analysis labs, new process introduction teams and activities.

If one wants to know what processes are specifically involved in the assessment, please refer to the Assessment Schedule that is included in each locations' LRQA Assessment Reports.

**Gail Freund** 

Lead QMS Assessor

Lloyd's Register Quality Assurance, Inc.







# CERTIFICATE

This is to certify that

# **Taiwan Semiconductor** Manufacturing Company Ltd.

8, Li-Hsin Rd. 6, Hsinchu Science Park Hsinchu, Taiwan 300-77, R.O.C.

has implemented and maintains a Quality Management System.

#### Scope:

The development of semiconductor foundry process technology and IP/Library design, and the associated manufacture of Integrated Circuits.

An audit, conducted and documented in a report, has verified that this quality management system fulfills the requirements of the following ISO Technical Specification:

# ISO/TS 16949: 2009

(with product design)

Original certification date

2002-10-18

Certification decision

2011-09-02

This certificate is valid until

2014-09-01

Certificate Registration No.

20002969 TS09

0126254

Main Certificate Registration No

20002969 TS09

Buffalo Grove, IL, USA

2011-09-02



2-IAO-QMC-01001

Ganesh Rao Managing Director UL DQS Inc.

IATF Contract Office: DQS GmbH, August-Schanz-Straße 21, 60433 Frankfurt am Main, Germany Issuing Office: UL DQS Inc., 1130 West Lake Cook Road, Suite 340, Buffalo Grove, IL 60089 USA





Annex to Certificate Registration No.: 20002969 TS09

Main Certificate Registration No.: 20002969 TS9

IATF-No.: 0126254

Date of issue: 2011-09-02

#### **Taiwan Semiconductor** Manufacturing Company Ltd.

8, Li-Hsin Rd. 6, Hsinchu Science Park Hsinchu, Taiwan 300-77, R.O.C.

| Company Name                                                                    | Location                                                                                                                                                   | Function                    |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Taiwan Semiconductor<br>Manufacturing Company<br>Ltd.<br>Reference No. 20002967 | Fab. 2<br>121, Park Ave. 3<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C.                                                                   | Supplemental manufacturing. |
| Taiwan Semiconductor<br>Manufacturing Company<br>Ltd.<br>Reference No. 20002967 | Fab. 3<br>9, Creation Rd. 1<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C.                                                                  | Supplemental manufacturing. |
| Taiwan Semiconductor<br>Manufacturing Company<br>Ltd.<br>Reference No. 20002970 | Fab. 5<br>121, Park Ave. 3<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C.                                                                   | Supplemental manufacturing. |
| Taiwan Semiconductor<br>Manufacturing Company<br>Ltd.<br>Reference No. 20002966 | Fab. 7<br>6, Creation Rd. 2<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C.                                                                  | Supplemental manufacturing. |
| Taiwan Semiconductor<br>Manufacturing Company<br>Ltd.<br>Reference No. 20002966 | Fab. 8<br>25, Li-Hsin Rd.<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C.                                                                    | Supplemental manufacturing. |
| Taiwan Semiconductor<br>Manufacturing Company<br>Ltd.<br>Reference No. 20002970 | Fab. 12 8, Li-Hsin Rd. 6 Hsinchu Science Park, Hsinchu, Taiwan 300-77, R.O.C.  168, Park Ave. 2 Hsinchu Science Park Hsinchu County, Taiwan 308-44, R.O.C. | Supplemental manufacturing. |









### CERTIFICATE

This is to certify that

#### **Taiwan Semiconductor** Manufacturing Company Ltd.

1, Nan-Ke North Rd., Tainan Science Park Tainan, Taiwan 741-44, R.O.C.

has implemented and maintains a Quality Management System.

#### Scope:

The development of semiconductor foundry process technology and IP/Library design, and the associated manufacture of Integrated Circuits.

An audit, conducted and documented in a report, has verified that this quality management system fulfills the requirements of the following ISO Technical Specification:

ISO/TS 16949: 2009

(with product design)

Original certification date

2002-10-18

Certification decision

2011-09-02

This certificate is valid until

2014-09-01

Certificate Registration No.

20002965 TS09

IATF No.

0126253

Main Certificate Registration No

20002969 TS09

Buffalo Grove, IL, USA

2011-09-02

2-IAO-QMC-01001



Ganesh Rao Managing Director UL DQS Inc.

Issuing Office:

IATF Contract Office: DQS GmbH, August-Schanz-Straße 21, 60433 Frankfurt am Main, Germany UL DQS Inc., 1130 West Lake Cook Road, Suite 340, Buffalo Grove, IL 60089 USA





Annex to Certificate Registration No.: 20002965 TS09

Main Certificate Registration No.: 20002969 TS9

IATF-No.: 0126253

Date of issue: 2011-09-02

### Taiwan Semiconductor Manufacturing Company Ltd.

1, Nan-Ke North Rd., Tainan Science Park Tainan, Taiwan 741-44, R.O.C.

| Company Name                                                                 | Location                                                                                   | Function                                                                  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Taiwan Semiconductor<br>Manufacturing Company Ltd.<br>Reference No. 20002968 | Fab. 6<br>1, Nan-Ke North Rd., Tainan<br>Science Park, Tainan,<br>Taiwan 741-44, R.O.C.    | Supplemental manufacturing.                                               |
| Taiwan Semiconductor<br>Manufacturing Company Ltd.<br>Reference No. 20002968 | Fab. 14<br>1-1, Nan-Ke North Rd.,<br>Tainan Science Park, Tainan,<br>Taiwan 741-44, R.O.C. | Supplemental manufacturing.                                               |
| Taiwan Semiconductor<br>Manufacturing Company Ltd.<br>Reference No. 20002968 |                                                                                            | Supplemental manufacturing.                                               |
| Taiwan Semiconductor<br>Manufacturing Company Ltd.<br>Reference No. 20002969 | Fab. 12<br>8, Li-Hsin Rd. 6<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C.  | Sales, Purchasing, HR, R&D,<br>Document Control and<br>Business Planning. |







### **CERTIFICATE**





This is to certify that

#### Taiwan Semiconductor Manufacturing Company Ltd.

No. 1, Keya 6th Rd., Daya Dist., Taichung City, Taiwan 428, R.O.C.

has implemented and maintains a Quality Management System.

#### Scope:

The development of semiconductor foundry process technology and IP/Library design, and the associated manufacture of Integrated Circuits.

An audit, conducted and documented in a report, has verified that this quality management system fulfills the requirements of the following ISO Technical Specification:

ISO/TS 16949: 2009

(with product design)

Original certification date

2012-10-06

Certification decision

2012-10-06

This certificate is valid until Certificate Registration No.

2015-10-05

IATF No.

20006804 TS9

0147759

Main Certificate Registration No

20002969 TS9

Buffalo Grove, IL, USA

2012-10-06

2-IAO-QMC-01001

UL DQS Inc.

Ganesh Rao President

IATF Contract Office: DQS GmbH, August-Schanz-Straße 21, 60433 Frankfurt am Main, Germany Issuing Office: UL DQS Inc., 1130 West Lake Cook Road, Suite 340, Buffalo Grove, IL 60089 USA

1/2





Annex to Certificate Registration No.: 20006804 TS9 Main Certificate Registration No.: 20002969 TS9

IATF-No.: 0147759

Date of issue: 2012-10-06

#### Taiwan Semiconductor Manufacturing Company Ltd.

No. 1, Keya 6th Rd., Daya Dist., Taichung City, Taiwan 428, R.O.C.

| Company Name                                                             | Location                                                                       | Function                                                                  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Taiwan Semiconductor<br>Manufacturing Company Ltd.<br>Ref. No.: 20002969 | 8, Li-Hsin Rd. 6<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C. | Sales, Purchasing, HR,<br>R&D, Document Control<br>and Business Planning. |







### CERTIFICATE C



This is to certify that

#### TSMC (China) Company Limited, (Fab 10)

4000, Wen Xiang Road, Songjiang 201616, Shanghai P.R. China

has implemented and maintains a Quality Management System.

#### Scope:

The development of semiconductor foundry process technology and IP/Library design, and the associated manufacture of Integrated Circuits.

An audit, conducted and documented in a report, has verified that this quality management system fulfills the requirements of the following ISO Technical Specification:

#### ISO/TS 16949: 2009

(with product design)

Original certification date 2002-10-18

Certification decision 2011-09-02

This certificate is valid until 2014-09-01

Certificate Registration No. 20003351 TS9

IATF No. 0126255

Main Certificate Registration No 20002969 TS9

Buffalo Grove, IL, USA 2012-10-06

2-IAO-QMC-01001

UL DQS Inc.

Ganesh Rao President

IATF Contract Office: DQS GmbH, August-Schanz-Straße 21, 60433 Frankfurt am Main, Germany Ussuing Office: UL DQS Inc., 1130 West Lake Cook Road, Suite 340, Buffalo Grove, IL 60089 USA Responsible Office: DQS-UL AP, OOCL Plaza, Room 1702, No. 841, Yan An Middle Road, Shanghai, 200040, P.R. China



Annex to Certificate Registration No.: 20003351 TS9 Main Certificate Registration No.: 20002969 TS9

IATF-No.: 0126255

Date of issue: 2012-10-06

#### TSMC (China) Company Limited, (Fab 10)

4000, Wen Xiang Road, Songjiang 201616, Shanghai P.R. China

| Company Name               | Location                                                                       | Function                                                                  |
|----------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Manufacturing Company Ltd. | 8, Li-Hsin Rd. 6<br>Hsinchu Science Park,<br>Hsinchu, Taiwan 300-77,<br>R.O.C. | Sales, Purchasing, HR,<br>R&D, Document Control<br>and Business Planning. |



#### CERTIFICATE OF APPROVAL

This is to certify that the Quality Management System of:

Freescale Semiconductor Inc. **Freescale Semiconductor China Xiqing Integrated Semiconductor Manufacturing Site** No. 15 Xinghua Avenue **Xiqing Economic Development Area** Tianjin, 300381, P.R. China

has been approved by Lloyd's Register Quality Assurance to the following Quality Management System Standard:

ISO/TS 16949:2009

The Quality Management System is applicable to:

**Design and Manufacture of Semiconductors.** 

This certificate is valid only in association with the certificate schedule bearing the same number on which the locations applicable to this approval are listed.

Approval

Original ISO/TS 16949 Approval:

May 20, 2004

Certificate No: UQA 0109222/I

Current Certificate:

December 17, 2012

Certificate Expiry:

December 16, 2015

Issued by: Lloyd's Register Quality Assurance, Inc. for and on behalf of Lloyd's Register Quality Assurance Limited

IATF Certificate No: 0153288

This document is subject to the provision on the reverse 1330 Enclave Parkway, Suite 200, Houston, Texas 77077, USA For and on behalf of Hiramford, Middlemarch Office Village, Siskin Drive, Coventry CV3 4FJ, United Kingdom This approval is carried out in accordance with the LRQA assessment and certification procedures and monitored by LRQA

Metro Revision 13



#### **CERTIFICATE SCHEDULE**

# Freescale Semiconductor Inc. Freescale Semiconductor China Xiqing Integrated Semiconductor Manufacturing Site

#### **Manufacture of Semiconductors:**

Freescale Semiconductor Inc. Austin Technology and Manufacturing Center 3501 Ed Bluestein Boulevard Austin, Texas 78721, USA

Freescale Semiconductor Inc. Chandler Fab 1300 North Alma School Road Chandler, Arizona 85224, USA Freescale Semiconductor Inc. Oak Hill Fab 6501 William Cannon Drive West Austin, Texas 78735, USA

Freescale Semiconductor Malaysia Kuala Lumpur Final Manufacturing NO. 2 Jalan SS 8/2 Free Industrial Zone Sungai Way 47300 Petaling Jaya Selangor Malaysia

#### **Regional Sales of Semiconductors:**

Freescale Semiconductor Inc. Corporate Headquarters 6501 William Cannon Drive West Austin, Texas 78735, USA

Freescale Halbleiter Deutschland GmbH Schatzbogen 7 81829 Muenchen Germany Freescale Semiconductor China No. 192 Liangjing Road Pudong New Area Shanghai 201203 P.R. China

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo, 153-0064 Japan



Page 1 of 3

Approval Certificate No: UQA 0109222/I
This document is subject to the provision on the reverse
1330 Enclave Parkway, Suite 200, Houston, Texas 77077, USA
For and on behalf of Hiramford, Middlemarch Office Village, Siskin Drive, Coventry CV3 4FJ, United Kingdom
This approval is carried out in accordance with the LRQA assessment and certification procedures and monitored by LRQA.



#### **CERTIFICATE SCHEDULE**

# Freescale Semiconductor Inc. Freescale Semiconductor China Xiqing Integrated Semiconductor Manufacturing Site

#### **Design of Semiconductors:**

Freescale Semiconductor Inc. Corporate Headquarters 6501 William Cannon Drive West Austin, Texas 78735, USA

Freescale Semicondutores Brasil Ltda. Condominio TechnoPark Rodovia Anhanguera, km104, 5 Rua James Clerk Maxwell, 400 Campinas, Sao Paulo, 13069-380 Brazil

Freescale Semiconductor China Ltd. Freescale Suzhou Design Centre Zhuyuan Road Suzhou New District Suzhou 215011 P.R. China

Freescale Semiconducteurs France S.A.S. 134 Avenue du General Eisenhower B.P. 72329 31023 – Toulouse Cedex 1, France Freescale Semiconductor Inc. 2100 East Elliott Road Tempe, Arizona 85284, USA

Freescale Semiconductor China No.192 Liangjing Road Pudong New Area Shanghai 201203 P.R. China

Freescale Polovodice Ceska Republika s.r.o. Systemova aplikacni laborator 1.maje 1009 756 61 Roznov pod Radhostem Czech Republic

Freescale Halbleiter Deutschland GmbH Schatzbogen 7 81829 Munich Germany



IATF Certificate No: 0153288

Page 2 of 3

Approval Certificate No: UQA 0109222/I

This document is subject to the provision on the reverse

1330 Enclave Parkway, Suite 200, Houston, Texas 77077, USA

For and on behalf of Hiramford, Middlemarch Office Village, Siskin Drive, Coventry CV3 4FJ, United Kingdom
This approval is carried out in accordance with the LRQA assessment and certification procedures and monitored by LRQA.



#### **CERTIFICATE SCHEDULE**

# Freescale Semiconductor Inc. Freescale Semiconductor China Xiqing Integrated Semiconductor Manufacturing Site

#### **Design of Semiconductors:**

Freescale Semiconductor India Pvt. Ltd. Plot No. 2 & 3 Sector16A

Noida, Uttar Pradesh, 201301

India

Freescale Semiconductor Romania SRL 45, Tudor Vladimirescu Street Tati Business Center Bucharest, 050881 Romania Freescale Semiconductor México Guadalajara Design and Sales Periferico Sur # 8110

Col. El Mante

Tlaquepaque, Jalisco, México

C.P. 45609

Freescale Semiconductor U.K. Kelvin Industrial Estate Colvilles Road East Kilbride, Glasgow

Scotland G75 OTG, United Kingdom

Approval

Certificate No: UQA 0109222/I

Original ISO/TS 16949 Approval:

Current Certificate: Certificate Expiry: May 20, 2004

December 17, 2012 December 16, 2015



IATF Certificate No: 0153288

Page 3 of 3

Approval Certificate No: UQA 0109222/l

This document is subject to the provision on the reverse

1330 Enclave Parkway, Suite 200, Houston, Texas 77077, USA

For and on behalf of Hiramford, Middlemarch Office Village, Siskin Drive, Coventry CV3 4FJ, United Kingdom

This approval is carried out in accordance with the LRQA assessment and certification procedures and monitored by LRQA.

# **Appearance Approval Report**

(Not Applicable for Semiconductors)

## Sample Product

Sample Product requirements are identified on the PPAP Checklist; however sample units are shipped separately from the PSW Data Packet. Freescale release for shipment is contingent upon PSW and/or sample customer approval.

### Master Sample

Master Sample is on file in the appropriate MSG Business Unit Quality Organization - Tempe

# **Checking Aids**

(Not Applicable)

## **Records of Compliance**

With Customer-Specific Requirements

### **Part Submission Warrant**



#### **Part Submission Warrant**

| Part Name MSDISWA                                                                                                                                                                                   | Cust. Part Number                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Shown on Drawing No. MC33972 Rev. 19.0, 3/2012                                                                                                                                                      | Orig Part Number MC33972ATEK/R2 & MC33972ATEW/R2        |
| Engineering Change Level Rev 19                                                                                                                                                                     | Dated 3/2012                                            |
| Additional Engineering Changes N/A                                                                                                                                                                  | Dated N/A                                               |
|                                                                                                                                                                                                     | Order No. N/A Weight (kg) 0.472000g                     |
| Checking Aid No. N/A Checking Aid Engineering Change Leve                                                                                                                                           | l N/A Dated N/A                                         |
|                                                                                                                                                                                                     | STOMER SUBMITTAL INFORMATION                            |
| Freescale Semiconductor                                                                                                                                                                             | TOWER SOBJETTIVE BY ORDER TOWN                          |
|                                                                                                                                                                                                     | omer Name/Division                                      |
| No.15, Xing Hua Avenue; XiQing 300385                                                                                                                                                               |                                                         |
|                                                                                                                                                                                                     | er/Buyer Code                                           |
| Tianjin China                                                                                                                                                                                       | ee.                                                     |
| City Region Postal Code Country App                                                                                                                                                                 | lication                                                |
| MATERIALS REPORTING                                                                                                                                                                                 |                                                         |
| •                                                                                                                                                                                                   | ☐ Yes   ☑ No                                            |
| Submitted by IMDS or other customer format:  Data will be submitted.                                                                                                                                | ted on customer request.                                |
| Are polymeric parts identified with appropriate ISO marking codes?                                                                                                                                  | ☐ Yes ☐ No         n/a                                  |
| REASON FOR SUBMISSION (Check at least one)                                                                                                                                                          |                                                         |
| Initial Submission                                                                                                                                                                                  | Change to Optional Construction or Material             |
| Engineering Change(s)                                                                                                                                                                               | Sub-Supplier or Material Source Change                  |
| Tooling: Transfer, Replacement, Refurbishment or additional                                                                                                                                         | Change in Part Processing                               |
| Correction of Discrepancy                                                                                                                                                                           | Parts Produced at Additional Location                   |
| Tooling Inactive > than 1 year                                                                                                                                                                      | Other – please specify                                  |
| REQUESTED SUBMISSION LEVEL (Check One)                                                                                                                                                              | Copper Wire Qualification. See PCN 15977                |
| Level 1 – Warrant only, (and for designated appearance items, an Appearance Approval                                                                                                                | Report) submitted to customer.                          |
| Level 2 – Warrant with product samples and limited supporting data submitted to custom                                                                                                              |                                                         |
| Level 3 – Warrant with product samples and complete supporting data submitted to custo                                                                                                              | omer.                                                   |
| <ul> <li>Level 4 – Warrant and other requirements as defined by customer.</li> <li>Level 5 – Warrant with product samples and complete supporting data reviewed at suppl</li> </ul>                 | jer's manufacturing location                            |
|                                                                                                                                                                                                     | ici s manufacturing focation.                           |
| SUBMISSION RESULTS  The results for                                                                                                                                                                 |                                                         |
| The results for   ☐ dimensional measurements  ☐ material and functional teachers  ☐ Yes                                                                                                             | sts                                                     |
| Mold / Cavity / Production Process Mold/Cavity n/a: Refer to CofDC                                                                                                                                  | (ii 140 - Explanation Required)                         |
| DECLARATION                                                                                                                                                                                         |                                                         |
| affirm that the samples represented by this warrant are representative of our parts, which we                                                                                                       | • •                                                     |
| Approval Process Manual 4th Edition Requirements. I further warrant these samples were pro-<br>lated also certified that documented evidence of such compliance is on file and available for review | <u> </u>                                                |
|                                                                                                                                                                                                     | 32ld SOIC Assembly and Test at Freescale Tianjin China. |
| SOIC32 300ML 4.6EP/Non-EP TSMC SMOS5 Coppe                                                                                                                                                          |                                                         |
| s each Customer Tool properly tagged and numbered?   Yes No                                                                                                                                         |                                                         |
| Organization Authorized Signature Sally Cadena Massey (Electronic Signature)                                                                                                                        | Date January 15, 2014                                   |
| Print Name Sally Cadena Massey Phone No. (512) 895-73                                                                                                                                               |                                                         |
| Title Quality PPAP E-mail                                                                                                                                                                           | sally.cadena.massey@freescale.com                       |
|                                                                                                                                                                                                     | E ONLY (IF APPLICABLE)                                  |
| Part Warrant Disposition: Approved Rejected Other                                                                                                                                                   | Data                                                    |
| ustomer Signature                                                                                                                                                                                   | Date<br>ng Number Optional                              |

Tracking Number: 201350130A\_0\_0

### **Bulk Material Checklist**

(Not Applicable for Semiconductors)